
T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 21–29, 2014.
© Springer International Publishing Switzerland 2014

Architecture in Large Scale Agile Development

Jutta Eckstein

Independent, Gaussstr. 29, 38106 Braunschweig, Germany
Jutta@JEckstein.com

Abstract. In order to welcome changing requirements (even late in development)
agile development should enable the architecture to incorporate these changes and
therefore to emerge over time. This implies not finalizing the architecture upfront.
Moreover, in small agile teams it is assumed that there is no dedicated role for an
architect – instead the whole team should be responsible for the architecture. In
large-scale agile development the requirement for an emergent architecture still
holds true. However, it is unrealistic to ask members of e.g. ten teams to be
equally responsible for the architecture. Moreover, the role and support for the
architecture depends not only on the degree of the size but as well on the degree
of complexity. In this paper I report on the experience using different models for
supporting emergent architecture in large environments that take the degree of
complexity into account.

Keywords: agile methods, architect, change, chief architect, complexity,
community of practice, emergent architecture, large-scale agile software
development, project management, software engineering, technical consulting
team, technical service team, uncertainty.

1 Introduction

Agile development focuses on maximizing the business value at all times. In small
agile development this is addressed by a cross-functional team, which Scrum called a
Scrum Team [1]. The developers on such a team encompass all competencies, skills,
and know-how needed to deliver frequently product increments. There are no explicit
roles like tester or database expert for the developers in order to stress the joint
responsibility for the delivery. This structure allows such a team to work
independently in a self-organized manner.

Scaling up agile development does not change the goal of maximizing the business
value continuously. However, for large-scale agile development it is crucial to
provide a supporting team structure. Thus, instead of structuring teams according to
know-how (like user interfaces or databases), activities (like business analysis or
testing), or components (as defined by i.e. architectural layers), teams have to be
structured –cross-functional– around the business value. Only this allows teams in
large-scale agile development to self-organize and to deliver business value
frequently and regularly. Such teams are called domain or feature teams [2, 3] and are
defined by Larman and Vodde as:

22 J. Eckstein

“A feature team […] is a long-lived, cross-functional, cross-component team
that completes many end-to-end customer features–one by one.” ([2], p. 549).

This inherent focus on business value by the team’s structure contrasts structuring
teams based on components as suggested by Leffingwell, who states:

“Components are the architectural building blocks of large-scale systems.
Agile teams should organize around components, each of which can be
defined/built/tested by the team that is accountable for delivering it.” ([4], p.
204).

Thus, instead of structuring the teams around the business value, Leffingwell

suggests to structure them around architectural components. Consequently, he
suggests for scaling-up and implementing what he calls an architectural runway to
add more component teams. Yet, large-scale agile development should concentrate on
delivering primarily customer value and not primarily components.

However, focusing on the business value still requires an architecture that allows
adding features over time. Ideally, we would know upfront what kind of features will
have to be added later by knowing the intent of the product [5]. Yet, as Kruchten
clarifies:

“In reality, in most software development projects, we define Intent
gradually, and it tends to evolve throughout the project under various
pressures and demands for changes.” ([5], p. 7)

This implies that it is not possible to finalize the architecture upfront because the

added features might force an architectural change. Thus, focusing on the business
value requires that the architecture emerges or rather changes over time. In small agile
teams, it is the whole team’s responsibility to ensure the evolvement of the
architecture without a dedicated role for an architect [1]. In large-scale agile
development it is unrealistic to ask all members of the undertaking to decide on
architectural issues jointly, because this could be a hundred-plus people.

In this paper, I will examine the different possibilities for supporting emergent
architecture in a large environment. The architecture is labeled as emergent, for
emphasizing the understanding that it is not possible to stabilize the architecture at the
beginning of the undertaking. This means the architecture will change over time.
After clarifying architectural complexity, section two will focus on three different
models: First on the support of a relatively stable architecture which will only have to
adjust to a few changes, thus on low complexity; Next on the opposite–the support for
the creation of a new architecture which is accompanied by high uncertainty and
frequent changes and therefore on high complexity; And finally on the complexity in
between–the support for an architecture that needs to be adaptive in order to deal with
some changes and a medium degree of uncertainty. In section three further issues are
discussed and section four provides a final conclusion.

 Architecture in Large Scale Agile Development 23

2 Supporting Architecture

As Leffingwell mentions:

“The larger and more complex the system and the higher the criticality of
failure, the more the teams will need to base their daily decisions on an
agreed-upon and intentional architecture […].” ([4], p. 202).

Leffingwell does not explain what is meant by complex, yet the statements still

holds true. For example, it makes a difference if the system a team is working on is
about to be created, still tremendously changing, or if it is quite stable. These
differences mark the complexity of the system and subsequently as well of the
architecture [6]. Kruchten emphasizes moreover, that among others the pre-existence
of a stable architecture and the rate of change are important dimensions that define the
context for a project [5]. The complexity that is important for addressing architectural
support is expressed by the relationship between the required changes and the existing
uncertainties (see Fig. 1).

Fig. 1. Complexity of architecture based on changes and uncertainties

24 J. Eckstein

This expression of complexity is related to the so-called Landscape Diagram [7]
which has originally been created by Stacey [8] and then further developed by
Zimmerman, Lindberg, and Plsek [9]. The three subsequent models presented below,
deal with those different kinds of architectural complexity.

As figure 1 shows, the complexity of the architecture is defined on the one hand by
the uncertainty (x-axis) and on the other hand by the requests for changes (y-axis).
According to Kruchten, uncertainty is defined by the uncertainty in the intent, e.g. the
business domain; in the work, e.g. the tools or environment; the people, e.g. the
know-how; and the final product [5]. For example, the business domain could be new
to the developers and/or to the customer, in case the customer wants to enter a new
market segment. The technology used to implement the product could be new to the
team and could be additionally of cutting-edge without a lot of experiences by other
projects, people, or companies. In these cases, it is very likely that uncertainty is
experienced as high. The rate of change, mainly in terms of changing (business)
requirements, but also in terms of tools or people influences the stability of the
architecture. Thus, the architecture will be the more unstable and complex, the more
changes and the higher the uncertainties are.

Subsequently will be examined what kind of support is useful for an architecture
that falls in an area with only a few changes and low uncertainties; for one that is
located in the area with a high rate of changes and uncertainties; and finally one that
sits in between with moderate changes and uncertainty.

Examining complexity this way shall help to decide on the necessary architectural
support. Thus, in relation to George Box’ famous quote: “Essentially, all models are
wrong, but some are useful.” –here different models are more or less useful depending
on the complexity.

2.1 Supporting a Stable Architecture

Typically, long-term projects and long-term product development do not require
severe changes in the architecture once they are on track1. This kind of development
is marked by high certainty in terms of the technology used and of the business
requested.

Very often the major concern is to keep the architecture stable and allowing it to
evolve gradually with subsequent business needs. We have solved the support of such
an architecture in two different ways by either a community of practice or by a chief
architect:

Community of Practice. A community of practice (CoP, see [10]) has been
suggested also by Larman and Vodde for large scale agile development. In particular,
they propose a design/architecture community of practice and define CoP as “an
organizational mechanism to create virtual groups for related concerns.” ([2], p. 313).

1 Thanks to Philippe Kruchten for the following additional remark that even for the ones that

are not on track, typically no severe changes are required, because performing the changes is
too costly and risky (Kruchten’s comment while reviewing an earlier version of this paper).

 Architecture in Large Scale Agile Development 25

The idea is that every cross-functional feature team covers the role of an architect.
This is a role and is therefore not bound to a specific person. However, in practice
quite often only a few team members are willing and skilled for taking this role.
Whenever an architectural decision has to be made, these “architects” of the diverse
feature teams assemble (this could as well happen virtually) and decide upon the
request. Sometimes the feature teams decide that the CoP meets regularly in order to
monitor any changes and possible improvements within the architecture.

Chief Architect. Instead of a CoP a single person can provide the main support for
the architecture. Next to being technologically skilled, the main requirement for this
person is to be as well socially skilled. The chief architect (sometimes also called
architecture owner) needs to work closely with all different feature teams, which
requires architecting by wandering around [11]. This approach allows the chief
architect (a) to understand the needs of the teams; (b) to ensure the teams understand
the architecture; and (c) to help improving the architecture.

2.2 Supporting an Unstable Architecture

Starting a new project or creating a new product involves most often many
uncertainties. Those uncertainties refer to the technology used, the understanding of
the requirements, and making the “right” decisions both business and technology
wise.

Additionally very often this uncertainty is accompanied by the fact that the team is
newly assembled and has to go through different phases until it performs [12].
Moreover, if the undertaking would be started by e.g. ten teams the system would as
well be split technology-wise into ten parts [13]. Thus, starting from day one e.g. with
ten feature teams is not recommended.

Instead in order to scale, the system has to be enabled to scale. The recommended
model for an unstable and heavily changing architecture is to establish a technical
service team:

Technical Service Team. Instead of spreading the support for the architecture across
all feature teams by a CoP or by asking a single person to provide that support as the
chief architect, this role is taken in the context of high complexity by a specific team:
A technical service team [3]. The key is that this team provides a service to the feature
teams – or in other words, the customers of this team are the feature teams. This
means in turn that the feature teams have to act as well as a customer and provide a
product owner for that team, who decides on the priorities of the (technical) stories
the feature teams require. This is the big difference to a non-agile architecture team
which defines the architecture upfront (and sometimes also builds it) but is not driven
by the feature teams’ requests. Such kind of a non-agile architecture team is often
regarded as being disconnected from reality and project members think of them of
being located on an ivory tower far away from the actual needs of the projects.

Sometimes the technical service team is as well the starting team [14]. In such a
situation, this team creates the base architecture founded on i.e. three key user stories

26 J. Eckstein

which will be implemented as well by this team. Only after implementing the base
architecture along with these i.e. three user stories, the feature teams will join the
undertaking. Then still, depending on the complexity either the technical service team
remains as described above and will be guided by a product owner representing the
feature teams or the technical service team dissolves in the diverse feature teams.

2.3 Supporting an Adaptive Architecture

If both the requested changes and the uncertainty are moderate, the architecture needs
as well moderate support in order to being adaptive. In this situation the architecture
is not really stable.

Therefore, it needs more attention than just by a single person as the chief
architect. The burden would also be too high for a CoP, because the members of the
CoP would be required to synchronize continuously and to focus almost only on
architectural issues. As a result, the feature teams would not be able to concentrate on
the business value, because at least one of their members would have to concentrate
on the architecture at all times. Thus, the recommended model is to establish a
technical consulting team:

Technical Consulting Team. This is a mix of the chief architect or the CoP and the
technical service team. So like the chief architect, the individual members of this team
provide their support by wandering around. And like the CoP, the individual members
of the technical consulting team will most often offer their support (in terms of
consulting, coaching, mentoring, and pair programming) to a specific feature team
during an iteration. Thus, a member of the technical consulting team will act as a
regular feature team member during the course of an iteration and is as such as
responsible for (or committed to) the iteration goal as every other feature team
member. Yet, for the next iteration this person might support a different feature team.

But unlike the CoP, the technical consulting team is typically smaller in number
than the amount of feature teams involved in the undertaking. E.g. in one project we
had fifteen feature teams, yet only seven team members in the technical consulting
team. Thus, not every feature team had the support of a technical consulting team
member in each and every iteration. Supporting every feature team in each iteration
this is typically not needed for an architecture of medium complexity.

In case a major change in the architecture is required, the technical consulting team
provides this change as a service to the feature teams by implementing it, just like the
technical service team.

3 Discussion

Different levels of complexity require different models for supporting the emergence
of the architecture. See figure 2 for an overview of these different models.

 Architecture in Large Scale Agile Development 27

Fig. 2. Different models for architectural support depending on the complexity

The consequences of using the different models in other circumstances than
recommended should not be underestimated: For example, if the system experiences
many changes accompanied with high uncertainty, a single chief architect would be
overwhelmed with the demands. For the feature teams this would mean, either to wait
for a decision or to come up with an own one. The latter is not per se a bad idea, yet it
could create the problem that different feature teams come up with contradicting
solutions to similar problems. This results in breaking the conceptual integrity which
in turn makes it harder for both implementing new functionality and maintaining the
system.

The diverse teams (technical service team, technical consulting team, or CoP) that
support the architecture can organize themselves in different ways. Some of those
teams might decide on requiring a leader for the team. This person is then often
perceived as the chief architect. However, it is important to distinguish this role from
the chief architect in a stable environment who is not the leader of a particular team.

In many cases the complexity will change over time (see Fig. 3). Different
developments of the complexity can happen, yet most often the complexity will
decrease over time [5]. Most likely the uncertainty will lower, because the business
domain and the technology will be better known. Frequently this results in fewer
changes, because the uncertainty decreases for the customer as well over time.

28 J. Eckstein

As figure 3 shows, the decrease of the complexity over time affects the required
architectural support. Thus, often large-scale agile development starts with the
support of a technical service team. This team might even be the single starting team
before the whole undertaking will be scaled up. As the architecture is getting more
and more stable and less architectural services are required for the feature teams, the
technical service team will be shrunk and turned into a technical consulting team.
While the architecture is stabilizing even more and even fewer changes are required,
the technical consulting team disappears – maybe one member remains as the chief
architect, maybe all members will become members of the diverse feature teams.
Either those people or different members of the feature teams will then ensure the
conceptual integrity of the architecture through a CoP.

Fig. 3. Complexity decreases over time

4 Closing

Depending on the complexity –defined by the degree of uncertainty and requested
changes– different models have been presented for supporting architectural support in
large-scale agile development. All of these models have been applied by the author.
Those models have not only been used when working on project or product
development, yet as well when scaling to product line development or supporting an

 Architecture in Large Scale Agile Development 29

organization-wide architecture. Therefore, these models have as well been proven in
praxis when scaling up to the whole organization and combining the efforts on
supporting different architectures on a higher level.

For large-scale agile development it is essential to provide architectural support
without losing focus on the business value. Yet, concentrating on the business value
only leads to the loss of conceptual integrity. Thus, both dimensions –business and
technology (the latter in terms of architecture) – have to be taken into account for
large-scale agile development.

References

1. Sutherland, J., Schwaber, K.: The Scrum Guide. The Definitive Guide to Scrum: The
Rules of the Game,
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/
2013/Scrum-Guide.pdf

2. A survey of current research on online communities of practice. Harvard Business School
Press, Boston (2002)

3. Larman, C., Vodde, B.: Practices for Scaling Lean & Agile Development: Large, Multisite,
and Offshore Product Development with Large-Scale Scrum. Addison-Wesley, Upper
Saddle River (2010)

4. Eckstein, J.: Agile Software Development in the Large: Diving into the Deep. Dorset
House Publishing, New York (2004)

5. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Addison-
Wesley, Upper Saddle River (2007)

6. Kruchten, P.: The frog and the octopus: A conceptual model of software development
(2011), http://arxiv.org/pdf/1209.1327 (last accessed: June 18, 2014)

7. Eckstein, J.: Roles and Responsibilities in Feature Teams. In: Šmite, D., Moe, N.B.,
Ågerfalk, P.J. (eds.) Agility Across Time and Space: Implementing Agile Methods in
Global Software Projects, pp. 289–299. Springer, Heidelberg (2010)

8. Holladay, R., Quade, K.: Influencing Patterns for Change. CreateSpace Independent
Publishing Platform (2008)

9. Stacey, R.D.: Strategic Management and Organizational Dynamics, 2nd edn. Pitman
Publishing, Berlin (1996)

10. Wenger, E.C., McDermott, R., Snyder, W.M.: Cultivating Communities
11. Zimmerman, B., Lindberg, C., Plsek, P.: Edgeware: lessons from complexity science for

health care leaders. V H A Incorporated (Curt Lindberg, Plexus Institute) (2008)
12. Peters, T., Waterman, R.H.: Search of Excellence, 2nd edn. Profile Books Ltd. (2004)
13. Tuckman, B.: Developmental sequence in small groups. Psychological Bulletin (63)

(1965)
14. Conway, M.E.: How Do Committees Invent? Datamation 14(4) (1968)
15. Eckstein, J.: Agile Software Development with Distributed Teams: Staying Agile in a

Global World. Dorset House Publishing, New York (2010)

	Architecture in Large Scale Agile Development
	1 Introduction
	2 Supporting Architecture
	2.1 Supporting a Stable Architecture
	2.2 Supporting an Unstable Architecture
	2.3 Supporting an Adaptive Architecture

	3 Discussion
	4 Closing
	References

