
 123

LN
BI

P
19

9

XP 2014 International Workshops
Rome, Italy, May 26-30, 2014
Revised Selected Papers

Agile Methods
Large-Scale Development, Refactoring,
Testing, and Estimation

Torgeir Dingsøyr Nils Brede Moe
Roberto Tonelli Steve Counsell
Cigdem Gencel Kai Petersen (Eds.)

Lecture Notes
in Business Information Processing 199

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Torgeir Dingsøyr Nils Brede Moe
Roberto Tonelli Steve Counsell
Cigdem Gencel Kai Petersen (Eds.)

Agile Methods
Large-Scale Development, Refactoring,
Testing, and Estimation

XP 2014 International Workshops
Rome, Italy, May 26-30, 2014
Revised Selected Papers

1 3

Volume Editors

Torgeir Dingsøyr
SINTEF, Trondheim, Norway
E-mail: torgeir.dingsoyr@sintef.no

Nils Brede Moe
SINTEF, Trondheim, Norway
E-mail: nils.b.moe@sintef.no

Roberto Tonelli
University of Cagliari, Italy
E-mail: roberto.tonelli@dsf.unica.it

Steve Counsell
Brunel University London, Uxbridge, UK
E-mail: steve.counsell@brunel.ac.uk

Cigdem Gencel
Free University of Bozen-Bolzano, Italy
E-mail: cigdem.gencel@unibz.it

Kai Petersen
Blekinge Institute of Technology, Karlskrona, Sweden
E-mail: kai.petersen@bth.se

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-319-14357-6 e-ISBN 978-3-319-14358-3
DOI 10.1007/978-3-319-14358-3
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014957488

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We are very happy to present the proceedings from the workshops held in
conjunction with the 15th International Conference on Agile Software Devel-
opment, XP 2014. This is the first time that revised and extended articles from
scientific workshops at the conference are published in a separate proceedings
volume. This book contains articles from three workshops: (1) the Workshop on
Principles of Large-Scale Agile Development; (2) the International Workshop on
Refactoring & Testing (RefTest); and the (3) First International Workshop on
Estimations in the 21st Century Software Engineering (EstSE21).

The Workshop on Principles of Large-Scale Agile Development received 11
submissions, which were reviewed by three or four ProgramCommittee members.
Three articles were accepted and three conditionally accepted for the proceed-
ings. The selected articles were revised and extended and went through a second
review process. We are very grateful to the following Program Committee mem-
bers for helping us in the second review phase: Steve Adolph, Siva Dorairaj,
Philippe Kruchten, Sridhar Nerur, Jaana Nyfjord, and Helena Holmström Ols-
son. We have also included an article from an invited keynote at the workshop by
Maarit Laanti. The organization of the workshop was supported by the SINTEF
internal project ”Agile Project Management in Large Development Projects”
and by the project Agile 2.0, which is supported by the Research council of Nor-
way (grant 236759/O30), and by the companies Kantega, Kongsberg Defence &
Aerospace, and Steria.

The Workshop on Refactoring & Testing (RefTest) received 12 submissions,
which were examined by three or four referees of the Program Committee. Six
papers were selected for the conference presentations by the reviewers. Among
the six presented, four received full consideration for the proceedings, and two
were conditionally accepted. After a second review process, where each paper
was reviewed by two referees, five articles, revised and extended, were accepted
for the proceedings. We are indebted to all the Program Committee members for
their contribution and their care in the first and second round reviews: Giulio
Concas, Giuseppe Destefanis, Dongsun Kim, Stephen Swift, Ewan Tempero,
Bartosz Walter, Marco Zanoni, Hongyu Zhang, Hubert Baumeister, Theodore
D. Hellmann, Kieran Conboy, Laurent Bossavit, and Augustin Yague.

The First International Workshop on Estimations in the 21st Century Soft-
ware Engineering (EstSE21) received five submissions, reviewed by three re-
viewers of the Program Committee. Based on the reviews, two submissions were
accepted for publication and presentation at the workshop. The authors used the
reviews and the discussions during the workshop to improve and extend their
submissions.

VI Preface

Finally, we would like to thank Michele Marchesi, the academic program
chair, for help with organizing the scientific workshops at the conference.

September 2014 Torgeir Dingsøyr
Nils Brede Moe
Steve Counsell
Roberto Tonelli
Cigdem Gencel

Kai Petersen

Workshop Organization

Workshop on Principles of Large-Scale Agile Development

Primary Organizers

Torgeir Dingsøyr SINTEF, Norway
Nils Brede Moe SINTEF, Norway

Program Committee

Steve Adolph WSA Consulting, Canada
Ali Babar The University of Adelaide, Australia
Venugopal Balijepally Oakland University, USA
Jan Bosch University of Gothenburg, Sweden
Mohammad Dadashzadeh Oakland University, USA
Jerry DeHondt Oakland University, USA
Siva Dorairaj Software Education, New Zealand
Tore Dyb̊a SINTEF ICT, Norway
Jutta Eckstein IT Communication, Germany
Elke Hochmüller Carinthia University of Applied Sciences,

Austria
Mark Kilby Leading Agile, USA
Philippe Kruchten University of British Columbia, Canada
Parastoo Mohagheghi Norwegian Labour and Welfare Administration
Sridhar Nerur University of Texas at Arlington, USA
Jaana Nyfjord SICS Swedish ICT, Sweden
Helena Holmström Olsson Malmö University, Sweden
Maria Paasivaara Aalto University, Finland
Ken Power Cisco, Ireland
Vijayan Sugumaran Oakland University, USA
Eva Amdahl Seim SINTEF Technology and Society, Norway
Rini van Solingen Delft University of Technology,

The Netherlands
Hans van Vliet Vrije Universiteit Amsterdam, The Netherlands

International Workshop on Refactoring & Testing
(RefTest)

Primary Organizers

Francesca Arcelli Fontana University of Milan-Bicocca, Italy
Steve Counsell Brunel University, UK
Alessandro Murgia University of Antwerp, Belgium
Roberto Tonelli University of Cagliari, italy

VIII Workshop Organization

Program Committee:

Giulio Concas University of Cagliari, Italy
Giuseppe Destefanis University of Cagliari, Italy
Dongsun Kim Hong Kong University of Science and

Technology, Hong Kong
Stephen Swift Brunel University, London, UK
Ewan Tempero The University of Auckland, New Zealand
Bartosz Walter Poznan University of Technology, Poland
Marco Zanoni University of Milano Bicocca, Italy
Hongyu Zhang Tsinghua University, Beijing, China
Hubert Baumeister Technical University of Denmark
Theodore D. Hellmann University of Calgary, Canada
Kieran Conboy National University of Ireland, Galway
Laurent Bossavit Institut Agile, France
Mika Mantyla University of Aalto, Finland
Agustin Yague Universidad Politecnica de Madrid, Spain

First International Workshop on Estimations in the 21st
Century Software Engineering (EstSE21)

Primary Organizers

Cigdem Gencel Free University of Bozen-Bolzano, Italy
Kai Petersen Blekinge Institute of Technology, Sweden
Luca Santillo Agile Metrics, Italy

Program Committee

Pekka Abrahamsson Free University of Bozen-Bolzano, Italy

Alain Abran École de technologie supérieure, Canada
Stefan Biffl TU Wien, Austria
Luigi Buglione ETS Montréal / Engineering.IT, Italy
Maya Daneva University of Twente, The Netherlands
Christof Ebert Vector Consulting Services, Germany
Magne Jørgensen Simula Research Laboratory, Norway
Emilia Mendes Blekinge Institute of Technology, Sweden
Jürgen Münch University of Helsinki, Finland

Barış Özkan Atılım University, Turkey
Charles Symons Common Software Metrics Consortium

(COSMIC), UK
Ayca Tarhan Hacettepe University, Turkey
Oktay Türetken Technische Universiteit Eindhoven,

The Netherlands
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Table of Contents

Principles of Large-Scale Agile Development

Towards Principles of Large-Scale Agile Development: A Summary of
the Workshop at XP2014 and a Revised Research Agenda 1

Torgeir Dingsøyr and Nils Brede Moe

Characteristics and Principles of Scaled Agile . 9
Maarit Laanti

Architecture in Large Scale Agile Development . 21
Jutta Eckstein

Industrial Challenges of Scaling Agile in Mass-Produced Embedded
Systems . 30

Ulrik Eklund, Helena Holmström Olsson, and Niels Jørgen Strøm

Agile in Distress: Architecture to the Rescue . 43
Robert L. Nord, Ipek Ozkaya, and Philippe Kruchten

Conventions for Coordinating Large Agile Projects 58
Jaana Nyfjord, Sameer Bathallath, and Harald Kjellin

Supporting a Large-Scale Lean and Agile Transformation by Defining
Common Values . 73

Maria Paasivaara, Outi Väättänen, Minna Hallikainen,
and Casper Lassenius

A Model for Understanding When Scaling Agile Is Appropriate in
Large Organizations . 83

Ken Power

Control in Software Project Portfolios: A Complex Adaptive Systems
Approach . 93

Roger Sweetman, Orla O’Dwyer, and Kieran Conboy

Refactoring & Testing

A Measure of the Modularisation of Sequential Software Versions Using
Random Graph Theory . 105

Mahir Arzoky, Stephen Swift, Steve Counsell, and James Cain

Refactoring Clustering in Java Software Networks . 121
Giulio Concas, C. Monni, M. Orrù, M. Ortu, and Roberto Tonelli

X Table of Contents

Are Some Refactorings Attached to Fault-Prone Classes and Others to
Fault-Free Classes? . 136

Steve Counsell, Stephen Swift, Alessandro Murgia, Roberto Tonelli,
Michele Marchesi, and Giulio Concas

Capturing Software Evolution and Change through Code Repository
Smells . 148

Francesca Arcelli Fontana, Matteo Rolla, and Marco Zanoni

Considering Polymorphism in Change-Based Test Suite Reduction 166
Ali Parsai, Quinten David Soetens, Alessandro Murgia,
and Serge Demeyer

Estimations in the 21st Century Software Engineering

Effort Estimation in Agile Global Software Development Context 182
Ricardo Britto, Muhammad Usman, and Emilia Mendes

Early Software Project Estimation the Six Sigma Way 193
Thomas Michael Fehlmann and Eberhard Kranich

Author Index . 209

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 1–8, 2014.
© Springer International Publishing Switzerland 2014

Towards Principles of Large-Scale Agile Development

A Summary of the Workshop at XP2014
and a Revised Research Agenda

Torgeir Dingsøyr1, 2 and Nils Brede Moe1, 3

1SINTEF,
NO-7465 Trondheim, Norway
torgeird@sintef.no

2 Department of Computer and Information Science,
Norwegian University of Science and Technology

3 Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden
nils.b.moe@sintef.no

Abstract. Large projects are increasingly adopting agile development practices,
and this raises new challenges for research. The workshop on principles of
large-scale agile development focused on central topics in large-scale: the role
of architecture, inter-team coordination, portfolio management and scaling agile
practices. We propose eight principles for large-scale agile development, and
present a revised research agenda.

Keywords: Large-scale agile software development, architecture, portfolio
management; project management, scaling, inter-team coordination, software
engineering.

1 Introduction

Since the formulation of the agile manifesto in 2001, agile methods have transformed
software development practice by strongly emphasizing change tolerance,
evolutionary delivery and active end-user involvement [1]. Agile development has
received widespread interest, resulting in a shift of patterns of thought. Scrum is now
a de facto standard for development in many countries, and other methods like
extreme programming (XP) and elements of lean software development such as
Kanban are in widespread use. Rajlich describes agile development as a paradigm
shift in software engineering that “brings a host of new topics into the forefront of
software engineering research” [2].

In the first special issue on agile development, in IEEE Computer, Williams and
Cockburn [3] stated that agile methods “best suit collocated teams of about 50 people
or fewer who have easy access to user and business experts and are developing
projects that are not life-critical”. The success of agile methods for small, co-located
teams has inspired use in new domains: Companies increasingly apply agile practices
to large-scale projects.

2 T. Dingsøyr and N.B. Moe

However, there are challenges with achieving the same productivity gains in these
areas, as in the “home ground” of agile methods. Agile methods are based on the idea
that high-quality software can be developed by small teams using the principles of
continuous design improvement and testing based on rapid feedback and change [4].
As agile development techniques are used on large-scale projects, new challenges
arise. “Agile in the large” was voted “top burning research question” by practitioners
at the XP2010 conference [5].

Fundamental assumptions in agile development are severely challenged when
using these practices in large-scale projects. Self-management is a central principle in
agile methods, but studies from other fields than software development indicate that
self-management can reduce the ability to effectively coordinate across teams [6].
Also while the teams need to self-manage, team members need to have an effective
knowledge network and collaborate closely with experts outside the team in large-
scale agile [7]. To have an emerging architecture could hamper project progress when
many teams are working in parallel, and some practices like the scrum of scrum has
been found to be inefficient in large projects [8]. An international survey on agile
adoption1 shows that agile practice has primarily been successful in small teams.

To address these challenges with agile methods in large projects, we organized a
workshop at XP2013 which resulted in a suggested research agenda [9]. At XP2014,
we wanted to strengthen this line of research and organized a workshop on “Principles
of Large-Scale Agile Development.” The aims of this workshop were to create a
community of researchers interested in this topic, to deepen the knowledge through
identifying potential principles of large-scale agile development and to revisit the
research agenda defined in 2013.

The workshop included a keynote on "Characteristics and principles for large-scale
agile development" by Maarit Laanti [10] and a second keynote on “The leader role in
large-scale agile development” by Lars-Ola Damm. All workshop members were
asked to define what they meant by ‘large-scale agile.’ Further, we had paper
presentations and group discussions on four topics: Architecture, inter-team
coordination, portfolio management and scaling. The assignment for groups during
discussion was to identify main principles within each core area. After these
discussions we revisited the research agenda and did a voting on what should be high
priority topics.

In this summary of the workshop discussions and introduction to the papers from
the conference, we start by defining what we mean by large-scale agile development,
then introduce the papers in this post-conference proceedings and add results from the
workshop discussions to propose principles in the four areas architecture, inter-team
coordination, portfolio management and scaling. Finally, we present the revised
research agenda defined at the workshop. We hope this summary will inspire further
research and provide valuable pointers to relevant research areas.

1 Scott Ambler: Agile Adoption Rate Survey 2008, http://www.ambysoft.com/surveys/

agileFebruary2008.html

 Towards Principles of Large-Scale Agile Development 3

2 What is Large-Scale Agile Development?

The term ‘large-scale agile development’ has been used to describe agile development
in everything from large teams to large multi-team projects to making use of
principles of agile development in a whole organization.

There is an established discussion on what constitutes agile software development,
with Conboy [11] providing the most thorough discussion. He defines agility as the
continuous readiness “to rapidly or inherently create change, proactively or reactively
embrace change, and learn from change while contributing to perceived customer
value (economy, quality, and simplicity), through its collective components and
relationships with its environment.”

How participants at the workshop defined large-scale agile development is shown
in Table 1. We see that many focus on aspects of size such as number of people
involved in the development, lines of code in the solution, number of development
sites, number of teams, to definitions such as “agile in larger organizations.”
Arguments for a definition based in the number of teams is presented in [12], where
large-scale agile is defined as “agile development efforts with more than two teams.”

This definition excludes agile methods applied in large organizations from ‘large-
scale agile’, and we propose that this is considered as a research direction on its own.

Table 1. Definitions by workshop participants at XP2014

Definitions of large-scale agile development

Over 50 developers OR 1/2 million lines of code OR more than 3 sites / time zones.
Over 50 persons, over 5 teams, developing together the same product / project using agile
method.
Agile being applied to more than one team, one project, one product.
Agile applied on the organisational level.
Truly agile development in a context of more teams than one person can manage, and larger
products than few teams can handle.
When coordination of teams can be achieved in a new forum like a Scrum of Scrum forum.
Several arenas are needed for coordination, like multiple Scrum of Scrums.
Large teams -– how to get everyone on board with framework.
Big projects / Many people / Crucial to organisation / Customer focused / Flexible change /
Many projects.
It is when you don´t know everyone else working in the same project/product.
Large-scale agile success depends on having the right structures in place “freedom to
perform”.
Agile organisations are those that learn fast and are effective in creating value.
Multiple teams working together in order to deliver software artefacts.
When the values/principles or practices scale, extends to other functions, units of a
company, i.e. beyond team and projects (+ how it is done).
Driven by many needs and challenges in organisations.
Emergent complex and adaptive approach, cultural based – a mind-set.

4 T. Dingsøyr and N.B. Moe

3 Towards Principles of Large-Scale Agile Development

The workshop focused on four aspects of large-scale agile development: Architecture,
inter-team coordination, portfolio management and scaling:

Architecture
Some of the critique of agile development and in particular of large-scale agile
development has been how architecture is managed in such development efforts. Nord
et al. [13] takes the position that agility is enabled by architecture, and architecture is
enabled by agility. Architects work on three key concerns: Architecture of the system,
the structure of the development organization and the production infrastructure. They
identify a set of architectural tactics, which guide the alignment of the three concerns.
Further advice to organising architectural work in large-scale agile development is
provided by Eckstein [14], who argue that architectural work should be organized,
depending on the number of changes and the level of uncertainty. Based on the above
mentioned arguments and discussions at the workshop, we propose the following
principles:

1. Architecture has a key role in defining how work is coordinated in large-
scale development efforts.

2. The level of change and level of uncertainty will influence how the
architecture work should be organized.

Inter-Team Coordination
A number of measures are important to coordinate teams in large-scale development
efforts. Paasivaara et al. focus on the importance of defining common values through
a study of an agile transformation project [15]. The article describes how value
workshops were used to define common values, agree on interpretations and define
behavioural implications. A similar approach is described by Nyfjord et al. [16], who
focus on establishing common norms or conventions like "speaking the teams
language". At the workshop, discussions in several groups focused on the importance
of knowledge networks to achieve inter-team coordination.

In large-scale development, the needs for coordination of work appear on two
levels – the team’s level and between the team and the rest of the organization. Team
members need to collaborate effectively within the team to accomplish their tasks, but
also with experts outside the team, e.g. designers, architects, infrastructure personnel,
and other stakeholders. Large-scale development needs an effective knowledge
network.

Based on the articles and discussions at the workshop, we propose the following
principles to achieve inter-team coordination in addition to standard mechanisms like
the scrum-of-scrum meetings:

3. Common norms and values facilitate inter-team coordination.
4. Effective knowledge networks are essential in large-scale development

due to the knowledge-intensive nature of software development.

 Towards Principles of Large-Scale Agile Development 5

Portfolio Management
Agile project portfolio management is about handling several agile projects in the
same portfolio. In traditional project portfolio management, the portfolio consists of a
set of projects executed in isolation from each other and the changing environment
[17]. However, in agile software development this is not valid as projects are flexible,
feedback driven, and embracing change even at the end of the project. A new request
from a client on a single project, may affect the portfolio as a whole.

Controls are essential when managing a project portfolio. Controls can be
understood as an attempt by the organization to influence people to take actions and
make decisions, which are consistent with the goals of the organisations. Controls can
be formal and informal. The informal control is contained by the development group
(clan) and the individual’s ability to monitor and evaluate it selves according to the
acceptable behaviour.

Agile project portfolio management can also be seen as handling a dynamic non-
linear system. The theory of Complex-adaptive systems (CAS) can be used to study
such systems [17]. In CAS self-organization emerges as agents interacts through
simple rules that can change and adapt. Feedback is the driving force of change.

Based on the article by Sweetman et al. and the discussion in the workshop, we
propose the following principle of large-scale agile portfolio management:

5. Continuously feedback from the portfolio to project levels enables the
teams and project members to take decisions that are consistent with the
goals of the large-scale agile portfolio.

6. Continuously feedback from the project level to the portfolio level enables
changing the portfolio to optimise the value of the large-scale agile
portfolio.

Scaling
Applying principles of large-scale agile development, requires an understanding of
the term “scaling”. Without a proper understanding of the term, inappropriate
methods may be applied. Power [18] argues that there are three contexts of agility and
scale: 1) agile use in a large organisation 2) agile used in a large development effort in
a large organizations, and 3) the large organization it selves is agile. Understanding
the context is essential when choosing the right approach for improving the agility of
the teams and organization.

Eklund et al. [19] argues that scaling agile software development in embedded
systems is a question of scaling agile in two dimensions: First increasing the involved
number of teams and utilize agile practices for mid- and long-range planning such as
release planning and road mapping. Second, scaling the system engineering activities
executed in each sprint, to a truly iterative practice instead of a stage-gated planned
approach. A cross-functional team must have the ability or support to perform
activities at several abstraction levels in a systems engineering V-model in each
iteration or sprint.

Based on the article by Power [18] and Eklund et al. [19] and the discussion in the
workshop, we propose the following principle of large-scale agile portfolio
management:

6 T. Dingsøyr and N.B. Moe

7. Describing the context for agility and scale is essential for understanding
how to improve agility in large-scale agile.

8. For large-scale embedded systems development, agility should scale both
with respect to the number of involved teams, and the systems
engineering activities in each iteration due to the co-dependency of
software and hardware development.

4 Revised Research Agenda

In the workshop, the researchers and practitioners revisited the research agenda
defined in 2013 [9]. The research agenda was first presented and then the topics
where discussed both from an academic and a practitioner perspective. The research
agenda was then modified before topics were given priority by the workshop
participants. The topics included on the agenda were categorized as high or medium
priority.

Table 2. Revised research agenda for large-scale agile software development

Priority Topic Description
High Organisation of large

development efforts
Organizational models, portfolio management,
governance, project management, agile product-
line engineering.

 Variability factors in scaling Identify what factors are important in large
projects that influence the development process.

 Inter-team coordination Coordination of work between teams in large-scale
agile development.

 Key performance indicators
in large development efforts

Identify appropriate metrics are to monitor
progress and support transparency.

 Knowledge sharing and
improvement

How to ensure feedback for learning, use of
knowledge networks and learning practices.

 Release planning and
architecture

Coordinating and prioritizing functional and non-
functional requirements, continuous delivery,
minimizing technical debt.

Medium Customer collaboration Practices and techniques for product owners and
customers to collaborate with developers in large-
scale projects.

 Scaling agile practices Determine which agile practices scale and which
do not. Understand why and when agile practices
scale.

 Agile contracts Understand if contracts can change the mind-set of
customers from upfront planning to agile
principles.
Uncover what legal limitations exist in contracts
that reduce agility in large projects.

 Agile transformation Efficient adoption of agile practices in large
projects.

 UX design Integration of user experience design in large
projects

 Towards Principles of Large-Scale Agile Development 7

With the suggested research agenda in Table 2, we hope this will foster a
continuous discussion over research agenda, and be an inspiration for future research.

Acknowledgement. The work on this article was supported by the SINTEF internal
project “Agile project management in large development projects”, by the Swedish
Knowledge Foundation under the KK-Hog grant 2012/0200, and by the project
Agile 2.0 which is supported by the Research council of Norway through grant
236759/O30, and by the companies Kantega, Kongsberg Defence & Aerospace and
Steria. We are grateful to Tor Erlend Fægri at SINTEF for comments on an earlier
version of this article, and to all workshop participants for engaging discussions.

References

[1] Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A Decade of Agile Methodologies:
Towards Explaining Agile Software Development. Journal of Systems and Software 85,
1213–1221 (2012)

[2] Rajlich, V.: Changing the paradigm of Software Engineering. Communications of the
ACM 49, 67–70 (2006)

[3] Williams, L., Cockburn, A.: Agile Software Development: It’s about Feedback and
Change. IEEE Computer 36, 39–43 (2003)

[4] Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile
methodologies. Communications of the ACM 48, 72–78 (2005)

[5] Freudenberg, S., Sharp, H.: The Top 10 Burning Research Questions from Practitioners.
IEEE Software, 8–9 (2010)

[6] Ingvaldsen, J.A., Rolfsen, M.: Autonomous work groups and the challenge of inter-group
coordination. Human Relations 65, 861–881 (2012)

[7] Moe, N.B., Smite, D., Sablis, A., Børjesson, A.-L., Andréasson, P.: Networking in a
large-scale distributed agile project. presented at the Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, Torino,
Italy (2014)

[8] Paasivaara, M., Lassenius, C., Heikkila, V.T.: Inter-team Coordination in Large-Scale
Globally Distributed Scrum: Do Scrum-of-Scrums Really Work? In: Proceedings of the
ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM 2012), pp. 235–238 (2012)

[9] Dingsøyr, T., Moe, N.B.: Research Challenges in Large-Scale Agile Software
Development. ACM Software Engineering Notes 38, 38–39 (2013)

[10] Laanti, M.: Characteristics and Principles of Scaled Agile. In: Dingsøyr, T., Moe, N.B.,
Counsell, S., Tonelli, R., Gencel, C., Petersen, K. (eds.) XP 2014 Workshops. LNBIP,
vol. 199, Springer, Heidelberg (2014)

[11] Conboy, K.: Agility From First Principles: Reconstructing the Concept of Agility in
Information Systems Development. Information Systems Research 20, 329–354 (2009)

[12] Dingsøyr, T., Fægri, T.E., Itkonen, J.: What is Large in Large-Scale? A Taxonomy of
Scale for Agile Software Development. In: Profes 2014, Helsinki (accepted for
publication at, 2014)

8 T. Dingsøyr and N.B. Moe

[13] Nord, R.L., Ozkaya, I., Kruchten, P.: Agile in distress: Architecture to the rescue. In:
Dingsøyr, T., Moe, N.B., Counsell, S., Tonelli, R., Gencel, C., Petersen, K. (eds.) XP
2014 Workshops. LNBIP, vol. 199, Springer, Heidelberg (2014)

[14] Eckstein, J.: Architecture in Large Scale Agile Development. In: Dingsøyr, T., Moe,
N.B., Counsell, S., Tonelli, R., Gencel, C., Petersen, K. (eds.) XP 2014 Workshops.
LNBIP, vol. 199, Springer, Heidelberg (2014)

[15] Paasivaara, M., Väättänen, O., Hallikainen, M., Lassenius, C.: Supporting a Large-Scale
Lean and Agile Transformation by Defining Common Values. In: Dingsøyr, T., Moe,
N.B., Counsell, S., Tonelli, R., Gencel, C., Petersen, K. (eds.) XP 2014 Workshops.
LNBIP, vol. 199, Springer, Heidelberg (2014)

[16] Nyfjord, J., Bathallath, S., Kjellin, H.: Conventions for Coordinating Large Agile
Projects. In: Dingsøyr, T., Moe, N.B., Counsell, S., Tonelli, R., Gencel, C., Petersen, K.
(eds.) XP 2014 Workshops. LNBIP, vol. 199, Springer, Heidelberg (2014)

[17] Sweetman, R., O’Dwyer, O., Conboy, K.: Control in Software Project Portfolios: A
Complex Adaptive Systems Approach. In: Dingsøyr, T., Moe, N.B., Counsell, S.,
Tonelli, R., Gencel, C., Petersen, K. (eds.) XP 2014 Workshops, vol. 199, Springer,
Heidelberg (2014)

[18] Power, K.: A Model for Understanding When Scaling Agile is Appropriate in Large
Organizations. In: Dingsøyr, T., Moe, N.B., Counsell, S., Tonelli, R., Gencel, C.,
Petersen, K. (eds.) XP 2014 Workshops, vol. 199, Springer, Heidelberg (2014)

[19] Eklund, U., Olsson, H.H., Strøm, N.J.: Industrial challenges of scaling agile in mass-
produced embedded systems. In: Dingsøyr, T., Moe, N.B., Counsell, S., Tonelli, R.,
Gencel, C., Petersen, K. (eds.) XP 2014 Workshops, vol. 199, Springer, Heidelberg
(2014)

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 9–20, 2014.
© Springer International Publishing Switzerland 2014

Characteristics and Principles of Scaled Agile

Maarit Laanti

Nitor Delta, Finland
Maarit.Laanti@nitor.fi

Abstract. The Agile Manifesto and Agile Principles are typically referred to as the
definitions of "agile" and "agility". There is research on agile values and agile practises,
but how should “Scaled Agility” be defined, and what might be the characteristics and
principles of Scaled Agile? This paper examines the characteristics of scaled agile, and
the principles that are used to build up such agility. It also gives suggestions as principles
upon which Scaled Agility can be built.

Keywords: large-scale agile software development, agile methods, software
engineering, project management, portfolio management, Scaled Agile.

1 Background and Models for Scaled Agile

Scaled agile has been an interest of the agile community for some years now [1]. Although
there exists already research on agile values [2] and practices [3], the agile community is
wondering if the principles listed in the agile manifesto scale as such or if something else is
needed [1].

The first models for scaling agility to the whole organization already exist. Scaled Agile
Framework [4, 5] was introduced to a wide audience in the Agile 2013 conference in August
2013 [6] and Disciplined Agile Delivery (DAD) [7] by Ambler in the International Conference
of Software Engineering in May 2013 [8]. Also other frames for scaling agile are emerging,
such as the Agility Path by Schwaber [9]. All the above-mentioned models have been created
by practitioners.

Scaled Agile and Agile Organizations have become hot topics since the launch of the Scaled
Agility Big Picture that describes an operational model for an Agile Organization, and the
Scaled Agile Academy that delivers certified training courses for Scaled Agility. The Scaled
Agile Framework (SAFe) is in use in multiple companies, including BMC Software, Mitchell
International, Trade Station Technologies, Discount Tire, John Deere, Valpak, Infogain and
SEI [10], and has become very popular. Scaled Agile Academy won the North American Red
Herring 100 competition that ranks new start-ups based on their success [11].

Early adopters of Scaled Agile Framework have reported significant improvement in terms
of productivity and quality. Improving productivity and quality is a key concern of any
organization, but there are also some global trends that amplify the reasons why organizations
are looking into ways to boost their performance.

1. Change or die. New innovations and new technologies come to markets with increased
speed. [12, 13]

10 M. Laanti

2. Constant need for further innovations. What is there is quickly copied – a need for constant
innovation to enable competitiveness. [14, 15]

3. Transaction cost is small or almost missing compared to traditional settings. Publishing new
(software) versions in the cloud is “free” once the cloud and the continuous deployment
infrastructure is there. This leads to a faster ROI circulation. [16, 17]

4. Markets are more unpredictable than before. There is a need to be flexible with investments
and capacity. [18, 19]

2 Principles Behind Scaled Agile Framework

Agile Software Development is most typically defined via the “Manifesto for Agile Software
Development” [20, 21]. When agile methods are taken into use in other organizational
disciplines (other than software development) it is typical to rely on other principles that are
compatible with Agile Principles. SAFe e.g. has practices that cover the Portfolio level
responsible for investments, Program level responsible for the execution of the planned
initiatives and Team level.

The Team level can work using Scrum method, Kanban method or their combination that
means that the SAFe Team level practices are compliant with Agile Principles like Scrum and
Kanban are. But the Agile Principles are not enough to tell how to most efficiently organize
Portfolio and Program levels. Thus SAFe builds on 2nd generation of Lean: Principles of the
Product Development Flow as defined by Reinertsen [16] to define new way of working
practices that are compliant with agile Team level practices for Program and Portfolio levels.
Agile changes when it scales, and lean principles provide a good source for this. For example, a
single agile team typically needs to worry only about one value chain, but lean principles
advice how to manage multiple value chains, which is an organizational level problem. On
Portfolio level the question is whether the organization has the right number of projects that
represent the best mix of opportunities [22].

2.1 Aspects of Scaled Agile

However, Scaled Agile means more than adding Adaptivity to Program and Portfolio level.
From various other sources we can find also other Aspects of Organizational-level agility, see
Table 1.

One could argue that in Table 1 the first three aspects (Strategic Agility, Business Agility,
and Agile Organization) are actually the same, only observed from different angles or
viewpoints. The list could also contain Agile Innovation [30] as one agile aspect. Oza and
Abrahamsson [30] define Agile Innovation as an aspect that combines innovation processes
with agile processes. Here it is omitted because creativity and innovation are seen as an
outcome of a Complex System tolerating internal conflicts [31]. Creativity and innovation can
thus be understood as intrinsic qualities of such an Agile Organization, and they could thus be
derived from other Agile Aspects as a result.

 Characteristics and Principles of Scaled Agile 11

Table 1. Different Aspects of Agility, detected in large organizations

 Agile Aspect Definitions

1 Strategic Agility The ability to continuously redirect and reinvent the core businesses

without losing momentum (in contrast to traditional portfolio

restructuring) by maintaining balance with strategic sensitivity (awareness

and attention), leadership unity (collective commitment), and resource

fluidity (people rotation and organizational structures), working as an

integrated real-time system [23].

2 Business Agility The marriage of strategy (awareness) and agility (tactics) in order to

create a responsive organization for business benefit [24] or a sum of

process agility and technical agility or a sum of speed and flexibility that

we can then, e.g., use to enable mobile business solutions [25]. Hugos

[24] states that all products have two components: the actual product and

an information component that adds value to a customer. The information

component can be understood as covering all the immaterial benefits that

the user gets when purchasing the specific product in question. A product

ecosystem provides similar (immaterial) added value to the customer;

thus here the additional value provided by a product ecosystem is

included in the Business Agility aspect.

3 Agile Organization The well-working combination of Informal Networks and the Formal

Organizational structure, for which agility is key and pervading, trust a

necessity [26].

4 People Agility The ability to shuffle work around the organization when the priorities or

focuses change — this is roughly similar to the “Resource Fluidity” [23].

5 Tools Agility The ability to have tools that support the agile way of working and can

easily be modified for a new purpose as the process changes [27].

6 Organizational

Culture

 The competing different organizational values and cultures related to

agile values and agile culture [28].

7 Agility of the Product

that is Built

The ability to modify, version, personalize, configure, or refresh the

product to reach new customer groups or please the existing user [29].

8 Agility of payoff

functions

Options thinking in regarding new investments. Balancing capacity into

most profitable work, instead of having people to work on designated

areas only. Prioritizing work based on future value [5].

12 M. Laanti

3 Definition for Sc

When studying the different
people have used agile thinkin
Design, Marketing, Portfolio M

Fig.

Fig. 2. Left. Negative feedback
system behaviour in electrical

How different disciplines w
what Scaled Agile is, i.e. we w
That would mean we set goals
between various initiatives. W
based, cumulative metrics. Tea
in-progress, and follow-up wit

caled Agile

Aspects of Large-Scale Agile the common nominator is
ng to solve problems in different disciplines, such as Architect
Management or Program Management.

1. Model for an Adaptive Organisation

k system behaviour in electrical circuits. Right. Positive feedb
circuits.

would be enhanced by agile thinking could be a way to de
would be adaptive on all levels of the organization, see Figur
s to an organization that are relative, and balance the investme

We would use rolling forecasting and adaptive planning and fl
ams would plan their work using increments or limiting the wo
th relative metrics.

that
ting,

back

efine
re 1.
ents
low-
ork-

Fig. 3. Left. Negative feedb
systems measure progress and

Traditionally, we have stee
and then measuring the gap be
known as a negative feedback
system operating under confor
adaptive system on the contrar
direction. These kinds of syste
suitable for volatile markets. S

An agile organization may
view with Goldman’s [63] defi

“a comprehensive respons
continually fragmenting, glo
configured goods and services
and growth-oriented. It is not
business hatches to ride out fe
winning: about succeeding in
share, and customers in the ve

4 Principles for Sc

The Scaled Agile Framework b
of the mentioned Aspects of A
of Principles could be a source
of Scaled Agile are e.g. To
Principles [35] that cover both
principles such as Blue Ocean

But what principles should
for Scaled Agile by studying th
as agile-minded. An alternati
some experience in Scaled Agi
present the list of principles w
been peer-reviewed and sugg
each principle, the origins of th

Characteristics and Principles of Scaled Agile

ack systems look for conformance. Right. Positive feedb
direction.

ered companies and projects by setting a target, creating a p
etween the progress and the plan. In electrical circuit design th
k loop, looking for a conformance and stability, see figure 2
rmance can never produce more than was originally planned.
ry is a positive feedback system that measures the output and
ems tend to either grow or shrink exponentially, being thus m

See Figure 3.
y be better at adapting to its surroundings. This is a compat
finition of agility:
e to the business challenges of profiting from rapidly chang
obal markets for high-quality, high-performance, custom
s. It is dynamic, context-specific, aggressively change-embrac
about improving efficiency, cutting costs, or battening down

fearsome competitive “storms”, it is about succeeding and ab
emerging competitive arenas, and about winning profits, ma
ry center of the competitive storms many companies now fear.

caled Agile

builds on Principles of Lean Flow thinking, but does not cove
Agility. The Agile Aspects and various other compatible sour
e for new process innovations. The possible sources for Princip
yota Principles [32, 33], or Lean [34] or Beyond Budge

h leadership principles and process principles, or various strate
[36]. See Appendix A for list of these related principles.
we choose? One could also find a number of potential princip

he values (if not the principles) of companies that people iden
ive way is to discuss with the people in organizations who h
ility and derive the principles from this experience. In Table 2

we believe could form the principles for Scaled Agile. This list
gestions incorporated from some experienced practitioners.
hought are also presented.

13

back

plan
his is
2. A
. An
d the
more

tible

ging,
mer-
cing,
n the
bout

arket
.”

r all
rces
ples

eting
egic

ples
ntify
have
2 we
 has
For

14 M. Laanti

Table 2. Principles of Scaled Agile

 Principle Explanation Origins
1 The content

is the key
Use the feedback from user and the
intrinsic knowledge based on expertise
and experience to create the best you can
dream of. Delighting the user is key to
success.

This principle combines Agile Principle
of Working software is the primary
measure of progress [20] with the first
values (Focus on the user and all else
will follow) of Google [37] and the first
value (Empathy for Customers/Users) of
Apple [38]. Great design as well as great
user experience can only be created
iteratively. Denning [39] emphasizes
NPS as primary metrics that correlate
with business success.

 2 Co-creation Groups are faster solving problems than
individuals. Let the software evolve
together, as the sum of the whole is more
than its parts. Software Development is a
Co-operative Game.

This principle combines the idea that
groups are faster solving problems than
individuals [40, 41] with Cockburn’s
research [42] that Software
Development is a co-operative game.
The co-creation is a synergistic, rather
than a reductionistic view.

3 Feedback is
the
fuel to
learning

Use rapid and concrete feedback on all
work done. Study what creates success
and do more of that.

Reinertsen [16] emphasises fast
feedback . The plan-do-check-act is the
essence of all lean improvement actions.

4 Business
Agility

Releases generate revenue. The business
model must dictate the release rate and
user interest defines the business model.
A pay per month basis business can only
be based on continuous releasing.
Release less often when the transaction
cost is high.

See Reinertsen [16] on transaction and
holding costs. Business model
refactoring [43] discusses different ways
of generating money in software
business.

5 Use of
Automation
as Leverage

Use automation to leverage the manual
effort needed. Develop the system, so
that it gives a better leverage for the
work unit done.

Use of autonomination is one key idea of
Taiichi Ohno from Toyota [44]. The idea
of depeloping a system, rather than
people, comes from Deming [45].

6 Scale Using
Fractals

Fractals are nature’s way to scale, and
fairly permanent structures. Use higher
abstraction levels and nested systems,
such as nested control loops.

Refer to ideas of Panarchic systems [46].

7 Avoid
Combina-
torial
Explosions

Complexity is best tamed by splitting it
to smaller pieces. Internal releases must
be as small as possible.

Adding more people to project slows
down the progress, as need for
communication grows almost
exponentially when the number of
interfaces increases [47]. Combinatorial
explosions come from mathematics [48,
49].

8 Sequence for
maximal
throughput

Modular architecture increases speed.
Find the maximum throughput for your
portfolio by balancing what can be done
in parallel, and what must be done in
sequence.

Refer to theories of value chain, and
value chain analysis [40]. Per
researcher’s experiences [5].

9 Appreciate
deep
knowledge

Only more than five years experience
creates deep knowledge. Use the best
experts to tackle the most important and
wicked problems. Check what new is
learned and that your knowledge is still
deep. Give creativity room.

Per researcher’s experiences. Also Apple
[38], Facebook [50] and Netflix [51] are
known to value experience.

 Characteristics and Principles of Scaled Agile 15

Table 2. (Continued)

10 Work
Leveling

Even distribution of work and
elimination of unnecessary work and
waiting time based on measured
performance. Work prioritization and
Kanban are the tools here.

According to lean thinking, muri
(uneven distribution of work) creates
mura (overburden) that creates muda
(waste). According to researcher’s
experience, the concepts are applicable
to both humans and machinery [52].

11 Simplicity Seek simplicity in solutions.

Simplicity is one of the Agile Principles
[20].

12 Situationality Use Pareto principle to avoid making
processes overly complex. Not all cases
need to be treated equally.

Refer to Beyond Budgeting Principles
[35].

13 Control
process,
not items

Create simple rules for decision-making,
instead of controlling each decision
individually. Make clear game rules.

Refer to Reinertsen [16] and Beyond
Budgeting [53] for distributed decision-
making.

14 Growth
mindset

Do more of what created success. Best
leaders do not reject faulty attempts, but
instead twist them to create more
success. Have a growth mindset and
improve what originally created success.
Failures are the secret source of success.

Systematic on actions. Refer how Pixar
works [54].
Refer to Mindset [55].

15 Listen to
employees,
they know
all the
problems

Value is created in the front-line. The
rate at which you are able to remove
impediments of progress or service
correlates with the improvement done
for business. Understand the problem
you are solving.

Unused employee creativity is one form
of waste [56]. Your people create the
service, the rest of the organization is
there to help them [57].

16 Detect and
use patterns

Use and apply patterns. Your problems
have already been solved by someone
and somewhere.

Refer to TRIZ for patterns to solve
product engineering problems [58].

17 Cost
innovation

Ease the user’s burden with a solution
that costs less. Provide better service or
fill the gaps between value chains. Do
not tie capital, allow flexibility in
investments and option thinking in
portfolio level. Optimize cost of
portfolio.

For cost innovation, refer to [14]. For
value chains refer to [40]. For agile
portfolio and cost thinking, refer to [59].

18 Utilize tacit
knowledge.

Crowdsource the strategy. Use tacit
knowledge of people to tell if you are
heading in the right direction or not.
When people feel proud of the outcome,
you are heading in the right direction.

According to researcher’s experience.
The idea is similar to lean Niko-niko
tables [60]

19 Learning
happens
between
teams

Create collective knowledge that share
the same vision and ambition. Collective
must have multitalented semi-permanent
teams combined with deep individual
knowledge.

See organizational learning theories
[61].

20 Fast is better
than
perfection.

Maximize the work undone. If it is not
broken, do not fix it. Tolerate small
imperfections. Fast is better than
perfection. The best is the enemy of the
good.

Lean startups are good when quickly
trying new ideas [62].

21 Prevent
problems
when small.

Success hides small problems. In order
to stay successful do not become
ignorant for small problems.

See Creativity, Inc. [54]

16 M. Laanti

5 Conclusions

This paper has examined Scaled Agile from Agile Aspects point of view, and presented a set of
Principles for Scaled Agile. Simply put, Scaled Agility can be understood as an attempt to
solve process problems other than software development on team level using agile mind-set
and tools (adaptivity).

The new kind of emerging and disappearing opportunities, shortening cycles times, constant
need for further innovations and disappearing transaction costs combined with cloud
technologies may make future organizations as growing and shrinking adaptive fractals. This
metaphor of an adaptive fractal may replace the old metaphor of an organization as a hierarchy
over time.

References

1. Dingsøyr, T., Moe, N.: Reserach Challenges in Agile Software Development. In: ACM
SIGSOFT Software Engineering Notes, vol. 38(5) (September 2013)

2. Fagerholm, F., Pagels, M.: Examining the Structure of Lean and Agile Values among
Software Developers. In: Cantone, G., Marchesi, M. (eds.) XP 2014. LBIP, vol. 179, pp.
218–233. Springer, Heidelberg (2014)

3. Doyle, M., Williams, L., Cohn, M., Rubin, K.S.: Agile software development in practice.
In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 32–45. Springer,
Heidelberg (2014)

4. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise. Addison-Wesley (2011) ISBN-10: 0-321-63584-1, ISBN-
13: 978-0-321-63584-6

5. Laanti, M.: Agile Methods in Large-Scale Software Development Organizations.
Applicability and model for adoption. Dissertation. University of Oulu (2013) ISBN 978-
952-62-0033-0

6. Blog post by Dean Leffingwell, Agile 2013 conference schedule (2013),
http://scaledagileframework.com/safe-at-agile-2013/,
http://agile2013.agilealliance.org/program/sessionschedule/
(accessed on July 1, 2014)

7. Ambler, S.: Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software Delivery
in the Enterprise. IBM Press (2012) ISBN-13: 978-0132810135

8. Brown, A.W., Ambler, S., Royce, W.: Agility at scale: Economic governance, measured
improvement, and disciplined delivery. In: Proceedings of the 2013 International
Conference on Software Engineering, pp. 873–881 (2013)

9. https://www.scrum.org/About/All-
Articles/articleType/ArticleView/articleId/691/The-Path-to-
Agility (accessed on July 01, 2014)

10. http://scaledagileframework.com/case-studies/ (accessed July 01, 2014)
11. http://www.prweb.com/releases/2014/05/prweb11892399.htm
12. Moore, G.: Escape Velocity: Free Your Company’s Future from the Pull of the Past.

Harper Business (2011) ISBN-13: 978-0062040893
13. Hitt, M.A., Keats, B.W., Demarie, S.M.: Navigating the new competitive landscape:

Building strategic flexibility and competitive advantage in the 21st century. The Academy
of Management Executive 12(4), 22–42 (1998)

14. Zeng, M.: Dragons at your door: How Chinese Cost Innovation Is Disrupting Global
Competition. Harvard Business Review Press (2007) ISBN-13: 978-1422102084

 Characteristics and Principles of Scaled Agile 17

15. Zhou, K.Z.: Innovation, imitation, and new product performance: The case of China.
Industrial Marketing Management 35(3), 394–402 (2006)

16. Reinertsen, D.: The Principles of Product Development Flow. Second Generation Lean
Product Development. Celeritas Publishing (2009) ISBN-10: 1935401009

17. Abrahamsson, P.: Speeding up embedded software development. ITEA Innovation report
(2007)

18. Christopher, M.: The Agile Supply Chain. Industrial Marketing Management 29, 37–44
(2000)

19. Stalk, G.: Time – the next source of competitive advantage. Harward Business Review
(July/August 1988)

20. Agile Manifesto (2001), http://www.agilemanifesto.org (accessed on July
2011 and May 2012)

21. Fowler, M., Highsmith, J.: The Agile Manifesto. Software Development (August 2001)
22. Stettina, C.J., Hörz, J.: Agile Portfolio Management: An empirical perspective of practice

in use. International Journal of Project Management (April 2014)
23. Doz, Y., Kosonen, M.: Fast Strategy. How Strategic Agility will help You Stay ahead of

the Game. Wharton School Publishing (2008) ISBN: 978-0-273-71244-2
24. Hugos, M.H.: Business Agility. Sustainable Prosperity in a Relentlessly Competitive

World. Microsoft Executive Leadership Series. John Wiley & Sons, Inc. (2009) ISBN 978-
0-470-41345-6

25. Evans, N.D.: Business Agility. Strategies for Gaining Competitive Advantage through
Mobile Business Solutions. Prentise Hall (2002) ISBN-0-13-066837-0

26. Atkinson, S.R., Moffat, J.: The Agile Organization: From Informal Networks to Complex
Effects and Agility. Information Age Transformation Series. Library of Congress
Cataloging-in-Publication Data (2005) ISBN 1-893723-16-X

27. West, D., Hammond, J.: The Forrester Wave: Agile Development Management Tools, Q2
2010. Forrester Research (2010)

28. Iivari, J., Iivari, N.: Organizational Culture and the Deployment of Agile Methods: The
Competing Values Model View. In: Agile Software Development, Current Research and
Future Directions. Springer (2010) ISBN 978-3-642-12574-4

29. Grant, T.: Tech Vendors Supporting Agile Must Be Adaptive. For Technology Product
Management & Marketing Professionals. Forrester Research (2010)

30. Oza, N., Abrahamsson, P.: Building Blocks of Agile Innovation. Booksurge Llc. (2009)
ISBN-10: 1439260982, ISBN-13: 978-1439260982

31. Appelo, J.: Management 3.0. Leading Agile Developers, Developing Agile Leaders.
Addison-Wesley (2011) ISBN-10: 0-321-71247-1, ISBN-13: 978-0-321-71247-9

32. http://www.toyota-
global.com/company/vision_philosophy/guiding_principles.html
/ (accessed September 08, 2014)

33. Spear, S.J.: Learning to Lead at Toyota. Harvard Business Review 82(5), 78–91 (2004)
34. Poppendieck, M.: Principles of Lean thinking. IT Management Select 18 (2011)
35. Beyond Budgeting Principles, http://www.bbrt.org/beyond-budgeting/bb-

principles.html (accessed July 22, 2014)
36. Kim, W.C.: Blue Ocean Strategy: How to Create Uncontested Market Space and Make

Competition Irrelevant. Harvard Business Review Press (2005) ISBN-13: 978-
1591396192

37. Google values, http://www.google.com/about/company/philosophy/
(accessed July 05, 2014)

38. Apple values, http://www.seanet.com/~jonpugh/applevalues.html
(accessed July 05, 2014)

39. Denning, S.: Leader’s Guide to Radical Management Reinventing the Workplace for the
21st Century. JosseyBass (2010) ASIN: B00CNWRJS4

18 M. Laanti

40. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Addison Wesley (2003) ISBN-0-321-15078-3

41. Surowiecki, J.: The Wisdom of Crowds. Anchor (2005) ISBN-13: 978-038572707
42. Cockburn, A.: Agile Software Development: The Cooperative Game, 2nd edn. Addison-

Wesley (2006) ISBN-10: 0321482751
43. Osterwalder, A.: Business Model Generation: A Handbook for Visionaries, Game

Changers, and Challengers. John Wiley and Sons (2010) ISBN-13: 978-0470876411
44. Ohno, T., Miller, J.: Taiichi Ohno’s Workplace Management. Gemba Press (2007) ISBN-

13: 978-0978638757
45. Lazko, W.J., Saunders, D.: Four Days with Dr. Deming: A Strategy for Modern Methods

of Management. Prentice Hall (1995) ISBN-13: 978-0201633665
46. Holling, C.S.: Understanding the complexity of Economic, Ecological, and Social Systems
47. Brooks, F.: The Mythical Man-Month: Essays on Software Engineering. Addison Wesley

(1995) ISBN-13: 978-0201835953
48. Krippendorff, K.: Combinatorial Explosion. Web Dictionary of Cybernetics and Systems.

Principia Cybernetica Web (accessed on July 03, 2014)
49. Grindal, M.: Handling Combinatorial Explosion in Software Testing. Linköping Studies in

Science and Technology. Dissertation, 1073 (2007)
50. Facebook values, https://www.facebook.com/careers/ (accessed on May 25,

2014)
51. Netflix values http://jobs.netflix.com/ (accessed on May 25, 2014)
52. Smits, H.: The impact of scaling on planning activities in an agile software development

center. In: 40th Annual Hawaii International Conference on System Sciences, HICSS
2007, pp. 274c–274c. IEEE (2007)

53. Bogsnes, B.: Implementing Beyond Budgeting: Unlocking the Performance Potential
(2008) ISBN-13: 978-0470405161

54. Catmull, E., Wallace, A.: Creativity, Inc.: Overcoming the Unseen Forces That Stand in
the Way of True Inspiration (2014) ISBN-13: 78-0812993011

55. Dweck, C.: Mindset: How you can fulfill your potential. Amazon Digital Services, Inc.
ASIN: B005RZB65Q

56. Cawley, O., Wang, X., Richardson, I.: Lean Software Development–What Exactly Are We
Talking About? In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol,
K.-J. (eds.) LESS 2013. LNBIP, vol. 167, pp. 16–31. Springer, Heidelberg (2013)

57. Vineet, N.: Employees First, Customers Second: Turning Conventional Management
Upside Down. Harvard Business Review Press (2010) ISBN-13: 978-1422139066

58. Gadd, K.: TRIZ for Engineers: Enabling Inventive Problem Solving. Wiley (1887) ISBN-
13: 978-0470741887

59. Laanti, M., Sirkiä, R.: Lean and agile financial planning, BBRT research paper, work in
progress

60. Medinilla, Á.: Self-Organization. In: Agile Management, pp. 99–117. Springer, Heidelberg
(2012)

61. Argyris, C.: On Organizational learning. Wiley-Blackwell (1999) ISBN-13: 978-
0631213093

62. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Business (2011) ISBN-13: 978-
0307887894

63. Goldman, S., Naegel, R., Preiss, K.: Agile Competitors and Virtual Organizations:
Strategies for Enriching the Customer. Wiley (1994) ISBN 0471286508

 Characteristics and Principles of Scaled Agile 19

Appendix A. List of Related Principles

 Source Principles

1 Toyota [32] 1. Honor the language and spirit of the law of every nation and
undertake open and fair business activities to be a good corporate
citizen of the world.

2. Respect the culture and customs of every nation and contribute to
economic and social development through corporate activities in
their respective communities.

3. Dedicate our business to providing clean and safe products and
to enhancing the quality of life everywhere through all of our
activities.

4. Create and develop advanced technologies and provide
outstanding products and services that fulfill the needs of
customers worldwide.

5. Foster a corporate culture that enhances both individual
creativity and the value of teamwork, while honoring mutual
trust and respect between labor and management.

6. Pursue growth through harmony with the global community via
innovative management.

7. Work with business partners in research and manufacture to
achieve stable, long-term growth and mutual benefits, while
keeping ourselves open to new partnerships.

2 Lean Thinking [34] 1. Specify value from the standpoint of the end customer by product
family.

2. Identify all the steps in the value stream for each product family,
eliminating whenever possible those steps that do not create value.

3. Make the value-creating steps occur in tight sequence so the product
will flow smoothly toward the customer.

4. As flow is introduced, let customers pull value from the next
upstream activity.

5. As value is specified, value streams are identified, wasted steps
are removed, and flow and pull are introduced, begin the process
again and continue it until a state of perfection is reached in
which perfect value is created with no waste.

3 Beyond Budgeting

[35]
Governance and transparency

1. Values
Bind people to a common cause; not a central

plan

2. Governance
Govern through shared values and sound

judgement; not detailed rules and regulations

3.

Transparency

Make information open and transparent; don't

restrict and control it

Accountable teams

4. Teams
Organize around a seamless network of

accountable teams; not centralized functions

5. Trust
Trust teams to regulate their performance; don't

micro-manage them

6.
Accountability

Base accountability on holistic criteria and peer
reviews; not on hierarchical relationships

20 M. Laanti

Goals and rewards

7. Goals
Set ambitious medium-term goals, not short-term
fixed targets

8. Rewards
Base rewards on relative performance; not on
meeting fixed targets

Planning and controls

9. Planning
Make planning a continuous and inclusive
process; not a top-down annual event

10.
Coordination

Coordinate interactions dynamically; not through
annual budgets

11. Resources
Make resources available just-in-time; not just-in-
case

12. Controls
Base controls on fast, frequent feedback; not
budget variances

4 Blue Ocean [36] 1. Reconstruct market boundaries. This principle identifies the paths by
which managers can systematically create uncontested market space
across diverse industry domains, hence attenuating search risk. Using a
Six Paths framework, it teaches companies how to make the competition
irrelevant by looking across the six conventional boundaries of
competition to open up commercially important blue oceans.
2. Focus on the big picture, not the numbers. This principle, which
addresses planning risk, presents an alternative to the existing strategic
planning process, which is often criticized as a number-crunching
exercise that keeps companies locked into making incremental
improvements. Using a visualizing approach that drives managers to
focus on the big picture, this principle proposes a four-step planning
process for strategies that create and capture blue ocean opportunities.
3. Reach beyond existing demand. To create the greatest market of new
demand, managers must challenge the conventional practice of aiming for
finer segmentation to better meet existing customer preferences, which
often results increasingly small target markets. Instead, this principle,
which addresses scale risk, states the importance of aggregating demand,
not by focusing on the differences that separate customers but rather by
building on the powerful commonalities across noncustomers.
4. Get the strategic sequence right. The fourth principle describes a
sequence that companies should follow to ensure that the business model
they build will be able to produce and maintain profitable growth. When
companies follow the sequence of (1) utility, (2) price, (3) cost, and (4)
adoption requirements, they address the business model risk.
The remaining two principles address the execution risks of blue ocean
strategy.
5. Overcome key organizational hurdles. Tipping point leadership shows
managers how to mobilize an organization to overcome the key
organizational hurdles that block the implementation of a blue ocean
strategy. This principle mitigates organizational risk, outlining how
leaders and managers can surmount the cognitive, resource, motivational,
and political hurdles in spite of limited time and resources.
6. Build execution into strategy. This principle introduces fair process to
address the management risk associated with people’s attitudes and
behaviors. Because a blue ocean strategy represents a departure from the
status quo, fair process is required to facilitate both strategy making and
execution by mobilizing people for the voluntary cooperation needed for
execution. By integrating execution into strategy formulation, people are
motivated to act.

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 21–29, 2014.
© Springer International Publishing Switzerland 2014

Architecture in Large Scale Agile Development

Jutta Eckstein

Independent, Gaussstr. 29, 38106 Braunschweig, Germany
Jutta@JEckstein.com

Abstract. In order to welcome changing requirements (even late in development)
agile development should enable the architecture to incorporate these changes and
therefore to emerge over time. This implies not finalizing the architecture upfront.
Moreover, in small agile teams it is assumed that there is no dedicated role for an
architect – instead the whole team should be responsible for the architecture. In
large-scale agile development the requirement for an emergent architecture still
holds true. However, it is unrealistic to ask members of e.g. ten teams to be
equally responsible for the architecture. Moreover, the role and support for the
architecture depends not only on the degree of the size but as well on the degree
of complexity. In this paper I report on the experience using different models for
supporting emergent architecture in large environments that take the degree of
complexity into account.

Keywords: agile methods, architect, change, chief architect, complexity,
community of practice, emergent architecture, large-scale agile software
development, project management, software engineering, technical consulting
team, technical service team, uncertainty.

1 Introduction

Agile development focuses on maximizing the business value at all times. In small
agile development this is addressed by a cross-functional team, which Scrum called a
Scrum Team [1]. The developers on such a team encompass all competencies, skills,
and know-how needed to deliver frequently product increments. There are no explicit
roles like tester or database expert for the developers in order to stress the joint
responsibility for the delivery. This structure allows such a team to work
independently in a self-organized manner.

Scaling up agile development does not change the goal of maximizing the business
value continuously. However, for large-scale agile development it is crucial to
provide a supporting team structure. Thus, instead of structuring teams according to
know-how (like user interfaces or databases), activities (like business analysis or
testing), or components (as defined by i.e. architectural layers), teams have to be
structured –cross-functional– around the business value. Only this allows teams in
large-scale agile development to self-organize and to deliver business value
frequently and regularly. Such teams are called domain or feature teams [2, 3] and are
defined by Larman and Vodde as:

22 J. Eckstein

“A feature team […] is a long-lived, cross-functional, cross-component team
that completes many end-to-end customer features–one by one.” ([2], p. 549).

This inherent focus on business value by the team’s structure contrasts structuring
teams based on components as suggested by Leffingwell, who states:

“Components are the architectural building blocks of large-scale systems.
Agile teams should organize around components, each of which can be
defined/built/tested by the team that is accountable for delivering it.” ([4], p.
204).

Thus, instead of structuring the teams around the business value, Leffingwell

suggests to structure them around architectural components. Consequently, he
suggests for scaling-up and implementing what he calls an architectural runway to
add more component teams. Yet, large-scale agile development should concentrate on
delivering primarily customer value and not primarily components.

However, focusing on the business value still requires an architecture that allows
adding features over time. Ideally, we would know upfront what kind of features will
have to be added later by knowing the intent of the product [5]. Yet, as Kruchten
clarifies:

“In reality, in most software development projects, we define Intent
gradually, and it tends to evolve throughout the project under various
pressures and demands for changes.” ([5], p. 7)

This implies that it is not possible to finalize the architecture upfront because the

added features might force an architectural change. Thus, focusing on the business
value requires that the architecture emerges or rather changes over time. In small agile
teams, it is the whole team’s responsibility to ensure the evolvement of the
architecture without a dedicated role for an architect [1]. In large-scale agile
development it is unrealistic to ask all members of the undertaking to decide on
architectural issues jointly, because this could be a hundred-plus people.

In this paper, I will examine the different possibilities for supporting emergent
architecture in a large environment. The architecture is labeled as emergent, for
emphasizing the understanding that it is not possible to stabilize the architecture at the
beginning of the undertaking. This means the architecture will change over time.
After clarifying architectural complexity, section two will focus on three different
models: First on the support of a relatively stable architecture which will only have to
adjust to a few changes, thus on low complexity; Next on the opposite–the support for
the creation of a new architecture which is accompanied by high uncertainty and
frequent changes and therefore on high complexity; And finally on the complexity in
between–the support for an architecture that needs to be adaptive in order to deal with
some changes and a medium degree of uncertainty. In section three further issues are
discussed and section four provides a final conclusion.

 Architecture in Large Scale Agile Development 23

2 Supporting Architecture

As Leffingwell mentions:

“The larger and more complex the system and the higher the criticality of
failure, the more the teams will need to base their daily decisions on an
agreed-upon and intentional architecture […].” ([4], p. 202).

Leffingwell does not explain what is meant by complex, yet the statements still

holds true. For example, it makes a difference if the system a team is working on is
about to be created, still tremendously changing, or if it is quite stable. These
differences mark the complexity of the system and subsequently as well of the
architecture [6]. Kruchten emphasizes moreover, that among others the pre-existence
of a stable architecture and the rate of change are important dimensions that define the
context for a project [5]. The complexity that is important for addressing architectural
support is expressed by the relationship between the required changes and the existing
uncertainties (see Fig. 1).

Fig. 1. Complexity of architecture based on changes and uncertainties

24 J. Eckstein

This expression of complexity is related to the so-called Landscape Diagram [7]
which has originally been created by Stacey [8] and then further developed by
Zimmerman, Lindberg, and Plsek [9]. The three subsequent models presented below,
deal with those different kinds of architectural complexity.

As figure 1 shows, the complexity of the architecture is defined on the one hand by
the uncertainty (x-axis) and on the other hand by the requests for changes (y-axis).
According to Kruchten, uncertainty is defined by the uncertainty in the intent, e.g. the
business domain; in the work, e.g. the tools or environment; the people, e.g. the
know-how; and the final product [5]. For example, the business domain could be new
to the developers and/or to the customer, in case the customer wants to enter a new
market segment. The technology used to implement the product could be new to the
team and could be additionally of cutting-edge without a lot of experiences by other
projects, people, or companies. In these cases, it is very likely that uncertainty is
experienced as high. The rate of change, mainly in terms of changing (business)
requirements, but also in terms of tools or people influences the stability of the
architecture. Thus, the architecture will be the more unstable and complex, the more
changes and the higher the uncertainties are.

Subsequently will be examined what kind of support is useful for an architecture
that falls in an area with only a few changes and low uncertainties; for one that is
located in the area with a high rate of changes and uncertainties; and finally one that
sits in between with moderate changes and uncertainty.

Examining complexity this way shall help to decide on the necessary architectural
support. Thus, in relation to George Box’ famous quote: “Essentially, all models are
wrong, but some are useful.” –here different models are more or less useful depending
on the complexity.

2.1 Supporting a Stable Architecture

Typically, long-term projects and long-term product development do not require
severe changes in the architecture once they are on track1. This kind of development
is marked by high certainty in terms of the technology used and of the business
requested.

Very often the major concern is to keep the architecture stable and allowing it to
evolve gradually with subsequent business needs. We have solved the support of such
an architecture in two different ways by either a community of practice or by a chief
architect:

Community of Practice. A community of practice (CoP, see [10]) has been
suggested also by Larman and Vodde for large scale agile development. In particular,
they propose a design/architecture community of practice and define CoP as “an
organizational mechanism to create virtual groups for related concerns.” ([2], p. 313).

1 Thanks to Philippe Kruchten for the following additional remark that even for the ones that

are not on track, typically no severe changes are required, because performing the changes is
too costly and risky (Kruchten’s comment while reviewing an earlier version of this paper).

 Architecture in Large Scale Agile Development 25

The idea is that every cross-functional feature team covers the role of an architect.
This is a role and is therefore not bound to a specific person. However, in practice
quite often only a few team members are willing and skilled for taking this role.
Whenever an architectural decision has to be made, these “architects” of the diverse
feature teams assemble (this could as well happen virtually) and decide upon the
request. Sometimes the feature teams decide that the CoP meets regularly in order to
monitor any changes and possible improvements within the architecture.

Chief Architect. Instead of a CoP a single person can provide the main support for
the architecture. Next to being technologically skilled, the main requirement for this
person is to be as well socially skilled. The chief architect (sometimes also called
architecture owner) needs to work closely with all different feature teams, which
requires architecting by wandering around [11]. This approach allows the chief
architect (a) to understand the needs of the teams; (b) to ensure the teams understand
the architecture; and (c) to help improving the architecture.

2.2 Supporting an Unstable Architecture

Starting a new project or creating a new product involves most often many
uncertainties. Those uncertainties refer to the technology used, the understanding of
the requirements, and making the “right” decisions both business and technology
wise.

Additionally very often this uncertainty is accompanied by the fact that the team is
newly assembled and has to go through different phases until it performs [12].
Moreover, if the undertaking would be started by e.g. ten teams the system would as
well be split technology-wise into ten parts [13]. Thus, starting from day one e.g. with
ten feature teams is not recommended.

Instead in order to scale, the system has to be enabled to scale. The recommended
model for an unstable and heavily changing architecture is to establish a technical
service team:

Technical Service Team. Instead of spreading the support for the architecture across
all feature teams by a CoP or by asking a single person to provide that support as the
chief architect, this role is taken in the context of high complexity by a specific team:
A technical service team [3]. The key is that this team provides a service to the feature
teams – or in other words, the customers of this team are the feature teams. This
means in turn that the feature teams have to act as well as a customer and provide a
product owner for that team, who decides on the priorities of the (technical) stories
the feature teams require. This is the big difference to a non-agile architecture team
which defines the architecture upfront (and sometimes also builds it) but is not driven
by the feature teams’ requests. Such kind of a non-agile architecture team is often
regarded as being disconnected from reality and project members think of them of
being located on an ivory tower far away from the actual needs of the projects.

Sometimes the technical service team is as well the starting team [14]. In such a
situation, this team creates the base architecture founded on i.e. three key user stories

26 J. Eckstein

which will be implemented as well by this team. Only after implementing the base
architecture along with these i.e. three user stories, the feature teams will join the
undertaking. Then still, depending on the complexity either the technical service team
remains as described above and will be guided by a product owner representing the
feature teams or the technical service team dissolves in the diverse feature teams.

2.3 Supporting an Adaptive Architecture

If both the requested changes and the uncertainty are moderate, the architecture needs
as well moderate support in order to being adaptive. In this situation the architecture
is not really stable.

Therefore, it needs more attention than just by a single person as the chief
architect. The burden would also be too high for a CoP, because the members of the
CoP would be required to synchronize continuously and to focus almost only on
architectural issues. As a result, the feature teams would not be able to concentrate on
the business value, because at least one of their members would have to concentrate
on the architecture at all times. Thus, the recommended model is to establish a
technical consulting team:

Technical Consulting Team. This is a mix of the chief architect or the CoP and the
technical service team. So like the chief architect, the individual members of this team
provide their support by wandering around. And like the CoP, the individual members
of the technical consulting team will most often offer their support (in terms of
consulting, coaching, mentoring, and pair programming) to a specific feature team
during an iteration. Thus, a member of the technical consulting team will act as a
regular feature team member during the course of an iteration and is as such as
responsible for (or committed to) the iteration goal as every other feature team
member. Yet, for the next iteration this person might support a different feature team.

But unlike the CoP, the technical consulting team is typically smaller in number
than the amount of feature teams involved in the undertaking. E.g. in one project we
had fifteen feature teams, yet only seven team members in the technical consulting
team. Thus, not every feature team had the support of a technical consulting team
member in each and every iteration. Supporting every feature team in each iteration
this is typically not needed for an architecture of medium complexity.

In case a major change in the architecture is required, the technical consulting team
provides this change as a service to the feature teams by implementing it, just like the
technical service team.

3 Discussion

Different levels of complexity require different models for supporting the emergence
of the architecture. See figure 2 for an overview of these different models.

 Architecture in Large Scale Agile Development 27

Fig. 2. Different models for architectural support depending on the complexity

The consequences of using the different models in other circumstances than
recommended should not be underestimated: For example, if the system experiences
many changes accompanied with high uncertainty, a single chief architect would be
overwhelmed with the demands. For the feature teams this would mean, either to wait
for a decision or to come up with an own one. The latter is not per se a bad idea, yet it
could create the problem that different feature teams come up with contradicting
solutions to similar problems. This results in breaking the conceptual integrity which
in turn makes it harder for both implementing new functionality and maintaining the
system.

The diverse teams (technical service team, technical consulting team, or CoP) that
support the architecture can organize themselves in different ways. Some of those
teams might decide on requiring a leader for the team. This person is then often
perceived as the chief architect. However, it is important to distinguish this role from
the chief architect in a stable environment who is not the leader of a particular team.

In many cases the complexity will change over time (see Fig. 3). Different
developments of the complexity can happen, yet most often the complexity will
decrease over time [5]. Most likely the uncertainty will lower, because the business
domain and the technology will be better known. Frequently this results in fewer
changes, because the uncertainty decreases for the customer as well over time.

28 J. Eckstein

As figure 3 shows, the decrease of the complexity over time affects the required
architectural support. Thus, often large-scale agile development starts with the
support of a technical service team. This team might even be the single starting team
before the whole undertaking will be scaled up. As the architecture is getting more
and more stable and less architectural services are required for the feature teams, the
technical service team will be shrunk and turned into a technical consulting team.
While the architecture is stabilizing even more and even fewer changes are required,
the technical consulting team disappears – maybe one member remains as the chief
architect, maybe all members will become members of the diverse feature teams.
Either those people or different members of the feature teams will then ensure the
conceptual integrity of the architecture through a CoP.

Fig. 3. Complexity decreases over time

4 Closing

Depending on the complexity –defined by the degree of uncertainty and requested
changes– different models have been presented for supporting architectural support in
large-scale agile development. All of these models have been applied by the author.
Those models have not only been used when working on project or product
development, yet as well when scaling to product line development or supporting an

 Architecture in Large Scale Agile Development 29

organization-wide architecture. Therefore, these models have as well been proven in
praxis when scaling up to the whole organization and combining the efforts on
supporting different architectures on a higher level.

For large-scale agile development it is essential to provide architectural support
without losing focus on the business value. Yet, concentrating on the business value
only leads to the loss of conceptual integrity. Thus, both dimensions –business and
technology (the latter in terms of architecture) – have to be taken into account for
large-scale agile development.

References

1. Sutherland, J., Schwaber, K.: The Scrum Guide. The Definitive Guide to Scrum: The
Rules of the Game,
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/
2013/Scrum-Guide.pdf

2. A survey of current research on online communities of practice. Harvard Business School
Press, Boston (2002)

3. Larman, C., Vodde, B.: Practices for Scaling Lean & Agile Development: Large, Multisite,
and Offshore Product Development with Large-Scale Scrum. Addison-Wesley, Upper
Saddle River (2010)

4. Eckstein, J.: Agile Software Development in the Large: Diving into the Deep. Dorset
House Publishing, New York (2004)

5. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Addison-
Wesley, Upper Saddle River (2007)

6. Kruchten, P.: The frog and the octopus: A conceptual model of software development
(2011), http://arxiv.org/pdf/1209.1327 (last accessed: June 18, 2014)

7. Eckstein, J.: Roles and Responsibilities in Feature Teams. In: Šmite, D., Moe, N.B.,
Ågerfalk, P.J. (eds.) Agility Across Time and Space: Implementing Agile Methods in
Global Software Projects, pp. 289–299. Springer, Heidelberg (2010)

8. Holladay, R., Quade, K.: Influencing Patterns for Change. CreateSpace Independent
Publishing Platform (2008)

9. Stacey, R.D.: Strategic Management and Organizational Dynamics, 2nd edn. Pitman
Publishing, Berlin (1996)

10. Wenger, E.C., McDermott, R., Snyder, W.M.: Cultivating Communities
11. Zimmerman, B., Lindberg, C., Plsek, P.: Edgeware: lessons from complexity science for

health care leaders. V H A Incorporated (Curt Lindberg, Plexus Institute) (2008)
12. Peters, T., Waterman, R.H.: Search of Excellence, 2nd edn. Profile Books Ltd. (2004)
13. Tuckman, B.: Developmental sequence in small groups. Psychological Bulletin (63)

(1965)
14. Conway, M.E.: How Do Committees Invent? Datamation 14(4) (1968)
15. Eckstein, J.: Agile Software Development with Distributed Teams: Staying Agile in a

Global World. Dorset House Publishing, New York (2010)

Industrial Challenges of Scaling Agile
in Mass-Produced Embedded Systems

Ulrik Eklund1, Helena Holmström Olsson1, and Niels Jørgen Strøm2

1 Dept. Computer Science, School of Technology, Malmö University
SE-205 06 Malmö, Sweden

{ulrik.eklund,helena.holmstrom.olsson}@mah.se
2 Grundfos A/S

DK-8850 Bjerringbro, Denmark
njstroem@grundfos.com

Abstract When individual teams in mechatronic organizations attempt
to adopt agile software practices, these practices tend to only affect mod-
ules or sub-systems. The short iterations on team level do not lead to
short lead-times in launching new or updated products since the overall
R&D approach on an organization level is still governed by an overall
stage gate or single cycle V-model.

This paper identifies challenges for future research on how to combine
the predictability and planning desired of mechanical manufacturing with
the dynamic capabilities of modern agile software development. Scaling
agile in this context requires an expansion in two dimensions: First, scal-
ing the number of involved teams. Second, traversing necessary systems
engineering activities in each sprint due to the co-dependency of software
and hardware development.

Keywords: software engineering, agile development, agile methods,
large-scale agile software development, project management, embedded
systems, embedded software, software and hardware co-dependency.

1 Introduction

The embedded systems industry is currently in significant transition, i.e. markets
becoming more fast-changing and unpredictable, customer requirements becom-
ing increasingly complex, rapidly advancing technologies and the constant need
to shorten time-to-market of new products. Moreover, while the ability to man-
ufacture high-quality mechanical systems is still critical, it is no longer the only
differentiator and what makes a company competitive. During the last two dec-
ades, electronics and software have been introduced into many products, and
embedded systems companies are becoming increasingly software-intensive with
software being the key differentiator [1]. This requires a significant shift in the
ways-of-working within these companies, and currently many large companies
within the embedded systems domain struggle with the alignment of hardware
and software development cycles and practices [1].

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 30–42, 2014.
c© Springer International Publishing Switzerland 2014

Scaling Agile in Embedded Systems 31

In response to this, agile methods advocating flexibility, efficiency and speed
are seen as an increasingly attractive solution [2], and highly relevant also in
the embedded Systems domain [3]. Typically, agile methods emphasize the use
of short iterations and incremental development of small features, with the in-
tention to increases the ability for companies to accommodate fast changing
customer requirements as well as turbulent and fluctuating market needs [2,4].

However, when agile practices are introduced for software teams in a mechat-
ronics environment without careful consideration it just results in different devel-
opment cycle-times for hardware, and even more so in mechanics, compared to
software development, with the longest cycle determining the lead-time for the
complete product. For production equipment depending on the product design
it becomes even worse, because investments and lead-times for the manufactur-
ing setup are even more difficult to do with short iterations. This is the main
difference between scaling agile in domains where only software teams are con-
cerned, and in embedded domains also concerned with mechanical design and
manufacturing.

This position paper presents a set of research challenges relevant when agile
practices are scaled beyond a single team in organisations developing and deliv-
ering mass-produced embedded systems and into combining mechanical, hard-
ware and software disciplines in the agile practices. The challenges are based
on concerns of member companies in a Nordic research partnership with eight
international industry companies and three universities.

2 Empirical Data

The main empirical data source for the challenges identified in this paper was a
workshop conducted within a Nordic software research partnership1 in Novem-
ber 2013, where seven companies presented their most important research chal-
lenges within software engineering. Three of the companies mentioned a set of
challenges with agile development in large organisations as a top priority for
future research within the partnership. The challenges presented in this paper
are a synthesis of these presented challenges, elucidated by examples from two
of the companies; Grundfos and Volvo Cars.

Grundfos is the world’s largest manufacturer of circulator pumps, many con-
trolled by embedded software. The examples provided for this paper from Grund-
fos serves to highlight the challenges all companies experienced in combining
agile and waterfall development in a mechatronics environment; where there are
different development cycle-times for hardware, and even more so in mechan-
ics, compared to software. For production equipment depending on the product
design it becomes even worse because investments and lead-times for the man-
ufacturing setup are even more difficult to do with short iterations.

The synthesized challenges were also corroborated by data from three in-depth
case studies on agile development at Volvo Cars, another of the partnership
companies; the cases being published in e.g. [5].
1 http://www.software-center.se

http://www.software-center.se

32 U. Eklund, H. Holmström Olsson, and N.J. Strøm

3 Background

3.1 Software in Embedded Products

Software is prevalent in many products manufactured today; cars, washing ma-
chines, mobile phones, airplanes, satellites and industrial devices, e.g. pumps [6].
The embedded software controls the behaviour of the product and is most often
critical for the success of the product. Typically these products are developed
in large, and sometimes very complex, industrial projects with a more or less
elaborate R&D process governed by a stage gate model to arrive at the finished
design of the product. Even though many companies are in a transition towards
delivering services deployed on already delivered hardware and mechanics, they
still heavily rely on the financial transaction taking place when the physical
product goes from the company to the customer.

The software in an embedded system increases in size exponentially over
time [6], and software is increasingly so being a crucial element and one of
the most important drivers for innovations, e.g. in the car industry [7] and the
pump industry. But the manufacturing and delivery setup of a new car or pump
model is presently still a heavier investment than the software budget. A product
example from Grundfos shows that the software budget for a new pump was
between 5 and 10% of the total project investments.

The most common approach to develop embedded software, according to a
mapping study [8], is to use an integration-centric approach, summarized as:
Early in the development cycle requirements are allocated to software and hard-
ware components. This is usual done by a central systems engineering team or
architect. A number of development teams then implement the requirements al-
located to their component. All of the teams are usually synchronized according
to a common project model. After the finalization of the components the integ-
ration phase starts where all components are integrated to form the complete
systems and system level testing takes place, where most integration problems
are found and resolved [9]. This cycle may repeat 1-5 times, and it is com-
mon that the integration points in time are scheduled according to a stage-gate
model [10]. An integration cycle is typically six months or more, meaning that
a development project can have a lead-time of multiple years.

Example from the Pump Domain. Grundfos typically defines 4 to 6 review
series of a PCB design to ensure quality before launching a new product. This
approach is agile on the team level, and every cycle takes between 4 and 8 weeks
dependent on complexity and where in the process the cycle takes place.

At the system integration level (integrating the product with other related
products in a system) an example from Grundfos of a complex system showed
a total integration and test phase of 9 months with additional bug fix cycles
afterwards - giving a single integration and test phase of approximately a year.
This leads to a lead-time before production could start measured in years, rather
than months.

Scaling Agile in Embedded Systems 33

3.2 Mechanical and Hardware Development

The typical culture of company with a heavy tradition of mechanical engineering
is to focus on predictability and doing so by trying to foresee activities many
months ahead because of the constraints linked to mechanical manufacturing.
Traditionally mechatronics manufacturing companies freeze the design at a cer-
tain point in a stage-gate model and after that the mechanical design does not
change, instead focus it’s activities on optimizing the manufacturing, sales and
delivery processes. The purpose of the stage gate model is, at certain stages, to
ensure the feasibility of releasing large investments, not only for development
but in particular for manufacturing. Developing a mechanical part for a product
often includes developing and investing in very expensive manufacturing tools
with long lead times, expanding the development cycle for mechanics to up to
12 months or more. If the company is already established in a mature domain,
e.g. the car industry, these type of activities are highly optimized, with much
know-how of the company directed to running such projects.

Software may be strongly dependent on mechanical structures because of soft-
ware modelling etc. and since there is a very weak link between software and
mechanics cycle times (typically weeks vs. many months) the final verification
of the software/mechanics interface cannot take place until much later, even if
models, simulations and fast prototyping such as e.g. 3D printing is utilized.
Sometimes this late verification can lead to less optimal solutions where issues
are solved in software even though they would have been better solved in mech-
anics, had it been possible to use an agile approach.

3.3 Agile Software Development

For more than a decade, agile development methods have gained much popular-
ity and become widely recognized within the field of software engineering. The
methods promise shorter time-to-market, as well as higher flexibility to acco-
modate changes in requirments and thereby, increase companies’ ability to react
and respond to evolving customer and market needs [4,11,12]. While there are a
number of different agile methods, they typically emphasize close customer col-
laboration, iterative development and small cross-functional development teams.
Also, team autonomy and end-to-end responsibility are reported as important
characteristics permeating the methods [13]. As recognized by Kettunen and
Laanti [14], the concept of agile is multi-dimensional, and there are many reas-
ons for companies to adopt agile ways-of-working. Typically, most companies
introduce agile methods to increase the frequency in which they release new
features and new products, and as a way to improve their software engineering
efficiency. According to Dingsøyr et al. [15] agility embraces lean processes with
an emphasis on realizing effective outcomes, and common for agile methods is
that they entail the ability to rapidly and flexibly create and respond to change
in the business and technical domains [15].

Today, there exist a number of different agile methods, with Extreme pro-
gramming (XP) and Scrum being the two most common ones. XP focuses on

34 U. Eklund, H. Holmström Olsson, and N.J. Strøm

the programming practice itself and prescribes a set of practices for developers,
e.g. pair programming and continuous unit testing. In addition, it includes prac-
tices such as user stories and iterative planning as a support for management in
their requirements prioritization processes [16]. Scrum, on the other hand, fo-
cuses more on the process for the development team, i.e. how to prioritize, track
and optimize team performance, and how to continuously evaluate and follow-up
with the customer what is being implemented [17]. Although different in focus,
both these methods emphasize the importance of working in short sprints, to
constantly reprioritize what is being developed, and to test and validate new
software functionality in rapid cycles.

Originally, agile methods evolved to meet the needs of small and co-located
development teams [14]. Currently, and due to many successful accounts [18,19]
agile methods have become attractive to a broad variety of companies, includ-
ing companies involved in large-scale development of embedded systems, and
there are attempts such as Industrial XP and Scrum of Scrums aiming at scal-
ing agile methods [20]. However, with characteristics such as hardware-software
interdependencies, heavy compliance to standards and regulations, and limited
flexibility due to real-time functionality [21], development of embedded systems
challenges the traditional concept of agile practices.

3.4 Agile Development of Embedded Software

Currently, companies producing embedded systems are in the process of de-
ploying agile methods, and several attempts to scale agile methods to include
development of mass-produced systems can be identified [22,20,23].

Some organizations developing mass-produced system have successfully intro-
duced agile development on the team level where individual teams are allowed
to define their own ways of working to facilitate speed, short iterations and de-
livery quality when developing their components. The experiences of doing this
are generally positive according to two literature studies by [3] and [24].

However, the applicability of agile methods is not without challenges in large-
scale development of software intended for mass-produced systems [25]. Com-
panies also often discover misalignments between the agile methods and their
already established ways-of-working when attempting to adopt agile practices in
a large-scale setting [26]. One reason is that many large-scale development com-
panies practice agile in a way that is not consistent with the original agile ideas,
and that the translation of the original ideas to a context of mass-production is
difficult.

Ronkainen and Abrahamsson [27] identified four main characteristics that
would affect adoption of agile methods under strict hardware constraints, typical
of most embedded systems:

– Meeting hard real-time requirements, e.g. performance
– Experimenting is part of the systems development, many technological con-

straints are difficult to ascertain until actual hardware and mechanics is
available.

Scaling Agile in Embedded Systems 35

– High-level designs and executable documentation are not sufficient, inform-
ation shared between teams tend to be detailed and implementation-specific

– Embedded development is test driven by nature, but some of the core ideas of
agile are problematic to implement when doing software/hardware co-design
(e.g. write tests first, run every unit test at least daily)

Greene [28] describes how elements from Scrum and XP were used in a firm-
ware project to deal with changing hardware interfaces for a new family of 64-
bit microprocessors. Some of the constraints they had to satisfy were; consistent
firmware interfaces across the entire processor family, architecture features that
are better, cheaper, or more flexibly implemented in firmware than hardware,
and workarounds for processor errata. Some of the challenges they had to deal
with were

– Turnaround time for silicon from the factory of more than a month.
– Detailed quarterly planning of schedules, which quickly became obsolete.
– Too specialized team members will little cross-domain firmware knowledge.
– lack of test coverage, and no regression tests when changes were made. Re-

liance on outside groups to find problems.
– Poor code maintainability, due to overly optimized and complex code.

Cordeiro et al. [29] proposes an agile method for developing embedded soft-
ware under stringent hardware constraints. The aim to: Resolve the trade-off
between flexibility and performance, fulfill hardware constraints, support a flow
from specification to implementation, propose novel test techniques, and use an
incremental approach where the developer can validate a system specification
in each iteration. They solve this by proposing three sets of parallel processes
organized in three process groups: System Platform Processes, Product Devel-
opment Processes, and Product Management Processes. The method assumes
that a system designer chooses the system components from an already existing
platform library to instantiate a given product. Both this and the previous ex-
ample only concerned a very limited number of involved developers, less than 10
developers in 1-2 teams.

A conclusion is that teams in an integration-centric organization that attempt
to adopt agile software practices have difficulties in scaling them beyond the team
level. The adopted agile practices typically only affect modules or sub-systems,
as seen in figure 1 below. The product as a whole is still developed with an
integration-centric approach, as described in section 3.1, with the mechanics
and manufacturing schedules also controlling the software development.

Even if agile teams try to follow a platform-oriented approach focusing on
developing prioritized cross product features, individual stage-gate projects still
require a certain amount of functionality bound to product-specific hardware
and mechanics. This makes the agile overall prioritization process difficult to
perform. One or two major products with large investments can draw all the
attention making it difficult to do the right prioritization of feature development
across the full range of products.

36 U. Eklund, H. Holmström Olsson, and N.J. Strøm

Fig. 1. The agile iteration on team level seen in the context of a typical systems
engineering approach

The shift towards agile is complex for companies developing embedded sys-
tems since they are often used to heavyweight sequential processes also outside
of R&D; additional challenges are e.g:

– dependencies to a number of suppliers and sub-contractors [5], with some
software subcontractors tied up in sourcing agreements,

– software interfacing with hardware and mechanics, and
– certification processes.

As a result the development teams need to spend effort to align the internal team
practices to the overall product development and release processes (see e.g. [30]).
All this also means that the short iterations on team level do not lead to short
lead-times in launching new or updated products.

4 Industrial Challenges of Scaling Agile

The key agile principle of delivering software frequently [31] contrasts with the
situation described in section 3.4.

The long-term prediction and associated lead-times forced upon software de-
velopment teams in this context leads to lack of flexibility in case market needs
change during the development project. If an organisation was fully adhering
to all agile principles it would in theory be possible to deploy new software
throughout the entire life-cycle of the product if economically viable.

Not being able to exploit agile software development and adapting stage-gate
models to agile software development also leads to a continuation of notoriously
poor predictability when developing software, something which is prevalent also
for embedded software.

4.1 Challenge of Uniting Agility with Stage-Gate Development

The principal challenge is how to combine the planning and achieved predict-
ability associated with mechanical manufacturing with the dynamic planning

Scaling Agile in Embedded Systems 37

capabilities of modern agile software development; in practice this means large
mechatronics companies need to solve the challenge of how to scale agile software
development beyond short iterations on the team level.

This challenge is a major obstacle to allowing differentiated lead-times towards
start of production (SOP) depending on the size or complexity of the wanted soft-
ware features rather than depending on investments in mechanical manufacturing
according to a stage-gate process. Rephrased; it means that while the start of the
product project is demanded by the activities necessary for mechanical and man-
ufacturing development, the development of a specific software feature can start
independently of this while still aiming at the same SOP, as seen in figure 2.

Fig. 2. Different sub-projects are allowed differentiated lead-times towards Start-of-
Production (or start-of-deployment)

4.2 Challenge of Scaling the Number of Involved Teams

Scaling agile in this context is a challenge in two dimensions, as seen in figure 3:
First, scaling the number of involved teams, this is usually what ?scaling? in
the context of agile means. Second, scaling up the necessary system engineering
activities in the iterations/sprints prescribed by different agile methodologies.

A complex product today, e.g. a car, has up to a hundred development teams
doing software and embedded development, and twice that numer of teams doing
mechanical development. Currently these teams are synchronized by all adher-
ing to the same schedule according to a stage-gate process. The need for such
large-scale development requires mid range and long range planning mechanisms
beyond the standard sprint pattern of plan/commit, execute, and demo/adapt
used for individual teams [32]. Typically such mechanisms involve release plan-
ning and road mapping of product portfolios, as described by the Scaled Agile
Framework [32] or by Disciplined Agile Delivery [33].

The Scaled Agile Framework2 presents guidelines on how to plan releases when
demanded, while the individual teams work and deliver continuously in agile
iterations. The involved teams are part of an agile release train that provides the
program-level value according to the program backlog. These program backlogs
2 http://scaledagileframework.com/

http://scaledagileframework.com/

38 U. Eklund, H. Holmström Olsson, and N.J. Strøm

of involved
teams

Traversing the systems
engineering process in

each sprint

te

ch sp

1 100

Module

Sub-system

Product

Fig. 3. Scaling agile in the context of mass-produced embedded systems is a challenge
in two dimensions

are prioritized according to a portfolio backlog that realize the value streams
that proved a continuous flow of value to the business, customer or end user.

However, existing large-scale agile methodology frameworks such as these do
not address the challenges particular to the embedded domain (identified by e.g.
[27]), and especially not all system engineering challenges regarding large-scale
manufacturing.

4.3 Challenge of Scaling System Engineering Activities

The second dimension in figure 3 is traversing the systems engineering process in
each sprint, i.e. not being confined to iterate each module separately in each sprint,
but also allow re-prioritization of system-wide features and properties. This means
that each team must have the ability or support to perform activities at all abstrac-
tion levels in the V-model in figure 1, for example doing system wide tests. This
second dimension is what distinguishes agile development in mass-produced em-
bedded systems, and can be considered the novel research challenge.

A trivial example of a system engineering activity in a sprint would be if it is
necessary to have access to a physical property, such as fluid flow or temperature,
in order to realize a specific feature. A system engineering choice would be to
either try to estimate this based on other data or to use a sensor to directly
measure the physical value with higher accuracy. The former choice could be
implemented purely in software, while the latter would entail a change in the
physical and electronics design of the system, incurring a cost, and possibly a
lead-time, penalty. In a safety-critical system both choices may be necessary to
implement for redundancy.

A related difficulty in this dimension concerns cross-functional team expertise
and component interdependencies [25]. Usually, organizations realize that many
components in a large-scale system are technically very difficult and interde-
pendent, and require years of experience to be fully understood by developers.
To solve this they therefore often organize in specialist or component teams

Scaling Agile in Embedded Systems 39

with exclusive access rights to key components occasionally leading to bottle-
neck situations. This is in contrast with the basics of agile where teams are
self-contained and are able to solve their tasks independently in each sprint. As
a result, many large-scale organizations experience long lead times before the
development teams can implement anything useful in a component.

5 Discussion on Solutions

Our preliminary assumption is that the solutions to the challenges above not only
lies within the process dimension, it is a question of implementing agile practices
on an enterprise scale. We therefore expect a holistic approach is needed, weighing
in business, architectural, and organizational aspects, besides scaled processes.

Typical software architectures for embedded systems are monolithic, having
a static structure for every instantiation and variation is achieved by variation
points in the components, usually by de-selecting code. An architecture that sup-
ports continuous integrations, including system tests, must probably be based
on composition instead, allowing a creative selection and configuration of com-
ponents and most of the tailoring towards specific products is achieved through
different component configurations developed by various agile teams.

Some other architectural patterns supporting large-scale agile systems devel-
opment would be suitable hardware device abstractions, and mechanism allowing
for device composition supporting necessary security and safety integrity levels.
However, monitoring of architectural and/or organizational dependencies and
subsequent actions to resolve these dependencies is necessary. For example, even
if proper hardware abstractions are made, new functionality may require new
low level features to be implemented by the aforementioned component/specialist
team causing dependency problems to the team implementing a new customer
feature. Causes for this could both be architectural and organizational. Remed-
ies to consider for mitigating this could be refactoring, spreading the necessary
knowledge, establishing mentors to be able to immediately stand in and facilit-
ate what is necessary, establish task force capacity, and these activities need to
be iterative as well.

Martini et al. [34] identifies factors that inhibit the speed of organisations
with a large number of small, independent and fast teams. The teams suffer
from excessive inter-team interactions, which may lead to paralysis. Some of
their recommendations to manage such factors, complementing current agile
practices, are establishing cross-team roles with part-time domain experts and
architects, and allow for programmed available time for other concerns, and not
only synchronizing e.g. planning among SCRUM masters.

6 Summary

Mechanical and manufacturing development have very long lead-times compared
to software development iterations of 2-6 weeks, reconciling this is a challenge
when shortening lead-times towards start-of-production. The goal would be to

40 U. Eklund, H. Holmström Olsson, and N.J. Strøm

allow differentiated lead-times towards SOP depending on the size or complexity
of the wanted software features, i.e. the development of a specific software feature
can start independently of other features while still aiming at the same SOP.
Related to this overall challenge we identified a number of additional challenges:

– Embedded system companies have already established ways-of-working for
systems engineering which need to be considered.

– Individual stage gate product projects still require a certain amount of func-
tionality bound to product-specific hardware and mechanics making a plat-
form approach with agile overall prioritization difficult to perform.

Scaling agile software development in this context is then a question of scaling
agile in two dimensions: First increasing the involved number of teams and utilize
agile practices for mid- and long-range planning such as release planning and road
mapping. Many large-scale development companies practice agile in a way that is
not consistent with the original agile ideas, and that the translation of the original
ideas to a context of mass-production is difficult. This is already a growing research
field, as seen in [35], which gives some examples of smaller challenges:

– To coordinate work between agile teams.
– To effectively structure the organization and collaborate in large projects,

especially when the organization is distributed.
– To plan large projects and control the scope.
– To understand the role of architecture in large-scale agile.

Second, scaling the system engineering activities executed in each sprint, to
a truly iterative practice instead of a stage-gated planned approach. A cross-
functional team must have the ability or support to perform activities at several
abstraction levels in a systems engineering V-model in each iteration or sprint.
This is a novel challenge, particular to the embedded domain. We can see a set
of associated challenges that needs to be addressed in this domain, regardless of
project size:

– Embedded systems have specific product requirements, e.g. safety, which are
not obviously addressed by agile practices such as XP or Scrum.

– The feedback loop with customers and management is quite long due to
the business model of delivering physical products in exchange of a financial
transaction, and manufacturing constraints how short this can be.

– Mechanical and manufacturing development emphasises long-term predict-
ability, and is usually successful in achieving this. This contrasts with the
desire of short-term agility and poor long-term predictability of software
development.

– Component interdependencies affect cross-functional teams requiring special
expertise. Components in a large-scale system are technically very difficult
and interdependent, and require years of experience to be fully understood
by developers.

The call to action is to broaden the research on scaling agile to address the
identified challenges particular to developing mass-produced embedded systems,
and thus solving actual industrial needs.

Scaling Agile in Embedded Systems 41

References

1. Bosch, J., Eklund, U.: Eternal embedded software: Towards innovation experiment
systems. In: Dingsøyr, T., Moe, N.B., Counsell, S., Tonelli, R., Gencel, C., Petersen,
K. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 19–31. Springer, Heidelberg
(2012)

2. Dzamashvili Fogelström, N., Gorschek, T., Svahnberg, M., Olsson, P.: The im-
pact of agile principles on market-driven software product development. Journal of
Software Maintenance and Evolution: Research and Practice 22(1), 53–80 (2010)

3. Albuquerque, C.O., Antonino, P.O., Nakagawa, E.Y.: An investigation into agile
methods in embedded systems development. In: Murgante, B., Gervasi, O., Misra,
S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012,
Part III. LNCS, vol. 7335, pp. 576–591. Springer, Heidelberg (2012)

4. Williams, L., Cockburn, A.: Agile software development: It’s about feedback and
change. Computer 36(6), 39–43 (2003)

5. Eklund, U., Bosch, J.: Applying agile development in mass-produced embedded
systems. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 31–46. Springer,
Heidelberg (2012)

6. Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Com-
puter 42(4), 42–52 (2009)

7. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the
International Conference on Software Engineering, Shanghai, China, pp. 33–42.
ACM (2006)

8. Eklund, U., Bosch, J.: Archetypical approaches of fast software development and
slow embedded projects. In: Proceedings of the Euromicro Conference on Software
Engineering and Advanced Applications, Santander, Spain, pp. 276–283. IEEE
(2013)

9. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems and
Software 83(1), 67–76 (2010)

10. Cooper, R.: Stage-gate systems: A new tool for managing new products. Business
Horizons 33(3), 44–54 (1990)

11. Larman, C., Vodde, B.: Scaling Lean & Agile Development: Thinking and Organiz-
ational Tools for Large-Scale Scrum, 1st edn. Addison-Wesley Professional (2008)

12. Highsmith, J., Cockburn, A.: Agile software development: The business of innova-
tion. Computer 34(9), 120–127 (2001)

13. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information and Software Technology 50(9-10), 833–859 (2008)

14. Kettunen, P., Laanti, M.: Combining agile software projects and large-scale or-
ganizational agility. Software Process: Improvement and Practice 13(2), 183–193
(2008)

15. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile method-
ologies: Towards explaining agile software development. Journal of Systems and
Software 85(6), 1213–1221 (2012)

16. Beck, K.: Extreme programming: A humanistic discipline of software development.
In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 1–6.
Springer, Heidelberg (1998)

17. Schwaber, K.: Scrum development process. In: Proceedings of the ACM Conference
on Object Oriented Programming Systems, Languages, and Applications, pp. 117–
134 (1995)

42 U. Eklund, H. Holmström Olsson, and N.J. Strøm

18. Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J.: New directions on agile
methods: A comparative analysis. In: Proceedings of the International Conference
on Software Engineering, pp. 244–254 (2003)

19. Holmström Olsson, H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven".
In: Proceeding of the Euromicro Conference on Software Engineering and Advanced
Applications, Cesme, Izmir, Turkey (2012)

20. McMahon, P.: Extending agile methods: A distributed project and organizational
improvement perspective. In: Systems and Software Technology Conference (2005)

21. Kaisti, M., Mujunen, T., Mäkilä, T., Rantala, V., Lehtonen, T.: Agile principles in
the embedded system development. In: Cantone, G., Marchesi, M. (eds.) XP 2014.
LNBIP, vol. 179, pp. 16–31. Springer, Heidelberg (2014)

22. Kerievsky, J.: Industrial XP: Making XP work in large organizations. Executive
Report. Cutter Consortium, 6(2) (2005)

23. Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., Stahl, D.: The impact
of agile principles and practices on large-scale software development projects: A
multiple-case study of two projects at ericsson. In: ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, Baltimore, MD,
USA, pp. 348–356 (2013)

24. Shen, M., Yang, W., Rong, G., Shao, D.: Applying agile methods to embedded
software development: A systematic review. In: Proceedings of the International
Workshop on Software Engineering for Embedded Systems, pp. 30–36. IEEE (2012)

25. Heikkilä, V.T., Paasivaara, M., Lassenius, C., Engblom, C.: Continuous re-
lease planning in a large-scale scrum development organization at ericsson. In:
Baumeister, H., Weber, B. (eds.) XP 2013. LNBIP, vol. 149, pp. 195–209. Springer,
Heidelberg (2013)

26. Badampudi, D., Fricker, S.A., Moreno, A.M.: Perspectives on productivity and
delays in large-scale agile projects. In: Baumeister, H., Weber, B. (eds.) XP 2013.
LNBIP, vol. 149, pp. 180–194. Springer, Heidelberg (2013)

27. Ronkainen, J., Abrahamsson, P.: Software development under stringent hardware
constraints: Do agile methods have a chance? In: Marchesi, M., Succi, G. (eds.)
XP 2003. LNCS, vol. 2675, pp. 73–79. Springer, Heidelberg (2003)

28. Greene, B.: Agile methods applied to embedded firmware development. In: Pro-
ceedings of the Agile Development Conference, pp. 71–77. IEEE Computer Society
(2004)

29. Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., Lucena, V.:
An agile development methodology applied to embedded control software under
stringent hardware constraints. SIGSOFT Softw. Eng. Notes 33(1), 5:1–5:10 (2008)

30. Karlström, D., Runeson, P.: Integrating agile software development into stage-gate
managed product development. Empirical Software Engineering 11(2), 203–225
(2006)

31. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile
software development (2001)

32. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise, 1st edn. Addison-Wesley (2011)

33. Ambler, S.W., Lines, M.: Disciplined Agile Delivery, 1st edn. IBM Press (2012)
34. Martini, A., Pareto, L., Bosch, J.: Improving businesses success by managing in-

teractions among agile teams in large organizations. In: Herzwurm, G., Margaria,
T. (eds.) ICSOB 2013. LNBIP, vol. 150, pp. 60–72. Springer, Heidelberg (2013)

35. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software develop-
ment. SIGSOFT Softw. Eng. Notes 38(5), 38–39 (2013)

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 43–57, 2014.
© Springer International Publishing Switzerland 2014

Agile in Distress: Architecture to the Rescue

Robert L. Nord1, Ipek Ozkaya1, and Philippe Kruchten2

1 Carnegie Mellon Software Engineering Institute, Pittsburgh, PA, USA
{rn,ozkaya}@sei.cmu.edu

2 Electrical & Computer Engineering, University of British Columbia, Vancouver, Canada
pbk@ece.ubc.ca

Abstract. For large-scale software-development endeavors, agility is enabled
by architecture, and vice versa. The iterative, risk-driven life cycle inherent in
agile approaches allows developers to focus early on key architectural deci-
sions, spread these decisions over time, and validate architectural solutions ear-
ly. Conversely, an early focus on architecture allows a large agile project to
define an implementation structure that drives an organization into small teams,
some focusing on common elements and their key relationships and some work-
ing more autonomously on features. Architects in agile software development
typically work on three distinct but interdependent structures: architecture of
the system, the structure of the development organization, and the production
infrastructure. Architectural work supports the implementation of high-priority
business features without risking excessive redesign later or requiring heavy
coordination between teams. Architectural tactics provide a framework for
identifying key concerns and guide the alignment of these three structures
throughout the development life cycle.

Keywords: agile, architecture, organizational structure, production infrastruc-
ture, large-scale agile software development, software engineering, project
management.

1 Introduction

Agile software-development approaches have provided notable improvements over
more rigid, phased, document-intensive approaches. This should not be surprising:
many of the practices that the Agile Manifesto encourages had existed for a while, but
first the mindset of software design and development practitioners had to shift. These
approaches now emphasize trust, face-to-face communication, and less formal
artifacts coupled with new technologies for computer-supported communication and
development environments. Agile approaches work well for projects in a “sweet spot”
with certain enabling characteristics: small teams of 5–12, preferably collocated; a
stable underlying architecture; frequent deliveries; and low to medium criticality of
the system. But the question “how do we scale ‘agile’ to larger, bolder software-
development endeavors?” is still repeatedly asked.

In this paper, we define large scale by scope of the system, team size, and project
duration. At a large scale, the scope of the system touches several domains and has

44 R.L. Nord, I. Ozkaya, and P. Kruchten

some combination of interoperability, security, and performance concerns. The size of
a development team is more than 18 people, partitioned into a few teams, and likely to
be geographically distributed. And the duration of the development typically extends
beyond a year.

There are many possible answers to the questions “how do we scale agile up?” and
“how do we use it outside of its sweet spot?” They often take the form of modifying
an agile practice to make it work “at scale.” The typical example is the daily standup
meeting, or Scrum, scaled up to a Scrum of Scrums. But this may be a solution to a
different problem. The real problem is how to be agile at the organization level, not
simply how to scale individual practices (even if the latter may support the former).

In this paper, we demonstrate that an early and continuous focus on the architec-
ture of the system enables scaling up agile development and minimizing unanticipated
roadblocks. If we define agility as the ability of an organization to rapidly react to
change in its environment [1], [2], then we can restate the problems as follows:

• Can the architecture of the product support multiple waves of enhancements, to
accommodate a constant flow of new needs?

• Can the architecture evolve continuously to support enhancements?
• Does the architecture allow teams to organize the work so that they feel as if they

were in the sweet spot and allow them to take advantage of agile practices?
• Can the organization avoid the extra work generated by repetitive handover from a

development team to an operations group?

2 Why Scale Necessitates Architecture

Architecture is the high-level structure of a software system, the discipline of creating
such a high-level structure, and the documentation of this structure [3]. The
architecture of a software system is a metaphor, analogous to the architecture of a
building [4]. Agile teams sometimes fear architecture as a remnant of some ugly past,
decry it as “big design upfront” (BDUF), and naïvely hope that a suitable architecture
will gradually emerge out of weekly refactorings. While “refactoring has emerged as
an important software engineering technique, it is not a replacement for sound
architectural design; if an architecture is decent you can improve it, but refactored
junk is still junk” [5]. We know that at-scale development needs a healthy, proactive,
and early focus on both system architecture and software architecture.

Architecture provides a way to partition work around large chunks of software de-
velopment, guiding the organization into teams. This often takes the form of one or
more “infrastructure” teams supporting one or more “feature” teams. Conflicts in
software development are reduced when there is an overall socio-technical congru-
ence between the structure of the system and the structure of the teams. This allows
the creation of islands of stability in which teams can operate in a mode that is closer
to the agile sweet spot, and possibly at a faster iteration rhythm. But architecture also
provides other benefits to a large, distributed project:

 Agile in Distress: Architecture to the Rescue 45

• a common vocabulary and a common culture to speak about the system and how it
functions. This was the intent of the “metaphor” practice of the original XP.

• a systematic way to control dependencies—of code, data, timing, and require-
ments—which tend to grow uncontrolled in large projects.

• a way to keep technical debt in check, by identifying and gradually reducing tech-
nical debt at the structural or architectural level, which is the second type of debt in
McConnell’s taxonomy [6].

• a guide for release planning and configuration management.

When projects scale up on all three dimensions of scope, team size, and duration,
software developers need tools to organize the work, make the right decisions, com-
municate these decisions, implement and validate them, and define guidelines and
processes applicable across the project. These tools do not exist in the traditional
toolkit of Scrum, XP, and lean, but they can be found in the architects’ toolkit.

When working at scale, the agile community begins in small ways to acknowledge
the need for architecture, and even sometimes for an architect (or “architecture own-
er,” as a counterpart to the “product owner”), as, for example, in Cockburn’s Walking
Skeleton [7] and the architectural runway of the Scaled Agile Framework [8]. We
have seen increasing evidence in practice where successful teams tailor architecture
with agile approaches [9], [10], [11].

In practice, architects in agile software development typically work on three dis-
tinct but interdependent structures (Fig.1):

• The Architecture (A) of the system under design, development, or refinement, what
we have called the traditional system or software architecture.

• The Structure (S) of the organization: teams, partners, subcontractors, and others.
• The Production infrastructure (P) used to develop and deploy the system, the last

activity being especially important in contexts where the development and opera-
tions are combined and the system is deployed more or less continuously.

Fig. 1. System architecture (A), organizational structure (S), and production infrastructure (P)

These three structures must be kept aligned over time to support agility. In this pa-
per, we examine the alignment of these structures from the perspective of A and the
role of the architect in an agile software-development organization. The relationship

46 R.L. Nord, I. Ozkaya, and P. Kruchten

of A to S is known as socio-technical congruence [12] and has been extensively stu-
died, especially in the context of global, distributed software development. It is very
pertinent at the level of the static architectural structure (development view), where a
development team wants to avoid conflicts of access to the code between teams and
between individuals, while having clear ownership or responsibility over large chunks
of code. When A is lagging, we face a situation of technical debt [13]; when S is lag-
ging, we have a phenomenon called “social debt,” akin to technical debt, which slows
down development [14].

The alignment of A with P is seeing renewed interest with increased focus on con-
tinuous integration and deployment and the concept of “DevOps” [15]: combining the
development organization with the operations organization, and having the tools in
place to ensure continuous delivery or deployment, even in the case of very large on-
line, mission-critical systems (e.g., Netflix, Facebook, Amazon). When P is lagging,
we witness a case of “infrastructure debt” as described by Shafer [16], which is
another source of friction in software development.

A, S, and P must be “refactored” regularly to be kept in sync so that they can keep
supporting each other. Too much early design in any of the three will potentially re-
sult in excessive delays, which will increase friction (by increased debt), reduce quali-
ty, and lead to overall product delivery delays.

3 How Architecture Benefits from Agility

Given that software designers and developers increasingly recognize the importance
of architecture in supporting large-scale agile development, the challenge is no longer
about whether architecture is needed but about when is it needed, how often, and
when the misalignment of A with S and P should trigger a large or small refactoring
of the whole A-S-P triad. Designing an architecture in one large increment upfront
could delay feedback on the requirements and technical risks of the system.

Architectural design benefits from agility primarily through shorter iterations that
produce smaller increments and provide earlier feedback: architectural design and the
gradual building of the system go hand in hand. As the stakeholder needs evolve, the
designers extract functional and architectural requirements. Dependencies between
these two kinds of requirements must be managed to ensure that necessary elements
of the architecture are present (or “stubbed”) in upcoming iterations. This skeletal
foundation must be woven into early iterations of architectural and functional incre-
ments. This approach facilitates a deliberate emergence of an architecture over several
iterations, constantly validated by the functionality developed on top of it.

This process raises however several practical challenges:

• How do we pace ourselves? What is an appropriate increment? In which order do
we work on the functionality and architecture to produce an increment of value to
the user while managing costs of rework and delay?

• How do we use iterations to also refine and evolve both S, the structure of the de-
velopment organization, and P, the production infrastructure.

 Agile in Distress: Architecture to the Rescue 47

We’ve described this approach using the “zipper” metaphor [17]; see Fig. 2. As the
requirements are being developed and refined, the architect identifies and extracts
architecturally significant requirements (in red); more feature oriented, or functionally
oriented, requirements (in green); as well as dependencies between them: to start
building story card X, we need architectural support Y that is at least prototyped
(e.g., an API and a stub). Small iterations are used to design, build, and test a few of
the architectural elements and the features that depend on them. By starting with the
most critical or challenging requirements, we force the architects to think about the
more fundamental aspects early. Whatever they design in the architecture (A) is
validated not by some abstract test but by a product embryo of actual functionality.

Fig. 2. The zipper model [17]

Some functional and architectural requirements can be in the same iteration, or we
can alternate some iterations focusing on architecture and some focusing on more
user-facing functionality. Architecture-only iterations may be necessary if some sig-
nificant refactoring of the emerging architecture is needed, disrupting work on new
features to rework existing code.

Many agile practices will therefore contribute to helping architects do a better job
of producing more value by reducing waste: frequent communication among the arc-
hitect, the teams implementing the architecture, and the teams working on features;
early realistic testing of certain architectural aspects; reflection and rapid feedback on
the suitability or performance of the architecture, allowing for improvements or
change of approach; and reduced amount of documentation produced and handed over
(compared with an early and more massive architectural undertaking).

This iterative approach, with a clear focus on producing production-quality code
early, will also push the architect to pay attention to the allocation of the architecture
to the organization and production infrastructure. As the team grows and its structure
evolves, the need to improve direct, rapid communication between team members will
lead to frequent adjustments of the team structure (S), such as changing the composi-
tion of the teams, redefining responsibilities, re-arranging the office layout, adopting

48 R.L. Nord, I. Ozkaya, and P. Kruchten

“information radiators” or web-based communication tools, and other modifications.
This is self-organization in action.

The emphasis on executable code at each iteration will drive the team to experi-
ment early with creating a viable production and delivery environment (P) and evolve
it, working early with the people in charge of operations.

The zipper model is far from the antipattern of BDUF and its associated problems:

1. Architecture? – Done.
2. Development of the function can now start.
3. Oops, the architecture does not support all these functions? – It’s a bit late to tell

us; the architects have moved on to the next project.

Agile practices and principles support architecture in a tight, integrated fashion, which
in turn enables scaled agile development.

4 Architectural Tactics to Support Scaled Agile Development:
Exploring the Alignment of A and S

The work assignment allocation view captures the alignment of the architecture and
the structure of the development organization [3]. It describes the mapping between
the software’s modules and the people, team, or organizational work units tasked with
developing those modules. The work assignment view helps with planning and
managing team resource allocations, assigning responsibilities for builds, and
explaining the structure of the project.

Architectural tactics enable a simultaneous focus on architecture and agile devel-
opment by aligning feature-based development and system decomposition to minim-
ize coupling between teams [18]. The tactics we explore for improving the alignment
of the architecture of the system and the development of the organization include
vertical and horizontal decomposition of the architecture to enable alignment of the
teams accordingly as well as matrix augmented-role team structures.

4.1 Vertical and Horizontal System Decomposition

The system decomposition tactic allows assigning responsibilities to the development
teams according to the stage of the development effort and the need to focus on
features or infrastructure.

The work assignment view gives each team its charter. A common charter for agile
teams is to give them responsibility for every piece of implementation for developing
a feature, so they do not have to wait until someone else has finished other work. We
call this vertical decomposition because every component of the system required for
realizing the feature is implemented only to the degree required by the team.

An alternative charter is to give teams responsibilities based on system infrastruc-
ture. We call this horizontal decomposition, an approach in which an agile team bases
system decomposition on the architectural needs of the system, focusing on a

 Agile in Distress: Architecture to the Rescue 49

framework of common services and variability mechanisms. To develop a feature, the
team implements only the logic of that feature using the frameworks. The frameworks
and common services have already taken care of the logic of integrating the new piec-
es of code into the system. This type of architecture minimizes the dependencies be-
tween different feature implementations so that different teams can implement fea-
tures without coordination.

The larger the system to be developed and the more agile development teams there
will be to develop it, the more the underlying architecture has to support independent
development teams. A development effort with only one collocated team may not
need explicit architecture design and documentation tasks, and the amount of rework
when letting the architecture emerge might be acceptable. With more teams involved,
the coordination required between teams starts hindering progress. Each time teams
have to coordinate with each other, they may have to wait, which increases the risk of
not finishing a task as planned. According to Conway’s Law [19], minimizing coordi-
nation between teams requires an architecture that is designed to have loosely coupled
components so that the team structure can be aligned along those components.

Another factor that makes architecture tasks more important in a large-scale devel-
opment is the discovery and creation of reusable code, such as common services. If
agile development teams are organized to work according to user-visible features
(vertically), then the potential of code pieces being reused across features is difficult
to evaluate. In this situation, every team is rapidly developing their features, but alto-
gether the teams could have been more efficient if someone would have spent the
time discovering and creating a common service (horizontally).

The goal of creating a feature-based vertical decomposition for alignment between
architecture and team structure is to decouple teams and architecture to ensure parallel
progress where teams are organized in a Scrum of Scrums. Defining the appropriate
architecture is key to the success of large-scale software-development projects where
there is the need to manage multiple agile teams concurrently over many years. Fea-
ture-based vertical decomposition is the preferred approach for assigning tasks to
teams. This approach requires minimizing the number of technical and social depen-
dencies to achieve appropriate productivity of the agile development teams.

Two generic examples of such architectures are shown in Fig. 3. Here we have an
architecture consisting of three layers. Those three layers contain the common servic-
es. Every layer also has either a framework or a plug-in interface defined that imple-
ments the control logic of that layer. To develop a feature, only the logic of that
feature has to be implemented in each layer using the frameworks or plug-in interfac-
es. This focuses the development on only what is needed for the feature implementa-
tion. All the logic of how to integrate the new pieces of code into the system, such
as using the intra-layer communication protocols, is already taken care of by the
frameworks and the common services. This type of architecture also minimizes the
dependencies between different feature implementations so that different teams can
implement features without coordination.

50 R.L. Nord, I. Ozkaya, and P. Kruchten

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Presentation Layer

Domain Layer

Data Access Layer
API

API
Common Services

Feature

Common Services

Feature

Common Services

Feature

Layered architecture with frameworks Layered architecture with plug-ins

Plug-in Interfaces

Plug-in Interfaces

Plug-in Interfaces

Unimplemented feature Feature

Fig. 3. Layered architecture supporting feature-based development

Horizontal decomposition of the system and alignment of the teams to the architec-
ture accordingly is most useful when the skeleton of the system is being developed.
As teams create a platform containing commonly used services and development
environments, either as frameworks or platform plug-ins to enable rapid feature-based
development, it is best to focus their effort on the development of those layers rather
than on functionality that will cross over multiple aspects of the system. Another key
activity that requires horizontal decomposition is when the stable interfaces between
key system elements are being defined. When the commonly used services and devel-
opment environment are sufficiently in place, then the teams can change their focus to
features that span the system.

In every agile project that we analyzed [10] [18] [20], we observed a strong desire
to achieve vertical decomposition and team alignment. But especially in the beginning
of a project, there is also a strong need for horizontal decomposition and alignment to
ensure the teams build components that support later feature development. Horizontal
alignment is mostly seen as a temporary phase to achieve the “desired state” of vertic-
al alignment. The Eclipse plug-in framework architecture can be viewed as an
example of this balance between horizontal and vertical alignment of teams to the
architecture. The existing architecture framework, created over multiple releases by
the internal team, enables external organizations and teams to develop features on the
framework. The existence of such an infrastructure allows for rapid development. The
goal of agile teams that need to operate at scale should be to establish such a suppor-
tive infrastructure, which evolves over time yet still supports rapid development.

4.2 Matrix and Augmented Team Structures

The matrix teams tactic allows introducing specialized roles, such as the architect,
seamlessly to the agile development effort.

 Agile in Distress: Architecture to the Rescue 51

Coordination and congruence tactics provide the context for achieving successful
matrix and augmented team structures. In its simplest instantiation, a Scrum
development environment consists of a single co-located Scrum team with the skills,
authority, and knowledge required to specify requirements, architect, design, code,
and test the system. As systems grow in size and complexity, however, the single
Scrum team model may no longer meet development demands. Information about
complexity and uncertainty can supplement the work assignment view (to produce
what Herbsleb calls the coordination view [3] [21]) to provide more detail about
which teams need how much communication, collocation, or both, and how that
communication will influence which strategy to use to affect project structure.
Achieving congruence, then, is matching coordination requirements and coordination
capabilities.

A number of different strategies can be used to scale up the overall development
organization while maintaining an agile Scrum-based development approach. One
approach is replication, essentially creating multiple Scrum teams with the same
structure and responsibilities, sufficient to accomplish the required scope of work.
This approach works only to some extent, as typically scale issues are not resolved
simply by a Scrum of Scrums, in other words, by more of the same scaling. Success-
ful scaling and alignment of the development organization with the system is mostly
achieved by a hybrid approach. The hybrid approach involves Scrum team replication
but also changes the nature of the Scrum teams in a number of ways. For example,
teams aligned horizontally could use the Scrum of Scrums to coordinate vertical is-
sues; later, as the teams move alignment vertically, the role of the Scrum of Scrum
changes to coordinate horizontal issues. Another example is to supplement Scrum
teams with traditional function-oriented teams, such as using an Integration and Test
team to merge and validate code across multiple Scrum teams or dynamically allocat-
ing teams depending on the nature of high-priority tasks. (In purist Scrum circles, the
hybrid approach would most likely be labeled an example of “ScrumBut.”) At scale,
the tasks assigned to teams also need to focus on the alignment. In addition, at scale
we often observe the breaking of the self-organization of the teams and a balance
between a hierarchical ownership structure and small teams in which roles might be
more fluid.

5 Architectural Tactics to Support Scaled Agile Development:
Exploring the Alignment of A and P

The install allocation view captures the alignment of the architecture and the
production infrastructure [3]. It describes the mapping between the software’s
components and structures in the file system of the production environment.
Understanding the organization of the files and folders of the installed software can
help developers, deployers, and operators create build-and-deploy procedures, update
and configure files of multiple installed versions of the same system, and design and
implement an “automatic updates” feature. With the increasing need to focus on
continuous integration and multiple deployment contexts and the growing DevOps
movement, this view is becoming more dominant. The alignment of the architecture
and the production infrastructure becomes critical to articulate.

52 R.L. Nord, I. Ozkaya, and P. Kruchten

The tactics that improve the alignment of architecture and production infrastructure
are those that extend the concept of the runway beyond the skeletal architecture stubs
to include the tooling infrastructure as well as those that include automated deploy-
ment and integration support. The more stable the supporting architecture and infra-
structure (platform, frameworks, tools), the more teams can be aligned vertically. The
less stable the infrastructure at the onset, the more team members have the responsi-
bility to create parts of that architecture and production infrastructure (necessitating a
focus on horizontal decomposition of the system).

5.1 Architecture and Infrastructure Runway

The runway-building tactic applies when there is a need for an architecture and
infrastructure sufficient to allow incorporation of near-term needs without potentially
introducing delays or extra work. One way to manage the alignment of A and P to
enhance agility is to reassess the meaning of the architecture runway. Dean
Leffingwell [8] describes his concept of architecture runway as follows:
“Architectural runway is the answer to a big question: What technology initiatives
need to be underway now so that we can reliably deliver a new class of features in the
next year or so?” As such, establishing the runway is often interpreted as the first
iteration of the architecture, selecting the frameworks, packages, and so on.
Leffingwell and colleagues also make the statement that the bigger the system, the
longer the runway.

Leffingwell, Martens, and Zamora [22] explain the role of intentional architecture
as one of the key factors to successfully scaling agile. Building and maintaining archi-
tectural runway puts in place a system infrastructure sufficient to allow incorporation
of near-term product backlog without potentially destabilizing refactoring.

For systems with a smaller scope (and a smaller team size), a shorter runway—that
is, architectural infrastructure to support the present iteration or release cycle—may
be all that is needed. Especially in the face of uncertain requirements for technology
or features, it may be more efficient for the team to try something out, get feedback,
and refactor as needed, rather than to invest more time up front in trying to discern
requirements that are in flux.

For systems with increasing scope (and larger teams), a longer runway is needed.
Building and re-architecting infrastructure takes longer than a single iteration or
release cycle. Delivering planned functionality is more predictable when the infra-
structure for the new features is already in place. This requires looking ahead in the
planning process and investing in architecture by including infrastructure work in the
present iteration that will support future features the customer needs.

However, the meaning of runway must expand to encompass the production infra-
structure as well. Often such tasks are covered under the planning phase. Articulating
the production environment requires defining the alignment with the architecture to be
among the main tasks of the runway construction.

Aligning the teams horizontally and focusing on horizontal decomposition of the
system are good practices during the early stages of a project as the architectural run-
way is created, while vertical alignment works well during feature development.
Between those two states, we find matrix structures in which the teams are either

 Agile in Distress: Architecture to the Rescue 53

horizontally or vertically aligned while some members within those teams have
opposite responsibilities. Fig. 4 shows an example of this. Here three teams are hori-
zontally aligned to the layers of the architecture to fulfill their primary responsibility
to build infrastructure. However, some team members from each team have the re-
sponsibility to develop features, and they coordinate with each other in the Scrum of
Scrums.

Fig. 4. Progressing architecture and feature development in parallel

5.2 Deployability Tactics

Deployability tactics are those that will make the tooling and deployment
environment and alignment run smoothly and at ease. The most relevant tactics
include parameterization, self-monitoring, and self-initiating version-update support.
While these tactics are also relevant in building the system architecture, they become
more significant when managing the alignment of the architecture with the production
environment and supporting large-scale operations [23].

Parameterization focuses on environmental variables relevant to the production in-
frastructure such as databases and server names. This allows deferring binding time
and changing aspects of the build and production environment without having to
change the build.

Self-monitoring allows for monitoring the system performance and faults as it runs
and when it gets out of sync. Both the production infrastructure and the architecture of
the system can take advantage of load balancing, logging, and redundancy tactics to
realign the allocation and improve system behavior.

Self-initiated version update allows running scripts that update the relevant ver-
sions of the software in production. This becomes an issue particularly at scale and
when continuous integration and deployment is a goal. The clients and the main ap-
plications may get out of sync as well as the supporting tooling environment.

All of these tactics require relevant architecting to influence the allocation relation-
ship between architecture and production infrastructure and to check that the align-
ment is still in sync.

54 R.L. Nord, I. Ozkaya, and P. Kruchten

6 Using the Tactics in Concert to Achieve A-S-P Alignment

In this section, we explore a subset of tactics that can help keep the architecture of the
system (A), the structure of the organization (S), and the production infrastructure (P)
aligned to achieve agility at scale. Fig. 5 summarizes the tactics that we explored. We
did not include tactics related to S-P because we positioned this paper from the
perspective of the architecture (A). A complete picture would necessitate exploring
alignment tactics for S-P as well as for A-S and A-P.

Fig. 5. Summary of the A-S-P alignment tactics

Different phases in a system’s life cycle require different tactics. An example walk-
through might look like the following:

At the start of a project, it makes sense to organize the teams horizontally. Most of
the team’s responsibilities focus on making the supporting infrastructure stable
enough for feature development to start. This includes activities related to building the
architecture elements (A), understanding the key quality attributes, and establishing
the build and deployment infrastructure (P), hence building the architecture runway.
Team members create a rough sketch of the architecture, make technology decisions,
establish the tool environment, and select relevant deployability tactics. Typically,
teams use a small subset of basic features to guide the creation of the development
infrastructure, but they may not implement those features during this phase.

As soon as the most important interfaces are defined, some team members start de-
veloping features. At this point, a matrix organization is established, focusing on
coordination requirements and congruence needs. Most team members still have
component-oriented responsibilities; therefore, the teams are still horizontally orga-
nized. Now, however, some team members start implementing features using the
development infrastructure built so far. For example, in a Scrum of Scrums the team
members assigned to implement features coordinate with each other to ensure on-time
delivery of the features. This helps stabilize the interfaces and provides the first
sketches for implementation frameworks that will be helpful for feature development.

As the interfaces become more stable, most of the teams switch to vertical (feature-
oriented) development. Some team members still have horizontal responsibilities
because the development of common services as well as framework and interface
enhancements is performed continuously.

 Agile in Distress: Architecture to the Rescue 55

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Scrum
Team A

Scrum
Team B

Scrum of
Scrums

Team member with layer responsibility

Fig. 6. Different teams assigned to features (vertical alignment), with some team members
assigned to keep layers and frameworks consistent

In Fig. 3 we showed the teams organized primarily around the infrastructure. In
Fig. 6, the teams have the necessary infrastructure to implement features quickly.
Only a few team members, if any, have horizontal responsibilities. Yet every product
development has to cope with changing requirements and new technologies.

Fig. 7. Different teams assigned to features (vertical alignment), with a temporary team as-
signed to prepare layers and frameworks for future feature development

In Fig. 7 the teams now have primary responsibility for features. Some team
members, including the product architect, look ahead to decide what will be needed in

56 R.L. Nord, I. Ozkaya, and P. Kruchten

the future. In one or more sprints, they dynamically self-organize into a temporary
sprint team to develop the next piece of the runway, and then the team dissolves.
Meanwhile, the other teams are organized vertically, developing features for the
customer.

7 Conclusion

Architecture enables large-scale agile development. Key elements for success include
focusing on architecture early and persistently throughout development, assigning an
architecture owner as a counterpart to the product owner, and using the right
architecting tools (e.g., tactics).

We contend that the issue is not to tweak individual agile practices to make them
work outside of the agile sweet spot but to understand the specific issues of large-
scale development, identify the problems that current practices cannot solve, and add
architecture practices and tools. The goal for the software-development organization
is to be agile at the level of the organization, not only in iteratively refining the archi-
tecture of the system under development but also in constantly tuning the develop-
ment organization and improving the production infrastructure.

In this paper, we give an example of using architectural tactics and aligning archi-
tecture, agile development teams, and production infrastructure. A catalog of other
tactics mapped to agile development can be collected from successful organizations
and literature. Other ongoing and future work includes techniques to make architec-
tural agility visible, identify and analyze architectural dependencies and incorporate
dependency management into development, and provide timely feedback to support
enhancement agility.

Acknowledgements. We thank the participants of the XP’2014 workshop in Rome on
May 26 for their feedback and suggestions, in particular on Fig. 1.

This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally funded research and
development center. This material has been approved for public release and unlimited
distribution. DM-0001067.

References

1. Kruchten, P.: Contextualizing Agile Software Development. J. Softw. Evol. Proc. 25, 351–
361 (2013)

2. Highsmith, J.A.: Agile Software Development Ecosystems. Addison-Wesley, Boston
(2002)

3. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R.,
Stafford, J.: Documenting Software Architectures. Addison-Wesley, Upper Saddle River
(2011)

4. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. ACM
SIGSOFT 17(4), 40 (1992)

 Agile in Distress: Architecture to the Rescue 57

5. Meyer, B.: Agile! The Good, the Hype, and the Ugly. Springer, Zürich (2014)
6. McConnell, S.: Technical Debt, Software Best Practices (2007),

http://blogs.construx.com/blogs/stevemcc/archive/2007/11/
01/technical-debt-2.aspx

7. Cockburn, A.: Walking Skeleton (1996),
http://alistair.cockburn.us/Walking+skeleton

8. Leffingwell, D.: Agile Software Requirements. Addison-Wesley, Boston (2011)
9. Brown, S.: Software Architecture for Developers. LeanPub., Vancouver (2014)

10. Bellomo, S., Nord, R.L., Ozkaya, I.: A Study of Enabling Factors for Rapid Fielding:
Combined Practices to Balance Speed and Stability. In: 35th International Conference on
Software Engineering, pp. 982–991. IEEE Press, Piscataway (2013)

11. Nord, R., Ozkaya, I., Sangwan, R.: Making Architecture Visible to Improve Flow Man-
agement in Lean Software Development. IEEE Software 29(5), 33–39 (2012)

12. Cataldo, M., Herbsleb, J.D., Carley, K.M.: Socio-Technical Congruence: A Framework for
Assessing the Impact of Technical and Work Dependencies on Software Development. In:
Second ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, pp. 2–11. ACM, New York (2008)

13. Nord, R.L., Ozkaya, I., Kruchten, P., Gonzalez-Rojas, M.: In Search of a Metric for Man-
aging Architectural Technical Debt. In: Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture, pp. 91–100. IEEE Press,
New York (2012)

14. Tamburri, D., Lago, P., Kruchten, P., van Vliet, H.: What Is Social Debt in Software Engi-
neering? In: Sixth International Workshop on Cooperative and Human Aspects of Soft-
ware Engineering, pp. 93–96. IEEE Press, San Francisco (2013)

15. Desbois, P.: Devops: A Software Revolution in the Making (Special Issue). Cutter IT J. 24,
8 (2011)

16. Shafer, A.C.: Infrastructure Debt: Revisiting the Foundation. Cutter IT J. 23, 36–41 (2010)
17. Bellomo, S., Kruchten, P., Nord, R.L., Ozkaya, I.: How to Agilely Architect an Agile Ar-

chitecture? Cutter IT J. 27, 12–17 (2014)
18. Bachmann, F., Nord, R.L., Ozkaya, I.: Architectural Tactics to Support Rapid and Agile

Stability. CrossTalk 25(3), 21–25 (2012)
19. Conway, M.E.: How Do Committees Invent? Datamation 14(4), 28–31 (1968)
20. Cataldo, M., Herbsleb, J.D.: Factors Leading to Integration Failures in Global Feature-

Oriented Development: An Empirical Analysis. In: 33rd International Conference on
Software Engineering, pp. 161–170. ACM, New York (2011)

21. Cataldo, M., Herbsleb, J.D.: Coordination Breakdowns and Their Impact on Development
Productivity and Software Failures. IEEE T. Software Eng. 39, 343–360 (2013)

22. Leffingwell, D., Martens, R., Zamora, M.: Principles of Agile Architecture (2008),
http://scalingsoftwareagilityblog.com/wpcontent/uploads/
2008/08/principles_agile_architecture.pdf

23. Bellomo, S., Kazman, R., Ernst, N., Nord, R.: Toward Design Decisions to Enable Dep-
loyability: Empirical Study of Three Projects Reaching for the Continuous-Delivery Holy
Grail. In: First International Workshop on Dependability and Security of System Opera-
tion, pp. 32–37. IEEE Press, New York (2014)

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 58–72, 2014.
© Springer International Publishing Switzerland 2014

Conventions for Coordinating Large Agile Projects

Jaana Nyfjord1, Sameer Bathallath2, and Harald Kjellin2

1 SICS Swedish ICT, Box 1263, 164 29 Kista, Sweden
2 Stockholm University, DSV, Box 7003, 164 07 Kista, Sweden

jaana@sics.se, {sameer,hk}@dsv.su.se

Abstract. There is no universal way to coordinate Agile teams in large
development projects because they have unique challenges. This suggests that
the best way to coordinate the teams is to ask them how they want to be
managed given a set of constraints. This requires particular communication and
negotiation skills in the leadership team, which we discuss in this article. We
describe the skills as a set of conventions, founded on the argument that every
organization is a complex adaptive system and should therefore be analyzed
from multiple system perspectives. We investigate scientific models for
managing complexity and evaluate their usefulness through qualitative
interviews with 14 managers in large private and public organizations in Saudi
Arabia. We conclude that a set of proposed conventions could facilitate
coordination by functioning as a supportive context enabling managers to apply
various system perspectives simultaneously.

Keywords: Software engineering, Management, Systems thinking, Complexity.

1 Introduction

Many Agile teams operate within larger, complex organizational environments. Their
capacity for high performance depends largely on their leaders’ ability to manage the
various contexts of complexity within and across the teams. Consequently, leaders
must be prepared to dynamically and flexibly shift their leadership style to effectively
lead the teams and the organization as a whole [29].

There exist many models for how systems thinking can be used to deal with
organizational complexity [18]. However, several researchers have described the
constraints with using individual systems models disjointedly because they build on
different paradigms. For instance, Flood and Romm [15] describe the dangers of
adopting one perspective and instead advocate an approach called “Total Systems
Intervention” to avoid getting stuck in one perspective of a system that does not cover
all aspects of its subsystems. Jackson [18] resonates with this and promotes holistic
system thinking as an ability to analyze organizations from different viewpoints by
combining system models to ensure that the parts function properly together to serve
the needs of the whole. Snowden and Boone [29] also present methods for dealing
with the emergent properties of complex social systems, where the setting of system
boundaries combined with increasing levels of interaction and communication enable

 Conventions for Coordinating Large Agile Projects 59

managers to probe and make sense of a variety of complexities and respond
accordingly as they emerge.

Today, many researchers have recognized the need for pluralism and advocate the
use of a multi-methodology, which implies that several system models are combined
when managing large complex organizations such as large software projects
consisting of many teams. The problem is how a multi-methodology can be applied
effectively in practice. For instance, Brocklesby [7] describes the cognitive
difficulties while working across paradigms. We cannot expect managers to be
experts in how to combine a number of abstract system models simultaneously. On
the contrary, they need to make fast practicable decisions. Speed is particularly
important in Agile contexts where the development cycle is continuous. Moreover, we
cannot expect managers alone to know all the drivers of complexity involved in
coordinating many development teams. It requires collective knowledge [26]. Hence,
we draw two conclusions: managers must be (a) familiar with the most relevant
theories, opportunities and threats of coordinating complex organizations, and (b) able
to create environments where communication can grow and solutions be exploited in
interaction with the teams to make faster and more actionable decisions. In practice,
this indicates that a useful way to coordinate the teams in large, complex development
projects is to ask each team how they want to be managed given a set of constraints.
This requires relevant communication and negotiation skills in the leadership team,
which we address in this paper. These skills are needed to handle the highly volatile
environment of Agile projects that, according to Augustine [4], is completely different
from the traditional linear approach to software development.

The overarching purpose of this paper is to argue for the utility of a proposed set of
conventions to support increased communication and interaction needed to master the
complexity of large Agile projects. The set of conventions aims at the coordination of
Agile teams and is based on multi-methodological systems thinking. We investigate
scientific models for facilitating coordination in large, complex organizations and
evaluate their usefulness through qualitative interviews with 14 managers in public
and private organizations in Saudi Arabia. Our goals are to (a) elicit and synthesize a
set of high-level conventions providing support for coordinating many Agile
development teams, in particular through enhanced communication, and (b) find
empirical evidence for their need and usefulness.

The remainder of this paper is: Section 2 describes related research. Section 3
summarizes our research method. Section 4 presents the candidate conventions and
the results of their evaluation. Sections 5 and 6 contain a short discussion of the
results, and concluding remarks and suggestions of future research, respectively.

2 Related Research

Agile organizations are complex adaptive systems [4]. There are different approaches
for managing organizations as a complex adaptive system, from Learning Organizations
[28], Cynefin framework [29] to Human Systems Dynamics [13]. They assume systems
thinking to various extents. Systems thinking is the process of understanding how
things, regarded as systems, influence one another within a whole [18].

60 J. Nyfjord, S. Bathallath, and H. Kjellin

The domain of system thinking is also evolving. Several authors suggest that no
single systems method or model alone can solve the problem of complexity
[15][18][19]. Generally, different contexts call for different kinds of responses. The
more complex, all the more communication and interaction is generally needed to be
able to act effectively as a leader [29]. Hence, our conclusion is that a multi-
methodological systems approach is needed for coordinating large Agile projects.
However, a secondary problem arises as a result of this. As implied by Arell et al. [2],
how can managers increase communication and interact more effectively with their
teams when they do not have consistent models telling them how to coordinate the
dynamics of Agile projects? There seems to be a lack of a common playground or
context permitting managers to understand the totality of what is going on in these
complex dynamic organizations. Because most management approaches (not based on
systems thinking) generally build on conflicting paradigms and reductionist models
describing formal routines for fixed systems, they cannot deal with the dynamics and
interdependencies in a complex system [18]. Hence, they can be seen as the antithesis
of Agility. Instead, the management support models need to be formulated in a way
that they can be applied in ever changing dynamic contexts. At the same time, they
need to be consistent to provide reliable support. Solutions based on systems thinking
often consist of general principles that act as guidelines for dealing with complexity
[28]. Yet, general principles may still be perceived as abstract, i.e. relating to or
involving general ideas or qualities rather than specific people, objects, or actions. If
they are disassociated from any specific instance they will be difficult to understand
and implement. Managers need nonabstract guidance to be able to act effectively.

In our research, we have found that a type of generic instructions we call
“conventions” can satisfy the requirements on being flexible, dynamic and concrete.
A convention is a selection from among two or more alternatives, where the rule then
is agreed upon among participants [23]. Conventions can be seen as a stable, but
flexible structure in an ever-changing environment supporting the coordination by
functioning as a soft or artificial type of guideline aiding the managers with a set of
known ways for dealing with the challenges that may arise from complexity.

Leaders must embrace change in Agile organizations. They must be prepared to
make fast decisions. They must also secure that the complexity of their production is
well coordinated. We assume that the best way to approach a solution is to (a) support
the coordination activities by providing flexible guidelines combining multiple system
theories, and (b) ensure that these guidelines are harmonized with the development
practices used by Agile teams.

3 Research Method

In this section, we describe the research approach and a summary of the steps taken
for applying this approach.

3.1 General Research Approach

To develop conventions is such a complex endeavor that it could result in any type of
arbitrary solution. To reduce the risk of irrelevant arbitrary solutions and to get a basic

 Conventions for Coordinating Large Agile Projects 61

scientific foundation, we focused our study on systems thinking models for solving
management problems and then extracted candidate conventions that had already
been evaluated. We applied a design science approach [32] where we iteratively
refined, evaluated and redefined the conventions that were better suited than others to
solve the problem of coordinating large Agile projects. Our iteration of steps
corresponds to the guidelines for design science as described by Hevner [17].

3.2 Summary of Steps Taken for Applying the Research Approach

Step 1. First, we conducted a literature study of the type of problems that were most
frequently described when coordinating large software development projects [11][20]
[24][34]. We came across generic statements about well-known problems in software
development. After a compilation of a large number of presented problems we
concluded that: 1) it is often difficult to get an overview of how changes in one sub-
project affects other sub-projects, 2) too many restrictions in the requirement
specification makes the whole development process rigid and prevents creative
solutions, 3) the larger the project the less flexibility there is, 4) as transaction costs
increase with the size of the project, it is necessary to be strict with upholding
discipline and thus there is a need for bureaucratic rules that are often not understood.

Step 2. In the second stage we searched for generic solutions to the type of
problems that were frequently described as being crucial among the coordination
problems. This search was not restricted to software design but rather management
principles in general in the areas of system theory, cybernetics, logistics, and chaos
theory, e.g. [1][3][6][8][12][18][30]. We will not detail all the variations of
coordination problems described in these references. However, in most of these areas
a tendency of promoting generic principles for solving complexity problems is found.

Step 3. From a large number of well-documented generic solutions to complexity
problems we extracted conventions that we estimated as being plausible candidates
for being accepted and applied as conventions for coordinating large Agile projects.
We specified six basic quality criteria as a basis for extracting the conventions. The
method for specifying these quality criteria was based on an analysis of their
applicability with regard to systems thinking. In summary, the criteria were: 1) The
convention should be applied as a guideline rather than as a control function since
control functions are assumed to become too complex to be useful, which is also
advocated by Ackoff [1]. We assumed it to be difficult to implement any convention
as a strict rule because we found situations where it was not relevant. 2) The
convention should be advisory and not mandatory in order to be supportive without
producing any new obstacles in the communication processes. We found that to have
mandatory conventions could create bureaucratic obstacles as described by
Parkinsson [25]. 3) It should be simple to apply. The whole idea of using conventions
is to simplify communication concerning difficult problems. Gudykunst [16] also
argues for such simplification of communication. Thus, we assumed that complicated
instructions for how it could be applied would increase complexity problems rather
than reducing them. 4) It should be possible to explain the convention with simple
metaphors that can be easily understood and remembered to overcome the

62 J. Nyfjord, S. Bathallath, and H. Kjellin

communication difficulties as argued by Brockelsby [7] and Snowden and Boone
[29]. Software development is a creative endeavor that needs the sharing of
understanding rather than scientific correctness of definitions. 5) The convention
should support the Agile values, principles and practices. The argument for this is that
we aim at proposing conventions that are aligned with the deeply rooted tradition of
Agile software development [22]. 6) It should conform to the principles of game
theory. To motivate people to use a convention, it should be possible for its users to
understand what they could gain from using them. Game theory concludes that people
resist actions that may in any way threaten their personal interests [5].

Step 4. We tested the conventions on various examples of problems as described
in Step 1. We found that some seemed to be more useful than others according to our
quality criteria and these were selected as the core set of candidate conventions that
we present in this paper. Beware that the process of discovering and defining useful
conventions can be seen as a never-ending process of continuous refinement of useful
support structures in the coordination of many Agile projects. This iterative process
can probably not be based on any exact form of science because it is always possible
for someone to define a new arbitrary convention that may be intuitively perceived as
being more useful. Thus, we have concluded that the only way to validate the
usefulness of the conventions is to test them in empirical studies. They can be inspired
by generic theories of dealing with complexity and then be validated empirically.

Step 5. Finally, we conducted a pre-study based on semi-structured open-ended
interviews to verify the identified research idea and determine future research
directions. The objective was to evaluate the usefulness of the candidate conventions.
As presented in Table 1, fourteen organizations in Saudi Arabia were chosen based on
convenience sampling [27]. Among these, four have multinational presence. The
others represent an ERP solution provider and IT-departments within the banking,
airline, oil and gas, and public sectors, respectively. The software projects within
these organizations either develop software for external customers like the case with
the multinational companies and the ERP solution provider, or develop software for
their internal corporate users. The size of the organizations ranges from 700 to 70,000
employees, and they are considered leaders in their industries.

Fourteen interviewees, one from each organization, were selected based on three
criteria: (1) their job roles and responsibilities (senior managers) (2) years of
experience in IT project management (at least 7 years), and (3) an estimation of their
adoption and experience of Agile development. All of them were familiar with and
had practical experience of the Agile methods.

We created a questionnaire. The questionnaire was open-ended and semi-
structured. It focused on finding out (1) whether the conventions were recognized in
the industry today, and (2) their status within the organizations studied. To cover the
conventions and the evaluation criteria of this study, 50 questions were created. Due
to space restrictions, we cannot list them all. However, the questions that were asked
followed a somewhat uniform pattern. The pattern was: (1) Do you use this
convention? (2) If no, please describe why? (3) If yes, please (a) describe why, (b)
describe how, and (c) provide examples. (4) Are there any benefits you find with this
convention? (5) Can the convention be improved? If yes/no, please motivate

 Conventions for Coordinating Large Agile Projects 63

why/how? (6) Are there any additional comments that you would like to add? The
questions are also further described in Chapter 4.

Table 1. Organizations studied

 Industry Employees Project data Interviewee
1 Oil & Gas 1,800

Large ERP implementation
(SCRUM)

Information
technology
superintendent

2 Oil & Gas 2,600

Large ERP implementation
(SCRUM)

IT Director
(CIO)

3 Airline >30,000 Large ERP implementation
(SCRUM)

IT Systems
manager

4 Banking &
Finance

7000 e-Commerce B2B systems, CRM
(Plan-driven and Agile)

Director of
project mgmt.
office

5 Enterprise
software
and services

>60,000 CRM, ERP, SCM, etc. (Plan-driven
and SCRUM)

Senior project
manager

6 Network
systems and
applications

70,000 MPLS, ATM (Plan-driven and
Agile)

Program
manager

7 Enterprise
software
and services

3000 ERP implementation and business
process reengineering (SCRUM)

Customer
solution
manager

8 Real estate,
investment,
tourism

4000 Large-scale IT security project
(Plan-driven and Agile)

Project and IT
QA manager

9 Government
agency

>2,000 Networking, security, data center
and software development (Plan-
driven and Agile)

IT infrastructure
manager

10 Government
agency

>4,000 Web design, security, business
intelligent tools etc. (Plan-driven
and Agile)

IT program
manager

11 Business
system
integration

>700 Security services, Data centre
services, cloud computing etc.
(Plan-driven and Agile)

IT project
manager

12 Business
system
integration

>50,000 Large-scale IT transformation
(Plan-driven and Agile)

Senior IT
consultant and
project manager

13 Airline >1000 Large ERP implementation (Plan-
driven and Agile)

IT systems
manager

14 Banking &
Finance

2,000 e-Commerce B2B systems, CRM
(Plan-driven and Agile)

IT services
manager

64 J. Nyfjord, S. Bathallath, and H. Kjellin

In summary, each convention was briefly described to the interviewee. Then the
interviewee was asked if he or she agrees with the convention and whether it is used.
If there were signs that the interviewee had experience of the convention, then the
discussion kept on going. Otherwise the convention was considered irrelevant and the
interviewee was asked to describe why they had not employed any similar approaches
as was described in the convention.

4 Candidate Conventions and Results from the Empirical
Study

In this section, we describe the eight conventions that were extracted and synthesized
from scientific publications, including a summary of the results of their evaluation
based on the 14 interviews.

In general, it can be stated that most conventions were aligned with the
interviewees’ views of how teams should be coordinated. All fourteen interviewees
demonstrated that they understood the conventions, also by providing practical
examples of their usefulness in terms of both pros and cons in the context of their
organizations.

The evaluation of the conventions was carried out by using different evaluation
criteria than those that were used to extract candidate conventions. The method to
extract the most plausible among the candidate conventions was based on a literature
study where we found generic descriptions of types of behavior that was documented
to work well in large projects. To evaluate the usefulness of the proposed conventions
an entirely different method was used. We assumed that it would not be feasible to
interview managers concerning to what extent their behavior could be explained by
various systems thinking models. Instead we applied a simple and straightforward
method based on the managers’ opinions of the applicability of our description of the
conventions. In this way, we could collect empirical evidence that would indicate
the level of usefulness of the proposed conventions. Asking the following questions to
the interviewees accumulated these opinions of the conventions:

• Do you use any approach or combination of approaches that are similar to the
described convention?

• If yes:
o Can you provide examples? This was taken as an indication of the

usefulness of the convention.
o Can you motivate why it works or not works? The response indicated

to what extent the convention could be easily communicated.
• If not, would you be interested in testing the convention? A positive answer

was taken as an indication of its potential use. A negative answer was taken as
an indication of the conventions as not being useful.

• Can you exemplify possible benefits of using the convention? A positive
answer was interpreted as an indication of the convention as being useful. A
negative answer was taken an indication of the convention as not being useful.

 Conventions for Coordinating Large Agile Projects 65

• Can you exemplify any negative effects of applying the convention? A
positive answer was an indication of it not being useful or an understanding of
the limitations of the convention. A negative answer was an indication of its
usefulness.

When interpreting the answers from the managers we made a clear distinction
between what can be considered opinions of the interviewed managers and what can
be considered as being based on factual experiences. In all cases where the managers
could provide examples, we concluded this data as being more valid than voiced
opinions without examples.

Brief descriptions of each of the eight conventions together with a summary of the
results of their evaluation are described in the sections 4.1-4.8 below.

4.1 Speak Their Language

Argyris [3] has shown that a major obstacle when dealing with collaboration in
complex contexts is the emotional content of various types of communication. Hence,
the most effective way to secure that the communication works well when several
teams are coordinated is to use their language and also give specific feedback to the
teams on how they describe their work, their needs and their progress [3]. At a later
stage, communication standards can be developed for how teams should communicate
with each other, but if these are prematurely introduced they create more confusion
than they solve [16].

Result: Nearly all interviewees shared a similar view that speaking their teams’
language implies connecting people to people, and teams to teams not merely a
process output to a process input. Ten out of 14 interviewees have explicitly
confirmed that continually adjusting the communication will encourage teams’
congruence and collaboration. In this regard, it was mentioned: “I spend times with
different teams, speak their language, understand how they deliver their work and also
try to make them understand how other teams apprehend their work and how they
impact other teams when they deliver something.” Eight out of 14 interviewees think
that the convention would help managers to realize how their teams will deliver as
promised. Twelve out of 14 interviewees mentioned that they specifically think that
the convention can prevent communication conflicts from escalating. Hence, the
convention has a definite acceptance and is likely to be used to secure that the
communication works well.

4.2 Create a Culture of Public Benchmarking

One of the most efficient methods for sharing knowledge is by comparing
performance between teams. However, if managers do not give feedback, criticism
and appreciation in a similar way to various teams it is difficult to create a culture of
fair, open communication [8]. In order for teams to adjust descriptions of their work
according to how other teams describe their work, it is necessary to develop a

66 J. Nyfjord, S. Bathallath, and H. Kjellin

continuous dialogue around comparisons between teams. A specific version of this
called “Peer Sites” has been successfully tested where one software development site
gives a personalized response to another development site [10].

Result: Not all interviewees shared a similar view about the convention’s importance.
Five out of 14 interviewees think that it is a very sensitive topic, which can easily
drive teams to oppose each other. Two reasons were given: due to cultural
considerations, four have failed to implement the convention while one believes that
the convention is of low priority. The latter indicated that it is inappropriate to
compare the teams’ presentations because it will be a waste of time and effort to ask
other teams to adjust their work accordingly. As he said: “In my view, this could
result in an ambition among other teams to re-implement or to add more tasks to
comply with the best team… we are talking about an increase in project duration and
an increase in cost even if we will get a better quality to some extent.” On the
contrary, he suggested: “It is better to bring the teams’ leaders together, and have
them agree on standards and procedures. If the teams follow the same standard and
procedures, then they can more easily share knowledge about their results.” However,
8 out of 14 interviewees mentioned that benchmarking could help in raising
performance standards by enabling knowledge to be shared and reused. Among those
it was, for instance, mentioned: “Creating such culture… increases the good
competition between the teams, because one team’s good performance is an example
for the other teams. It enhances the quality of all teams. So, we always raise the
standards or the bar higher by showing the great performance of one team as an
example for the others and, if there is any great job experience, then we always
promote the dissemination of descriptions of this and share all the documents
publicly”. Hence, the convention has a partial acceptance, as it is less likely to be used
to enhance continuous dialogue between teams.

4.3 Motivate from Personal Experience

Managers who cannot argue for their motivation by providing references to practical
experience may risk the communication trap of having subordinates not
understanding them [33]. This is especially important when there are few fixed
routines, which puts a high pressure on people’s ability to accept abstract ideas. To
provide rational and consistent arguments may also be difficult when several theories
or perspectives are discussed. In such cases, using examples will clarify the ideas.
Hence, the manager who motivates their arguments combined with real, concrete
examples is more likely to be understood than the one who uses abstract theories.

Result: Nearly all interviewees shared a similar view that the use of bundled experiences
would help both the managers and teams to overcome communication bottlenecks.
However, 9 of out of 14 interviewees indicated that the arguments must be carefully
composed to achieve certain needs and to not impose any restraints on the teams’ own
inspiration. Twelve out of 14 interviewees indicated that the convention could enhance
better communication between the managers and teams. Among those it was mentioned:
“With the accumulated experience that one has, it will help a lot in discussions, in
meetings, in highlighting issues, in reaching to agreements, etc. Especially, when you

 Conventions for Coordinating Large Agile Projects 67

quote, from your past personal experience, some other companies that did an
implementation of the same type of system that you are trying to implement…. this will
help others to understand that they can achieve the same things.“ Another responded: “I
believe in managing by examples, so if I have a situation where I am arguing with a
team member or a team leader, then clarifying by giving some examples is a good idea
to achieve a common understanding… The project managers should also be open to
other ideas until there is a consensus about which solution should be taken”. Hence, the
convention has a definite acceptance, as it is likely to be used to enhance better
communication with teams.

4.4 Include Sub-ordinates in Meetings

In all large organizations there are power games [1]. One aspect of power games is
that people create territories within the organization impeding effective
communication. Hence, to prevent these kinds of situations, representatives from
various hierarchical levels should be included in meetings [1]. Meetings between
management and team leaders should always include at least one member of the team
and it should preferably be a different member at each meeting. This empowers each
team member to communicate his/her view of the project and motivates everyone to
be part of the decision process. By always trying to include three hierarchical levels in
meetings secures that relevant aspects is moving between all levels of the
organization. In the proposed system model of “Interactive Planning”, Ackoff [1]
demonstrates how a similar approach secures that the communication flows more
freely among the members of a large project.

Result: All interviewees acknowledged the need of connecting people to people
regardless to their positions and responsibilities, which in return would foster their
teams’ development and learning. In their comments of what benefits they can get, the
following motivations were given: “It is a good technique especially to motivate people
and to develop people further”; “It is one of the very efficient tools to develop people...
and very effective way of decision making”; “You will be surprized how team members
can present something that gives you a direction that you did not even think practically
about at that time... taking feedback is very important... it will be like a 360 view of any
subject”; “[As a developer] listening to how the strategy was brainstormed, how the
decisions were made, and how the challenges and conflicts were resolved was like an
eye opener for me at that time”. Exceptions to that, 5 out of 14 mentioned that managers
should be careful when sending subordinates to critical meetings, such as meetings
involving financial discussions or some customer executive meetings. Hence, the
convention has a definite acceptance among the interviewees, as it is likely to be used to
promote communication, team development and learning.

4.5 Combine Various Modeling Methods

Ever since the famous book about Parkinsson's Law of Bureaucracy [25], the dangers
of following a specific model too rigidly has been proven over and over again.

68 J. Nyfjord, S. Bathallath, and H. Kjellin

The solution is to have a flexible attitude towards models and use them when, and in
whatever combination of models, needed and using the models as support tools rather
than governing systems [12]. Hence, managers should be skilled in drawing “Rich
Pictures” [9] which provide models of the problem that can easily be explained to
laymen and make them aware of the various perspectives among stakeholders in a
complex project. A manager can apply several different perspectives at the same time
and for each perspective make conceptual models. When a number of conceptual
models have been presented it is possible to compare all the models with the software
development situation and draw conclusions based on more than one perspective.

Result: All interviewees shared a similar view that in complex projects, models are
used to address, understand and help solving problems and not merely to describe
processes and standards to follow. As one said: “In software development projects,
flexibility is essential and very important in managing projects… So, it is advisable to
use different models”. Another interviewee stated: “Each project has its unique
category and level of complexity, so the project manager should be able to employ
models that suites the project, in whatever combination he thinks will work well”. Ten
out of 14 interviewees indicated that the convention could help in building stronger
teams that deliver better quality. In the same vein, 5 out of 14 interviewees indicated
that the convention could help managing projects in much faster ways due to less
formality. Among those it was mentioned: “Combining different models and methods
when managing projects will definitely help project managers to accomplish critical
goals such as time-to-market”. Hence, the convention has a definite acceptance, as it
is likely to be used to support project governance by improved communication.

4.6 Use Global Definitions

Using different definitions on various organizational levels will cause confusion. In
his works with “Viable System Models”, Beer [6] became famous for his introduction
of cybernetics. According to his model, the communication processes between all
levels of the organization could be recursively described, i.e. the same communication
protocols or definitions that are necessary among teams on a lower level are also
necessary on higher levels. Hence, by using recursive descriptions support the global
communication in large projects because similar communication protocols are used
on all levels of the project.

Result: All interviewees shared similar opinion that common definitions across the
project organization would provide high synergy among teams and maintain
consistency in communication, documentation, and reporting. Generally, their
adoption of the convention is primarily to reduce confusion and eliminate potential
conflicts that may occur due to misinterpretation especially in complex projects. Nine
out of 14 interviewees indicated that using global definitions could be a timesaving
and efficient way for project success. In this regard, it was mentioned that: “The
convention can bring more advantages including seamless communication, avoid
misinterpretation and conflicts, and avoid risk which becomes more important when

 Conventions for Coordinating Large Agile Projects 69

dealing with offshore teams”; “Having a unified terminology or terms will make
everybody understand each other and it plays a critical role for creating environments
for clear communication”. Hence, the convention has a definite acceptance, as it is
likely to be used to support mutual understanding across the project community.

4.7 Accept Chaos as a Driver For Development

Leaders who try to impose order in a complex context will fail [29]. A manager
should accept a certain amount of chaos in the development process as long as this
does not inflict on the basic goals of the project [30]. To determine an acceptable
degree of chaos, managers should be familiar with complexity theory. Stacey [30]
claims that in large projects the most highly valued competence of managers is to be
able to deal with relationships, dynamism and unpredictability. The managers should
not try to control everything but instead use this competence to shift leadership style
accordingly.

Result: Nearly all interviewees consider some chaos to be effective in many ways. For
instance, a) ten out of 14 interviewees consider it a driver for timely project
development and delivery, as it was stated: “Chaos is sometimes important to provide
control over the project cycle itself, otherwise many projects might go in no end to be
completed” and b) five out of 14 interviewees considered it as an enabler for teams to
thrive and assume higher responsibilities. However, three interviewees mentioned that
accepting chaos must be accompanied with careful attention, as motivated by one of
them: “It should not change the scope of work, it should not change the time frame, it
should not affect the budget, and it should not do a drastic change to the project model
or to the project standards. I can accept 10-15% percent change here and there
whenever it is required.” Hence, the convention has a definite acceptance, as it is
likely to be used to drive project development forward as a way to gain control over
the project cycle and as an enabler for communication and team development.

4.8 Centralize Critical Rules

Using a strict “management by objective” approach in a complex context will likely
constrain the productivity of teams [21]. Hence, formalizing goals and constraints as
generic rules or principles that can be implemented in whatever ways the teams find
appropriate will provide a softer direction enabling team creativity and productivity.

The history of complex systems have many examples of a paradox saying that
managers can be free to decentralize decision making if they have been cautious
enough to centralize the critical rules. Thomas [31] describes the results from several
studies of how productivity rises once there is a sound and stable foundation allowing
the employees to design their own work. Another analog example, illustrates how
cities can be made to be self-organizing as long as there is an understanding of the
critical thresholds of the city [14].

Result: Everyone but two have accepted the convention. The latter two favour
"management by objectives" as a support for timely delivery of the project and

70 J. Nyfjord, S. Bathallath, and H. Kjellin

securing productivity. The other interviewees, on the other hand, share similar views
on accepting a critical set of rules instead of strict objectives and systems as a driver
of productivity. Among those, one indicated that in complex projects he prefers to
give “the minimum set of rules and a lot of flexibility to the teams to decide how they
would like to manage their work”. He also pointed out that managers must apply
certain probes and checks to ensure that teams are independently capable of taking
timely decisions. Another interviewee mentioned “I don’t agree much with strict
management by objectives. I believe that you need to draw the borders for them and
let them play or implement the way they want within these borders.” Hence, the
convention has general acceptance, as it is likely to be used to empower the teams to
decide how to best accomplish their tasks and goals, and thereby increase the
productivity of the project as a whole.

5 Discussion

In this section, we briefly discuss the results of the evaluation of the conventions.
Generally, all of the conventions were considered to be applicable in the interviewees’
organizations. We argue that this high level of applicability is due to the
correspondence between the conventions and the principles of complex adaptive
systems (CAS) as described in [2], where it is shown that the CAS principles self-
organization, emergence, interdependence and coevolution also exist in most well
functioning Agile organizations. In this regard, as we have also evaluated and ensured
that the conventions are aligned with the Agile values, principles and practices, it is
also worth noting that our findings also support the findings of Pelrine [26], in his
suggestion that complexity science provides a theoretical basis for Agile. Hence, by
treating software development as a complex endeavor, rather than a linear, will help
managers to master large Agile projects.

Finally, we have often been asked why we restrict the conventions to being suitable
for coordinating Agile projects instead of claiming that the conventions are good for
coordinating projects in general. Our answer to such questions is that the conventions
may very well be applicable to any large project where there is a need for an Agile
type of flexibility within a strict framework, but we have intentionally selected an
instance of this problem, i.e. large Agile projects, where there is a strong polarity
between the need for flexibility on one hand, and a need of strict correctness on the
other hand. We have shown how it can be possible to follow a combination of
scientific models while at the same time promoting an Agile type of flexibility.

6 Concluding Remarks and Future Research Directions

This research associates systems thinking with the management of large Agile teams.
It suggests that the managers’ ability to master complexity can be improved if they
adopt a set of proposed conventions. The conventions facilitate a multi-
methodological system approach to coordinate teams by increasing communication
and interaction. A pre-study based on 14 interviews was conducted, the results of

 Conventions for Coordinating Large Agile Projects 71

which indicated a high degree of usefulness of the proposed conventions. Hence, the
results imply that a set of conventions can potentially facilitate coordination by
serving as a supportive context enabling managers to apply various system thinking
models simultaneously, and thereby help them to focus more on the broad
responsibility of leading the project as a whole.

There are different approaches to managing an organization as a complex adaptive
system, e.g. “Learning Organizations” [28], Cynefin framework [29] and “Human
System Dynamics” [13]. We view each of these approaches as appropriate guides to
management of Agile organizations. However, it would be highly valuable to
compare the conventions presented here with existing guidelines in these approaches.
For instance, a structured analysis of the guidelines defined for the different domains
in the Cynefin Framework would contribute to further knowledge about the
conventions and their applicability.

This work is still at an early stage, but we aim at continuing our efforts in
investigating the potential effects as recognised in the pre-study at a larger scale. The
overarching target is to contribute to improving the communication, cohesion,
efficiency and performance of large Agile projects. Nevertheless, to reach concrete
results, we intend to conduct further empirical investigations, e.g. by case studies. We
also assume that there will be continuous modifications of the conventions to ensure
they meet the needs of managers of large Agile projects.

References

1. Ackoff, R.L.: Recreating the corporation: A design of organizations for the 21st century.
Oxford University Press, New York (1999)

2. Arell, R., et. al.: Characteristics of Agile Organizations. Agile Alliance (2012),
http://agilealliance.org/index.php/download_file/view/217/221/

3. Argyris, C.: Knowledge for Action: A Guide to Overcoming Barriers to Organizational
Change. Jossey-Bass Inc., Publishers, San Francisco (1993)

4. Augustine, S., Payne, B., Sencindiver, F., Woodcock, S.: Agile Project Management:
Steering From the Edges. Communications of the ACM 48, 85–89 (2005)

5. Axelrod, R.: The Complexity of Cooperation: Agent-Based Models of Competition and
Collaboration. Princeton University Press (1997)

6. Beer, S.: The Viable System Model: Its Provenance, Development, Methodology and
Pathology. The Journal of the Operational Research Society. Palgrave Macmillan
Journals 35(1), 7–25 (1984)

7. Brocklesby, J.: Becoming multimethodology literate; An assessment of cognitive
difficulties of working across paradigms. In: Multimethodology: The Theory and Practise
of Combining Management Science Methodologies, pp. 189–216 (1997)

8. Chan Kim, W., Mauborgne, R.: Fair Process: Managing in the Knowledge Economy.
Harward Business Review (1997)

9. Checkland, P.B.: Systems thinking Systems practice. John Wiley & Sons, UK (1999)
10. Clerc, V.: Architectural Knowledge Management Practices in Agile Global Software

Development. In: 6th IEEE International Conference on Digital Object identifier (2011)
11. Cockburn, A.: Agile Software Development, The Cooperative Game. Addison-Wesley

(2006)

72 J. Nyfjord, S. Bathallath, and H. Kjellin

12. Drucker, P.: The Theory of Business. Harvard Business Review (1994)
13. Eoyang, G., Royce, J.: Adaptive Action: Leveraging Uncertainty in Your Organization.

Stanford University Press (2013)
14. Felsen, M., Watson, B., Wilensky, U.: Surfacing Urbanisms. Recent Approaches to

Metropolitan Design. In: Conference Proceedings, pp. 261–266 (2006)
15. Flood, R.L., Romm, N.R.A.: Diversity Management: Triple Loop Learning. John Wiley &

Sons, Chichester (1996)
16. Gudykunst, W.B., Wiseman, R.L.: Toward a theory of effective interpersonal and

intergroup communication. In: Koester, J. (ed.) Intercultural Communication Competence.
International and Intercultural Communication Annual, vol. XVII, pp. 33–71. Sage
Publications, CA (1993)

17. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems
Research. MIS Quarterly 28, 75–105 (2004)

18. Jackson, M.C.: Creative Holism for Managers. John Wiley & Sons, Chichester (2003)
19. Johnson, N.F.: Two’s Company, Three is Complexity: A Simple Guide to the Science of

All Sciences. Oneworld Publ., Oxford (2007)
20. Kraut, R.E., Streeter, L.A.: Coordination in Software Development. Communications of

the ACM 38(3), 69–81 (1995)
21. Levinsson, H.: Management by Whose Objectives 81(1), 107–116 (2003)
22. Manifesto for Agile Software Development (2001), http://agilemanifesto.org/

(accessed January 2014)
23. Merriam-Webster Online Dictionary (2014), http://www.merriam-webster.com
24. Paasivaara, M., Lassenius, C.: Communities of practice in a large distributed agile

software development organization case Ericsson. Information and Software Technology,
http://www.sciencedirect.com/science/article/pii/S0950584914
001475

25. Parkinsson, C.N.: Parkinssons Law. The Riverside Press, Cambridge (1957)
26. Pelrine, J.: On Understanding Software Agility - A Social Complexity Point of View.

E:CO 13(1-2), 26–37 (2011)
27. Robson, C.: Real World Research. Blackwell Publishing (2002)
28. Senge, P.M.: The Fifth Discipline: The Art and Practice of the Learning Organization.

Doubleday (1992)
29. Snowden, D., Boone, M.E.: A Leader’s Framework for Decision Making. Harvard

Business Review 85(11), 68–76 (2007)
30. Stacey, R.D.: Strategic Management and Organizational Dynamics - The Challenge of

Complexity. Prentice Hall (2007)
31. Thomas, K.W.: Intrinsic Motivation at Work: What Really Drives Employee Engagement.

Berrett Koehler Publishers, Inc., San Francisco (2009)
32. Van Aken, J.E.: Management research based on the paradigm of the design sciences: The

quest for field-tested and grounded technological Rules. Journal of Management
Studies 41(2), 219–246 (2004)

33. Wood, R., Bandura, A.: Social Cognitive Theory of Organizational Management. The
Academy of Management Review 14(3), 361–384 (1989)

34. Zmud, R.W.: Management of Large Software Development Efforts. MIS Quarterly 4(2),
45–55 (1980)

Supporting a Large-Scale Lean and Agile

Transformation by Defining Common Values

Maria Paasivaara1, Outi Väättänen2,
Minna Hallikainen2, and Casper Lassenius1

1 Department of Computer Science
Aalto University, FIN-00076 Aalto, Finland

{firstname.lastname}@aalto.fi
2 Ericsson R&D Center Finland

Jorvas, Finland
{firstname.lastname}@ericsson.com

Abstract. This paper describes how a rapidly growing distributed prod-
uct development organization at Ericsson used ”Value Workshops” to
align the different sites and teams when adopting agile and lean software
development. The workshops were held at two main sites, and involved
people from four sites. During the workshops, the teams worked on com-
mon values: their interpretation and behavioral implications, using a
tree metaphor. The workshops were viewed as very valuable in creating
a common organizational identity, and it was considered important to
continue the work and reinforce the values to make them drive behavior
in daily work.

Keywords: agile software development, large-scale agile, value work-
shop.

1 Introduction

Agile adoption in large, distributed organizations is difficult for many different
reasons [1]. In this paper, we discuss the problem of integrating and aligning the
goals and values in a large, globally distributed software development organiza-
tion at Ericsson.

The case organization develops a XaaS [2] platform and a set of services, which
we will refer to as the ”product”. Ericsson acquired the product in 2011. Cur-
rently the product is in its early life-cycle with tens of customers, the number of
which is expected to grow rapidly, and is considered to have a vast market poten-
tial. As part of the acquisition, around ten people from the previous development
organization moved to Ericsson and formed the core team.

The development organization has grown rapidly since: from two teams in
2011 to 15 agile teams, and altogether 200 people in the spring of 2014. Cur-
rently the development organization is distributed to five sites located in three
countries. Four of the sites are in Europe and one is in Asia, see Figure 1.

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 73–82, 2014.
c© Springer International Publishing Switzerland 2014

74 M. Paasivaara et al.

Country Alpha / Europe

Site A Site B

Country Beta / Europe

Site C Site D

Country Gamma / Asia

Site E

Fig. 1. Sites and Countries in the Case Project

The product has been built on several different sites, leading to challenges in
end-to-end development, as all sites might not have all the different functional
competencies needed in feature development.

Ericsson has traditionally used a plan-driven software process, but is currently
undertaking a global adoption of lean and agile software development. Thus, in
our case organization the reasons to transition to lean and agile were twofold:
1) The Ericsson wide lean and agile adoption was successfully progressing in
many projects even at the same development sites as our case organization; thus
lean and agile were natural choices for improving the way of working. 2) The
aim of the case organization was to shorten the lead-time for features and to
move from the current eight week release cycle to continuous deployment, which
would mean being able to release a new feature instantly when it is ready. Agile
feature teams that would be able to develop a new feature very fast without
extra handovers, from end-to-end, i.e., from requirement until it is part of the
product, seemed like a perfect fit for this need.

The transition in the case organization has been particularly challenging, as
the organizational growth has been extremely rapid. The transition steps, the
major challenges that the organization faced and the mitigating actions taken
are described in our previous article [3]. In this current paper we concentrate
on one of the major steps of this transformation: how the highly distributed
and rapidly growing organization aimed to find a common ground and common
direction through common values and joint value workshops.

The paper is structured as follows: Section 2 describes the research goals
and methods, Section 3 presents our results, and finally Section 4 concludes the
paper.

2 Research method

2.1 Research Goals and Questions

This is a case study [4] of one Ericsson product development organization. The
broader goal of our research has been to study the large-scale agile and lean
adoption in this organization. In this paper we report the initial results of one of

Starting a Large-Scale Journey 75

the major steps the organization took: finding a common direction by defining
and working with common values.

In this paper we address the following research questions:

RQ1: Why did the organization choose common values and value workshops as
one of the major steps of its lean and agile journey?

RQ2: How were the value workshops organized?
RQ3: How did the participants perceive the value workshops?

2.2 Data Collection and Analysis

The main data collection methods were semi-structured interviews and observa-
tions during the winter 2013/2014. Regarding the whole transformation journey,
we interviewed 32 people from four sites and in different roles ranging from team
members to Product Owners, coaches and managers. The goal was to have as
broad representation of the organization as possible. Each interview lasted 1-2
hours, with two researchers participating, one being the main interviewer, and
the other taking notes. We used an interview guide approach with predetermined
themes. The goal of these interviews was to understand the transformation from
waterfall to lean and agile. In these interviews, we were told that the organiza-
tion had started to define common values, and would be working further with
the values in workshops.

We had the possibility to participate in and observe two 2-day workshops
arranged at sites A and D during winter 2013/2014. The fist workshop was
observed by two researchers and the second by one researcher. Detailed notes
were taken during the workshops both on what happened, as well as on what
was discussed in the workshops.

After the second workshop, we interviewed 12 participants from three different
sites on their experiences and opinions regarding the workshops. The interviewees
in these short, 15-30 min interviews, ranged from team members to managers.
These semi-structured interviews were conducted by a single researcher. Count-
ing both of the interview rounds, we interviewed a total of 44 subjects. The roles
and sites of the interviewees are shown in Table 1.

In addition to interviews and observations, we received documents from our
interviewees to support their stories, e.g., presentation slides of the process,
product and organization structure, as well as the “Showcase”, a story created
by the agile coaches together with the management team to describe a fictional
story of how this organization would look like in two years.

All the interviews were recorded and then transcribed by a professional tran-
scription company. The transcribed interviews were analyzed by a qualitative
data analysis software Atlas.ti. We used inductive analysis to discover themes
and to categorize the qualitative data.

2.3 Limitations and Validation

Unfortunately, for cost reasons, we were able to visit and interview project par-
ticipants only at the four European sites, but not at the Asian site. The European

76 M. Paasivaara et al.

Table 1. Interviewees and their roles (transformation interviews + value interviews)

Role Site A Site B Site C Site D Site E Total

Team members 3+2 1 1+5 1 13
Product owners 2 1 1 4
Architects 1 1+2 4
Coaches 2 1 3 3 9
Subsystem responsibles 1 3 4
Line managers 2+2 1 5
Other managers 6 1+1 8

Total 14 3 18 12 0 47

Note: The sum exceeds the total number of interviews, as some people had several roles.

sites were Ericsson internal sites, but the Asian site was a hired consulting com-
pany. Thus, it would would have been extremely interesting to visit and interview
people from that site as well. However, we were able to interview one visiting
engineer from that company, a team member currently located at site D.

After the data collection and analysis we validated our findings by giving a
feedback session to the case organization based on all data collected. The feed-
back session took place in a team area at the site A, from where we had a
videoconference connection to all the other European sites. The whole organiza-
tion was invited to this feedback session and around thirty people participated
actively in the session. We received positive feedback: the organization had al-
ready started to implement some of the suggested improvements and would take
into account our findings when planning the next improvement steps. No cor-
rections to our findings were presented. Moreover, the two authors of this paper
coming from Ericsson have together with the researchers checked the correctness
of this paper.

3 Results

The results section is divided into three parts, each providing answers to one of
the three research questions.

3.1 Motivation for Value Workshops

In this subsection we focus on the first research question, ”Why did the organi-
zation choose common values and value workshops as one of the major steps of
its lean and agile journey?”

The first phase of the lean and agile transformation included forming a pilot
team and after a couple sprints rolling out agile to the whole organization. In
this organization-wide roll-out cross-functional and cross-component agile teams
were formed. Even though the goal was to form mainly site-specific teams, due
to the knowledge differences between the sites, approximately half of the teams

Starting a Large-Scale Journey 77

were cross-site teams. The organization was not immediately satisfied with this
initial organization structure, but after a few trials the structure started to gain
acceptance.

Even though the agile teams were now formed and working, the organization
was highly distributed both regarding geography and previous organizational
boundaries, as project project personnel came from several Ericsson sites and
organizations, as well as from the acquired company and a hired consulting com-
pany. Thus, besides geographical barriers, there were national and organizational
culture barriers, language barriers, as well as time-zone differences in place. Most
of the people had not met each other face-to-face. Some of our interviewees, even
mentioned site politics, or competition between the sites, as one of the problems,
as the following quotation illustrates.

I see site politics as one of the problems. It’s difficult to communicate between the
sites. So we build up some kind of, ”us and them” feelings. That hinders our way
of working. We don’t have a perfect flow in the system. Because we don’t really
trust each other. And that’s a problem. — A Coach

Moreover, management saw that the organization did not have a common
direction. Many of our interviewees mentioned this problem. They felt that a
common direction was missing both regarding the future direction of the product,
as well as regarding the common way of working. Thus, management and coaches
thought that the next step in the transformation journey would be to define a
common direction for this new and highly distributed organization and build a
“we” spirit in which people identified with one single organization rather than
with different competing sites.

Why we have started with values, [...] is that we would have a common baseline to
continue further, [...] a baseline on which we build this common understanding and
common direction. That we have something common to discuss together. I have
seen as a problem in this whole project that different sites and different people have
taken a bit different direction. — A Manager

To achieve these goals the work started by doing a ”Futurospective”, a work-
shop where the agile coaches and a few managers created a vision of where
the organization would be in a couple of years. Based on the results of the Fu-
turospective the coaches wrote a ”Showcase” —a fictional story of what the
organization would look like and how it would work in two years time, when
they had collaborated and together created a success story. Based on the show-
case, the five core values were created in collaboration between the coaches and
the management team: one organization, step-by-step, customer collaboration,
passion to win and fun. To share the values within the whole organization a
series of value workshops were organized. Besides sharing the values, the aim of
these workshops was to find out whether these are the best possible values for
this organization, as well as to work on what these values could mean and where
they could lead to as concrete behaviors.

78 M. Paasivaara et al.

3.2 Organizing the Value Workshops

In this subsection we answer the second research question, ”How were the value
workshops organized?”

The value workshops were organized during the winter 2013–2014. The goals
were twofold:

1. To create a common vision for the whole organization in the form of common
values

2. To create contacts and collaboration between the sites, and building a “we”
spirit across the sites to really create a one project

The workshops were arranged at the biggest sites, A and D, with around 20
people traveling from the three other European sites. The ones traveling were
the whole management team and coaches, as well as a few team members. All
sites participated. However, from site E (the consultancy firm) there were only a
few participants who, at the time of the workshops, worked as visiting engineers
at the European sites. The idea was that all team members from sites A, B, C
and D would be able to participate in one of the workshops, as well as meet all
the managers and coaches from all sites face-to-face.

The coaches and managers initially held joint workshops, in which they wrote
a “showcase”, a vision of how the organization would look like and work in
two years when the whole organization had collaborated and together created a
highly successful product. The aim of the showcase was to answer the question:
”What made this product such a huge success?” The values were then created
based on this showcase.

The idea of the 2-day value workshops called “Value HarvestingFairs” or ”Value
Bootcamps” was to discuss and elaborate the values together with the whole per-
sonnel by using different approaches and ways of working. The metaphor of a
cherry tree [5] was chosen as a common theme, see Figure 2. The roots of the tree
were the common values, the leaves were the behaviors, e.g., what a team could
do to realize the values, and the fruits were the end results. This tree metaphor
was used though the workshops in all the activities.

The workshops started by tree hugging and continued by ”planting the seeds”
in the form of instructions how the teams could ”grow” their own trees. Then
the teams worked with sticky notes to build their trees and presented them to
the others. At the end of the workshops, real trees were planted together: A
cherry tree outside the windows of the team areas at site A. At site D, as it was
winter already, two trees were planted inside for sites C and D. The coaches from
different sites planned and facilitated these workshops as a collective effort.

The workshops included different kind of group activities and exercises re-
garding values done in varying groups: both within the whole group, within own
cross-functional teams, as well as in highly mixed teams with people from dif-
ferent roles and from different sites. Next, we will elaborate some of the major
activities.

In the beginning of both value workshops the showcase was presented by the
managers and coaches. They presented it in the format of an ”interview” by a

Starting a Large-Scale Journey 79

Fig. 2. Value Tree

journalist who was studying, two years in the future, why this organization and
the product it had built, had been so successful. The interviewer, an organiza-
tional coach, playing the role of a journalist, asked the managers to explain their
views behind the success story. Each manager ”played” their role by answering
the questions of this journalist, each from one specific point of view on why and
how this product had been a success story, e.g., regarding organizational culture,
product quality and customer collaboration.

The next step during the first Value Workshop was an interactive Value Ori-
enteering, during which each value and what it could mean, was discussed in
small groups. The teams orienteered in the office building and stopped at con-
trol points, each located under some inside tree, following the tree metaphor.
At each control point a pair of coaches or managers presented one of the values
to the team by very interactive means: video, drawing, discussion, sticky notes
etc. The participants could discuss, ask questions, and share their own interpre-
tations, e.g., by adding sticky notes to the drawings or flip-charts so that the
next teams arriving to that control pout could see them as well. The goal of
this activity was to discuss the interpretations of each value together, so that
everybody would at least have an idea of what that value could mean. At the
second value workshop, arranged at site D, the office spaces were different, thus
a ”Gallery Walk” was chosen as the approach for this activity, instead. However,
the contents stayed the same. At each of the rooms along the Gallery Walk, the
managers and coaches took the role of ”artists” and made drawings together
with the participants while presenting and discussing the value of that Gallery
room.

The teams for the Value Orienteering and for the next group activity, ”grow-
ing the tree”, were formed in the first Value Workshop mainly based on the

80 M. Paasivaara et al.

existing agile teams of around eight members. For the second workshop, a dif-
ferent approach was taken and the teams for the Gallery Walk and ”growing the
tree” were predetermined so that the participants from all four sites and from
different roles were mixed in the teams.

The second group activity in both workshops, growing an own tree for the
team, was to discuss and elaborate the values in teams based on this question:
”What kind of behaviors do we see when we live our values?”. The discussion in
each team was facilitated by the coaches and managers. The teams considered
what each value would mean in practice for them, and what kind of concrete
behavior each value could lead to. These behaviors, the leaves of the tree, were
added written on post-it notes to each team’s own tree. Finally, the teams dis-
cussed what would be the fruits of the tree, meaning the end results when fol-
lowing the values and working according to the behaviors. The teams of the first
Value Workshop would take these trees to their team space after the event. In
both events each team presented their value tree, especially a few most important
behaviors, to everybody.

In the end of the second value workshop each participant also worked with
their own value tree: They were asked to write to that tree a few concrete actions
that they would do in the future, so that the tree would grow. These actions
were then shared and discussed with a pair during a pair walk. The idea was
that each participant would take that tree to their own workplace as a reminder
on what he or she was planning to do or change in the future.

3.3 Participants’ Perception of the Value Workshops

This section discusses our third research question, ”How did the participants
perceive the value workshops?”

The first impression of the value workshops was highly positive. In particular,
participants felt that the organization took a huge step closer to the goal of
being one organization building a common product. Especially meeting with
people from the other sites and talking face-to-face was a benefit that several of
the interviewed participants mentioned.

One of the value this event brings that I see is that we are no longer just names
and faces behind the screen. You see real people and talk to real people.

— A Team member

Regarding the values, most of the participants in the workshops seemed to
feel that the chosen values were good. Our interviewees confirmed that:

I completely agree with these values. [...] [the values are] not so easy as before to
forget, or ignore in the daily work, I think that’s the main benefit of the workshop.

— A Team member

Actually, some of our interviewees were surprised at how well the workshop
participants, coming from different sites and teams, all agreed both regarding
the values, but also regarding the planned behaviors the teams presented to each

Starting a Large-Scale Journey 81

other. Even though some felt that the presentations of each team’s own value
trees were a bit boring, they felt that these presentations actually showed that
they all agreed on what should be done, which they saw as a great achievement.

[the best part was] the conclusion that we all agree on the same things. [...] we said
almost the same things as the other teams. [...] So it was agreed from many posts,
from the whole organization, basically. — An Architect

Several of our interviewees agreed that they were aiming to personally act
differently after these events and that the events had made the values more
clear and meaningful to them.

I will probably do a lot of things differently. [...] I’m gonna try to collaborate more,
between the teams. Because I think that’s one of the biggest flaws we have right
now. — A Team member

I feel more commitment. [...] after this value bootcamp, or what ever you call it,
I’m more committed to act. [...] . For example, for [my team] we should get the
roles more clear and we should work together with the [organization at the other
site] and have a bootcamp there, have a kick-off together for example and set the
roles. — An Architect

I think it’s good when you go to every individual, I think one of the tasks was to
write down, what you can do, the coming days or weeks and continue doing, to live
after what we have discussed now. Those sort of exercises are probably good I think,
because then, all of a sudden it means something to you. — A Team member

Some participants were slightly worried about what would happen after the
events, if the values would just be forgotten, expressing that good intentions
formed during the workshops are not enough to implement the values in the
normal working environment.

I believe that I’m sincere in these kind of happenings and want to change, and act
according to what we have planned. But when you return to your daily life and
you face the same problems as before, then it is not so easy to change your ways
of working, or even remember them. That’s why I think there should be somebody
who kicks you... — A Team member

The plan to tackle this was to have the coaches help the teams to work towards
the common values and exhibit the behaviors they had planned. Many of our
interviewees also suggested that some kind of a common follow up for these
events would be needed after half a year or so.

I would say a follow-up in maybe six months or something like that, just to have
a recap of what has changed, what has happened, what I have done. Just a kind
of retrospective, just to see what is happening and what kind of next steps we can
take. [...] All sites should be involved with that follow-up, [...] because we should
fight for this one [name of the product]. — A Team member

82 M. Paasivaara et al.

I think we could follow-up. [...] if it’s improved or if we are living by these values
or not. [...] It would be nice if we can have some kind of session in half a year and
then conclude was it good, are we going to this direction or what is happening. [...]
Maybe we don’t have to have this really big group, that we have today. But maybe
within a team or within a site. — An Architect

Even though overall the values were seen as good and the workshops as ben-
eficial by all of the interviewed participants, some were still hoping to have even
more concrete vision than what the values and the showcase could provide them.
Especially a concrete vision or a roadmap for the product was what a few of our
interviewees were hoping to receive.

4 Conclusions

The use of value workshops seems to be a mechanism for starting the alignment
of different sites and teams in a globally distributed organization. This is par-
ticularly important in agile development, as teams can have significant degrees
of freedom in deciding how they work. Defining and communicating joint values
can guide the teams and their actions when back in their normal environments,
and can help create a common project identity.

We plan to continue studying this ongoing transformation, e.g., by interview-
ing people on value adoption in the teams and following how the next steps of
the journey will take place.

References

1. Paasivaara, M., Lassenius, C., Heikkila, V.T., Dikert, K., Engblom, C.: Integrating
global sites into the lean and agile transformation at ericsson. In: 2013 IEEE 8th
International Conference on Global Software Engineering (ICGSE), pp. 134–143
(2013)

2. Banerjee, P., Friedrich, R., Bash, C., Goldsack, P., Huberman, B., Manley, J., Pa-
tel, C., Ranganathan, P., Veitch, A.: Everything as a service: Powering the new
information economy. Computer 44(3), 36–43 (2011)

3. Paasivaara, M., Behm, B., Lassenius, C., Hallikainen, M.: Towards rapid releases in
large-scale xaas development at ericsson: A case study. In: Proceedings of the 9th
International Conference on Global Software Engineering. IEEE Computer Society
Press (2014)

4. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. SAGE Publications,
Thousand Oaks (2009)

5. Adkins, L.: Coaching Agile Teams: A Companion for ScrumMasters, Agile Coaches,
and Project Managers in Transition. Addison-Wesley (2010)

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 83–92, 2014.
© Springer International Publishing Switzerland 2014

A Model for Understanding When Scaling Agile Is
Appropriate in Large Organizations

Ken Power

Cisco Systems
Ireland

ken.power@gmail.com

Abstract. The term ”agile at scale” is used frequently in relation to agile
approaches in large organizations, but the meaning of “scale” is not always
clear. Without a proper understanding of meaning and context, inappropriate
methods are applied. It is important to understand when “scaling agile” is the
solution to the problem at hand, and when its not. There is a difference between
agile approaches used by a team in a large organization, agile approaches used
on a large development effort, and organization agility. The distinction is
important. This paper explores that distinction using Human Systems Dynamics
as a lens through which to understand and articulate which of the three contexts
an organization is dealing with. By analyzing a system through the HSD lens it
becomes possible to predict and influence the impact on the flow of work
through the system, and in particular, it is possible to understand what types of
impediments might impact the flow of work. This helps organizations to
understand appropriate approaches to agility that better suit their context.

Keywords: agile, scale, large-scale, complexity, human systems dynamics,
coordination cost, communication, flow, impediments.

1 Introduction

A team working inside a large organization does not necessarily need a scaled
approach to agile. There is a difference between (1) agile approaches used in a large
organization, (2) agile approaches used on a large development effort, and (3)
organization agility. This paper draws from research on impediments to flow in teams
and organizations [1], and explores the distinction between these three categories
from the perspective of Human Systems Dynamics (HSD). This research uses HSD to
understand and articulate each of the three contexts. This helps organizations to
understand appropriate approaches to agility that better suit their context.

2 Human Systems Dynamics

Teams and organizations are complex adaptive human systems. Human Systems
Dynamics (HSD) provides a useful lens through which to understand teams and

84 K. Power

organizations [2]. Self-organization is a key property of complex adaptive systems
and agile [3]. Research in complex adaptive systems show that three factors shape
patterns in self-organization: containers, significant differences, and transforming
exchanges” [4]. These three elements form the CDE model in Human Systems
Dynamics, and are the conditions for self-organization in human systems. A
container sets the boundary for self-organizing systems [2]. The container’s purpose
is “to hold the system together, so relationships between and among agents can be
established” [2]. A system may be contained by an external boundary, by some
central attracting force, or by one-to-one forces between agents in the system – what
Eoyang refers to as a fence, magnet or affinity container, respectively [2]. Eoyang
notes that any human system can contain multiple containers simultaneously, and the
agents in the system can be part of multiple containers simultaneously [2]. A
difference is something that represents the potential for change in a container, and is
a necessary condition for self-organization to occur [2]. Differences determine the
patterns that emerge in self-organizing systems. Examples of significant differences
include power, levels of expertise, quality, cost, gender, race and educational
background [4]. A transforming exchange is the interdependence between agents in
a complex adaptive system, and is critical to the ability of the agents to self-organize
[2]. Examples of transforming exchanges include synchronization meetings that keep
the work of two or more teams coordinated, and other communications that provide
constructive interaction across container boundaries.

3 Research Approach

3.1 Research Objective

The objective of this research is to understand when scaling approaches are
appropriate in a large organization. The research offers the following hypotheses:

1. That scaling approaches are not always applicable in a large organization.
2. That an analysis of the organization based on the conditions for self organization

will help to understand the contexts in which scaling approaches are appropriate.

3.2 Research Method

This research uses a qualitative approach [8, 9], and employs a case study of a large
company. Yin recommends to define the unit of analysis when using case study
research [10, 11]. The units of analysis in this study are teams, organizations within
the company, and the company itself.

The primary analysis tool is a CDE analysis of a large company. The researcher
examined the structure of multiple teams, projects, programs, business units and
organizations in the company. This was cross-correlated with available literature on
large-scale agility. A coding analysis was performed on the available data [12]. The
coding analysis helped to identify containers, differences and exchanges.

A Model for Understanding When Scaling Agile Is Appropriate in Large Organizations 85

4 Case Study of a Large Company

The case study is based on a large, globally distributed company, which we will refer
to as Company X. Many teams and organizations within the company have been
adopting an agile approach to their work since 2008. The company delivers products,
solutions and services to a diverse range of markets. Table 1 in section 4.1 below
provides additional data about the company. One of the organizations within
Company X can itself be considered “large”. We will refer to this organization as
Organization Y.

4.1 What Does “Large” Mean?

To put the term “large” in context, it is helpful to first define what we mean by
“small: and “medium”, and use those as a basis for relative comparison. The
European Union, for example, has an official definition for small and medium sized
enterprises [13]. According to EU law, the main attributes that define whether a
company is a small-medium sized enterprise (SME) are number of employees and
either turnover or balance sheet total [14]. SMEs are enterprises that employ “fewer
than 250 persons and which have an annual turnover not exceeding 50 million euro,
and/or an annual balance sheet total not exceeding 43 million euro” [14]. The
company in this case study can be defined as “large” based on a simple comparison
against the attributes defined for micro, small and medium SMEs. The data in Table 1
includes a comparison with Small-Medium Enterprises (SMEs).

Table 1. Attributes that define what “large” means

Factor Company X Organization Y Micro Small Medium
of employees 80,000 8000 <10 <50 < 250
Turnover $48.6bn in

FY 2013
Confidential, but is a
subset of Company X
turn over

≤€€ 2m ≤€€ 10m ≤€€ 50m

of people on a
“large” project

100s 100+ people. N/A

5 A CDE Analysis of the Organization

The diagram in Fig. 1 shows a large organization represented as a set of containers.
The container labeled “Organization” represents the organization as a whole, i.e.,

the company. Containers T1-T10 represent different teams. BU1-BU4 represent
business units. C1-C2 represent customers, P1-P2 represents partners, and S1-S2
represent suppliers. The arrows between containers represent exchanges, and show
the degree of coupling that exists between containers.

86 K. Power

Fig. 1. Understanding the context for agility by visualizing containers and exchanges

To consider the difference within a container, we can look at any set of
distinguishing attributes. For example we could examine gender, power, status, age,
ethnic diversity, education history, or musical preferences. It is important to choose a
difference or set of differences that are directly relevant to the research question(s).
Although many of these examples could be relevant to this study, this research
considers the example of skillsets within a team as being one significant difference
that influences agility. Fig. 2 shows an example of two teams. The team on the left
has a high degree of difference; the team on the right has a low degree of difference.
The team on the left could represent a typical cross-functional team with a mix of
skills including development, test, user experience design and automation. The team
on the right more closely resembles a team where everyone has the same, or similar,
skills. This is often seen in a testing team, a user experience design team, or a
technical documentation team, for example. Teams with a higher degree of difference
have a much greater chance of being agile, and capable of delivering customer value
as a team. In complexity terms, the team on the left has better conditions for self-
organization than the team on the right.

A Model for Understanding When Scaling Agile Is Appropriate in Large Organizations 87

Fig. 2. Understanding the context for agility by visualizing differences within a container

Methods such as Scrum [15, 16] and XP [17], and frameworks like SAFe [18] talk
about the importance of teams. They place an emphasis on the importance of cross-
functional teams and having the right mix of skills on the team to allow the team to be
successful. In CDE terms, this means having a high degree of difference within the
container. They also talk about the importance of communicating effectively within
and outside the team. In CDE terms, this means having a high quality exchanges
within the container, and across containers.

Teams are not a homogenous entity. A team of all testers or all user experience
designers will have comparatively low internal difference when compared to a cross-
functional Scrum team. A co-located team sharing the same physical workspace will
have a higher quantity of exchanges, and because of the face-to-face interactions these
exchanges will be of a higher quality than distributed or dispersed teams.

6 Determining Factors

It is useful to consider the factors that impact work in large organizations. This
research considers three dimensions that help to illustrate which context is appropriate
in large organizations: coordination cost, communication cost and overall impact on
the flow of work through the system.

6.1 Coordination Cost

Coordination cost relates to the cost incurred in coordinating the people and systems
that perform the work. It can be measured in time and money. The coordination cost
increases as the number of containers increases.

6.2 Communication Cost

Communication cost relates to the cost incurred in communicating within the team
and outside the team. It can be measured in time and money. The communication cost
increases as the number of exchanges within and between containers increases.

6.3 Impact on the Flow of Work

Establishing a smooth flow of work through the system is a goal for agile teams and
lean organizations. The context within which products are developed, or services

88 K. Power

provided, has an impact on the flow of work. To determine how flow might be
affected, it is useful to consider those things that might impede the flow of work
through a system. This research defines an impediment as “anything that obstructs the
smooth flow of work through the system and/or interferes with the system achieving
its goals” [1]. Impediments are those things that prevent teams and organizations from
being effective, and prevent the work from flowing smoothly. There are a number of
categories of impediments that can be used for this purpose [1]. These impediment
categories include extra features, delays, handovers, failure demand, work in progress,
context switching, unnecessary motion, extra processes, and unmet human potential.
From a HSD perspective, the number of containers, and the quality and quantity of
exchanges, influence the likely occurrence of these types of impediments. Differences
within and between containers also influence the likely occurrence of impediments.

Table 2 below shows the results of preliminary analysis of impediment categories
from this research, and correlates the likelihood of impediments with characteristics
of containers, differences and exchanges.

Table 2. Summary of Impediment Categories and how Impediments to Flow are influenced by
Containers, Differences and Exchanges

Impediment
Category

Containers Differences Exchanges

Extra
Features

Considering the product as
a container, extra features
result in a larger container
that needs to be maintained
and managed

Can occur if the
differences within a
container are too high,
and it is hard to reach
alignment on core
product vision, or if
differences are too low
and the product is the
result of group think

Low quality exchanges
between customers and
teams can result in adding
features customers do not
want or need

Delays Can increase as the number
of containers increases

 Can increase as the
number of exchanges
within and between
containers increases

Handovers Can increase as the number
of containers increases

Can occur where
differences lead to hard
specialization in skills

Can increase as the
number of exchanges
within and between
containers increases

Failure
Demand

 Can occur if the
exchanges are low quality,
which can result for
example in errors, poor
design or the team
building the wrong thing

Work In
Progress

 Too few exchanges can
mean collaboration is low
within a team, which can
lead to a high amount of
work in progress

A Model for Understanding When Scaling Agile Is Appropriate in Large Organizations 89

Table 2. (Continued)

Context
Switching

 Can occur if the number of
exchanges is too high, and
especially of the exchanges are
not relevant to the work in
progress.

Unnecessary
Motion

Can occur where containers are
physically dispersed, e.g.,
across a building or campus, or
around the world

Extra
Processes

The higher the number of
containers, the greater the
coordination and
communication cost, potentially
requiring extra processes to
manage

 The higher the number of
exchanges, the greater the
coordination and
communication cost,
potentially requiring extra
processes to manage

Unmet
Human
Potential

Unmet human potential is correlated more with the system as a whole than specifically
with the containers, differences or exchanges. For example the system needs to actively
support team members in meeting their potential. This can be a factor of how
differences are developed over time, or can be influenced by the quality and quantity of
exchanges.

7 Discussion: Three Contexts for Agility and Scale

From the perspective of this paper, and the author’s experience working with large
organizations using agile, there are a number of factors that apply. It is important to
distinguish between agile used in a large organization, agile used in a large
development effort in a large organization, and the agility of the organization itself.

7.1 Being Agile in a Team Inside A Large Organization

In this context, “large” refers to the size of the company, and is largely influenced by
the number of employees in the overall organization. An organization of 70000
people is large in terms of number of employees, number of products, number of
customers, number of target markets, etc. The container marked “Organization” in
Fig. 1 above represents the organization. The diagram shows other containers
representing the market, customers, and other entities. However, there can be cases
where a single agile team is developing something in that large organization, and they
have no other dependencies on any other team. They are completely self-contained.
container “Team 1” represents this agile team in Fig. 1. This is agile in a large
organization, but is clearly not large-scale agile. There could be a thousand such
teams in a large organization, each working on different, unrelated things. It is true
that at some level the organization’s management needs to understand what is going
on in the organization, but this is not a question of agility; they need to know this
regardless.

Taking this a step further, two agile teams working on a common product in the
same organization, and are completely self-contained. Containers “Team 2” and

90 K. Power

“Team 3” represent these agile teams in Fig. 1 above. Having two teams instead of
one introduces some necessary overhead in terms of communication and coordination
costs, ensuring consistency of the product architecture, having a common Definition
of Done, etc. The two teams are working in a larger container that is the organization
of 80000 people, yet this is still not large-scale agile. It is simply two teams working
together inside a large organization. At some point, however, adding more people and
teams changes the scope of the problem. That is the focus of the next section.

7.2 Using Agile Approaches in a Large Development Effort inside a Large
Organization

In this context, “large” refers to the size of the organization, and is largely influenced
by the number of employees in the overall development effort. Additional factors
include the number of people and teams involved in the development effort. At large
scale it becomes increasingly important to be aware of Conway’s Law, and
understand that the structure of the system mirrors the structure of the organization
that creates it [19]. It becomes increasingly important to consider system architecture
at this scale. In HSD terms, the architecture can be considered a container. This is the
sweet spot where scaled agile approaches can add value to the organization.

7.3 Organization Agility: The Large Organization Itself is Agile

In this context, “large” refers to the size of the organization, and is largely influenced
by the number of employees in the overall organization. Container “Organization” in
Fig. 1 above represents the organization. Agility in this context can be inferred by the
number of differences within this container and the exchanges (both quality and
quantity) with other containers. An organization is likely to be more agile if it has a
balance of containers, with the right balance of high-quality exchanges between them.

8 Conclusions and Future Work

Agility in a large organization comes in at least three contexts. Understanding your
context helps you choose the right approach for improving the agility of your team
and organization.

1. If the container is small and relatively decoupled, even within a much larger
container, and there are a low number of exchanges with other containers, then
the concept of “large-scale agile” likely does not apply.

2. If there are a high number of containers, with a high degree of transforming
exchanges between them, the organization itself could be agile. Whether
approaches to scaling agile apply depends on the third scenario.

3. If you have multiple containers that have a high degree of transforming
exchanges between them, and the agents in those containers are working toward a
shared outcome, then once the number of containers and exchanges goes above a
certain threshold, there is benefit in applying principles of large-scale agility.

A Model for Understanding When Scaling Agile Is Appropriate in Large Organizations 91

8.1 Future Work

The researcher is continuing with further work in the area of large-scale agility, and
understanding the nature of product development in large teams and organizations.
First, the research includes further use of the CDE model to analyze large teams and
organizations, and using the CDE model to understand the properties of self-
organization in large teams and organizations. Second, in research that expands on the
work described in section 6.3 above, the researcher is exploring how to better
understand the flow of work in teams and organizations, and impediment removal in
large-scale teams and organizations [1].

References

[1] Power, K., Conboy, K.: Impediments to Flow: Rethinking the Lean Concept of ‘Waste’ in
Modern Software Development. In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP,
vol. 179, pp. 203–217. Springer, Heidelberg (2014)

[2] Eoyang, G.H.: Conditions for Self-Organizing in Human Systems. Doctor of Philosophy
PhD Thesis for Doctor of Philosophy in Human Systems Dynamics. The Union Institute
and University (2001)

[3] Power, K.: Social contracts, simple rules and self-organization: A perspective on agile
development. In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 277–
284. Springer, Heidelberg (2014)

[4] Olson, E.E., Eoyang, G.H.: Facilitating Organization Change: Lessons from Complexity
Science. Jossey-Bass/Pfeiffer, A Wiley Company, San Francisco (2001)

[5] Larman, C., Vodde, B.: Scaling lean & agile development: Thinking and organizational
tools for large-scale Scrum. Addison-Wesley, Upper Saddle River (2009)

[6] Larman, C., Vodde, B.: Practices for scaling lean & agile development: large, multisite,
and offshore product development with large-scale Scrum. Addison-Wesley, Upper
Saddle River (2010)

[7] Cockburn, A.: Crystal clear: A human-powered methodology for small teams. Addison-
Wesley, Boston (2005)

[8] Bailey, C.A.: A Guide to Qualitative Field Research, 2nd edn. Pine Forge Press,
Thousand Oaks (2007)

[9] Yin, R.K.: Qualitative Research from Start to Finish. The Guildford Press, New York
(2012)

[10] Yin, R.K.: Applications of case study research, 2nd edn. Sage Publications, London
(2003)

[11] Yin, R.K.: Case Study Research: Design and Methods. SAGE, Inc., Thousand Oaks
(2009)

[12] Saldaña, J.: The Coding Manual for Qualitative Researchers, 2nd edn. SAGE Publications
Ltd., London (2013)

[13] European_Commission, Commission Recommendation 2003/361/EC. Official Journal of
the European Union L 124, 36, (May 20, 2003)

[14] EU recommendation 2003/361, European_Commission (2003)
[15] Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Addison-Wesley,

Upper Saddle River (2010)

92 K. Power

[16] J. Sutherland and K. Schwaber: The Scrum Guide. The Definitive Guide to Scrum: The
Rules of the Game (October 2013), http://Scrum.org

[17] Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn.
Addison-Wesley, Boston (2005)

[18] Leffingwell, D.: Scaled Agile Framework (December 1, 2013),
http://www.scaledagileframework.com/

[19] Conway, M.: How do Committees Invent? Datamation 14, 28–31 (1968)

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 93–104, 2014.
© Springer International Publishing Switzerland 2014

Control in Software Project Portfolios:
A Complex Adaptive Systems Approach

Roger Sweetman, Orla O’Dwyer, and Kieran Conboy

Discipline of Business Information Systems, National University of Ireland, Galway
{roger.sweetman,orla.odwyer,kieran.conboy}@nuigalway.ie

Abstract. Effective project portfolio management (PPM) can both help reverse
the prevailing trend of software failure and act as a key driver of business value.
Despite the importance of PPM and its success in other disciplines such as
finance and new product development, it has not been studied widely in
information systems with little research examining PPM in an agile context.
This study proposes to address this gap by using complex adaptive systems
theory as a lens to study the enactment and effectiveness of four known modes
of control (behavior, outcome, clan and self) in agile software project
portfolios. It proposes an interpretivist approach using exploratory case studies
to investigate portfolio control in its natural context. This study will contribute
to the advancement of control theory and provide new insights for theory and
practice by integrating the study of PPM and control in an agile environment.

Keywords: large-scale agile software development, project portfolio
management, complex adaptive systems, control, agile methods.

1 Introduction

Increasing numbers of software development teams are embracing agile principles
[1, 2] to overcome the serious problem of information systems development (ISD)
project failure [3, 4]. While questions about the scalability of agile methods to large
scale projects and portfolios are being addressed [5, 6] considerable work remains. A
workshop at XP2013 identified inter team co-ordination and large project and
portfolio management as two of the most important topics for research [7]. This is
supported by research that shows portfolio and program failure is almost as
widespread as project failure. For example, between 40 and 60% of IT programs fail
to meet budget, time and expectations and are in many cases are very much under-
utilized when implemented, if implemented at all [8-10].

Modern organizations are using project portfolio management (PPM) as a means to
govern a set of projects that may be related by having a common objective, common
client, shared resources or other interdependencies [11, 12]. PPM differs from project
management in that it is about doing the right projects as opposed to doing projects
right [13]. It has been estimated that 90% by value of all projects are carried out in a
multi-project context [14], yet, research has focused almost solely on the management
of single projects with PPM and even more specifically agile PPM remaining poorly
understood.

94 R. Sweetman, O. O’Dwyer, and K. Conboy

Difficulties with PPM are greater in organizations practicing agile methods [15].
These methods have been considered as constrained to small co-located projects carried
out by individual teams [16] with the transition from the agile project to the agile
portfolio proving difficult. For example, problems have been reported in scaling scrum
[17, 18]. While agile project management literature has increased in recent years e.g.
[19], there are only a handful of empirical studies that have addressed the issues of
scaling agile to the portfolio [e.g 15, 17]. Little research exists on how IS PPM can be
enacted in a way consistent with agile principles [17]. The most notable exceptions are
studies by [15, 20] who examine current agile portfolio management practices.

2 Background and Motivation

Portfolio theory is well studied in disciplines such as financial portfolio management,
research and development and new product development [21]. It is surprising that it is
so rarely applied in IS given its maturity and effectiveness in other fields. Similar to
financial portfolios the success of an individual project does not lead to portfolio
success, Also a portfolio of software projects can fail despite some successes at the
underlying project level [3, 22]. Consequently, the view that a good project
management control framework applied across a portfolio of projects inevitably leads
to a successful portfolio does not always hold true. Portfolios take a long term view
while agile projects are dynamic and subsequent to rapid changes, which introduces
new challenges for management.

Traditionally PPM has taken a linear approach to the completion of individual
projects. This is an extension of the “lonely project” perspective where a portfolio
consists of a set of projects executed in isolation from each other and the changing
environment. Lycett et al. [23] outline how current PPM frameworks assume that
highly structured and prescriptive approaches will be equally effective regardless of
context. However, in agile this is not valid as projects are flexible, embracing change
even towards the end of the project [24]. Agile projects are organic and there can be
many interdependencies between projects within the portfolio. Delays or changes
requested by clients on a single project may affect the portfolio as a whole. The
difference between the idealized vision of a project portfolio and the reality of an
agile portfolio where projects start, stop, and change direction as they progress is
illustrated in Figure 1.

Project portfolio literature tends to assume a top down construction of the
portfolio. An example of this is the over-emphasis on the project selection phase of
PPM, assuming that a range of projects are available for selection and that the
decision to proceed resides with the controlling body. On the other hand,
contemporary project management methods such as Scrum [25] embrace bottom-up
customer-driven requirements change. Consequently, there can be an inconsistency or
tension between the centralized control approach of project portfolio management and
the self-organizing principles of agile. This dichotomy is central to the problem of
scaling agile methods from small projects to enterprise wide portfolios. Control
frameworks need to incorporate both approaches. However, control research has not
yet been extended to either PPM or agile PPM.

 Control in Software Project Portfolios: A Complex Adaptive Systems Approach 95

Fig. 1. An idealized project portfolio compared with the reality of agile portfolios

Further, there is a mismatch between research and practitioner needs. PPM
research has in general focused on selection as opposed to ongoing management and
control of the portfolio with many of the selection methods proposed highly
mathematical as opposed to being derived from practical demands [26]. While there
has been some progress, such as the identification of success factors and the
development of maturity models [11, 27-30], significant research is still required
especially to create a better understanding how agile project management methods
can be applied to IT portfolios.

Finally, while some studies help to explain how PPM is carried out in
organizations, they fail to provide an overarching theory to explain agile PPM. It has
been suggested that techniques without an underlying theory end up reduced to a
series of steps executed by rote [31]. Agile project portfolios can be complex. They
often have goals that are ill defined, ambiguous or are subject to change as they seek
to maintain alignment with organizational strategy which is responsive to changes e.g.
the environment. This indicates that a portfolio is not an entity whose behavior can be
predicted by an analysis of its components but rather a complex system capable of
adapting its own behavior and makeup. Such systems are common in the sciences
(e.g. ecosystems, the immune system) and are known as complex adaptive systems
(CAS). Investigations into the behavior of complex systems are revealing new
insights from which project management can learn [32]. An important feature of CAS
is the lack of a single point of control. This means that behaviors can be unpredictable
and direct control is difficult with a reliance on influence [33]. Seeing a portfolio as a
CAS has significant implications for research. It is no longer valid to attempt to
understand complex portfolios by breaking them into components, studying them and
integrating the results [34].

Arising from this, our study seeks to use complex adaptive systems theory as a lens
to:

1) Identify the mix of controls (behavior, outcome self & clan) used in agile
software project portfolios

2) Study how these controls are enacted in agile software project portfolios
3) Develop a set of criteria to evaluate the effectiveness of the controls used in

agile software project portfolios

96 R. Sweetman, O. O’Dwyer, and K. Conboy

3 Literature Review

3.1 Project Portfolio Management

Portfolio theory emerged in the field of investment [35] and was subsequently applied
to fields like construction [36], R&D [37, 38], new product development [39] and
information systems [40]. PPM is about managing a group of projects carried out
under the sponsorship and/or management of a particular organization [41]. The
Project Management Institute [42] defines PPM as ‘‘the centralized management of
one or more portfolios, which includes identifying, prioritizing, authorizing,
managing, and controlling project, programs, and other related work to achieve
specific strategic business objectives’’.

Effective IS PPM has a number of advantages for organisations. It ensures that risk
is balanced across a portfolio [40], projects are aligned to organisational strategy [11]
and is critical to achieving value from software development [43]. This requires
immense coordination and control of budgets, resources, time and projects across the
entire portfolio [44, 45], especially in large portfolios with complex interdependencies
between projects [46, 47]. Portfolio managers must not only select projects but also be
able to pause or remove projects that are not contributing to overall portfolio goals
[11] and reallocate resources when required [12]. This is even more difficult when
agile is adopted at enterprise level with organisations facing challenges such as how
to manage frequent releases, customer integration and architecture across the
portfolio. To date the PPM literature has not examined how agile project portfolios
(i.e. portfolios built upon agile principles and managed dynamically (Krebs, 2004)),
once established, are controlled, which this study aims to address.

While the iterative nature of agile practices is not necessarily compliant with
established portfolio management practices, there have been some attempts to
describe agile practices in portfolio management [48-50]. For example, the Scaled
Agile Framework (SAFe) describes practices to implement agile at organizational
level. However, SAFe assumes that there only about 5-10 agile teams executing
projects [51]. Vähäniitty [50] limits his description of agile PPM to small software
organizations whereas Krebs [49] proposes a portfolio approach based on agile
principles and splits portfolio management into project, resource and asset
management. He further highlights the need for a project management office and
transparency as key to agile portfolio management. However, there is little empirical
evidence to support these frameworks [15] with many challenges identified around
areas such as strategic alignment [52], resource allocation and governance [17, 53]
thus, justifying the need for further research into the exercise of control in portfolios.

3.2 Control

Control can be defined in a number of ways. In this study it refers to an attempt by
organisations to influence people to take actions and make decisions, which are
consistent with the goals and objectives the organisation [54-57]. Organizations
typically use a broad range of control modes and mechanisms to control the behavior

 Control in Software Project Portfolios: A Complex Adaptive Systems Approach 97

of their employees [58]. These control modes are divided into formal (behaviour and
outcome) and informal control (clan and self-control) [55-57]. A detailed explanation
of the characteristics of each control mode is available in Kirsch [59]. Formal control
is typically documented and specifies rules that require particular behaviors to achieve
desired outcomes, which are then monitored and evaluated resulting in rewards or
sanctions [54, 55] e.g. project plans, budgets. Informal controls are unwritten rules.
They can be social or people-based and focus on the role that individuals or groups
play in the exercise of control [55, 56, 60] e.g. peer pressure, culture. Many
organizations tend to focus on formal controls [61] even though it is recognized that
informal controls have an equally important role [62, 63]. PPM involves the control of
multiple projects and therefore multiple controllers by one controller, which brings its
own distinct set of challenges for organisations and potentially increases the
complexity of the controller-controllee relationship and the interactions between
them. The importance of informal controls such as culture (clan) and self-organization
(self-control) in agile methods as well as the need for accountability at the portfolio
level suggest that a broad mix of formal and informal controls is necessary in agile IS
PPM. The interaction of these controls is likely to result in complex outcomes.

3.3 Complex Adaptive Systems

Complexity theories have arisen from attempts in the natural sciences to model
natural phenomenon [64]. They are concerned with the emergence of higher level
order in dynamic non-linear systems where the laws of cause and effect do not appear
to apply [65]. Complexity theories differ from mechanistic theories in that rather than
assuming a centrally controlled governing structure, order emerges from the
interaction between the different components within the system. The three main
branches of complexity theory are chaos [66], dissipative structures theory [67] and
complex adaptive systems (CAS) [68]. CAS is the most appropriate of these theories
to act as lens to study project portfolios. This is because it is the only one that does
not take a macro approach to modelling systems. Instead, it models the phenomena at
the micro level using the agents1 that make up the system. It does not attempt to
formulate rules for the whole system, but instead formulates rules of interaction for
the individual agents in the system. The software portfolio can be studied by focusing
on the individual teams and projects and the interactions between them.

While CAS is defined in a number of different ways, most definitions of CAS
involve agents interacting in self-organizing ways with each other and the
environment [e.g. 69, 70]. For example, Benbya and McKelvey [71] define a complex
adaptive system as a system poised between order and chaos, that not only self
organizes, but directs its activity towards its own optimization. Vessey and Ward [72]
define a complex adaptive system as “any system featuring a large number of
interacting components that exhibits self-organization and emergence under a certain

1 An agent is a general term to describe the parts of a complex adaptive system such as atoms

molecules, processes, people and teams. In this study the agents in a complex portfolio are
individuals, teams, projects portfolios and programs.

98 R. Sweetman, O. O’Dwyer, and K. Conboy

level of tension, and whose aggregate activity is non-linear” e.g. biological habitats,
cities and the internet. However, the definition used for this study is the most all-
encompassing one where Holland [70, 73] defines a CAS as a system composed of
interacting agents, which undergo constant change, both autonomously and in
interaction with their environment to produce complex and adaptive behaviours and
patterns. These patterns are aggregate behaviours and structures that are not
predictable from an analysis of the component parts of the system. Rather self-
organization emerges as agents interact through sometimes simple rules which can
change and adapt as experience accumulates and environmental conditions change.
[73, 74]. Feedback is the driving force of complex systems adaption [71]with
interrelated parts feeding back to each other driving or damping change [75]. A
system is not considered a complex adaptive system if its elements lack agency [76,
77]. To summarise, the main concepts in CAS are agents, interactions, environment,
and feedback loops, all of which combine to result in the emergence of self-
organization.

While CAS is no longer considered a new theory in organization studies [74], its
application to IS is more recent. CAS has been applied to IT enabled organizational
learning [78], IT supported team processes [79], improving IS alignment [80], the role
of IT in the development of bureaucracy [81], and the impact of IT on organizational
culture [82] and further examples of CAS in IS research include processes for
technology use [69], IS project management [83] and agile software development [84,
85]. This increasing prevalence of CAS in information systems research led to Merali
[86] describing it as the “emergent domain” in management research. There has been
a greater emphasis on the theoretical aspects of CAS rather than empirical studies.
Vidgen and Wang [87] attribute this to the difficulty in making the abstract principles
of CAS suitable concrete for case study research.

The suitability of CAS as a lens to study agile software development is supported
by Highsmith and Cockburn [88]. They argued that organizations are complex
adaptive systems, where independent people interact in self-organizing ways, guided
by rules to create innovative results. Furthermore, Kent Beck suggested that CAS is
“the only way to make sense of the world” [89]. CAS allows researchers capture
interactions and relationships between entities and their environment and study their
effect on observable phenomena [69]. The absence of a single point of control [71]
makes it an ideal lens to study control in a portfolio where there are multiple
controllers and controllees. CAS has already been used to study control in supply
chains [76], however, to our knowledge, it has not been used to study control in agile
software project portfolios.

4 Research Method

A qualitative approach is proposed for this study [90]. While modelling is often
deemed an appropriate method for gaining insights into complex systems, Cilliers
[91] warns that models by necessity, have to reduce the complexity of a system.
Therefore, a model of complex system is flawed by default. Worse still because a

 Control in Software Project Portfolios: A Complex Adaptive Systems Approach 99

complex adaptive system is nonlinear, we cannot know what the flaw is as we cannot
predict the importance of what we leave out. This, combined with a lack of existing
research on control in agile software project portfolios through the lens of CAS
justifies a qualitative approach [90]. This approach will provide us with a rich insight
into agile software portfolios. As the study is exploratory in nature we will use
multiple case studies, which is appropriate when a research phenomenon is
investigated in its natural setting [92]. This will broaden empirical evidence and allow
for comparison and cross-case analysis. The intention is to conduct a number of case
studies across the public and private sector using a purposeful case selection strategy
to select cases that are information–rich [93]. Selection will be on the basis that at
organisations are using an agile methodology, that at least one portfolio of projects
exists and that the organisation has scaled agile practices to portfolio level or is in the
process of doing so. Data collection will continue until saturation is reached [94].

A traceable ‘audit trail’ of the research process will be followed to improve the
reliability and repeatability of the research. An interview protocol will be prepared
using primarily open-ended questions. It will identify (i) how the four control modes
(behaviour, outcome, clan and self) are used in agile IS project portfolios and (ii) use
the main principles of CAS (agents, interactions, environment, feedback loops,
emergence and self-organization) to determine how the control mechanisms identified
are enacted in agile software project portfolios. It will also address how project and
portfolio managers evaluate project and portfolio controls and the effect of controls
on feedback and interactions both within the portfolio and between the portfolio and
its environment. Initially, a pilot study will be conducted with one project manager
and a portfolio manager to test and refine the interview protocol. Subsequently, a
number of organisations and personnel within those organisations will be identified to
participate in data collection. Interview data collected will first demonstrate the mix
of controls used in agile software projects and portfolios across a number of
organisations. This will inform the development of a set of criteria to evaluate the
effectiveness of controls used in agile software project portfolios. Interview data will
be corroborated with other sources of evidence e.g. documentation and observation.

Data will be analyzed using Corbin & Strauss’s [94] open coding and axial coding
techniques. To answer the first research question interview transcripts will be
reviewed with text describing specific control mechanisms coded as a behaviour,
outcome clan or self-control. Where control mechanisms (e.g. project plan, budget)
faciliate more than one control mode they will be classified under both. The codes and
categories for the second and third research questions will arise from a more in-depth
review of the literature and provide a list of ‘intellectual bins’ or ‘seed categories’
[90] to structure the data collection and the coding stage of data analysis.

5 Conclusion and Next Steps

This study is motivated by the increasing complexity of software portfolios within
organisations. Despite the importance of PPM to the creation of business value and its
identification as a key research objective, there has been a significant dearth of

100 R. Sweetman, O. O’Dwyer, and K. Conboy

academic research on the topic, especially that which addresses control in agile
project portfolios. From a research perspective this study will advance current
understanding of agile PPM by using the theory of complex adaptive systems as a
lens to study the enactment of control in agile portfolios and to develop a set of
criteria to evaluate the effectiveness of the different control modes (behaviour,
outcome, clan and self) in agile project portfolios. This is important as it will show the
range of controls portfolio managers use to manage agile portfolios, which is
currently unknown and it will develop a set of criteria to evaluate the effectiveness of
such controls. This will make a contribution by helping organizations determine the
most appropriate portfolio controls for their needs and evaluate their effectiveness,
which may result in the removal of existing controls and the addition of new or
modification of existing portfolio controls. Finally, this study will provide guidance
for future researchers who wish to study control in agile project portfolios.

In terms of next steps we will first conduct a pilot study to compile an initial list of
agile portfolio controls (behaviour, outcome, clan and self) and understand how such
controls are enacted. We are currently in the process of identifying a pilot
organisation and personnel within that organisation to participate in the pilot study.
Following analysis of the pilot data we will then be in a position to identify a number
of organisations to participate in the second phase of data collection.

There are a number of interesting possibilities for future research. Firstly, a
complexity perspective on agile software portfolios will inform future research on the
effective governance of agile software portfolios using self-organization. CAS is an
appropriate lens to study self-management and self-organization in agile portfolios.
Some work has already looked at barriers to self-management in agile teams [95].
This work could be extended to develop a framework to enable self-organization in
agile portfolios. Secondly, the operationalization of CAS will enable future empirical
research into a number of areas relevant to agile PPM such as ambidextrous
portfolios, the emergence of culture and the role of feedback in portfolios. Finally,
once the key controls in agile software portfolios have been identified, it will be
possible to model agile portfolios as complex adaptive systems using agent based
modelling.

Acknowledgements. This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software Engineering Research Centre
(www.lero.ie). The authors would also like to thank the anonymous reviewers for
their help in developing this article.

References

1. Abrahamsson, P., Conboy, K., Wang, X.: ‘Lots done, more to do’: The current state of
agile systems development research. European Journal of Information Systems 18(4), 281–
284 (2009)

2. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic
review. Information and Software Technology 50(9-10), 833–859 (2008)

3. Conboy, K.: Project failure en masse: a study of loose budgetary control in ISD projects.
European Journal of Information Systems 19(3), 273–287 (2010)

 Control in Software Project Portfolios: A Complex Adaptive Systems Approach 101

4. The Standish Group, CHAOS Manifesto The Laws of CHAOS and the CHAOS 100 Best
PM Practices (2010)

5. Lindvall, M., et al.: Agile software development in large organizations. Computer 37(12),
26–34 (2004)

6. Boehm, B.: Get ready for agile methods, with care. Computer 35(1), 64–69 (2002)
7. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software development.

ACM SIGSOFT Software Engineering Notes 38(5), 38–39 (2013)
8. Whittaker, B.: What went wrong? Unsuccessful information technology projects.

Information Management and Computer Security 7(1), 23–29 (1999)
9. Keil, M., Mann, J., Rai, A.: Why software projects escalate: An empirical analysis and test

of four theoretical models 1, 2. Mis Quarterly 24(4), 631–664 (2000)
10. Bartis, E., Mitev, N.: A multiple narrative approach to information systems failure: A

successful system that failed. European Journal of Information Systems 17(2), 112–124
(2008)

11. de Reyck, B., et al.: The impact of project portfolio management on information
technology projects. International Journal of Project Management 23(7), 524–537 (2005)

12. Blichfeldt, B.S., Eskerod, P.: Project portfolio management - There’s more to it than what
management enacts. International Journal of Project Management 26(4), 357–365 (2008)

13. Petit, Y.: Project portfolios in dynamic environments: Organizing for uncertainty.
International Journal of Project Management 30(5), 539–553 (2012)

14. Payne, J.H.: Management of multiple simultaneous projects: a state-of-the-art review.
International Journal of Project Management 13(3), 163–168 (1995)

15. Stettina, C.J., Hörz, J.: Agile portfolio management: An empirical perspective on the
practice in use. International Journal of Project Management (2014)

16. Hoda, R., Kruchten, P., Noble, J., Marshall, S.: Agility in context. In: ACM Sigplan
Notices. ACM (2010)

17. Rautiainen, K., Von Schantz, J., Vähäniitty, J.: Supporting scaling agile with portfolio
management: Case Paf.com (2011)

18. Kalliney, M.: Transitioning from agile development to enterprise product management
agility. In: Agile Conference, AGILE 2009. IEEE (2009)

19. Fernandez, D.J., Fernandez, J.D.: Agile project management - Agilism versus traditional
approaches. Journal of Computer Information Systems 49(2), 10–17 (2008)

20. Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., Stahl, D.: The Impact of Agile
Principles and Practices on Large-Scale Software Development Projects: A Multiple-Case
Study of Two Projects at Ericsson. In: 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement (2013)

21. Kumar, R., Ajjan, H., Niu, Y.: Information Technology Portfolio Management: Literature
review, framework, and research issues. Information Resources Management
Journal 21(3), 64–87 (2008)

22. Billows, D.: Managing Complex Projects, 8th edn. The Hampton Group (2001)
23. Lycett, M., Rassau, A., Danson, J.: Programme management: A critical review.

International Journal of Project Management 22(4), 289–299 (2004)
24. Fowler, M., Highsmith, J.: The Agile Manifesto. Software Development, 28–32 (August

2001)
25. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Upper

Saddle River (2002)
26. Frey, T., Buxmann, P.: IT project portfolio management - a structured literature review. In:

ECIS 2012 (2012)

102 R. Sweetman, O. O’Dwyer, and K. Conboy

27. Jeffery, M., Leliveld, I.: Best practices in IT portfolio management. Mit Sloan
Management Review 45(3), 41–49 (2004)

28. Martinsuo, M., Lehtonen, P.: Role of single-project management in achieving portfolio
management efficiency. International Journal of Project Management 25(1), 56–65 (2007)

29. Meskendahl, S.: The influence of business strategy on project portfolio management and
its success — A conceptual framework. International Journal of Project
Management 28(8), 807–817 (2010)

30. Pennypacker, J.: Project Portfolio Management Maturity Model. Centre for Business
Practice (2005)

31. Highsmith, J.: Adaptive software development: A collaborative approach to managing
complex systems. Addison-Wesley (2013)

32. Cooke-Davies, T., Cicmil, S., Crawford, L., Richardson, K.: We’re Not in Kansas
Anymore, Toto: Mapping the Strange Landscape of Complexity Theory, and Its
Relationship to Project Mangement. IEEE Engineering Management Review 36(2), 5–21
(2008)

33. Rouse, W.B.: Managing Complexity. Information, Knowledge, Systems Management 2(2),
143–165 (2000)

34. Rouse, W.B.: Health care as a complex adaptive system: implications for design and
management. Bridge-Washington-National Academy of Engineering- 38(1), 17 (2008)

35. Markowitz, H.: Portfolio Selection. The Journal of Finance 7(1), 77–91 (1952)
36. Blomquist, T., Müller, R.: Practices, roles, and responsibilities of middle managers in

program and portfolio management. Project Management Journal 37(1), 52–66 (2006)
37. Dahlgren, J., Söderlund, J.: Modes and mechanisms of control in multi-project

organisations: The R&D case. International Journal of Technology Management 50(1), 1–
22 (2010)

38. Mikkola, J.H.: Portfolio management of R&D projects: Implications for innovation
management. Technovation 21(7), 423–435 (2001)

39. Cooper, R.G., Edgett, S., Kleinschmidt, E.: New Product Portfolio Management: Practices
and Performances. Journal of Product Innovation Management 16(4), 333–351 (1999)

40. McFarlan, F.W.: Portfolio approach to information systems. Harvard Business
Review 59(5), 142–150 (1981)

41. Archer, N.P., Ghasemzadeh, F.: An integrated framework for project portfolio selection.
International Journal of Project Management 17(4), 207 (1999)

42. PMI, The Standard for Portfolio Management, 2nd edn. The Project Management Institute,
Newtown Square (2009)

43. Li, Z., Yanfei, X., Chaosheng, C.: Understanding the value of project management from a
stakeholder’s perspective: Case study of mega-project management. Project Management
Journal 40(1), 99–109 (2009)

44. Teller, J., Unger, B.N., Kock, A., Gemünden, H.G.: Formalization of project portfolio
management: The moderating role of project portfolio complexity. International Journal of
Project Management 30(5), 596–607 (2012)

45. Phillips, B.: A Theoretical Framework for Information Systems Portfolio Management. In:
AMCIS 2007 Proceedings (2007)

46. Bardhan, I., Bagchi, S., Sougstad, R.: Prioritizing a Portfolio of Information Technology
Investment Projects. Journal of Management Information Systems 21(2), 33–60 (2004)

47. Rungi, M.: Interdependency management in project portfolio management: How to
implement required procedures. In: PICMET 2010 - Portland International Center for
Management of Engineering and Technology, Proceedings - Technology Management for
Global Economic Growth, Phuket (2010)

 Control in Software Project Portfolios: A Complex Adaptive Systems Approach 103

48. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Addison-
Wesley, USA (2007)

49. Krebs, J.: Agile Portfolio Management. Microsoft Press (2008)
50. Vähäniitty, J.: Towards agile product and portfolio management (2012)
51. Leffingwell, D.: Agile software requirements: lean requirements practices for teams,

programs, and the enterprise. Addison-Wesley Professional (2010)
52. Hodgkins, P., Hohmann, L.: Agile program management: Lessons learned from the

verisign managed security services team. In: Agile Conference (AGILE). IEEE (2007)
53. Thomas, J.C., Baker, S.W.: Establishing an agile portfolio to align IT investments with

business needs. In: Proceedings of Agile 2008, Toronto (2008)
54. Das, T.K., Teng, B.-S.: Between Trust and Control: Developing Confidence in Partner

Cooperation in Alliances. The Academy of Management Review 23(3), 491–512 (1998)
55. Eisenhardt, K.M.: Control: Organizational and Economic Approaches. Management

Science 31(2), 134–149 (1985)
56. Jaworski, B.J.: Toward a Theory of Marketing Control: Environmental Context, Control

Types, and Consequences. Journal of Marketing 52(3), 23–39 (1988)
57. Ouchi, W.G.: A Conceptual Framework for the Design of Organizational Control

Mechanisms. Management Science 25(9), 833–848 (1979)
58. Kirsch, L.J.: Portfolios of Control Modes and IS Project Management. Information

Systems Research 8(3), 215 (1997)
59. Kirsch, L.J.: The Management of Complex Tasks in Organizations: Controlling the

Systems Development Process. Organization Science 7(1), 1–21 (1996)
60. Ouchi, W.G.: Markets, Bureaucracies, and Clans. Administrative Science Quarterly 25(1),

129–141 (1980)
61. Anthony, R.: Management controls in industrial research organizations. Bailey & Swinfen

(1952)
62. Jaworski, B.J., Stathakopoulos, V., Krishnan, H.S.: Control Combinations in Marketing:

Conceptual Framework and Empirical Evidence. Journal of Marketing 57(1), 57–69 (1993)
63. van der Meer-Kooistra, J., Scapens, R.W.: The governance of lateral relations between and

within organisations. Management Accounting Research 19(4), 365–384 (2008)
64. Gleick, J.: Chaos: Making a new science. Random House (1997)
65. Beeson, I., Davis, C.: Emergence and accomplishment in organizational change. Journal of

Organizational Change Management 13(2), 178–189 (2000)
66. Bechtold, B.L.: Chaos theory as a model for strategy development. Empowerment in

Organizations 5(4), 193–201 (1997)
67. Prigogine, I., Stengers, I., Pagels, H.R.: Order out of Chaos. Physics Today 38, 97 (1985)
68. Goodwin, B.C.: How the leopard changed its spots: The evolution of complexity.

Princeton University Press (1994)
69. Nan, N.: Capturing bottom-up information technology use processes: A complex adaptive

systems model. MIS Quarterly 35(2) (2011)
70. Holland, J.H.: Complex adaptive systems, pp. 17–30. Daedalus (1992)
71. Benbya, H., McKelvey, B.: Toward a complexity theory of information systems

development. Information Technology & People 19(1), 12–34 (2006)
72. Vessey, I., Ward, K.: The Dynamics of Sustainable IS Alignment: The Case for IS

Adaptivity. Journal of the Association for Information Systems 14(6), 283–311 (2013)
73. Holland, J.H.: Hidden order: How adaptation builds complexity. Basic Books (1995)
74. Anderson, P.: Complexity theory and organization science. Organization Science 10(3),

216–232 (1999)

104 R. Sweetman, O. O’Dwyer, and K. Conboy

75. Mitleton-Kelly, E.: Complex systems and evolutionary perspectives on organisations: The
application of complexity theory to organisations. Elsevier Science Ltd. (2003)

76. Choi, T.Y., Dooley, K.J., Rungtusanatham, M.: Supply networks and complex adaptive
systems: Control versus emergence. Journal of Operations Management 19(3), 351–366
(2001)

77. Kauffman, S.A.: The origins of order: Self-organization and selection in evolution. Oxford
university press (1993)

78. Kane, G.C., Alavi, M.: Information technology and organizational learning: An
investigation of exploration and exploitation processes. Organization Science 18(5), 796–
812 (2007)

79. Curşeu, P.L.: Emergent states in virtual teams: a complex adaptive systems perspective.
Journal of Information Technology 21(4), 249–261 (2006)

80. Benbya, H., McKelvey, B.: Using coevolutionary and complexity theories to improve IS
alignment: A multi-level approach. Journal of Information Technology 21(4), 284–298
(2006)

81. Boisot, M.: Moving to the edge of chaos: bureaucracy, IT and the challenge of complexity.
Journal of Information Technology 21(4), 239–248 (2006)

82. Canessa, E., Riolo, R.L.: An agent-based model of the impact of computer-mediated
communication on organizational culture and performance: an example of the application
of complex systems analysis tools to the study of CIS. Journal of Information
Technology 21(4), 272–283 (2006)

83. Xia, W., Lee, G.: Grasping the complexity of IS development projects. Communications of
the ACM 47(5), 68–74 (2004)

84. Vidgen, R., Wang, X.: Organizing for agility: A complex adaptive systems perspective on
agile software development process. In: 14th European Conference on Information
Systems, Goteborg (2006)

85. Jain, R., Meso, P.: Theory of complex adaptive systems and Agile software development
(2004)

86. Merali, Y.: Complexity and information systems: The emergent domain. Journal of
Information Technology 21(4), 216–228 (2006)

87. Vidgen, R., Wang, X.: Coevolving systems and the organization of agile software
development. Information Systems Research 20(3), 355–376 (2009)

88. Highsmith, J., Cockburn, A.: Agile software development: The business of innovation.
Computer 34(9), 120–127 (2001)

89. Highsmith, J.: What is agile development? The Journal of Defense Software Development
15(10) (2002)

90. Miles, M., Huberman, M.A.: Qualitative Data Analysis: An Expanded Sourcebook, 2nd
edn. Sage Publications, Thousand Oaks (1994)

91. Cilliers, P.: Boundaries, hierarchies and networks in complex systems. International
Journal of Innovation Management 5(02), 135–147 (2001)

92. Yin, R.K.: Case study research: Design and methods, vol. 5. Sage (2009)
93. Patton, M.: Qualitative evaluation and research methods. Sage, Beverly Hills (1990)
94. Corbin, J., Strauss, A.: Basics of Qualitative Research, 3rd edn. Sage Publications, London

(2008)
95. Moe, N.B., Dingsoyr, T., Dyba, T.: Overcoming barriers to self-management in software

teams. IEEE Software 26(6), 20–26 (2009)

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 105–120, 2014.
© Springer International Publishing Switzerland 2014

A Measure of the Modularisation of Sequential Software
Versions Using Random Graph Theory

Mahir Arzoky1, Stephen Swift1, Steve Counsell1, and James Cain2

1 Brunel University, Middlesex, UK
{mahir.arzoky,stephen.swift,steve.counsell}@brunel.ac.uk

2 Quantel Limited, Newbury, UK
james.cain@quantel.com

Abstract. Software module clustering is the problem of automatically partition-
ing the structure of a software system using low-level dependencies in the
source code to understand and improve the system's architecture. Munch, a
clustering tool based on search-based software engineering techniques, was
used to modularise a unique dataset of sequential source code software ver-
sions. This paper investigates whether the dataset used for the modularisation
resembles a random graph by computing the probabilities of observing certain
connectivity. Modularisation will not be possible with data that resembles ran-
dom graphs. Thus, this paper demonstrates that our real world time-series data-
set does not resemble a random graph except for small sections where there
were large maintenance activities. Furthermore, the random graph metric can be
used as a tool to indicate areas of interest in the dataset, without the need to run
the modularisation.

Keywords: software module clustering, modularisation, SBSE, random graph,
time-series, fitness function.

1 Introduction

Large software systems tend to have complex structures that are often difficult to
comprehend due to the large number of modules (classes) and inter-relationships that
exist between them. As the modular structure of a software system tends to decay
over time, it is important to modularise. Modularisation is the process of partitioning
the structure of software system into subsystems. It makes the problem at hand easier
to understand, as it reduces the amount of data needed by developers [7]. Subsystems
group together related source-level components to assist with system's understandabil-
ity. Subsystems can be organised hierarchically to allow developers to navigate
through the system at various levels of details, they include resources such as mod-
ules, classes and other subsystems [7].

Graphs can be used to make the software structure of complex systems more com-
prehensible [17]. They can be described as language-independent, whereby compo-
nents such as classes or subroutines of a system are represented as nodes and the
inter-relationships between the components are represented as edges. Such graphs are

106 M. Arzoky et al.

referred to as Module Dependency Graph (MDG). Creating an MDG of the system
does not always make it easy to understand the system's structure; graphs could be
partitioned to make them more accessible and easier to comprehend. Mancoridis et al
[14] were the first to use MDG as a representation of the software module clustering
problem. There have been a large number of studies [8] [11] [12] [18] using the
search-based software engineering approach to solve the software module-clustering
problem. In previous studies, techniques that treat clustering as an optimisation prob-
lem were introduced. A number of various heuristic search techniques, including Hill
Climbing were used to explore the large solution space of all possible partitions of an
MDG.

Refactoring is defined as the change made to software system which improves the
internal structure of the code while maintaining its external behaviour [8]. Refactoring
is one of the most common techniques used to transform software in order to improve
its internal quality attributes [19] [20]. If applied correctly, refactoring can improve
maintainability, enhance performance and simplify the structure of the code. Hence,
within the development of large software systems, there is significant value in being
able to predict when refactoring occurs. Nonetheless, both managers and developers
can be hesitant when it comes to using refactoring due to the amount of effort needed
to make even a slight change in the code and also the risk of introducing new bugs.

This paper performs modularisation on source code check-ins (commits), taking
advantage of the fact that the dataset is a time-series. The nearer the source codes in
time, the more similar they are expected to be. The aim is to use code structure and
sequence to obtain more effective modularisation and also to locate the possible oc-
currence of major changes, in particular refactorings. We look to verify the quality of
the results of the modularisation by finding out whether the time-series dataset resem-
bles a random graph. There are currently few studies [4] [16] [21] that use random
graph theories for source code analysis. For this paper, we aim to calculate the prob-
abilities of the graphs (software versions) resembling a random graph for the whole
dataset. We look to investigate whether the probabilities increase as the maintenance
increases and whether the architecture resembles more randomness throughout the life
of the project.

The paper is organised as follows: Section 2 describes the clustering algorithms
and fitness functions. Section 3 describes the creation and pre-processing of the
source data and the experiment. Section 4 discusses the results and Section 5 draws
conclusions and outlines future work.

2 Experimental Methods

2.1 Clustering Algorithm

This work extends that of Arzoky et al [2] [3] and, follows Mancoridis et al and
Mitchell [14] [17], who first introduced search-based approach to software modulari-
sation. The clustering algorithm was re-implemented from available literature on
Bunch’s clustering algorithm [18] to form a tool called Munch. Munch is a prototype
implemented to carry out experimentations of different heuristic search approaches

 A Measure of the Modularisation of Sequential Software Versions 107

and fitness functions. Munch uses an MDG as an input and produces a hierarchical
decomposition of the system structure as an output. Closely related modules are
grouped into clusters that are loosely connected to other clusters. A cluster is a set of
the modules in each partition of the clustering.

The clustering algorithm uses a simple random mutation Hill Climbing approach to
guide the search. The pseudo-code of the algorithm is shown in Algorithm 1. It is a
simple, easy to implement technique that has proven to be useful and robust in terms
of modularisation [18]. The aim is to produce a graph partition that minimises cou-
pling between clusters and maximises cohesion within each cluster. Coupling is de-
fined as the degree of dependence between different modules or classes in a system,
whereas cohesion is the internal strength of a module or class [7].

Algorithm 1. MUNCH(ITER,M)

Input: ITER- the number of iterations (runs), M - An MDG

 1) Let C be a random (or specified - for seeded) clustering

 arrangement

 2) Let F = Fitness Function (See Section 2.2)

 3) For i = 1 to ITER (number of iterations)

 4) Choose two random clusters X and Y (X≠Y)
 5) Move a random variable from cluster X to Y

 6) Let F’= Fitness Function

 7) If F’ is worse than F Then

 8) Undo move

 9) Else

10) Let F = F’

11) End If

12) End For

Output: C - a modularisation of M

2.2 Fitness Function

A fitness function is used to measure the relative quality of the decomposed structure
of system into subsystems (clusters). Previously, we experimented with several fitness
functions: the Modularisation Quality (MQ) metric of Mancoridis et al [14], and the
EValuation Metric (EVM) of Tucker et al [22].

EVM rewards maximising the cohesiveness of the clusters, clustering with a high
number of intra-module relationships, but it does not directly penalise inter-clustering
coupling. It searches for all possible relationships within a cluster and rewards those
that exist within the MDG and penalises those that does not exist within the MDG
[14]. For the following formal definition of EVM, a clustering arrangement C of n
items is defined as a set of sets {c1, . . . , cm}, where each set (cluster) ci ⊆ {1,…,n}
such that ci ≠ φ and ci ∩ cj = φ for all i ≠ j. Note that 1 ≤ m ≤ n and n > 0. Note also

that ∪
m

i
i nc

1

}.,...,1{
=

= Let MDG M be an n by n matrix, where a ‘1’ at row i and

108 M. Arzoky et al.

column j (Mij) indicates a relationship between variable i and j, and ‘0’ indicates that
there is no relationship. Let cij refer to the jth element of the ith cluster of C. The score
for cluster ci is defined in Equation 2.

∑
=

=
m

i
i MchMCEVM

1

),(),(
(1)

⎪
⎪

⎩

⎪
⎪

⎨

⎧
>

=

∑ ∑
−

= +=

Otherwise,

1if,

0

),(

),(

1 |c|

1

|c|

1

i i

i
a ab

ibia

i

cccL

Mch
(2)

⎪
⎩

⎪
⎨

⎧
>+

=

−
+=

Otherwise,

0,

,

1

1

0

),,(
1221

21

21 vvvv MM

vv

MvvL (3)

 To speed up the process of the modularisation, we introduced EValuation Metric
Difference (EVMD), a faster version of the EVM function. EVMD was selected as
the fitness function for the modularisations as it is more robust than MQ and faster
than EVM [2]. It utilises an update formula on the assumption that one small change
is being made between clusters. It is a faster way of evaluating EVM, where the pre-
vious fitness is known and the current fitness is calculated, without having to do the
move. It produces the same results as EVM, but effectively reduces the computational
operations from O(n√n) to O(√n).

For the formal definition of EVMD, let fold be the EVM fitness function. Also, let x
be the from cluster, y be the to cluster and z be the index. Function G, defined in
Equation 5, determines the relationship (from MDG M) that exists between variable v
and cluster k. Equation 3 simply checks whether it is a positive or negative influence
(i.e. does a relationship exist?).

),,(),,(),,,,,(MCCGMCCGfMzyxCfEVMD xzyxzxoldold +−= (4)

∑
=

=
kC

i
kik MvcLMvCG

1

),,(),,(
(5)

From this point forward EVM will be used when referring to the EVMD metric.

2.3 HS Metric

Homogeneity and Separation (HS) is an external coupling metric defined in [1]
to measure the quality of the modularisation. HS is based on the Coupling Between

 A Measure of the Modularisation of Sequential Software Versions 109

Objects (CBO) metric, first introduced by Chidamber and Kemerer [6]. CBO (for a
class) is defined as the count of the number of other classes to which it is coupled [6].

HS is a simple coupling metric that calculates the ratio of the proportion of internal
and external edges. As shown in Equation 6, HS is calculated by subtracting the num-
ber of links within clusters from the number of links that are between clusters, and
then dividing the answer by the total number of links (to normalise it). It searches
through all the links within the MDG, finding all the pairs that are not equal to 0. If
the two variables are in the same cluster, H is incremented, and if they are in different
clusters, S is incremented. The more links between the clusters the worse the modu-
larisation, as only internal links are modularised. A value of +1 is returned if all the
links are within the modules, a value of −1 is returned if all links are external cou-
pling, and 0 is produced if there is an equal number.

For the formal mathematical definition of the HS metric, we define a function
P(v,C) which returns the cluster number within C that variable (class) v resides.

),(),(

),(),(
),(

MCSMCH

MCSMCH
MCHS

+
−=

(6)

)),(),,(())0,(1(),(
1

1 1

MjPMiPMMCH
n

i

n

ij
ij δδ∑∑

−

= +=

−=
(7)

)),(),,((1())0,(1(),(
1

1 1

MjPMiPMMCS
n

i

n

ij
ij δδ −−=∑∑

−

= +=

(8)

We use Kronecher’s Delta function δ(i,j), which is defined as follows:

ji

ji
ji

≠
=

⎩
⎨
⎧

=
,0

,1
),(δ

(9)

2.4 Weighted-Kappa

Weighted-Kappa (WK) [1] is a simple statistical metric for the comparative assess-
ment of two or more components. For this paper it is used for the comparison of two
clustering arrangements. It rates the agreement between the classification decisions
made by two or more observers (clustering methods). It not only measures similarity
but also takes into account the degree of disagreements. The WK value ranges from
−1.0 (no concordance) to 1.0 (complete concordance). A high WK value suggests that
the two clustering arrangements are similar, whereas a low value suggests that they
are dissimilar. A value of approximately 0 is normally observed for two random clus-
ters. An interpretation table of the WK values is shown in Table 1.

110 M. Arzoky et al.

Table 1. Agreement strength of Weighted-Kappa

 Weighted-Kappa (WK) Agreement Strength

0.01 ≤≤− WK Very Poor

2.00.0 ≤< WK Poor

4.02.0 ≤< WK Fair

6.04.0 ≤< WK Moderate

8.06.0 ≤< WK Good

0.18.0 ≤< WK Very Good

3 Experiment

The creation and pre-processing of the source data is described in this section. It ex-
plains a simple metric for calculating the similarity between subsequent graphs and
describes the experiments conducted for this paper.

3.1 Data Creation

The large dataset used for this paper is from the processed source code of an award
winning product line architecture library, provided by Quantel Limited. The dataset
consists of information on different versions of a software system over time. The
dataset comprises of over 0.5 million lines of C++ code collected over the period
17/10/2000 to 03/02/2005, with 503 versions (check-ins) in total. There are roughly 2-
3 days’ gap between each check-in (corresponding to a graph), giving a total time
span of 4 years and 4 months for the dataset [5].

A total of 6120 classes exist in the system, however, not all classes exist at the
same time slice; there are between 434 and 2272 of classes that exist at a particular
point in time, referred to as “active” classes. Classes generally “appear” and “disap-
pear” at various time points through the dataset. One reason for these occurrences is
that when a class is renamed, it will appear in the dataset as a new class with a new
identifier. The dataset consists of five time-series of un-weighted graphs. For this
paper, graphs of the five types of relationship were merged together to form the
‘whole system’ for particular time slices. Table 2 describes how each graph represents
a relationship between classes.

Table 2. Class Relation Types

Class relationship Description

Attributes Data members in a class
Bases Immediate base classes
Inners Any type declared inside the scope of a class
Parameters Parameters to member functions of a class
Returns Return from member functions of a class

 A Measure of the Modularisation of Sequential Software Versions 111

Also, for this paper, the MDGs were significantly reduced; all modules that were
not produced by Quantel and are not active at the time slice were removed. Classes
not produced by Quantel include the Standard Template Library (STL), the Windows
COM Interface classes and components from a third-party library. This required a re-
write of the Munch tool which has reduced the runtime of the modularisation process
considerably. There are now between 202 and 1193 active classes at any one point.
Fig 1 shows all of the active classes at each software check-in (graph), all of the
graphs are ordered in time.

Fig. 1. Quantel’s active classes at each software check-in

3.2 Absolute Value Difference (AVD)

Our previous work [2] [3] showed that there were few significant changes to the
source code between two successive software versions. We produced a set of results
showing the similarity between the graphs by subtracting every two successive binary
matrices from each other’s. Equation 10 shows how the AVD is calculated for each
graph, where X and Y are two n by n binary matrices (MDGs). An AVD value of 0
indicates that two matrices are identical, whereas a large positive value indicates that
they are different. A value between 0 and a large number gives a degree of similarity.

(10)

Fig. 2 shows the AVDs of the full dataset of 503 graphs. The majority of the
graphs have very low AVD, as there were only a few days of development between
each check-in. In fact, 46 per cent of the graphs have an AVD of 0. However, sudden
peaks and drops can be observed from the plot, which could indicate where major
changes or refactoring activities occurred.

112 M. Arzoky et al.

Fig. 2. Plot showing the AVDs of the full dataset

3.3 Experiment Procedure

For this paper, we have devised one experiment to modularise the full dataset of 503
graphs. The runtime for each modularisation was 10 million iterations. The starting
clustering arrangement consisted of every variable in its own cluster. It assumes that
all classes are independent; there are no relationships. The experiment was repeated
25 times as Hill Climbing is a stochastic method and there is a risk of the search only
reaching a local maximum.

3.4 Random Graph

A random graph can be modelled with a set of n nodes, adding edges between them at
random. One of the most commonly studied random graph models is the one intro-
duced by Erdős–Rényi [9] and Gilbert [10], denoted G(n,p). An edge can occur inde-
pendently with probability 0 < p < 1. Edges are chosen randomly for a fixed set of n
nodes and each edge is chosen to be added or removed from the graph with probabil-
ity p. Thus, the expected number of edges can be calculated as in Equation 11, how-
ever, the number of edges can change randomly and all graphs have p ≠ 0 of being
selected.

2

)1(−= nn
pE (11)

We generated the expected distribution of edges based on the Erdős–Rényi random
graph model. Subsequently, we created the observed distribution from each MDG.
We used the binomial distribution to compute the probability of observing 1…n−1
connectivity. p is calculated from the density and the density is calculated from the
MDG. The density is simply calculated by dividing the number of edges by the total
number of edges that there could have been. Lastly, we use the Kolmogorov-Smirnov
test (K-S) [15], which determines if two datasets differ significantly. It allows us to

 A Measure of the Modularisation of Sequential Software Versions 113

find out if the probability of the two distributions is equivalent i.e. whether it is a
random graph or not.

4 Results and Discussion

For each graph in the dataset we recorded the frequency of the number of edges.
There will be no nodes that have 0 edges as everything is connected to each other. For
this paper, all of the modules that are not produced by Quantel and all of the non-
active classes were removed. For example, for Graph 1, there are 85 classes that are
connected to only 1 class and there are 66 classes that are connected to 2 classes. Fig
3 shows the connectivity of Graph 105 for both the observed and the expected number
of edges. It can be observed from the plot that there is a noticeable similarity between
observed and expected edges; this is due to the high probability value (0.0343) of this
graph resembling a random graph i.e. the chances of these two being the same distri-
bution is reasonably high. Conversely, we would expect a graph with a lower
probability to be immensely different as the chances of it becoming from the same
probability is very unlikely.

Fig. 3. Connectivity against the frequency of edges for Graph 105 from the dataset

Fig 4 displays the probability values of whether a graph resembles a random graph
for the full dataset. From the plot it can be seen that the majority of the probabilities
have extremely small values that range from 1.3086E-05 to 2.2806E-52. The lower
the probability values the less the graph resembles a random graph, which suggests
that the majority of the graphs are not random. However, few of the graphs have
probability values of up to 0.034 which indicate that there is a 3.4 per cent chance of
these graphs resembling a random graph. These values are reasonably high and it
shows that there is an area of randomness in the way the software is structured at
these points. Modularisation is not possible with data that resembles random graphs.

114 M. Arzoky et al.

Fig. 4. Probability values representing the randomness of the graph

Due to the extremely small probability values produced we have computed the
natural logarithm of these probabilities. Fig 5 shows the natural logarithm of the
probability values (ln(p)), the higher the value the more the graph resembles a random
graph. From the plot it can be observed that graphs 100-180 have higher ln(p) values
which indicates that at these points the graphs more resemble random graphs.

Fig. 5. The natural logarithm of the probability values for the whole dataset

Fig 6 shows a plot of the ln(p) against active classes for the whole dataset. A gen-
eral relationship can be observed from the plot, which shows that as the number of
active classes increases ln(p) decreases, apart from the large peaks and drops between
graphs 100-200. A value of −0.372 is produced when correlating ln(p) against active
classes. This still indicates a high correlation as there are over 500 pairs of observa-
tions; the 1 per cent significance level is at 0.115.

 A Measure of the Modularisation of Sequential Software Versions 115

Fig. 6. The natural logarithm of the probability values against active classes

Fig. 7. The natural logarithm of the probability values against EVM

Fig 7 shows the relationship between ln(p) and EVM. It can be observed that as
EVM increases, ln(p) decreases. To find out how strong is this relationship we corre-
lated the two values for the whole dataset and for graphs 100-200 only. A value of
0.266 is produced for the whole dataset and −0.513 is produced for graphs 100-200.
These values indicate a strong correlation. In addition, correlating the ln(p) against the
HS metric produced −0.403 over the whole dataset, which also indicates a very high
correlation. These relationships demonstrate that the modularisation works well for
the majority of the dataset (apart from the small activities between graph 100-200). It
also suggests that the random graph metric can be used to quickly measure how effec-
tive the search is going to be and to indicate areas (software check-ins) of interest in
the software, such as locating major changes and refactoring activities.

116 M. Arzoky et al.

Fig 8 shows a plot of the ln(p) against AVD. Correlating the dataset results of the
two values together produced no clear relationship, however, looking at the 100-200
graphs section of the dataset, produced −0.407. This suggests a strong negative corre-
lation for this period, mainly due to the large number of activities.

In addition, Fig 8 shows that there are three time periods (graphs 101-127, 141-149
and 161-163) where there were very large differences in the probability values, re-
vealing that these graph had up to 3.4 per cent chance of resembling a random graph.
It is interesting to notice that these large changes in probability values occur just be-
fore the sizeable changes in the AVD and active classes. This suggested to us that
during this period there was instability in the code. We investigated this further by
correlating the results produced with information from the developers; we have had
feedback on the results from the senior architect at Quantel, and were provided with
all of the check-in comments for the dataset currently being analysed. During this
period, the implementation of a new library caused some of the libraries to be unsta-
ble and to have unpredictable behaviour, developers were in a state of flux on how to
use the libraries. There were a few months of implementation that included coding the
interface and trying out the libraries in different ways and then a roll back to the pre-
vious code. The roll back did not only include the library classes but also their own
code. Thus, there were sizable shifts in the number of classes as they went through the
different library models. It finally stabilises as they worked out the appropriate model
to use. During this period there was evidence to suggest early product implementation
with many issues in the code. We consider these large changes to be refactoring
events and not new functionalities as internal structures of the code was changed
without changing the functionality of the software.

Fig. 8. The natural logarithm of the probability values against AVD

WK values for the clustering results of the 1st graph and the ith clustering results for
the full modularisation were produced. There is a decreasing trend of the WK values
which suggests that the original structure of the system deteriorates over time. Corre-

 A Measure of the Modularisation of Sequential Software Versions 117

lating ln(p) and WK did not produce a high correlation (0.159), however a relation-
ship can still be observed. We look to investigate this further as part of future work.

One of the aims of our project is to be able to identify areas of major change, from
the source code. These changes can either be new functionality or refactoring. We did
not have the data to distinguish between the two, but being able to identify areas of
interest is useful, as it allows us to indicate the potential locations of refactoring in the
code. We suspected that refactoring is occurring and not simply other development
because we were informed by Quantel that they refactor ‘mercilessly’ and that this is
a practice they encourage all staff to strive towards. Quantel has now provided us with
more detailed classifications for each of the classes in the dataset. We were also pro-
vided with the check-in comments of the whole dataset. Now we look to map results
of the modularisations back to the architecture. We have had discussions about the
results with the senior architect at Quantel and were provided with comments and
feedback for each high value change in the number of classes from the dataset. Table
3 provides a summary of the domain expert comments for these check-ins. Three
main categories were defined for these check-ins, they are; feature change i.e. new
functionality, library change (involves sizeable refactoring activities) and roll back
error (regression).

Table 3. Domain expert comments on the dataset

Check-in No

(Time slice)

 AVD Comments

30 283 Roll back error
79 250 Library change

115 104 Library change
128 1325 Library change
132 1327 Feature change
138 1317 Library change
139 1309 Library change
150 1164 Library change
154 1203 Roll back error
218 290 Feature change
369 157 Feature change
426 894 Library change
454 363 Feature change
476 243 Feature change
484 123 Feature change

From the table above, several feature change can be noticed. These are due to the

impact of merges, when a branch is committed into the main trunk. The dataset under
analysis is only the main trunk. Developers were working on branches for a number
of weeks or months and then checking in the code all at once. From the table it can
also be noticed that library changes have a large impact on the number of classes. It
involves inheriting a number of classes and subsequently refactoring the code to work

118 M. Arzoky et al.

with the new library. It does not involve new feature development but at the same
time it is not pure refactoring activities, it almost falls into a third category.

5 Conclusions and Future Work

In this paper we have demonstrated that our time-series system does not resemble a
random graph except for very small sections of the datasets where there were large
activities i.e. major roll backs. Thus, from the results it can be seen that the random
graph metric can be used as a tool to focus on and indicate areas of interest in the
dataset (without running the modularisation), such as where the system is starting to
decay, if the link between classes is random or strongly resemble a random graph then
the software is decaying. In addition, from results of this research we have found out
that as the software grows, the architecture of the software gets more eroded and less
coherence. These results were backed up by the senior software architect at Quantel.

By looking at the source code check-ins, we look to use random graphs, observing
when a certain percentage of randomness occurs, to indicate whether/when refactor-
ing should be performed. The random graph test may also be used to indicate areas
where a higher running time of the modularisation is needed. We look to investigate
these relationships further as part of future work.

We believe that this project can have an impact on practitioners. The possibility of
furthering their understanding of the evolution of large program source code is of high
importance to Quantel, since bespoke software product development is one of their
core business activities. Also, being able to predict future changes would greatly en-
hance their ability to allocate resources, and hence give them a more competitive and
adaptable edge. For future work, we look to develop the approach aforementioned in
this paper in order to predict when the system will be in needs of refactoring. We look
to find out whether it can be useful for project team leaders to predict in advance
when maintenance or refactoring session should be planned in the future.

Our current dataset is over 4 years and the architecture of the system itself has
taken around 3 years to build. We currently have over 9 years of data. For future re-
search we look to investigate the rate of change of the classes and whether they would
slow as the code gets into maintenance mode. We look to investigate whether the
complexity and the structure of the code stabilises over time and look to explore
whether that could be used as a feedback mechanism to justify to management that a
particular way of developing the code actually works.

The development process at Quantel involves subsystems or classes being owned
by individual(s) developers. Thus, modularisation of the dataset represents how peo-
ple work together. We believe that there is a relationship between the modularisation
and how people are grouped into teams. A software architecture that keeps developers
as de-coupled as possible is needed in order for them to not impede on each other.
The more coupled the software become the less the programmer’s productivity, and as
programmers’ comprehension gets worse things such as the impact of changes in
classes emerges and bugs will re-appear because of merge errors. As part of future
work, we look to investigate the impact of these measures changing on programmer
productivity.

 A Measure of the Modularisation of Sequential Software Versions 119

There are a number of random graph models; however, for this paper we only used
the Erdős–Rényi model which calculates the probability of a node being connected to
another node. Other models which include the degree of the number of edges that are
connected to a node as opposed to the connectivity of the node will also be investi-
gated.

Acknowledgment. The authors would like thank Quantel Ltd for providing us with
their unique dataset and for their valuable feedback and comments on the dataset.

References

1. Altman, D.G.: Practical Statistics for Medical research. Chapman and Hall (1997)
2. Arzoky, M., Swift, S., Tucker, A., Cain, J.: Munch: An Efficient Modularisation Strategy

to Assess the Degree of Refactoring on Sequential Source Code Checkings. In: IEEE
Fourth International Conference on Software Testing, Verification and Validation Work-
shops, pp. 422–429 (2011)

3. Arzoky, M., Swift, S., Tucker, A., Cain, J.: A Seeded Search for the Modularisation of Se-
quential Software Versions. Journal of Object Technology 11(2), 6:1-27 (2012)

4. Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: The
topology of the world-wide web. Physica A: Statistical Mechanics and its Applica-
tions 281(1), 69–77 (2000)

5. Cain, J., Counsell, S., Swift, S., Tucker, A.: An Application of Intelligent Data Analysis
Techniques to a Large Software Engineering Dataset. In: Adams, N.M., Robardet, C.,
Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 261–272. Springer,
Heidelberg (2009)

6. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Software Eng. 20(6), 476–493 (1994)

7. Constantine, L.L., Yourdon, E.: Structured Design. Prentice Hall (1979)
8. Doval, D., Mancoridis, S., Mitchell, B.S.: Automatic clustering of software systems using

a genetic algorithm. In: Software Technology and Engineering Practice. IEEE Proceedings
STEP 1999, pp. 73–81 (1999)

9. Erdős, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad, Mat. Kutató
Int. Közl. 5, 17–61 (1960)

10. Gilbert, E.N.: Random graphs. The Annals of Mathematical Statistics, 1141–1144 (1959)
11. Harman, M., Hierons, R., Proctor, M.: A new representation and crossover operator for

search based optimization of software modularization. In: Proc. Genetic and Evolutionary
Computation Conference, pp. 1351–1358. Morgan Kaufmann Publishers (2002)

12. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: Trends, tech-
niques and applications. ACM Computing Surveys 45(1), 11 (2012)

13. Harman, M., Swift, S., Mahdavi, K.: An empirical study of the robustness of two module
clustering fitness functions. In: Genetic and Evolutionary Computation Conference, Wash-
ington, DC, pp. 1029–1036 (2005)

14. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.: Using automatic clus-
tering to produce high-level system organizations of source code. In: International Work-
shop on Program Comprehension (IWPC 1998), pp. 45–53. IEEE Computer Society Press,
Los Alamitos (1998)

120 M. Arzoky et al.

15. Massey, F.J.: The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American
Statistical Association 46(253), 68–78 (1951)

16. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement
and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Con-
ference on Internet Measurement, pp. 29–42 (2007)

17. Mitchell, B.S.: A Heuristic Search Approach to Solving the Software Clustering Problem.
PhD Thesis, Drexel University, Philadelphia, PA (2002)

18. Praditwong, K., Harman, M., Yao, X.: Software Module Clustering as a Multi–Objective
Search Problem. IEEE Transactions on Software Engineering 37(2), 264–282 (2011)

19. Sommerville, I.: Software Engineering, 5th edn. Addison-Wesley (1995)
20. Stroggylos, K., Spinellis, D.: Refactoring does it improve software quality? In: WoSQ

2007: Proceedings of the 5th International Workshop on Software Quality. IEEE Computer
Society, Washington, DC (2007)

21. Roth, C., Kang, S.M., Batty, M., Barthelemy, M.: A long-time limit for world subway
networks. Journal of The Royal Society Interface 9(75), 2540–2550 (2012)

22. Tucker, A., Swift, S., Liu, X.: Variable Grouping in multivariate time series via correla-
tion. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 31(2),
235–245 (2001)

Refactoring Clustering

in Java Software Networks

Giulio Concas, C. Monni, M. Orrù, M. Ortu, and Roberto Tonelli

DIEE - Department of Electrical and Electronic Engineering
P.zza D’Armi, Cagliari, Italy

{concas,cristina.monni,matteo.orru,marco.ortu}@diee.unica.it,
roberto.tonelli@dsf.unica.it

http://www.diee.unica.it

Abstract. We present a study on the refactoring activities performed
during the evolution of 7 popular Java open source software systems, us-
ing a complex network approach. We find that classes affected by refac-
torings are more likely to be interlinked than others, forming connected
subgraphs. Our results show that in a software network, classes linked
to refactored classes are likely to be refactored themselves. This result
is meaningful because knowing how refactored classes are arranged in-
side a network could be useful to support developers in maintenance and
refactoring activities.

Keywords: Refactoring, Clustering, Software Networks.

1 Introduction

Software systems evolve to meet new needs and often new features are added
over time. It could happen that after several months and new versions, the code
needs to be rewritten or abandoned or, eventually, if nothing is done on it, it will
go through code decay. Software maintenance has the purpose of avoiding this by
performing activities such as the addition of functionalities, but it requires lots of
efforts and time. With good design and advance planning, refactoring can help in
software maintenance. According to Fowler’s definition [1], refactoring consists
in rearranging the internal structure of a piece of software without altering its
external behavior, in order to improve code functionality and readability. It has
the advantage of requiring short-term time and low work costs and allows to get
long-term benefits. Refactoring is different from other activities such as rewriting
or debugging code, or adding features or bug fixing. It is aimed at improving
software design by making it more extensible, flexible, understandable, and at
improving performance.

Built-in tools can be used to retrieve refactoring operations. The most known
and widely used is RefFinder [2], which compares two different versions of the
same code (e.g. a class) and uses a template model based on the work of Kim and
Prete [2,3,4] to detect the specific refactorings. Since refactoring can be applied
to classes which are strongly connected with each other, its impact can extend

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 121–135, 2014.
c© Springer International Publishing Switzerland 2014

http://www.diee.unica.it

122 G. Concas et al.

over the single class to involve other related classes. This phenomenon is studied
in this work using a software network approach [5,6,7,8,9], where classes are rep-
resented by network nodes and relationships among classes (such as inheritance,
composition, etc.) are represented by network links. Object Oriented software
systems show indeed complex network properties such as a modular structure
with interconnections among modules, and also a large number of modules, so
they can be conveniently studied as complex networks [8]. Our goal is to perform
a software network analysis of refactorings to understand if they are related to
the network structure, in order to retrieve information which can be useful when
planning more refactoring, or to make predictions on future refactorings. To our
knowledge, how and to which extent the impact of refactoring can spread over
the associated software network has not been thoroughly studied so far.

In this work we built the software networks of 7 different Java projects, namely
Ant, Azureus, Jedit, Jena, Jtopen, Tomcat and Xalan, in order to understand
whether refactoring operations are applied randomly on the nodes of the software
network or if they mostly involve classes that are linked together. We are specif-
ically interested to figure out if developers apply refactoring taking into account
just the class properties, not considering their dependency from other classes, or
if they accidentally or explicitly evaluate the impact of the performed refactoring
on the neighboring classes, namely on the network topology. In the first case,
refactoring operations should look like random interventions on the nodes cor-
responding to classes, whereas in the second one we expect to find connections
among the different refactored classes, that we are referring to as clustering. For
every system we retrieved the associated software network by parsing the source
code, then we used RefFinder to recover all the refactorings related to these
systems, and associated them to the corresponding nodes in the software net-
work. To gain information about clustering properties of refactored classes, we
compared sets of refactored nodes to randomly chosen nodes. To understand if
refactoring activities spread among connected classes, we analyzed the neighbors
of refactored classes in the software networks, looking for other refactorings, and
then performed again a comparison with classes randomly selected.

Our results show that refactored classes tend to be more connected than ran-
domly selected classes, and the analysis on the first neighbors indicates that
devising the topological structure of the software network can be of help in
identifying which classes need to be refactored. The reported results are purely
empirical and, at the present stage we have not yet found a specific cause or
explanation for these findings. Nevertheless, we consider them quite interest-
ing because they appear counterintuitive. In fact, according to the definition of
refactoring, it is mandatory that the changes performed on source code do not
alter software external behaviour. Thus refactored classes should have on aver-
age the same connection density as other classes. On the contrary, we found that
refactored classes are more tightly connected than average.

This paper is organized as follows. In Section 2 we will introduce some back-
ground information about software network analysis and the literature about
refactoring. In Section 3 we present the analyzed systems and perform an outline

Refactoring Clustering in Java Software Networks 123

of our experimental setting, explaining how we checked the connections among
refactorings. Finally we present and discuss our results in Section 4, threats to
validity in Section 5 and end with our conclusions in Section 6.

2 Background

Refactoring was first formally described by William Opdyke in his Ph.D. dis-
sertation [10] but it started gaining popularity in 1999, after Fowler defined his
catalog containing information on when and how to do refactoring [1]. After
being introduced by Fowler, the code smells were also made recognizable in a
book by Wake [11], while Simon et al. presented a generic approach for visualiz-
ing which classes need to be refactored [12]. Usually developers decide to apply
refactoring by examining or changing the software code while they are perform-
ing other operations [13], such as bug fixing, addition of functionalities, or other
code changes. For this reason, refactoring represents an important part of the
software development cycle. In this work we address the issue of the impact of
refactoring on the connections among classes in a Java system to understand if
there are some relationships among these activities and the topological struc-
ture of a software network. To pursue this task, we built the software networks
associated to every release of our software projects and then studied the connec-
tions between classes before and after refactoring as represented on the software
graph. We will make use of the knowledge of previous works on software network
systems [9,8,5,14,15].

Previous studies claim that refactoring improves the quality of software [1],
but they do not provide quantitative evidence. However, in the literature there
are some works showing some effects of refactoring on external software quality
attributes, such as changeability, maintainability and modifiability [16,17] or on
internal attributes, by exploiting the relationships between internal and external
attributes. The relationship between refactorings and software metrics, such as
internal quality metrics, has been studied in different works [18,19,20,21]. Other
works [20,22,23] propose coupling and cohesion metrics to evaluate and measure
the effect of refactoring on maintainability or reusability. More recent works
[24,25] analyzed refactorings in the context of software networks, presenting a
relationship between refactorings and node degree, but they did not address the
issue of clustering.

To our knowledge, our work represents a first attempt to analyze clustering
properties of refactored classes in software networks, and follows our previous
work [26], which was a preliminary analysis.

3 Experimental Setting and Methodology

Our dataset is composed by 7 popular Object Oriented Open Source Java soft-
ware: Ant, Azureus, Jedit, Jena, Jtopen, Tomcat and Xalan, for a total of 66
releases studied. The source code can be found in the Java Qualitas Corpus
[27,28], release version 20101126e. We analyzed the refactoring activities that

124 G. Concas et al.

took place along the evolution of these systems. We first parsed the source code
and retrieved the software network associated to each system at the class level.
In order to build the software graph we focused our attention on the relation-
ships between classes (inheritance, composition, aggregation, collaboration, etc).
This means that we consider two classes as connected if one of them extends the
other or if one of them contains a field of the same type of the other or when it
happens that a method signature included in the first class includes the second
one as a parameter – or the other way around. Thus the nodes of the associated
network represent classes and the edges represent the reciprocal relationships
among classes. We performed our analyses on the maximal connected compo-
nent (MCC), namely the largest connected graph.

To retrieve information about refactoring activities we relied on the state-
of-the-art software tool in the field, RefFinder [2]. Based on the work of Kim
and Prete [29], RefFinder is an Eclipse plugin that analyzes the differences be-
tween two sections of source code, looking for refactoring operations. The soft-
ware is able to detect 65 out of the 72 refactorings reported in Fowler’s catalog,
representing the most exhaustive coverage of all existing techniques. Although
RefFinder had some limitations, it is able to provide valuable information about
code changes introduced between two releases that can be considered as refac-
toring operations [3].

We performed several tests on some kind of toy classes that we built from
scratch in order to figure out if RefFinder is able to properly detect refactoring
operations and to associate them to the right classes. In particular, we checked
if RefFinder retrieves refactoring in the correct way, avoiding side effects on
connected classes. In fact, an error in associating the refactorings to the proper
classes would introduce a bias on the analysis of the connectivity of the classes.
Consider, for example, the case of “rename method” refactoring. When this
refactoring is performed on a class, the renamed method is called also in the
connected classes. However, the refactoring was performed on the first class and
not on the connected ones. We would like to check whether RefFinder associated
this specific refactoring to the classes where it was performed and not to its
connected classes which call the renamed method. These connected classes would
undergo code changes which should not be retrieved as refactorings. RefFinder
could have introduced a bias, since in the successive analysis we label the classes
as refactored according to the output that it provides. In order to check this
out, we build a simple network of connected classes, and perform a “rename
method” refactoring on some of them. As a result, we found that this refactoring
is properly associated to the classes where it was performed, namely the classes
to which the method belongs to, as it should be, and not to their connected
classes.

After retrieving the refactorings on a class, we associate them to the corre-
sponding node in the software network and looked at the links among refac-
tored classes in the software network, with specific regards to the clustering
phenomenon. With the term “clustering” we mean the tendency of refactored
classes to form subnetworks composed by connected nodes. The most general

Refactoring Clustering in Java Software Networks 125

definition of cluster we devised is the following: we consider a set of n nodes as
belonging to the same cluster if there is a path of length d connecting each pair
of nodes inside the set. In this work we limit our study to the case of d = 1, so
we consider clusters as connected subnetworks.

We analyze the clusters formed by classes involved in different refactorings
and perform a comparison with clusters formed by randomly chosen classes.
Our hypothesis is that when a refactoring is applied, the involved classes have a
higher probability of being connected with each other. To verify the hypothesis
we selected in the software network the classes affected by a specific refactor-
ing and denoted with n their number. Inside this set of size n we computed
the number c of independent clusters. The number of clusters c varies from 1,
when all classes are connected into one single cluster, to n when all the selected
classes are isolated. We compared c with the corresponding number of clusters
crand obtained examining a number n of classes selected at random in the entire
software network. In this last case we performed 100 samplings and computed
the average number of clusters. If classes involved in the same refactoring are on
average more connected, the number of clusters they form must be lower than
the corresponding number obtained for randomly selected classes, on average.

Afterwards, we tried to understand if the knowledge of network nodes corre-
sponding to refactored classes may be used to infer which other classes may be
in need of refactoring. To check this conjecture we selected a random subsam-
ple of all refactored classes to start from, about 10% of the total, and looked
for refactored classes that were close to the starting set. To get a measure of
closeness, we selected their first neighbors, namely the classes at distance d = 1
from the refactored ones. Then we computed how many classes among the set
of first neighbors had also been refactored. We finally compared the number of
refactored neighbors with the number of first neighbors of an equivalent set of
classes selected at random.

Our work thus aims at answering to the following research questions:

– RQ1:Do refactored classes tend to be more interconnected than not refactored
ones for a given type of refactoring?

– RQ2: Is it possible to identify refactoring-prone classes from the knowledge
of other refactored classes?

In Section 4 we illustrate our results.

4 Results

In Fig. 1 we report a few examples of clusters for different refactorings in various
systems.

In order to check whether refactored classes tend to be more interconnected
than average and to form clusters we computed the ratio among the number
of clusters formed by refactored classes and the number of clusters formed by
randomly chosen classes. While computing this ratio, in order to reduce any
fluctuation due to statistical noise, we considered only the clusters with size

126 G. Concas et al.

Azureus 4.4.0.4 Jedit 3.1 Xalan 2.5.0

Fig. 1. Three examples of networks composed only of classes involved in refactoring
operations for Azureus 4.4.0.4 (left), JEdit (centre), Xalan 2.5.0 (right)

larger than (or equal to) 10 which we set arbitrarily - any other number could
work. This choice is a trade-off between two extreme situations. In the first,
considering fewer than 10 refactored classes, the chance to find a similar number
of clusters from randomly chosen classes is high. In fact, in the hypothesis that
random classes are generally disconnected, they tend to form n clusters. Since
refactored classes are not completely connected into a single cluster, with n low
the two numbers will be very similar. In the second, considering only clusters with
many more than 10 classes, this would optimize the ratio between the number
of clusters formed by refactored classes and the number of clusters formed by
randomly chosen classes, but the statistics will be drastically reduced, since the
number of refactored classes per system is not very high (e.g. 45 for Ant 1.5
as reported in Tab. 4). Therefore the chosen value would provide a fair ratio
with the mean square error (MSE) that increases according to

√
n along with

the number n of the samples. Tab. 1 reports these ratios for one release for each
analyzed project. Ratios are systematically lower than one for all refactorings
suggesting that also one specific kind of refactoring involves classes which are
more interconnected than average.

Table 1. Ratio between the number of clusters formed by different types of refactoring
and the number of clusters formed by randomly selected classes

Ant 1.8.0 Azureus 4.4.0.4 JEdit 3.2 Jena 2.1 Jtopen 5.0 Tomcat 5.5.3.1 Xalan 2.5.0

Add Parameter - - - - 0.206 - -

Cons. Cond. Expression - - - - 0.091 - -

Cons. Dup. Cond. Fragments - 0.215 0.126 0.142 - - -

Extract Interface 0.5 0.037 - - - - -

Introduce Local Extension - - - - - 0.503 -

Introduce Null Object - - - - - 0.405 -

Inline Temp. 0.503 - 0.021 - - - -

Move Fields - 0.056 0.168 - - - 0.119

Remove Ass. to Param. - - 0.084 - - - -

Remove Control Flag - - - - - - 0.079

Rep.Magic N. with Const. - - 0.021 0.142 0.251 - -

Refactoring Clustering in Java Software Networks 127

Results in Tab. 1 provide a positive answer to RQ1: refactored classes tend
to form interconnected clusters more than other classes on average.

We now show the results of the analysis on the classes directly connected to
refactored classes. We select at random a subset of refactored classes, Sref , of
size nSref

, which is about 10% of all refactored classes, and examine the set of
classes directly connected to this subset. We denote the set of ”first neighbor”
classes with SNref . We repeat the procedure selecting at random subsets of
classes regardless of refactoring, namely randomly chosen, of the same size nSref

,
and examine the corresponding set of ”first neighbor” classes, SNrand. For both
neighbor sets, SNref and SNrand, we compute the fraction of classes affected
by refactoring operations, Fref and Frand respectively, and compare the two
results. These fractions represent the probability of finding a class in need to be
refactored when starting from a set of refactored classes or starting from a set of
random classes respectively. We averaged these fractions over 1000 cases where
the set of refactored classes and that of random classes were repeatedly selected
at random. Tables 2 and 3 report these results. Tab. 2 shows the fractions Fref

and Frand mediated over the releases for each of the 7 projects, giving a general
overview of the results, while in Tab. 3 we report some selected examples for
both releases “Source” and “Target”, where the Source is the release before
refactoring and the Target is the release after the application of refactorings.

The interpretation of this result is straightforward. Fref provides the empirical
probability of finding a class in need to be refactored when picking up classes
among the neighbors of a small set of refactored classes. Frand provides instead
the same probability when choosing the classes at random inside the entire set.
Thus, when looking for classes in need to be refactored, it is more convenient
to examine first a set of classes directly linked to already refactored classes in
the software network. This provides developers with an empirical practice to use
when checking for classes to refactor. The ratio among the two fractions can be
considered as an empirical index related to the ”convenience” of looking in the
first neighbors of a refactored set.

Table 2. Average values the fractions of refactored classes in the first neighbors net-
work and the corresponding mean values computed for randomly selected classes, for
each analyzed system

System Fref Sources Fref Targets Frand Sources Frand Targets

Ant 0.218 0.196 0.062 0.057

Azureus 0.151 0.163 0.052 0.053

Jedit 0.458 0.448 0.281 0.271

Jena 0.094 0.085 0.024 0.024

Jtopen 0.107 0.11 0.038 0.04

Tomcat 0.25 0.249 0.166 0.163

Xalan 0.293 0.294 0.032 0.034

In Tab. 4 we present some representative cases taken from our dataset (one
release for each system) that show the clusters formed by refactored classes

128 G. Concas et al.

Table 3. Fractions of refactored classes in the first neighbors network and the corre-
sponding values for randomly selected classes. The values refer both to “Source” and
“Target” releases, of two releases of each system.

Source Release Target Release Fref Source Fref Target Frand Source Frand Target

Ant 1.5 Ant 1.6.0 0.137 0.111 0.072 0.063

Ant 1.6.0 Ant 1.7.0 0.106 0.105 0.069 0.065

Ant 1.7.0 Ant 1.8.0 0.130 0.130 0.062 0.063

Azureus 4.0.0.0 Azureus 4.1.0.2 0.175 0.195 0.084 0.085

Azureus 4.1.0.2 Azureus 4.2.0.2 0.048 0.054 0.019 0.019

Jedit 3.0 Jedit 3.1 0.419 0.400 0.218 0.213

Jedit 3.1 Jedit 3.2 0.481 0.493 0.347 0.357

Jena 2.0 Jena 2.1 0.124 0.163 0.014 0.015

Jena 2.1 Jena 2.2 0.092 0.146 0.028 0,030

Jtopen 3.3 Jtopen 4.0 0.254 0.303 0.074 0.091

Jtopen 4.0 Jtopen 4.1 0.204 0.217 0.121 0.129

Tomcat 4.1.4.0 Tomcat 5.0.0 0.154 0.14 0.052 0.046

Tomcat 5.0.0 Tomcat 6.0.0 0.206 0.205 0.067 0.059

Xalan 2.5.0 Xalan 2.6.0 0.331 0.334 0.034 0.038

Xalan 2.6.0 Xalan 2.7.0 0.175 0.21 0.037 0.04

(up to 7, due to space constraints), together with their size, the size of the set
of first neighbors relative to each cluster, indicated by ni, and the size of the set
of first neighbor classes relative to the entire set of refactored classes, indicated
by nall. This analysis confirms the convenience of examining refactored first
neighbor classes when looking for possible classes in need to be rafactored. In
fact the more common situation is the presence of a large cluster of refactored
classes (which we name cluster C from now on) along with a set of smaller
clusters, many of them containing just one class. Considering the largest cluster
C, and observing the set of its first neighbor classes, its size nC is close to the
size nall of all refactored classes and the number nref of all refactored classes.

Consider now a developer with a set of already refactored classes and in search
for more classes to refactor, adopting the strategy of examining linked classes.

1. The probability that among the set of classes already refactored there will
be at least one belonging to the larger cluster is very high.

2. Examining neighbor classes the entire cluster will be explored.
3. Examining all neighbor classes, there is an upper limit to the number of

classes to check, given by call, which is a small fraction of system’s size.
4. This upper limit will almost be reached starting from classes into cluster C,

and thus the probability of reaching it is very high.
5. If all the classes selected at first belong to isolated refactorings, most of the

classes in need to be refactored will not be reached, but at the same time
the effort is minimal, since

∑
i ni for i �= C is small.

At the same time one can work jointly with other strategies devised for detect-
ing classes to refactor, like code smells detection, [30,12] in order to reduce the

Refactoring Clustering in Java Software Networks 129

Table 4. Values of the number of neighbors and the clusters size ni for the first 7
clusters of 7 software releases, in a decreasing order by cluster size. nref is the total
number of classes involved in refactoring operations affecting the corresponding release

Clus. 1 Clus. 2 Clus. 3 Clus. 4 Clus. 5 Clus. 6 Clus. 7

System Name nref nall size n1 size n2 size n3 size n4 size n5 size n6 size n7

Apache Ant 1.5 45 401 24 357 6 14 2 60 2 2 1 1 1 3 1 1

Azureus 4.2.0.2 216 1603 191 1551 7 52 1 28 1 22 1 21 1 16 1 13

JEdit 4.1 141 338 138 331 2 2 1 12 - - - - - - - -

Jena 2.3 5 268 1 249 1 11 1 5 1 2 1 1 - - - -

Jtopen 4.1 46 632 43 629 1 3 1 3 1 2 - - - - - -

Tomcat 6.0.0 157 530 134 447 2 28 2 19 4 12 1 8 1 7 1 6

Xalan 2.4.0 14 146 8 126 2 17 2 8 1 14 1 1 - - - -

number of neighbor classes to examine. Since the fraction of refactored classes is
usually not too high, a fixed number of classes to refactor can be programmed in
advance, and once this number is reached, the search among the first neighbors
can stop and the classes in need to be refactored eventually missing will be very
few.

Next we discuss as an example the case of Jedit 1.4. We are going to sug-
gest how our empirical results can be used, together with other methodolo-
gies, to find refactor-prone classes. Fig. 2 reports the network of refactored
classes for this case study. In this specific case the above mentioned strategy
could be applied starting from one of these classes, and proceeding by inspect-
ing the neighboring classes looking for refactoring opportunities. JEdit 1.4 is
characterized by a total of 974 refactorings distributed over 46 classes, that
represents the 7% of the entire system and they mainly belong to a cluster
whose dimension are close to the totality of the refactored classes, as reported
in Tab. 4. Refactored classes are reported in decreasing order of number of
refactoring into Tab. 5. We consider one of the most refactored classes, namely
org.gjt.sp.jedit.textarea.JEditTextArea.

In Fig. 3 the network of first neighbors for this class is represented. Tab. 5
reports, along with the number of refactorings per class, also the ratio between
the neighboring classes affected by refactorings and the total number of neigh-
bors. As reported in Tab. 5 for this specific class, the fraction of neighboring
classes that, among all the neighboring classes, are also involved in refactoring
activities is 0.5 if they are connected by in-links (In-Ratio) and 0.71 if they are
connected by out-links (Out-Ratio). It is worth to report that some neighbors
are connected with both in-links and out-links. So we consider now the scenario
of a developer that is carrying out some refactoring operations and is working on
JEditTextArea. We already know that, according to RefFinder, the neighboring
classes were involved in refactoring operations. If he is looking for refactoring
opportunities, even selecting at a random a class belonging to the set of neigh-
boring classes, he has from 50% to 71% of chance to find a refactor-prone class,
depending on which kind of connection he is looking at - in-links or out-links.

130 G. Concas et al.

Fig. 2. Jedit refactored classes network

Table 5. Number of refactorings per classes affected by more than 13 refactorings.
In-Ratio and Out-Ratio columns report for, respectively, in-links and out-links, the
fraction of neighboring classes that, among all the neighboring classes, are also involved
in refactoring activities and the total number of neighbors.

Class Name N. Ref. In-Ratio Out-Ratio

bsh.ParserTokenManager 83 1 0.25

org.gjt.sp.jedit.syntax.ParserRule 72 1 0.6

org.gjt.sp.jedit.textarea.JEditTextArea 40 0.5 0.71

bsh.Parser 35 1 0.45

org.gjt.sp.jedit.Buffer 29 0.4 0.64

org.gjt.sp.jedit.jEdit 27 0.39 0.69

org.gjt.sp.jedit.browser.VFSBrowser 26 0.3 0.72

bsh.NameSpace 25 0.65 0.6

bsh.Interpreter 21 0.84 0.75

org.gjt.sp.jedit.syntax.DisplayTokenHandler 19 1 0.6

org.gjt.sp.jedit.browser.BrowserView 15 0.22 0.75

org.gjt.sp.jedit.gui.DockableWindowManager 15 0.26 0.55

bsh.Reflect 14 0.75 0.62

org.gjt.sp.jedit.search.SearchAndReplace 14 0.45 0.79

Refactoring Clustering in Java Software Networks 131

The mean value of the fraction of refactored classes reported in Tab. 5 is
0.63 and 0.62 for neighboring classes connected respectively with in and out-
links. Fig. 4 and 5 report a series of box plots representing in-links and out-links
distributions and statistics for each analyzed release, showing that often the ratio
is higher than 0.5. It is worth to underline that the suggested strategy is not
expected to work alone and in any circumstance, but it could be useful when the
software network present a specific topology. For this reason our proposal is not
to use clustering information alone, but in cooperation with other topological
analysis and integrated by other strategies as those described in [31].

Neighbors network of
 org.gjt.sp.jedit.textarea.JEditTextArea

Fig. 3. Neighboring classes for org.gjt.sp.jedit.textarea.JEditTextArea. The
white circle represents the vertex corresponding to JEditTextArea class, whereas the
rectangle-shaped and the squared-shaped vertices, represent the neighbors connected
to JEditTextArea by respectively in-link and both in and out-link.

5 Threats to Validity

The present study is affected by some threats to validity. All these threats are
to be taken into account while replicating the study. In this section we present
them according to the usual division in threats to the internal, external and
construction validity.

Internal Validity. We empirically found a significant relationship between
classes involved in refactoring activity and network topology. However, the
tendency of refactored classes to be more connected than others could be
due to some undetected factors that we did not yet thoroughly investigate.

132 G. Concas et al.

JEdit 3.0 JEdit 3.1 JEdit 3.2 JEdit 4.0 JEdit 4.1 JEdit 4.2 JEdit 4.3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Refactoring ratio (in-links)

Fig. 4. Average values of the fraction of the refactored neighboring classes linked by
in-links for all the JEdit analyzed releseas. Diamond-shaped point represents the mean
value.

JEdit 3.0 JEdit 3.1 JEdit 3.2 JEdit 4.0 JEdit 4.1 JEdit 4.2 JEdit 4.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Refactoring ratio (out-links)

Fig. 5. Average values of the fraction of the refactored neighboring classes linked by
out-links for all the JEdit analyzed releseas. Diamond-shaped point represents the mean
value.

Refactoring Clustering in Java Software Networks 133

For example we did not consider class complexity, and the fact that refac-
tored classes could belong to the same package. Moreover, we studied refac-
toring activities without making distinctions among different refactorings.
Our empirical results could be determined only by part of them. We consid-
ered all refactorings together in order to enhance our statistics and we did
not have enough data for investigating each single refactoring separately.

External Validity. We considered a certain number of software systems be-
longing to different categories, and performed different tasks. We made this
choice in order to analyze a representative set of Java software system, that
encompasses different kind of software, in order to avoid any influence of the
specific domain on the results. Nevertheless, our sample is certainly limited.
We analyzed only open source software, since it gave us the opportunity to
freely parse the source code. We can not exclude the fact that different dy-
namics taking place in proprietary development environment could influence
refactored classes topology. Additionally, all the analyzed software is written
in Java (RefFinder parse only Java code) and all the software is written using
the object oriented paradigm. Refactoring activities carried out on different
languages, or in software designed according to different programming ap-
proaches, could lead to different results.

Construction Validity. Refactorings retrieved using RefFinder depend on the
reliability of this software. Despite being an acknowledged software for this
kind of task, RefFinder cannot always retrieve all the refactorings. In ad-
dition, it cannot retrieve all the refactorings in the original Fowlers catalog
and it is possible that results might change while studying these not covered
refactorings.

6 Conclusions

In this work we presented a study on the clustering of the classes interested by
refactoring activities performed during software evolution. We analyzed several
Open Source Object Oriented Java software systems using a complex network
approach. We firstly retrieved the networks associated to the software systems
at the class level. Then we studied the class networks, addressing our atten-
tion specifically to the relationships among the classes and their tendency to
form clusters, namely groups of connected nodes. Our results seem to support
the initial hypothesis that refactored classes tend to form clusters. In order to
deepen our understanding on the relationship between refactoring activities and
node connectivity, we studied the subnetworks composed by the first neighbors
of refactored clusters. In this work we reported that not only the refactored
classes form clusters according to the provided definition, but also a significant
fraction of their first neighbors are interested by refactoring activities, providing
a comparison with a null model represented by randomly sampled classes. This
result suggests some practical applications in the field of software engineering,

134 G. Concas et al.

since it could allow developers to find out other classes to refactor while carrying
out refactoring activities.

Acknowledgments. This research is supported by Regione Autonoma della
Sardegna (RAS), Regional Law No. 7-2007, project CRP-17938 ”LEAN 2.0”.

References

1. Fowler, M.: Refactoring: Improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

2. RefFinder, https://webspace.utexas.edu/kp9746/www/reffinder/
3. Prete, K., Rachatasumrit, N., Sudan, N., Kim, M.: Template-based reconstruction

of complex refactorings. In: Proceedings of the 2010 IEEE International Confer-
ence on Software Maintenance, ICSM 2010, pp. 1–10. IEEE Computer Society,
Washington, DC (2010)

4. Kim, M., Gee, M., Loh, A., Rachatasumrit, N.: Ref-finder: A refactoring recon-
struction tool based on logic query templates. In: Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2010, pp. 371–372. ACM, New York (2010)

5. Kohring, G.A.: Complex dependencies in large software systems. Advances in Com-
plex Systems (ACS) 12(06), 565–581 (2009)

6. Wen, L., Kirk, D., Dromey, R.G.: Software systems as complex networks. In:
Proceedings of the 6th IEEE International Conference on Cognitive Informatics,
COGINF 2007, pp. 106–115. IEEE Computer Society, Washington, DC (2007)

7. Li, D., Han, Y., Hu, J.: Complex network thinking in software engineering. In: Pro-
ceedings of the 2008 International Conference on Computer Science and Software
Engineering, CSSE 2008, vol. 01, pp. 264–268. IEEE Computer Society, Washing-
ton, DC (2008)

8. Myers, C.R.: Software systems as complex networks: Structure, function, and evolv-
ability of software collaboration graphs. Phys. Rev. E 68(4), 46116 (2003)

9. Valverde, S., Cancho, R., Sole, V.: Scale free networks from optimal design. Euro-
physics Letters 60 (2002)

10. Opdyke, W.F.: Refactoring object-oriented frameworks. Technical report (1992)
11. Wake, W.C.: Refactoring Workbook, 1st edn. Addison-Wesley Longman Publishing

Co., Inc., Boston (2003)
12. Simon, F., Steinbrückner, F., Lewerentz, C.: Metrics based refactoring. In: Proc.

5th European Conference on Software Maintenance and Reengineering, pp. 30–38
(2001)

13. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.
IEEE Transactions on Software Engineering 38(1), 5–18 (2012)

14. Šubelj, L., Bajec, M.: Community structure of complex software systems: Analysis
and applications. Physica A Statistical Mechanics and its Applications 390, 2968–
2975 (2011)

15. Turnu, I., Marchesi, M., Tonelli, R.: Entropy of the degree distribution and object-
oriented software quality. In: Proceedings of the 2012 ICSE Workshop on Emerging
Trends in Software Metrics, WETSoM 2012, pp. 77–82 (2012)

16. Geppert, B., Mockus, A., Rößler, F.: Refactoring for changeability: A way to go?
In: IEEE METRICS, p. 13. IEEE Computer Society (2005)

https://webspace.utexas.edu/kp9746/www/reffinder/

Refactoring Clustering in Java Software Networks 135

17. Wilking, D., Kahn, U.F., Kowalewski, S.: An empirical evaluation of refactoring.
e-Informatica 1(1), 27–42 (2007)

18. Chidamber, S., Kemerer, C.: A metrics suite for object-oriented design. IEEE
Trans. Software Eng. 20(6), 476–493 (1994)

19. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented met-
rics on open source software for fault prediction. IEEE Transactions on Software
Engineering 31(10), 897–910 (2005)

20. Bois, B.D., Mens, T.: Describing the impact of refactoring on internal program
quality, pp. 37–48. Vrije Universiteit Brussel (2003)

21. Stroggylos, K., Spinellis, D.: Refactoring–does it improve software quality? In:
Proceedings of the 5th International Workshop on Software Quality, WoSQ 2007,
p. 10. IEEE Computer Society, Washington, DC (2007)

22. Kataoka, Y., Imai, T., Andou, H., Fukaya, T.: A quantitative evaluation of main-
tainability enhancement by refactoring. In: Proceedings of the International Con-
ference on Software Maintenance, pp. 576–585 (2002)

23. Moser, R., Sillitti, A., Abrahamsson, P., Succi, G.: Does refactoring improve
reusability? In: Morisio, M. (ed.) ICSR 2006. LNCS, vol. 4039, pp. 287–297.
Springer, Heidelberg (2006)

24. Murgia, A., Marchesi, M., Concas, G., Tonelli, R., Counsell, S.: Parameter-based
refactoring and the relationship with fan-in/fan-out coupling. In: Proceedings of
the 2011 IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops, ICSTW 2011, pp. 430–436. IEEE Computer Society,
Washington, DC (2011)

25. Murgia, A., Tonelli, R., Marchesi, M., Concas, G., Counsell, S., McFall, J., Swift,
S.: Refactoring and its relationship with fan-in and fan-out: An empirical study.
In: 2012 16th European Conference on Proceedings of Software Maintenance and
Reengineering, CSMR 2012, pp. 63–72 (2012)

26. Concas, G., Monni, C., Orrù, M., Tonelli, R.: Are refactoring practices related to
clusters in java software? In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP,
vol. 179, pp. 269–276. Springer, Heidelberg (2014)

27. Java Qualitas Corpus, http://qualitascorpus.com/
28. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,

Noble, J.: Qualitas corpus: A curated collection of java code for empirical studies.
In: 2010 Asia Pacific Software Engineering Conference (APSEC 2010), pp. 336–345
(December 2010)

29. Kyle Prete, N.R., Kim, M.: Catalogue of template refactoring rules. Technical
Report (August 15, 2010)

30. Hamza, H., Counsell, S., Hall, T., Loizou, G.: Code smell eradication and associ-
ated refactoring. In: Proceedings of the 2nd Conference on European Computing
Conference, ECC 2008, pp. 102–107. World Scientific and Engineering Academy
and Society (WSEAS), Stevens Point (2008)

31. Moha, N., Gueheneuc, Y.G., Duchien, L., Le Meur, A.F.: Decor: A method for
the specification and detection of code and design smells. IEEE Trans. Softw.
Eng. 36(1), 20–36 (2010)

http://qualitascorpus.com/

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 136–147, 2014.
© Springer International Publishing Switzerland 2014

Are Some Refactorings Attached to Fault-Prone Classes
and Others to Fault-Free Classes?

Steve Counsell1, Stephen Swift1, Alessandro Murgia2, Roberto Tonelli3,
Michele Marchesi3, and Giulio Concas3

1 Dept. of Computer Science, Brunel University, Uxbridge, UK
2 Dept. of Informatics, University of Antwerp, Belgium

3 DIEE, University of Cagliari, Cagliari, Italy
steve.counsell@brunel.ac.uk

Abstract. A topical and relevant issue in the area of refactoring is the nature
and characteristics of classes to which refactorings are applied. In particular, if
we scrutinise the total set of refactorings applied to the classes of a system over
different releases, which refactorings are applied to fault-prone classes and
which to fault-free classes? In this paper, we explore that facet of refactoring.
Refactorings applied between six releases of three Eclipse packages are used as
a basis of the study and the Ref-Finder tool used to extract up to sixty-five
different refactorings. Interestingly, results showed that refactorings applied to
highly fault-prone classes differed significantly from those applied to fault-free
classes, in particular related to the ‘rename method’ refactoring; a
corresponding trend for the ‘move method’ and ‘move field’ refactoring was
found in ‘fault-free’ classes over the period while the add and remove
parameter refactorings tended to remain constant. The research offers an insight
into refactoring behaviour in light of faults (or no faults).

Keywords: Refactoring, faults, renaming, Eclipse, empirical.

1 Introduction

In the past ten or so years, the discipline of refactoring has become a mainstream
software engineering activity by developers. While we know a relatively large amount
about trends in refactoring across systems and the frequencies with which refactorings
are applied to object-oriented systems [2, 3, 6, 7, 10] a feature of the area which still
largely eludes the community is the relationship between refactoring and fault-
proneness. In other words, questions such as which specific refactorings are applied to
fault-prone classes and which to fault-free classes remain largely open. From a
practical, industry perspective it may be of use for a developer or project manager to
know which refactorings are applied to fault-free and fault-prone classes since that
knowledge might guide and help target extra development effort in the future as well
as help understand current effort distribution. Equally, understanding when certain
refactorings are undertaken and the inter-relationships between refactorings (in the
context of fault-free and fault-prone classes) may provide insights into the benefits or
drawbacks of specific refactorings.

Are Some Refactorings Attached to Fault-Prone Classes and Others to Fault-Free Classes? 137

In this paper, we extracted up to sixty-five different refactorings between releases
of the Eclipse system. The refactorings were extracted using the Ref-Finder tool [9].
Our research goal was to show that some refactorings were, or were not applied
depending on whether there was at least one fault present in a class. Several trends in
the data analysis emerged. Fault-prone classes tended to use the ‘Rename method’
refactoring more extensively; fault-free classes tended to use the ‘Move method’ and
‘Move field’ refactorings (and relatively little use of renaming). The ‘Add parameter’
refactoring remained consistently applied in each type of class. The results suggest
that in the presence of faults, classes (and their methods) have different refactorings
applied to them depending on the extent of their fault-proneness (in this case, a binary
classification of ‘yes – the class had faults, and ‘no’ it has not).

The remainder of the paper is structured as follows. In the next section, we present
related work followed by preliminaries (Section 3) detailing how the refactorings
were extracted and the approach taken. We then scrutinise the refactorings in the
releases of Eclipse (Section 4) exploring the fault-prone classes and relationships with
refactorings; we then contrast this analysis with fault-free classes (Section 5) before
exploring threats to validity in Section 6. Finally, we conclude in Section 7 pointing
to future work.

2 Related Work

In terms of seminal refactoring literature, it is well-cited that Opdyke first introduced
the concept in his PhD Thesis [8]. Equally, that Fowler later proposed the set of
seventy-two refactorings [5] in his seminal text and on which we draw from in this
paper. There has been a wealth of refactoring studies exploring different aspects of
the practice. In this paper, we will just look at studies of refactoring related to faults.
Three other notable studies have explored the link between refactoring and fault-
proneness in the recent past and are of direct relevance to the study presented.

Firstly, Weissgerber and Diehl [11] used versions of three open-source systems as
an empirical basis of an investigation of the link between refactoring and faults;
however, they only identified eight types of refactoring (we identify sixty-five
refactoring types) and the time frame used was days rather than months and years (as
we will use in our study). Secondly, Ratzinger et al., [10] analyzed whether
refactoring history information was useful to support defect prediction and whether
refactoring activities reduce the probability of software defects. They demonstrated
that refactorings and defects had an inverse correlation: the number of software
defects decreased if the number of refactorings increased. However, they did not
distinguish among different kinds of refactoring operations; in addition, their
detection process did not use source code analysis of version data. Finally, research
by Bavota et al., [1] looked at the type of refactorings that induced faults. Results
indicated that most types of refactorings were harmless. Others, however, such as
those related to hierarchies caused faults more frequently. The study did not consider
versions over which those refactorings were undertaken; it also viewed the fault
profile of classes on a coarse-grained, binary basis – either a class has exhibited a
fault or it has not and not with actual numbers.

138 S. Counsell et al.

3 Preliminaries

Our analysis is based on results between releases from each of three Eclipse projects:
jdt.core, jdt.ui and jdt.uiworkbench; henceforth we refer to these as core, ui and
workbench. Fault data was collected manually by one of the researchers and
subsequently verified by another in order to ensure that, as far as possible, correct
data was used in the study. We define a fault as an observed failure in the system and
has been marked as such by Eclipse developers using the Bugzilla fault-tracking
system and fixed. The Ref-Finder tool [9] was used to extract all refactorings between
nine releases in total and is capable of identifying up to sixty-five refactorings of the
original set of 72 proposed by Fowler [5]. The data reported thus relates to all classes
that had been the subject of at least one refactoring between releases and all faults
were therefore considered between the releases studied. For all refactored classes, we
took into account faults between three releases for each project: 3.0 and 3.1, 3.1 and
3.2 and 3.2 and 3.3. We also collected classes for which no faults were reported
between these releases. Eclipse was chosen because it is a well-known, long-lived
project and was felt to be large enough to generate refactorings; it was also felt by the
authors that it would provide a solid basis for extracting faults and being such a
popular system would also facilitate further replication. (We note that the set of faults
and refactorings collected as part of the study were disjoint across releases, i.e.,
double counting of either was not a threat. In other words, between releases, a unique
set of faults and refactorings were identified.)

4 Data Analysis

4.1 All Fault-Prone Classes between Core_30_31

Table 1 shows the frequency of refactorings in the three most fault-prone classes of
core_30_31 package (i.e., those between release 3.0 and 3.1), ordered alphabetically
(note the tie between the ‘Remove Parameter’ and the ‘Replace method with method
object’ refactorings). We chose the three most fault-prone classes because that gave
us a large number of faults to work with. We have only shown the top five
refactorings for clarity. So, the most frequently applied refactoring in the three most
fault-prone classes was Rename Method, then Add parameter, etc. While the
distribution of refactorings covers a relatively broad range, the Add Parameter (AP)
with 56 occurrences and Rename Method (RM) with 228 occurrences dominate the
list in terms of size.

The rationale behind using the RM refactoring is when the name of a method does
not properly describe its purpose. The method name should be changed to reflect that
purpose. The AP refactoring, on the other hand, should be used when a method is
missing needed functionality and that can be provided with the addition of one or
more parameters. We note that there were 1151 classes between core_30_31 releases
to which at least one fault had been identified and then fixed.

Are Some Refactorings Attached to Fault-Prone Classes and Others to Fault-Free Classes? 139

Table 1. Refactorings applied to fault-prone classes (core_30_31 package)

Refactoring Freq.

Add parameter 56

Extract method 27

Introduce explaining variable 25

Remove parameter 23

Rename method 228

Replace method with method object 23

One hypothesis as to why so many of both AP and RM refactorings were present is

that if a method has to be changed significantly in the presence of multiple faults, then
the method would ordinarily have to be changed to reflect the new function it fulfils.
For a highly-faulty class, this could affect many methods in that class. As an
explanation of the disproportionate number of AP and RM refactorings, we suggest
that fault-prone classes would necessitate large changes to a class and this would also
require the addition of significant numbers of parameters to the methods of a class.
The ‘Introduce explaining variable’ refactoring is applied when an expression is
complex and needs to be decomposed through the introduction of an additional
variable (or variables).

4.2 All Fault-Prone Classes Between Core_31_32

Table 2 shows (for the set of classes undergoing at least one refactoring between these
releases), the frequency of each refactoring type (in the same way as in Table 1 –
ordered alphabetically in each row when tied) applied to the three most fault-prone
classes between these releases. The contrast between Table 1 and 2 is noticeable; this
version was relatively free of refactorings. That said, the AP and RM refactorings do
feature and these have been bolded in the table. We note that there were 1029 classes
between core_31_32 releases to which at least one fault had been identified and then
fixed.

Table 2. Refactorings applied to fault-prone classes (core_31_32 package)

Refactoring Freq.

Add parameter, Consolidate conditional duplicate fragments, Extract method,
Inline temp, Introduce explaining variable, Remove assignment to parameters,
Remove parameter, Replace nested conditional with guard clauses.

3

Hide delegate, Inline method, Rename method. 2

Consolidate conditional expression, Decompose conditional, Remove control
flag, Replace data with object, Replace magic number with symbolic constant,
Replace method with method object.

1

140 S. Counsell et al.

Interestingly from Tables 1 and 2, there appears to be only limited (if any)
evidence of moving fields and/or methods around the class; we could tentatively
suggest that application of this type of refactoring is used when methods are being
maintained to aid comprehension and as perfective maintenance, but not necessarily
when a class/method is faulty (as corrective maintenance); we will return to this
hypothesis later in the paper.

4.3 All Fault-Prone Classes between Core_32_33

Table 3 shows the refactoring profile for the three classes with the most fault-prone
profile between releases core_32_33. Again, it shows the top five refactorings in that
category, ordered alphabetically. It is noticeable that the AP refactoring features
strongly with 51 applied refactorings. The most common refactoring was the Extract
Method refactoring with 105 applications between those two releases. We note that
there are no occurrences in the top three classes of the RM refactoring, in contrast to
the trend in the previous two tables (and, in particular, Table 1). In fact, scrutiny of
the entire set of fault-prone classes revealed no application of this refactoring
whatsoever. We can offer no concrete explanation as to why so few RM refactorings
were applied. However, one plausible explanation might be that, in the context of so
many Extract method refactorings being applied, application of Extract method acts
as an alternative to renaming methods. Put another way, creating one or more new
methods from one existing source method may eliminate the need to rename that
source class altogether. We note that there were 254 classes between core_32_33
releases to which at least one fault had been identified and then fixed.

Table 3. Refactorings applied to fault-prone classes (core_32_33 package)

Refactoring Freq.

Add parameter 51

Extract method 105

Move method 6

Remove parameter 21

Replace nested conditional with guard clauses 7

As per Tables 1 and 2, there seems to be limited evidence of moving features (only

6 Move method refactorings were observed between these two releases).

4.4 All Fault-Prone Classes between ui_30_31

Table 4 shows the same data as that contained in Tables 1-3, but between releases of
package ui_30_31. In common with Table 1, the AP and RM refactorings again
dominate the list with 55 and 183 refactorings, respectively. It is interesting that in
each of the tables thus far the remove parameter refactoring has also featured. We
note that there were 1489 classes between ui_30_31 releases in which at least one
fault had been identified and then fixed.

Are Some Refactorings Attached to Fault-Prone Classes and Others to Fault-Free Classes? 141

Table 4. Refactorings applied to fault-prone classes (ui_30_31 package)

Refactoring Freq.
Add parameter 55
Inline method 47

Move method 13
Remove parameter 42
Rename method 183

The ‘Inline method’ refactoring was also a feature of refactorings applied in this

release. The purpose of this refactoring is where the body of a method is as clear as its
name; they are amalgamated. The example of inline method taken from Fowler [5] is
as follows:

int getRating() {
 return (moreThanFiveLateDeliveries()) ? 2 : 1;
}
boolean moreThanFiveLateDeliveries() {
 return _numberOfLateDeliveries > 5;
}

After refactoring, this becomes:

int getRating() {
 return (_numberOfLateDeliveries > 5) ? 2 : 1;
}

It is noteworthy that this refactoring is the opposite of the Extract method in the

sense that the Extract method refactoring decomposes a method while inline method
merges two (or more) methods. No evidence of that refactoring was found in this
release. Looking at Table 3 also shows that when there were multiple occurrences of
the Extract method refactoring, there were also no instances of the inline method. The
evidence from Tables 1-4 suggests that the extract method refactoring may have many
‘competing’ and ‘complementary’ refactorings. It may be that when Inline method
features, the Extract method refactoring does not.

4.5 All Fault-Prone Classes between ui_31_32

Table 5 shows the same data for ui _31_32 releases. Once again, the RM refactoring
dominates the list with 18 occurrences. Clearly, fault-prone classes for the releases
studied have a strong bind with this refactoring and even what we might consider as
‘popular’ refactorings (e.g., Add parameter) were applied relatively infrequently. We
note that between these releases were 1187 classes which exhibited at least one fault.

142 S. Counsell et al.

Table 5. Refactorings applied to fault-prone classes (ui_31_32 package)

Refactoring Freq.

Add parameter, Remove control flag, Remove parameter, Replace magic
number with symbolic constant, Replace nested conditional with guard
clauses, extract method, Introduce explaining variable.

2

Replace constructor with factory method, Consolidate conditional
duplicate fragments.

5

Inline method, Replace method with method object. 3

Move method. 4

Rename method 18

4.6 All Fault-Prone Classes between ui_32_33

Table 6 shows the refactoring profile for the three most fault-prone classes between
package ui_31_32 releases. Although there is evidence of a number of Move method
refactorings (19), the AP refactoring still features strongly. Fewer RM refactorings (6)
were observed between these two releases, however. We note that there were 1025
classes with at least one fault between these two releases.

Table 6. Refactorings applied to fault-prone classes (ui_32_33 package)

Refactoring Freq.
Add parameter 13
Introduce explaining variable 7
Move method 19
Remove parameter 8
Rename method 6
Replace method with method object 6

It is interesting that the Introduce explaining variable refactoring has featured in 4 of
the tables presented so far.

4.7 All Fault-Prone Classes between Workbench_30_31

Table 7 shows the most frequently applied refactorings for the workbench_31_32
package releases. In keeping with the previous tables, the RM refactoring is the most
popular. In contrast to the previous tables however, there is evidence of the Move
method refactoring (69 occurrences) but the RM refactoring still dominates. We note
that there were 695 classes between these two releases where at least one fault had
been identified and fixed.

Are Some Refactorings Attached to Fault-Prone Classes and Others to Fault-Free Classes? 143

Table 7. Refactorings applied to fault-prone classes (workbench_30_31 package)

Refactoring Freq.

Add parameter 13

Extract method 22

Introduce explaining variable 13

Move method 69

Rename method 91

Replace method with method object 14

The ‘Replace method with method object’ has also featured in many tables

reported. This refactoring occurs when [13]: ‘You have a long method that uses local
variables in such a way that you cannot apply Extract method. Turn the method into
its own object so that all the local variables become fields on that object. You can
then decompose the method into other methods on the same object’. This is an
interesting refactoring, since the Extract method itself has been used relatively
extensively, as evident from Table 7.

4.8 All Fault-Prone Classes between Workbench_31_32

Table 8 shows the same phenomenon as in many of the previous tables. The RM
refactoring again dominates the set of refactorings with 25 occurrences. We note that
there were 429 classes between these two releases where at least one fault had been
identified and fixed.

Table 8. Refactorings applied to fault-prone classes (workbench_31_32 package)

Refactoring Freq.

Extract method 10

Inline method 7

Move method 14

Rename method 25
Replace magic number with symbolic constant 6

The ‘Replace magic number with symbolic constant’ refactoring appears in three

of the Tables 1-8. This refactoring is applied when [12]: ‘You have a literal number
with a particular meaning’. The solution is to: ‘Create a constant, name it after the
meaning, and replace the number with it’. Creating constants rather than hard-coding
numbers in the body of code is a technique that every first-year Computer Science
student learns as a basic programming skill and good practice; it would appear that
not doing so may be the source of faults since, from the evidence so far, the
refactoring has been associated with highly fault-prone classes. The example of this
refactoring taken from Fowler [5] is:

144 S. Counsell et al.

double potentialEnergy(double mass, double height) {
 return mass * height * 9.81;

}

After refactoring, this becomes:

double potentialEnergy(double mass, double height) {
 return mass * GRAVITATIONAL_CONSTANT * height;
}
static final double GRAVITATIONAL_CONSTANT = 9.81;

4.9 All Fault-Prone Classes between Workbench_32_33

Finally, Table 9 shows the profile in refactorings for the three most fault-prone
refactorings between releases in the workbench_32_33 package. Interestingly, in
contrast to the other eight tables, the Move method refactoring dominates the profile
with 90 refactorings. The AP and RM refactorings feature in a limited way only.
There were 370 unique classes with at least one fault between these two releases.

Table 9. Refactorings applied to fault-prone classes (workbench_32_33 package)

Refactoring Freq.

Add parameter 7

Inline temp 8

Introduce explaining variable 7

Move method 90

Rename method 10

Replace method with method object 20

The Inline temp refactoring (8 occurrences in Table 9) is similar in principle to the
Inline method refactoring. It is used when [5]: “you have a temp that is assigned to
once with a simple expression, and the temp is getting in the way of other
refactorings”. The solution is to replace all references to that temp with
the expression. The example given in [5] is of code before the refactoring as
follows:

double basePrice = anOrder.basePrice();
return (basePrice > 1000)

After the refactoring, the code becomes:

return (anOrder.basePrice() > 1000)

Are Some Refactorings Attached to Fault-Prone Classes and Others to Fault-Free Classes? 145

5 Fault-Free Class Analysis

One question that naturally arises from the analysis is whether there is a difference
between the profiles of the three most fault-prone classes reported in Tables 1-9 and
the set of classes which did not exhibit faults in the same set of releases. In other
words, if we look at the total set of fault-free classes, do we find similar refactoring
patterns? Table 10 shows, for each of the releases studied the two most popular
refactorings in the set of fault-free classes. We chose two because that represented a
significant percentage of the refactorings for the set of classes.

Table 10 shows the release name, the number of classes which were categorized as
fault-free between those two releases, the two refactorings and, in the fourth column,
(enclosed in brackets) a triple of: the number of the first refactoring, the number of
the second refactoring and finally, the number of RM refactorings. For example,
between releases core_30_31, there were 58 AP refactorings, 123 Remove parameter
refactorings and just 10 RM refactorings.

Table 10. The most popular refactorings in set of fault-free classes

Package No. Classes Most popular two refactorings Freq.

core_30_31 393 Add parameter, Remove parameter (58, 123, 10)

core_31_32 130 Add parameter, Move method (16, 15, 8)

core_32_33 169 Add parameter, Remove parameter (76, 62, 0)

ui_30_31 1355 Add parameter, Move method (137, 238, 112)

ui_31_32 846 Move field, Move method (76, 224, 71)

ui_32_33 1652 Move field, Move method (188, 477, 147)

workbench_30_31 423 Move field, Move method (104, 147, 30)

workbench_31_32 229 Move field, Move method (48, 83, 3)

workbench_32_33 174 Move field, Move method (24, 90, 1)

Table 10 shows a clear difference in the composition of refactorings when

compared with the profiles in Tables 1-9. In those tables, the RM was applied the
most frequently in 5 of the 9 sets of releases scrutinized. From Table 10, there is some
evidence of renaming (see, for example, ui_30_31 and ui_32_33). However, the
Move field, Move method and AP refactorings tend to dominate the raw figures
(particularly for the core package in the case of AP and the Move method and Move
field refactoring in the case of the workbench and ui packages). Overall, there is some
evidence to suggest that fault-prone classes have different refactorings applied to
them when compared with fault-free classes. In particular that the RM refactoring is
not applied as frequently in fault-free classes as it is in fault-prone classes. One could
claim that maybe the RM refactoring was the third most popular refactoring from
Table 10 which would suggest that it was a “close” third. However, in many of the
Java packages, this was not the case.

146 S. Counsell et al.

6 Threats to Validity

In any empirical analysis, we need to consider the threats to the validity of the
research [4]. In this paper, we have used multiple releases from one system only
(Eclipse) and thus give limited scope for transferability of results. However, to
counter this argument, we have used different packages from that system and
although this is not an ideal solution to the threat, it does to a certain extent lessen that
threat. A second threat is reflected in the methodology that we have adopted for our
analysis. We chose the three most fault-prone refactorings between each pair of
releases as a basis. Had we chosen the top ten most fault-prone classes, then it is
possible that different results may have emerged. However, in our defense of this
argument, it is possible that that the same refactorings would emerge anyway. Also,
the question of ‘how many should be chosen?’ is an open question and not one that
can be answered easily. A third threat is that we chose the top five refactorings within
those three classes as data for the tables in the paper. The same argument applies here.
It is possible that a different set of conclusions might have been drawn had we chosen
for example, the top ten refactorings within the top three fault-prone classes.
However, we feel that the same types of refactoring would emerge if we had widened
our selection. A fourth threat is that the Ref-Finder is a tool subject to the criticism
that there are tool extraction reliability rates (of precision and recall). However, the
tool is well-trusted and has been used in various other empirical studies; any tool is
subject to the same threat and we believe that this would have a negligible effect only
on the results in the paper. Finally, our definition of a fault-free class is one that until
the point of analysis is free of faults. It is possible that between subsequent releases
that same class may experience one of more faults. However, as a snapshot of the
system at a point, we feel this is a realistic assumption to take.

7 Conclusions and Future Work

In this exploratory study, we explored the differences from a refactoring perspective
of fault-prone classes, vis-à-vis fault-free classes. Our main goal was to identify any
differences in trends between refactorings applied to each type. Results showed an
interesting and marked distinction between the two types; fault-prone classes tended
to invite a large number of Rename method refactorings but relatively few
movements of features (Move method and Move field). Fault-free classes invited
many move operations suggesting that these types of refactoring were less to do with
fixing faults and more to making classes easier to understand (in the true spirit of
refactoring). Moving features around may be more in keeping with perfective
maintenance than corrective maintenance. The overall implication of the preliminary
research is that faults may cause developers to change methods significantly in
response to faults and then have to rename them to preserve their meaning rather than
moving features of the class around. Clearly, evidence suggests that the motivation
for using refactoring changes depending on the context of the situation. The research
therefore opens up a potentially new theme in refactoring and that relates to how

Are Some Refactorings Attached to Fault-Prone Classes and Others to Fault-Free Classes? 147

developers actually apply refactoring in the context of faults. Future work will explore
this facet more deeply and employ techniques such as association rules and time
series analysis for establishing relationships between refactorings. In keeping with the
threats to validity stated in the previous section, future work will also explore the
same traits in different systems and widen the choice and selection of fault-prone
classes and refactoring types. Finally, we have looked at the contrast between fault-
free and fault-prone classes as a binary classification – i.e., that a class contains faults
or it does not; however, it may be interesting to explore a scale of ‘faultiness’. In
other words, are there any differences between the refactorings applied depending on
the actual extent (or scale) of their fault-proneness?

Acknowledgements. The research of Alessandro Murgia is sponsored by the Institute
for the promotion of Innovation through Science and Technology in Flanders through
a project entitled Change-centric Quality Assurance (CHAQ) with number120028.

References

1. Bavota, G., De Carluccio, B., De Lucia, A., Di Penta, M., Oliveto, R., Strollo, O.: When
does a refactoring induce bugs? An Empirical Study. In: Proceedings of 12th IEEE
International Working Conference on Source Code Analysis and Manipulation, Trento,
Italy (2012)

2. Counsell, S., Hassoun, Y., Loizou, G., Najjar, R.: Common refactorings, a dependency
graph and some code smells: An empirical study of Java OSS. In: International
Symposium on Empirical Software Engineering (ISESE), Rio de Janeiro, pp. 288–296
(2006)

3. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding Refactorings via Change Metrics. In:
Conference OO Programming Systems, Languages and Apps., pp. 166–177. ACM Press
(2000)

4. Fenton, N.E., Pfleeger, S.L.: Software metrics - a practical and rigorous approach, 2nd edn.
International Thomson (1996)

5. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional (1999)

6. Mens, T., Tourwe, T.: A Survey of Software Refactoring. IEEE Transactions on Software
Engineering 30(2), 126–139 (2004)

7. Murphy-Hill, E., Parnin, C., Black, A.: How we refactor, and how we know it. IEEE
Transactions on Software Engineering 38(1), 5–18 (2012)

8. Opdyke, W.: Refactoring object-oriented frameworks, PhD Thesis, University of Illinois at
Urbana-Champaign (1992)

9. Prete, K., Rachatasumrit, N., Sudan, N., Kim, M.: Template-based reconstruction of
complex refactorings. In: Intl. Conference Software Maintenance, Timisoara, Romania, pp.
1–10 (2010)

10. Ratzinger, J., Sigmund, T., Gall, H.C.: On the relation of refactorings and software defect
prediction. In: Proceedings of the 2008 International Working Conference on Mining
Software Repositories, pp. 35–38. ACM Press, Leipzig (2008)

11. Weissgerber, P., Diehl, S.: Are refactorings less error-prone than other changes? In:
Proceedings of Workshop on Mining Software Repositories (MSR 2006), pp. 112–118
(2006)

12. http://www.refactoring.com
13. http://www.sourcemaking.com

Capturing Software Evolution and Change

through Code Repository Smells

Francesca Arcelli Fontana, Matteo Rolla, and Marco Zanoni

Department of Informatics, Systems and Communication
University of Milano - Bicocca

{arcelli,zanoni}@disco.unimib.it, matteo.rolla@gmail.com

http://www.essere.disco.unimib.it

Abstract. In the last years we have seen the rise and the fall of many
version control systems. These systems collect a large amount of data
spanning from the path of the files involved in changes to the exact
text changed in every file. This data can be exploited to produce an
overview about how the system changed over time and evolved. We have
developed a tool, called VCS-Analyzer, to use this information, both for
data retrieval and analysis tasks. Currently, VCS-Analyzer implements
six different analyses: two based on source code for the computation of
metrics and the detection of code smells, and four original analysis based
on repositories metadata, which are based on the concepts of Repository
Metrics and Code Repository Smells. In this paper, we describe one smell
and two metrics we have defined for source code repositories analysis.

Keywords: Code Repository smells, Repository analysis, Repository
Metrics, Code changes.

1 Introduction

Code smells are well known in the literature [1], and researchers have been
trying to automatically detect them, and to remove them through refactoring
steps. Code smells are symptoms of deeper problems and are recognizable by
considering the source code only. While searching problems in a system, not
only a single code snapshot should be taken into account, but also its history
that will eventually result into code smells, other problems, or symptoms of
problems. Analyzing code changes taken from Version Control Systems (VCSs)
is a natural way to track the code history. VCSs play a huge role in software
development. There is no safe way of merging the work of several developers
without using a VCS, and furthermore no developer nowadays would work on a
project of some importance, size or value, without being able to revert changes
when things become unmanageable. VCSs allow storing and exposing data on
the contents, authors and times of the changes applied on a project repository.

In this paper, we show some ways in which these data, or part of them, can be
used to extract symptoms of more deep-rooted problems. Since these symptoms
are based on repositories, and for the analogy with Code Smells, they have

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 148–165, 2014.
c© Springer International Publishing Switzerland 2014

http://www.essere.disco.unimib.it

Capturing Software Evolution and Change through Code Repository Smells 149

been called Code Repository Smells. In particular, we focus our attention on a
Code Repository Smell, which we called Code Bashing. This smell refers to the
situation in which changes made by several developers on several versions of a
specified file gather in a narrow portion of the file itself.

Moreover, we have defined two new metrics, for data gathered from reposito-
ries, called the Repository Stability and the File Volatility metrics. Repository
Stability is based on the concept of file closures and represents, at a given mo-
ment, the ratio between stable files and those that will be subjected to further
modifications. File Volatility expresses how much the content of a file, or a por-
tion of it, changes in relation to the number of its versions.

For our analyses, we have developed a tool, called VCS-Analyzer [2], that
allows retrieving data needed for software analysis, by harvesting system repos-
itories. It does not rely on any particular VCS, but instead it produces a model
that abstracts and encapsulates all the data retrieved from such systems, guar-
anteeing complete independence. VCS-Analyzer needs only the identifier of the
repository to be analyzed, and takes care of the retrieval of metadata or files,
depending on the analysis to perform. It has been designed to allow simple plug-
ging of new analyses and other VCSs, by decoupling the different aspects of
repository crawling. The tool currently supports Git and SVN, which are the
most used VCSs in the open source community, but others can be integrated if
the need for them arises. VCS-Analyzer has been used to perform different anal-
yses on many systems, e.g., JUnit, ElasticSearch, the Linux kernel. The detailed
description of VCS-Analyzer and the analyses performed can be found in the
Thesis of M. Rolla [3] and on the project’s web page 1. Currently the supported
analyses exploit the detection of code smells, the computation of many metrics,
change sizes and number of changes, as well as the information captured through
the Code Repository Smell and Metrics defined in this paper.

In the paper, we first define the Code Bashing Smell and we describe the
method we used to detect it. Our method is based on tracking line changes in
source code repositories, through an algorithm we define. Then, we pose two
Research Questions to understand if the information extracted by tracking line
changes is actually different or similar from the one extracted by looking to file
changes only. Moreover, other two Research Questions are posed to check if i)
the number of changes per file and per line, and ii) the time interval between
changes per file and per line, used for ranking files, highlight different files. Then,
by using information regarding line changes, we define the File Volatility metric
that we use to detect the Code Bashing smell. Finally, we define the Repository
Stability metric, to evaluate the development activity and changes done on an
entire repository, and in particular its degree of maturity.

The paper is organized through the following sections: In Section 2 we sum-
marize some related work. In Section 3 we introduce the Code Bashing smell.
In Section 4 we describe our line change tracking approach and in Section 5
we compare change measures based on files and lines, by posing and answering
four different research questions. In Section 6 and Section 7 we introduce and

1 http://essere.disco.unimib.it/reverse/VCSAnalyzer.html

http://essere.disco.unimib.it/reverse/VCSAnalyzer.html

150 F. Arcelli Fontana, M. Rolla, and M. Zanoni

describe the two new Repository Metrics. In Section 8 we describe the most
relevant threats to the validity of our work. Finally, in Section 9, we conclude
and outline some future developments.

2 Related Work

At the best of our knowledge, the literature does not report a concept similar to
the Code Bashing smell, as defined in this paper; the same holds for the identified
Repository Metrics, i.e., File Volatility and Repository Stability.

Regarding the different analysis on the evolution of software repositories, as
those we can perform with VCS-Analyzer, many works have been proposed in
the literature, as the papers in the Proceedings of Mining Software Repositories
Conferences [4] and many others [5,6,7,8].

In this paper, we describe and apply a technique for tracking lines changes
along the evolution of a repository. Many works have been proposed in the lit-
erature describing different analyses on file changes [6,7,9]. Many of these works
measure and exploit file changes for making different kinds of inference about
the quality or the evolution of software projects. At the best of our knowledge,
the literature reports only few analyses based on line changes. Zimmermann et
al. [10] introduce line change tracking, and the usage of annotation graphs to
track the complete history of each line of the analyzed project. The approach
they used for recognizing line changes is very similar to the one we describe.
The technique is applied to compute the coupling among lines in the Eclipse
project. Canfora et al. [11] propose a more advanced algorithm to achieve better
performances in line tracking. The algorithm addresses problems like file renam-
ing or line reordering, and computes the similarity among lines to support line
tracking.

The File Volatility metric defined in this paper measures the maximum change
density of a file in a repository, exploiting the line tracking technique we define.
Other metrics address the measurement of the amount of changes received by
a file. For example, a largely studied metric, which considers the amount the
changed lines, is code churn [8]. Despite their similarities, the two metrics have
different goals, and in Section 6 we demonstrate that they produce different
results.

Regarding other systems similar to VCS-Analyzer, different works have been
proposed in the literature. A first example is Churrasco [12], which provides
software evolution modeling, analysis and visualization through a web interface.
This tool takes as input the URL of a Subversion repository to be analyzed,
processes the project and automatically creates and stores an evolutionary model
in a centralized relational database. Another example is Kenyon [13], a system
designed to facilitate software evolution research by providing a common set of
solutions to common problems. Kenyon’s authors used the tool for processing
source-code data from 12 systems of different sizes and domains, archived in 3
different types of VCS. Kenyon extracts each source code change from the input
repositories and stores information into a relational database. In addition to

Capturing Software Evolution and Change through Code Repository Smells 151

extracting changes, users can add their own plug-ins to perform desirable tasks.
All tasks are configurable through a web interface based on the Hudson build
framework2. Another example is CodeVizard [14]. This tool allows analyzing
CVS or Subversion repositories, and to display different kinds of information,
at different granularities, over a timeline. It supports Java and C#. The tool
computes over 70 software metrics of each version of the analyzed project, and
can use this information to detect code smells. An example of the views it can
provide is the System View, where each file in a repository is represented with a
timeline, and file properties, e.g., code smells are encoded with different colors.
The view allows visualizing the evolution of specific properties in the life of all
files of the analyzed project. Other tools exist with more specific aims, e.g., the
visualization of software evolution [15,16].

The aim of VCS-Analyzer is different from the above tools. Currently, the tool
implements the computation of code related metrics and the detection of code
smells as well, but its main focus is supporting any software assessment process
by analyzing data exposed by the VCSs. In this regards, Kenyon, is the most
similar related work we described.

3 Code Bashing Smell

Code is rarely completely right at first writing: it undergoes several changes and
optimizations, which are natural during its evolution. When a portion of code
keeps changing frequently it may point out a deeper problem in the system struc-
ture or design. Nevertheless, when developers reiteratively edit the same portion
of code, it is sign of a problem: e.g., either the requirement specifications were
not exhaustive and subject to frequent change, or the code is too complex for the
developer to be fully understood. Moreover, once a piece of code is considered
stable enough, changes involving it should be in a limited number, following
the principle of single responsibility [17] which states that every class should
have a single reason to change, because it has a single responsibility. Even in
agile methods, where changes are normal and welcome, an excessive number of
changes to the same piece (or single line) of code can be suspicious. A region of
code is affected by Code Bashing when it has been changed a disproportionate
amount of times during its life. Clearly, depending on the repository branches
and conventions, the evaluation of the amount of changes can have different in-
terpretations. A local development branch will be by far more unstable than an
official stable/release branch. It often happens that local branches are used to
experiment different solutions, and files get almost totally changed from time to
time. On mature projects, instead, there is usually a branch which receives only
tested and approved code. When too many changes are made to this last kind
of code, it is often the sign that a problem happened.

To be able to detect the Code Bashing smell, we need first to be able to mea-
sure the amount of changes made to single code regions. The simplest measure
is the change count. Whenever a code region is changed, its change counter is

2 http://hudson-ci.org/

http://hudson-ci.org/

152 F. Arcelli Fontana, M. Rolla, and M. Zanoni

incremented. Since code regions cannot be defined in advance, unless we consider
and parse the grammar of the analyzed file, we consider the changes applied to
each single line of code. Single lines can be grouped back to regions, if needed, in
a later stage. What we would like to have is a Change Intensity metric (defined
below), telling how many changes each line received during a considered time
interval. The Change Intensity metric is used to compute File Volatility (see
Section 6).

4 Tracking Line Changes

We defined a technique to track changes made to the lines of each file in a
repository. The algorithm we implemented in VCS-Analyzer populates an array
of descriptors for each text file in the repository, where each cell represents a line
of the respective file, and contains the list of changes made to the line, keeping
track of the timestamp, the version identifier, the author, and the position of
the changed line.

To track changes, the algorithm analyzes the differences between the same file
in consecutive versions, using the patch texts provided by the VCS3. All major
VCSs embrace the unified diff format. The lines of a diff can be grouped into
three categories:

– Neutral blocks : composed of lines serving as context and not taking part in
changing the file.

– Additive blocks : composed of lines marked with the plus sign (+) by the diff;
these are the lines added in the new version of the file.

– Subtractive blocks : composed of lines that are marked by the minus sign (-);
they represent the lines that will not be present in the new version.

The algorithm splits the diff text and the file in blocks, reassembling them in
a way that the result is a sequence of additive, subtractive and neutral blocks.
Then the vector containing the change descriptors of the previous version of
the file is updated, according to the changes represented by the different blocks.
Changes in the unified diff format are in form of additions and deletions only.
Edits are represented by the deletion of lines followed by the addition of the
former lines, incorporating the change. The way the changes are assigned to
lines is guided by simple rules we defined. We manage different cases:

– isolated additive block: inserted lines are assigned a descriptor, tracking their
initial revision;

– isolated subtractive block: deleted lines descriptors are discarded;
– subtractive block followed by additive block, representing a change; in this

case, the initial lines of the additive block are tracked as changes to the
respective line in the subtractive block, adding a descriptor to the respective
list; the remaining lines are considered deleted or added, depending if the
subtractive block is longer or shorter than the additive one.

3 Actually, by the library used to access the VCS data. See Section 8 for further
explanations.

Capturing Software Evolution and Change through Code Repository Smells 153

Listing 1.1. Original file

1 package org .jsoup .parser ;

1

1 /**

1 */

1 public class ParseError {

1 private String errorMsg ;

1 private int pos;

1 private char c;

1 private TokeniserState tokeniserState;

1 private TreeBuilderState treeBuilderState;

1 private Token token ;

1

1 public ParseError (String errorMsg , char c, Tokeniser [...]

1 this.errorMsg = errorMsg ;

1 this.c = c;

1 this.tokeniserState = tokeniserState;

1 this.pos = pos;

1 }

1

1 public ParseError (String errorMsg , TokeniserState [...]

1 this.errorMsg = errorMsg ;

1 this.tokeniserState = tokeniserState;

1 this.pos = pos;

1 }

[...]

1 }

The defined rule allows tracking changes made to single lines, with a degree of
approximation, due to the availability of different diff algorithms and the usage
of line positions in diff blocks for tracking changes. Possible enhancements to
this procedure are discussed in Section 9.

In the following, we report an example of the application of the score as-
signment schema. The example is taken from the JSoup project, and shown
the application of the score assignment schema on a the ParserError class. In
Listing 1.1, Listing 1.3 and Listing 1.2, we show the corresponding file before
and after a change, and the diff file for the change. Each line of the file has an
associated score, before and after the change. The score represents the number
of changes received by the line. The [...] placeholders in the listings represent
some text that we removed for space reasons.

5 Experiments on Tracking Line Changes

We described, in the previous section, a line tracking algorithm we used to derive
a strategy for the detection of the Code Bashing smell. Since we have no previous
information about the properties of measures derived from line changes, we set
up an experiment to compare line changes to file changes.

154 F. Arcelli Fontana, M. Rolla, and M. Zanoni

Listing 1.2. Difference between the two files

diff --git a/src /main/java/org /jsoup /parser /ParseError .ja [...]

index 01 dec6e ..2656 c00 100644

--- a/src /main/java/org /jsoup /parser /ParseError .java

+++ b/src /main/java/org /jsoup /parser /ParseError .java

@@ -1,8 +1,10 @@

package org.jsoup.parser ;

/**

+ * A Parse Error records an error in the input HTML that [...]

*/

-public class ParseError {

+// todo: currently not ready for public consumption . [...]

+class ParseError {

private String errorMsg ;

private int pos;

private char c;

@@ -10,36 +12 ,36 @@ public class ParseError {

private TreeBuilderState treeBuilderState;

private Token token;

- public ParseError (String errorMsg , char c, Tokeniser [...]

+ ParseError (String errorMsg , char c, TokeniserState [...]

this.errorMsg = errorMsg ;

this.c = c;

this.tokeniserState = tokeniserState;

this.pos = pos;

}

- public ParseError (String errorMsg , TokeniserState [...]

+ ParseError (String errorMsg , TokeniserState [...]

this.errorMsg = errorMsg ;

this.tokeniserState = tokeniserState;

this.pos = pos;

}

[...]

}

We pose and try to answer the following research questions:

RQ1. Does the number of changes per file provide the same information as the
number of changes per line?

RQ2. Does the time interval between file changes provide the same information
as the time interval between line changes?

RQ3. Can the number of changes per file and the number of changes per line,
used for ranking files, highlight different files?

RQ4. Can the time interval between changes per file and per line, used for
ranking files, highlight different files?

Capturing Software Evolution and Change through Code Repository Smells 155

Listing 1.3. Resulting file

1 package org .jsoup .parser ;

1

1 /**

1 * A Parse Error records an error in the input HTML that [...]

1 */

2 // todo: currently not ready for public consumption. [...]

1 class ParseError {

1 private String errorMsg ;

1 private int pos;

1 private char c;

1 private TokeniserState tokeniserState;

1 private TreeBuilderState treeBuilderState;

1 private Token token ;

1

2 ParseError (String errorMsg , char c, Tokeniser [...]

1 this.errorMsg = errorMsg ;

1 this.c = c;

1 this.tokeniserState = tokeniserState;

1 this.pos = pos;

1 }

1

2 ParseError (String errorMsg , TokeniserState [...]

1 this.errorMsg = errorMsg ;

1 this.tokeniserState = tokeniserState;

1 this.pos = pos;

1 }

[...]

1 }

We defined a set of possible analyses leveraging the extracted data, for an-
swering the research questions we made. We applied our line change tracking
algorithm to a set of open source repositories. Table 1 lists the projects we
analyzed. We made the choice of using Git repositories only because Git repos-
itories are copied to the local machine, speeding up the computation. For our
experiments, we used the whole history of the considered projects.

Research questions RQ1 and RQ2 are posed to understand if the information
extracted by tracking line changes is actually different from the one extracted
by looking to file changes only.

For answering question RQ1, we compute the number of changes for each file,
and also the number of changes for each of the lines of each file. To summarize
the line changes, for each file we compute the maximum and the median of the
number of changes of each line. We do not consider the minimum because it is
less interesting, and its value is almost always 1. For both lines and files, we
consider only the ones having at least one change after their creation.

Figure 1 shows a boxplot of the Kendall τ correlation obtained between the
number of file changes and the maximum and median number of line changes for
the respective file. The number of file changes is equal to the maximum number

156 F. Arcelli Fontana, M. Rolla, and M. Zanoni

Table 1. Analyzed projects

Project name Repository URL

JSoup https://github.com/jhy/jsoup.git

ElasticSearch https://github.com/elasticsearch/elasticsearch.git

Tomcat https://github.com/apache/tomcat.git

Wildfly https://github.com/wildfly/wildfly.git

Linux kernel git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

JUnit https://github.com/junit-team/junit.git

Checkstyle https://github.com/checkstyle/checkstyle.git

PMD https://github.com/pmd/pmd.git

0 0.2 0.4 0.6

L.Max

L.Med

Fig. 1. Num. file and line changes (correlation)

of changes per line only when a line was changed in every file change. In fact,
the diagram shows a good, but not perfect correlation (around 0.65) between
the two measures. The median, instead, has low correlation with the number of
file changes. This means that there is a tendency of some lines to be changed
more, while most of them are rarely updated.

For answering question RQ2, we compute the time distance between subse-
quent changes for each file, and for each of the lines of each file. To summa-
rize time distances on files, we compute the minimum and the median of time
distances of each file. To summarize time distances on lines, for each line we
compute the minimum and the median of the change time distance. Then, for
each file, we compute the minimum and the median of the previous two values.
The resulting measures for lines are the four combinations {min, med} × {min,
med}. For example, med-min is the median of the change time per lines, which
is obtained as the minimum of change times of each line. For both lines and files,
we consider only the ones having at least one change after their creation.

Figure 2 and 3 show the boxplot of the Kendall τ correlation among the
minimum and median (respectively) of time between changes in files, and the
different combination of minimum and median of time between changes in lines.
The minimum time change for each file has a 0.6–0.7 correlation with min-min
and min-med. The values are very similar to the ones found for the number of
changes. The median of file change times, has better correlation with all the
median line measures, and slightly worse with minimum line measures.

The answer to RQ1 and RQ2 is that considering the number and time between
changes (in files and in lines) provide similar, but different information. In par-
ticular, the extreme indicators (min time between changes and max number of

https://github.com/jhy/jsoup.git
https://github.com/elasticsearch/elasticsearch.git
https://github.com/apache/tomcat.git
https://github.com/wildfly/wildfly.git
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://github.com/junit-team/junit.git
https://github.com/checkstyle/checkstyle.git
https://github.com/pmd/pmd.git

Capturing Software Evolution and Change through Code Repository Smells 157

−0.2 0 0.2 0.4 0.6 0.8

L.Min.Min

L.Med.Min

L.Min.Med

L.Med.Med

Fig. 2. Correlation among the minimum change time distance in files and different
change time distance measures in lines

0.1 0.2 0.3 0.4 0.5 0.6 0.7

L.Min.Min

L.Med.Min

L.Min.Med

L.Med.Med

Fig. 3. Correlation among the median of change time distances in files and different
change time distance measures in lines

changes) have good, but not perfect correlation with the respective measures on
files. These indicators are among the most interesting for investigating anomalies;
the fact that these very similar measures, taken considering file and line gran-
ularity are not fully correlated, means that there is some masked information
when considering file granularity.

To answer RQ3 and RQ4, we take an example of the top files obtained by
sorting the file list of each project by the different measures produced in RQ1
and RQ2. We are looking for differences in the file appearance or rank, when
using different measures. In particular, we want to understand if some files having
high rank using file measures get lower measures with line measures, or viceversa.
With respect to RQ3, in most cases, build files and changelogs are the ones with
the higher number of file changes. By considering the max number of changes
per line, instead, these files get lower ranks. In Linux, e.g., the MAINTAINERS file
received 1772 changes, but with a maximum number of changes per line of 6.
This changes its rank from 1 to 231. The file lists the maintainers of the kernel
modules, and lines are rarely changed, but people are added or removed from
the list. For the time between changes (RQ4), we take as an example the median

158 F. Arcelli Fontana, M. Rolla, and M. Zanoni

values on files and the median of minimum values on lines. In this case, it is
more difficult to assign semantics to the returned rankings, because the measures
should be combined with other indicators for making other kinds of inference.
We made the intersection of the top 50 file returned by the two measures. The
size of the intersections spans nearly the complete 0–50 on the analyzed projects.
It seems that there is no particular rule in this case, but we can tell that the two
measures are highlighting different files, in different amounts depending on the
project.

We cannot report here a complete experiment regarding the different ranks
provided by the tested measures, but we can use the obtained correlations as
guidelines. The correlation index we used, in fact, is based on the rank of the
compared values. This gives also an idea of the amount of changes obtained by
sorting files using the different measures.

6 File Volatility Metric

File Volatility is the first Repository Metric we defined4. At every moment during
its life, each line of each file has associated a list of change descriptors, calculated
with the method described in Section 4. We call here Change Intensity the
number of elements of each of those list, i.e., the number of changes received by
each line of each file. Each file is associated to a Change Intensity vector, having
one element for each line of the file.

We can then define the volatility of a file respect to its evolution, as the ratio
between the maximum value in the Change Intensity vector and the number of
changes to the file since its creation. More precisely, File Volatility is defined as:

FileV olatitily(f) =
max(ChangeIntensity(f))

Changes(f)

where:

– ChangeIntensity(f) is an array containing all the Change Intensity of each
line of file f ;

– Change(f) is the number of changes received by file f .

This value compares the change frequency of single pieces of code contained in
a file with the change frequency of the file in the same time interval. A value close
to 1 that means in the file there is a portion of the code that has been involved
in changes from the beginning until the last version. This behavior is clearly
not desirable, or at least points to a peculiar situation. Figure 4 represents the
plot of the File Volatility of the file pom.xml in the ElasticSearch5 project. In an
ideal situation, the value of the metric decreases in time, starting from 1. When
a file is created its File Volatility is 1, and at each change it keeps close to 1

4 At the end of the section, we outline the differences with other existing metrics like
code churn.

5 https://github.com/elasticsearch/elasticsearch

https://github.com/elasticsearch/elasticsearch

Capturing Software Evolution and Change through Code Repository Smells 159

if the changes are applied to the same region of code. Otherwise, the value of
the metric tends to be lower. In the example, the value of the metric quickly
decreases to smaller values, meaning that the changes involved different regions
of the file. In that particular file, the only line of code having a high Change
Intensity is the one representing the version of the system. In fact, the same line
has been edited every time the system changed its version number.

500 1,000 1,500 2,000 2,500 3,000

0.2

0.4

0.6

0.8

1

Versions

File Volatility

Fig. 4. Evolution of the File Volatility metric

Code refactoring techniques like Move Method, Extract Method and Extract
Class can greatly affect the value of the metric. Consider for example the case
of problematic code in a method, which is subjected to many changes for several
reasons and was not even supposed to be in that particular class. It could be a
case, e.g., of a Feature Envy method. To remove such smell, the refactoring to
apply could consist in moving that method elsewhere in the code base. If that
method had, into its body, lines with the highest values of Change Intensity in
the file, then its removal would dramatically drop the volatility metric value.
The same statement holds w.r.t. every refactoring technique that implies the
removal of a considerable portion of the code, as well as deleting code for other
reasons.

File Volatility is different from other existing metrics measuring code changes.
Two widely investigated change measures are the number of file changes and
code churn [8]. File Volatility expresses a different measure than the number of
file changes. In fact, it summarizes the changes of the single lines, relative to
the number of file changes. We also assessed in Section 4 that line changes are
not totally correlated with file changes, so the ratio of the two measures can
carry meaningful information. For example, a file receiving 10 new lines in 10
versions, one line per versions, has a number of changes value of 10. Its File
Volatility, instead is 1/10 (assuming no other lines have ever been changed).
The code churn (in its simplest form) for the same file will be (absolute form)
10, or (relative form) the average of 1/LOC for each of the 10 versions. File
Volatility is a measure evaluating the peaks of line changes in files, while code
churn is related to the size of every change made to the file, without recognizing
the identity of the single lines.

160 F. Arcelli Fontana, M. Rolla, and M. Zanoni

7 Repository Stability Metric

The second Repository Metric we defined is Repository Stability. Following the
principle of single responsibility, when a piece of code reaches enough maturity,
the chances of it being changed are extremely low. M. Feathers defined that
a class can be considered closed [18] at time t if no further modifications will
happen from t to present. The same concept can be extended to files: a file can
be considered closed when no further development is done on it from a version
to the last one. When a file reaches enough maturity, there is high probability
that it will not be subjected to future changes. Given this assumption, tracked
files can be grouped in active files and closed files.

The Repository Stability of a repository at version v is defined as:

RepositoryStability(v) =
|Closed(v)|
|Files(v)|

where:

– Closed(v) = {f ∈ Files(v)| � ∃v′(v′ > v ∧ f ∈ Changed(v′))};
– Files(v): files existing in the repository in version v;
– Changed(v): files changed, added or removed in version v;
– v ∈ N: version v is the number of the version of the system; v′ > v means

that v′ is a version more recent than v.

To give a graphical immediate representation of the concept of file closures
described above, we report, as an example, the values computed on JUnit, chosen
for its long change and development history. JUnit’s repository6 is managed by
Git, after the migration from CVS. Figure 5 shows the amount of files involved
in every single commit.

100 200 300 400 500 600 700 800

100

200

300

Versions

Number of changes

Fig. 5. Number of files changed in JUnit for each version

We can see that there are few commits that really stand out from the average
and especially the last one, as we will see later, has a remarkable impact on the
value of the metric. In Figure 6, we can see a comparison of the evolution of
total and closed files.
6 https://github.com/junit-team/junit

https://github.com/junit-team/junit

Capturing Software Evolution and Change through Code Repository Smells 161

100 200 300 400 500 600 700 800

200

400

Versions

Files

Closed

Total

Fig. 6. Evolution of closed and total files in JUnit

The commit near the end represents the reason why the metric keeps low
values for almost the entire life span of the repository, except for the last two
hundreds versions. The development team decided to apply new coding conven-
tions to the code base. This decision resulted in a huge number of files involved
into the change. Hence, only the files not interested by the new standards could
be considered closed. Just after the commit, the number of closed files suddenly
increases and keeps increasing until the end of the timeline. In the last commit,
the number of closed and total files are the same. This is due to the fact that, by
construction, the odds of finding a file contained in a change set decrease pro-
portionally with the progress in the history of commits. At last commit, none of
the files can be found at a later stage. The desired development behavior is to
focus on single functionalities and then move to others when the implementation
is mature enough. By looking at the Repository Stability evolution graph, one
can immediately judge if developers are following this principle. The Repository
Stability evolution graph (Figure 7 shows the one for JUnit) for a given interval,
should keep growing as time advances and the gap between active and closed
files should be as narrow as possible. Even in agile development environments
with short release cycles and incremental refactoring, there is a time when code
has to stop changing and become stable. Obviously, code cannot be mature from
the start, but it should be at some time in the future.

From the experience we had while testing the Repository Stability metric we
found some opportunities to improve it. One possibility would be to define change
categories we filter out of the computation. For example, we found many cases
where licences or other disclaimer were changed in all source files at once. This
kind of change could be automatically ignored in the computation, because it has
no associated semantics. It could be possible also to ignore any change involving
only comments. This last option can be more debatable, because comments are
part of the system and its evolution, in a sense. It will be interesting comparing
results obtained by applying this filter or not. Another possibility would be to
compute Repository Stability at the line level, counting both the closed lines of
code and the total lines of code for every version. The result would be a smoother
view of the evolution of the system, but it will hide the modularity existing in
the project.

162 F. Arcelli Fontana, M. Rolla, and M. Zanoni

100 200 300 400 500 600 700 800

0.2

0.4

0.6

0.8

1

Versions

Fig. 7. Evolution of the Repository Stability metric in JUnit

8 Threats to Validity

A threat to the internal validity of our analysis is related to the extraction
of single line changes. In the unified diff format, changes are represented as
sequences of lines additions and removals. This format does not tell exactly
which line was replaced by another line. Our algorithm uses line indexes as an
approximation for mapping changed lines. This approximation can lead to some
distortion in the line tracking. However, distortions are limited to the single diff
block.

Moreover, different diff algorithms can lead to different diff sequences and,
consequently, different scores. We currently rely on the diff algorithm provided
by the dulwich library, which is the one from python’s libdiff.

Threats to external validity of the analysis procedure are mainly related to the
characteristics of the analyzed projects. Different VCS technologies, program-
ming languages, and development communities may lead to different results.

9 Conclusions and Discussions

In this paper, we focused our attention on analyzing software evolution by har-
vesting system repository. With this goal, we defined a Code Repository Smell,
called Code Bashing, and two Repository Metrics, called File Volatility and
Repository Stability.

The Code Bashing Smell is useful to highlight code regions that received more
attention than others. When a code region receives too many changes, it can be
a sign of bad development practices, or unstable code. Therefore, detecting Code
Bashing can help locating issues hidden in the development history.

While the two Repository Metrics are useful to give a quick overview of the
level of maturity of single files and of an entire repository. In particular, File
Volatility assigns to each file a score, telling how much changes are concentrated
on particular lines, revealing code regions that needed more attention than oth-
ers, and could need more in the future. File Volatility can be applied to detect
Code Bashing. To be able to measure File Volatility, we defined an algorithm for

Capturing Software Evolution and Change through Code Repository Smells 163

tracking changes on single lines of code in a VCS repository. We evaluated the
number of changes per line and the periods of time passed among line changes
with respect to the equivalent measures on files.

By answering the four research questions posed in Section 5, we found that the
correlation among the produced measures is good, but not complete. This means
that the measurement of line changes gives different information than using file
changes. We also have shown cases in which some files get very different rankings
considering line and file changes. File Volatility exploits this differences to reveal
the balance between the changes received by files and the ones received by their
inner lines.

We think that the measures that can be produced by line change tracking
could be helpful in the same areas where file change measures have been applied,
e.g., change or defect prediction. In many cases, line changes can be a more
precise indicator than file changes. Source code, in fact, is often organized in
structured files, where different parts of the same file can have an independent
evolution.

The second metric we defined, Repository Stability, instead, can summarize
the portion of repository which did not need to be changed since an instant in
its development history; repositories where most files change over time can suffer
from organizational or design issues, so this metric can reveal potential quality
problems. In our experiments, by plotting the metric value over the system
history, we revealed large spread modifications in the analyzed repositories.

Information characterizing the evolution of software repositories can be ex-
ploited for software maintenance and quality assessment. For example, the se-
lection of a third party open source component can be aided with measures
characterizing the maturity of the project, as well as other issues related to its
development process.

We already analyzed different projects, i.e., Mozilla Rhino, JUnit, JSoup,
ElasticSearch, Hibernate, Tomcat, Wildfly, XBMC, and the Linux kernel. The
results of these analysis are available in a web page7 that we will keep updated
with results obtained on new projects.

In the past, we focused our attention on code smell detection and assess-
ment [19]. Now we aim to focus on finding smells tied to software evolution and
repository analysis, to extend our experimentation with the Repository Smells
and discovering new ones. Moreover, through VCS-Analyzer we intend to per-
form different empirical analysis for assessing the quality of software projects,
starting from their development history. Another possible future work is ad-
dressing the issue highlighted in Section 8 regarding the accuracy of line change
tracking. There are other less-exploited diff algorithms that work at the word
level, and could be exploited to have a more precise estimation of the lines that
were changed. This kind of diff needs more effort for its interpretation and has
less tool support, i.e., Git can provide it, but other VCSs may not, requiring
external processing.

7 http://essere.disco.unimib.it/VCSAnalyzerResults.html

http://essere.disco.unimib.it/VCSAnalyzerResults.html

164 F. Arcelli Fontana, M. Rolla, and M. Zanoni

References

1. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

2. Arcelli Fontana, F., Rolla, M., Zanoni, M.: VCS-analyzer for software evolution em-
pirical analysis. In: Proceedings of the 8th International Symposium on Empirical
Software Engineering and Measurement (ESEM 2014). IEEE, Torino (September
2014)

3. Rolla, M.: Empirical analysis for software assessment. Master’s thesis, University
of Milano-Bicocca, Viale Sarca, 336, Milano, Italy (January 2014)

4. Zimmermann, T., Di Penta, M., Kim, S. (eds.): Proc. 10th Working Conference on
Mining Software Repositories (MSR 2013). IEEE/ACM, San Francisco, CA (2013)

5. Peters, R., Zaidman, A.: Evaluating the lifespan of code smells using software
repository mining. In: Proceedings of the 16th European Conference on Software
Maintenance and Reengineering (CSMR 2012), pp. 411–416 (2012)

6. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. J. Softw. Maint.
Evol. 19(2), 77–131 (2007)

7. Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.: Mining version histories to
guide software changes, 31(6), 429–445 (2005)

8. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: Proc. 27th International Conference on Software Engineering
(ICSE 2005), pp. 284–292 (May 2005)

9. Ying, A., Murphy, G., Ng, R., Chu-Carroll, M.: Predicting source code changes by
mining change history 30(9), 574–586 (2004)

10. Zimmermann, T., Kim, S., Zeller, A., Whitehead Jr., E.J.: Mining version archives
for co-changed lines. In: Proc. Int.l Workshop on Mining Software Repositories
(MSR 2006), pp. 72–75. ACM, Shanghai (2006)

11. Canfora, G., Cerulo, L., Di Penta, M.: Identifying changed source code lines from
version repositories. In: Proc. 4th Int.l Workshop Mining Software Repositories
(MSR 2007), p. 14. IEEE (May 2007)

12. D’Ambros, M., Lanza, M.: Distributed and collaborative software evolution anal-
ysis with churrasco. Science of Computer Programming 75(4), 276–287 (2010),
Experimental Software and Toolkits (EST 3): A special issue of the Workshop on
Academic Software Development Tools and Techniques (WASDeTT 2008)

13. Bevan, J., Whitehead Jr., E.J., Kim, S., Godfrey, M.: Facilitating software evolution
research with kenyon. In: Proc. 10th European Software Eng. Conf. Held Jointly
with 13th ACM SIGSOFT Int.l Symp. Foundations of Software Eng. (ESEC/FSE
2013), pp. 177–186. ACM, Lisbon (2005)

14. Zazworka, N., Ackermann, C.: CodeVizard: A tool to aid the analysis of software
evolution. In: Proc. ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM 2010), p. 63:1. ACM, Bolzano (2010)

15. Voinea, L., Telea, A., van Wijk, J.J.: CVSscan: Visualization of code evolution.
In: Proceedings of the 2005 ACM Symposium on Software Visualization (SoftVis
2005), pp. 47–56. ACM, St. Louis (2005)

16. D’Ambros, M., Lanza, M.: BugCrawler: Visualizing evolving software systems.
In: Proceedings of the 11th European Conference on Software Maintenance and
Reengineering (CSMR 2007), pp. 333–334 (March 2007)

17. Martin, R.C.: Chapter 9 — SRP: The Single Responsibility Principle. In: The
Principles of OOD (February 2002),
http://www.objectmentor.com/resources/articles/srp.pdf

http://www.objectmentor.com/resources/articles/srp.pdf

Capturing Software Evolution and Change through Code Repository Smells 165

18. Feathers, M.: Working Effectively with Legacy Code. Robert C. Martin Series.
Pearson Education (2004)

19. Arcelli Fontana, F., Braione, P., Zanoni, M.: Automatic detection of bad smells in
code: An experimental assessment. J. Object Technology 11(2), 5:1–38 (2012)

Considering Polymorphism

in Change-Based Test Suite Reduction

Ali Parsai, Quinten David Soetens, Alessandro Murgia, and Serge Demeyer

University of Antwerp, Antwerpen, Belgium
ali.parsai@student.uantwerpen.be,

{quinten.soetens,alessandro.murgia,serge.demeyer}@uantwerpen.be

Abstract. With the increasing popularity of continuous integration,
algorithms for selecting the minimal test-suite to cover a given set of
changes are in order. This paper reports on how polymorphism can
handle false negatives in a previous algorithm which uses method-level
changes in the base-code to deduce which tests need to be rerun. We com-
pare the approach with and without polymorphism on two distinct cases
—PMD and CruiseControl— and discovered an interesting trade-off: in-
corporating polymorphism results in more relevant tests to be included in
the test suite (hence improves accuracy), however comes at the cost of a
larger test suite (hence increases the time to run the minimal test-suite).

Keywords: test selection, unit-testing, change-based test selection,
polymorphism, ChEOPSJ.

1 Introduction

The advent of agile processes with their emphasis on test-driven development [2]
and continuous integration [9] implies that developers want (and need) to test
their newly changed or modified classes or components early and often [12]. Yet,
as Runeson observed in a series of workshops with testing teams, some unit test
suites take hours to run [15]. In such a situation, a “retest all” approach which
maximizes the chances of verifying if (i) the new functionalities introduced are
working properly and (ii) the refactoring of the previous ones do not break the
code, takes too long to provide rapid feedback in a normal edit-compile-run cycle.

A series of interviews we conducted with developers working in different agile
teams confirmed that rapid feedback in the presence of a large suite of unit-
tests is critically important. When developers address a change-request, they
make a chain of changes in the code base, fire a manually selected subset of
the unit tests to confirm the system still functions as expected, commit their
changes to the code base, run the continuos integration build —the developers
we interviewed reported that a “retest-all” takes between 8 and 10 hours— and
in the meantime proceed with the next change request. Most of the time this
works fine, but in some occasions the continuous integration build reveals a
regression fault and then developers must switch contexts to resolve the fault.
One team leader determined that it takes at least 10 minutes before a developer

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 166–181, 2014.
c© Springer International Publishing Switzerland 2014

Change-Based Test Suite Reduction 167

mentally reconstituted the context; since each failed integration build involves
several context switches it follows that they easily add an extra half hour just
to get a developer in the right frame of mind. Another team leader pointed out
that as a system grows and becomes more complex, it is more difficult to identify
a suitable test subset hence failed integration builds occur more frequently. A
back-of-the-envelope estimation based on their latest quarterly release, revealed
that failed integration builds add at least two extra hours per working day.

Essentially, there are three possible strategies to achieve a rapid feedback cycle
in the presence of a large suite of unit tests: (a) parallelisation, i.e. perform a
“retest all” on a battery of dedicated test servers to reduce the time to execute
the test; (b) smoke tests, i.e. define a few representative tests as a quick and
dirty verification; (c) test selection, i.e. select the subset of the complete test
suite covering the last changes made. In this paper, we focus on the latter,
however point out that from a pragmatic point of view, a combination of the
three strategies is desirable.

Test selection is the problem to “determine which test-cases need to be re-
executed [. . .] in order to verify the behavior of modified software” [6]. It has
been the subject of intense research in the area of regression testing, however is
recently also studied in the context of agile approaches. We refer the interested
reader to a survey by Engström et. al, for an overview of the former [6] while
Hurdugaci et al. [11], Zaidman et al. [21] are some examples of the latter.

We ourselves experimented with one particular test selection technique and
reported about it during the CSMR 2013 conference [18]. In essence, the algo-
rithm builds a series of dependencies between methods that have been changed
—all of which are captured by the ChEOPSJ tool [17]— and from that deduces
all tests which directly or indirectly invoke those methods. Our results showed
that given a list of methods which changed since the latest commit, we could
select a subset of the entire test suite which is significantly smaller. The selected
subset is not safe as it occasionally misses a few relevant tests. However it is
adequate since the test-coverage —expressed as “percentage of mutations that
were killed” [1])— remained the same.

Nevertheless, the algorithm explained in [18] made one simplifying assump-
tion, namely that developers would refrain from using polymorphism, i.e. invoca-
tions of overridden methods, abstract methods or methods declared in
interfaces [3, Ch. 2]. This simplifying assumption did not hold in one of the
cases (namely PMD) and as a result our algorithm missed several relevant tests.
For this reason, we decided to repeat the previous experiment to address the
following research question:

RQ. Does considering polymorphism improve the quality of the reduced test
suite in a realistic situation?

In this experiment, we applied the improved algorithm on the two cases used
in the original experiment: PMD and CruiseControl.

168 A. Parsai et al.

The rest of this paper is structured as follows. In section 2, we describe the ap-
proach for test selection and the test selection algorithm. In section 3 we explain
the experimental setup. In section 4, we present the results of the experiment. In
section 5, we describe which factors may jeopardize the validity of our analysis.
In section 6, we summarize the related work. Finally, in section 7 we wrap up
the work with a summary and conclusions.

2 Supporting Code Change and Test Selection

This section describes how we introduced the concept of polymorphism in the
test suite reduction algorithm of ChEOPSJ. We start by introducing ChEOPSJ
and then its test selection algorithm1.

ChEOPSJ2 is a proof of concept system able to extract and model software
changes. This tool is implemented as a series of Eclipse plugins. Figure 1 shows
the overview of its structure. At the center of the tool we have a plugin that
contains and maintains the change model. There are two plugins that are respon-
sible for populating the change model. The Logger generates change objects by
recording actions a developer makes in the main editor during a development
session, while the Distiller obtains the change objects by mining a Subversion
repository. Once the change model is populated with first class change objects,
many applications can be built on top of ChEOPSJ that can use them for their
own purpose. Our TestSelection plugin is one such application.

Fig. 1. The layered design of ChEOPSJ

Our approach for change-based test selection uses the first class change-objects
of ChEOPSJ. We define a Change as an object representing an action that

1 The proposed procedure is easily generalizable for any object oriented system. There
are commercial tools (e.g. Visual Studio) which try to solve the same problem for a
specific language, but does not publicly provide the used technique.

2 The acronym ChEOPSJ stands for: Change ad Evolution Oriented Programming
Support for Java.

Change-Based Test Suite Reduction 169

changes a software system. As such, a change becomes a tangible entity that
we can analyze and manipulate. We define three kinds of Atomic Changes : Add,
Modify and Remove. These changes act upon a Subject representing an actual
source code entity. For these subjects we can use any model that is capable
of representing source code entities. We chose the FAMIX model as defined
in [5] since its model is usable to describe many object oriented programming
languages. As such our approach is applicable in any object oriented setting.

Our model also defines dependencies between the changes. These are deduced
from the FAMIX model, which imposes a number of invariants to which each
model must adhere. For instance, there is an invariant that states that each
method needs to be contained in a class. This means that there is a precondition
for the change (mAdd) that adds a method m to a class c. There should exist a
change (cAdd) that adds the class c and there is no change that removes the class
c. We can then say that the change mAdd depends on the change cAdd. More
generally we can say that a change object c1 depends on another change object
c2 if the application of c1 without c2 would violate the system invariants.

The change based test selection heavily relies on these dependencies, as it
traces them from a selected change to the additions of test methods. To calculate
the reduced test suites we execute Algorithm 1.

Algorithm 1. select relevant tests
Input: A ChangeModel, A set SelectedChanges
Output: A Map that maps each selected change to a set of relevant tests.
foreach c in SelectedChanges do

calledMethod = findMethodAddition(hierarchicalDependencies(c));
invocations = invocationalDependees(calledMethod);
foreach i in invocations do

invokedBy = findMethodAddition(hierarchicalDependencies(i));
foreach m in invokedBy do

if m is a test then
add m to relevantTests;

else
if m was not previously analyzed then

tests = selectRelevantTests(m);
add tests to relevantTests;

map c to relevantTests;

In this algorithm, we iterate all selected changes and map each change to
their set of relevant tests. We start by finding the change that adds the method
in which the change was performed. We can find this change, by following the
chain of hierarchical dependencies and stop at the change that adds a method. In
Algorithm 1 this is presented by a call to the procedure findMethodAddition.
After this call calledMethod will be the change that adds the method in which
the change c took place. Next we need to find all changes that add an invocation
to this method. These are found by looking for invocationalDependencies.
For each of these changes, we again look for the change that adds the method in
which these invocations were added. And thus we find the set of all changes that
add a method that invokes the method that contains our selected change. We
then iterate these method additions and check whether these changes added a

170 A. Parsai et al.

test method. If this was the case we consider this test method as a relevant test
for the originally selected change. If on the other hand the added method was
not a test method, then we need to find the relevant tests of this method and
that set of tests needs to be added to the set of relevant tests for the selected
change.

Polymorphism during test selection. In our original approach, the change model
assumed that invocations were a one to one relationship between the caller and
the callee. As such the addition of an invocation was dependant on the addition
of the caller method as well as on the addition of the callee method. We could
statically determine the latter based on the type of the variable on which the
method was invoked. However with polymorphism this is not necessarily the
case, as a method invocation might invoke any of a number of possible methods.

Take for instance the code in Figure 2, here we have a class Foo that declares
a method foo and a subclass Bar that declares a polymorphic version of that
same method. Our test invokes the method foo on a variable f of type Foo,
hence our algorithm would state that this test is relevant for all changes in the
method Foo.foo(). However in the setUp method, the variable f is instantiated
as an object of type Bar so this test is in fact also relevant for the method
Bar.foo(), which is a link that our test selection algorithm missed. Hence our
algorithm did not take into account actual methods that are invoked at runtime
like polymorphic methods, abstract methods or methods declared in interfaces.

class Foo{
public void foo(){
}

}

class Bar extends Foo{
public void foo(){
}

}

class FooBarTest{
private Foo f;
public void SetUp (){

f = new Bar();
}
public void fooTest (){

f.foo();
}

}

Production Code

Inheritance

Foo

Foo.foo()

Bar

Bar.foo()

Test Code

FooBarTest

FooBarTest.setUp()

FooBarTest.fooTest()

FooBarTest.fF

Invocation

Fig. 2. Example of changes with polymorphic call

As a simple workaround, we slightly changed our change model so that an
addition of an invocation is dependant of all additions of methods that this
invocation can possibly be referring to, based on its identifier and parameter list.
So when a method invocation is added, this addition now depends on all method
additions that add a method with this same identifier. This would change the
model of the changes in Figure 2 to the model represented in Figure 3. Note that
in the new model, there is an added dependency from addition of the invocation

Change-Based Test Suite Reduction 171

Production Code

Inheritance

Foo

Foo.foo()

Bar

Bar.foo()

Test Code

FooBarTest

FooBarTest.setUp()

FooBarTest.fooTest()

FooBarTest.fF

Invocation

Fig. 3. Updated model with dependency from invocation to all possible methods with
same identifer

in the test method to the addition of the method Bar.foo. So now our test
selection algorithm will say that the test FooBarTest.fooTest() is relevant for
changes in both the methods Foo.foo() and Bar.foo().

We report another example in Figure 4: the refactoring ReplaceCondition-
alWithPolymorphism. In this example the class Base contains a method
getValue which uses a conditional to determine its actual runtime type and
based on that will perform a different action. The refactoring then involves the
creation of polymorphic versions of this method in the two subtypes that per-
form the type specific actions. We show the change model of this code before
and after the refactoring in Figures 5. The test of this code, invokes the method
getValue on the superclass, which results in a dependency from the test to the
addition of that method. This means that this test is relevant to all changes
in the getValue() method. In the version before refactoring this would be cor-
rect, however in the post-refactored class without polymorphic support, a test
containing an invocation of getValue on an object of class Base will not be
selected for objects of types Type1 and Type2 ; Because, the addition of the in-
vocation of getValue in class Test is dependent on the addition of the abstract
method Base.getValue and not the addition of methods Type1.getValue and
Type2.getValue. Whereas, with the polymorphic support Test will be selected,
because as shown in Figure 5 there is a dependency from the invocation to all
methods with the identifier “getValue”.

3 Experimental Setup

We use mutation testing to estimate the real-life behavior of the reduced test
suite. We replicated a previous study to evaluate the benefits of the introduction
of polymorphism [18] .

172 A. Parsai et al.

class Base{
int getValue (){

switch (_type){
case Type1:

return getType1Value();
case Type2:

return getType2Value();
}

}
}

class Type1 extends Base{
}

class Type2 extends Base{
}

class Base{
int getValue ();

}

class Type1 extends Base{
int getValue (){

return getType1Value();
}

}

class Type2 extends Base{
int getValue (){

return getType2Value();
}

}

Fig. 4. Replace Conditional with Polymorphism refactoring

Production Code

Base

Base.getValue()

Type1

Inheritance
Inheritance

Type2

Test Code

Test

Test.testGetValue()

Invocation

Before refactoring

Production Code

Base

Base.getValue()

Type1

Inheritance
Inheritance

Type2

Test Code

Test

Test.testGetValue()

Invocation

Type1.getValue() Type2.getValue()

After refactoring

Fig. 5. Model state before and after the refactoring

Change-Based Test Suite Reduction 173

3.1 Mutation Testing

Mutation testing3 provides a workaround to measure the quality of a test suite
and identify its weak points [1]. In mutation testing intentional faults are put
inside a fault-free program by applying mutation operators (or mutators). Muta-
tors are chosen according to a fault model so that the generated faults correspond
to a realistic situation. A mutation is killed if it causes a test to fail, while if
it does not fail any tests, it has survived the experiment. We can then consider
the mutation coverage, which is a ratio between the number of mutants that
were killed over the number of mutants that were introduced. Mutation cover-
age provides a reliable metric to measure the quality of a test suite [1]. A higher
mutation coverage, means that more of the introduced mutants were killed and
consequently that your test suite is of better quality.

In the previous experiment, PIT4 was used as the main means for mutation
testing. In this experiment, we use the same configuration of PIT used in the
previous study [18]. PIT provides byte code mutation testing by integration into
the build procedure —either Ant or Maven— of the target software. To get a
base measurement of the quality of the test suites, PIT is run considering all
classes and the full test suite. Then separate build files were generated for each
class which included only the tests ChEOPSJ deemed relevant to the class in
question. We compare the mutation coverage of each reduced test suite with the
mutation coverage of the full test suite by looking at the mutants that survived
the reduced suite but that were killed in the full suite. Ideally the mutation
coverage of the reduced test suite should equal the mutation coverage of the
entire test suite. When the mutation coverage is lower, it means that we have
missed some relevant tests in our selection.

The results of this mutation coverage analysis (using polymorphism) is then
compared to the results of our previous experiment (where polymorphism was
not taken into account).

3.2 Selected Cases

To be able to measure the impact of supporting polymorphism in ChEOPSJ, we
examined the same cases (PMD5 and CruiseControl6) as the previous study [18].
Moreover, we use the same revisions of both projects to reliably repeat the
experiment. CruiseControl is a continuous integration tool and an extensible
framework for creating a custom continuous build process. PMD is a source
code analyzer which finds common programming flaws like unused variables,
empty catch blocks, unnecessary object creation. These projects are open-source,
written in Java and accessible through SVN.

The sizes of these projects and the selected revisions are shown in Table 1.

3 The interested reader may refer to [4, Ch. 7] for more information regarding mutation
testing.

4 http://pitest.org
5 http://pmd.sourceforge.net
6 http://cruisecontrol.sourceforge.net

http://pitest.org
http://pmd.sourceforge.net
http://cruisecontrol.sourceforge.net

174 A. Parsai et al.

Table 1. Number of 1000 Lines of Code (KLOC) and Number of Classes (NOC) for
both source code and test code (measured with InFusion 7.2.7).

Project Version Src Src Test Test Build
analyzed KLOC NOC KLOC NOC Process

Cruisecontrol rev. 4601 26.5 376 24.5 295 ant
PMD rev. 7706 46 804 9 215 maven

4 Results and Discussion

This section analyses the results of the test selection algorithm. We compute for
all classes —in the full test suite and in the reduced one— the mutants generated.
Then, we count the number of mutants killed and the number of classes involved.
Moreover, we compare our results with those achieved with the previous version
of ChEOPSJ.

4.1 PMD

The test suite of PMD covers 665 classes and with PIT we generate mutants on
each one of them. Using PIT on the reduced test suite, we generated mutants
for 607 classes7. When comparing this to the previous experiment we have a
significant improvement, as the previous version generated mutants for only 144
classes.

In Figure 6b we compare the mutation coverage of the reduced test suites
with the full test suite. We find that the reduced test suites of 47% of the classes
have the same mutation coverage as the full test suite. This matches the results
of the previous experiment [18], where there were 50% of reduced test suites that
had an equal number of mutants killed compared to the mutation coverage of
the full test suite.

We also observed another improvement with respect to the experiment made
with the previous version of ChEOPSJ. In both experiments, the reduced test
suites have 128 common classes with 4908 mutations. In the previous experiment
the reduced test suites killed 2114 mutants, whereas in our current experiment
the reduced test suites killed a total of 2327 mutants. This means that our
improved approach killed 213 more mutants than before. So considering poly-
morphism resulted in an improvement of 4.3% in the quality of the reduced test
suite. In Figure 6a we report the percentage of classes with improved muta-
tion coverage. In the case of PMD, 33% of the classes have improved mutation
coverage while 8% have worsened coverage.

Finally, to inquire to what extent there is an improvement on the number of
killed mutants, we compare them with respect to the total number of mutants
generated for any class. This is reported in Figure 7 where the X axis is the
number of generated mutants and the Y axis is the difference in number of

7 PIT does not generate mutations in a class if the given test suite has no coverage
over that class.

Change-Based Test Suite Reduction 175

(a) Percentage of classes with
improved mutation coverage

(b) Mutation coverage comparison
between all tests and selected tests

Fig. 6. Mutation coverage on PMD

Fig. 7. Difference in killed mutants for PMD

killed mutants for each class in the two experiments. Given a class, we have an
improvement of the test suite reduction whenever the number of killed mutants is
higher than before. Therefore, the accumulation of points near the Y axis means
that those classes with small number of mutants have been impacted more and
their mutation coverage is significantly improved.

4.2 CruiseControl

PIT generates mutants in 246 classes covered by the full test suite of CruiseC-
ontrol and in 231 classes covered by the reduced test suites. From a total of
6860 mutants generated, 3627 were killed. This is the same number of generated
mutants as in the previous experiment and the new reduced test suites kill only
4 more mutants than the old reduced test suites. This means that the addition

176 A. Parsai et al.

(a) Percentage of classes with
improved mutation coverage

(b) Mutation coverage comparison
between all tests and selected tests

Fig. 8. Mutation coverage on CruiseControl

Fig. 9. Difference in killed mutants for CruiseControl

of polymorphism had nearly no effect on the results in the case of CruiseCon-
trol. This is also confirmed by Figure 8a. This Figure shows that the percentage
of classes with improved mutation coverage is 9% compared to 6% for classes
with worsened mutation coverage. Also, almost all of the classes have the same
mutation coverage as before; and only one class has a significantly better cover-
age than before. On the other hand, the quality of the whole test suite remains
similar to the previous experiment when 80% of classes have the exact same
mutation coverage as running the whole test suite as can be seen in Figure 8b.

Figure 9 reports the difference in number of killed mutants in the two exper-
iments for each class by the total number of mutants generated. As we can see
the quality of the test suites remain the same with few exceptions. Meanwhile,
those classes with worsened coverage have only slightly less mutation coverage
than in the previous experiment.

RQ. Does considering polymorphism improve the quality of the reduced test
suite in any realistic situation?

Change-Based Test Suite Reduction 177

In a realistic situation the effect of the addition of polymorphism to the test
selection must be considered case-by-case. In the case of PMD, the project’s
heavy reliance on polymorphic structures means that the results for the mutation
coverage have improved greatly by considering this concept. However, there are
a lot of tests that are not being selected for different reasons. For example, PMD
uses XML files as input for rule-based tests. This kind of tests do not result
in any invocations, and therefore are not detected and selected by ChEOPSJ.
As a consequence, the results are less than optimal, considering the fact that
such tests are a huge part of the whole test suite. In the case of CruiseControl,
the effects on the mutation coverage are minimal. This is due to two reasons:
(i) the project does not use polymorphism extensively, and (ii) in the original
experiment the mutation coverage was already good [18].

PMD CruiseControl

Fig. 10. Comparison of reduced test suite size between previous and current experi-
ments for CruiseControl and PMD

For PMD and CruiseControl, we compute the test size reduction as the per-
centage of test classes in the selected subset against the number of test classes
in the entire test suite (Figure 10). In both cases, we observe that the size of
the reduced test suite is much larger when the polymorphism is considered. This
means that there is a trade-off between size reduction and considering poly-
morphism. The size of this trade-off is determined on a case-by-case basis. For
example, in the case of PMD, the reduced test suite is still good enough to be
useful in a realistic situation. However, in CruiseControl the reduction in size
may not be enough to promote the adoption of polymorphism.

As conclusion, to improve the quality of test selection, the adoption of poly-
morphism should be provided as an option. However, if the developer does not
have enough knowledge of software characteristics, a workaround would be the
creation of a heuristic function that detects the reliance of the software system
on polymorphism.

5 Threats to Validity

In this section we present the threats to validity of our study according to the
guidelines reported in [20].

178 A. Parsai et al.

Threats to internal validity concern confounding factors that can influence the
obtained results. In this study we used the code base of ChEOPSJ which does
not include constructor invocations. As a consequence we may erroneously miss
relevant tests. We could fix this problem incorporating these language constructs
in the change model of ChEOPSJ.

Threats to construct validity focus on how accurately the observations de-
scribe the phenomena of interest. For our experiment, the elements of interest
are (1) the test suite reduction and (2) the number of missing faults due to not-
retested code. We measure the first one as the ratio between number test classes
in the reduced test suite versus the complete test suite. The second one is com-
puted as the number of mutants killed. Both approaches are used in literature
for the same purpose [18]. However, other methods are suitable for evaluating
the test suite reduction and number of missing faults.

Threats to external validity correspond to the generalizability of our experi-
mental results. We use the projects CruiseControl and PMD. Even if both sys-
tems are sufficiently different, yet more projects are necessary to generalize our
findings.

Threats to reliability validity correspond to the degree to which the result
dependent on the used tools. To implement the algorithm we use the base-
line offered by ChEOPSJ (which relies on Eclipse’s internal Java mode) and
ChangeDistiller. Both systems are reliable and used to perform research stud-
ies [8,18]. For the mutation testing we used PIT. This system is actively being
developed and improved and can be considered reliable.

6 Related Work

Regression testing aims to test code changes to ensure that the correct behavior
of the system is preserved [14]. In this context, test suite reduction is crucial in
continuous integration environments or test-driven development [2,9], namely
whenever software development has frequent re-testing activities. Regression
testing is also useful during code refactoring since refactoring may reverberate
on the test suite [10,19].

Test suite reduction is an active research field [6,7]. It mainly focuses on
evaluating the trade-offs between executing a subset of tests and the risk of
missing some faults sneaked into not-retested code sections. The test selection
problem has been handled in many different manners. In the context of static
approaches, common used heuristics are naming conventions, fixture element
types, static call graph, lexical analysis, co-evolution [13]. Nevertheless, none of
previous approaches handle shortcomings related to code polymorphism. In this
work, we explore this aspect evaluating how test suite reduction algorithms may
be adapted to deal with invocations of polymorphic methods, abstract methods
and methods declared in interfaces.

Integration of the testing activity within the IDE environment is critically
important to achieve a “continuous testing” system [16]. Moreover, providing
ad-hoc plugins for test selection is already common in academic research

Change-Based Test Suite Reduction 179

(e.g. TestNForce [11]) or among commercial vendors (e.g. Visual Studio’s Test
Impact Analysis). The second author embedded a test selection algorithms within
the Eclipse’s plugin and performed few empirical studies to show its perfor-
mances [17,18]. In this work, we extended this plugin to make it able to deal
with polymorphism.

7 Conclusion

We replicated an experiment that we did in [18] to analyzes the effects of poly-
morphism for test suite reduction using a change-based model.

Our goal was to answer the research question:

RQ. Does considering polymorphism improve the quality of the reduced test suite
in a realistic situation?

Our results show that polymorphism may have different relevance on PMD
and CruiseControl from the point of view of mutation coverage analysis and test
suite reduction.

In PMD, one third of the classes had an improved mutation coverage. Relevant
tests were found for more classes than before with the same statistical probability
for killing mutants. Overall, a 4% increase in the rate of total killed mutants is
observed. Having the possibility to retrieve rule-based tests, our results would
probably be better.

On the other hand, for CruiseControl the differences between the two ex-
periments were minimal. This can be attributed to the fact that PMD uses
polymorphism in the code extensively and there are some abstract core enti-
ties which are used throughout the whole project. The use of polymorphism in
CruiseControl is limited and therefore the effects of considering polymorphism
would remain minimal.

From the point of view of the test suite reduction the introduction of poly-
morphism increases the size of the test suite. This is a normal trade-off we have
to accept if we increase the number of potential relevant tests of our suite. A pos-
sible workaround would be to determine the level of adaption of polymorphism
in the project and then decide if it is valuable to include it during test suite
reduction. As such the adoption of polymorphism in the test selection process
should be provided as an optional feature for the developers to choose from.

Contributions. We made the following contributions:

– We improved our tool prototype ChEOPSJ to incorporate polymorphism.
– Using this improved platform we replicated a previous experiment and con-

firmed our previous findings.
– Finally, we found that there is a tradeoff between the accuracy of our ap-

proach and the size of the reduced test suite.

Future Work. We will improve the support of common architectural design
concepts that are used widely in software systems. We will focus on test gener-
ation techniques that use XML specifications and polymorphic tests which use
the same abstract entities to provide many tests.

180 A. Parsai et al.

Additionally we will perform more replications in an industrial setting. Will
developers be more inclined to run their developer tests more frequently with
test selection enabled? Will this result in fewer (regression) faults later in the life-
cycle? This to assess the real significance of test selection in a realistic scenario.

Acknowledgments. This work is sponsored by the Institute for the Promotion
of Innovation through Science and Technology in Flanders through a project entitled
Change-centric Quality Assurance (CHAQ) with number 120028.

References

1. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for
testing experiments (software testing). In: Proceedings of the 27th International
Conference on Software Engineering, ICSE 2005, pp. 402–411 (2005)

2. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (2002)

3. Booch, G.: Object Oriented Analysis and Design with Application. Pearson Edu-
cation India (2006)

4. Dasso, A., Funes, A.: Verification, Validation And Testing in Software Engineering.
Idea Group Publishing (2007)

5. Demeyer, S., Tichelaar, S., Steyaert, P.: FAMIX 2.0 - The FAMOOS information
exchange model. Technical report, University of Berne (1999)

6. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Journal Information and Software Technology 52(1), 14–30
(2010)

7. Engström, E., Skoglund, M., Runeson, P.: Empirical evaluations of regression test
selection techniques: A systematic review. In: Proceedings of the Second ACM-
IEEE International Symposium on Empirical Software Engineering and Measure-
ment, ESEM 2008, pp. 22–31. ACM, New York (2008)

8. Fluri, B., Wuersch, M., PInzger, M., Gall, H.: Change distilling: Tree differencing
for fine-grained source code change extraction. IEEE Transactions on Software
Engineering 33(11), 725–743 (2007)

9. Fowler, M.: Continuous integration. Technical report (May 2006),
http://www.martinfowler.com/

10. Hayes, J.H., Dekhtyar, A., Janzen, D.S.: Towards traceable test-driven develop-
ment. In: Proceedings of the 2009 ICSE Workshop on Traceability in Emerging
Forms of Software Engineering, TEFSE 200, pp. 26–30. IEEE Computer Society,
Washington, DC (2009)

11. Hurdugaci, V., Zaidman, A.: Aiding software developers to maintain developer
tests. In: Proceedings of the 2012 16th European Conference on Software Mainte-
nance and Reengineering, CSMR 2012, pp. 11–20. IEEE Computer Society, Wash-
ington, DC (2012)

12. McGregor, J.D.: Test early, test often (2007)
13. Van Rompaey, B., Demeyer, S.: Establishing traceability links between unit test

cases and units under test. In: Proceedings of the 2009 European Conference on
Software Maintenance and Reengineering, CSMR 2009, pp. 209–218. IEEE Com-
puter Society, Washington, DC (2009)

14. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE
Transactions on Software Engineering 22(8), 529–551 (1996)

http://www.martinfowler.com/

Change-Based Test Suite Reduction 181

15. Runeson, P.: A survey of unit testing practices. IEEE Software 23(4), 22–29 (2006)
16. Saff, D., Ernst, M.D.: An experimental evaluation of continuous testing during

development. In: ISSTA 2004, Proceedings of the 2004 International Symposium
on Software Testing and Analysis, Boston, MA, USA, July 12-14, pp. 76–85 (2004)

17. Soetens, Q.D., Demeyer, S.: Cheopsj: Change-based test optimization. In: Proceed-
ings of the 16th European Conference on Software Maintenance and Reengineering
(CSMR), pp. 535–538 (March 2012)

18. Soetens, Q.D., Demeyer, S., Zaidman, A.: Change-based test selection in the pres-
ence of developer tests. In: Proceedings of the 17th European Conference on Soft-
ware Maintenance and Reengineering (CSMR), pp. 101–110 (March 2013)

19. van Deursen, A., Moonen, L.: The video store revisited – thoughts on refactoring
and testing. In: Proceedings of the Int’l Conf. eXtreme Programming and Flexible
Processes in Software Engineering (XP), Sardinia, Italy, pp. 71–76 (2002)

20. Yin, R.K.: Case Study Research: Design and Methods. Applied Social Research
Methods. SAGE Publications (2003)

21. Zaidman, A., Rompaey, B., Deursen, A., Demeyer, S.: Studying the co-evolution
of production and test code in open source and industrial developer test processes
through repository mining. Empirical Software Engineering 16(3), 325–364 (2011)

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 182–192, 2014.
© Springer International Publishing Switzerland 2014

Effort Estimation in Agile Global
Software Development Context

Ricardo Britto, Muhammad Usman, and Emilia Mendes

Department of Software Engineering, Faculty of Computing,
Blekinge Institute of Technology, 371 79, Karlskrona, Sweden

{ricardo.britto,muhammad.usman,emilia.mendes}@bth.se

Abstract. Both Agile Software Development (ASD) and Global Software
Development (GSD) are 21st century trends in the software industry. Many
studies are reported in the literature wherein software companies have applied
an agile method or practice GSD. Given that effort estimation plays a
remarkable role in software project management, how do companies perform
effort estimation when they use agile method in a GSD context? Based on two
effort estimation Systematic Literature Reviews (SLR) - one in within the ASD
context and the other in a GSD context, this paper reports a study in which we
combined the results of these SLRs to report the state of the art of effort
estimation in agile global software development (ASD) context.

Keywords: Agile Software Development, Global Software Development,
Effort Estimation.

1 Introduction

The software industry is greatly impacted by globalization of world economies in 21st
century. Software companies are increasingly engaging themselves in Global
Software Development (GSD) in order to gain benefits such as cost savings, access to
global resource pool, round the clock development [1]. Due to temporal, cultural and
geographical boundaries, GSD also poses some challenges e.g. communication and
coordination issues, project management, knowledge management [1]. In parallel
with the GSD trend, software industry is also shifting to agile methods during last ten
years or so. ASD [2] and GSD are 21st century trends in software industry. Studies
have been conducted to investigate the adoption of agile methods and practices in
GSD context, also called by Agile Global Software Development (AGSD) [3].

Jalali et al. [4] conducted a systematic literature review in order to find the state of
the art of applying agile methods and practices in GSD context. In this SLR both
inshore and offshore-distributed development settings were considered. The authors
found that most of the existing literature consists of industrial experience reports. The
authors also identified the most used agile practices in the context of GSD.

Hossain et al. [5] performed a systematic literature review that identified
challenges and risk factors related to the use of Scrum practices in globally distributed
projects. Strategies and practices to deal with the identified challenges and risk factors

 Effort Estimation in Agile Global Software Development Context 183

were also investigated. The authors found out that in order to be applied in a global
context, Scrum practices must be adapted to deal with the additional difficulties
regarding communication, coordination and collaboration processes in a globally
distributed software project.

Project management is an important task in both agile and global software
development contexts. Estimation is at the core of efficient project management as it
guides the formulation, execution and adjustment of project plans. It is important to
see what software estimation techniques or predictors or metrics have been used with
agile methods when they are applied in GSD context i.e. Agile Global Software
Development (AGSD). To date, no work has tried to aggregate the evidence regarding
effort estimation in the context of AGSD. The aim of this paper is to report the state
of the art on effort estimation in AGSD. Rest of the paper is organized as follows:
Section 2 describes the research methodology; results are presented in Section 3,;
Section 4 states the validity threats and conclusion is described in Section 5.

2 Methodology

As previously mentioned, to carry out this study we combined the outcomes of two
systematic literature reviews performed by the authors of this paper ([6], [7]). So, in
this section we explain the methodology used to conduct this study.

2.1 Research Questions

The research questions of the two SLRs were combined in order to guide this work.
They are as follows:

• Question 1 - What methods/techniques have been used to estimate effort

in AGSD?
o 1a - What metrics have been used to measure the accuracy of

effort estimation methods/techniques in AGSD projects?
o 1b - What are the accuracy levels for the observed estimation

methods?
• Question 2 - What effort predictors (cost drivers/size metrics) have been

used to estimate effort in AGSD?
• Question 3 - What are the characteristics of the datasets used for effort

estimation in AGSD?
o 3a - What are the domains represented in the dataset

(academia/industry projects)?
o 3b - What are the types represented in the dataset (single-

company/cross-company)?
o 3c - What are the application types represented in the dataset

(web-based/traditional)?
• Question 4 - Which software development phases were considered during

effort estimation process?

184 R. Britto, M. Usman, and E. Mendes

• Question 5 – What sourcing strategies (offshore outsourcing/offshore
insourcing) are used?

o 5a - Which countries involved?
o 5b - How many sites are involved?

• Question 6 – Which agile methods have been used?

2.2 Study Selection and Data Extraction

Both SLRs ([6], [7]) have used same databases/search engines for applying the search
strings. These databases/search engines were:

1. Scopus.
2. IEEExplore.
3. ACM Digital Library.
4. ScienceDirect.
5. Compendex.
6. Inspec.
7. Web of Science.

Both SLRs have similar inclusion exclusion criteria with the only difference being
that one was about agile and other was about global software development. The study
selection process was applied in two phases. In the first phase, the inclusion and
exclusion criteria were applied on titles and abstracts and in the second phase the
criteria were applied on the papers’ full text. The final lists of each SLR have
respectively 5 papers [6] and 20 papers (25 studies) [7]. From these final lists we
selected for this study those papers that:

1. Have investigated effort estimation methods or size metrics or accuracy
metrics or cost drivers and

2. Have used an agile method as software development process and
3. Are carried out in a GSD context.

The application of above criteria resulted in the selection of four papers from Britto

et al. [6], identified as G1 [8], G2 [9], G3 [10] and G4 [11] each reporting a single
study; and one paper [12] from Usman et al. [7] reporting results from four projects
identified as A1a to A1d. Therefore this study includes a total of 5 papers reporting 8
projects.

Most of the required data were available from the data extraction steps of two
SLRs to carry out the study. However, since the questions 5, 5a, 5c and 5b were
considered just for Britto et al. [6] and question 6 was considered only for Usman et
al. [7] we had to extract the remaining data from the selected papers, in order to
address all research questions.

3 Results and Discussion

In this section, first we provide a brief description, contexts and settings of the
included primary studies. Later, results for each of the research questions are
described and discussed.

 Effort Estimation in Agile Global Software Development Context 185

3.1 Study Summaries

Study G1 reports a survey that was conducted to understand the state of the practice
of effort estimation in GSD projects. Survey was applied in a large multinational IT
organization that has operations in countries like USA, Brazil, India etc. The software
development in this organization is performed using both onshore and offshore
insourcing strategies. Out of a total of 3595 employees, 551 answered the survey.
Study describes that the organization uses both agile and plan-driven development
processes but it does not describe the name of the agile method followed in the
organization. It was concluded in this study that the teams do not have a clear
criterion to select a suitable effort estimation technique in a given context.

Study G2 reports a case study that was conducted at ABB1 group of companies to
understand the factors that impact the management of GSD projects. Seven projects
(six at ABB and one at another company) were included in this case study wherein all
projects were carried out in a single company setting i.e. offshore insourcing. Study
describes that three out of seven projects applied an agile method but it does not
specify the name of the agile method used. It also does not describe the development
method used in other four projects. Data collection was performed by means of
interviews (31 participants) and an online questionnaire (40 participants) wherein
participants were from different ABB sites across the globe. The study identified
number of factors (cost drivers) for GSD projects and mechanisms to mitigate the risk
related to each identified factor.

Study G3 also reports a case study that was conducted at three different Indian
software companies, which work in development of financial service, retail,
manufacturing and telecommunication software systems. These software companies
apply the offshore insourcing strategy for distributed development. Participatory
action research approach was applied to collect the data from these three companies.
It involved 75 brainstorming sessions with study participants that lead to the
identification of several cost drivers. It is interesting to note that this study considered
process model (agile or otherwise) as a cost driver. Applying the identified cost
drivers, case base reasoning approach was used to estimate the effort of 219 projects.
The study analyzed the impact of “the knowledge about client”, “the work dispersion
across sites” and “the understanding of technology” on the development effort. The
authors compared their customized case based reasoning approach with standard
regression based approach for estimation and found that case based reasoning
approach performed better than regression for the studied projects. It is important to
note that the study does not describe the exact development process applied.

Study G4 reports a qualitative study in which authors proposed a formal model for
task allocation and effort estimation in GSD. The model includes the estimation
technique and cost drivers. However, the authors only validated the cost drivers by
means of semi-structured interviews with four project managers that lead to the better
understanding of the identified cost drivers. Process model (agile or plan-driven) is
one of cost drivers that impact the development effort. Since the proposed estimation
technique was not validated, we did not include it in our analysis. It is important to

1 ABB is a leading company in power and automation sector (www.abb.com).

186 R. Britto, M. Usman, and E. Mendes

note that the study does not clearly describe the sourcing strategy and exact
development process applied.

Study A1 reports a case study consisting of four projects to investigate effort
estimation for testing phase in an agile software development context. Study
presented a customized version of use case points estimation method for estimating
testing effort only. A1 was performed in an offshore outsourcing context wherein
Scrum was applied as the development method. The authors found that the new
method (modified use case points method) was more accurate than the expert
judgment and the original use case points method.

The details from these summarized studies are described in the following
subsections.

3.2 Estimation Methods

Table 1 lists the estimation methods used in an AGSD context, showing that the
methods used the most were expert judgment, use case points (UCP), planning poker
and Delphi. Note that the use case point method is used differently – in one paper it
was used to size the application and in another to estimate the testing effort. We also
note that some of these ‘effort estimation’ methods are in fact size metrics, which are
used in combination with some sort of productivity metrics, or cost per hour measure,
to obtain the effort/cost relating to an application. Traditional algorithmic models
such as COCOMO were not identified in any of the AGSD studies.

Table 1. Identified effort estimation methods

Estimation method Study ID

Case-based reasoning G3
Planning poker G1
Function point count G1
Use case point count G1, A1a to A1d

Use case point test effort estimation model A1a to A1d
Expert judgment G1, A1a to A1d
Delphi G1
No estimation approach G2, G4

3.3 Accuracy Metrics and Levels

Table 2 lists the accuracy metrics used in the selected papers and projects therein.
Three studies (G1, G2, G3) did not report usage of any accuracy metric. Two papers
(A1, G3) have used the magnitude of relative error (MRE) or its variation to assess
the estimation accuracy of their techniques. Only one study (G3) has used multiple
metrics (MMRE, MdMRE and Pred(25)).

 Effort Estimation in Agile Global Software Development Context 187

Table 2. Identified accuracy metrics

Accuracy metric Study ID

MMRE G3
MdMRE G3
Pred(25) G3

MRE A1a to A1d
No accuracy metrics G1, G2, G4

Only two papers (G3, A1) reported accuracy levels related to the estimation

techniques being investigated. These values are reported in Table 3, where we can
also see that case base reasoning and UC point test effort estimation model present
good accuracy values [13]. MRE values for UCP method, for all four projects in study
A1, are also below 25%.

Table 3. Identified accuracy levels

Estimation method Study ID Accuracy (%)
Case-based reasoning G3 MMRE: 15.99 MdMRE: 11.67

Pred(25): 84.12
Use case point test
effort estimation model

A1 Project1 – MRE:11; Project2 – MRE:2;
Project3 – MRE:3; Project4 – MRE:6.

Expert judgment A1 Project1 – MRE:32; Project2 – MRE:30;
Project3 – MRE:8; Project4 – MRE:21.

Use case point A1 Project1 – MRE:21; Project2 – MRE:20;
Project3 – MRE:21; Project4 – MRE:10.

3.4 Cost Drivers and Size Metrics

Table 4 lists the cost drivers that were identified from the primary studies. Time,
language and cultural differences are the most frequently reported cost drivers in an
AGSD context. When we move from collocated development to GSD, global barriers,
e.g. temporal, geographical and cultural, arise as fundamental challenges. These
global challenges make communication and coordination tasks more difficult which
in turn impacts all development activities (e.g. RE, estimation etc.) [1].

In addition, the process model is also reported by two studies as a cost driver. This
may be due to the fact that papers in this study are applying or investigating the
applicability of a different process model, e.g. agile methods, in a GSD context.

The size metrics identified in the five primary studies are listed in Table 5.
Function points, LOC and UC points are used in two papers. Overall, point-based size
metrics (function or UC or story points) were used in three out of five studies.

188 R. Britto, M. Usman, and E. Mendes

Table 4. Identified cost drivers

Cost driver Study ID
Time zone G2, G3, G4
Language and cultural differences G2, G3, G4
Process model G3, G4
Communication G4
Competence level G2
Requirements legibility G2
Process compliance G2
Communication infrastructure G2
Communication process G2
Work dispersion G3
Range of parallel-sequential work handover G3
Client-specific knowledge G3
Client involvement G3
Design and technology newness G3
Team size G3
Project effort G3
Development productivity G3
Defect density G3
Rework G3
Reuse G3
Project management effort G3
Travel G4
Tester efficiency factor A1
Tester risk factor A1

Table 5. Identified size metrics

Size metric Study ID

Function points G1, G4
Lines of code G3, G4

Use case points G1, A1
Story points G1

No size metric used G2

3.5 Dataset Domain and Type

All primary studies used industrial datasets to evaluate the estimation methods. This is
viewed as a positive sign given that the use of industrial datasets may increase the
external validity of the results.

Another issue attached with the use of a dataset is the dataset type, which could be
single company or cross company dataset. Three papers (G2, G3 and A1) used single
company datasets, while two did not state the type of their datasets.

 Effort Estimation in Agile Global Software Development Context 189

Table 6. Identified dataset domains

Domain Study ID

Industry G1, G2, G3, G4, A1
Academia none

Table 7. Identified dataset types

Type Study ID

Single-company G2, G3, A1
Not stated G1, G4

3.6 Application Type

Application type is only documented in one primary study (A1). In A1, two projects
were Web-based systems while the other two were mobile applications.

Table 8. Identified application types

Type Study ID

Web-based A1a, A1c
Mobile A1b, A1d

Not stated G1, G2, G3, G4

3.7 Sourcing Strategies and Countries

Three primary studies reported studies (G1, G2, G3) that are conducted in offshore
insourcing environments, i.e. same company had multiple development sites in
different parts of the world. Only one paper reports projects that are conducted in
offshore outsourcing arrangements, i.e. the multiple sites involved in GSD project
belong to different companies. Table 9 lists the sourcing strategies identified in the
five selected papers.

Table 9. Identified sourcing strategies

Sourcing strategy Study ID

Offshore insourcing G1, G2, G3
Offshore outsourcing A1

Not stated G4

Three studies did not report the number of countries (or sites) involved in GSD
projects. GSD projects in Study G1 and G2 were considerably complex as they
included seven and ten countries respectively.

190 R. Britto, M. Usman, and E. Mendes

Table 10. Identified number of involved countries

Number Study ID

7 G2
10 G1

Not stated G3, G4, A1

Three studies did not state the name of the countries where development sites
were located, while USA, China and India were reported by two studies.
Additionally, primary study G1 reported UK, Malaysia, Japan, Taiwan, Ireland,
Brazil and Slovak Republic. Finally, primary study G2 reported Finland, Germany,
Norway and Sweden.

Table 11. Identified countries

Name Study ID
USA G1, G2
China G1, G2
India G1, G2

Not stated G3, G4, A1

3.8 Development Phase

Which software development phase or activity is being estimated is also an important
concern. Four out of five selected papers did not state the development phase or
activity being estimated. One possible explanation for not stating the development
phase could be that all development activities are being estimated. Only one paper
(A1) clearly states that testing effort is being estimated. Table 12 provides the
breakdown for this facet.

Table 12. Considered phases in the effort estimation process

Phase Study ID

Requirements none
Design none
Coding none
Testing A1

Transition none
Not stated G1, G2, G3, G4

3.9 Agile Method

Another important facet is to see what agile methods are being investigated in
estimation studies in AGSD context. Table 13 gives the breakup of studies with
respect to the agile method used. Only one paper (A1) states the agile method used

 Effort Estimation in Agile Global Software Development Context 191

(Scrum in this case) in its projects. Other studies only mention that they are using
agile software development but did not specify the exact method. We are not sure
why a study would only state that they are following an agile software development
without disclosing the exact method used.

It is also interesting to note that two primary studies (G3, G4) considered the usage
of agile method as a cost driver. However, those studies did not explain the impact on
the effort estimation process of the usage of agile methods.

Table 13. Identified agile methodologies

Agile methodology Study ID

Scrum A1
Not stated G1, G2, G3, G4

4 Threats to Validity

We believe that the main threat to the validity of this work is related to the coverage
of the available literature on effort estimation in agile global software development.
We applied very comprehensive search strategies in both SLRs, which were used as
basis for this work. However, Britto et al. [6] just considered effort estimation in GSD
context and Usman et al. [7] just looked at effort estimation in the ASD context.

Another possible threat relates to the external validity of our findings. As we only
have five papers (8 projects) in this study, it is not reasonable to generalize our
findings outside the context of the projects that were presented herein. Nevertheless,
given the number of companies embarking on GSD and agile practices, we refrain
from taking the stance that companies may not combine both approaches; rather, we
believe that such results may suggest the need for researchers to amplify the number
of studies within the context of AGSD, so we can understand much better not only
effort estimation but also other aspects relating to software development and
management under such context.

5 Conclusions

This paper presents a study on effort estimation in AGSD by combining the results
from two SLRs respectively on effort estimation in agile contexts and effort
estimation in global software development contexts. Five papers, from the list of
primary studies of both SLRs, fulfilled AGSD criteria set up for this study.

We found that most of the studies did not document some aspects such as the agile
method applied, the GSD strategy used, the number of development sites, the
countries involved, and the development phase being estimated. Methods such as
expert judgment are used in multiple studies. Global barriers of time and culture are
the most frequently reported cost drivers in an AGSD context.

192 R. Britto, M. Usman, and E. Mendes

It is interesting to note a positive pattern, where all studies used industrial data sets
to validate the estimation techniques. Offshore insourcing is the most frequently used
GSD strategy in effort estimation studies in AGSD context.

Acknowledgments. We would like to thank CNPq and INES, for partially supporting
this work.

References

1. Herbsleb, J., Moitra, D.: Global software development. IEEE Softw. 18, 16–20 (2001)
2. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall (2001)
3. Kamaruddin, N., Arshad, K., Mohamed, N.H., Chaos, A.: issues on communication in

agile global software development. In: Proceedings of IEEE Business, Engineering and
Industrial Applications Colloquium, BEIAC 2012, pp. 394–398 (2012)

4. Jalali, S., Wohlin, C.: Global software engineering and agile practices: A systematic
review. J. Softw. Evol. Process. 24, 643–659 (2012)

5. Hossain, E., Ali Babar, M., Paik, H.-Y.: Using scrum in global software development: A
systematic literature review. In: Proceedings of 4th IEEE International Conference on
Global Software Engineering, ICGSE 2009, Limerick, Ireland, pp. 175–184 (2009)

6. Britto, R., Freitas, V., Mendes, E., Usman, M.: Effort Estimation in Global Software
Development: A Systematic Literature Review. In: Proceedings of 9th IEEE International
Conference on Global Software Engineering, ICGSE 2014, Shanghai, China (2014)

7. Usman, M., Mendes, E., Weidt, F., Britto, R.: Effort Estimation in Agile Software
Development: A Systematic Literature Review. In: Proceedings of 10th International
Conference on Predictive Models in Software Engineering, PROMISE 2014, Turin, Italy,
pp. 82–91 (2014)

8. Peixoto, C.E.L., Audy, J.L.N., Prikladnicki, R.: Effort Estimation in Global Software
Development Projects: Preliminary Results from a Survey. In: Proceedings of 5th IEEE
International Conference on Global Software Engineering, ICGSE 2010, pp. 123–127.
IEEE, Princeton (2010)

9. Björndal, P., Smiley, K., Mohapatra, P.: Global Software Project Management: A Case
Study. In: Nordio, M., Joseph, M., Meyer, B., Terekhov, A. (eds.) SEAFOOD 2010.
LNBIP, vol. 54, pp. 64–70. Springer, Heidelberg (2010)

10. Ramasubbu, N., Balan, R.K.: Overcoming the challenges in cost estimation for distributed
software projects. In: Proceedings of 34th International Conference on Software
Engineering, ICSE 2012, pp. 91–101. IEEE, Zurich (2012)

11. Narendra, N.C., Ponnalagu, K., Zhou, N., Gifford, W.M.: Towards a Formal Model for
Optimal Task-Site Allocation and Effort Estimation in Global Software Development. In:
Proceedings of 2012 Service Research and Innovation Institute Global Conference, pp.
470–477. IEEE, California (2012)

12. Parvez, A.W.M.M.: Efficiency factor and risk factor based user case point test effort
estimation model compatible with agile software development. In: Proceedings of the
International Conference on Information Technology and Electrical Engineering, ICITEE
2013, Yogyakarta, Indonesia, pp. 113–118 (2013)

13. Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Models.
Benjamin-Cummings Publishing (1986)

T. Dingsøyr et al. (Eds.): XP 2014 Workshops, LNBIP 199, pp. 193–208, 2014.
© Springer International Publishing Switzerland 2014

Early Software Project Estimation the Six Sigma Way

Thomas Michael Fehlmann1 and Eberhard Kranich2

1 Euro Project Office AG, Zurich
8032 Zürich, Switzerland

thomas.fehlmann@e-p-o.com
2 Euro Project Office, Duisburg

47051 Duisburg, Germany
eberhard.kranich@e-p-o.com

Abstract. The Buglione-Trudel matrix is a tool that provides agile teams with
immediate feedback whether their priorities meet customer needs. Functional
size measurement yields a transfer function mapping user stories to Functional
User Requirements (FUR), and business impact of non-functional requirements
yield another transfer function mapping the same user stories onto customer’s
Business Drivers.

Normally, transfer functions in Six Sigma are based on measurements;
however, they can be predicted with the Quality Function Deployment (QFD)
method, applicable early in the project life cycle and based on expert’s
estimation rather than measurements. The Convergence Gap indicates
prediction accuracy. These tools allow early project estimation by predicting
what agile teams likely will identify as additional requirements for the customer
during the sprints, based on his values and business drivers. Precondition is that
business drivers and an initial set of customer’s FUR are known when
estimating the project.

As an added benefit, the method allows mapping story points to functional
size and in a second step, to effort, based on benchmarking data,.

Keywords: Lean Six Sigma, Agile Software Development, Functional Sizing,
Story Points, Project Estimation, Transfer Functions, Software Benchmarking.

1 Why Is Software Project Estimation So Difficult?

Today’s lean and agile software developers use Story Points to predict the effort
required for implementation, and plan sprints. Agile development methods outperform
older approaches because they embrace requirements elicitation. Developing software
is a knowledge acquisition process. However, it is hard to predict how long such a
knowledge acquisition process will last, and what its cost will be.

Nevertheless, the need for software increases and Information & Communication
Technology (ICT) has become essential for all but very few industries. Thus, getting
reliable predictions what software will cost at the end is mission-critical for many
organizations. Agile methodologies have but limited ways answering this challenging
question.

194 Th.M. Fehlmann and E. Kranich

1.1 The Difficulty with Applying Traditional Estimation Approaches to Agile

Traditionally, estimators use either macro or micro estimation approaches. Macro
estimations rely on historical benchmarking data such as the ISBSG database [1].
Parametric tools such as Galorath or QSM allow fitting historical data to today’s
projects. Micro estimation try to identify all tasks needed to get the work done in a
Work Breakdown Structure (WBS), size them, estimate the effort, and then add risk
avoidance, mitigation and retention tasks as needed. In either case, functional size
measurement provides the base for any decent estimation method; see the AACE
International Recommended Practice No. 74R-13 [2].

The family of international risk management standards ISO/IEC 31000 defines risk
as the “effect of uncertainty on objectives” [3], thus causing the word "risk" to refer to
positive possibilities as well as negative ones. Project managers add the cost of the
selected risk reduction strategies and risk contingency to the project budget to cope
with risk exposure, for instance following the recommended practice [4]. Usually
such an approach works well if the domain is sufficiently well known and the project
scope known in advance.

However, in most software projects, requirements elicitation is part of the project,
and requirements change while performing the project. The amount of change is
unknown in advance and difficult to predict using risk management techniques.
Attempts to identify cost drivers for ICT projects are promising [5]; however, predicting
or even measuring cost drivers is hard and requires sophisticated techniques [6].

1.2 Effort Prediction in Agile Methodologies

If there is no plan, there cannot be an estimate for the planned project. However, from
Cohn [7] the agile community learned how to deal with the uncertainty of projects
without help of a plan. The basic learnings are that a) how to use story points to
predict effort for a Story Card, or work item, in a sprint, and b) that ideal size and
effort are somewhat orthogonal, and not to be confounded. The driver for setting
priorities and story card selection should be the value created for the customer. In
Scrum, it is the task of the sponsor to decide what value creation means. Throughout
this paper, story card refers always to a work item that fits into one single sprint. User
stories might split into more than one story card, if they do not fit into one sprint.

Agile masterminds like Cohn [7] spread the idea that focusing on customer needs
and business value avoids producing waste; however, reality is that project sponsors
often find it difficult identifying value. New research (Bakalova [8]) has shown that
identifying value creation in agile projects is not as easy or straightforward as it might
appear. While values remain stable, the value creation process changes over the
lifetime of a project. That makes prediction of total effort even harder. For instance,
the value of being able to move physically remains equally high over time. However,
it depends on the means deemed suitable, how such value is created: Horse carriages
in the 19th century, cars and planes in the 20th and high-speed trains for the 21st.
Software projects face the same kind of technical evolution; however, in years not
centuries.

 Early Software Project Estimation the Six Sigma Way 195

Combining effort prediction methods with measuring business value or customer
needs thus becomes interesting. Six Sigma has a long experience in uncovering and
measuring customer needs, even hidden needs and requirements not (yet) consciously
expressed and outspoken by customers. The Quality Function Deployment (QFD)
discipline is the tool of choice in the Six Sigma toolbox for defining market strategy,
for product management and improvement, requirements elicitation, and other aspects
of customer orientation [9]. QFD was developed as a method for product development
by Yōji Akao and Shigeru Mizuno more than 30 years ago, see e.g., [9], [10], [11].

2 Voice of the Customer (VoC)

For QFD, many techniques exist, among them “Gemba” and NPS Surveys. These two
VoC techniques are most relevant for agile software development.

2.1 Go to the Gemba

Gemba, (現場 genba), is a Japanese term meaning "the real place". Gemba refers to
the place where value is created: the factory floor, the sales point or where the service
provider interacts directly with the customer [12]. For mobile apps, Gemba is the
street where people walk [13], or the metro where they stand, consulting their
smartphone. For traditional software, it might be some traditional office. According
Glenn Mazur, Gemba denotes the customer's place of business or lifestyle [14].

However, Gemba visits for services provided are not always possible and not
always available for assessing customer’s experiences. For such software, usability
tests have been widely accepted as a kind of Gemba visits, although testers usually
conduct tests in lab environments. They aim improving human interaction design.

2.2 Net Promoter® Score Surveys

Many opportunities for Gemba visits exist in the Big Data space: helpdesk tickets and
feedback from support interventions. Helpdesk tickets describe an unintended use of
some product or service, and thus contain a treasure of information for the supplier to
understand growth opportunities for future business. Analyzing the Ultimate Question
approach for surveys [15] introduced by Fred Reichheld is a standard QFD technique.
Net Promoter® is a registered trademark held by Satmetrix, Inc. and Fred Reichheld.
The authors of this paper explained the use of Six Sigma transfer functions for
uncovering customer needs using Net Promoter surveys in various papers, e.g., [16].

2.3 Business Drivers and Customer Needs

Result of the VoC analysis is a Priority Profile. A priority profile is a vector in the
space of topics that are of interest to the business, or customer. It shows the relative
priorities among the topics of interest; see the example Fig. 2. Profile for Helpdesk
Business Drivers.

196 Th.M. Fehlmann and E. Kranich

For software development, topics of interest can be functionality of software, or
other rather non-functional characteristics that contribute to the success of the
software product. The term customer needs often refers to functionality, whereas
business drivers has been introduced by Denney [17] to denote primarily non-
functional aspects needed to make a product successful. However, the distinction is
fluent: non-functional software requirements regularly become functional
requirements, when implemented, and account for a significant part of the so-called
scope creep that affects almost all software projects. The advantage of the agile
approach is the ability to cope with scope creep in a sensible way.

Functional Sizing

Es
tim

at
io

n
of

Im
pl

em
en

ta
tio

n
an

d
of

 C
ha

ng
e

Design – Development – Test
[Time-Boxed or Planned]

Tracking with Six Steps to Completion

Approved

Business Drivers
Customer’s Needs

ସݕ

6
3

= Story Card with strong impact on Business Driver
= Story Card with medium impact on Business Driver

1 = Story Card with weak impact on Business Driver
= Story Card with no impact on any specific Business Driver

Functional
Story Cards

Business
Drivers

Customer Value /
Achieved Response

1: Responsiveness ଵݕ
2: Be Compelling ଶݕ
4: Personalization

5: Competence ହݕ

User Stories

Story Cards

User Story
Priorities

Functional Size
(ISO/IEC 19761)

3: Friendliness ଷݕ

Helpdesk
Story

Customer
Story

Newcomer
Story

Social
Story

Certificate
Story

ଵݔ ସݔ ଶݔହݔ ଷݔ

࢟ ൌ ,ଵݕ ,ଶݕ ,ଷݕ ,ସݕ ࢞ହݕ ൌ ,ଵݔ ,ଶݔ ,ଷݔ ସݔ , ହݔ

Convergence Gap

0.07

Test Ready Draft Ready Review Done Finalized Functional

R
et

ro
sp

ec
tiv

e

Fig. 1. Business Drivers govern an ICT project from Estimation to Tracking to Completion

Fig. 1 shows an overview how customer needs and business drivers influence a
software development project. Business drivers tend to increase the project’s scope
during development life cycle, but also make some of the initially required
functionality obsolete.

3 Lean Six Sigma Software Development

Lean means avoiding waste. In software development, lean means identifying require-
ments and user stories that later will lose value well in time before the team
implements them. Agile alone is not good enough – if the team has no means
identifying sustainable business value, no protection against setting wrong priorities
exists.

 Early Software Project Estimation the Six Sigma Way 197

3.1 A Sample Agile Project

The sample project has been introduced by the authors in 2011 [18] in order to
explain how to use ISO/IEC 19761 COSMIC for sizing UML sequence diagrams. For
simplicity, we reuse this example again, this time for early effort estimation.

Assume a transportation company – railway or airline – wants to enhance their
helpdesk operations and make them fit for today's social media environment. To start
with, they consider the following five user stories for implementation:

• Helpdesk Story: As a helpdesk staff, I want to identify a client without having to
ask for the name or get credentials, regardless whether calling by phone, e-mail, or
by chat, such that I can charge service fees or ticket sold according the clients’
preferred payment method.

• Customer Story: As a registered customer of the travel company, I expect that the
helpdesk will recognize me based on the SIM card in my mobile phone, so I can
pay my travel with the payment method recorded in my user profile.

• Newcomer Story: As a non-registered customer, I want to be able to enroll me
quickly and easily with my credit card and my mobile phone such that I can use the
services of my travel service provider immediately.

• Social Story: As a socially committed person I would like to plan, book and amend
my travels on short notice, and cancel, at any time day or night maybe, in order to
be where I have just the most fun or best work to do.

• Certificate Story: As a user of e-mail on a computer, laptop, tablet or smartphone I
want to store my SIM certificate that I need for authentication in the usual
certificate store provided by my operating system, so that I can sign my e-mail
when contacting the helpdesk and identify myself as easily as when calling via
smartphone.

The user stories employ the Grant Rule format [19].

3.2 Business Drivers

Business drivers are non-functional requirements, stating customer’s values and needs
for running the business. Assume the transportation company has identified the
profile for customer’s values by a suitable method (e.g., Net Promoter® Score, see
[16]).

Business Drivers Topics
 Help Desk BD1 Responsiveness

BD2 Be Compelling
BD3 Friendliness
BD4 Personalization
BD5 Competence

Profile
0.33
0.51
0.43
0.55
0.38

Fig. 2. Profile for Helpdesk Business Drivers

The result is a goal profile for customer’s business drivers as shown in Fig. 2. It
shows that BD4: Personalization is a key issue for the transportation company, to

198 Th.M. Fehlmann and E. Kranich

make their helpdesk a competitive advantage. Thus, they need to know who is calling
– or contacting via e-Mail or chat – and what their customer’s travel plans are. The
caller travel plans they know from electronic bookings via web or mobile; for the
caller’s identity they need to investigate the Subscriber Identification Module
(SIM) card with the help of the issuer, the telecom company providing connectivity
on the go.

3.3 Kanban Approach

As usual, Kanban charts collect user stories – or epics – selected for implementation.
User stories might not yet be ready for implementation; they typically split into Story
Cards: work items that fit into one sprint. The team members move the story cards
through the various stages from vision to implemented functionality.

Approved
Test Ready Draft Ready Review Done Finalized Functional

Fig. 3. Six Steps to Completion

In Lean Six Sigma, the Definition of Done is slightly different from traditional
agile. First, in Six Sigma we always use the Test-Driven (TDD) approach; the first
step is creating unit tests to work out the idea. Next, drafts, reviews and executing
tests are in a separate column; most teams also use a separate column for the
finalization needed after review findings. The team has to approve story cards for
completion. These principles in Six Sigma for Software are known as Six Steps to
Completion [20]. The Kanban principles apply: team members must not have more
than one story card in the Draft Ready column at a time, working on one story card
only at a time.

3.4 Story Cards

User stories translate into a number of story cards. There are two different kind:

1. Story Cards that predominantly implement functionality
2. Story Cards that predominantly implement non-functional qualities

FUR implement customer needs. One FUR arises from the need to contact the SIM
card and authenticate with the issuer, the telecom service provider. The need to
authenticate callers in case additional payments are agreed requires more functionality
than usual. It is not enough to see the caller’s mobile number and to retrieve her or his
profile; to make sure the phone is not stolen, the issuer must approve the SIM card;
see Fig. 4.

 Early Software Project Estimation the Six Sigma Way 199

Fig. 4. Sample Functional Story Card

Story Card for Social Story Test is
Ready

Draft is
Ready

Review
Done

Final-
ized

Appro-
ved

Func-
tional

9 3
User Interface Design

5

Name:13

3 – Adagio Cantabile

Business Impact:

Functional Size:

Story Points:

Design User Interface for high usability
• Attractive design
• Ease of use
• Rely on recorded habits and preferences of customer
• Update behavior profile frequently

Sprint:

Regula

BD5: 1BD4: BD3: 6BD2: BD1:

User Interface
Remember User

Input
User Profile

1.// User Input

2.// Possible Preferences

3.// Propositions

4.// Confirm selection

5.// Update User Profile

Fig. 5. Sample Non-functional Story Card

Story cards record a task description as short as possible, the agile team assigns
story points and impact on business drivers; while functional size is automatically
counted with ISO/IEC 19761 COSMIC.

The team defines business impact as the contribution of some story card to one of
the business drivers. It might be zero, if the task is purely functional – a must-be task
– or if contribution is not specific to one of the business drivers identified (Fig. 2).
Other story cards might address the opposite: dedicated effort, often not including any
functionality. If the team detected additional FUR during the sprint, needed for
meeting business drivers of the customer, then they add it to the story card and to the
total functional size. Business impact is weighted, for instance with 1 to 6 points, to
distinguish between low and high impact. The team can agree on whatever scale.

3.5 The Kanban Chart

Six Steps to Completion steps yield burndown charts but also Kanban; see Fig. 6.
It organizes, assigns and tracks sprints with the development team.

The Waiting column consist of story cards that already have been sized and
estimated and are ready to be implemented, but are not yet included in the current
sprint. One sprint consists of the story cards in the five columns Test Ready until
Approved.

Story Card for Certificate Story Test is
Ready

Draft is
Ready

Review
Done

Final-
ized

Appro-
ved

Func-
tional

9 9 9 3
SIM Card Identification

6

Name:8

2 – Allegro molto

Business Impact:

Functional Size:

Story Points:

Get SIM Card ID from users mobile device
• Get Subscriber ID from SIM Card
• Check user credentials

Sprint:

Köbi

BD5: BD4: BD3: BD2: BD1:

User Interface Get SIM Certificate Mobile Phone SIM Card

4.// Phone Connected?

5.// Device ID

6.// Ask for Subscriber ID

7.// Return Subscriber ID

8.// Ask for Authentication

9.// Enter PIN Code

200 Th.M. Fehlmann and E. Kranich

The Backlog column contains user stories, sometimes called Epics, that the team
has not yet split into story cards and are not yet ready for implementation.
Nevertheless, the team knows the functionality of these user stories if they performed
a functional size count in order to identify functionality, e.g., following [21] and [22].

The story cards generate the input to the sprint matrix chart; unlike Scrum [23], we
need to story cards for visualizing additional information, and thus a purely paper-
based Kanban will not do for this purpose.

Story Cards

Su
si

Fr
itz

R
eg

ul
a

H
an

s
R

öb
i

Backlog

6
3

= Story Card with strong impact on Business Driver
= Story Card with medium impact on Business Driver

1 = Story Card with weak impact on Business Driver
= Story Card with no impact on any specific Business Driver

Delivers FunctionalitySix Steps
to Completion

Test is
Ready

Size: 12
Effort: 21

Draft is
Ready

Size: 31
Effort: 24

Review
Done

Size: 6
Effort: 7

Finalized

Size: 8
Effort: 21

Approved

Size: 21
Effort: 31

Size: 287 CFP
Effort: 521 ST

Size: 512
Effort: ?

Waiting…

Size: 37
Effort: 34

Fig. 6. Kanban Board for the Helpdesk Project

3.6 The Buglione-Trudel Matrix for Agile Software Development

The Buglione-Trudel Matrix (BT-matrix) is another view on story cards. It combines
functional and non-functional aspects of software development, as explained in [19]
and [22]. This combination allows tracking software cost by considering non-
functional or quality tasks, as represented by the vector ࢉ ൌ ,ଵܿۃ ܿଶ, … ܿହۄ in Fig. 7.
The ܿ௜ represent the sum of story points assigned to each of the story cards per
column. They have not the same profile as the priority vector ࢞; it is not weighted by
business drivers. Many of these tasks will become apparent when requirement
elicitation and ongoing changes during the software development project reflect the
project team’s improved understanding of customer needs and business drivers.
Traditional effort estimations cannot handle such values and therefore rapidly become
obsolete. Fehlmann has detailed this out in [19].

 Early Software Project Estimation the Six Sigma Way 201

Fig. 7. Buglione-Trudel Matrix for the Helpdesk Project solving ࢞࡭ ൌ ࢟

Fig. 8. Sample Sequence Diagram for Getting SIM Certificate, with COSMIC Count

The BT-matrix results from a workshop at the IWSM conference in Stuttgart 2010.
It consists of two QFD transfer functions, one mapping user stories into FURs by
means of the functional coverage transfer function (see Fig. 10), and another one
mapping user stories into business drivers by means of the business impact recorded
on story cards (see Fig. 9). This paper looks at the second transfer function only,

ସݕ

6
3

= Story Card with strong impact on Business Driver
= Story Card with medium impact on Business Driver

1 = Story Card with weak impact on Business Driver
= Story Card with no impact on any specific Business Driver

Functional
Story Cards

Business
Drivers

Customer Value /
Achieved Response

1: Responsiveness ଵݕ
2: Be Compelling ଶݕ
4: Personalization

5: Competence ହݕ

User Stories

Story Cards

Story Priorities /
Effort Profile

Functional & Test
Coverage
(ISO/IEC 19761)

3: Friendliness ଷݕ

Helpdesk
Story

Customer
Story

Newcomer
Story

Social
Story

Certificate
Story

࢟ ൌ ,ଵݕ ,ଶݕ ,ଷݕ ,ସݕ ࢞ହݕ ൌ ,ଵݔ ,ଶݔ ,ଷݔ ,ସݔ ହݔ

ଵࢉ ସࢉ ଶࢉହࢉ ଵݔଷࢉ ସݔ ଶݔହݔ ଷݔ
Convergence Gap

0.07

4 Entry (E) + 5 eXit (X) + 1 Read (R) + 2 Write (W) = 12 CFP

User Interface Get SIM Certificate Mobile Phone SIM Card SIM Certificates User Profile

1.// Request Certificate

Trigger

2.// Request Certificate

3.// Return Certificate

4.// Phone Connected?

5.// Device ID

6.// Ask for Subscriber ID

7.// Return Subscriber ID

8.// Ask for Authentication

9.// Enter PIN Code

10.// Store SIM Certificate

11.// Confirm SIM Certificate

12.// Update User Profile

202 Th.M. Fehlmann and E. Kranich

because for functional story cards, we have cost estimations with known accuracy
based on functional size and the ISBSG database [1], or some parametric estimation
tool using it. This is not different for agile projects.

The functional story cards appear in the lower part of the BT-matrix, called the
Cellar, the non-functional quality story cards in the upper half, the Sundeck, see Fig.
7. The distinction between the two is not very strict: some sundeck story cards might
implement additional functionality in order to provide additional qualities.

For instance, in our sample project, functional requirements drive user interface
design not alone; quality aspects including corporate design and ease of use are as
important as any additional functionality. In the sample case shown in Fig. 5, the
added functionality was storing preferences such that the customer can select entries
from previous choices, avoiding unnecessary typing and clicking. Fig. 8 shows a
sample UML sequence diagram sized using the ISO/IEC 19761 COSMIC standard
[24]. Sizing functionality is a free side effect of sequence diagramming,
recommended best practice for agile development by Scott W. Ambler [25].

3.7 Calibrating Story Points with Functional Size and Business Impact

A few initial story card tasks of the functional type can calibrate story points as a
team-individual metric, and business impact per story card is an expert criteria
measured on some ratio scale agreed by the team, e.g., 0 to 6.

For functional story cards in the cellar, the correlation between effort – estimated
by story points – and functional size is linear. See Hill [1] and many others for studies
that confirm proportionality between effort and functional size.

For non-functional story cards on the sundeck, this is unlikely. In contrary,
business impact relates to story points. Business impact on the ratio scale 1, …, 6
correspond to the Fibonacci sequence 1, 2, 3, 5, 8, 13, 21 … Thus a story card with 13
story points has business impact of six. This reflects the observation that doubling the
effort does not necessarily double the effect. In turn, business impact can split among
various business drivers; this is the only aspect that requires special attention. What
further underpins the assumption that business impact depends from story points
alone is the observation that user stories with many story points, no functionality and
low business impact probably never qualify for implementation. This is another Lean
aspect of the approach. Thanks to the robustness of transfer functions, this metrics
work for any sequence used for story points in story cards, and any length of story
point sequence. We only have to count them, and assign to the right business driver.

Thus, functional story cards calibrate non-functional cards. This obviously work
only if we measure functionality with a software size measure that is linear, since
functional size splits to several story cards. Only ISO/IEC 19761 COSMIC meets that
criterion. Both story cards and functional size refer to data movements.

4 Controlling Agile Development Using Transfer Functions

The placement of cards identifies two matrices or transfer functions: the sundeck
maps the user stories onto business drivers, and the cellar maps the same user stories
onto FUR. Thus, the Convergence Gap is the method of choice to calculate the degree
of achievement for both matrices [26].

 Early Software Project Estimation the Six Sigma Way 203

4.1 What Is the Convergence Gap?

Lean Six Sigma transfer functions map controls onto responses [26]. In most cases,
and in all cases relating to software quality, these transfer functions are linear, or can
be linearized, according an outspoken remark of Dr. Walter Wintersteiger: “Quality is
linear”. If the transfer functions are linear, they can be represented as matrices and
calculated with linear algebra [27]. The problem statement is a fixed-point equation

࢞࡭ ൌ (1) ࢟

where ࢟ is the observable response vector, ࢞ the unknown solution, and ࡭ is the
transfer function represented as a matrix ࡭ ൌ ௜,௝൧, the indices ݅ and ݆ running overߙൣ
the dimensions of the response and the solution vector. The preferred method for
solving fixed-point equations in linear algebra is the Eigenvector method; a well-
known method because for instance Google search uses it, see [28] and [29].

If ٹ࡭࡭ is positive definite, i.e., all cell components of the composed matrix are
positive, the principal eigenvector of ٹ࡭࡭ exists and algorithms exit to calculate them.
To solve equation (1), the calculation of the normalized principal eigenvector ࢟Ԣ
of ٹ࡭࡭ is required. This requires solving equation (2)

Ԣ࢟ٹ࡭࡭ ൌ Ԣ (2)࢟ߣ

where ٹ࡭ is the transpose of ࡭. By setting ߣ ൌ 1 through normalization, ࢞ ൌ Ԣ࢟ٹ࡭
solves (1), and the convergence gap is

 ԡ࢞࡭ െ ԡ (3)࢟

where ԡڮ ԡ denotes the vector length in the Euclidian coordinate system.
Note that cell values in the QFD transfer function ࡭ are not limited to the

traditional 0,1,3,9 scale. A ratio scale is required. Negative cell values in ࡭ are
admissible as long as ٹ࡭࡭ remains positive definite. Moreover, the solution profile ࢞
represents the customer’s priorities regarding user stories. If ࡭ represents the agile
implementation process, selecting the solution profile ࢞ guarantees the value
profile ࢞࡭ delivered.

4.2 Meeting Customer’s Business Drivers

The sundeck transfer function maps the business impact of user stories onto business
drivers. Business impact are the reasons why non-functional story cards have been
included to the user story during one of the sprints. The team chooses and agrees
these detailed reasons with the customer, as part of requirements elicitation. They
were unknown before in full detail.

The convergence gap measures how well the chosen story cards match the business
driver’s goal profile. If the gap opens, the team can identify which aspects need more
attention, and place additional story cards. In contrary, if some aspects are over-
fulfilled, planned story cards can be removed or new, brilliant ideas rejected just on
the fact that they apparently do not add new value for the customer. The sundeck of

204 Th.M. Fehlmann and E. Kranich

the BT-matrix serves for balancing the efforts with the needs of the customer, in a
well-understood, visual manner. This makes agile software development lean. It
blocks waste effectively from becoming part of a sprint.

4.3 Meeting Functional User Requirements

The cellar is different. Data movements implement FURs, not business impact. Data
movements from a sequence diagram describe the functionality needed. The transfer
function is simply measurable by counting the number of ISO/IEC 19761 COSMIC
data movements that contribute to some FUR in a user story. The total number of data
movement counts in the cells of the cellar matrix is larger than the total functional
size, as there are many data movements serving more than one FUR.

Such a transfer function implements the set of user stories by data movements as
necessary. The cellar shows to what extend goals meet FUR priority. Waste planned
functionality opens the convergence gap widely. If so, there is the possibility to save
effort by removing part of the functionality as originally planned. Usually the cellar is
more predictable and stable than the sundeck and less prone to adding or changing
requirements. The sequence diagram in Fig. 8 shows a part of the cellar, referring to
the functionality needed for the helpdesk and the certificate story. Part of the data
movements appear on Fig. 1 as well.

5 Early Estimation by a QFD Workshop

Tracking agile projects includes tracking efforts because of the dependency between
effort and business impact on the sundeck, and effort and functional size in the cellar.

Controls

Go
al

 P
ro

fil
e

H
elp

de
sk

 S
to

ry

C
us

to
m

er
 S

to
ry

N
ew

 C
us

to
m

er
 S

to
ry

So
cia

l S
to

ry

SI
M

 C
er

tif
ic

at
e

St
or

y

Ac
hi

ev
ed

 P
ro

fil
e

SW
1

SW
2

SW
3

SW
4

SW
5

BD1 Responsiveness 0.33 9 1 1 0.34

BD2 Be Compelling 0.51 8 1 3 1 0.48

BD3 Friendliness 0.43 1 1 1 7 2 0.48

BD4 Personalization 0.55 6 3 6 0.55

BD5 Competence 0.38 3 2 3 1 1 0.35

Solution Profile for Controls 0.37 0.43 0.46 0.55 0.41 Convergence Gap

0.07
0.10 Convergence Range
0.20 Convergence Limit

Controls
Deployment
Combinator

Business Drivers

Fig. 9. Sample Sundeck Prediction QFD

 Early Software Project Estimation the Six Sigma Way 205

Note that the matrix cells in Fig. 9 represent impact per user story in business
drivers. Thus, before starting a project, experts from both business and development
can predict the sundeck of the BT-matrix using classical QFD workshop techniques,
while the cellar is predicable by sizing user stories, and using a benchmark database.
The experts agree on numbers in all matrix cells, representing the business impact
needed per user story for the sundeck without bothering for the unknown details that
later will be written into story cards.

Per matrix cell, the business impact roughly equals the effort needed, as seen in
Fig. 7. Thus summing up the columns indicates the expected cost for implementing
non-functional requirements, long before these requirements are known in detail.

5.1 The Sundeck Matrix Prediction

Fig. 9 shows a sample sundeck QFD, showing a matrix that corresponds to the
sundeck part of Fig. 7. The total business impact value per story card yield the cell
value in the transfer function, thus the cell numbers represent total business impact.
Experts can predict business impact using standard QFD workshop techniques.

The convergence gap shows the vector length differences between the goal profile
vector and the effective profile vector, represented in the graph on the right. Thus, the
convergence gap tells the experts whether they considered all influencing factors.

5.2 The Cellar Matrix Prediction

Fig. 10 shows a sample transfer function for the cellar, where the cells contain the
data movement counts as needed by the respective user stories to meet the FUR. The
FUR goal profile to the right is its solution profile. Fig. 7 does not show the details of
the cellar matrix – for simplicity, but also because normally developers do not need

Fig. 10. Sample Cellar Measurement Transfer Function (extract)

Controls

Go
al

Pr
of

ile

He
lpd

es
k

St
or

y

Cu
st

om
er

 S
to

ry

Ne
w

Cu
st

om
er

 S
to

ry

So
cia

l S
to

ry

SI
M

 C
er

tif
ica

te
 S

to
ry

Ac
hi

ev
ed

 P
ro

fil
e

SW
1

SW
2

SW
3

SW
4

SW
5

R001 Get Certificate 0.61 4 4 2 9 0.60

R002 Authentication 0.73 8 2 9 5 0.74

R003 Theft Protection 0.30 1 6 4 0.31

Solution Profile for Controls 0.52 0.35 0.47 0.00 0.62 Convergence Gap

0.01
0.10 Convergence Range

0.20 Convergence Limit

Controls
Deployment
Combinator

FUR

206 Th.M. Fehlmann and E. Kranich

looking at it. It is significantly simpler, as there is no business impact prediction by
experts. It is sufficient to assign data movements in a UML sequence diagram to one
of the FUR. Following ISO/IEC 19761 COSMIC, this is a side effect of the count.
The matrix shows only a small part of all FUR, focused on the “Get Certificate”
functionality. Since the user story “SW4: Social Story” requires no specific
functionality, it does not contribute to FURs. The cell numbers in Fig. 10 represent
data movements’ counts.

Again, the convergence gap is an important indicator, this time it shows that the
user stories effectively deliver the FURs requested without waste. For Lean Six Sigma
in software development, this tool is indispensable in order to avoid excess and waste
functionality be included in a software project. For more details on Lean Six Sigma
software development, see [19]. For understanding, how COSMIC supports
requirement elicitation, consult Trudel [30].

5.3 Preconditions for Early Estimations Based on QFD

The preconditions are:

• Knowing the user stories (epics);
• Knowing the business driver’s goal profile;
• Knowing FUR and their goal profile;
• Knowing the team’s velocity, i.e., how many story points fit into one sprint;
• Have story points calibrated to functional size.

The last point refers to Story Point Delivery Rate: the number of story points
needed to implement one COSMIC function point, i.e., one data movement. If data
movements touch different environments, e.g., when exchanging data with the SIM
card provider, calibration might not equal among all data movement sin the project.
The ISBSG database provides guidance in identifying the various types of industry
and application environment dependencies. The exact relation how business impact
corresponds to effort is the crucial part of cost prediction using QFD.

5.4 Quality of Estimation

The quality of estimation for both parts of the BT-matrix is immediately perceivable
by looking at the conversion gap, see Fehlmann & Kranich [6]. As for the developers
when planning the sprints, it is visually perceivable which parts need special
attention. If the convergence gap closes, the matrix shows a transfer function that
solves the problem. It might not be the best one, or the only one, or the cheapest but it
is a solution.

6 Conclusion

6.1 New Ways of Estimating Agile Software Development Projects

Estimating the number of sprints needed to implement a software product vision is
decisive when investing large amounts in software development. The proposed

 Early Software Project Estimation the Six Sigma Way 207

method utilizes Lean Six Sigma and QFD tolls that agile teams are nor familiar with.
Bringing these disciplines together, especially for sensitive issues as if early project
estimation is a challenge but certainly worth trying.

Estimations based on predicting what additional requirements agile teams are
likely to discover during development is a completely new approach. However, the
time is ripe for it; micro estimation based on work breakdown structure and Gantt
charts is no longer state of the art and obsolete.

6.2 Open Points

The conversion of business impact, and of functional size, require practical
experience providing evidence with both kind of prediction matrices. It might be
necessary to use additional Six Sigma statistical methods to assess the correlation
level.

Moreover, separating functional and non-functional story card might not always be
as straightforward as shown here. Non-functional story cards tend to exhibit
additional functionality as shown in Fig. 5 when analyzed in full detail. There is a
grey zone, when functionality is the major business driver of some customer of a
software product. In this case, the two QFDs might collapse and result in a standard
single QFD.

References

[1] Hill, P.: Practical Software Project Estimation, 3rd edn. McGraw-Hill, New York (2010)
[2] American Association of Cost Estimators, Basis of Estimate - as Applied for the Software

Services Industries. AACE Recommended Practices, Morgantown, WV (2014)
[3] International Standards Organization, ISO/IEC 31010:2009 - Risk Management - Risk

Assessment Techniques. International Standards Organization, Geneva, Switzerland
(2009)

[4] American Association of Cost Estimators, Risk Analysis and Contingency Determination
Using Range Estimating. ACE International Recommended Practices, Morgantown, WV
(2008)

[5] Santillo, L., Moretto, G.: A general taxonomy of productivity impact factors. In:
Proceedings of the IWSM/MetriKon/Mensura 2010, Stuttgart, Germany (2010)

[6] Fehlmann, T.M., Kranich, E.: Quality of Estimations. In: Proceedings of the
IWSM/Mensura, Assisi, Italy (2012)

[7] Cohn, M.: Agile estimating and planning. Prentice Hall, New Jersey (2005)
[8] Bakalova, Z.: Towards Understanding the Value-Creation in Agile Projects, vols. 13-288.

CTIT Dissertation Series, Enschede (2014)
[9] Akao, Y. (ed.): Quality Function Deployment - Integrating Customer Requirements into

Product Design. Productivity Press, Portland (1990)
[10] Mizuno, S., Akao, Y.: QFD: The Customer-Driven Approach to Quality Planning and

Deployment, translated by Glenn Mazur. In: Mizuno, S., Akao, Y. (eds.) Quality Function
Deployment. Asian Productivity Institute, Tokyo (1994)

[11] Herzwurm, G., Schockert, S., Mellis, W.: Joint Requirements Engineering. QFD for
Rapid Customer Focused Software and Internet-Development. Vieweg, Braunschweig
(2000)

208 Th.M. Fehlmann and E. Kranich

[12] Imai, M.: Gemba Kaizen: A Commonsense, Low-Cost Approach to Management.
McGraw-Hill, New York (1997)

[13] Womack, J.: Gemba Walks - Expanded, 2nd edn. Lean Enterprise Institute, Inc., Barters
Island (2013)

[14] Mazur, G., Bylund, N.: Globalizing Gemba Visits for Multinationals, Savannah, GA,
USA (2009)

[15] Reichheld, F.: The Ultimate Question: Driving Good Profits and True Growth. Harvard
Business School Press, Boston (2007)

[16] Fehlmann, T.M., Kranich, E.: Using Six Sigma Transfer Functions for Analysing
Customer’s Voice. In: Fourth International Conference on Lean Six Sigma, Glasgow, UK
(2012)

[17] Denney, R.: Succeeding with Use Cases – Working Smart to Deliver Quality. Booch–
Jacobson–Rumbaugh – Series. Addison-Wesley, New York (2005)

[18] Fehlmann, T.M., Kranich, E.: COSMIC Functional Sizing based on UML Sequence
Diagrams. In: MetriKon 2011, Kaiserslautern (2011)

[19] Fehlmann, T.M.: Agile Software Projects with Six Sigma. In: Proceedings of the 3rd
European Research Conference on Lean Six Sigma, Glasgow, UK (2011)

[20] Fehlmann, T.M.: Six Sigma in der SW-Entwicklung. Vieweg, Wiesbaden (2005)
[21] Buglione, L., Gencel, Ç.: Impact of Base Functional Component Types on Software Size

Based Effort Estimation. In: Jedlitschka, A., Salo, O. (eds.) PROFES 2008. LNCS,
vol. 5089, pp. 75–89. Springer, Heidelberg (2008)

[22] Buglione, L., Trudel, S.: Guideline for sizing agile projects with COSMIC. In:
Proceedings of the IWSM/MetriKon/Mensura, Stuttgart, Germany (2010)

[23] Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice Hall (2002)
[24] Jenner, M.S.: Automation of Counting of Functional Size Using COSMIC FFP in UML.

In: COSMIC Function Points - Theory and Advanced Practices, pp. 276–283. CRC Press
- Auerbach, Boca Raton, FL (2011)

[25] Ambler, S.W.: The Object Primer: Agile Model–Driven Development With UML 2.0, 3rd
edn. Cambridge University Press, New York (2004)

[26] Fehlmann, T.M., Kranich, E.: Transfer Functions, Eigenvectors and QFD in Concert. In:
Proceedings of the ISQFD 2011, Stuttgart, Germany (2011)

[27] Lang, E.: Linear Algebra, 3rd edn. Springer-Verlag New York Inc., New York (1973)
[28] Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems.

LNCSE, vol. 46. Springer, Heidelberg (2015)
[29] Gallardo, P.F.: Google’s Secret and Linear Algebra. EMS Newsletter 63, 10–15 (2007)
[30] Trudel, S.: Using the COSMIC Functional Size Measurement Method (ISO 19761) as a

Software Requirements Improvement Mechanism. École de Technologie Supérieure -
Université du Québec, Montréal, Canada (2012)

Author Index

Arcelli Fontana, Francesca 148
Arzoky, Mahir 105

Bathallath, Sameer 58
Britto, Ricardo 182

Cain, James 105
Conboy, Kieran 93
Concas, Giulio 121, 136
Counsell, Steve 105, 136

Demeyer, Serge 166
Dingsøyr, Torgeir 1

Eckstein, Jutta 21
Eklund, Ulrik 30

Fehlmann, Thomas Michael 193

Hallikainen, Minna 73
Holmström Olsson, Helena 30

Kjellin, Harald 58
Kranich, Eberhard 193
Kruchten, Philippe 43

Laanti, Maarit 9
Lassenius, Casper 73

Marchesi, Michele 136
Mendes, Emilia 182

Moe, Nils Brede 1
Monni, C. 121
Murgia, Alessandro 136, 166

Nord, Robert L. 43
Nyfjord, Jaana 58

O’Dwyer, Orla 93
Orrù, M. 121
Ortu, M. 121
Ozkaya, Ipek 43

Paasivaara, Maria 73
Parsai, Ali 166
Power, Ken 83

Rolla, Matteo 148

Soetens, Quinten David 166
Strøm, Niels Jørgen 30
Sweetman, Roger 93
Swift, Stephen 105, 136

Tonelli, Roberto 121, 136

Usman, Muhammad 182

Väättänen, Outi 73

Zanoni, Marco 148

	Preface
	Workshop Organization
	Table of Contents
	Principles of Large-Scale Agile Development
	Towards Principles of Large-Scale Agile Development
	1 Introduction
	2 What is Large-Scale Agile Development?
	3 Towards Principles of Large-Scale Agile Development
	4 Revised Research Agenda
	References

	Characteristics and Principles of Scaled Agile
	1 Background and Models for Scaled Agile
	2 Principles Behind Scaled Agile Framework
	2.1 Aspects of Scaled Agile

	3 Definition for Scaled Agile

	4 Principles for Scaled Agile

	5 Conclusions
	References

	Architecture in Large Scale Agile Development
	1 Introduction
	2 Supporting Architecture
	2.1 Supporting a Stable Architecture
	2.2 Supporting an Unstable Architecture
	2.3 Supporting an Adaptive Architecture

	3 Discussion
	4 Closing
	References

	Industrial Challenges of Scaling Agile in Mass-Produced Embedded Systems
	1
Introduction
	2
Empirical Data
	3
Background
	3.1
Software in Embedded Products
	3.2
Mechanical and Hardware Development
	3.3
Agile Software Development
	3.4
Agile Development of Embedded Software

	4
Industrial Challenges of Scaling Agile
	4.1
Challenge of Uniting Agility with Stage-Gate Development
	4.2
Challenge of Scaling the Number of Involved Teams
	4.3
Challenge of Scaling System Engineering Activities

	5
Discussion on Solutions
	6
Summary
	References

	Agile in Distress: Architecture to the Rescue
	1 Introduction
	2 Why Scale Necessitates Architecture
	3 How Architecture Benefits from Agility
	4 Architectural Tactics to Support Scaled Agile Development:Exploring the Alignment of A and S
	4.1 Vertical and Horizontal System Decomposition
	4.2 Matrix and Augmented Team Structures

	5 Architectural Tactics to Support Scaled Agile Development:Exploring the Alignment of A and P
	5.1 Architecture and Infrastructure Runway
	5.2 Deployability Tactics

	6 Using the Tactics in Concert to Achieve A-S-P Alignment
	7 Conclusion
	References

	Conventions for Coordinating Large Agile Projects
	1 Introduction
	2 Related Research
	3 Research Method
	3.1 General Research Approach
	3.2 Summary of Steps Taken for Applying the Research Approach

	4 Candidate Conventions and Results from the Empirical Study
	4.1 Speak Their Language
	4.2 Create a Culture of Public Benchmarking
	4.3 Motivate from Personal Experience
	4.4 Include Sub-ordinates in Meet
	4.5 Combine Various Modeling Methods
	4.6 Use Global Definitions
	4.7 Accept Chaos as a Driver For Development
	4.8 Centralize Critical Rules

	5 Discussion
	6 Concluding Remarks and Future Research Directions
	References

	Supporting a Large-Scale Lean and Agile Transformation by Defining Common Values
	1
Introduction
	2
Research method
	2.1
Research Goals and Questions
	2.2
Data Collection and Analysis
	2.3
Limitations and Validation

	3
Results
	3.1
Motivation for Value Workshops
	3.2
Organizing the Value Workshops
	3.3
Participants' Perception of the Value Workshops

	4
Conclusions
	References

	A Model for Understanding When Scaling Agile Is Appropriate in Large Organizations
	1 Introduction
	2 Human Systems Dynamics
	3 Research Approach
	3.1 Research Objective
	3.2 Research Method

	4 Case Study of a Large Company
	4.1 What Does “Large” Mean?

	5 A CDE Analysis of the Organization
	6 Determining Factors
	6.1 Coordination Cost
	6.2 Communication Cost
	6.3 Impact on the Flow of Work

	7 Discussion: Three Contexts for Agility and Scale
	7.1 Being Agile in a Team Inside A Large Organization
	7.2 Using Agile Approaches in a Large Development Effort inside a Large Organization
	7.3 Organization Agility: The Large Organization Itself is Agile

	8 Conclusions and Future Work
	8.1 Future Work

	References

	Control in Software Project Portfolios:A Complex Adaptive Systems Approach
	1 Introduction
	2 Background and Motivation
	3 Literature Review
	3.1 Project Portfolio Management
	3.2 Control
	3.3 Complex Adaptive Systems

	4 Research Method
	5 Conclusion and Next Steps
	References

	Refactoring & Testing
	A Measure of the Modularisation of Sequential Software Versions Using Random Graph Theory
	1 Introduction
	2 Experimental Methods
	2.1 Clustering Algorithm
	2.2 Fitness Function
	2.3 HS Metric
	2.4 Weighted-Kappa

	3 Experiment
	3.1 Data Creation
	3.2 Absolute Value Difference (AVD)
	3.3 Experiment Procedure
	3.4 Random Graph

	4 Results and Discussion
	5 Conclusions and Future Work
	References

	Refactoring Clustering
in Java Software Networks

	1
Introduction
	2
Background
	3
Experimental Setting and Methodology
	4
Results
	5
Threats to Validity
	6
Conclusions
	References

	Are Some Refactorings Attached to Fault-Prone Classes and Others to Fault-Free Classes?
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Data Analysis
	4.1 All Fault-Prone Classes between Core_30_31
	4.2 All Fault-Prone Classes Between Core_31_32
	4.3 All Fault-Prone Classes between Core_32_33
	4.4 All Fault-Prone Classes between ui_30_31
	4.5 All Fault-Prone Classes between ui_31_32
	4.6 All Fault-Prone Classes between ui_32_33
	4.7 All Fault-Prone Classes between Workbench_30_31
	4.8 All Fault-Prone Classes between Workbench_31_32
	4.9 All Fault-Prone Classes between Workbench_32_3

	5 Fault-Free Class Analysis
	6 Threats to Validity
	7 Conclusions and Future Work
	References

	Capturing Software Evolution and Change
through Code Repository Smells

	1
Introduction
	2
Related Work
	3
Code Bashing Smell
	4
Tracking Line Changes
	5
Experiments on Tracking Line Changes
	6
File Volatility Metric
	7
Repository Stability Metric
	8
Threats to Validity
	9
Conclusions and Discussions
	References

	Considering Polymorphism in Change-Based Test Suite Reduction
	1
Introduction
	2
Supporting Code Change and Test Selection
	3
Experimental Setup
	3.1
Mutation Testing
	3.2
Selected Cases

	4
Results and Discussion
	4.1
PMD
	4.2
CruiseControl

	5
Threats to Validity
	6
Related Work
	7
Conclusion
	References

	Estimations in the 21st Century Software Engineering
	Effort Estimation in Agile Global Software Development Context
	1 Introduction
	2 Methodology
	2.1 Research Questions
	2.2 Study Selection and Data Extraction

	3 Results and Discussion
	3.1 Study Summaries
	3.2 Estimation Methods
	3.3 Accuracy Metrics and Levels
	3.4 Cost Drivers and Size Metrics
	3.5 Dataset Domain and Type
	3.6 Application Type
	3.7 Sourcing Strategies and Countries
	3.8 Development Phase
	3.9 Agile Method

	4 Threats to Validity
	5 Conclusions
	References

	Early Software Project Estimation the Six Sigma Way
	1 Why Is Software Project Estimation So Difficult?
	1.1 The Difficulty with Applying Traditional Estimation Approaches to Agile
	1.2 Effort Prediction in Agile Methodologies

	2 Voice of the Customer (VoC)
	2.1 Go to the Gemba
	2.2 Net Promoter® Score Surveys
	2.3 Business Drivers and Customer Needs

	3 Lean Six Sigma Software Development
	3.1 A Sample Agile Project
	3.2 Business Drivers
	3.3 Kanban Approach
	3.4 Story Cards
	3.5 The Kanban Chart
	3.6 The Buglione-Trudel Matrix for Agile Software Development
	3.7 Calibrating Story Points with Functional Size and Business Impact

	4 Controlling Agile Development Using Transfer Functions
	4.1 What Is the Convergence Gap?
	4.2 Meeting Customer’s Business Drivers
	4.3 Meeting Functional User Requirements

	5 Early Estimation by a QFD Workshop
	5.1 The Sundeck Matrix Prediction
	5.2 The Cellar Matrix Prediction
	5.3 Preconditions for Early Estimations Based on QFD
	5.4 Quality of Estimation

	6 Conclusion
	6.1 New Ways of Estimating Agile Software Development Projects
	6.2 Open Points

	References

	Author Index

