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Abstract. In this work, we propose a novel fully automated method
to solve the 3D multimodal non-rigid image registration problem. The
proposed strategy overcomes the monomodal intensity restriction of
fluid-like registration (FLR) models, such as Demons-based registration
algorithms, by applying a mapping that relies on an intensity uncer-
tainty quantification in a local neighbourhood, bringing the target and
source images into a common domain where they are comparable, no
matter their image modalities or mismatched intensities between them.
The proposed methodology was tested with T1, T2 and PD weighted
brain magnetic resonance (MR) images with synthetic deformations, and
CT-MR brain images from a radiotherapy clinical case. The performance
of the proposed approach was evaluated quantitatively by standard in-
dices that assess the correct alignment of anatomical structures of in-
terest. The results obtained in this work show that the addition of the
local uncertainty mapping properly resolve the monomodal restriction of
FLR algorithms when same anatomic counterparts exists in the images
to register, and suggest that the proposed strategy can be an option to
achieve multimodal 3D registrations.

1 Introduction

Image registration (IR) is the process of determining the spatial correspondence
between objects in two or more images by finding a geometrical transformation
that aligns a source image with a target one [1]. This process could be divided
into two main streams: rigid registration (RR), and non-rigid registration (NRR)
methods [2]. Rigid registration is a well-posed problem [1, 2], which is based on
a global transformation that preserve the distance between all points in the im-
age, and is described by a small set of parameters (shifts, scales and rotations).
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On the other hand, NRR is a more complex and involved problem, because the
geometrical transformation may differ for each voxel in the image [3]. In med-
ical imaging, IR is an important task due to its variety of clinical applications
[4], such as the integration of multimodal information acquired with different
scanners and at different times, or the optimization of an adaptive radiotherapy
planning by assessing organ deformation induced by the radiotherapy treatment
[5], among others. In this context, RR is mainly used to correct small misalign-
ments in medical imaging. Meanwhile, NRR methods are used under complex
deformations such as anatomical motions or morphological changes.

Due the relevance of the NRR applications, a great number of approaches to
solve this problem have been reported in the literature [1–5], which could be clas-
sified depending on the alignment philosophy: based on geometrical features, or
pixel/voxel property-basedmethods. In the first category, corresponding landmarks
or surfaces are used to find the existing deformation between the studied images
[6]. These techniques have the advantage of being more locally accurate, but the
accuracy of these IR methods strictly depends on the user’s ability to set corre-
sponding landmarks/surfaces in the images to be registered; where this ad hoc
procedure is a challenging task in multimodal or noisy images. On the other hand,
pixel/voxel property-basedmethods use only voxels information to optimize a sim-
ilarity metric [7] (mutual information, cross correlation, etc.), in order to recover
the spatial transformation usually adopting a free-form structure as the deforma-
tion model [8]. Fluid-like registration (FLR) algorithms, such as optical flow (OF)
and Demons-based [9, 10], are also well-known techniques belonging to the cate-
gory of pixel/voxel property-based approaches, where the key idea is to consider
that the intensity differences between the analyzed images can be described by
the motion of voxels among them, making possible to find a displacement field by
matching the intensity gradients between both images. In a clinical context, FLR
methods, in particular Demons-based algorithms, are extensively used due to its
ability of providing both good accuracy and performance [11], being more efficient
in terms of computation time with respect to the free-form models. Nonetheless,
an important restriction of these approaches is the hypothesis of intensity consis-
tency between the analyzed images, restricting the algorithm to monomodal cases
or images with matched intensities. Under this context, this work pursues to over-
come the intensity dependence of Demons-based approaches by applying a map-
ping based on the intensity uncertainty of neighborhood voxels, which transforms
the registering images to a common domain where the images can be compared.

The paper is organized as follows: in section 2, the theoretical bases and meth-
ods used in this work are presented; in subsection 2.1, the local intensity mapping
is detailed, and in subsection 2.2 the proposed multimodal NRR algorithm is es-
tablished. In section 3, the experiments performed to evaluate the algorithm
are described and the obtained results are discussed. Finally, in section 4 the
main conclusions of this work are outlined and the future work to improve the
proposed methodology is established.
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Fig. 1. Flowchart of the proposed multimodal non-rigid registration algorithm based
on LUQ mapping

2 Methodology

The NRR can be formulated as an optimization problem that aims to find the
spatial transformation model Φ : R

3 �→ R
3 over each voxel of a source im-

age IS(·), so that it is aligned with a target one IT (·). We can represent the
spatial transformations as a displacements vector field d(·), which is added to
the identity to get the non-parametric transformation Φ(r) = r + d(r), where
r = (x, y, z)� denotes a position within the volume lattice Ω ⊂ R

3. Under this
assumption and considering that the intensities between the registered images
have homogeneous variations, the NRR can be formulated from the fallowing
observation model

IT (r) = (IS ◦ Φ)r+ η(r), (1)

where η(r) represents random samples of independent and identically distributed
(i.i.d.) Gaussian noise, with zero mean and variance σ2

η > 0. A similarity metric
SM(·, ·) is next considered between both images according to the observation
model in eq. (1), for example the mean-squared error which forms the basis of
intensity-based registration:

SM(IT , IS ◦ Φ) = 1

2

∑

r∈Ω

‖IT (r) − IS (r+ d(r))‖2 , (2)

where ‖ · ‖ denotes the Euclidean norm. A simple optimization process of eq. (2)
over the space of non-parametric transformations Φ leads to an ill-posed problem
with unstable and non-smooth solutions. To avoid this problem, and possibly to
add some a priori knowledge, a regularization term Reg(·) is often added to the
similarity metric in eq. (2) in order to obtain a well-posed global energy function
with a scaling by the variance of the noise term 1

σ2
η
:

Ψ(d) =
1

σ2
η

SM(IT , IS ◦ Φ) + 1

λ
Reg(d), (3)

where λ > 0 denotes the regularization weight in the approximation problem.
Thus, the cost function in eq. (3) is the basis of FLR methods.
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According to eq. (3), the NRR problem can be formulated as the estimation
of the OF between the images (IT , IS) [9]. The OF is a well-posed problem
and many techniques have been proposed in the literature to estimate it [12].
For comparison purposes during the evaluation section, the method employed in
this work to estimate the OF is based on a linearization of the SM in eq. (2) by
conducting a first order Taylor approximation, and a regularization term with
the structure of a quadratic potential based on a probabilistic approach in the
form of a prior random Markov field [13]. On the other hand, Thirion developed
a very efficient solution scheme for the optimization of eq. (3), based on adapting
Maxwell’s demons to a diffusion-based method [14]. The idea of Demons-based
NRR considers IS as a deformable grid, which is diffused through the contours
of the objects in IT by the action of effectors, called Demons. Both OF and
Demons techniques are considered to be very accurate methods to address NRR
medical imaging. However, in the process to find very complex deformations,
these approaches (OF and Demons) may find displacement fields that could
lead to physically impossible deformations or foldings in the structures of inter-
est, since these methods do not limit in this sense, the resulting transformations.
Then, the Demons-based algorithm was updated to limit the search to diffeomor-
phic transformations by Vercauteren et al., proposing the Diffeomorphic Demons
registration (DiffDem) [10].

2.1 Local Uncertainty Quantification

As mentioned in the introduction, FLR methods are limited to register images
with matched intensities. Therefore, for the case of multimodal images or images
with intensity variations, we propose to apply an initial mapping to the studied
images (IS , IT ) in order to overcome the intensity dependence by using a measure
that describes the intensity uncertainty around each voxel [15]. This mapping
has to transform both images into a common domain, where each voxel in one
image could be compared with its counterpart in the other one, despite their
mismatched intensities.

Suppose that a voxel r ∈ Ω in an scene is described by the intensity uncertainty
around it, and not by its own intensity value, then the following mapping could
be defined:

I(r) = F (Im(r), n) , (4)

where m indicates the image modality (MRI, CT, etc.), and n is the neighbour-
hood radius centred at each voxel r. To define the local uncertainty quantification
mapping (LUQ) F (·, ·), only metrics that do not depend on the intensity level
of the voxels, but on their intensity uncertainty around its neighbours elements
should be used, and a measure that meets this description is the entropy by
quantifying it inside a neighbourhood of the voxel of interest. Thus, the LUQ is
defined as follows,

F (Im(r), n) = −
∑

u∈Wn
r

pr (I
m(u)) · log [pr (Im(u))] , (5)
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Fig. 2. Example of (a) Transversal, (b) sagittal and (c) coronal planes of white-matter
matter overlapping in RGB colormap (in the green channel the target volume and in
the red channel the source volume) before registration. (d) Transversal, (e) sagittal and
(f) coronal plane of white-matter overlapping in RGB colormap (in the green channel
the target volume and in the red channel the source volume), after registration with
DiffDem+LUQ method. The yellow color indicates the overlapped zones.

where Wn
r represents the set of voxels centred at r and with radius n, i.e.

Wn
r = {r̂ ∈ Ω | ‖r̂− r‖ ≤ n}, (6)

and pr(·) is the local probability distribution of the image intensities within Wn
r .

In this way, if the same object is appearing in two images (taken from the same
scene), and if images do not distort or modify the shape of the observed element,
the evaluation of LUQ in eq. (5) will be the same, regardless the intensities that
describe the object into the image. Namely, eq. (1) can be satisfied for Im1

T and
Im2

S with m1 	= m2, (different images sequences or modalities), if these analyzed
images are mapped through eq. (5).

2.2 Proposed Algorithm

Given a source image Im2

S to be registered with a target one Im1

T with intensities
mismatched between them (m1 	= m2), and a radius n to quantify the local
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Fig. 3. Box plots of (a) ASD, (b) DMax, (c) DICE and (d) % of Distances > 1 mm
for the 36 analyzed structures, before registration and after registration with Demons,
DiffDem and OF with HM and LUQ transformations.

uncertainty, the proposed methodology for multimodal NRR can be seen as a
flowchart in Fig. 1 and described as follows:

1. Obtain the images IT and IS from Im1

T and Im2

S , through of LUQ according
to equation (5): IT (r) = F (Im1

T (r), n) and IS(r) = F (Im2

S (r), n).
2. Apply an histogram matching [16] between IT and IS , in order to standardize

their scales.
3. Find the non-parametric transformation Φ (displacements vector field d(·))

between IT and IS using one of the FLR techniques (OF, Demons or Diff-
Dem) [10, 13].

4. Apply the non-parametric transformation Φ to Im2

S , to finally deduce the
elastic registered image as Im2

R = Im2

S ◦ Φ, such that the spatial correspon-
dence between Im1

T and Im2

R is optimal.

It is important to note that the registration accuracy will depend on the
selection of the radius n, whose optimal value may vary according to the type of
the studied images, noise and voxel position r into the images (i.e. representing
tissues, bone, etc.). The problem to estimate the optimal value of n according
to the characteristics of the images will be addressed in future work, but in
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(a) (b)

Fig. 4. (a) Transversal slice of the CT image before medical treatment. (b) Transversal
slice of the MRI after medical treatment.

Table 1. DICE, ASD, DMax and % of Distances > 0.8 mm for the cancerous tumour
before CT-MRI registration, and after CT-MRI registration using Demons, DiffDem
and OF with HM and LUQ transformations

Indice
Algorithm

Before Dem+HM Dem+LUQ DiffDem+HM DiffDem+LUQ OF+HM OF+LUQ

DICE 0.817 0.656 0.861 0.694 0.858 0.210 0.789

ASD (mm) 1.274 2.957 1.116 2.692 1.143 6.447 1.850

DMAx (mm) 8.526 9.945 8.526 9.234 8.526 48.773 9.000

% Distances > 0.8 mm 43.373 78.659 35.709 77.058 36.734 91.687 59.820

this paper, the radius was established empirically by a trial-and-error method
with a value of n = 2. The FLR methods used in this work were implemented
by using the libraries provided by the Insight Segmentation and Registration
Toolkit (ITK) for medical image processing.

3 Experiments and Results

In order to evaluate the performance of the proposed registration strategy into
a controlled scenario, multiparametric 3D MRIs (T1, T2 and PD weighted im-
ages) from a simulated brain database provided by Brain Web [17] were used.
Multiparametric MRIs provide a proper dataset to test the addition of the LUQ
step to FLR methods due to the presence of anatomic correspondence with mis-
matched intensities. The analyzed 3D images have a voxel size of 1.0× 1.0× 1.0
mm. Four controlled elastic deformations were generated by applying transfor-
mation vector fields obtained from thin-plate splines, and these mappings were
used as Ground Truths (gt), leading to a total of 12 sets of images to be registered
(T1gt-T2, T1gt-PD and T2gt-PD).

Then, a comparison between three FLR methods with LUQ (OF+LUQ,
Demons+LUQ and DiffDem+LUQ), and three FLR strategies with an histogram
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matching (OF+HM, Demons+HM and DiffDem+HM) were carried out. To eval-
uate the performance of each registration strategy, three segmented structures
of the brain were employed (brain-spinal fluid, white-matter and gray-matter)
to compute standard indices usually adopted for registration accuracy assess-
ment: the DICE similarity coefficient, the average symmetric distance (ASD),
the maximum symmetric distance (DMax), and the % of distances greater than
the voxel dimension (1 mm) [18]. These indices were calculated before and after
the registration process, given a total of 36 anatomical structures evaluated for
each performance index. An example of the registration results for the white-
matter structure by using the DiffDem+LUQ approach is shown in Fig. 2. Here
we can observe the overlapping structures in RGB colormap in the transversal,
sagittal and coronal planes, before and after the registration, where it is evident
the recovery of the misalignment, especially in the inner zones of the brain.

Figure 3 shows the box-plots of the performance indices studied in this work
for the 36 analyzed structures. In all four indices (DICE, ASD, DMax and %
of distances greater than 1 mm), the Demons-based approaches with the LUQ
initial transformation (Dem+LUQ and DiffDem+LUQ) had the best perfor-
mance for this experiment. It is important to mention that the best results were
achieved by the DiffDem approach. For the DICE index, DiffDem+LUQ pre-
sented a median value above 0.90, in comparison with a median of 0.82 before
registration. For DMax, ASD and % of distances greater than 1 mm, the median
values obtained with DiffDem+LUQ were 6.2 mm, 0.6 mm and 11.6% respec-
tively, compared to 12.1 mm, 1.2 mm and 37.9% before registration. In addition,
Fig. 3 shows that the addition of only a histogram matching step to the FLR
methods for a registration process with multiparametric MRIs is not a viable
option, since some performances indices did not improve after the registration,
such as Demons+HM and DiffDem+HM for the ASD and % of distances greater
than 1 mm indices, and OF+HM in DICE and % of distances greater than 1
mm.

We also carried out a second experiment to evaluate the proposed methodol-
ogy with real clinical data, where a CT volume (see Fig. 4.(a)) was registered
with a 3D MR image (see Fig. 4.(b)) of the brain. Both volumetric images were
taken from a patient before (CT image) and after (MRI) undergoing a radiother-
apy treatment for brain tumour. In this case, the clinical purpose is to recover
the tumour deformation after radiotherapy, in order to obtain more information
about the evolution of the medical treatment, which according of our proposed
registration method this task could be possible because we expect to have same
anatomic counterparts (the tumour) in the images to register. The tumour was
segmented by an expert observer, and then DICE, ASD, DMax and % of dis-
tances greater than 0.8 mm (since for the volumes used in this experiment the
resolution is 0.89 × 0.89 × 3.0 mm for voxel) were computed before and after
registration by using the same algorithms described in the previous experiment
(Demons, DiffDem and OF with LUQ or HM). Our results are shown in Table 1,
where the best performance was obtained again by DiffDem+LUQ with DICE,
ASD and % of distances greater than 0.8 mm with values of 0.86, 1.14 mm and
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36.73% respectively, compared to 0.82, 1.27 mm and 43.37% before the registra-
tion process. It is important to note that the tumour is a small structure, and for
this reason is expected to achieve a lower improvement in the indices. Moreover,
the results obtained for this clinical case show again that the addition of the
HM step to FLR methods is not enough to achieve an accurate registration of
multimodal images, as we expected.

4 Conclusions and Future Work

In this work, we proposed the use of local intensity uncertainty quantification in
order to overcome the intensity conservation constraint of FLR algorithms. This
novel fully automatic registration strategy was evaluated by using both synthetic
(3D multiparametric MR brain images), and real (CT-MR brain images from a
clinical case) deformations. Our results show that the addition of LUQ to the
FLR methods improved considerably the performance of the NRR process in
comparison to the common histogram matching step in multiparametric images,
being the Diffeomorphic Demons approach with LUQ the best methodology. Our
findings suggest that the proposed approach could be considered as a good option
for the NRR of images with mismatched intensities but with the constraint of
having the same anatomic counterparts in both images. In addition, the results
suggest that the DiffDem+LUQ algorithm could work properly for multimodal
cases. As future work, the proposed approach will be compared against the state
of the art multimodal 3D registration algorithms to further validate its use in
medical imaging.
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