
Industrial Challenges of Scaling Agile
in Mass-Produced Embedded Systems

Ulrik Eklund1, Helena Holmström Olsson1, and Niels Jørgen Strøm2

1 Dept. Computer Science, School of Technology, Malmö University
SE-205 06 Malmö, Sweden

{ulrik.eklund,helena.holmstrom.olsson}@mah.se
2 Grundfos A/S

DK-8850 Bjerringbro, Denmark
njstroem@grundfos.com

Abstract When individual teams in mechatronic organizations attempt
to adopt agile software practices, these practices tend to only affect mod-
ules or sub-systems. The short iterations on team level do not lead to
short lead-times in launching new or updated products since the overall
R&D approach on an organization level is still governed by an overall
stage gate or single cycle V-model.

This paper identifies challenges for future research on how to combine
the predictability and planning desired of mechanical manufacturing with
the dynamic capabilities of modern agile software development. Scaling
agile in this context requires an expansion in two dimensions: First, scal-
ing the number of involved teams. Second, traversing necessary systems
engineering activities in each sprint due to the co-dependency of software
and hardware development.

Keywords: software engineering, agile development, agile methods,
large-scale agile software development, project management, embedded
systems, embedded software, software and hardware co-dependency.

1 Introduction

The embedded systems industry is currently in significant transition, i.e. markets
becoming more fast-changing and unpredictable, customer requirements becom-
ing increasingly complex, rapidly advancing technologies and the constant need
to shorten time-to-market of new products. Moreover, while the ability to man-
ufacture high-quality mechanical systems is still critical, it is no longer the only
differentiator and what makes a company competitive. During the last two dec-
ades, electronics and software have been introduced into many products, and
embedded systems companies are becoming increasingly software-intensive with
software being the key differentiator [1]. This requires a significant shift in the
ways-of-working within these companies, and currently many large companies
within the embedded systems domain struggle with the alignment of hardware
and software development cycles and practices [1].

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 30–42, 2014.
c© Springer International Publishing Switzerland 2014

Scaling Agile in Embedded Systems 31

In response to this, agile methods advocating flexibility, efficiency and speed
are seen as an increasingly attractive solution [2], and highly relevant also in
the embedded Systems domain [3]. Typically, agile methods emphasize the use
of short iterations and incremental development of small features, with the in-
tention to increases the ability for companies to accommodate fast changing
customer requirements as well as turbulent and fluctuating market needs [2,4].

However, when agile practices are introduced for software teams in a mechat-
ronics environment without careful consideration it just results in different devel-
opment cycle-times for hardware, and even more so in mechanics, compared to
software development, with the longest cycle determining the lead-time for the
complete product. For production equipment depending on the product design
it becomes even worse, because investments and lead-times for the manufactur-
ing setup are even more difficult to do with short iterations. This is the main
difference between scaling agile in domains where only software teams are con-
cerned, and in embedded domains also concerned with mechanical design and
manufacturing.

This position paper presents a set of research challenges relevant when agile
practices are scaled beyond a single team in organisations developing and deliv-
ering mass-produced embedded systems and into combining mechanical, hard-
ware and software disciplines in the agile practices. The challenges are based
on concerns of member companies in a Nordic research partnership with eight
international industry companies and three universities.

2 Empirical Data

The main empirical data source for the challenges identified in this paper was a
workshop conducted within a Nordic software research partnership1 in Novem-
ber 2013, where seven companies presented their most important research chal-
lenges within software engineering. Three of the companies mentioned a set of
challenges with agile development in large organisations as a top priority for
future research within the partnership. The challenges presented in this paper
are a synthesis of these presented challenges, elucidated by examples from two
of the companies; Grundfos and Volvo Cars.

Grundfos is the world’s largest manufacturer of circulator pumps, many con-
trolled by embedded software. The examples provided for this paper from Grund-
fos serves to highlight the challenges all companies experienced in combining
agile and waterfall development in a mechatronics environment; where there are
different development cycle-times for hardware, and even more so in mechan-
ics, compared to software. For production equipment depending on the product
design it becomes even worse because investments and lead-times for the man-
ufacturing setup are even more difficult to do with short iterations.

The synthesized challenges were also corroborated by data from three in-depth
case studies on agile development at Volvo Cars, another of the partnership
companies; the cases being published in e.g. [5].
1 http://www.software-center.se

http://www.software-center.se

32 U. Eklund, H. Holmström Olsson, and N.J. Strøm

3 Background

3.1 Software in Embedded Products

Software is prevalent in many products manufactured today; cars, washing ma-
chines, mobile phones, airplanes, satellites and industrial devices, e.g. pumps [6].
The embedded software controls the behaviour of the product and is most often
critical for the success of the product. Typically these products are developed
in large, and sometimes very complex, industrial projects with a more or less
elaborate R&D process governed by a stage gate model to arrive at the finished
design of the product. Even though many companies are in a transition towards
delivering services deployed on already delivered hardware and mechanics, they
still heavily rely on the financial transaction taking place when the physical
product goes from the company to the customer.

The software in an embedded system increases in size exponentially over
time [6], and software is increasingly so being a crucial element and one of
the most important drivers for innovations, e.g. in the car industry [7] and the
pump industry. But the manufacturing and delivery setup of a new car or pump
model is presently still a heavier investment than the software budget. A product
example from Grundfos shows that the software budget for a new pump was
between 5 and 10% of the total project investments.

The most common approach to develop embedded software, according to a
mapping study [8], is to use an integration-centric approach, summarized as:
Early in the development cycle requirements are allocated to software and hard-
ware components. This is usual done by a central systems engineering team or
architect. A number of development teams then implement the requirements al-
located to their component. All of the teams are usually synchronized according
to a common project model. After the finalization of the components the integ-
ration phase starts where all components are integrated to form the complete
systems and system level testing takes place, where most integration problems
are found and resolved [9]. This cycle may repeat 1-5 times, and it is com-
mon that the integration points in time are scheduled according to a stage-gate
model [10]. An integration cycle is typically six months or more, meaning that
a development project can have a lead-time of multiple years.

Example from the Pump Domain. Grundfos typically defines 4 to 6 review
series of a PCB design to ensure quality before launching a new product. This
approach is agile on the team level, and every cycle takes between 4 and 8 weeks
dependent on complexity and where in the process the cycle takes place.

At the system integration level (integrating the product with other related
products in a system) an example from Grundfos of a complex system showed
a total integration and test phase of 9 months with additional bug fix cycles
afterwards - giving a single integration and test phase of approximately a year.
This leads to a lead-time before production could start measured in years, rather
than months.

Scaling Agile in Embedded Systems 33

3.2 Mechanical and Hardware Development

The typical culture of company with a heavy tradition of mechanical engineering
is to focus on predictability and doing so by trying to foresee activities many
months ahead because of the constraints linked to mechanical manufacturing.
Traditionally mechatronics manufacturing companies freeze the design at a cer-
tain point in a stage-gate model and after that the mechanical design does not
change, instead focus it’s activities on optimizing the manufacturing, sales and
delivery processes. The purpose of the stage gate model is, at certain stages, to
ensure the feasibility of releasing large investments, not only for development
but in particular for manufacturing. Developing a mechanical part for a product
often includes developing and investing in very expensive manufacturing tools
with long lead times, expanding the development cycle for mechanics to up to
12 months or more. If the company is already established in a mature domain,
e.g. the car industry, these type of activities are highly optimized, with much
know-how of the company directed to running such projects.

Software may be strongly dependent on mechanical structures because of soft-
ware modelling etc. and since there is a very weak link between software and
mechanics cycle times (typically weeks vs. many months) the final verification
of the software/mechanics interface cannot take place until much later, even if
models, simulations and fast prototyping such as e.g. 3D printing is utilized.
Sometimes this late verification can lead to less optimal solutions where issues
are solved in software even though they would have been better solved in mech-
anics, had it been possible to use an agile approach.

3.3 Agile Software Development

For more than a decade, agile development methods have gained much popular-
ity and become widely recognized within the field of software engineering. The
methods promise shorter time-to-market, as well as higher flexibility to acco-
modate changes in requirments and thereby, increase companies’ ability to react
and respond to evolving customer and market needs [4,11,12]. While there are a
number of different agile methods, they typically emphasize close customer col-
laboration, iterative development and small cross-functional development teams.
Also, team autonomy and end-to-end responsibility are reported as important
characteristics permeating the methods [13]. As recognized by Kettunen and
Laanti [14], the concept of agile is multi-dimensional, and there are many reas-
ons for companies to adopt agile ways-of-working. Typically, most companies
introduce agile methods to increase the frequency in which they release new
features and new products, and as a way to improve their software engineering
efficiency. According to Dingsøyr et al. [15] agility embraces lean processes with
an emphasis on realizing effective outcomes, and common for agile methods is
that they entail the ability to rapidly and flexibly create and respond to change
in the business and technical domains [15].

Today, there exist a number of different agile methods, with Extreme pro-
gramming (XP) and Scrum being the two most common ones. XP focuses on

34 U. Eklund, H. Holmström Olsson, and N.J. Strøm

the programming practice itself and prescribes a set of practices for developers,
e.g. pair programming and continuous unit testing. In addition, it includes prac-
tices such as user stories and iterative planning as a support for management in
their requirements prioritization processes [16]. Scrum, on the other hand, fo-
cuses more on the process for the development team, i.e. how to prioritize, track
and optimize team performance, and how to continuously evaluate and follow-up
with the customer what is being implemented [17]. Although different in focus,
both these methods emphasize the importance of working in short sprints, to
constantly reprioritize what is being developed, and to test and validate new
software functionality in rapid cycles.

Originally, agile methods evolved to meet the needs of small and co-located
development teams [14]. Currently, and due to many successful accounts [18,19]
agile methods have become attractive to a broad variety of companies, includ-
ing companies involved in large-scale development of embedded systems, and
there are attempts such as Industrial XP and Scrum of Scrums aiming at scal-
ing agile methods [20]. However, with characteristics such as hardware-software
interdependencies, heavy compliance to standards and regulations, and limited
flexibility due to real-time functionality [21], development of embedded systems
challenges the traditional concept of agile practices.

3.4 Agile Development of Embedded Software

Currently, companies producing embedded systems are in the process of de-
ploying agile methods, and several attempts to scale agile methods to include
development of mass-produced systems can be identified [22,20,23].

Some organizations developing mass-produced system have successfully intro-
duced agile development on the team level where individual teams are allowed
to define their own ways of working to facilitate speed, short iterations and de-
livery quality when developing their components. The experiences of doing this
are generally positive according to two literature studies by [3] and [24].

However, the applicability of agile methods is not without challenges in large-
scale development of software intended for mass-produced systems [25]. Com-
panies also often discover misalignments between the agile methods and their
already established ways-of-working when attempting to adopt agile practices in
a large-scale setting [26]. One reason is that many large-scale development com-
panies practice agile in a way that is not consistent with the original agile ideas,
and that the translation of the original ideas to a context of mass-production is
difficult.

Ronkainen and Abrahamsson [27] identified four main characteristics that
would affect adoption of agile methods under strict hardware constraints, typical
of most embedded systems:

– Meeting hard real-time requirements, e.g. performance
– Experimenting is part of the systems development, many technological con-

straints are difficult to ascertain until actual hardware and mechanics is
available.

Scaling Agile in Embedded Systems 35

– High-level designs and executable documentation are not sufficient, inform-
ation shared between teams tend to be detailed and implementation-specific

– Embedded development is test driven by nature, but some of the core ideas of
agile are problematic to implement when doing software/hardware co-design
(e.g. write tests first, run every unit test at least daily)

Greene [28] describes how elements from Scrum and XP were used in a firm-
ware project to deal with changing hardware interfaces for a new family of 64-
bit microprocessors. Some of the constraints they had to satisfy were; consistent
firmware interfaces across the entire processor family, architecture features that
are better, cheaper, or more flexibly implemented in firmware than hardware,
and workarounds for processor errata. Some of the challenges they had to deal
with were

– Turnaround time for silicon from the factory of more than a month.
– Detailed quarterly planning of schedules, which quickly became obsolete.
– Too specialized team members will little cross-domain firmware knowledge.
– lack of test coverage, and no regression tests when changes were made. Re-

liance on outside groups to find problems.
– Poor code maintainability, due to overly optimized and complex code.

Cordeiro et al. [29] proposes an agile method for developing embedded soft-
ware under stringent hardware constraints. The aim to: Resolve the trade-off
between flexibility and performance, fulfill hardware constraints, support a flow
from specification to implementation, propose novel test techniques, and use an
incremental approach where the developer can validate a system specification
in each iteration. They solve this by proposing three sets of parallel processes
organized in three process groups: System Platform Processes, Product Devel-
opment Processes, and Product Management Processes. The method assumes
that a system designer chooses the system components from an already existing
platform library to instantiate a given product. Both this and the previous ex-
ample only concerned a very limited number of involved developers, less than 10
developers in 1-2 teams.

A conclusion is that teams in an integration-centric organization that attempt
to adopt agile software practices have difficulties in scaling them beyond the team
level. The adopted agile practices typically only affect modules or sub-systems,
as seen in figure 1 below. The product as a whole is still developed with an
integration-centric approach, as described in section 3.1, with the mechanics
and manufacturing schedules also controlling the software development.

Even if agile teams try to follow a platform-oriented approach focusing on
developing prioritized cross product features, individual stage-gate projects still
require a certain amount of functionality bound to product-specific hardware
and mechanics. This makes the agile overall prioritization process difficult to
perform. One or two major products with large investments can draw all the
attention making it difficult to do the right prioritization of feature development
across the full range of products.

36 U. Eklund, H. Holmström Olsson, and N.J. Strøm

Fig. 1. The agile iteration on team level seen in the context of a typical systems
engineering approach

The shift towards agile is complex for companies developing embedded sys-
tems since they are often used to heavyweight sequential processes also outside
of R&D; additional challenges are e.g:

– dependencies to a number of suppliers and sub-contractors [5], with some
software subcontractors tied up in sourcing agreements,

– software interfacing with hardware and mechanics, and
– certification processes.

As a result the development teams need to spend effort to align the internal team
practices to the overall product development and release processes (see e.g. [30]).
All this also means that the short iterations on team level do not lead to short
lead-times in launching new or updated products.

4 Industrial Challenges of Scaling Agile

The key agile principle of delivering software frequently [31] contrasts with the
situation described in section 3.4.

The long-term prediction and associated lead-times forced upon software de-
velopment teams in this context leads to lack of flexibility in case market needs
change during the development project. If an organisation was fully adhering
to all agile principles it would in theory be possible to deploy new software
throughout the entire life-cycle of the product if economically viable.

Not being able to exploit agile software development and adapting stage-gate
models to agile software development also leads to a continuation of notoriously
poor predictability when developing software, something which is prevalent also
for embedded software.

4.1 Challenge of Uniting Agility with Stage-Gate Development

The principal challenge is how to combine the planning and achieved predict-
ability associated with mechanical manufacturing with the dynamic planning

Scaling Agile in Embedded Systems 37

capabilities of modern agile software development; in practice this means large
mechatronics companies need to solve the challenge of how to scale agile software
development beyond short iterations on the team level.

This challenge is a major obstacle to allowing differentiated lead-times towards
start of production (SOP) depending on the size or complexity of the wanted soft-
ware features rather than depending on investments in mechanical manufacturing
according to a stage-gate process. Rephrased; it means that while the start of the
product project is demanded by the activities necessary for mechanical and man-
ufacturing development, the development of a specific software feature can start
independently of this while still aiming at the same SOP, as seen in figure 2.

Fig. 2. Different sub-projects are allowed differentiated lead-times towards Start-of-
Production (or start-of-deployment)

4.2 Challenge of Scaling the Number of Involved Teams

Scaling agile in this context is a challenge in two dimensions, as seen in figure 3:
First, scaling the number of involved teams, this is usually what ?scaling? in
the context of agile means. Second, scaling up the necessary system engineering
activities in the iterations/sprints prescribed by different agile methodologies.

A complex product today, e.g. a car, has up to a hundred development teams
doing software and embedded development, and twice that numer of teams doing
mechanical development. Currently these teams are synchronized by all adher-
ing to the same schedule according to a stage-gate process. The need for such
large-scale development requires mid range and long range planning mechanisms
beyond the standard sprint pattern of plan/commit, execute, and demo/adapt
used for individual teams [32]. Typically such mechanisms involve release plan-
ning and road mapping of product portfolios, as described by the Scaled Agile
Framework [32] or by Disciplined Agile Delivery [33].

The Scaled Agile Framework2 presents guidelines on how to plan releases when
demanded, while the individual teams work and deliver continuously in agile
iterations. The involved teams are part of an agile release train that provides the
program-level value according to the program backlog. These program backlogs
2 http://scaledagileframework.com/

http://scaledagileframework.com/

38 U. Eklund, H. Holmström Olsson, and N.J. Strøm

of involved
teams

Traversing the systems
engineering process in

each sprint

te

ch sp

1 100

Module

Sub-system

Product

Fig. 3. Scaling agile in the context of mass-produced embedded systems is a challenge
in two dimensions

are prioritized according to a portfolio backlog that realize the value streams
that proved a continuous flow of value to the business, customer or end user.

However, existing large-scale agile methodology frameworks such as these do
not address the challenges particular to the embedded domain (identified by e.g.
[27]), and especially not all system engineering challenges regarding large-scale
manufacturing.

4.3 Challenge of Scaling System Engineering Activities

The second dimension in figure 3 is traversing the systems engineering process in
each sprint, i.e. not being confined to iterate each module separately in each sprint,
but also allow re-prioritization of system-wide features and properties. This means
that each team must have the ability or support to perform activities at all abstrac-
tion levels in the V-model in figure 1, for example doing system wide tests. This
second dimension is what distinguishes agile development in mass-produced em-
bedded systems, and can be considered the novel research challenge.

A trivial example of a system engineering activity in a sprint would be if it is
necessary to have access to a physical property, such as fluid flow or temperature,
in order to realize a specific feature. A system engineering choice would be to
either try to estimate this based on other data or to use a sensor to directly
measure the physical value with higher accuracy. The former choice could be
implemented purely in software, while the latter would entail a change in the
physical and electronics design of the system, incurring a cost, and possibly a
lead-time, penalty. In a safety-critical system both choices may be necessary to
implement for redundancy.

A related difficulty in this dimension concerns cross-functional team expertise
and component interdependencies [25]. Usually, organizations realize that many
components in a large-scale system are technically very difficult and interde-
pendent, and require years of experience to be fully understood by developers.
To solve this they therefore often organize in specialist or component teams

Scaling Agile in Embedded Systems 39

with exclusive access rights to key components occasionally leading to bottle-
neck situations. This is in contrast with the basics of agile where teams are
self-contained and are able to solve their tasks independently in each sprint. As
a result, many large-scale organizations experience long lead times before the
development teams can implement anything useful in a component.

5 Discussion on Solutions

Our preliminary assumption is that the solutions to the challenges above not only
lies within the process dimension, it is a question of implementing agile practices
on an enterprise scale. We therefore expect a holistic approach is needed, weighing
in business, architectural, and organizational aspects, besides scaled processes.

Typical software architectures for embedded systems are monolithic, having
a static structure for every instantiation and variation is achieved by variation
points in the components, usually by de-selecting code. An architecture that sup-
ports continuous integrations, including system tests, must probably be based
on composition instead, allowing a creative selection and configuration of com-
ponents and most of the tailoring towards specific products is achieved through
different component configurations developed by various agile teams.

Some other architectural patterns supporting large-scale agile systems devel-
opment would be suitable hardware device abstractions, and mechanism allowing
for device composition supporting necessary security and safety integrity levels.
However, monitoring of architectural and/or organizational dependencies and
subsequent actions to resolve these dependencies is necessary. For example, even
if proper hardware abstractions are made, new functionality may require new
low level features to be implemented by the aforementioned component/specialist
team causing dependency problems to the team implementing a new customer
feature. Causes for this could both be architectural and organizational. Remed-
ies to consider for mitigating this could be refactoring, spreading the necessary
knowledge, establishing mentors to be able to immediately stand in and facilit-
ate what is necessary, establish task force capacity, and these activities need to
be iterative as well.

Martini et al. [34] identifies factors that inhibit the speed of organisations
with a large number of small, independent and fast teams. The teams suffer
from excessive inter-team interactions, which may lead to paralysis. Some of
their recommendations to manage such factors, complementing current agile
practices, are establishing cross-team roles with part-time domain experts and
architects, and allow for programmed available time for other concerns, and not
only synchronizing e.g. planning among SCRUM masters.

6 Summary

Mechanical and manufacturing development have very long lead-times compared
to software development iterations of 2-6 weeks, reconciling this is a challenge
when shortening lead-times towards start-of-production. The goal would be to

40 U. Eklund, H. Holmström Olsson, and N.J. Strøm

allow differentiated lead-times towards SOP depending on the size or complexity
of the wanted software features, i.e. the development of a specific software feature
can start independently of other features while still aiming at the same SOP.
Related to this overall challenge we identified a number of additional challenges:

– Embedded system companies have already established ways-of-working for
systems engineering which need to be considered.

– Individual stage gate product projects still require a certain amount of func-
tionality bound to product-specific hardware and mechanics making a plat-
form approach with agile overall prioritization difficult to perform.

Scaling agile software development in this context is then a question of scaling
agile in two dimensions: First increasing the involved number of teams and utilize
agile practices for mid- and long-range planning such as release planning and road
mapping. Many large-scale development companies practice agile in a way that is
not consistent with the original agile ideas, and that the translation of the original
ideas to a context of mass-production is difficult. This is already a growing research
field, as seen in [35], which gives some examples of smaller challenges:

– To coordinate work between agile teams.
– To effectively structure the organization and collaborate in large projects,

especially when the organization is distributed.
– To plan large projects and control the scope.
– To understand the role of architecture in large-scale agile.

Second, scaling the system engineering activities executed in each sprint, to
a truly iterative practice instead of a stage-gated planned approach. A cross-
functional team must have the ability or support to perform activities at several
abstraction levels in a systems engineering V-model in each iteration or sprint.
This is a novel challenge, particular to the embedded domain. We can see a set
of associated challenges that needs to be addressed in this domain, regardless of
project size:

– Embedded systems have specific product requirements, e.g. safety, which are
not obviously addressed by agile practices such as XP or Scrum.

– The feedback loop with customers and management is quite long due to
the business model of delivering physical products in exchange of a financial
transaction, and manufacturing constraints how short this can be.

– Mechanical and manufacturing development emphasises long-term predict-
ability, and is usually successful in achieving this. This contrasts with the
desire of short-term agility and poor long-term predictability of software
development.

– Component interdependencies affect cross-functional teams requiring special
expertise. Components in a large-scale system are technically very difficult
and interdependent, and require years of experience to be fully understood
by developers.

The call to action is to broaden the research on scaling agile to address the
identified challenges particular to developing mass-produced embedded systems,
and thus solving actual industrial needs.

Scaling Agile in Embedded Systems 41

References

1. Bosch, J., Eklund, U.: Eternal embedded software: Towards innovation experiment
systems. In: Dingsøyr, T., Moe, N.B., Counsell, S., Tonelli, R., Gencel, C., Petersen,
K. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 19–31. Springer, Heidelberg
(2012)

2. Dzamashvili Fogelström, N., Gorschek, T., Svahnberg, M., Olsson, P.: The im-
pact of agile principles on market-driven software product development. Journal of
Software Maintenance and Evolution: Research and Practice 22(1), 53–80 (2010)

3. Albuquerque, C.O., Antonino, P.O., Nakagawa, E.Y.: An investigation into agile
methods in embedded systems development. In: Murgante, B., Gervasi, O., Misra,
S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012,
Part III. LNCS, vol. 7335, pp. 576–591. Springer, Heidelberg (2012)

4. Williams, L., Cockburn, A.: Agile software development: It’s about feedback and
change. Computer 36(6), 39–43 (2003)

5. Eklund, U., Bosch, J.: Applying agile development in mass-produced embedded
systems. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 31–46. Springer,
Heidelberg (2012)

6. Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Com-
puter 42(4), 42–52 (2009)

7. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the
International Conference on Software Engineering, Shanghai, China, pp. 33–42.
ACM (2006)

8. Eklund, U., Bosch, J.: Archetypical approaches of fast software development and
slow embedded projects. In: Proceedings of the Euromicro Conference on Software
Engineering and Advanced Applications, Santander, Spain, pp. 276–283. IEEE
(2013)

9. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems and
Software 83(1), 67–76 (2010)

10. Cooper, R.: Stage-gate systems: A new tool for managing new products. Business
Horizons 33(3), 44–54 (1990)

11. Larman, C., Vodde, B.: Scaling Lean & Agile Development: Thinking and Organiz-
ational Tools for Large-Scale Scrum, 1st edn. Addison-Wesley Professional (2008)

12. Highsmith, J., Cockburn, A.: Agile software development: The business of innova-
tion. Computer 34(9), 120–127 (2001)

13. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information and Software Technology 50(9-10), 833–859 (2008)

14. Kettunen, P., Laanti, M.: Combining agile software projects and large-scale or-
ganizational agility. Software Process: Improvement and Practice 13(2), 183–193
(2008)

15. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile method-
ologies: Towards explaining agile software development. Journal of Systems and
Software 85(6), 1213–1221 (2012)

16. Beck, K.: Extreme programming: A humanistic discipline of software development.
In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 1–6.
Springer, Heidelberg (1998)

17. Schwaber, K.: Scrum development process. In: Proceedings of the ACM Conference
on Object Oriented Programming Systems, Languages, and Applications, pp. 117–
134 (1995)

42 U. Eklund, H. Holmström Olsson, and N.J. Strøm

18. Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J.: New directions on agile
methods: A comparative analysis. In: Proceedings of the International Conference
on Software Engineering, pp. 244–254 (2003)

19. Holmström Olsson, H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven".
In: Proceeding of the Euromicro Conference on Software Engineering and Advanced
Applications, Cesme, Izmir, Turkey (2012)

20. McMahon, P.: Extending agile methods: A distributed project and organizational
improvement perspective. In: Systems and Software Technology Conference (2005)

21. Kaisti, M., Mujunen, T., Mäkilä, T., Rantala, V., Lehtonen, T.: Agile principles in
the embedded system development. In: Cantone, G., Marchesi, M. (eds.) XP 2014.
LNBIP, vol. 179, pp. 16–31. Springer, Heidelberg (2014)

22. Kerievsky, J.: Industrial XP: Making XP work in large organizations. Executive
Report. Cutter Consortium, 6(2) (2005)

23. Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., Stahl, D.: The impact
of agile principles and practices on large-scale software development projects: A
multiple-case study of two projects at ericsson. In: ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, Baltimore, MD,
USA, pp. 348–356 (2013)

24. Shen, M., Yang, W., Rong, G., Shao, D.: Applying agile methods to embedded
software development: A systematic review. In: Proceedings of the International
Workshop on Software Engineering for Embedded Systems, pp. 30–36. IEEE (2012)

25. Heikkilä, V.T., Paasivaara, M., Lassenius, C., Engblom, C.: Continuous re-
lease planning in a large-scale scrum development organization at ericsson. In:
Baumeister, H., Weber, B. (eds.) XP 2013. LNBIP, vol. 149, pp. 195–209. Springer,
Heidelberg (2013)

26. Badampudi, D., Fricker, S.A., Moreno, A.M.: Perspectives on productivity and
delays in large-scale agile projects. In: Baumeister, H., Weber, B. (eds.) XP 2013.
LNBIP, vol. 149, pp. 180–194. Springer, Heidelberg (2013)

27. Ronkainen, J., Abrahamsson, P.: Software development under stringent hardware
constraints: Do agile methods have a chance? In: Marchesi, M., Succi, G. (eds.)
XP 2003. LNCS, vol. 2675, pp. 73–79. Springer, Heidelberg (2003)

28. Greene, B.: Agile methods applied to embedded firmware development. In: Pro-
ceedings of the Agile Development Conference, pp. 71–77. IEEE Computer Society
(2004)

29. Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., Lucena, V.:
An agile development methodology applied to embedded control software under
stringent hardware constraints. SIGSOFT Softw. Eng. Notes 33(1), 5:1–5:10 (2008)

30. Karlström, D., Runeson, P.: Integrating agile software development into stage-gate
managed product development. Empirical Software Engineering 11(2), 203–225
(2006)

31. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile
software development (2001)

32. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise, 1st edn. Addison-Wesley (2011)

33. Ambler, S.W., Lines, M.: Disciplined Agile Delivery, 1st edn. IBM Press (2012)
34. Martini, A., Pareto, L., Bosch, J.: Improving businesses success by managing in-

teractions among agile teams in large organizations. In: Herzwurm, G., Margaria,
T. (eds.) ICSOB 2013. LNBIP, vol. 150, pp. 60–72. Springer, Heidelberg (2013)

35. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software develop-
ment. SIGSOFT Softw. Eng. Notes 38(5), 38–39 (2013)

	Industrial Challenges of Scaling Agile in Mass-Produced Embedded Systems
	1Introduction
	2Empirical Data
	3Background
	3.1Software in Embedded Products
	3.2Mechanical and Hardware Development
	3.3Agile Software Development
	3.4Agile Development of Embedded Software

	4Industrial Challenges of Scaling Agile
	4.1Challenge of Uniting Agility with Stage-Gate Development
	4.2Challenge of Scaling the Number of Involved Teams
	4.3Challenge of Scaling System Engineering Activities

	5Discussion on Solutions
	6Summary
	References

