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Abstract. Automated segmentation and tracking of cells in time-lapse imaging 
is a process of fundamental significance in several biomedical applications. In 
this work our interest is focused on cell segmentation over a set of fluorescence 
microscopy images with varying levels of difficulty with respect to cell density, 
resolution, contrast, and signal-to-noise ratio. We utilize a region-based ap-
proach to curve evolution based on the level-set formulation. We introduce and 
test the use of temporal linking for level-set initialization to improve the robust-
ness and computational time of level-set convergence. We validate our segmen-
tation approach against manually segmented images provided by the Cell 
Tracking Challenge consortium. Our method produces encouraging segmenta-
tion results with an average DICE score of 0.78 over a variety of simulated and 
real sequences and speeds up the convergence rate by an average factor of 10.2. 

1 Introduction 

The identification, quantification and characterization of cells using imaging tech-
niques are being systematically integrated in cell biology studies [1]. Recent devel-
opments in time-lapse microscopy enable the observation and quantification of  
cell-cycle progression of individual cells [2]. The tasks of detecting and following 
individual particles in a time series of images are key elements in this process. Never-
theless, the large volume of data produced by fluorescence microscopy emphasizes 
the need for automated and robust techniques that can address the challenges pre-
sented by this imaging modality. 

Cell tracking methodologies involve the tasks of preprocessing, cell segmentation 
and tracking [3], [4], [5], [6]. In this context, segmentation of cells is a particularly 
challenging task that has a direct impact on the overall quantification process.  Image 
segmentation is a popular field in the domain of image analysis. More specifically, 
parametric [7] and nonparametric active contour models [8], [9] have been widely 
used in development of bioimaging and biomedical image analysis techniques. 

An interesting aspect in cell analysis methods is the relation between image quality 
and segmentation accuracy. Several studies concluded that cell segmentation and 
tracking achieve good level of accuracy, when the signal-to-noise ratio is sufficiently 
high (SNR ≥ 4) [3];   however, for low-quality images, the same methods may yield 
varying levels of performance depending on the level and type of distortion that cor-
rupts the imaging data. 
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Our methodology builds upon the nonparametric active contour method by Chan 
and Vese [10], a region based approach to curve evolution that is largely robust to 
edge discontinuities and additive noise. We developed a system for cell segmentation 
applied to fluorescence microscope imaging.  First, we assessed the image quality of 
our test data that was provided by the Cell Tracking Challenge [11]. Next, we studied 
the effect of temporal linking for initialization of level-sets between successive 
frames. To this end, we validated our approach over a set of sequences against ma-
nually segmented data. We also validated the segmentation accuracy of Chan-Vese 
segmentation without linking and perform comparisons with our approach. Further-
more, we compared the numbers of iterations that each numerical scheme needs to 
reach convergence. Our results indicate that our approach produces equivalent seg-
mentation accuracies at a significantly smaller number of iterations than the original 
Chan-Vese method. 

2 Methods 

2.1 Preprocessing  

Fluorescent microscopy imaging is often times subjected to a mixture of different 
types of noise. Therefore, the degradation model of this imaging process is highly 
non-linear.  The main goal of a preprocessing step is to reduce the corruption caused 
by noise and to improve the image quality. For noise reduction we utilized a non-
linear diffusion filter proposed by Perona and Malik [12]  which is based on the fol-
lowing PDE: ( (| u| ) u)    (1) 

where  is the image intensity,  the scale variable,  and (. ) a function that deter-
mines the amount of diffusion, also known as diffusivity function. This function con-
trols the amount of diffusion according to the edge strength. Common selections 
of (. ) are the sigmoid and exponential functions. Nonlinear diffusion is a robust 
method for image enhancement. In contrast to Gaussian blurring, it does not apply 
smoothing across the edges.  

2.2  Active Contour without Edges Chan-Vese Model for Image Segmentation 

In contrast to edge based methods like classical snakes [7] and early level-set methods 
[8], where an edge detector is used to stop the evolving curve, region based methods 
tend to be less sensitive to noise. The use of region-based statistics may prove advan-
tageous for images characterized by edge discontinuity and higher level of noise. 

Chan-Vese (CV) method [10] is a region based active contour model.  Here, the seg-
mentation of an image Ω is computed by minimizing the following energy functional: 

 F(C, c , c ) µ . length(C) ν. area(inside C) λ  |u c | (C) dx dy                         λ  |u c | dxdy (C)    (2) 
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where C is the evolving curve; c1 and c2 are the average intensity levels inside and 
outside the contour C and µ 0 , ν 0, λ  , λ  0 are fixed parameters. The length 
of C and the area are regularizing terms. 

The idea is to evolve the contour C from some initialization until the fitting energy 
is minimized:   F(C, c , c )C, , .                                        (3) 

This model is a special case of the Mumford-Shah functional [13] for segmentation 
in the case of piecewise constant approximation. 

Level-set Formulation:  
Chan and Vese used level-set functions to solve this optimization problem. In the 
level-set method, the contour is represented as the zero level-set of a Lipschitz func-
tion : Ω IR   C (x, y) Ω | (x, y) 0                                    (4) 

where  is positive inside C and negative outside C:      inside(C)    (x, y) Ω| (x, y) 0  outside(C) (x, y) Ω| (x, y) 0 . 

Therefore, the energy functional in terms of the level-set (x, y) becomes: 

 F( , c , c ) µ . length 0 ν. area 0 λ  |u c | dx dy         λ  |u c | dxdy                                                                    (5) 

The Heaviside and Dirac functions are used to compute the length and area terms. 
In [10] the Euler-Lagrange equations and the gradient-descent method are used to 
derive the following evolution equation for the level-set function  that will minimize 
the fitting energy. Minimization is done by solving the Euler-Lagrange equation for  
using time to parameterize the gradient descent: ( , ) δ( (x, y)) µ div ( , )| ( ( , )| ν λ (u c ) λ  (u c )  Ω  (6) 

In practice, the Dirac delta function δ is implemented by a smooth approximation. 

2.3 Temporally Linked Level-Set Segmentation 

Our approach makes use of temporal connection between consecutive level-set re-
sults. That is, when segmenting an image, which is a part of a temporal sequence, we 
make use of the level-set results reached from minimization of the global energy as-
sociated with the contours of the segmented cells found in the previous time 
point ( , ; 0) , ; , ( , ) Ω, where  is the frame number in the 
time-lapse sequence, and  is the number of iterations required to converge for 
frame .  These results are utilized to minimize the energy functional of the next im-
age. If the segmentation in frame  is accurate, then this initialization will correspond 
to a point close to the global optimum of the energy functional in frame 1.  
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2.4 Algorithm Outline 

Based on the previous description, our cell segmentation algorithm is completed in 
the following steps: 

1. Given an input image 
2. Apply preprocessing (nonlinear diffusion filter, intensity normalization) 
3. Initialize the system for time 0 to be  using circular structure elements. 

Compute the signed distance of the initial level-set 
4. Repeat steps 5-9 until a stationary solution is reached (i.e., when there is no 

change in , or )  
5. Compute the regularized Heaviside and Dirac functions 
6. Compute the mean intensity of the image pixels inside and outside the level-

set: ( ) and ( ) by discretizing the integrals into sums 
7. Compute the normalized energy of image  
8. Evolve the level-set function by solving the PDE in  to obtain  from (6) 

with ( ) and ( ) 
9. Reinitialize  locally to the signed distance function to the curve 
10. When the steady state is reached we obtain the final regions by thresholding  
11. Apply morphological hole filling to the segmented regions 

3 Experiments and Discussion 

3.1 Datasets 

The datasets consist of 2D fluorescent microscope time-lapse image sequences. 

 

 

Fig. 1. Rat mesenchymal stem cells on a flat polyacrylamide substrate (2D) (top left); GFP-
GOWT1 mouse stem cells (2D) (top right); (c) Simulated nuclei moving on a flat surface (2D) 
(bottom left); (d) HeLa cells stably expressing H2b-GFP (2D) (bottom right) 
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We used 12 time-lapse sequences, 6 videos consisted of real microscopy time-lapse 
sequences and 6 computer simulated videos with various cell densities and noise 
levels. We obtained the training and challenge data sets from the cell tracking chal-
lenge website [11]. 

Simulated videos: The six simulated videos displayed fluorescently labeled nuclei 
of the HL60 cell line migrating on a flat 2D surface (N2DH-SIM1, N2DH-SIM2, 
N2DH-SIM3, N2DH-SIM4, N2DH-SIM5, N2DH-SIM6). Fig. 1 shows some sample 
images. Some properties of the datasets are listed in Table 1.  

Real videos: Consists of 3 datasets each containing 2 time-lapse sequences. An ex-
ample is displayed in Fig. 1 (top right).Two videos sequences Fluo-C2DL-MSC1 and  
Fluo-C2DL-MSC2  rat mesenchymal stems cells, two video sequences N2DH-
GOWT1_1 and N2DH-GOWT1_2, mouse embryonic stem cells and N2DL-HeLa1 
and N2DL-HeLa2  expressing HeLa cells. 

Table 1. Properties of the sequences used in our experiments from [11] 

Data set name Number of frames Difficulty 
 

C2DL-MSC 
  
 
N2DH-GOWT1 
 
N2DL-HeLa 
 
 
N2DH-SIM 

48 
 
 

92 
 

92 
 
 

56-100 
 

High: low signal-to-noise ratio, presence of cell stret-
ching, which appear as discontinuous extensions of the
cells.  
Medium: heterogeneous staining, prominent nucleoli,
mitoses, cells entering and leaving the field of view. 
High: High cell density and low resolution and intensi-
ty. The videos display frequent mitoses, both normal
and abnormal. 
Medium: Different noise levels, cell density of the
initial population and number of simulated mitotic
events. 

3.2 Image Quality and Segmentation Validation Measures 

We used the ground truth data to estimate the average Signal-to-Noise Ratio (SNR) 
and Contrast-to-Noise Ratio (CNR) of each dataset (see Table 2). The  and   
measures are defined as follows:   20 log              (7)  | |

         (8) 

where  is the average image intensity over the cell regions,  is the average inten-
sity over the background and  is the standard deviation of the background pixels. In 
Table 2 we list the Average SNR (in dB) and average CNR that are means over all 
frames in each sequence.  
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Table 2. Average Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) of each dataset 

Dataset sequence name Average SNR Average CNR 
C2DL-MSC1 0.21   ± 2.55 4.5    ± 2.02 
C2DL-MSC2 5.52   ± 0.27 2.49  ± 0.16 
N2DH-GOWT1 23.45 ± 0.6   12.62± 0.76 
N2DH-GOWT2   20.07 ± 1.01 8.32  ± 0.9 
N2DL-HeLa1 19.4   ± 1.93     19.23± 7.67 
N2DL-HeLa2 15.22 ±1.25 5.4    ± 1.08 
N2DH-SIM1 9.7     ± 1.16 7.96  ± 0.95 
N2DH-SIM2 9.88   ± 1.17 8.34  ± 0.94 
N2DH-SIM3 5.9     ± 0.67 4.2    ± 0.47 
N2DH-SIM4 5.8     ± 0.56 4.09  ± 0.49 
N2DH-SIM5 5.79   ± 0.62 4.24  ± 0.6 
N2DH-SIM6 9.54    ± 0.9     7.9      ± 0.8 
 

In the preprocessing step we first applied nonlinear diffusion on each 2D frame as 
well as contrast enhancement and intensity normalization, to address increased level 
of noise.  In nonlinear diffusion we used a large number of diffusion iterations, great-
er than or equal to 50 because even if we increase the number of diffusion iterations 
the edges will still be preserved. 

The ground truth, consisting of manually annotated videos (segmentation) was ob-
tained from [11] along with a short description and links to the raw datasets. For seg-
mentation evaluation performance we used the ground truth image. The main purpose 
of the segmentation performance measurement is to evaluate how well the segmented 
cells match the cell regions of the ground truth image. 

We quantify the accuracy of the segmentation performance by computing the 
DICE coefficient. This is defined as: DICE coefficient 2 ( )| | | |   0,1     (9) 

where  is the set of all pixels that belong to cell regions in the ground truth image, 
 is the set of all binary regions delineated by our segmentation technique. The 

DICE coefficient measures the relative similarity between two binary images over 
their cardinalities. It is frequently used for image segmentation validation. The value 
one indicates perfect matching. 

3.3 Comparison of CV Method with Temporal Linking Method 

In this experiment we segmented the test sequences using CV method and our  
approach. To estimate the segmentation performance we computed DICE coefficients 
between each method and the reference manual segmentations. We computed means 
and the standard deviations of DICE scores over all frames for each sequence as  
displayed in Fig.2. Overall the accuracy in DICE scores derived from the linking 
method appears to be similar in value with that obtained from CV method. However, 
there is a clear difference in the values of the standard deviation. That is, the standard 
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deviations obtained from our temporal-linking method (0.006-0.1) are significantly 
smaller than those derived from the CV method (0.02-0.4), indicating better conver-
gence and stability. 

 

Fig. 2. Segmentation accuracy produced by the original CV algorithm (left) and the temporally 
linked level-sets (right) 

Better insight into the improvement from the temporal-linking method can be ob-
tained by looking at frame-by-frame segmentation and convergence. Consider the 
SIM5 dataset, for example. In Fig. 3 we show the results of energy minimization 
derived using the CV and temporal-linking methods. Because of the non-convexity of 
the energy functional (allowing therefore many local minima), the CV method 
reached on frame 8 a local minimum of energy where, however, the moving contour 
got trapped (Fig. 3 – left side). In contrast, the temporal-linking method led to a glob-
al minimum of the energy, yielding the actual cell regions (Fig.3 – right side).  Fig. 4 
provides better insight into the convergence of both methods.   This figure plots the 
DICE score for each frame.  In particular, notice the abrupt decrease of the DICE 
scores to values very close to zero on certain frames when using the CV method, 
whereas DICE scores produced by the temporal-linking method appear robust indicat-
ing improved robustness. 

 

              

Fig. 3. CV level-set without initialization converges to a local minimum for the frame number 8 
of the N2DL-SIM-05 sequence (left).Temporal linking improves segmentation accuracy (right)  
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Fig. 4. Comparison of the DICE coefficient of each frame (total frame=77) of the Fluo-N2DH 
SIM5 data using the traditional CV segmentation (top) and the temporal-linking method (bot-
tom). We note the greater DICE scores and faster convergence of the proposed method (see top 
of each figure). 

The previous observation can be explained in terms of energy minimization.  
Depending on several factors, the energy can sometimes converge to a local energy 
minimum without reaching the desired global energy minimum. The contour may 
sometimes stop its evolution before reaching the desired boundaries. In particular 
cases the splitting of the cells is not delineated correctly; this case is very often en-
countered in cell segmentation. In some cases, especially in MSC data, stretched cells 
can leave a trace which can be detected by single or few pixel objects which may be 
mis-delineated as a cell. Because our energy function is non-convex, allowing there-
fore many local minima, conventional CV initialization may lead to premature con-
vergence to a local minimum and segmentation errors. 

Another consideration in our comparisons was the number of iterations until con-
vergence. Fig. 5 shows the results of the segmentation of a sample frame from the 
N2DL-Hela 2 sequence. We observe a significant reduction in the number of itera-
tions (from 5000 to 173), because the initial level-set is very close to the actual  
regions to segment. However, the DICE score produced by the temporally linked 
level-set is lower than the one produced by the CV method. As indicated in Table 1, 
this dataset has a high level of difficulty due to the high density and especially the 
frequent mitoses, low resolution and low fluorescence intensity. In this case, the tem-
porally linked level-set converges significantly faster than CV. The local minimum is 
reached in a few iterations compared to the proposed technique that reaches a more 
accurate solution nonetheless.  
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Fig. 5. Sample results obtained by (a) CV method, (b) temporally linked level-set method on 
the same frame (number 16) of N2DL-Hela2 

Building upon the previous observation, we tested our hypothesis of faster conver-
gence on our complete set of sequences. We report the average number of iterations 
used to achieve segmentation of the cells for each dataset over all the frames in  
Table 3. This table demonstrates the major reduction of the computational time for 
minimizing the energy with the use of the temporal linking method that is equal to a 
factor of 10.2. This reduction is achieved by exploiting the previously computed lev-
el-set and using it to find an initial solution for the current frame. 

Table 3. The mean number of iterations required to achieve segmentation of each sequence by 
both methods: CV and Temporal Linking 

Dataset name Number of iterations CV Number of iterations Temporal linking 
N2DH-SIM1 
N2DH-SIM2 
N2DH-SIM3 
N2DH-SIM4 
N2DH-SIM5 
N2DH-SIM6 
C2DL-MSC1 
C2DL-MSC2 
N2DL-HeLa1 
N2DL-HeLa2 

N2DH-GOWT1 
N2DH-GOWT2 

  261 
1088 
  412 
 456 
 279 
 228 
 240 
 343 
1039 
4470 
 322 
2469 

106 
 88 
 96 
 43 
 97 
 72 
104 
224 
 67 
 82 
 64 
141 

Mean  998 98 

4 Conclusion 

We have introduced a level-set based cell segmentation method with temporal link-
ing. We validated our approach on datasets from the online Tracking Challenge [11].  
In contrast to standard CV method the proposed method converges faster with similar 
detection and localization accuracy. Further, temporal linking produces more robust 
results as it avoids trapping in undesirable local minima. However, parameter retuning 
may be required for sequences with significantly different quality levels, cell types, 
and image acquisition configurations. Future goals are the integration of motion track-
ing techniques, further validation, and extension to 3-D sequences. 



50 F. Boukari and S. Makrogiannis 

 

Acknowledgments. We acknowledge the support by the Center for Research and 
Education in Optical Sciences and Applications (CREOSA) of Delaware State Uni-
versity funded by NSF CREST-8763. 

References 

1. Eils, R., Athale, C.: Computational imaging in cell biology. J. Cell. Biol. 161(3), 477–481 
(2003) 

2. Stephens, D.J., Allan, V.J.: Light microscopy techniques for live cell imaging. 
Science 300(5616), 82–86 (2003) 

3. Meijering, E., Dzyubachyk, O., Smal, I.: Methods for cell and particle tracking. Methods 
Enzymo. 504, 183–200 (2012) 

4. Dzyubachyk, O., van Cappellen, W.A., Essers, J., Niessen, W.J., Meijering, E.H.W.:  
Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy. IEEE 
Trans. Med. Imaging 29(3), 852–867 (2010) 

5. Yang, X., Li, H., Zhou, X.: Nuclei Segmentation Using Marker-Controlled Watershed, 
Tracking Using Mean-Shift, and Kalman Filter in Time-Lapse Microscopy. IEEE Transac-
tions on Circuits and Systems I: Regular Papers 53(11), 2405–2414 (2006) 

6. Maška, M., et al.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 
30(11), 1609–1617 (2014) 

7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International  
Journal of Computer Vision 1(4), 321–331 (1988) 

8. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape Modeling with Front Propagation: A Lev-
el-set Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 
158–175 (1995) 

9. Cremers, D., Rousson, M., Deriche, R.: A Review of Statistical Approaches to Level-set 
Segmentation: Integrating Color, Texture, Motion and Shape. International Journal of 
Computer Vision 72(2), 195–215 (2006) 

10. Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Transactions on Image 
Processing 10(2), 266–277 (2001) 

11. Cell Tracking Challenge (2013), http://www.grand-challenge.org/ 
12. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE 

Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990) 
13. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and  

associated variational problems. Comm. on Pure and Applied Mathematics 42(5), 577–685 
(1989) 


	Spatio-temporal Level-Set Based Cell Segmentation in Time-Lapse Image Sequences
	1 Introduction
	2 Methods
	2.1 Preprocessing
	2.2 Active Contour without Edges Chan-Vese Model for Image Segmentation
	2.3 Temporally Linked Level-Set Segmentation
	2.4 Algorithm Outline

	3 Experiments and Discussion
	3.1 Datasets
	3.2 Image Quality and Segmentation Validation Measures
	3.3 Comparison of CV Method with Temporal Linking Method

	4 Conclusion
	References




