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Abstract
Biochar is a stable form of carbon produced via the pyrolysis of biomass for use in
sustainable environmental and agricultural practices. The concept of biochar was
originally triggered from the ancient practice in which humans deliberately mixed
carbonized biomass into soils to enrich the soil quality and fertility. According to
the International Biochar Initiative (IBI), biochar can be defined as “A solid
material obtained from the thermo-chemical conversion of biomass in an
oxygen-limited environment.” Biomass-derived biochar production has been
demonstrated as a potentially viable strategy for developing negative carbon
emission technologies for climate change mitigation and also as a material for
effective amendment of relatively poor agricultural soils. Most interestingly,
ongoing biochar research work has expanded broadly, stretching from its tradi-
tional core in the environmental and agricultural science to include studies in the
use of biochar for energy generation and as adsorbents for pollution treatment
applications. However, the use of biochar for carbon sequestration and soil
amendment has attracted more interests by research scientists globally. The use
of biochar as a material for soil amendment is closely linked with its potential for
climate change mitigation by carbon sequestration. Specifically, the properties of
biochar include resistance to microbial degradation and chemical transforma-
tions, high surface areas, high water retention capacity, cation-exchange capacity,
and its effectiveness as support and substrate for soil microbes. These character-
istics endow biochar with a greater potential to become a highly useful source of
materials for improving agricultural productivity through soil quality enhance-
ment while simultaneously sequestering CO2 from the atmosphere to mitigate
climate change. On a separate front, a recent study of acoustic and photochemical
interactions of CO2 with carbonaceous materials seems to warrant feasibility
research in the future for exploring novel routes of CO2 utilization and CO2

capture. Moreover, biochar’s ability to absorb electromagnetic radiation and emit
far-infrared wavelength radiation has promoted research, development, and com-
mercialization of biochar’s applications in medical and health therapies.

Introduction

For decades, significant interest has been paid to research activities on biomass-
derived biochar for environmental and agricultural purposes. The key properties
such as resistance to microbial degradations, chemical transformations, and preserva-
tion for geological time periods have provided recognition for biochar application as a
potential strategic material for carbon sequestration and soil improvement. The con-
cept of biochar originated from the ancient practice in which humans were deliberately
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mixing burned biomass into soils to enrich the soil quality (O’Neill et al. 2009). These
enriched soil deposits, known as terra preta and found in the Amazonian Basin, appear
to have substantially altered soil properties and led to long-term carbon storage and
crop improvement (Lehmann 2003; Lehmann et al. 2009).

Biochar, being a thermochemically derived recalcitrant carbon, has multiple
definitions based on its production conditions and intended applications. The Inter-
national Biochar Initiative (IBI 2012) provided a standardized definition for biochar
as “A solid material obtained from the thermo-chemical conversion of biomass in an
oxygen-limited environment.” Lehmann and Joseph (2009) described biochar as “A
carbon-rich product obtained when biomass such as wood, manure or leaves is
heated in a closed container with little or unavailable air” (Lehmann and Joseph
2009), whereas two more definitions given by Shackley et al. (2012) and Verheijen
et al. (2010) were “The porous carbonaceous solid produced by the thermo-chemical
conversion of organic materials in an oxygen depleted atmosphere that has physi-
cochemical properties suitable for safe and long-term storage of carbon in the
environment” (Shackley et al. 2012), and “Biomass that has been pyrolyzed in a
zero or low oxygen environment applied to soil at a specific site that is expected to
sustainably sequester carbon and concurrently improve soil functions under current
and future management, while avoiding short- and long-term detrimental effects to
the wider environment as well as human and animal health”(Verheijen et al. 2010).

Biomass-derived biochar has been increasingly discussed by experts as a poten-
tial strategy for developing negative carbon emission technologies, climate change
mitigation, soil quality, and food security (Lal 2004; Lehmann et al. 2009; Lehmann
and Joseph 2009; Manya 2012; Paustian et al. 2000; Xu et al. 2012; Zhao
et al. 2013a). To mitigate global climate change and ensure food security for a
growing global population, biochar-based techniques have been extensively used for
many years to improve the environment by carbon sequestration, reduce greenhouse
gas emissions, and enhance soil quality and crop productivity (Laird 2008; Lehmann
2007; Lehmann et al. 2006; Sohi et al. 2010). The multiple benefits associated with
biochar are shown diagrammatically in Fig. 1.

Figure 1 shows how human activities impact global climate change and this is
represented in two categories and designated carbon negative and carbon positive.
Carbon negative is a phrase used to describe any activity that removes more carbon
or CO2 from the atmosphere. For example, the process of photosynthesis is a classic
carbon neutral phenomenon. Ultimately, the world will need to become carbon
negative if the increasing buildup of atmospheric CO2 is to be reversed. Thus, a
sustainable global environmental future requires strategies to facilitate the use of
energy resources that enable the reduction of concentrations of CO2 and other
greenhouse gases in the atmosphere. Low-cost and sustainable ways to achieve net
negative carbon emissions from human activities involve the use of technologies
such as the hydrogen fuel cell, solar and wind power, and other renewable energy
sources. They are critical to achieving the net negative emission goal. On the
contrary, carbon positive processes are those which add carbon to the environment.
Whereas the thermochemical transformation of biomass into biochar is carbon
positive with respect to the atmosphere, the addition of biochar to soil is carbon
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negative and desirable. Converting biomass carbon to biochar carbon is known to
help in sequestering 50 % of the initial carbon compared to the low amounts retained
after burning or normal biological decomposition. The stabilization of biomass
carbon to carbonized biochar under sustainable procedures is an imperative compo-
nent in a multi-phased strategy to reduce and offset GHG emissions globally. An
added benefit to this solution is the potential for simultaneous enhancement in
agricultural production through increased soil carbon content, improved soil fertility
and soil tilth, water retention capacity, and reduced nutrient depletion. The physical
properties of biochar contribute to its intrinsic multifunctional ability as a tool for
environmental management. When biochar is present in the soil, its contribution to
the physical nature of the system may involve significantly influencing texture,
structure, porosity, and consistency through changing the bulk surface area, pore-
size distribution, particle-size distribution, density, and packing. The effect of
biochar on soil physical properties may then have a direct impact on plant growth
because the penetration depth and availability of air and water within the root zone is
determined largely by the physical makeup of soil horizon (Downie et al. 2009). In
this chapter, the authors have summarized information related to biochar production

Fig. 1 Environmental and agricultural benefits associated with biochar (Source: International
Biochar Initiative (IBI); http://www.biocharinternational.org/)
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techniques, characterization methods, and its potential benefits for carbon seques-
tration and soil amendment purposes.

Biochar Production Pyrolysis

Pyrolysis is a thermochemical process involving conversion of organic material into
a carbon rich solid (char/biochar/charcoal) and volatile materials such as gases
(syngas) and liquids (bio-oil) by heating in the absence of oxygen (Demirbas and
Arin 2002). The solid product obtained in pyrolysis process is known as char/biochar
or charcoal and contains around half of the carbon of the original organic matter. A
simple schematic representation of main products of pyrolysis is shown in Fig. 2.
Pyrolysis process has been used for decades. Production of charcoal as an
unintentional residue from cooking fires by Cro-Magnon man has been reported
38,000 years ago (Antal and Grønli 2003). Pyrolysis and gasification methods have
been used for the production of synthetic crude oil from coal since Victorian times.

Based on the heating rate applied to the biomass in order to reach the intended
pyrolysis temperature, pyrolysis is classified into slow pyrolysis and fast pyrolysis.
Techniques such as intermediate pyrolysis, flash pyrolysis, and hydrothermal car-
bonization and gasification methods have also been employed but less frequently
compared to slow and fast pyrolysis.

Slow Pyrolysis

Slow pyrolysis involves slower heating rates and longer solid and vapor residence
times. The temperatures used in slow pyrolysis are typically 400 �C and the heating
rate is about 5–7 �C/min. In slow pyrolysis, the yield of biochar is higher compared
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(Fixed carbon,
volatile

materials, ash)

(CO, CO2, CH4,
H2, C-2 gases)

Char

Gases
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inert

atmosphere)

Biomass

Fig. 2 Major products formed in biomass pyrolysis
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to liquid and gas products formed. In the past, slow pyrolysis of biomass using pits
and mounds or kilns was common practice. Bridgwater et al. (2007) demonstrated
product yields and characteristics in slow pyrolysis of eucalyptus mallee, and the
experimental setup reported in this study is shown in Fig. 3 (Bridgwater et al. 2007).

Fast Pyrolysis

Fast pyrolysis involves high heating rates and short vapor residence times. The
pyrolysis reaction temperature applied in this process is usually around 500 �C. Fast
pyrolysis requires feedstocks with smaller particle size (<2 mm) and a setup that is
capable of removing vapors quickly from the presence of the hot solids. Fluid beds,
stirred or moving beds, and vacuum pyrolysis system designs have been used for this
application. Commercial processes using fast pyrolysis method have been reviewed
and reported (Bridgwater et al. 1999; Bridgwater and Peacocke 2000). In fast
pyrolysis the biomass heating rate is very rapid (>300 �C/min) and used specifically
to obtain high yields of single-phase bio-oil. A fast pyrolysis experimental setup
reported by Bridgwater et al. (2007) is shown in Fig. 4. Since the fast pyrolysis
process yields higher concentrations of volatiles, its value for soil applications
is limited. Fast pyrolysis produces 50–85 % of bio-oil, 5–25 % of solid char, and
10–20 % of gases, depending on the nature of feedstock and operating conditions.

Other Techniques

Methods such as intermediate pyrolysis, flash pyrolysis, hydrothermal carboniza-
tion, and gasification have also been reported. Intermediate pyrolysis was used in
electronic waste disposal feedstock (Hornung 2013). The performance of this

Nitrogen

Furnace

Water cooled
condenser

Electrostatic
precipitator Gas

Analysis

Vent

Oil Pot Oil Pot Gas Meter

21

Dry Ice
Condenser

Fig. 3 Schematic representation of slow pyrolysis setup (Bridgwater et al. 2007) (Copyright
# 2014 Interscience Enterprises Ltd)
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method is very similar to slow pyrolysis and there is not much literature available.
Flash pyrolysis methods are similar to fast pyrolysis but required higher tempera-
tures and shorter residence times (Demirbas and Arin 2002). However, hydrothermal
carbonization is used in the conversion of biomass into carbon-rich solids in water at
high temperatures and pressure (Kruse et al. 2013). Since water is used in hydro-
thermal carbonization process, there is no need to dry feedstock prior to carboniza-
tion and it is a useful method for liquid biomass conversion. The gasification method
involves partial combustion of biomass in a gas flow containing a controlled level of
oxygen at high temperatures ranging from 500 �C to 800 �C. The main product in
this process is syngas.

During pyrolysis, the heat transfer rate is one of the important parameters for
determining the product yield and properties. According to IEA (2007), biochar
product yields in slow and fast pyrolysis are 35 % and 12 %, respectively (IEA
2007). Depending on the pyrolytic conditions such as temperature, heating rate,
vapor residence time, and biomass feedstock composition, the physiochemical
properties and quality of biochar vary widely (Enders et al. 2012; Ronsse
et al. 2013). Masiello (2004) explained that at low temperature, biochar chemical
composition is closer to the original feedstock, while high temperature biochar is
closer to graphite (Masiello 2004). Biochar produced at low temperature has high
volatile matter and lower fixed carbon and ash contents than its high temperature
counterpart (Bourke et al. 2007). Earlier studies have demonstrated that biochar with
high volatile organic content contributed to nitrogen immobilization and microbial
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Nitrogen
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precipitator

Dry Ice
Condenser

Cotton wool filter

Furnace

Oil Pot
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condenser
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Oil Pot

Gas Meter

21

Gas Analysis
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Fig. 4 Schematic representation of fast pyrolysis setup (Bridgwater et al. 2007) (Copyright
# 2014 Interscience Enterprises Ltd)
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activity reduction which negatively affected plant growth (Deenik et al. 2010;
Spokas et al. 2012). Thus, it is clear that improving the yield of biochar for carbon
sequestration and agricultural purposes has been associated with slow pyrolysis in
which production gas and liquid co-products will be reduced (Angın 2013; Crombie
et al. 2013; Demiral and Ayan 2011; Demirbas 2004; Hossain et al. 2011; Manya
2012; Mašek et al. 2013; Ronsse et al. 2013). Prior to use, a key step involves the
evaluation of biochar characteristics that are responsible for its quality and efficacy
for the intended application. The details of various biochar characterization methods
have been summarized.

Biochar Characterization

The physicochemical properties and composition of the feed biomass are a function
of the content of cellulose, hemicellulose, lignin, and extractives. Once the biochar is
produced, determining key characteristics using relevant analytical techniques
enable the understanding of the potential of the biochar product for proposed
applications. Especially the temperature used in the pyrolysis process has shown
an impact on both biochar production distribution and the nature of biochar (Kim
et al. 2010; Méndez et al. 2013). When the pyrolysis temperature is higher, less
biochar is generated and the microstructure develops more effectively. If the tem-
perature is too high, the loss of carbon and other functional group elements on the
surface is excessive. The chemical composition, pH, surface charge, and thermal
stability of biochar, as well as the heavy metal fate in the biochar body, are also
functions of pyrolysis temperature. The information obtained by physicochemical
characterization of biochar may help understand the environmental and agronomic
functions and facilitates production of desired biochar which offers specified bene-
fits. Properties such as bulk density, elemental composition (ultimate analysis), pH,
proximate analysis, and surface properties will help in assessing the biochar quality
(Okimori et al. 2003). The details of analytical methods used to characterize biochar
properties have been summarized.

Bulk Density

Since the solid density of biochar is directly related to its mechanical strength, it can
be used to estimate the biochar’s relative ability to withstand wear and tear during
soil applications. Generally, the biochar has a higher density than the biomass
feedstock from which it was derived. Bulk density is defined as weight per unit
volume of material and expressed in kilograms per cubic meter (kg/m3). Bulk
density of biochar is measured by adding a known amount of mass into a container
of known volume. Generally, biochar bulk density is around 0.2–0.5 g/cm3 (Brewer
et al. 2014; Özçimen and Karaosmanoğlu 2004).
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Elemental Composition

Elemental analysis is generally performed by combusting biochar under excess
oxygen using an Elemental Analyzer (EA). This analysis includes quantitative
estimation of carbon, hydrogen, nitrogen, sulfur, and oxygen. Also, elemental ratios
of C:O, O:H, and C:H are reported as reliable methods to measure the extent of
pyrolysis of biochar (Cheng et al. 2008; Kuzyakov et al. 2009). Chan and Xu (2009)
reported that during pyrolysis, biomass carbonizes to yield biochar which is highly
recalcitrant in nature and has a potential impact on soil health and productivity (Chan
and Xu 2009). Thus, quantification of elemental components and their ratios of
biochar samples are very important to assess their quality as they may influence soil
properties.

pH

Measuring pH is crucial to choose the right char for soil applications depending on
the soil nature. The simplest way to measure pH is to make a char and water slurry
and use a standard laboratory pH meter. Biochar pH is known to be neutral to basic.

Functional Group Analysis

Qualitatively, Fourier transform infrared spectroscopy (FTIR) is frequently used to
detect functional groups in biochar samples. The information is helpful in comparing
biochar samples produced under different conditions. Some of the selective
stretching group frequencies of biochar samples in IR spectra include O-H (3,400
cm�1), aliphatic C-H (3,000–2,860 cm�1), aromatic C-H (3,060 cm�1), and the
carbonyl (C = O) (1,700 cm�1) functionalities.

Proximate Analysis

Proximate analysis of biochar includes parameters like volatile organic compounds
(VOCs), moisture content, ash content, and fixed carbon. Biochar VOCs are formed
during pyrolysis by breakdown or rearrangement of chemical structures present in
biomass feedstock. Biochar VOCs have greater impact on plant and microbial
responses to biochar amendments because they are known to inhibit/stimulate
microbial and plant processes (Baldwin et al. 2006; Klinke et al. 2004). Analyzing
VOC content in biochar prior to soil amendment may avoid adverse agronomic
effects. Analytical methods such as pyrolysis-gas chromatography/mass spectrom-
etry (pyr-GC/MS) methods have been developed for VOC analysis in biochar
samples (Clough et al. 2010; Galipo et al. 1998; Spokas et al. 2011). Thermogra-
vimetric analysis (TGA) has been used routinely to determine the moisture content,
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volatiles, percentage of fixed carbon, and ash content in biochar samples (Garcia
et al. 2013; Kim et al. 2010; Kim and Agblevor 2007; Ottaway 1982; Slaghuis and
Raijmakers 2004).

Surface Property Characterization

The surface area characteristic is expressed in the extent of porosity of the biochar
which in turn depends on the cell structure of the starting materials. The best-known
and most commonly used method for evaluating specific surface areas of biochar
materials is the Brunauer-Emmett-Teller (BET) nitrogen physisorption method. For
example, if feedstock has larger pore sizes, it can yield biochar with larger surface
area resulting in greater nutrient retention properties. These larger pores can also
enhance microbial activity (Warnock et al. 2007). In addition, scanning electron
microscopy (SEM) has been used for studying the morphology of biochar materials.
SEM analysis helps in obtaining details about pore structure and their distribution
among the biochar produced under different pyrolysis conditions and from different
biomass sources (Fang et al. 2013; Özçimen and Karaosmanoğlu 2004; Shaaban
et al. 2013). Figure 5 shows SEM images of biochar produced from wood sources
(Fig. 5a), sugarcane bagasse (Fig. 5b), and goat droppings (Fig. 5c) and pyrolyzed at
550 �C. Different physical microstructural property is represented in these images.
The macroporous structures in wood derived biochar are arranged in an array of
parallel domains, whereas that for the sugarcane bagasse is expressed in a radial
distribution. Biochar from goat dropping may only be microporous.

Other analytical instruments used to determine biochar properties include X–ray
photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX),
near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, nuclear mag-
netic resonance (NMR) spectroscopy, gas chromatography/mass spectrometry
(GC/MS), and total organic carbon (TOC) analyzer (Chintala et al. 2012; Fernandes
and Brooks 2003; Keiluweit et al. 2010; Lee et al. 2010; Moon et al. 2013;
Srinivasan and Sarmah 2014). Studies on characterization of biochar properties
have been respired in the literature (Abdel-Fattah et al. 2014 ; Ahmad et al. 2014;
Brewer et al. 2014; Chia et al. 2014; Hmid et al. 2014; Jindo et al. 2012; Liu
et al. 2014; Mimmo et al. 2014; Novak et al. 2009; Pujol et al. 2013; Rajkovich
et al. 2012; Shaaban et al. 2013; Stanger et al. 2013; Zhao et al. 2013b). Overall,
detailed characterization of biochar samples provides valuable information useful
in understanding the environmental and agronomic efficacy of biochar samples
in depth.

Biochar Benefits: Carbon Sequestration

For the past few decades, CO2 emissions in the atmosphere have been increasing
significantly each year. It has been estimated that each year approximately 2 Gt
of carbon is set free as CO2 in response to deforestation and degradation of soils.
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The US Department of Energy (USDOE) has estimated that by 2020 the global,
annual net production of CO2 will be 33.8 billion metric tons (USDOE 2010).
Energy sources, fires, deforestation, and soil degradation activities have been
contributing to increasing the levels of CO2 emissions into the atmosphere. Since
CO2 is the foremost greenhouse gas (GHG), its enrichment in the atmosphere
triggers an increase in atmospheric temperature and ultimately results in global
climate change. Researchers have been looking for potential strategies to mitigate
climate change by either reducing greenhouse gas emissions or by carbon seques-
tration, e.g., in aboveground soils. In the past, the Intergovernmental Panel on
Climate Change (IPCC) has listed several climate change mitigation options:
(1) carbon capture and storage, (2) energy efficiency, (3) switch to low-carbon
fuels, (4) nuclear power, (5) renewable energy, (6) enhancement of biological
sinks, and (7) reduction of non-CO2 greenhouse gas emissions (IPCC 2005).
Among these options enhancing biological sinks and carbon capture and storage
can balance CO2 in the atmosphere. But again carbon capture and storage concept
is associated with high energy consumption generating additional emissions asso-
ciated with carbon capture. However, the other mitigation approaches are only

Fig. 5 Scanning electron microscope (SEM) images showing macroporosity of a wood-derived
(a), sugarcane bagasse (b), and goat dropping (c) biochar produced by slow pyrolysis: The biochar
samples were gold coated and imaged with beam energy of 20 kVon a Zeiss EVO 50VP SEM
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preventive or controlling measures. The carbon cycle function in natural and
biochar-based scenarios is shown in Fig. 6. In the case of normal cycle, plants
absorb atmospheric carbon dioxide as part of the biological carbon cycle but they
are inadequate to handle huge amounts of carbon dioxide released in the atmo-
sphere. So the net carbon withdrawal by the natural carbon cycle from the
atmosphere is zero. In addition, plants decay and this biomass releases captured
carbon dioxide into the atmosphere. If this biomass is converted into biochar and
used to amend soil, the net carbon withdrawal from the atmosphere is 20 % as
shown in Fig. 6. Additionally, biochar-based carbon cycle can reduce emissions by
12–84 % and offers the opportunity to convert bio-energy into a carbon-negative
strategy (Lehmann 2007).

During the biomass pyrolysis, bio-oil, biochar, and syngas are the three main
products. These products can influence the global carbon cycle in the following
ways. All the main products obtained during pyrolysis can be used as energy sources
which can reduce fossil energy use. In general, biomass decomposition can release a
significant amount of carbon dioxide into the atmosphere. By pyrolyzing the bio-
mass, the biochar with enriched stable carbon is produced and will remove carbon
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dioxide from the atmosphere that would otherwise be released into the atmosphere
through bacterial decomposition in the soil. This biochar added into soil becomes a
carbon sink and long-term carbon storage.

Biochar carbon sequestration is fundamentally different from other forms of
carbon sequestration. It refers to the capture and subsequent storage of carbon to
prevent it from being released into the atmosphere (Duku et al. 2011). The primary
effect of biochar production on greenhouse gas fluxes is the avoidance of
emissions that would have occurred had the biomass been left to decompose. For
example, biochar from herbaceous and woody feedstock sources is found to have a
carbon content of 60.5–66.7 % and 74.5–80 %, respectively. One can assume
from these figures that for every ton of biochar applied to the soil, 0.61–0.80 t of
carbon (equivalent to 2.2–2.93 t of CO2) can be sequestered (Galinato et al. 2011).
Using the highest carbon content of the wood-based biochar (i.e., 80 %) and
the CO2 offset price range of $1 to $31/MT CO2 (West and McBride 2005),
the approximate value of biochar carbon sequestration is $2.93–$90.83/MT
biochar. Biochar carbon sequestration might avoid difficulties such as
accurate monitoring of soil carbon due to spatial and temporal variation which
are the main barriers to inclusion of agricultural soil management in emissions
trading. Using the turnover rate and the quantity of carbon has been suggested as a
method to be used in assessment of the carbon sequestration potential and that
could be done independently from biochar use as soil amendment or other non-fuel
purposes.

Biochar Benefits: Soil Amendment

Since biochar is produced from waste biomass such as crop residues, manures,
timber and forestry residues, and green waste, its use as a soil amendment has
been suggested as a sustainable approach in achieving soil fertility and enhanced
crop productivity along with other environmental benefits (Chan et al. 2007). In the
past, highly fertile carbon-rich terra preta soils in Central Amazonia are widely cited
as evidence that charcoal addition to soils brings benefits to the soils (Lehmann
2003). Due to the increasing recognition for the potential of the terra preta as a model
for modern agriculture, the use of biomass-derived biochar has raised a lot of
research and development interests (Lehmann 2003; Lehmann et al. 2009). Biochar
soil amendment becomes a practice to improve soil fertility and crop productivity
while maintaining high levels of soil carbon (Ibrahim et al. 2013; Lehmann
et al. 2011). Biomass-derived biochar has been proposed as a potential strategy to
enhance soil fertility and crop productivity that can boost food security. Studies have
shown that the application of biochar to soil enhances soil fertility by increasing the
soil cation-exchange and water retention capacities as well as microbial activity,
thereby improving agricultural productivity (Lehmann 2007; Lehmann and Rondon
2006).
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Enhanced Soil Fertility and Crop Productivity

Effect of Biochar pH and Surface Properties on Nutrient Availability
and Cation-Exchange Capacity (CEC)
Once biochar was amended into soil, it exists as soil aggregates rather than free
organic matter, thus making up the overall structure of the soil (Liang et al. 2008).
According to Sohi, the soil texture and chemistry can be modified based on biochar’s
pH and surface properties (Sohi 2012). Also, the chemically active biochar surface
properties change soil nutrient dynamics and can act as a catalyst for soil functions.
A statistical meta-analysis undertaken by Jeffery et al. (2011) to evaluate the
relationship between the application of biochar and crop productivity showed an
overall small, but statistically significant benefit of biochar application to soils on
crop productivity. Even though the grand mean increase is 10 %, the mean results for
each analysis performed within the meta-analysis covered a wide range (from�28 %
to 39 %) with the greatest (positive) effects with regard to soil analyses being
observed in acidic (14 %) and neutral pH soils (13 %) and in soils with a coarse
(10 %) or medium texture (13 %). This observation suggests that two of the main
mechanisms for yield increase may be a liming effect and an improved water holding
capacity of the soil, along with improved crop nutrient availability (Jeffery
et al. 2011). Generally, biochar pH values are neutral to basic ranging from pH 6.2
to 9.6 (Chan and Xu 2009). Effects of biochar on soil chemistry appear to arise from
modification of soil pH. In the case of acidic soil, there is a reduction in cation-
exchange capacity (CEC) and nutrient availability observed with lower pH values. In
addition to the nature of the feedstock, a significant importance to biochar properties
is the temperature of production. The production temperature influences properties
such as the biochar surface chemical characteristics (pH), bulk surface area, and
carbon content. Although it has been argued that other factors such as soil type, soil
chemistry, organic matter content, and climate may be of greater importance to the
agricultural impact of biochar incorporation, the importance of production temper-
ature cannot be overlooked (Mukome et al. 2013). Typically, there is little or no
cation-exchange capacity of soil organic matter at very low pH, but this increases
with higher pH, and biochar is no exception. However, the point at which the CEC
(cation-exchange capacity) of biochar is zero (point of zero charge, pzc) is dependent
on the production temperature. It is seen from Fig. 7 that both pH and surface area of
biochar appear to increase with production temperature, as carbon yield decreases
and so the optimum temperature is probably within the range of 450–550 �C.

CEC is a measure of the surface charge in a soil or a biochar and refers to the
ability of a soil/biochar to hold onto nutrients. The benefits for soil work both ways
as it will absorb nutrients and prevent leaching yet release the nutrients when
required by plants. The level of CEC of biochar gives an indication of the abundance
of negatively charged sites on the biochar which can retain exchangeable cations that
are essential plant macronutrients, e.g., NH4

+ and Ca2+ (Carrier et al. 2012). For
example, Lehmann (2003) demonstrated that biochar reduced leaching of NH4

+,
maintaining it in the surface soil where it is available for plant uptake. The produc-
tion of a partially oxygenated biochar that possesses enhanced cation-exchanging
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property by reaction of the biochar source with oxygenating compounds such that
the biochar homogeneously acquires oxygen-containing cation-exchanging groups
has been reported with oxygenated biochar possessing CEC of at least 140 mmol/kg
(Lee et al. 2011, 2013). This concept is based on the experimental finding that the O:
C atomic ratio in biochar material correlates with its cation-exchange capacity.
Along with aging, the CEC capability increases as evidenced in the terra preta
soils of the Amazon (Glaser et al. 2002). Charges on the high surface area can
increase cation-exchange capacity (CEC), thereby increasing a soil’s ability to retain
and supply nutrients. It is well known that both organic and mineral fractions of soil
contribute to cation-exchange capacity. The cation-exchange capacity controls the
flush of ammonium ions after fertilizer application and mineralization of soil organic
matter. This mineralization of organic matter helps in mitigating loss of nitrate
leaching. Ash content, phosphorus, potassium and other trace elements present in
biochar may impact on crop growth (Steiner et al. 2007).

It is important to note that even though the CEC of biochar is hampered at the pzc,
the biochar surface is still available for sorption interactions with other chemical
species through hydrogen bonding. For example, the hydrophobic surface of wood-
derived biochar has been demonstrated to enhance perchlorate adsorption via
H-bonding to oxygen containing groups on the biochar surface (Fang et al. 2013).
The principle is illustrated in the schematic in Fig. 8. The totally hydrophilic
aliphatic biomass surface (which is unreceptive to ClO4

� anion) when subjected to
pyrolysis and transformed into biochar acquires an aromatic hydrophobic nature.
The newly created hydrophobic surface interacts through H-bonding with the ClO4

�

anion. Fang et al. (2013) suggested that it is possible to tune the sorption properties
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of biochar by changing the solution pH and concluded that the maximum adsorption
interaction occurs at the point of zero charge. The surface area of biochar has a
significant impact on the magnitude of interactions between biochar and the soil
environment. The surface properties of biochar derived from biomass is crucial in
understanding water retention, nutrient retention, sorption capability, and microbial
activity of biochar (Day et al. 2005; Fernandes and Brooks 2003; Yu et al. 2006).

Habitat for Microbial Activity
Biochar addition to soil has been shown to increase microbial activity as well as
microbial efficiency. In fact, enhanced microbial activity influences the nutrient
availability, moisture retention, and cation-exchange capacity (CEC) and is associ-
ated with plant growth. Due to porous nature, biochar has been shown to improve
soil microorganism abundance and cause effects on nutrient cycle and soil structure
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that leads to soil growth (Grossman et al. 2010; O’Neill et al. 2009; Pietikäinen
et al. 2000; Rutigliano et al. 2014). This scenario has been evidenced further in terra
preta soils of the Amazonian Basin (Atkinson et al. 2010). Various biochar properties
that influence the soil microbial community and relation between biochar properties
and soil microbial community have been documented (Lehmann et al. 2011). The
proposed correlation between biochar properties and soil microbial community
reported by Lehmann et al. 2011 is illustrated in Fig. 9. Substantial research evidence
documenting stimulation of indigenous arbuscular mycorrhizal fungi by biochar has
positive impact on plant growth due to increase in nutrient availability, moisture
retention, and cation-exchange capacity (Rondon et al. 2007; Warnock et al. 2007).
Biochar has demonstrated its function as soil conditioner by making nutrients
available to plants and improving soil structure. The surface area and pore structure
properties of biochar can increase soil water holding capacity, and the micro-pore
spaces with positively charged surfaces can improve soil water retention and in turn
reduce nutrient loss through leaching (Lehmann and Joseph 2009; Verheijen
et al. 2010). In addition to the chemical stabilization of nutrients, modification of
the physical structure of the bulk soil may result in biochar not simply increasing the
capacity of soil to retain water, but also nutrients in soil solution. CEC of biochar
may be due to leaching of hydrophobic compounds from biochar or by increasing
carboxylation of carbon through abiotic oxidation (Cheng et al. 2006).

Mobility and Bioavailability of Heavy Metals
Growing human activities and industrial revolution have resulted in the concentra-
tion of metal such as cadmium (Cd), copper (Cu), and lead (Pb) in contaminated
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soils. These heavy metals may have negative consequences on agricultural produc-
tivity and human health. Thus, in contaminated soils, heavy metals such as Cd, Cu,
and Pb and their mobility and bioavailability are of agricultural and environmental
concern. Biochar soil amendment has been considered to be an alternative remedi-
ation method to not only promote plant growth but also reduce the mobility of metals
in contaminated soil (Beesley et al. 2010, 2014; Houben et al. 2013; Uchimiya
et al. 2011b). Several studies have demonstrated that biochar soil amendment was
successful in retaining these heavy metals in contaminated soils (Clemente
et al. 2010; Tang et al. 2013; Uchimiya et al. 2010, 2011a). The presence of various
functional groups and the highly porous nature of biochar have demonstrated it to be
very effective in the adsorption of heavy metals. The pH of biochar also plays an
important role in controlling the mobility of heavy metals. Studies have explained
that an increase in pH and CEC affects the metal immobilization process (Beesley
et al. 2011; Uchimiya et al. 2011a). Therefore, biochar has been considered a
potential amendment for promoting the establishment of a plant cover and
phytostabilization strategies on contaminated soils (Beesley et al. 2011).

Pesticide Sorption
Biochar is considered as a universal sorbent. Compared to natural soil, biochar-
amended soil has greater sorption ability due to its large surface area and charge
density (Liang et al. 2006). Application of biochar as sorbent is a cost-effective
approach and has shown strong affinity for organic contaminants (Yang and Sheng
2003; Yu et al. 2010). The usage of pesticides in agricultural practice poses a potential
risk of groundwater pollution. These environmental contaminants have been moni-
tored in groundwater. Based on solubility and dissipation behavior in soil, these
contaminants may represent elevated risk of leaching. This leaching process is affected
by sorption and desorption behaviors in soil. Biochar works as a super sorbent and
decreases the leaching potential of these contaminants in soils which further helps to
mitigate groundwater contamination (Ahmad et al. 2014; Guo et al. 2006; Loganathan
et al. 2009). The mechanism for the sorption characteristic of biochar has been
proposed by Ahmad et al. (2014) and the details have been illustrated in Fig. 10.

The large surface area (1,000 m2/g), micro-, meso-, and macro-porosity, diverse
surface and bulk properties of biochar has imparted to it different sorption properties
of biochar (Downie et al. 2009). It is unsurprising that the presence of biochar in soil
plays an influential role in the sorption properties of soil. The application of biochar
to the sorption or removal of organic and inorganic pollutants has been tested using
four theoretical isotherm models, namely, Langmuir, Freundlich, Dubinin-
Radushkevich, and Temkin models (Zhang et al. 2011). The Langmuir model is
described by the following equation:

Ce

qe
¼ 1

Q0KL
þ 1

Q0

� �
Ce (1)
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where qe and Ce are, respectively, the amount adsorbed per gram of adsorbent (mg/g)
and the solute concentration in solution (mg/l) at equilibrium and Q0 and KL are
constants related to the maximum adsorption capacity (mg/g) and the intensity of
adsorption(l/mg), respectively. An essential characteristic of the Langmuir isotherm
is explained in terms of the dimensionless separation factor (RL) defined by the
equation

RL ¼ 1

1 þ KLCi
(2)

where Ci is the initial concentration.
The Freundlich’s model is described by the equation

In qe ¼ In KF þ 1

n

� �
In Ce (3)

where KF (mg/g) is the adsorption capacity of the adsorbent and n gives an indication
of how favorable the adsorption process is.
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Fig. 10 Biochar interaction with organic contaminants: Electrostatic attraction between biochar
and organic contaminant (I), polar organic contaminant (II), and non-polar organic contaminant
(III). (Ahmad et al. 2014) (Copyright # 2014 Elsevier Ltd)
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The Dublin-Radushkevich equation has a linear representation of the form

In qe ¼ In Q0 � KDR e2 (4)

where KDR (mol2/K2) is a constant related to the mean adsorption energy and e is the
Polanyi potential which can be calculated from the equation

e ¼ RT In 1þ 1

Ce

� �
(5)

A plot of In qe versus e
2 gives KDR as the slope and Q0 and the intercept.

The Temkin equation is also given in a linear form as

qe ¼ BT InKT þ BT InCe (6)

where BT ¼ RT=bT , the constant bT is related to the heat of adsorption, and KT is
the equilibrium binding constant corresponding to the maximum binding energy.

The Langmuir and Freundlich models have been most commonly used to
describe adsorption isotherms. These adsorption isotherms describe the relation
between the adsorbate loading on the adsorbent (Qe) and the liquid-phase concen-
tration of the adsorbate (Ce) at equilibrium conditions. The Langmuir model corre-
sponds to the homogeneous monolayer adsorption, whereas the Freundlich model
defines the adsorption onto adsorbents with heterogeneous surface (Yang
et al. 2014). Additionally, the dynamics of an adsorption process in terms of the
order and the rate constants has been evaluated using the pseudo-second-order
kinetic equation given as

t

Qt

¼ 1

K2Q
2
max

þ 1

Qmax

t (7)

Qt ¼ Kw t1=2 þ I Weber�Morris modelð Þ (8)

whereQmax andQt are the adsorption capacities (mg/g) at the equilibrium and at time
t, respectively; K2 and Kw are the constants of pseudo-second-order and the Weber-
Morris model, respectively; and I is the intercept (Yang et al. 2013, 2014). The units
of K2 and Kw are g/(mg. min) and (mg/g).min�1(½), respectively.

Altering Nitrous Oxide (N2O) Emissions

Global nitrous oxide (N2O) emissions mainly originate from soil due to the extensive
use of nitrogen (N) fertilizers in agriculture. N2O is one of the potent greenhouse
gases (GHG) released into the atmosphere from both natural (about 60 %) and
anthropogenic sources (approximately 40 %), and its atmospheric concentration in
2013 was about 325.9 parts per billion. Its estimated impact on climate is 298 times
greater than equal emissions of carbon dioxide, over a period of 100 years. Biochar
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addition to soils reduces nitrous oxide (N2O) emissions by slowing down the
nitrogen cycle, possibly as results of an increase in the carbon/nitrogen ratio (Ussiri
et al. 2009). Further, crop productivity enhancement is possible with biochar amend-
ment with no or minimal fertilizers, which helps in mitigating other greenhouse gas
emissions from soil and on indirect emissions. Irrigation costs can be reduced by
biochar amendment.

Emerging Applications in Power Generation

Scientific Background

With the goals of developing novel CO2 capture and utilization technologies, a
recent study by Chen et al. (2014) used biochar as a substrate in their study of
CO2 reactions with carbonaceous materials at temperatures below 100 �C. Their
study synthesized scientific observations and principles from disparate fields: chem-
ically and photochemically induced CO2 fixation on carbon, acoustic physics and
chemistry, structural characteristics of biochar, and solvent-induced swelling of
carbonaceous materials. Each of these strands will be described below. The relevant
hypotheses, tests of these hypotheses, and technological implications are discussed
in later sections.

Chemically and Photochemically Induced CO2 Fixation on Carbon
At the outset of their efforts, Chen et al. (2014) sought new CO2 fixation processes,
such as the Kolbe-Schmitt reaction R1 below (Kolbe 1860; Schmitt 1885; Lindsey
and Jeskey 1957) that could represent the initial steps for viable CO2 utilization and
capture.

ðR1Þ

The reverse reaction of R1, i.e., the desorption of CO2, has a desorption energy of
24–29 kJ per mole of CO2 (Dewar et al. 1988; Bonneau-Gubelmann et al. 1996)
which is within the range for the CO2 desorption by amines that has been considered
the most viable means of CO2 capture and desorption. The hydroxyl groups can also
be functionalized by amine through a linker such as sulfonic acid. Since the synthesis
procedure is designed mainly for CO2 capture (Brunelli et al. 2012) but not directly
for CO2 utilization or reuse, no detailed discussion is given here.

While reaction R1 might be considered for CO2 capture, the resultant product is
expected to have a lower heating value than the reactant phenol, so the reaction
cannot be considered as a major CO2 recycle route for fuel production. On the other
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hand, photochemical or photocatalytic CO2 fixation, recently reviewed by Kumar
et al. (2012) and by Izumi (2013), could add heating value through reductive
photocarboxylation, in which the aromatic structures are also reduced by the
addition of hydrogen. This was first accomplished by Tazuke et al. (1975, 1986)
by Hg-lamp irradiation of a solution of an aromatic hydrocarbon and CO2 in the
presence of an electron donor (N,N-dimethylaniline, DMA) and a hydrogen atom
donor (dimethylformamide, DMF). Instead of using a liquid solvent, Chateauneuf
et al. (2002) used supercritical CO2 in their reductive photocarboxylations. The
reaction equilibrium favors carboxylated product under high CO2 pressure. Nearly
complete conversion of anthracene was observed at 35 �C and 2,000 psi, with
DMA as the electron donor and 2-propanol as the hydrogen atom donor. About
57 % of the product was dihydrocarboxylic acid. This carboxylation reaction can
be stated as

PAHþ hν ! PAH� þ DMA ! PAH •� þ CO2

! PAH • � CO2
� þ iPrOH ! H� PAH� CO2

� (R2)

The key to the remarkably high conversion of anthracene rests on the role of the
electron donor in forming the reaction intermediate PAH•–, a charged free radical, by
electron transfer to the photochemically excited PAH*.

The thermal carboxylation of phenolic PAHs R1 and reductive photochemical
carboxylation R2 of PAHs promoted the authors’ interests in fixing CO2 on naturally
available carbonaceous materials. These CO2 fixation reactions could serve as a
major step for CO2 capture and CO2 utilization. Due to the reductive nature of the
photochemical R2, the resultant product should have higher heating value than the
reactant PAH, and thus the CO2 is recycled to an energy source in a cradle-to-cradle
carbon cycle. The process would be most attractive if the carbonaceous material
were a renewable biomass, as will be described below.

Sonochemical and Sonophysical Effects
Acoustic cavitation consists of at least three distinct, successive stages: nucleation,
bubble growth, and implosive collapse (Ince et al. 2001). During the collapse stage,
the energy released is so extreme that trapped gases undergo molecular fragmenta-
tion, which is the underlying phenomenon in homogeneous sonochemistry. This
collapse is accompanied by the emission of light, or sonoluminescence (SL) (Suslick
and Flannigan 2008). Spectroscopic analyses of SL reveal that the temperature and
pressure can reach 20,000 K and several thousand bar, respectively (Suslick and
Flannigan 2008). Water splits during the bubble-collapse stage, and the formation of
oxygen, hydroxyl, and peroxyl radicals is attractive for oxidizing organic waste in
water and for the oxidative desulfurization of fuels (Mason 1990). Strongly reducing
protons also form during water splitting.

Sonication has been widely adopted to enhance mixing and reduce mass transfer
limitations in liquid/solid interactions. Ultrasound is also capable of leaching fine
minerals such as K, Na, S, Cl, P, Mg, Ca, Fe, and Al, from porous carbonaceous
materials (Ahmed et al. 2004). As a result of mineral leaching, the internal surface
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area of carbon increases, which, in turn, creates higher heating value and higher rates
of fluid-surface reactions such as gasification, thus improving the efficiency of the
carbon fuel.

Graphite can be oxidized to graphite oxide, producing intercalated hydroxyl and
epoxide groups and a disrupted sp2-bonded carbon network. Stankovich et al. (2006)
demonstrated that graphite oxide in phenyl isocyanate is completely exfoliated by
ultrasound (150W) for 1 h, producing single-layer graphene oxide (GO); see Fig. 11.
GO platelets are expected to be more reactive than graphitic oxide clusters due to the
higher contact area in GO, a feature that will be discussed below. The interests in
conducting ultrasound treatment on biochar (see below) were to induce positive
benefits on the heating value of the biochar by inducing exfoliation of its graphite
oxide, along with mineral removal and water splitting.

Structural Characteristics of Biochar
Chen et al. (2014) chose biochar (Fig. 12) for their ultrasonic and photocatalytic
treatments for several structural reasons.

First, biomass-derived (Hammes and Schmidt 2009) and coal-derived (Franklin
1951) chars and petroleum coke (Yen et al. 1961) contain stacks of graphite oxide
clusters with reactive carbon edges which could serve as binding sites for CO2.
Ultrasound-exfoliated GO will be even more reactive than the raw char. Second,
biochar is more porous than coal-derived char and petroleum coke and is expected to
have a higher rate of fluid/solid reactions. Third, the acidic ions of dissolved CO2 in
water can enhance the dissolution of metal ions in the biochar. Fourth, TiO2 in char is
a known semiconductor; it could serve as an electron donor in photocatalytic
reductive fixation of aromatics and CO2, while H2O can serve as the desired
hydrogen donor. Biochar is thus an attractive, renewable carbonaceous material to
investigate the treatments proposed.

Solvent-Induced Swelling of Carbonaceous Materials
It has been demonstrated that coal, biomass, and coal-derived chars can be swelled
by solvents, including CO2 and H2O, after breakage of the cross-links in their
macromolecular structure (Gathitu et al. 2009; Mirzaeian and Hall 2006, 2007).

(1) (2)

Fig. 11 Graphite can be oxidized to graphite oxide (Step 1), which can be exfoliated into single-
layer platelets of graphene oxide (GO) by ultrasound (Step 2)
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Hydrogen bonds, especially those contributed by hydroxyl and carboxyl groups,
have been considered by many as the major cross-links between aromatic clusters
(Larsen and Gurevich 1996). The swelled carbonaceous materials have higher
porosity and, therefore, higher gas/solid reactivity in processes such as gasification
(Wall et al. 2002), which suggests the potential benefits of treating carbon with CO2

and H2O (see Fig. 13).

Tested Hypotheses and Technological Implications

Hypotheses
Consideration of the acoustic and photochemical interactions of CO2 with PAHs as
discussed above led Chen et al. (2014) to a set of hypotheses. To start with, they
hypothesized that in a single reactor of biochar with CO2 and H2O, ultrasound would
simultaneously induce the following synergistic chemical and physical processes:
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Fig. 12 Graphite oxide clusters form the backbone of the biochar structure (Hammes and Schmidt
2009)

1960 V. Mulabagal et al.



graphite oxide exfoliation, water splitting, leaching of minerals, carboxylation,
hydrogenation, and swelling. As a result, the treated biochar would have a higher
heating value, higher reaction rates, and fewer operational and maintenance prob-
lems in the subsequent power-generation processes. Moreover, any CO2 fixed
reductively on biochar could be recycled in power/heat generation, thus creating a
cradle-to-cradle carbon cycle.

Secondly, Chen et al. (2014) hypothesized that in a single contactor of biochar
with CO2 and H2O and suitable donors, solar irradiation would induce the following
synergistic chemical and physical processes simultaneously: carboxylation, hydro-
genation, water splitting, and swelling. As a result, the treated biochar would have a
higher heating value and higher reaction rates.

Results of Hypothesis Testing
Ultrasonic and photocatalytic treatments of a sorghum-derived biochar with CO2 and
H2O at 60 �C resulted in the following observations (Chen et al. 2014):

• Remarkable increases in heating value (HV) for both treatments: 50 % increase
for ultrasonic treatment and 20 % increase for photochemical treatment

• Large increases in internal surface area (up to 16-fold) for both types of treatment
• Significant leaching of minerals (60–98 % of Si, K, and Na) that are detrimental to

power generation but beneficial to soil after they are captured in the leachate
(water)

• Significant hydrogenation, calculated as 9 % additional hydrogen after ultrasonic
treatment and 24 % additional hydrogen after photochemical treatment

• Carbon fixation, calculated as 13 % additional carbon after ultrasonic treatment
and 16 % additional carbon after a simultaneous photochemical and ultrasonic
treatment

• No significant change in oxygen content of the biochar

Further, Fourier transform infrared (FTIR) spectroscopy suggests that carboxyl-
ation occurs during photochemical treatments (Chen et al. 2014). The increase in
internal surface area (by N2-BET) during ultrasound treatment is lower than that
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from photochemical treatment, suggesting the possibilities of surrendering meso-
pore volume by exfoliated GO platelets during ultrasound treatment. The increases
in heating value result from the combined processes of carbon fixation,
mineral removal, and, in the photochemical treatment, hydrogenation. The
observed increases in carbon and hydrogen content are attributable, in part, to
carboxylation, water splitting, and hydrogenation; H2O and CO2 are the only H
and C sources in the treatments. These observations are consistent with their
hypotheses, although much work remains to optimize the conditions and elucidate
the responsible mechanisms.

Implications for Sustainable Technologies
The results discussed above suggest new paradigms for the following technologies:

• Ultrasonic pretreatment of biochar (or other selected carbon feedstock) prior to
gasification for simultaneously increasing thermal efficiency, decreasing CO2

emissions, and reducing operational issues
• Photochemical pretreatment of biochar (or other selected carbon feedstock) prior

to gasification, for increasing hydrogen content
• CO2 capture by functionalized nanographene oxide (GO), phenolic compounds,

and char-derived polycyclic compounds that have not been the focus of a
systematic CO2 capture study

Figure 14 illustrates the major streams and variables in a pretreatment process,
ultrasonic or photochemical, before the char is fed into a gasifier and combustor.

Power generation with a pretreatment unit offers several sustainable benefits since
it is expected to:

• Have higher thermal efficiency due to the 20–50 % higher heating value of the
char

• Have a higher power-generation rate due to the more porous nature (16�) of the
char
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Coal derived
char, or
Petroleum
coke

Captured CO2 50°C-100°C
1-100 atm

Sonication and/or Solar Irradiation

Solid Fuel
Pretreatment

Unit

H2O

CO2

Soild Fuel

To gasifier or
combustor

H2O for soil
amendment

Fig. 14 Streams and variables of a pretreatment process

1962 V. Mulabagal et al.



• Exhibit fewer operational and maintenance issues such as fouling and slagging
due to the removal of detrimental minerals K, Na, and Si (60–98 %)

• Offer a new CO2 capture and utilization route since carbon in biochar picks up
CO2 in treatment

• Offer a waste (biochar) utilization route
• Return the soil nutrients, K and Na, in the leachate back into the soil

The benefits of such treatment on thermal efficiency and CO2 recycling are not
merely incremental. Assuming char’s heating value increases by 50 % and 20 % of
such increase is used by the pretreatment process, the energy output from char
combustion will be 1.40 times that of the untreated char. For a co-generation
power plant that uses char as only 20 % of its fuel source, with the rest from coal
or biomass (see Fig. 15), the overall energy output will increase to 28 % (20 % �
1.40), resulting in a net gain of 8 % in the total output. This would be considered a
significant improvement for power plants.

A carbon balance has been conducted for a co-gasification process where 20 % of
carbon in the feed comes from biochar based on the 13 % increase in biochar’s
carbon content during treatment. Figure 15 illustrates the impact of introducing an
ultrasonic biochar pretreatment unit on CO2 emissions prior to biochar’s injection
into a gasifier. It suggests that the pretreatment unit renders it possible to recycle
about 2.6 % of burned carbon fixed in the char. In a co-generation process shown in
Fig. 15, the treatment results in 13 % carbon fixation on char and, therefore, 2.6 %
carbon recycle – creating a cradle-to-cradle carbon cycle. The scale of this CO2

uptake is noteworthy. The anthropogenic production of CO2 is so high that the
current total CO2 utilization does not account for even 1 % of overall CO2 emissions,
and a single technology capable of using 1 % of its CO2 emissions can be considered
a major contribution (Styring et al. 2012).

The efficiency of ultrasound energy output was estimated by using a short
treatment time of 3 min, which results in a 19 % increase in heating value (see
Fig. 16). The energy consumed by the sonicator during the 3-min treatment was 0.65
kcal/g, which is less than the increase in heating value of the biochar, 0.91 kcal/g,
during the 3-min treatment (from 4.83 to 5.74 kcal/g). Although the energy gain (the
difference between these two quantities) seems to be limited, it is expected that a
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Untreated
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pretreatment
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power
generation

process

CO2,
1 unit

Recycled
carbon
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Fig. 15 The ultrasound-treatment unit recycles 2.6 % carbon in the feed, thus creating a cradle-to-
cradle carbon cycle
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majority of the ultrasound energy was dissipated in its surroundings through several
modes in the initial apparatus, in which cavitation consumes only a small fraction of
the energy. Ultrasound treatment induces energy gain mainly through the loss of
mineral content and increases in hydrogen and carbon contents as a result of the
treatment. These synergistic physical and chemical processes are believed to be the
results of carboxylation, water splitting, hydrogenation, graphite oxide exfoliation,
leaching, swelling, etc.

In practice, ultrasonic energy can be used much more efficiently by directly
inserting a high-power ultrasonic horn into the solution in the treatment reactor.
Thus, the test data indeed support the potential benefits in energy efficiency and the
economics of installing a biochar pretreatment reactor prior to gasification or
combustion. The pretreatment concept is technically viable. For instance, Mahamuni
and Adewuyi (2010) reviewed the costs of various commercial advanced oxidation
processes (AOPs) involving similar ultrasound devices for waste-water treatment,
containing ideas for further reducing the costs for advanced ultrasound-treatment
processes. Pretreatment is also viable because CO2, H2O, and residual heat are
usually readily available in power plants.
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Medical Applications

Biochar has many technological applications even though it is usually considered a
by-product in biofuel production. As discussed above, biochar has been adopted in
soil amendment and remediation of organic and inorganic contaminants in soil and
water. Interests in biochar have intensified in the last decade mainly due to biochar’s
stability in sequestrating carbon in soil and its use for soil amendments. More
recently, Nguyen and Pignatello (2013) evaluated biochar’s ability in recovery and
containment of marine oil spills. The study of ultrasonic and photochemical inter-
actions of biochar with CO2 and water (Chen et al. 2014) has provided foundations
to explore novel technologies for CO2 utilization and CO2 capture.

On a separate front, biochar’s medical applications have been scrutinized. We
include only a short discussion for completeness since it is not directly related to
mitigating climate change. Interestingly, most of these applications were developed
with bamboo biochars in China, Japan, and Taiwan where bamboo is widespread. As
stated by Zhong et al. (2010), bamboo can be harvested more than 20 times than trees
on the same area. It can be harvested annually and regenerated without replanting. It
sequestrates up to 12 t of CO2 per hectare and generates 30 %more oxygen than trees
during its growth.

Most of the medical applications of bamboo biochars are based on their abilities
to generate far-infrared (FIR) radiations and negative ions (Lou et al. 2007). Bamboo
biochar has 15.3–24.1 cmol/kg cation-exchange capacity. Bamboo biochar adsorbs
nitrate-nitrogen more effectively than activated carbon (Mizuta et al. 2004). The
negative ions generated by bamboo biochar remove the odors and refresh air.

Bamboo char has high electrical conductivity; chemically modified bamboo
biochar has been used for developing lithium-sulfur batteries (Gu et al. 2015).
Bamboo charcoal can generate a good amount of negatively charged ions that
have the property of giving electrons to nearby matters, while charcoal adsorbs
positive ions. Bamboo char dissipates electromagnetic (EM) waves emitted by
devices such as television, personal computers, cell phones and microwave over,
etc., by bouncing them, and the released EM waves can be absorbed by bamboo char
due to its high electrical conductivity. The absorbed energy is then dissipated as
far-infrared (FIR) emissions. Teraoka et al. (2004) reported that FIR emitted by
bamboo biochar at wave lengths between 4 and 16 μm inhibits the growth of
Henrietta Lacks (HeLa) cervical cancer cells in vitro at 37 �C. At ambient temper-
atures, ~25 �C, FIR inhibits tumor growth in mice (Nagasawa et al. 1999; Udagawa
et al. 2000; Hamada et al. 2003). Ishibashi et al. (2008) found that the FIR-induced
inhibitions of proliferations of cancer cells are controlled by basal expression level of
heat shock protein 70A. Moreover, whole-body FIR irradiation at wave length
between 7 and 12 μm is believed to improve human health and sleep by keeping
the body warm, enhancing the blood circulation, and reducing blood pressure
(Honda and Inoue 1988; Inoue and Kabaya 1989; Wang et al. 2006). A number of
bamboo char-based food, beauty care, textile, sleepwear and health support products
are commercially available.
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Conclusions

Pyrolysis process converts biomass organic matter to biochar and increases the
recalcitrance of carbon which becomes more resistant to chemical and/or biological
decay. Due to its recalcitrant nature, biochar has long-term stability and its soil
amendment utilization has been proposed as a way to store carbon in the soil for
longer periods than if biomass was left to decay. The physical and chemical properties
of biochar support soil health by altering the pH in acidic soils, increasing water
retention capacity, and enhancing nutrient availability and microbial activity. Since
biochar has high sorption capacity, its agricultural soil amendment will be helpful in
reducing leaching of pesticides and pollutants in soil. Much more research is required
to establish characterization methods and best management practices for biochar
applications in various fields that can help to understand the mechanisms underlying
biochar applications for soil amendment and environmental applications. In conclu-
sion, based on the extensive research evidence, it is clear that biochar is indeed a viable
soil amendment option for agricultural and environmental purposes worldwide.
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