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Abstract
The Hill muscle model consists mainly of a contractile component (CC) in series
with an elastic component (SEC) and is used widely in biomechanics and human
movement science to actuate musculoskeletal models in simulations of human
movement. This chapter summarizes the main features of Hill-based muscle
models, including detailed treatments of the SEC force-extension relationship
and the CC activation dynamics, force-length relationship, and force-velocity
relationship. Additional model elements including CC pennation, parallel elas-
ticity, history dependence, and metabolic energy expenditure are covered in brief.
A contemporary summary of parameter values needed to implement muscle-
specific models when creating models of the lower limb is included.

Keywords
Contractile component • Series elastic component • Activation • Force length •
Force velocity • Parameters

Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Hill Muscle Model Formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

The Series Elastic Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
The Contractile Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Muscle-Skeleton Kinematic Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

R.H. Miller (*)
Department of Kinesiology, University of Maryland, College Park, MD, USA
e-mail: rosshm@umd.edu

# Springer International Publishing AG, part of Springer Nature 2018
B. Müller, S.I. Wolf (eds.), Handbook of Human Motion,
https://doi.org/10.1007/978-3-319-14418-4_203

373

mailto:rosshm@umd.edu
https://doi.org/10.1007/978-3-319-14418-4_203


Hill Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Introduction

Muscles are the motors of human motion: they receive input stimulation or “exci-
tation” from the nervous system and in response produce force and perform work on
the skeleton while consuming metabolic energy as fuel. The amount of force
produced depends heavily on three factors: the magnitude and timing of excitation,
the kinematic state of the muscle, and the morphological/physiological properties of
the muscle. These factors can be well represented by a simple mechanical model
known as the Hill muscle model (Fig. 1), consisting principally of a contractile
component (CC) in series with an elastic component (SEC). Due to this simplicity
and the consequent ease of implementation on computers, Hill-based muscle models
are by far the most commonly used actuator in computer models of human move-
ment (chapter ▶ “Optimal Control Modeling of Human Movement”). This chapter
provides an overview of creating and using Hill-based muscle models. A summary
of muscle-specific parameter values seen in the literature is included.

Muscle models other than Hill-based models are not included in this chapter due
to their infrequent use in human motion analysis and their poor performance during
lengthening contractions (Cole et al. 1996). For details on the other major class of
muscle models in biomechanics, Huxley-based models, readers are referred to
Huxley (1957), Hill (1974), Zahalak (1981), and Cole et al. (1996).

State of the Art

The origin of the Hill model dates to the work of A.V. Hill (1886–1977), who won
the 1922 Nobel Prize in Physiology or Medicine for his work relating the mechanics
and energetics of force production in the skeletal muscle. Hill himself was not a
computer modeler, nor did he name the model after himself, but he conceived of the
model depicted in Fig. 1a to explain his observations on the force produced in vitro

Fig. 1 (a) The two-component Hill muscle model with a contractile component (CC) in series with
an elastic component (SEC). (b) The model including the CC pennation angle θ
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by frog sartorius at different shortening velocities (Hill 1938). The earliest efforts at
formal computational simulations using a model based on Hill’s work were made
by Bahler (1968) for an isolated muscle and by Hatze (1976) in simulations of
whole-body human movement. Additional features on top of basic two-component
model shown in Fig. 1a include parallel elastic components representing the passive
stiffness of inactive muscle (e.g., Siebert et al. 2008), pennation of the CC
representing muscle fiber orientation (e.g., van den Bogert et al. 2011), models
that consider muscle fiber-type histology (e.g., Lee et al. 2013), and models of
muscle energy expenditure (e.g., Umberger et al. 2003). However, the central aspect
of modeling muscle as a set of differential equations representing the activation
and contractile dynamics of force production has been essentially unchanged
since the 1960s.

The reader should be mindful that the Hill model is a phenomenological model.
Its purpose is to accurately simulate muscle force production for a variety of input
excitation conditions and whole-muscle (origin-to-insertion) kinematic states. The
CC and SEC in the Hill model capture many of the aspects of muscle force
production typically attributed to fibers and tendons respectively in real muscle,
but the CC and SEC do not have direct anatomical analogues in real muscle. Hill
himself cautioned against an anatomical interpretation of the model’s components:

For simplicity in description the [SEC] will be referred to as “tendon”, but no assumption is
implied that other undamped series elastic elements do not exist within the fibers themselves;
the evidence of its properties is derived from mechanical experiments with active muscle,
not from histological observation. (Hill 1950)

This caution has implications in how Hill-based models are parameterized and in the
interpretation and validation of their output vs. measurements from real muscle. The
interested reader is also referred to the recent review on verification and validation of
musculoskeletal models by Hicks et al. (2015).

Hill Muscle Model Formalisms

The core components of a Hill-based muscle model are the CC and the SEC (Fig. 1).
The CC represents aspects of muscle that actively produce force in response to
excitation. This force is expressed across the SEC, which responds elastically. The
equations of kinematic and kinetic equilibrium are:

Lm ¼ LCC þ LSEC (1)

FCC ¼ FSEC (2)

where Lm is the muscle origin-to-insertion length, LCC and LSEC are the CC and SEC
lengths, and FCC and FSEC are the CC and SEC forces. Introducing the pennation
angle θ from Fig. 1b:
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Lm ¼ LCC cos θ þ LSEC (3)

FCC cos θ ¼ FSEC (4)

Pennation is typically implemented by assuming the CC has constant volume and
constant thickness:

LCC sin θ ¼ Lo sin θo (5)

where Lo is the optimal CC length in the sense of the force-length relationship
(Gordon et al. 1966) and θo is the pennation angle when LCC = Lo.

The Series Elastic Component

The SEC in the Hill model behaves elastically according to a force-extension
relationship, where the SEC force is zero below its unloaded length Lu and increases
to progressively greater force when stretched to progressively longer lengths beyond
Lu. Measurements of SEC force and extension suggest their relationship is nonlinear
(Hill 1950). A common nonlinear model assumes the force-extension relationship is
quadratic (van Soest and Bobbert 1993):

FSEC ¼ K1 LSEC � Luð Þ2, LSEC > Lu
0, LSEC � Lu

�
(6)

K1 ¼ Fo= UoLuð Þ2 (7)

where Fo is the maximum isometric force and Uo is the SEC strain when it is loaded
with the maximum isometric force (i.e., when FSEC = Fo). Typical values for Uo

based on tendon measurements or quick-release experiments are 0.03–0.10. A
constant value of Uo = 0.04 is often assumed for all muscles, although this
assumption appears to be based more on tradition following the original source
(van Soest and Bobbert 1993) rather than evidence that Uo is indeed invariant
between muscles and subjects. The choice of Uo dictates the stiffness of the SEC,
which has a major effect on muscle energetics (Lichtwark and Wilson 2007).

When using gradient-based simulation methods, it is often desirable for the
model’s state equations to have nonzero gradients. Equation 6 can be modified to
meet this condition by adding a linear term:

FSEC ¼ K0 LSEC � Luð Þ þ K1 LSEC � Luð Þ2, LSEC > Lu
0, LSEC � Lu

�
(8)

where K0 has a small nonzero value (e.g., 1–10 N/m). Alternatively, the force-
extension relationship has been modeled as exponential (Caldwell 1995):

FSEC ¼ FoCo exp K2 LSEC =Lu � 1ð Þð Þ � 1ð Þ (9)

376 R.H. Miller



where Co and K2 are constants used to fit the curve to measurements. Values of Co =
0.0258 and K2 = 92.08 give a curve with about 4% extension when FSEC = Fo,
although the shape of this force-extension curve differs substantially from the shape
of Eq. 8 with Uo = 0.04 (Fig. 2).

The SEC is by definition undamped (Hill 1938, 1950), but a small amount of
damping can improve the numerical efficiency and stability of the model (Günther
et al. 2007) and is motivated physiologically by the water content of connective
tissue. A specific example of implementing SEC damping is a linear parallel damper:

FSEC ¼ K1 LSEC � Luð Þ2 þ DSEC
_LSEC (10)

where DSEC is the damping rate. Interested readers are referred to Günther
et al. (2007).

The Contractile Component

Activation dynamics. The Hill model receives as input a time-varying neural exci-
tation signal u(t) that represents the summed motor unit action potentials and ranges
on [0,1]. In response to this signal, the CC activates its “contractile machinery”
represented by the activation level α, a nondimensional parameter that also ranges on
[0,1] depending on the history of excitation. Under the crossbridge theory of muscle
force production (Huxley 1957), α is analogous to the fraction of binding sites on
actin unblocked by troponin and available for crossbridge formation. The chemical
reactions responsible for the rise and fall of activation in response to changes in
excitation occur over finite time periods. Activation therefore lags behind the time
course of excitation. He et al. (1991) presented a model of these activation dynamics
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Fig. 2 Force-extension relationships of the SEC as defined by van Soest and Bobbert (1993) and
Caldwell (1995). SEC length is relative to the unloaded length. SEC force is relative to the
maximum isometric force

Hill-Based Muscle Modeling 377



that has been used in many studies and captures the observation that activation rises
faster than it falls:

_α ¼ u� αð Þ c1uþ c2ð Þ (11)

c2 ¼ 1=τ2 (12)

c1 ¼ 1=τ1 � c2 (13)

where τ1 and τ2 are time constants for rising and falling activation, respectively.
Typical time constants are on the order of 10–100 ms and are affected by muscle
fiber type. Umberger et al. (2003) modeled the time constants as:

τ1 ¼ 0:080� 0:050FT (14)

τ2 ¼ 0:095� 0:060FT (15)

where FT is the fraction of fast-twitch fibers in the muscle. The sensitivity of
activation to FT during a burst of maximum excitation is demonstrated in Fig. 3.

More complicated models of neuromuscular control exist, but their details
are excluded here for brevity and to maintain the focus on muscle modeling. For
example, Hatze (1976, 1977) defined two control signals per muscle representing
motor unit recruitment and rate-coding separately; Fuglevand et al. (1993) devel-
oped a detailed model of motor neurons, motor unit pools, and surface electromyo-
grams; and Buchanan et al. (2004) presented a comprehensive summary of methods
for using raw electromyogram measurements as the control input to Hill-based
muscle models. Interested readers are referred to those references for details.
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Fig. 3 Muscle excitation (dashed line) and activation from the He et al. (1991) model (solid lines)
during a 400 ms burst of maximal excitation preceded and followed by zero excitation. Progres-
sively darker shades of activation are progressively greater values of FT from 0.0 to 1.0
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Force. The CC force is typically modeled as a function of its instantaneous
activation and kinematic state:

FCC ¼ f CC α, LCC, _LCC
� �

(16)

The specific form of the function fCC has varied between studies. A common
assumption is that the effects of the three input arguments are multiplicative and
independent:

FCC ¼ Fo � α � FL � FV (17)

where FL and FVare nondimensional factors representing the influence of the force-
length and force-velocity relationships, described below.

Force-length relationship. It is well known that the amount of force the CC can
produce depends on its current length (Gordon et al. 1966). The CC can produce the
most force at a moderate length defined as its optimal length Lo, with progressively
less force production possible at progressively longer or shorter lengths. The force-
length relationship is often modeled as parabolic (Woittiez et al. 1983):

FL ¼ max � 1

W2
1

LCC
Lo

� 1

� �2

þ 1, 0

 !
(18)

where W1 is the width of the force-length parabola in multiples of Lo. A form of the
force-length relationship better suited for gradient-based simulation methods is the
Gaussian force-length relationship (Winters and Stark 1985):

FL ¼ exp � 1

W2

LCC
Lo

� 1

� �2
 !

(19)

where W2 affects the width of the curve but does not directly define its zero-
crossings. The parabolic and Gaussian curves are compared in Fig. 4a. Hatze
(1977) proposed a more complicated force-length relationship:

FL ¼ 0:32þ 0:71exp �1:112
LCC
Lo

� 1

� �� �
sin 3:722

LCC
Lo

� 0:656

� �� �
(20)

where the constants were derived to fit the curve to sarcomere force-length data from
Gordon et al. (1966) over the interval LCC/Lo � [0.58, 1.80]. Whole-muscle force-
length curves are often much wider than sarcomere force-length curves (van den
Bogert et al. 1998), so Eqs. 18 and 19 are recommended for musculoskeletal
modeling.

In real muscle the optimal CC length Lo is not constant but rather shortens as the
activation level α increases (Huijing 1996). This effect can be included in the Hill
model with a simple linear relationship:

Hill-Based Muscle Modeling 379



Lo ¼ Lα γ 1� αð Þ þ 1ð Þ (21)

where Lα is the optimal CC length at maximum activation. A typical value for the
constant γ is 0.15 (Lloyd and Besier 2003). Figure 4b demonstrates the sensitivity of
the force-length relationship’s shape to activation level when the optimal length is
modeled as activation dependent using Eq. 21.

Force-velocity relationship. The force-velocity relationship is perhaps the most
well-known mechanical property of skeletal muscle. McLean et al. (2003) pre-
sented a nondimensional relationship that captures the main features of both the
concentric and eccentric limbs of the force-velocity relationship (Hill 1938; Katz
1939):
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Fig. 4 (a) Force-length relationships for a parabolic curve (Woittiez et al. 1983) and a Gaussian
curve (Winters and Stark 1985). The parameter values were W1 = 0.60 and W2 = 0.30. CC length
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FV ¼

bþ a _LCC=Lo

b� _LCC=Lo
, _LCC=Lo � 0

Cecc
_LCC=Lo þ v1

_LCC=Lo þ v1
, 0 < _LCC=Lo � δv1

v3 þ v2 _LCC=Lo, _LCC=Lo > δv1

8>>>>><
>>>>>:

(22)

v1 ¼ Cecc � 1ð Þb
aþ 1

(23)

v2 ¼ aþ 1

b δþ 1ð Þ2 (24)

v3 ¼ Cecc � 1ð Þδ2
δþ 1ð Þ2 þ 1 (25)

The parameters a and b are constants, and their ratio b/a defines the CC maximum
shortening velocity vmax. Umberger et al. (2003) defined their values as functions of
fiber type, such that muscles with greater fast-twitch fiber fractions can produce more
force at a given velocity of shortening (Fig. 5c):

a ¼ 0:1þ 0:4FT (26)

b ¼ vmaxa (27)

The parameter Cecc is the eccentric asymptote for force during lengthening, such
that the CC force asymptotically approaches CeccFo as the velocity of lengthening
increases. Typical parameter values are Cecc = 1.3–1.8 and vmax = 9–13. Equation 25
replaces the hyperbolic eccentric force-velocity curve with a linear curve during
“fast” lengthening, which can be necessary for some implementations of Eq. 22 on
computers. The parameter δ defines the threshold between “slow” and “fast” length-
ening and has a suggested value of 5.67 (McLean et al. 2003).

The maximum shortening velocity vmax in real muscle increases with increasing
activation level α (Chow and Darling 1999). The dependency can be included in the
Hill model by multiplying the value of b during shortening contractions (Eq. 22) by
an activation-dependent scaling factor λ. McLean et al. (2003) suggested the fol-
lowing factor to fit the Chow and Darling (1999) data:

λ ¼ 1� exp �3:82αð Þ þ α exp �3:82ð Þ (28)

Umberger et al. (2003) suggested a simpler factor:

λ ¼ α�0:3 (29)

Note that these factors scale b during shortening contractions only; the maximum
value of b (Eq. 27) is used during lengthening. Figure 5b demonstrates the sensitivity
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of the McLean et al. (2003) force-velocity curve to activation-dependent scaling of
vmax using Eq. 29.

Numerous other forms of the force-velocity relationship conceptually similar to
Eq. 25 have been presented (e.g., van Soest and Bobbert 1993; Minetti and Alex-
ander 1997). Hatze (1977) alternatively defined the force-velocity relationship as a
single function for both shortening and lengthening velocities:

FV ¼ Cecc

2
1þ tanh AH

_LCC
vmaxLo

� BH

� �� �� �
(30)

a
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b
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Fig. 5 (a) Force-velocity
relationships from McLean
et al. (2003) and Hatze (1977).
The parameter values were
Cecc = 1.45, FT = 0.50,
vmax = 12, AH = 2.64, and
BH = � 0.137. CC velocity
is relative to CC optimal
length. (b) Effect of activation
level on the shape of the
McLean et al. (2003) force-
velocity curve. Progressively
darker shades are
progressively greater
activations from 0.05 to 1.00.
(c) Effect of fiber type on the
shape of the McLean et al.
(2003) force-velocity curve.
Progressively darker shades
are progressively greater
values of FT from 0.0 to 1.0
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The advantage of Eq. 30 over Eq. 22 is that it does not require logical statements
to implement in code and thus avoids any potential discontinuities at zero velocity.
The disadvantages are that including dependencies on activation and fiber type is
more challenging, FV is not exactly 1.0 at _LCC ¼ 0, and the constants AH and BH

have no direct relationship to the Hill constants a and b. Typical values are AH = 3.0
and BH = �0.10. Figure 5a compares the shapes of the McLean et al. (2003) and
Hatze (1977) force-length relationships, with rather substantial differences at mod-
erate velocities.

Additional Features

Most Hill muscle models include the basic elements described already: an SEC with
a force-extension relationship and a CC with activation dynamics and force-length-
velocity relationships. Additional features in some models include a parallel elastic
component, history-dependent force production, and metabolic energy expenditure.

Parallel elasticity. The CC by definition is the source of the muscle’s “active”
force, i.e., the force produced by activation of the muscle’s contractile machinery in
response to excitation from the nervous system. The “passive” force of the muscle is
then the force due to muscle’s material properties in the absence of activation
(Gordon et al. 1966). The distinction between active and passive force has blurred
recently with the emergence of titin as a potential third contractile protein. However,
many Hill-based models include a third component along with the CC and SEC in
the form of a parallel elastic component (PEC). The PEC is included either parallel to
the whole muscle or parallel to the CC only (Fig. 6) and produces a force FPEC as a
function of its length LPEC using a function similar to the SEC force-extension
relationship. When placed in parallel with the CC only, the PEC force is a function of
CC length and Eq. 4 becomes:

FCC þ FPECð Þ cos θ ¼ FSEC (31)

Fig. 6 Three-component Hill muscle model with a parallel elastic component (PEC) situated
(a) parallel to only the CC and (b) parallel to both the CC and the SEC
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When placed in parallel with the whole muscle, the PEC force is a function of whole-
muscle length, and a new variable representing the whole-muscle force Fm must be
defined:

Fm ¼ FPEC þ FSEC ¼ FPEC þ FCC cos θ (32)

Equation 31 typically produces slightly better agreement with force measure-
ments from real muscle (e.g., Siebert et al. 2008), while Eq. 32 is advantageous
because it can be implemented in musculoskeletal models at the joint level (e.g.,
Riener and Edrich 1999) and avoids the need to model parallel elasticity at the
individual muscle level.

History dependence. In the Hill models described so far, the force produced by
the CC depends only on its current kinematic state. It has long been known that CC
force also depends on the recent history of its length, i.e., history-dependent force
enhancement and force depression (Abbott and Aubert 1952). Briefly:

• When a muscle is stretched then shortened to and held at a particular length, it
produces more force than would be produced by an isometric contraction at that
same length (force enhancement).

• When a muscle is shortened then stretched to and held at a particular length, it
produces less force than would be produced by an isometric contraction at that
same length (force depression).

Both effects have been observed in human muscles in vivo under voluntary sub-
maximal contractions, suggesting they should be included in models of human
movement (Herzog 2004). Readers interested in implementing history-dependent
phenomena in a Hill-based model are referred to the relatively simple model by
Forcinito et al. (1998) and the more complex model by McGowan et al. (2013).

Metabolic energy expenditure. Skeletal muscles produce force and perform work
on the skeleton, at the cost of consuming metabolic energy. The rate at which energy
is consumed appears to be a critical factor in human motor behavior (e.g., Srinivasan
2009), and there has been considerable interest in including models of muscle energy
expenditure in Hill-based muscle models such that whole-body energy expenditure
can be accounted for in simulations of movement (e.g., Miller 2014). A simple model of
muscle energy expenditure was proposed by Minetti and Alexander (1997):

_E ¼ αFoLovmax
0:054þ 0:0506vCC þ 2:46v2CC

1� 1:13vCC þ 12:8v2CC � 1:64v3CC

� �
(33)

vCC ¼ _LCC=vmax (34)

where _E is the muscle’s rate of metabolic energy expenditure (per unit time) and the
constants were determined from curve-fitting to measured data from frog muscle.
This model assumes that energy expenditure is affected only by activation and CC
velocity, but it does not appear to produce inferior results to other more detailed
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models (Miller 2014). Other models are based primarily on the first law of thermo-
dynamics (e.g., Umberger et al. 2003):

_E ¼ _H � _FCC
_LCC (35)

where _H is the rate of heat liberation, which generally depends on activation and the
CC kinematic state, and _FCC

_LCC is the CC mechanical work rate, assuming
shortening velocities are negative. A difficulty with these types of models is the
need to account for the energetic fate of eccentric muscle work, which is not well
understood.

Muscle-Skeleton Kinematic Coupling

Muscles attach to at least two different bones, implying that their origin-to-insertion
length (Lm in Eq. 1) is a function of the skeletal pose q. The approach to modeling
kinematic coupling will determine the relationship between the skeletal pose and
moment arms of a muscle’s force to the rotational centers of the skeleton’s joints and
will have an indirect effect on muscle force production through Eq. 1 (chapter
▶ “Three-Dimensional Reconstruction of the Human Skeleton in Motion”).

The two common approaches for modeling muscle-skeleton kinematic coupling
are the geometric approach and the curve-fitting approach. With the geometric
approach, each muscle is represented as a set of n coordinate points in local skeletal
segment reference frames (e.g., Delp et al. 1990). To determine the muscle’s length
and moment arm, consider a muscle with its origin on segment A and its insertion on
segment B, defined by n coordinate points. Points p1 through pm � 1 are defined in
reference frame A, and points pm through pn are defined in reference frame B. The
length of the muscle in a given skeletal pose is the sum of the distances between each
consecutive pair of coordinates:

Lm ¼
Xn�1

i¼1

piþ1 � pi
�� �� (36)

The muscle’s moment arm r with respect to a generalized coordinate q that
defines the pose of B relative to A can be determined directly from the coordinate
points using the partial velocity method:

r ¼ @fr qð Þ
@q

� pAm þ @ft qð Þ
@q

� �
� pm � pm�1ð Þ (37)

where fr(q) and ft(q) are the functions defining the respective rotations and trans-
lations between the two reference frames and pAm is the position of point pm in
reference frame A.
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With the curve-fitting approach, models like Delp et al. (1990), cadaver experi-
ments, or in vivo imaging are used to obtain data for muscle lengths at different joint
angles (chapters ▶ “Ultrasound Technology for Examining the Mechanics of the
Muscle, Tendon, and Ligament” and ▶ “3D Musculoskeletal Kinematics Using
Dynamic MRI”). These data are then fit with a differentiable polynomial function
Lm(q):

Lm qð Þ ¼
XN
i¼1

ai ∏
M

j¼1

q
pij
j (38)

where N is the number of polynomial terms, ai are the polynomial coefficients, M is
the number of generalized coordinates actuated by the muscle, and pij are the
polynomial exponents. Moment arm functions can be derived analytically using
the virtual work method:

r qð Þ ¼ � @Lm qð Þ
@qj

(39)

In some cases, first-degree polynomials equating to the assumption of constant
moment arm lengths may be sufficient (e.g., sagittal plane models simulating small
ranges of joint motion).

Equation 37 is also technically the partial derivative of muscle length with respect
to q; the curve-fitting method can be considered an approximation of the geometric
method. The choice of the fitting function for Eq. 38 will depend on the desired level
of accuracy with the data source and will influence the moment arms obtained and
the muscle forces and joint moments produced. The curve-fitting approach produces
equations that are more convenient for simulation methods involving symbolic
gradients (e.g., van den Bogert et al. 2011). Defining subject-specific coupling
parameters requires the same data with both approaches. Geometric scaling based
on body or segment dimensions is more straightforward with the geometric
approach. Regardless of the approach chosen, it is relevant to consider that some
muscle moment arms depend not only on skeletal pose but also on muscle force (e.g.,
Maganaris et al. 1998). Readers interested in more comprehensive treatments of
kinematic modeling of muscles are referred to An et al. (1984), Zajac and Gordon
(1989), and Pandy (1999).

Implementation

Hill-based models are often implemented in simulations of human movement by
defining the activation α and the CC length LCC as state variables. The model’s state
equations are then a set of two first-order ordinary differential equations, one
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describing the activation dynamics and one describing the contractile dynamics. An
example algorithm for implementing a Hill-based model in a forward dynamics
application is:

1. Receive initial values for α and LCC and current values for u and Lm
2. Knowing α and u, calculate _α from the activation dynamics
3. Knowing LCC and Lm, calculate LSEC from kinematic equilibrium
4. Knowing LSEC, calculate FSEC from the SEC force-extension relationship
5. Knowing FSEC, calculate FCC from kinetic equilibrium
6. Knowing FCC, α, and LCC, calculate _LCC from the CC force definition
7. Use _α and _LCC to update α and LCC for the next timestep by numerical integration
8. Iterate until the final time is reached

Steps 2 and 6 can be completed using basic algebra for the simplest Hill models.
More complicated models may require analytical or numerical root-finding methods.
Methods of numerical integration in Step 7 are outside the scope of this chapter, but
methods with greater accuracy than the basic Euler method are typically required.

The series of steps above is a traditional “forward dynamics” simulation method:
starting from a known initial state, the model’s dynamics are used to integrate the
state forward in time to calculate future states at other timesteps. Some alternative
methods of simulation involve knowledge of the state variables at all timesteps, in
which case the muscle model dynamics are implemented as constraints on the
feasible solution domain. For example, with implicit direct collocation (van den
Bogert et al. 2011), the muscle model is a set of equality constraints:

_α� u� αð Þ c1uþ c2ð Þ ¼ 0 (40)

f SEC LSECð Þ � f CC α,LCC, _LCC
� � ¼ 0 (41)

where _α and _LCC are estimated by finite differences (chapter ▶ “Optimal Control
Modeling of Human Movement”).

Hill Model Parameters

Hill-based muscle models have a substantial number of parameters that must be
specified before numerical simulations can be performed in practice. Even models
consisting of only the most basic elements with the simplest formulations described
in this chapter require at least eight independent parameter values per muscle. When
simulating the actions of a specific muscle or a whole-body motion actuated by many
muscles, it is important for these parameter values to be defined on an appropriate
muscle-specific basis and perhaps on a subject-specific basis depending on the use of
the model. The process of assigning many parameters for many muscle models can
be daunting, especially for new users who may be unfamiliar with the necessity and
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rationale, available resources, and methods for doing so. Here a current summary is
presented for parameter values in the muscle literature useful for Hill-based muscle
modeling. The five parameters considered were:

1. Optimal fiber length (Lo)
2. Fiber pennation angle (θ)
3. Physiological cross-sectional area (PCSA)
4. Unloaded tendon length (Lu)
5. The fraction of “fast-twitch” fibers (FT)

The first four parameters were selected due to the volume of available data and the
high sensitivity of Hill model output to their values (e.g., Scovil and Ronsky 2006).
Data on FTwere included due to their importance in some models of muscle energy
expenditure (e.g., Umberger et al. 2003).

Readers should be aware that most of the parameter values presented here are
derived from measurements on real muscle fibers and tendons, which are not the
anatomical analogs of the Hill model CC and SEC. The values given here can
provide a starting point for selecting parameter values in muscle models, but they
may not be the final values needed to produce good results in a particular use case.
For example, synergy between the parameters relating to contractile dynamics and
those relating to muscle-skeleton kinematic coupling needs to be considered.

Optimal fiber length. Methods of determining Lo from muscle fiber measure-
ments have varied in the literature. Some studies have determined fiber length from
manual ruler-based measurements. In these cases, it is often the fascicle length (not
the fiber length) that is actually measured, with the assumption that the fibers run
the full length of the fascicles. This assumption is controversial particularly for
long fascicles (Trotter 1990). Another common method of determining Lo has been
to report fiber lengths that have been “normalized” using sarcomere length
measurements:

LFn ¼ LFmLSo=LSm (42)

where LFn is the normalized fiber length, LFm is the originally measured fiber length,
LSo is the optimal sarcomere length in the context of the sliding filament hypothesis
and the force-length relationship, and LSm is the measured sarcomere length. The
purpose of normalization is to obtain an estimate of optimal fiber length Lo, i.e.,
LFn � Lo. The obvious challenge in normalization is that measurements of sarco-
mere length are required. The optimal sarcomere length for human muscle appears to
be about 2.6–2.8 μm (Walker and Schroedt 1974; Lieber et al. 1994). Unless
otherwise noted, all fiber lengths that were normalized to an optimal sarcomere
length other than 2.7 μm in the referenced data were renormalized to an optimal
length of 2.7 μm for presentation here.

Another method for determining Lo has been to use muscle modeling and
optimization to adjust the value of Lo (and various other model parameters) to
track measurements of human joint torque production as possible (Hatze 1981;
Hasson and Caldwell 2012). This allows for in vivo determination of Lo (and various
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other model parameters) without medical imaging equipment and is also faithful to
the phenomenological “input/output” nature of the Hill model.

Fiber pennation angle. Fiber pennation angle θ is typically defined as the
orientation of the long axis of the muscle fibers or fascicles, relative to the tendon.
This definition has been used fairly consistently in the literature. Cadaver studies by
necessity measure θ when muscles are inactive. In vivo studies have sometimes
measured θ at rest or during active contractions and at various joint angles. These
factors should be considered when interpreting in vivo θ data because fiber length
and activation level will affect the current θ.

Most studies have measured θ from a single plane and report a representative or
average result for the muscle in question. This definition of θ is likely not reflective
of the full fiber geometry in a three-dimensional muscle, but it is consistent with how
θ is usually included in Hill-based models, where constant muscle thickness and
volume are assumed. Infrequently, more detailed multi-planar definitions of θ have
been used, and occasionally the distribution of pennation angles within the fibers of
the muscle has been assessed (e.g., Scott et al. 1993).

Physiological cross-sectional area. PCSA has been defined inconsistently in the
literature. Some studies use the definition of Alexander and Vernon (1975):

PCSA1 ¼ V=Lo (43)

where V is the total volume of fibers within the muscle. This definition is advantageous
because it has an intuitive geometrical interpretation (the cross-sectional area of
contractile material perpendicular to the long axis of the muscle fibers) and because
the product with the specific tension σ gives the maximum isometric force of the CC:

Fo ¼ PCSA1 � σ (44)

Specific tension σ varies from about 10–100 N/cm2 in the human muscle literature,
with most studies reporting values between 25 and 40 N/cm2. A constant value of σ
is often assumed for all muscles and all subjects, although many studies have
suggested σ varies between muscles and subjects and is affected by age, sex, fitness,
and various other factors.

An alternative definition of PCSAwas proposed by Sacks and Roy (1982):

PCSA2 ¼ V=Loð Þ cos θ (45)

With this definition, the product with specific tension gives the fraction of the CC
maximum isometric force that can be expressed across the tendon at pennation angle
θ. Equations 43 and 45 produce identical results when θ is zero. With either
definition of PCSA, the result will be inaccurate when a fiber length other than Lo
is used in the denominator. Thus, values of PCSA reported from calculations
involving nonnormalized fiber lengths should be interpreted with caution if they
are to be used to calculate Fo. Equation 43 was used for reporting PCSA in this study
because (i) it does not require knowledge of θ to calculate Fo, (ii) θ varies with
muscle length and force and these factors are not controlled consistently between
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studies, (iii) some implementations of the Hill model do not include fiber pennation,
and (iv) some studies using Eq. 43 have not measured or reported θ, making accurate
conversions impossible.

Unloaded tendon length. Measurement of Lu is complicated because the “tendon”
of a muscle can be a difficult structure to define with consistency between muscles.
In some muscles the tendon may run the full length of the muscle. The portion of the
tendon that muscle fibers directly attach to is typically referred to as the internal
tendon and may be fully or partially aponeurotic. The remaining portion of the
tendon with no direct fiber attachments is typically referred to as the external tendon.
The external tendon is the closest analogue to the Hill model’s SEC, but some
muscles have two external tendons, one distal and one proximal to the fibers. Direct
assignment of Lu from measurements on tendon is therefore discouraged.

Cadaver studies can measure tendon length when the muscles have been excised
from the body, assuring a truly unloaded condition. Within vivo imaging studies, it is
difficult to ensure that the tendon is truly unloaded. Even in the absence of active
force production, some passive force may be transmitted through the tendon.

Fiber-type distribution. Methods of defining and determining muscle fiber type
vary widely and are beyond the scope of this chapter. The parameter FT is used here
to represent the fraction of muscle fibers that are “fast” vs. “slow,” with acknowl-
edgement that this binary classification scheme may be overly simplistic. Readers
interested in the broader spectrum of muscle fiber typing are referred to the summary
by Scott et al. (2001). Readers should note that the great majority of data on muscle
fiber types is expressed as the fractions of fiber numbers. Fiber types have less
frequently been expressed as the fractions of cross-sectional area. This distinction is
important because single “fast-twitch” fibers tend to be larger than single “slow-
twitch” fibers. However, this distinction appears to only affect FT fractions by about
10% (Clarkson et al. 1980; Parkkola et al. 1993).

Parameter values. The full set of muscle parameters identified from the literature are
included as a Microsoft Excel spreadsheet in the electronic supplementary material. The
data are also available on bioRxiv (Miller 2016). A summary and reference list of the
29 studies from which data were obtained is included. When possible, the data were
separated by sex, age, and any other relevant factors in the study such as training
status. The coefficient of variation between studies, averaged over muscles and
weighted by the number of samples, was 19% for Lo, 62% for θ, and 52% for
PCSA. Between the four quadriceps muscles (vastus lateralis, medialis, and
intermedius and rectus femoris), coefficients of variation ranged from 8 to 11% for
Lo, 48–78% for θ, and 52–63% for PCSA. Coefficients of variation for Lu and FT
were not calculated due to the relatively small sample sizes of those data.

Future Directions

The Hill muscle model is one of the most venerable and popular components of
computer modeling in human movement science. The model is mature both in its
theoretical design and its implementation on computers, but there is still room for
progress in numerous areas of practical utility, including:
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1. Validation:muscle models are typically used to estimate quantities that cannot be
measured in vivo, such as muscle force, work, and energy. Direct validation of
Hill model outputs is therefore challenging. Animal models provide an option for
obtaining muscle forces directly for validation purposes (e.g., Lee et al. 2013),
and ultrasonography provides a means for estimating in vivo human muscle force
via tendon strain, which can then be compared to Hill model predictions (e.g.,
Dick et al. 2017).

Indirect validation can also be a valuable approach for gaining confidence in
the output of musculoskeletal models that use Hill-based muscle models. An
“indirect validation” is defined here by the author as the comparison of a model-
based result with an expected result from experiments on human subjects. For
example, joint contact forces could be compared to data from instrumented joint
replacements (Bergmann et al. 2014), or simulations of walking at different
speeds or step lengths could be performed, and the model’s metabolic cost
could be compared to the typical U-shaped profiles seen in human experiments
on metabolic cost vs. speed and step length (Bertram 2005). By verifying that the
model produces accurate and expected results in such situations, the user can have
greater confidence in the model’s predictions for conditions that cannot be
verified with human experimental data.

2. Subject-specific parameters: obtaining subject-specific muscle model parame-
ters is a technically daunting and time-consuming task even for models with
relatively few muscles (e.g., Hasson and Caldwell 2012). The dynamic and
phenomenological nature of the model makes it unlikely that a static “scanning”
procedure will ever be able to rapidly produce a set of subject-specific parameters.
There is considerable knowledge still to be gained on which parameters need to
be truly subject specific and how best to determine them with practical limits on
cost, effort, and time investment. A promising approach is the tuning of muscle
model parameters to track dynamometry data for the subjects or populations in
question (e.g., Anderson et al. 2007; Hasson and Caldwell 2012). This approach
carries a risk of over-fitting the model if the muscle model has too many free
parameters. To avoid over-fitting, it is recommended that muscle models mini-
mize the overall number of parameters and maximize the number of parameters
with common values for all muscles (e.g., Cecc=1.5, vmax=12) to the extent that
these modeling decisions do not influence the conclusions drawn from the
model’s output.

Relatedly, greater education within the field is needed on when subject-specific
parameters are needed and when generic parameters can be used without compromis-
ing the validity of a study’s conclusions. For example, conclusions on results from
between-subject study designs could potentially depend critically on whether subject-
or population-specific parameter values were used, but conclusions on results from
within-subject designs are unlikely to be affected by the use of generic or generically
scaled parameters even if there is uncertainty in their subject-specific values (e.g.,
Edwards et al. 2009). Similarly, arbitrary muscle model parameters are unlikely
to affect conclusions in optimal control simulation studies where the primary
outcome variables are muscle forces in data-tracking simulations (e.g., Neptune
et al. 2001). As long as the parameters allow for a realistic range of forces, the
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optimizer will simply adjust the muscle excitation up or down to produce the
specific muscle forces needed to track the data well. However, conclusions on
outcome variables involving muscle excitation, activation, work, or metabolic
cost could be affected.

3. Simulation methods: Despite modern computational power, forward dynamics
simulations with musculoskeletal models involving many Hill-based muscle
model actuators still incur prohibitive computational burdens in many cases.
Recent advances in modern optimal control methods such as direct collocation
have greatly reduced the computational burden of such simulations with 2D
models with ~10–20 muscle models (van den Bogert et al. 2011). It remains to
be seen if these methods will scale well to simulations with high-dimensional 3D
musculoskeletal models with ~50–100 muscle models.

4. Muscle physiology: the basic elements of the Hill model have been essentially
unchanged since its original conception in the 1930s. Progress in experimental
muscle physiology such as the discovery of titin as a potential third contractile
protein could fundamentally alter our understanding of how muscles produce
force (Herzog et al. 2015), with downstream implications in how best to model
the phenomena of muscle force production.
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