
P Systems with Anti-Matter

Artiom Alhazov1, Bogdan Aman2, and Rudolf Freund3(B)

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova,
Academiei 5, MD-2028 Chişinău, Moldova

artiom@math.md
2 Institute of Computer Science, Romanian Academy, Iaşi, Romania

bogdan.aman@iit.academiaromana-is.ro
3 Faculty of Informatics, Vienna University of Technology,

Favoritenstr. 9, 1040 Vienna, Austria
rudi@emcc.at

Abstract. The concept of a matter object being annihilated when meet-
ing its corresponding anti-matter object is investigated in the context
of P systems. Computational completeness can be obtained with using
only non-cooperative rules besides these matter/anti-matter annihilation
rules if these annihilation rules have priority over the other rules. Without
this priority condition, in addition catalytic rules with one single catalyst
are needed to get computational completeness. Even deterministic sys-
tems are obtained in the accepting case. Allowing anti-matter objects as
input and/or output, we even get a computationally complete comput-
ing model for computations on integer numbers. Interpreting sequences
of symbols taken in from and/or sent out to the environment as strings,
we get a model for computations on strings, which can even be inter-
preted as representations of elements of a group based on a computable
finite presentation.

1 Introduction

Membrane systems as introduced in [16] and usually called P systems can be con-
sidered as distributed multiset rewriting systems, where all objects – if
possible – evolve in parallel in the membrane regions and may be communi-
cated through the membranes. Overviews on this emerging field of research can
be found in the monograph [17] and the handbook of membrane systems [18];
for actual news and results we refer to the P systems webpage [20]. Computa-
tional completeness (computing any partial recursive relation on non-negative
integers) can be obtained with using cooperative rules or with catalytic rules
(eventually) together with non-cooperative rules. In this paper, we use another
concept to avoid cooperative rules in general: for any object a (matter), we con-
sider its anti-object (anti-matter) a− as well as the corresponding annihilation
rule aa− → λ, which is assumed to exist in all membranes; this annihilation rule
could be assumed to remove a pair a, a− in zero time, but here we use these
annihilation rules as special non-cooperative rules having priority over all other

c© Springer International Publishing Switzerland 2014
M. Gheorghe et al. (Eds.): CMC 2014, LNCS 8961, pp. 66–85, 2014.
DOI: 10.1007/978-3-319-14370-5 5

P Systems with Anti-Matter 67

rules in the sense of weak priority (e.g., see [2], i.e., other rules then also may
be applied if objects cannot be bound by some annihilation rule any more). The
idea of anti-matter has already been considered in another special variant of
P systems with motivation coming from modeling neural activities, which are
known as spiking neural P systems; for example, spiking neural P systems with
anti-matter (anti-spikes) were already investigated in [15]. Moreover, in [6] the
power of anti-matter for solving NP-complete problems is exhibited.

As expected (for example, compare with the Geffert normal forms, see [19]),
the annihilation rules are rather powerful. Yet it is still surprising that using
matter/anti-matter annihilation rules as the only non-cooperative rules, with
the annihilation rules having priority, we already get computational complete-
ness without using any catalyst; without giving the annihilation rules priority, we
need one single catalyst. Even more surprising is the result that with priorities we
obtain deterministic systems in the case of accepting P systems. Allowing anti-
matter objects as input and/or output, we even get a computationally complete
computing model for computations on integer numbers. Finally, by interpreting
sequences of symbols taken in from and/or sent out to the environment as strings,
we also consider P systems with anti-matter as computing/accepting/generating
devices for string languages or even for languages over a group based on a com-
putable finite presentation.

2 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation is denoted by V ∗. The
elements of V ∗ are called strings, the empty string is denoted by λ, and V ∗\{λ}
is denoted by V +. For an arbitrary alphabet V = {a1, . . . , an}, the number of
occurrences of a symbol ai in a string x is denoted by |x|ai

, while the length of
a string x is denoted by |x| =

∑
ai∈V |x|ai

. The Parikh vector associated with x
with respect to a1, . . . , an is (|x|a1 , . . . , |x|an

). The Parikh image of an arbitrary
language L over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and
is denoted by Ps(L). For a family of languages FL, the family of Parikh images
of languages in FL is denoted by PsFL, while for families of languages over a
one-letter (d-letter) alphabet, the corresponding families of sets of (vectors of)
non-negative integers are denoted by NFL (NdFL).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping f :
V → N and can be represented by 〈af(a1)

1 , . . . , a
f(an)
n 〉 or by any string x for which

(|x|a1 , . . . , |x|an
) = (f(a1), . . . , f(an)). In the following we will not distinguish

between a vector (m1, . . . ,mn), a multiset 〈am1
1 , . . . , amn

n 〉 or a string x having
(|x|a1 , . . . , |x|an

) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in
an alphabet V in advance, the representation of the multiset 〈am1

1 , . . . , amn
n 〉 by

the string am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet
V is denoted by V ◦.

68 A. Alhazov et al.

The family of regular and recursively enumerable string languages is denoted
by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [5] and [19].

Register Machines. A register machine is a tuple M = (m,B, l0, lh, P), where
m is the number of registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B
is the final label, and P is the set of instructions bijectively labeled by elements
of B. The instructions of M can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

In order to deal with strings, this basic model of register machines can be
extended by instructions for reading from an input tape and writing to an output
tape containing strings over an input alphabet Tin and an output alphabet Tout,
respectively:

• l1 : (read(a), l2), with l1 ∈ B \ {lh}, l2 ∈ B, a ∈ Tin.
Reads the symbol a from the input tape and jumps to instruction l2.

• l1 : (write(a), l2), with l1 ∈ B \ {lh}, l2 ∈ B, a ∈ Tout.
Writes the symbol a on the output tape and jumps to instruction l2.

3 P Systems

The basic ingredients of a (cell-like) P system are the membrane structure, the
multisets of objects placed in the membrane regions, and the evolution rules.
The membrane structure is a hierarchical arrangement of membranes, in which
the space between a membrane and the immediately inner membranes defines a
region/compartment. The outermost membrane is called the skin membrane, the
region outside is the environment. Each membrane can be labeled, and the label
(from a set Lab) will identify both the membrane and its region; the skin mem-
brane is identified by (the label) 1. The membrane structure can be represented
by an expression of correctly nested labeled parentheses, and also by a rooted
tree (with the label of a membrane in each node and the skin in the root). The

P Systems with Anti-Matter 69

multisets of objects are placed in the compartments of the membrane structure
and usually represented by strings.

The evolution rules are multiset rewriting rules of the form u → v, where
u ∈ O◦ and v = (b1, tar1) . . . (bk, tark) with bi ∈ O◦ and tari ∈ {here, out, in}
or tari ∈ {here, out} ∪ {inj | j ∈ Lab}, 1 ≤ i ≤ k. Using such a rule means
“consuming” the objects of u and “producing” the objects from b1, . . . , bk of v,
where the target here means that the objects remain in the same region where
the rule is applied, out means that they are sent out of the respective membrane
(in this way, objects can also be sent to the environment, when the rule is applied
in the skin region), in means that they are sent to one of the immediately inner
membranes, chosen in a non-deterministic way, and inj means that they are
sent into the specified inner membrane. In general, the target indication here is
omitted.

Formally, a (cell-like) P system is a construct

Π = (O,μ,w1, . . . , wm, R1, . . . , Rm, lin, lout)

where O is the alphabet of objects, μ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of μ at
the beginning of a computation, R1, . . . , Rm are finite sets of evolution rules,
associated with the regions of μ, lin is the label of the membrane region where
the inputs are put at the beginning of a computation, and lout indicates the
region from which the outputs are taken; lout/lin being 0 indicates that the out-
put/input is taken from the environment.

If a rule u → v has |u| > 1, then it is called cooperative (abbreviated coo);
otherwise, it is called non-cooperative (abbreviated ncoo). In catalytic P systems
non-cooperative as well as catalytic rules of the form ca → cv are used, where
c is a catalyst – a special object that never evolves and never passes through a
membrane, but it just assists object a to evolve to the multiset v. In a purely
catalytic P system only catalytic rules are allowed. In both catalytic and purely
catalytic P systems, in their description O is replaced by O,C in order to specify
those objects from O that are the catalysts in the set C.

The evolution rules are used in the non-deterministic maximally parallel way,
i.e., in any computation step of Π a multiset of rules is chosen from the sets
R1, . . . , Rm in such a way that no further rule can be added to it so that the
obtained multiset would still be applicable to the existing objects in the mem-
brane regions 1, . . . ,m. A configuration of a system is given by the membranes
and the objects present in the compartments of the system. Starting from a
given initial configuration and applying evolution rules as described above, we
get transitions among configurations; a sequence of transitions forms a compu-
tation. A computation is halting if it reaches a configuration where no rule can
be applied any more.

In the generative case, a halting computation has associated a result, in the
form of the number of objects present in membrane lout in the halting config-
uration (lin can be omitted). In the accepting case, for lin �= 0, we accept all
(vectors of) non-negative integers whose input, given as the corresponding num-
bers of objects in membrane lin, leads to a halting computation (lout can be

70 A. Alhazov et al.

omitted). For the input being taken from the environment, i.e., for lin = 0, we
need an additional target indication come; (a, come) means that the object a
is taken into the skin from the environment (all objects there are assumed to
be available in an unbounded number). The multiset of all objects taken from
the environment during a halting computation then is the multiset accepted
by this accepting P system, which in this case we shall call a P automaton [4].
The set of non-negative integers and the set of (Parikh) vectors of non-negative
integers generated/accepted/accepted in the automaton way as results of halt-
ing computations in Π are denoted by Nδ(Π) and Psδ(Π), respectively, with
δ ∈ {gen, acc, aut}.

A P system Π can also be considered as a system computing a partial recur-
sive function (in the deterministic case) or even a partial recursive relation (in the
non-deterministic case), with the input being given in a membrane region lin �= 0
as in the accepting case or being taken from the environment as in the automaton
case. The corresponding functions/relations computed by halting computations
in Π are denoted by ZYα (Π), Z ∈ {Fun,Rel}, Y ∈ {N,Ps}, α ∈ {acc, aut}.

Computational completeness for (generating) catalytic P systems can be
achieved when using two catalysts or with three catalysts in purely catalytic
P systems, and the same number of catalysts is needed for P automata; in
accepting P systems, the number of catalysts increases with the number of com-
ponents in the vectors of natural numbers to be analyzed [8]. It is a long-time
open problem how to characterize the families of sets of (vectors of) natural
numbers generated by (purely) catalytic P systems with only one (two) cata-
lysts. Using additional control mechanisms as, for example, priorities or promot-
ers/inhibitors, P systems with only one (two) catalyst(s) can be shown to be
computationally complete, e.g., see Chapter 4 in [18]. Last year several other
variants of control mechanisms have been shown to lead to computational com-
pleteness in (purely) catalytic P systems using only one (two) catalyst(s), see [7],
[10], and [11]. In this paper we are going to investigate the power of using mat-
ter/antimatter annihilation rules – with the astonishing result, that no catalysts
are needed any more in case the annihilation rules have weak priority over the
other rules.

The families of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, computed by
(purely) catalytic P systems with at most m membranes and at most k catalysts
are denoted by YδOPm (catk) (YδOPm (pcatk)). The following characterizations
are known:

Theorem 1. For any m ≥ 1, d ≥ 1, γ ∈ {gen, aut},
PsaccOPm (catd+2) = PsaccOPm (pcatd+3) = NdRE and

PsγOPm (cat2) = PsγOPm (pcat3) = PsRE.

4 Using Matter and Anti-Matter

This concept to be used in (catalytic) P systems is a direct generalization of the
idea of anti-spikes from spiking neural P systems (see [15]): for each object a we

P Systems with Anti-Matter 71

introduce the anti-matter object a−. We can look at these anti-matter objects
a− as objects of their own or else we may extend the notion of a (finite) multiset
over the (finite) alphabet V , V = {a1, · · · , an}, as a mapping f : V −→ N to a
mapping f : V −→ Z now also allowing negative values. In a usual way, such an
extended multiset on Z is represented by

〈
a

f(a1)
1 , · · · , a

f(an)
n

〉
. A unique string

representation for such an extended multiset is obtained by assigning a string
over the (ordered) alphabet 〈a1, a1

−, · · · , an, an
−〉 as a1

f(a1) · · · an
f(an) such that

(ai)
−m, m > 0, is represented by (ai

−)m, 1 ≤ i ≤ n. Any other string having the
same Parikh vector with respect to the (ordered) alphabet 〈a1, a1

−, · · · , an, an
−〉

can be used for representing the multiset given by f as well.
As in spiking neural P systems with anti-spikes, also in cell-like P systems

we might consider the annihilation of matter and anti-matter objects to happen
in zero-time or in an intermediate step between normal derivation steps in the
maximally parallel mode. Whenever related matter a and anti-matter a− meet,
they annihilate each other, as, for example, in an extended multiset on Z matter
a and anti-matter a− cannot exist at the same moment, hence, also not in a
string representing an extended multiset on Z.

Yet in this paper we consider both objects and anti-objects to be handled
by usual evolution rules; the annihilation of matter and anti-matter objects
then corresponds to an application of the (non-context-free!) rule aa− → λ.
In contrast to the case described above, now in an instantaneous description of
a configuration of a P system both matter and anti-matter objects may appear.
When working with context-free or catalytic rules over an (ordered) alphabet
〈a1, a1

−, · · · , an, an
−〉, we may give the matter/anti-matter annihilation rules

weak priority over all other rules – in order to not have matter a and anti-
matter a− in some configuration at the same moment and let them “survive”
for longer.

We now consider catalytic P systems extended by also allowing for annihila-
tion rules aa− → λ, with these rules having weak priority over all other rules, i.e.,
other rules can only be applied if no annihilation rule could still bind the corre-
sponding objects. The families of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut},
and the families of functions/relations ZYα (Π), Z ∈ {Fun,Rel}, α ∈ {acc, aut},
computed by such extended P systems with at most m membranes and k cata-
lysts are denoted by

YδOPm (cat(k), antim/pri) and ZYαOPm (cat(k), antim/pri) ;

we omit /pri for the families without priorities.
The matter/anti-matter annihilation rules are so powerful that we only need

the minimum number of catalysts, i.e., zero!

Theorem 2. For any n ≥ 1, k ≥ 0, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antim/pri) = Y RE and
ZYαOPn (cat(k), antim/pri) = ZY RE.

72 A. Alhazov et al.

Proof. Let M = (m,B, l0, lh, P) be a register machine. We now construct a
one-membrane P system Π which simulates M :

Π = (O, []1, l0, R1, lin, 1) with
O = {ar, ar

− | 1 ≤ r ≤ m} ∪ {l, l′ | l ∈ B} ∪ {#,#−} .

Initially the skin membrane only contains the object l0. The contents of
register r is represented by the number of copies of the object ar, 1 ≤ r ≤ m,
and for each matter object ar we also consider the corresponding anti-matter
object ar

−. The instructions of M are simulated by the following rules in R1:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules

l1 → arl2 and l1 → arl3.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
As rules common for all simulations of SUB-instructions, we have

ar
− → #−, 1 ≤ r ≤ m,

and the annihilation rules

arar
− → λ, 1 ≤ r ≤ m, and ##− → λ

as well as the trap rules

#− → ## and # → ##;

these last two rules lead the system into an infinite computation whenever
a trap symbol is left without being annihilated.
The zero test for instruction l1 is simulated by the rules

l1 → l1
′ar

− and l1
′ → #l3.

The symbol # generated by the second rule l1
′ → #l3 can only be elimi-

nated if the anti-matter ar
− generated by the first rule l1 → l1

′ar
− is not

annihilated by ar, i.e., only if register r is empty.
The decrement case for instruction l1 is simulated by the rule

l1 → l2ar
−.

The anti-matter ar
− either correctly annihilates one matter ar thus decre-

menting the register r or else traps an incorrect guess by forcing the symbol
ar

− to evolve to #− and then to ## in the next two steps in case register
r is empty.

• lh : HALT . Simulated by lh → λ.
When the computation in M halts, the object lh is removed, and no further
rules can be applied provided the simulation has been carried out correctly,
i.e., if no trap symbols # are present in this situation. The remaining objects
in the system represent the result computed by M .
�

P Systems with Anti-Matter 73

Without this priority of the annihilation rules, the construction is not work-
ing, hence, a characterization of the families YδOPn (ncoo, antim) as well as
ZYαOPn (ncoo, antim) remains as an open problem. Yet in addition using cat-
alytic rules with one catalyst again allows us to obtain computational
completeness:

Theorem 3. For any n ≥ 1, k ≥ 1, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antim) = Y RE and
ZYαOPn (cat(k), antim) = ZY RE.

Proof. We again consider a register machine M = (m,B, l0, lh, P) as in the
previous proof, and construct the catalytic P system

Π = (O, {c} , []
1
, cl0, R1, lin, 0) with

O = {ar, ar
− | 1 ≤ r ≤ m} ∪ {l, l′, l′′ | l ∈ B} ∪ {#,#−, d} ,

with the single catalyst c in the skin membrane. The results now are sent to the
environment, in order not to have to count the catalyst in the skin membrane;
for that purpose, we simply use the rule ai → (ai, out) for the output symbols
ai (we assume that output registers of M are only incremented).

For each ADD-instruction l1 : (ADD (j) , l2, l3) in P , we again take the rules

l1 → arl2 and l1 → arl3.

For each SUB-instruction l1 : (SUB (r) , l2, l3), we now consider the four rules

l1 → l2ar
−,

l1 → l′′1dar
−,

l′′1 → l′1, and
l′1 → #l3.

As rules common for all SUB-instructions, we again add the matter/antimatter
annihilation rules

arar
− → λ and ##− → λ

as well as the trap rules

→ ## and #− → ##,

but in addition, also
d → ##

as well as the catalytic rules

cd → c and car
− → c#−, 1 ≤ r ≤ m.

The decrement case is simulated as in the previous proof, by using the rule
l1 → l2ar

− and then applying the annihilation rule arar
− → λ. The zero-test

74 A. Alhazov et al.

now is initiated with the rule li → l′′i dar
− thus introducing the (dummy) symbol

d which keeps the catalyst busy for one step, where the catalytic rule cd → c
has to be applied in order to avoid the application of the trap rule d → ##.
If register r is empty, then ar

− cannot be annihilated and therefore evolves
to #− in the third step by the application of the catalytic rule car

− → c#−,
which symbol #− afterwards annihilates the symbol # generated by the rule
l′i → #lk in the same step; if register r is not empty, ar

− is annihilated by
some copy of ar already in the first step, hence, the trap symbol # generated
by the rule l′i → #lk does not find its anti-matter #− and therefore evolves
to ##, thus leading to an infinite computation. Although the annihilation rule
arar

− → λ now does not have priority over the catalytic rule car
− → c#−,

maximal parallelism enforces arar
− → λ to be applied, if possible, already in

the first step instead of car
− → c#−, as in a successful derivation the catalyst c

first has to eliminate the dummy symbol d.
The rule lh → λ is applied at the end of a successful simulation of the instruc-

tions of the register machine M , and the computation halts if no trap symbol
is present; the symbols sent out to the environment during the computation
represent the result of this halting computation.
�

In the accepting case, with priorities, we can even simulate the actions of a
deterministic register machine in a deterministic way, i.e., for each configuration
of the system, there can be at most one multiset of rules applicable to it.

Theorem 4. For any n ≥ 1, k ≥ 0, and Y ∈ {N,Ps},
YdetaccOPn (cat(k), antim/pri) = Y RE and

FunYdetaccOPn (cat(k), antim/pri) = FunY RE.

Proof. We only need to show how the SUB-instructions of a register machine
M = (m,B, l0, lh, P) can be simulated in a deterministic way without introduc-
ing a trap symbol and therefore causing infinite loops by them:

For every register r, let B− (r) = {l | l : (SUB (r) , l′, l′′) ∈ P}, and the rule

a−
r → ∏

l∈B−(r) l̃−
∏

l∈B−(r) l̂;

moreover, we take the annihilation rules arar
− → λ as well as l̂l̂− → λ and

l̃l̃− → λ for all l ∈ B− (r).
Any SUB-instruction l1 : (SUB (r) , l2, l3), with l1 ∈ B− (r), l2, l3 ∈ B,

1 ≤ r ≤ m, is simulated by the rules

l1 → l̄1ar
−,

l̄1 → l̂1
− ∏

l∈B−(r)\{l1} l̃,

l̂1
− → l2

∏
l∈B−(r)\{l1} l̃−, and

l̃1
− → l3

∏
l∈B−(r)\{l1} l̂−.

The symbol l̂1
− generated by the second rule is eliminated again and replaced

by l̃1
− if ar

− is not annihilated (which indicates that the register is empty).
�

P Systems with Anti-Matter 75

5 When Matter/Anti-Matter Annihilation Generates
Energy

The matter/anti-matter annihilation may also be assumed to result in the gener-
ation of a specific amount of “energy”, which is also well motivated by physics.
In the definitions of these systems, the matter/anti-matter annihilation rules
arar

− → λ are replaced by arar
− → e where e is a symbol denoting this special

amount of energy.
The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, and the set

of functions/relations ZYα (Π), Z ∈ {Fun,Rel}, α ∈ {acc, aut}, computed
by such P systems with at most m membranes and k catalysts is denoted by
YδOPm (cat(k), antimen/pri) and ZYαOPm (cat(k), antimen/pri); we omit /pri
for the families without priorities.

The following results are immediate consequences of the corresponding Theo-
rems 2 and 4 – in both cases, each matter/anti-matter annihilation rule xx− → λ
is replaced by xx− → e where e is this symbol denoting a special amount of
energy, and, in addition, we add the rule e → λ:

Corollary 1. For any n ≥ 1, k ≥ 0, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antimen/pri) = Y RE and
ZYαOPn (cat(k), antimen/pri) = ZY RE.

Corollary 2. For any n ≥ 1, k ≥ 0, and Y ∈ {N,Ps},

YdetaccOPn (cat(k), antimen/pri) = Y RE and
FunYdetaccOPn (cat(k), antimen/pri) = FunY RE.

But we can even show more, i.e., omitting the rule e → λ and leaving the
amount of energy represented by the number of copies of e in the system, the
energy inside the system at the end of a successful computation is a direct
measure for the number of SUB-instructions simulated by the P system or even
a measure for the number of all instructions which were simulated.

Corollary 3. The construction in the proof of Theorem 2 can be adapted in
such a way that the simulation of each instruction of the register machine M
takes exactly three steps (including the annihilation rules), and moreover, the
number of energy objects e at the end of a successful computation exactly equals
the number of instructions of M simulated by the corresponding P system.

Proof. Let M = (m,B, l0, lh, P) be a register machine. Following the construc-
tion given in the proof of Theorem 2, the instructions of M now can be simulated
as follows:

76 A. Alhazov et al.

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules

l1 → l1
′,

l1
′ → l1

′′,
l1

′′ → earl2,
l1

′′ → earl3.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
As rules common for all simulations of SUB-instructions, we have

ar
− → #−, 1 ≤ r ≤ m,

arar
− → e, 1 ≤ r ≤ m,

##− → e,
#− → ##,
→ ##.

The zero test for instruction l1 is simulated by the rules

l1 → l1
′ar

−,
l1

′ → #l1
′′, and

l1
′′ → l3;

the symbol # generated by the second rule l1
′ → #l1

′′ can only be elimi-
nated if the anti-matter ar

− generated by the first rule l1 → l1
′ar

− is not
annihilated by ar, i.e., only if register r is empty; e is generated by ##− → e.
The decrement case for instruction l1 is simulated by the rules

l1 → l̃1ar
−

,

l̃1 → l̃′1,
l̃′1 → l2;

here, e is generated by arar
− → e.

• lh : HALT . Simulated by the rules

lh → lh
′,

lh
′ → lh

′′,
lh

′′ → e.

In each case, exactly one symbol e is generated during each cycle of three
steps simulating an instruction of M .
�

Remark 1. Let M be a register machine and

RS(M) = {(n,m) | n ∈ L(M), n is computed by M in m steps}.

Then, according to [3], RS is recursive. Hence, although L(M) may not be
recursive, RS(M) is recursive in any case.

Now let L ∈ NRE and L = L (M) for a register machine M . Following the
construction given in the proof of Corollary 3, we can construct a P system with
energy Π such that Ps (Π) = RS(M).

P Systems with Anti-Matter 77

6 Computing with Integers

As already discussed in Section 4, given an alphabet V = {a1, · · · , ad} we may
extend the notion of a (finite) multiset over V as a mapping f : V −→ N to a
mapping f : V −→ Z now also allowing negative values, with a unique string
representation for such an extended multiset being obtained by assigning a string
over the (ordered) alphabet 〈a1, a1

−, · · · , ad, ad
−〉 as a1

f(a1) · · · ad
f(ad) such that

(ai)
−m, m > 0, is represented by (ai

−)m, 1 ≤ i ≤ d. Besides this canonical
representation of f by the string a1

f(a1) · · · ad
f(ad), any other string having the

same Parikh vector with respect to the (ordered) alphabet 〈a1, a1
−, · · · , ad, ad

−〉
can be used for representing the multiset given by f as well. According to these
definitions, matter and related anti-matter cannot be present in the same string
or multiset over the alphabet {a1, a1

−, · · · , ad, ad
−}. Obviously, their is a one-

to-one correspondence between vectors from Z
d and the corresponding Parikh

vectors over 〈a1, a1
−, · · · , ad, ad

−〉, which can also be viewed as vectors over Z2d:
for any of these vectors v = (v1, v2, · · · , v2d−1, v2d), we have either v2i−1 = 0 or
v2i = 0 (or both), for all 1 ≤ i ≤ d.

In order to specify that now we are dealing with d-dimensional vectors of
integer numbers, we use the notation PsZ

d

: the families of sets of integer numbers
PsZ

d

δ (Π), δ ∈ {gen, acc, aut}, and the families of functions/relations ZPsZ
d

α (Π),
Z ∈ {Fun,Rel}, α ∈ {acc, aut}, computed by such P systems with at most m

membranes and k catalysts are denoted by PsZ
d

δ OPm (cat(k), antim/pri) and
ZPsZ

d

α OPm (cat(k), antim/pri); we omit /pri for the families without priorities.
Moreover, the family of recursively enumerable sets of integer numbers is denoted
by PsZ

d

RE, the corresponding families of functions/relations by ZPsZ
d

RE.

Theorem 5. For any d ≥ 1 we have that:

– for any n ≥ 1, k ≥ 0, δ ∈ {gen, acc, aut}, α ∈ {acc, aut}, and
Z ∈ {Fun,Rel},

PsZ
d

δ OPn (cat(k), antim/pri) = PsZ
d

RE and
ZPsZ

d

α OPn (cat(k), antim/pri) = ZPsZ
d

RE;

– for any n ≥ 1, and k ≥ 0,

PsZ
d

detaccOPn (cat(k), antim/pri) = PsZ
d

RE and
FunPsZ

d

detaccOPn (cat(k), antim/pri) = FunPsZ
d

RE.

Proof. As we have shown in Section 4, all variants of P systems with anti-
matter mentioned in the theorem are computationally complete when dealing
with multisets over any arbitrary alphabet, being able to simulate the actions
of a register machine. Hence, as any d-dimensional vector of integer numbers
can be represented by a 2d-dimensional vector of non-negative integers, which
can be processed in the usual way by register machines and thus simulated by
all the variants of P systems with anti-matter mentioned in the theorem, we

78 A. Alhazov et al.

only have to solve the technical detail how to get this 2d-dimensional vector
of non-negative integers from a given d-dimensional vector of integer numbers
represented by symbols over the (ordered) alphabet 〈a1, a1

−, · · · , ad, ad
−〉: given

the input in an input membrane �= 0, we there just make a first step using
in parallel the non-cooperative rules ai → [ai,+] and ai

− → [ai,−], 1 ≤ i ≤ d.
Then the multisets over these symbols can be handled in the usual way, now both
of them having the corresponding anti-matter objects [ai,+]− and [ai,−]−. In
a similar way, we can take the input from the environment by using rules of
the form q → p (ai, come) [ai,+] or q → p (ai

−, come) [ai,−] where q, p represent
states of the register machine. The symbols ai and ai

− then are not needed any
more and can be eliminated by the rules ai → λ and ai

− → λ. The remaining
computations in the respective P system then can be carried out by simulating
the actions of a register machine.
�

7 Computing with Languages

P systems with anti-matter, as most of the computationally complete variants of
P systems, can also be considered as language generating devices – the objects
sent out can be concatenated to strings over a given alphabet, and the objects
taken in during a halting computation can be assumed to form a string. For
sake of simplicity, we may assume that in each computation step, at most one
symbol is sent out or taken in; otherwise, as usual, e.g., see [4], we may take
any permutation of the symbols sent out or taken in to be part of a string
to be considered as output or input, respectively. Obviously, according to this
method of getting an input string, for the accepting case only the automaton
variant is to be considered now, as otherwise we would have to take an encoding
of the input string by a multiset.

7.1 Languages over Strings

Let V be a finite alphabet. The set of strings (over V) generated or accepted
(in the sense of automata) by a P system with anti-matter Π is denoted by
LV

δ (Π), δ ∈ {gen, aut}, the function/relation computed by Π is denoted by
ZLV

aut (Π), Z ∈ {Fun,Rel}. The families of sets LV
δ (Π), δ ∈ {gen, aut}, and

the families of functions/relations ZLV
aut (Π), Z ∈ {Fun,Rel}, computed by

such P systems with at most m membranes and k catalysts are denoted by
LV

δ OPm (cat(k), antim/pri) and ZLV
autOPm (cat(k), antim/pri), respectively.

We omit /pri for the families without priorities; cat (0) is used as a synonym
for ncoo. If the alphabet is arbitrary, we omit the superscript V in these nota-
tions. Moreover, the family of languages over V in RE is denoted by REV , the
corresponding family of functions/relations by ZREV .

The use of anti-matter and of matter/anti-matter annihilation rules (having
priority over other rules) allows us to give a simple example how to generate an
even non-context-free string language:

P Systems with Anti-Matter 79

Example 1. Consider the P system with anti-matter

Π = (O, []1, q1, R1, 1) where
O = {a, b, c} ∪ {b−, c−} ∪ {q1, q2, q3},
R1 = {q1 → q2, q2 → q3, q3 → λ, q1 → q1 (a, come) b−c−}

∪ {q2 → q2 (b, come) , q3 → q3 (c, come)}
∪ {a → λ} ∪ {x → x, x− → x−, xx− → λ | x ∈ {b, c}} .

The reader may easily verify that

L
{a,b,c}
aut (Π) = {anbncn | n ≥ 0} .

For each symbol a taken in with state q1 (which is eliminated in the next step by
a → λ) using the rule q1 → q1 (a, come) b−c−, an anti-matter object for both b
and c is generated. The anti-matter objects b− are eliminated in state q2, and
afterwards the anti-matter objects c− are eliminated in state q3. The computa-
tion only halts (with empty skin membrane) after having used the rule q3 → λ
if and only if an equal number of objects a, b, and c has been taken in, as other-
wise, the rules x → x or x− → x−, x ∈ {b, c}, keep the system in an infinite loop
if too many x or not enough x have been taken in, respectively. Observe that
this system also works if we do not require priority of the annihilation rules, but
then, for each successful computation accepting the string anbncn, n ≥ 1, there
exist infinite computations where we use one of the rules x− → x− again and
again instead of letting x− being annihilated by xx− → λ. Hence, we may say
that

{anbncn | n ≥ 0} ∈ L
{a,b,c}
aut OP1 (ncoo) .

Theorem 6. For any arbitrary alphabet V we have that:

– for any n ≥ 1, k ≥ 0, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},
LV

δ OPn (cat(k), antim/pri) = REV and
ZLV

autOPn (cat(k), antim/pri) = ZREV ;

– for any n ≥ 1, k ≥ 1, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},
LV

δ OPn (cat(k), antim) = REV and
ZLV

autOPn (cat(k), antim) = ZREV .

Proof. As we have shown in Section 4, all variants of P systems with anti-
matter mentioned in the theorem are computationally complete when dealing
with multisets, being able to simulate the actions of a register machine. Hence, by
well-known techniques, input symbols composing an input string can be encoded
as numbers in an input register and thus as a multiset in the simulating P
system with anti-matter. In the same way, the results of a computation in the
P system can be decoded from the multiset representing the output register of
the underlying register machine. An input symbol a ∈ V is taken in by rules
of the form q → p (a, come) where q, p represent states of the register machine,
and sent out by rules of the form q → p (a, out); these rules correspond with the
register machine instructions q : (read(a), p) and q : (write(a), p).
�

80 A. Alhazov et al.

7.2 Languages over Computable Finite Presentations of Groups

Strings may be used in a wider sense as representations of group elements. In
order to establish these more general results, we first need some definitions and
examples from group theory, e.g., see [12].

Groups and Group Presentations. Let G = (G′, ◦) be a group with group
operation ◦. As is well-known, the group axioms are

– closure: for any a, b ∈ G′, a ◦ b ∈ G′,
– associativity : for any a, b, c ∈ G′, (a ◦ b) ◦ c = a ◦ (b ◦ c),
– identity : there exists a (unique) element e ∈ G′, called the identity, such that

e ◦ a = a ◦ e = a for all a ∈ G′, and
– invertibility: for any a ∈ G′, there exists a (unique) element a−1, called the

inverse of a, such that a ◦ a−1 = a−1 ◦ a = e.

Moreover, the group is called commutative, if for any a, b ∈ G′, a ◦ b = b ◦ a.
In the following, we will not distinguish between G′ and G if the group operation
is obvious from the context.

For any element b ∈ G′, the order of b is the smallest number n ∈ N such that
bn = e provided such an n exists, and then we write ord (b) = n; if no such n
exists, {bn | n ≥ 1} is an infinite subset of G′ and we write ord (b) = ∞.

For any set B, B−1 is defined as the set of symbols representing the inverses
of the elements of B, i.e., B−1 =

{
b−1 | b ∈ B

}
. We now consider the strings in

(
B ∪ B−1

)∗ and two strings as different unless their equality follows from the
group axioms, i.e., for any a, b, c ∈ (

B ∪ B−1
)∗, a ◦ b ◦ b−1 ◦ c = a ◦ c; using these

reductions, we obtain a set of irreducible strings from those in
(
B ∪ B−1

)∗,
the set of which we denote by I (B). Then the free group generated by B is
F (B) = (I (B) , ◦) with the elements being the irreducible strings over B ∪ B−1

and the group operation to be interpreted as the usual string concatenation,
yet, obviously, if we concatenate two elements from I (B), the resulting string
eventually has to be reduced again. The identity in F (B) is the empty string.

In general, B (not containing the identity) is called a generator of the group G
if every element a from G can be written as a finite product/sum of elements
from B, i.e., a = b1 ◦ · · · ◦ bm for b1, . . . , bm ∈ B. In this paper, we restrict
ourselves to finitely presented groups, i.e., having a finite presentation 〈B | R〉
with B being a finite generator set and moreover, R being a finite set of relations
among these generators. In a similar way as in the definition of the free group
generated by B, we here consider the strings in B∗ to be reduced according to the
group axioms and the relations given in R. Informally, the group G = 〈B | R〉 is
the largest one generated by B subject only to the group axioms and the relations
in R. Formally, we will restrict ourselves to relations of the form b1◦· · ·◦bm = c−1

with b1, . . . , bm, c ∈ B, which equivalently may be written as b1 ◦ · · · ◦ bm ◦ c = e;
hence, instead of such relations we may specify R by strings over B yielding the
group identity, i.e., instead of b1 ◦ · · · ◦ bm = c−1 we take b1 ◦ · · · ◦ bm ◦ c (these
strings then are called relators).

P Systems with Anti-Matter 81

Example 2. The free group F (B) = (I (B) , ◦) can be written as 〈B | ∅〉 (or even
simpler as 〈B〉) because it has no restricting relations.

Example 3. The cyclic group of order n has the presentation 〈{a} | {an}〉
(or, omitting the set brackets, written as 〈a | an〉); it is also known as Zn or
as the quotient group Z/Zn.

Example 4. Z is a special case of an Abelian group generated by (1) and its
inverse (−1), i.e., Z is the free group generated by (1). Zd is an Abelian group
generated by the unit vectors (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0).
It is well known that every finitely generated Abelian group is a direct sum of a
torsion group and a free Abelian group where the torsion group may be written
as a direct sum of finitely many groups of the form Z/pk

Z for p being a prime,
and the free Abelian group is a direct sum of finitely many copies of Z.

Example 5. A very well-known example for a non-Abelian group is the hexagonal
group with the finite presentation

〈
a, b, c | a2, b2, c2

〉
. All three generators a, b, c

are self-inverse.

Remark 2. Unfortunately, given a finite presentation of a group 〈B | R〉, in gen-
eral it is not even decidable whether the group presented in that way is finite or
infinite. Hence, in this paper we restrict ourselves to infinite groups where the
word equivalence problem u = v is decidable, or equivalently, there is a decision
procedure telling us whether, given two strings u and v, u ◦ v−1 = e. In that
case, we call 〈B | R〉 a recursive or computable finite group presentation.

As a first example we now consider the set (“language”) of all one-dimensional
vectors:

Example 6. Consider the P system

Π = ({q0, q+, q−, qh}, []1, q0, R1, 1) where
R1 = {q0 → qh, q+ → qh, q− → qh}

∪ {q0 → (+1)q+, q+ → (+1)q+, q0 → (−1)q−, q− → (−1)q−}.

In order to generate the empty string, corresponding with the zero-vector (0), we
simply apply q0 → qh. We may also choose to generate a positive or a negative
vector, i.e., we start with q0 → (+1)q+ or q0 → (−1)q−, respectively. After n−1
applications of the rules q+ → (+1)q+ and q− → (−1)q− as well as of the final
rule q+ → qh or q− → qh, respectively, we have sent out a string representing
the unique irreducible representation of the vector (+n) or (−n), respectively.

Remark 3. The reader may easily verify that, given any finitely generated Abelian
group, such a regular P system exists which generates all strings representing the
(unique, with respect to a complete order on the positive generators) irreducible
representations of the group elements. For non-commutative groups with relators,
such trivial representations are not possible.

82 A. Alhazov et al.

If we do not require irreducibility of the string sent out to the environment,
then of course, for any finitely generated group, we can generate representations
of all its elements very easily:

Example 7. Given a finite presentation of a group 〈B | R〉, with B− = B, con-
sider the P system

Π = ({q0}, []1, q0, R1, 1) where
R1 = {q0 → λ} ∪ {q0 → gq0 | g ∈ B}.

Most of the strings sent out now will not be reduced.

Remark 4. In general, as long as we have given the group by a computable finite
presentation, for a mechanism having the full power of Turing computability,
we can require that the “strings” sent out to the environment are irreducible
ones. Hence, for a given recursively enumerable set L of elements over the com-
putable finite presentation 〈B | R〉 of a group, such a mechanism can generate
the irreducible string representations of the elements in L. Thus, the results col-
lected in the following theorem are obvious consequences of the results stated in
Theorem 6.

Let 〈B | R〉 be the computable finite presentation of a group G. The set of
string representations (of elements of this group with respect to this finite presen-
tation 〈B | R〉) generated or accepted (in the sense of automata) by a P system
with anti-matter Π is denoted by L

〈B|R〉
δ (Π), δ ∈ {gen, aut}. The families of

sets L
〈B|R〉
δ (Π), δ ∈ {gen, aut} computed by such P systems with at most m

membranes and k catalysts are denoted by L
〈B|R〉
δ OPm (cat(k), antim/pri). We

omit /pri for the families without priorities. The family of recursively enumer-
able sets of elements over the computable finite presentation 〈B | R〉 of a group
is denoted by RE〈B|R〉. If the (computable finite) group (presentation) may be
an arbitrary one, we omit the superscript 〈B | R〉 in these notations.

Let 〈B | R〉 and 〈B′ | R′〉 be the computable finite presentations of two
groups G and G′, respectively; the function/relation from G to G′ (with respect
to these finite presentations 〈B | R〉 and 〈B′ | R′〉) computed by a P system with

anti-matter Π is denoted by ZL
(〈B|R〉,〈B′|R′〉)
aut (Π), Z ∈ {Fun,Rel}; the fam-

ilies of such functions/relations ZL
(〈B|R〉,〈B′|R′〉)
aut (Π) computed by P systems

with anti-matter and at most m membranes and k catalysts are denoted by

ZL
(〈B|R〉,〈B′|R′〉)
aut OPm (cat(k), antim/pri). We omit /pri for the families with-

out priorities. If the computable finite group presentations may be arbitrary ones,
we omit the superscript (〈B | R〉 , 〈B′ | R′〉) in these notations. The families of
recursively enumerable functions/relations from G to G′ (with respect to the
finite presentations 〈B | R〉 and 〈B′ | R′〉) are denoted by ZRE(〈B|R〉,〈B′|R′〉),
Z ∈ {Fun,Rel}.

P Systems with Anti-Matter 83

Theorem 7. Let 〈B | R〉 and 〈B′ | R′〉 be the computable finite presentations of
two groups G and G′, respectively. Then we have that:

– for any n ≥ 1, k ≥ 0, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

L
〈B|R〉
δ OPn (cat(k), antim/pri) = RE〈B|R〉 and

ZL
(〈B|R〉,〈B′|R′〉)
aut OPn (cat(k), antim/pri) = ZRE(〈B|R〉,〈B′|R′〉);

– for any n ≥ 1, k ≥ 1, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

L
〈B|R〉
δ OPn (cat(k), antim) = RE〈B|R〉 and

ZL
(〈B|R〉,〈B′|R′〉)
aut OPn (cat(k), antim) = ZRE(〈B|R〉,〈B′|R′〉).

Proof. As for string languages, all computations can be carried out by simulating
register machines, hence, again the results from Section 4 apply. Moreover, as
already mentioned in Remark 4, the additional computations can also be carried
out in this way, as 〈B | R〉 and 〈B′ | R′〉 are computable.
�
Remark 5. Let us mention that the results obtained in Theorem 7 for arbitrary
computable finite presentations 〈B | R〉 of a group can also be applied to the
infinite Abelian groups Z

d with their canonical group presentations by the unit
vectors (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0). Keeping in mind that
there is a one-to-one correspondence between the representation of a vector in Z

n

by a multiset of symbols and the corresponding string representing this multiset,
most of the results shown in Theorem 5 are special cases of the respective results
stated in Theorem 7.

8 Summary

We have shown that only non-cooperative rules together with matter/anti-matter
annihilation rules are needed to obtain computational completeness in P systems
working in the maximally parallel derivation mode if annihilation rules have weak
priority; without priorities, one catalyst is needed. In the case of accepting P sys-
tems we are able to get even deterministic systems. Allowing anti-matter objects
as input and/or output, we obtain a computationally complete computing model
for computations on integer numbers. Interpreting sequences of symbols taken in
from and/or sent out to the environment, we get a model for computations on
strings, where strings can even be interpreted as representations of elements of a
group based on a computable finite presentation.

There may be a lot of other interesting models of P systems allowing for
introducing anti-matter objects and matter/anti-matter annihilation rules. Sev-
eral problems remain open even for the models presented here, for example, can
we avoid both catalysts and priorities. Moreover, the variants of P systems with
anti-matter computing on sets of integer numbers and on languages of strings,
even considered as representations of elements of a group based on a computable
finite presentation, deserve more detailed investigations.

84 A. Alhazov et al.

Acknowledgements. The authors gratefully acknowledge the inspiring ideas and dis-
cussions with Gheorghe Păun on the topics exhibited in this paper; even more results on
P systems with anti-matter can be found in [1]. Artiom Alhazov acknowledges project
STCU-5384 Models of high performance computations based on biological and quantum
approaches awarded by the Science and Technology Center in the Ukraine.

References

1. Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Matter and Anti-Matter in Mem-
brane Systems. In: Maćıas-Ramos, L.F., Mart́ınez-del-Amor, M.Á., Păun, Gh.,
Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the Twelfth Brain-
storming Week on Membrane Computing, pp. 1–26. Fénix Editora, Sevilla (2014)

2. Alhazov, A., Sburlan, D.: Static Sorting P Systems. In: Ciobanu, G., Păun, Gh.,
Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing. Natural Com-
puting Series, pp. 215–252. Springer (2005)

3. Cavaliere, M., Freund, R., Leitsch, A., Păun, Gh.: Event-Related Outputs of Com-
putations in P Systems. Journal of Automata, Languages and Combinatorics 11(3),
263–278 (2006)

4. Csuhaj-Varjú, E., Vaszil, Gy.: P Automata or Purely Communicating Accepting
P Systems. In: Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC-
CdeA 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)

5. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer
(1989)

6. Dı́az-Pernil, D., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A.: Antimatter as
a Frontier of Tractability in Membrane Computing. In: Maćıas-Ramos, L.F.,
Mart́ınez-del-Amor, M.Á., Păun, Gh., Riscos-Núñez, A., Valencia-Cabrera, L.
(eds.) Proceedings of the Twelfth Brainstorming Week on Membrane Computing,
pp. 155–168. Fénix Editora, Sevilla (2014)

7. Freund, R.: Purely Catalytic P Systems: Two Catalysts Can Be Sufficient for Com-
putational Completeness. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin,
Yu. (eds.) CMC14 Proceedings - The 14th International Conference on Membrane
Computing, pp. 153–166. Institute of Mathematics and Computer Science, Acad-
emy of Sciences of Moldova (2013)

8. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally Universal P Systems
without Priorities: Two Catalysts Are Sufficient. Theoretical Computer Science
330, 251–266 (2005)

9. Freund, R., Oswald, M.: A Small Universal Antiport P System with Forbidden Con-
text. In: Leung, H., Pighizzini, G. (eds.) 8th International Workshop on Descrip-
tional Complexity of Formal Systems - DCFS 2006. Las Curces, New Mexico, USA,
June 21–23. Proceedings DCFS, pp. 259–266. New Mexico State University, Las
Cruces (2006)

10. Freund, R., Oswald, M., Păun, Gh.: Catalytic and Purely Catalytic P Systems and
P Automata: Control Mechanisms for Obtaining Computational Completeness.
Fundamenta Informaticae 136, 59–84 (2015)

11. Freund, R., Păun, Gh.: How to Obtain Computational Completeness in P Systems
with One Catalyst. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Compu-
tations and Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11.
EPTCS, vol. 128, pp. 47–61 (2013)

12. Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of Computational Group Theory.
CRC Press (2005)

P Systems with Anti-Matter 85

13. Korec, I.: Small Universal Register Machines. Theoretical Computer Science 168,
267–301 (1996)

14. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs (1967)

15. Pan, L., Păun, Gh.: Spiking Neural P Systems with Anti-Matter. International
Journal of Computers, Communications & Control 4(3), 273–282 (2009)

16. Păun, Gh.: Computing with Membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000) (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi)

17. Păun, Gh.: Membrane Computing: An Introduction. Springer (2002)
18. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press (2010)
19. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 vol. Springer

(1997)
20. The P Systems Website: www.ppage.psystems.eu

www.tucs.fi
http://www.ppage.psystems.eu

	P Systems with Anti-Matter
	1 Introduction
	2 Prerequisites
	3 P Systems
	4 Using Matter and Anti-Matter
	5 When Matter/Anti-Matter Annihilation Generates Energy
	6 Computing with Integers
	7 Computing with Languages
	7.1 Languages over Strings
	7.2 Languages over Computable Finite Presentations of Groups

	8 Summary
	References

