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Kálmán Palágyi
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Abstract. Curve-thinning is a frequently applied technique to obtain
centerlines from volumetric binary objects. Conventional curve-thinning
algorithms preserve endpoints to provide important geometric informa-
tion relative to the objects. An alternative strategy is also proposed that
accumulates isthmuses (i.e., generalization of curve interior points as ele-
ments of the centerlines). This paper presents a computationally efficient
sequential isthmus-based 3D curve-thinning algorithm.

1 Introduction

Thinning [3,6] is a layer-by-layer erosion: some border points that satisfy certain
topological and geometric constraints are deleted in iteration step. The entire
process is repeated until stability is reached. Thinning is a frequently used ap-
proach to obtain skeleton-like shape features. 3D skeleton-like shape features
(i.e., centerlines, medial surfaces, and topological kernels) play important role in
various applications in image processing and pattern recognition [14,15].

Curve-thinning algorithms are used to extract centerlines, surface-thinning al-
gorithms produce medial surfaces, while kernel-thinning algorithms are capable
of extracting topological kernels (i.e., minimal sets of points that are topologi-
cally equivalent [6] to the original objects). Medial surfaces are usually extracted
from general shapes, tubular structures can be represented by their centerlines,
and topological kernels are useful in topological description. Tubular structures
(e.g., arterial and venous systems, intrathoracic airways, and gastrointestinal
tract) are frequently found in living organisms. Centerlines as 1D structures
can serve as viewpoint trajectory for navigation purposes in virtual angioscopy,
bronchoscopy, or colonoscopy, and help us to generate formal structures for the
forthcoming analysis and measurements [9,16,17].

In an iteration step, sequential thinning algorithms traverse the border points
in a binary picture, and consider a single point for possible deletion, while paral-
lel algorithms can delete a set of border points simultaneously [3]. Conventional
3D curve-thinning algorithms preserve some curve-endpoints that provide rele-
vant geometrical information with respect to the shape of the object. Bertrand
and Couprie proposed an alternative approach by accumulating some curve in-
terior points that are called isthmuses [2]. These isthmuses were characterized
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first by Bertrand and Aktouf [1]. There are numerous endpoint-based 3D curve-
thinning algorithms, but only a few ones use the isthmus-based thinning scheme
[1,2,5,8,11,12]. Note that Kardos and Palágyi [5] proposed a sequential isthmus-
based 3D curve-thinning algorithm [5]. That algorithm is time consuming, since
in each iteration step begins a labeling phase, then the deletion rule is evaluated
in a labeled (non-binary) picture.

In this paper presents a computationally efficient 3D curve-thinning algo-
rithm. The new algorithm accumulates isthmuses in each thinning phase as
elements of the final centerline. It uses subiteration-based strategy: each iter-
ation step is composed of a number of subiterations where only border points
of a certain kind can be deleted in each subiteration [3,10]. The new algorithm
considers six subiterations associated with the six main directions in 3D. It is
illustrated that the proposed isthmus-based algorithm produces “more reliable”
results with fewer skeletal points than the existing endpoint-based 3D curve-
thinning algorithm proposed by Palágyi et al. [9].

2 Basic Notions

In this paper, we use the fundamental concepts of digital topology as reviewed
by Kong and Rosenfeld [6] and Palágyi et al. [10].

Let p be a point in the 3D digital space Z
3. Let us denote Nj(p) (for j =

6, 18, 26) the set of points that are j-adjacent to point p and let N∗
j (p) =

Nj(p)\{p}, see Fig. 1.
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Fig. 1. The considered adjacency relations on Z
3. The set N6(p) contains point p and

the six points marked U, D, N, E, S, and W. The set N18(p) contains N6(p) and the
twelve points marked “�”. The set N26(p) contains N18(p) and the eight points marked
“�”.

The sequence of distinct points 〈x0, x1, . . . , xn〉 is called a j-path (for j =
6, 18, 26) of length n from point x0 to point xn in a non-empty set of points
X if each point of the sequence is in X and xi is j-adjacent to xi−1 for each
i = 1, . . . , n. Note that a single point is a j-path of length 0. Two points are said
to be j-connected in the set X if there is a j-path in X between them. A set of
points X is j-connected in the set of points Y ⊇ X if any two points in X are
j-connected in Y .
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A 3D binary (26, 6) digital picture is a quadruple P = (Z3, 26, 6, B). Each
element of Z3 is said to be a point of P . Each point in B ⊆ Z

3 is called a black
point and a value of 1 is assigned to it. Each point in Z

3\B is said to be a
white point and has a value of 0. A picture (Z3, 26, 6, B) is called finite if set B
contains finitely many points. An object is a maximal 26-connected set of black
points, while a white component is a maximal 6-connected set of white points.

A black point is called a border point in a (26, 6) picture if it is 6-adjacent to
at least one white point. A border point is said to be a U-border point if the
point marked U in Fig. 1 is white. We can define D-, N-, E-, S-, and W-border
points in the same way. A black point is called an interior point if it is not a
border point.

A reduction transforms a binary picture only by changing some black points
to white ones (which is referred to as the deletion of black points). A reduction
is topology-preserving [6] if any object of the input picture contains exactly one
object of the output picture, and each white component of the output picture
contains exactly one white component of the input picture. There is an addi-
tional concept called tunnel (which doughnuts have) in 3D pictures [6]. Topology
preservation implies that eliminating or creating any tunnel is not allowed.

A black point is simple in a (26, 6) picture if and only if its deletion is a
topology-preserving reduction [6]. A useful characterization of simple points on
(26, 6) pictures is stated by Malandain and Bertrand [7] as follows:

Theorem 1. A black point p is simple in picture (Z3, 26, 6, B) if and only if all
of the following conditions hold:

1. The set N∗
26(p) ∩B contains exactly one 26–component.

2. The set N6(p) \B is not empty.

3. Any two points in N6(p) \B are 6–connected in the set N18(p) \B.

Based on Theorem 1, the simplicity of a point p can be decided by examining
the set N∗

26(p). We can state that simple points are border points by Condition
2 of Theorem 1.

Endpoint-based 3D curve-thinning algorithms preserve curve-endpoints. The
following characterization of curve-endpoints is generally considered:

Definition 1. A black point p in picture (Z3, 26, 6, B) is a curve-endpoint if the
set N∗

26(p) ∩ B contains exactly one point (i.e., p is 26-adjacent to exactly one
further black point).

Note that each curve-endpoint is simple.
Bertrand and Couprie proposed an alternative approach for curve-thinning

by accumulating some curve interior points that are called isthmuses [2]. Curve-
isthmuses were characterized first by Bertrand and Aktouf [1]:

Definition 2. A border point p in a picture (Z3, 26, 6, B) is an curve-isthmus
if the set N∗

26(p) ∩B contains more than one 26–component.
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Fig. 2. Sets N∗
26(p) in which the central point p is simple (a), curve-end (b), and curve-

isthmus (c). Note that each curve-endpoint is simple, and each curve-isthmus point is
not simple.

These curve-isthmuses are not simple points since Condition 1 of Theorem 1 is
violated. Note that the considered characterization of curve-isthmuses depends
on the set N∗

26(p) for a point p in question.
Figure 2 presents examples of simple, curve-end, and curve-isthmus points.

3 An Isthmus-Based 3D Curve-Thinning Algorithm

In this section the new isthmus-based 3D sequential 6-subiteration curve-thinning
algorithm is presented, and its efficient implementation is outlined. The scheme
of the proposed algorithm I-3D-C-T is sketched in Algorithm 1.

The kernel of the repeat cycle corresponds to one iteration step of the thin-
ning process. Each iteration step is decomposed into six successive subiterations
according to the six main directions in 3D, and each subiteration consists of
two phases. At first the border points of the actual type that are simple points
are marked as potential deletable points, and the new curve-isthmus points are
added to the previously detected isthmuses. During the second phase, a marked
point is deleted if it remains simple after the deletion of some previously visited
marked points.

Since the sequential algorithm I-3D-C-T may delete just one simple point at
a time, it is topology preserving for (26, 6) pictures [6].

One may think that the proposed algorithm is time-consuming and it is rather
difficult to implement it. That is why Algorithm 2 outlines the efficient implemen-
tation of algorithm I-3D-C-T. Note that similar implementation was proposed
by Palágyi et al. [10] for parallel thinning algorithms.

The input of Algorithm 2 is array A which stores the (26, 6) picture to be
thinned. In input array A, the value “1” corresponds to black points and the
value “0” is assigned to white ones. According to the proposed scheme, the
input and the output pictures can be stored in the same array, hence array A
will contain the produced centerline.

Algorithm 2 uses two lists to speed up the process: border list stores the border
points in the current picture (hence the repeated scans of the entire array A are
avoided); potentially deletable list is to collect all potentially deletable points
in the current subiteration. (Note that potentially deletable list is a sublist of



410 K. Palágyi

Algorithm 1. Algorithm I-3D-C-T

Input: picture (Z3, 26, 6, X)
Output: picture (Z3, 26, 6, Y )
Y = X
I = ∅ // Initialize the set of isthmuses

repeat
// One iteration step

foreach direction d ∈ {U,N,E,S,W,D} do
// Subiteration according to the deletion direction d
// Phase 1

Z = ∅ // Initialize the set of potential deletable points

foreach point p ∈ Y \ I do
if point p is d-border and simple in (Z3, 26, 6, Y ) then

Z = Z ∪ {p} // Candidate found

if point p is curve-isthmus in (Z3, 26, 6, Y ) then
I = I ∪ {p} // Isthmus found

// Phase 2

foreach point p ∈ Z do
if point p is simple (Z3, 26, 6, Y ) then

Y = Y \ {p} // Deletion

until no changes occur;

border list.) In order to avoid storing more than one copy of a border point in
border list, array A represents a four-colour picture:

– a value of “0” corresponds to white points,
– a value of “1” is assigned to (black) interior points,
– a value of “2” corresponds to (black) border points in the actual picture (i.e.,

elements of border list), and
– a value of “3” is assigned to the detected and accumulated curve-isthmus

points.

First, the original picture is scanned and all the border points are inserted
into the list border list. Then the thinning process itself is performed. The num-
ber of deleted points withing an iteration step is stored in the variable num-
ber of deleted points. If a point p is deleted, then border list is updated since all
interior points that are 6-adjacent to p become border points. The algorithm
terminates when stability is reached (i.e., number of deleted points= 0). Then
all points having a nonzero value belong to the produced centerline.

We can use two pre–calculated look-up-tables to encode simple and curve-
isthmus points. Simple points in (26, 6) pictures and the considered curve-isthmus
points (see Definition 2) can be locally characterized; both properties for a point
p can be decided by examining the set N∗

26(p) that contains 26 points. Hence
each pre-calculated look-up-table has 226 entries of 1 bit in size. It is not hard
to see that both look-up-tables require just 8–8 megabytes of storage space in
memory.



A Sequential 3D Curve-Thinning Algorithm Based on Isthmuses 411

Algorithm 2. Efficient Implementation of Algorithm I-3D-C-T

Input: array A storing the 3D binary picture to be thinned
Output: array A containing the picture with the produced centerline
// Collect border points by a single scan of array A
border list = < empty list >
foreach element p = (x, y, z) in array A do

if p is a border point then
border list = border list + < p >
A[x, y, z] = 2

// Thinning process

repeat
// One iteration step

number of deleted points = 0
foreach direction d ∈ {U,N,E,S,W,D} do

// Subiteration according to the deletion direction d
// Phase 1

potentially deletable list = < empty list >
foreach point p = (x, y, z) in border list do

if point p is d-border and simple then
// Candidate found

potentially deletable list = potentially deletable list + < p >

if point p is curve-isthmus in (Z3, 26, 6, Y ) then
// Isthmus found

A[x, y, z] = 3
border list = border list − < p >

// Phase 2

foreach point p = (x, y, z) in potentially deletable list do
if point p is simple then

// Deletion

A[x, y, z] = 0
border list = border list − < p >
number of deleted points = number of deleted points +1
// Update border list
foreach point q = (x′, y′, z′) that is 6-adjacent to p do

if A[x′, y′, z′] = 1 then
A[x′, y′, z′] = 2
border list = border list + < q >

until number of deleted points = 0;

Thanks to the use of lists and look-up-tables, the proposed implementation of
algorithm I-3D-C-T is is very efficient computationally: it is capable of produc-
ing centerlines from large 3D pictures containing 1 000 000 object points within
half a second on a standard PC.
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4 Results

In experiments the existing endpoint-based algorithm E-3D-C-T proposed by
Palágyi et al. [9] and the new isthmus-based algorithm I-3D-C-T were tested

E-3D-C-T (4 960) I-3D-C-T (4 622)

Fig. 3. Centerlines produced by the existing endpoint-preserving curve-thinning algo-
rithm and the proposed isthmus-based curve-thinning algorithm superimposed on a
512 × 512 × 591 image of a segmented human airway tree containing 385 423 object
points

E-3D-C-T (1 021) I-3D-C-T (781)

Fig. 4. Centerlines produced by the existing endpoint-preserving curve-thinning algo-
rithm and the proposed isthmus-based curve-thinning algorithm superimposed on a
174× 103× 300 image of a hand containing 865 941 object points
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E-3D-C-T (954)

I-3D-C-T (715)

Fig. 5. Centerlines produced by the existing endpoint-preserving curve-thinning algo-
rithm and the proposed isthmus-based curve-thinning algorithm superimposed on a
348× 130× 215 image of a dolphin containing 1 202 772 object points
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on various synthetic and natural objects. Note that we cannot compare the new
algorithm I-3D-C-T with the sequential 3D thinning algorithm proposed by [4],
since that is a surface-thinning algorithm (i.e., it cannot produce centerlines).
Due to the lack of space, here we can present just three illustrative examples,
see Figs. 3-5. The numbers in parentheses are the counts of object points in the
produced centerlines.

Thanks to the isthmus-based approach, the proposed algorithm I-3D-C-T
can produce less unwanted side branches than the conventional endpoint-based
algorithm E-3D-C-T do. Note that each skeletonization technique (including
thinning) is rather sensitive to coarse object boundaries. The false segments
included by the produced centerlines can be removed by a pruning process (i.e.,
a post-processing step) [13].

5 Conclusions

In this paper we present a new sequential isthmus-based 3D curve-thinning algo-
rithm named I-3D-C-T. It is guaranteed that the proposed algorithm preserves
topology for all possible pictures. Due to the described implementation scheme
(which uses a list to store the border points in the actual picture and two look-
up-tables to encode simple points and curve-isthmuses) the new algorithm is
computationally efficient. It is demonstrated that the isthmus-based algorithm
I-3D-C-T can produce less unwanted side branches than the conventional ex-
isting endpoint-based algorithm E-3D-C-T proposed by Palágyi et al. [9] do.
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8. Németh, G., Palágyi, K.: 3D parallel thinning algorithms based on isthmuses. In:
Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemč́ık, P. (eds.) ACIVS
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