
49© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_4

 Chapter 4
 A Fault Injection technique oriented
to SRAM-FPGAs

 H. Guzmán-Miranda , J. Barrientos-Rojas , and M. A. Aguirre

 Abstract Fault injection is an accepted method for emulating the effect of ionizing
radiation on digital electronic circuits. It can be oriented either to ASIC designs or
to SRAM-FPGA designs. When the target device is an SRAM-FPGA the injection
has to be assessed both in the functional plane and in the confi guration plane. It has
been demonstrated that the classical protections oriented to the functional structure
are not enough, so the confi guration plane has to be analyzed, in the same way. This
paper describes the adaption of the FT-UNSHADES2 platform as a fault injection
system that tests faults in the confi guration plane. The mechanism that assesses the
effect of faults in the confi guration is read-modify-write, in cycles of inject and
repair, based on partial reconfi guration.

 In this paper the authors categorize that there are four types of possible faults in
the FPGA that should be considered: unrelated, non-damage, outer-propagated and
inner-propagated. Faults in the unrelated and non-damage confi guration bits are
affordable and can be fi xed using scrubbing techniques. The damage and propa-
gated faults propagate from the confi guration plane to the current data processed
and a complete scrubbing followed by a master reset should be asserted to recover
the functional behavior of the device.

 Other result found is the relationship between the faults in the functional observ-
ability and the confi guration bits. A result that only can be found if the injection
system can distinguish between the faults over the above mentioned planes.

4.1 Introduction

 SRAM-FPGAs are digital electronic devices that provide an attractive solution to
many aerospace applications [1]. They introduce certain fl exibility to the airborne
systems and space payloads which allow the actualization and improvement of
the electronic subsystems, and also deal with the possible obsolescence of their
components [2].

 H. Guzmán-Miranda (*) • J. Barrientos-Rojas • M. A. Aguirre
 Departamento de Ingeniería Electrónica , Escuela Superior de Ingeniería,
Universidad de Sevilla , c/ Camino de los Descubrimientos s/n , Sevilla 41092 , Spain
 e-mail: hipolito@gie.esi.us.es

mailto:hipolito@gie.esi.us.es

50

 The main drawback of this kind of devices is their extreme sensitivity to ionizing
radiation due to the huge quantity of memory cells that compound their structure
and the large critical area exposed.

 Faults in confi guration bits (CB) react in a different way than faults in user
registers. While faults in user registers are treated as transient anomalous values
that produce corrupted states in the cadence of the circuit, faults in the confi guration
bits have to be treated as structural modifi cations which remain permanent until the
confi guration is overwritten or repaired. Classical protections introduced in the
design structure, like Triple Modular Redundancy (TMR) [3 , 4] are still insuffi cient,
because confi guration faults can affect simultaneously to circuits belonging to
several clock domains, or propagate the fault to user logic.

 Errors in the confi guration are much more probable than the user register ones,
due to the abundance of sensitive points. They can be detected by means of a com-
plete Readback of the device, in the same way than a normal SRAM-memory [5].

 However, the number of CBs related to a particular design is a small fraction of
the total CBs. Xilinx has developed a special mitigation method based on the so
called Soft Error Mitigation (SEM) core [6]. It combines with an option in the
 bitgen application known as “essential bits”. This option generates two fi les that
determine the CBs that are related to the design. Essential bits are obtained by
means of a static analysis of the design; this analysis calculates those CBs that are
related to the implementation of the design, regardless of their actual value, and are
strictly part of the confi guration of any element of the FPGA. LUTs, BRAM
contents and FF contents are not included in this fi le.

 We take the advantage of this option for the adaption of the FT-UNSHADES2
tool to the injection of faults oriented to the essential bits. We will characterize the
tool with a small example.

 The rest of the paper is organized as follows: A general introduction about how
the fault injection procedures are, when an SRAM FPGA is the user platform. In the
third section the FT-UNSHADES2 system is described and also the skills imple-
mented in the system to target the FPGA as object of injection and fi nally a case of
study is introduced to show the system behavior.

4.2 Fault Injection in SRAM-FPGA

4.2.1 Fault Injection Oriented to User Registers

 SRAM-FPGAs are a very attractive solution for fault injection tasks when the
designer wants to analyze how the design structure treats the faults: where the weak-
est elements are and how the protections work within the circuit structure. There are
several proposals in the literature for platforms that develop this concept. Basically
they consist of the implementation of a mechanism that produces one or several
spontaneous changes in the content of implemented registers (WHERE) at any
clock cycle of the execution workload (WHEN), and if there is a predefi ned method

H. Guzmán-Miranda et al.

51

of injection (HOW). The most important characteristic of this procedure is that the
injection is performed over the circuit registers, or registers instantiated due to the
high level description of sequential statements. A good survey can be found in [6].

 A very well-known system based on this approach is “Autonomous Emulation”
system [7], that make use of any kind of SRAM-FPGA, instrument each register the
circuit for being tested and make a fast emulation of the system in fault. The plat-
form ASTERICS [8] is another example of how to inject faults reconfi guring.

4.2.2 Fault Injection Over the Confi guration Plane

 Another category that is completely different (but almost always confusing) is those
platforms that are dedicated to study the proper SRAM-FPGA as the target device.
This problem is completely different because the SEE can impact not only on the
instantiated registers but also in the confi guration bits of the elements that are
related to the design [9 , 10]. The consequences of SEE are totally different than in
the former category because the faults remain in the confi guration bit over time and
will only be removed when the confi guration is overwritten. During the time that
the fault is active the fault can be propagated to the user logic and then the processed
state becomes corrupted.

 Overwriting the state of the confi guration is done periodically, and the timing is
known as scrubbing period, so the time between reconfi gurations is the vulnerable
time. In a scrubbing cycle, the confi guration is overwritten “softly”, in such a way
that the current state represented by the content of the memory elements of the
FPGA remains untouched. This method by itself does not detect if the state of
the design is currently corrupted or not, and the scrubbing process takes extra and
undesired power due to the internal commutations of the transistors. One goal of the
design is to optimize time and power consumption.

 Mitigation with scrubbing is not enough, because data remains already corrupted
after the soft reconfi guration, so it is necessary to introduce another mitigation tech-
nique, in this case, focused on the repairing of data.

 Several platforms have been created, mainly for the measurement of the global
sensitivity of a design to SEE in a particular FPGA device. The main goal consists
in studying the design behavior when the device is confi gured, and then reconfi gure
it in a blind manner. The number of errors found versus the number of injections is
considered as a measurement of how reliable, running in this device, the circuit
is. This is a very ineffi cient mechanism due to the large amount of confi guration bits
unrelated to the design. These bits are sensitive from the point of view of the device,
but most of them are not, considering the confi gured action. Many of the injections
can be saved if we can distinguish between the related bits and the unrelated.

 Few platforms have been developed to test designs running on the SRAM-FPGA
(e.g. FLIPPER tool) [11 – 15], and few correct approaches have been addressed
because a platform is needed for the exact device that is going to be fl own in the
fi nal application. One solution is to study the design as a hard macro of the design,

4 A Fault Injection technique oriented to SRAM-FPGAs

52

a part of the identical confi guration that will integrate the fi nal device. This is a
method to migrate the design within the same technology.

4.2.3 Static vs. Time Zero Analysis

 There are approaches that provide information about the reliability of the design just
by studying the possible related bits. This is done by software tools like STAR [13]
and the Xilinx bitgen routines for essential bits determination [16]. The former goes
ahead, because it provides rules for a new placement that diminishes the number of
critical confi guration bits: the RORA tool [18].

 Static analysis provides information regardless of whether a particular resource
is used or not in the execution of the design. Of course this is the best situation but
when the user has to take actions for reducing the number of critical resources the
situation is not clear, as there is not idea about the sensitivity of each zone of the
circuit to make it more reliable. One possible solution is the use of the SRAM-
FPGA executing the design with a representative application workload. The
confi guration is modifi ed in the clock cycle zero and the effect of the fault is
recorded during the workload if there is any propagation path.

 If any critical point is not detected, either its effect remains latent within the
circuit or the resources are not well stimulated by the workload [5].

 Time zero analysis is less restrictive and more realistic than the static one.
It identifi es the part of the circuit that can propagate faults. It consists of injecting
the fault before the execution of the circuit is started. Normally it starts with a reset
assertion and if the circuit is modifi ed by the fault in the confi guration, the fault is
propagated during the workload to any primary output. Platforms watch this
sequence of values and detect any anomaly or wrong value. If this is done, the injec-
tion is representative of an error rate for a specifi c implementation of the circuit and
workload.

 There are few but well known platforms described in the literature. All of them
are devoted to the study of fault injection rates injecting using several techniques
and internal resources of the Xilinx FPGA.

 Again the next step is to provide rules for a new and more reliable implementa-
tion. The work should be done iteratively to minimize the criticality of the imple-
mentation. Next section will present the option of dynamic injection. The idea is to
open the injection to any clock cycle of the workload.

4.3 FT-UNSHADES2 in FPGA Mode

 Authors intentionally have omitted the platform FT-UNSHADES2 [17]. This plat-
form traditionally has been described and classifi ed in the set of tools dedicated to
test SEE oriented to inject faults in the user registers that belong to the custom logic,

H. Guzmán-Miranda et al.

53

but in this section we are going to describe the adaptation of the tool to the test of
designs implemented in FPGAs, so the injection procedures are produced over the
 confi guration bits , instead of the user registers of the FPGA.

 The principle of the method is essentially the same: use partial reconfi guration to
read, modify and write a particular frame of the confi guration map where the CB is
allocated. The identifi cation of the injection point provides a rich information about
the reliability of the design, or some critical parts of it (Fig. 4.1).

 The adaptation of one method, called ASIC mode, to the other, called FPGA
mode, is at API level. Very low level commands are basically the same. The struc-
ture of the system is still based on two identical FPGAs running in parallel, synchro-
nized, both receiving the same sequence of stimuli, and only one of them receiving
the injections. The comparison is cycle by cycle at the primary outputs. This proce-
dure is performed repeatedly, always with a known starting state at cycle 1. Every
execution of the workload is called run . At each run one or several injections are
performed selecting the target registers (WHERE and HOW) and clock cycles
(WHEN) to inject.

 The effect of a fault can be inspected either by on line comparison with the
primary outputs coming from the twin FPGAs (error faults) or by reading the
internal state of all the registers of both FPGAs and comparing their values one to
one. This method detects the internal latent faults.

 In ASIC mode the faults are injected only in user registers, faults can be compen-
sated through functional structures, so they can be repaired if the circuit is prepared
to. At every injection cycle, the signal reset is asserted in order to initialize the
registers content.

 In FPGA mode the faults are injected in CBs. The abundance or possible target
bits (tens of millions) makes the problem very diffi cult to deal with if there is no
previous selection of these CBs. Xilinx has provided a tool very similar to STAR
that extracts the CBs that are related to the actual implementation of the design. The
rest of CBs are unrelated and should not affect to the design behavior if they receive
a bit fl ip. The tool provides in fact two fi les, one marking the bits that are related and

 Fig. 4.1 Hardware for
injection model

4 A Fault Injection technique oriented to SRAM-FPGAs

54

other with the theoretical value of those confi guration bits. These fi les are part of a
mechanism of on-line repairing of the SEE in the confi guration plane. Xilinx has
developed this procedure for Virtex 5, 6 and 7 families.

 FT-UNSHADES2 has taken these fi les as reference for the FPGA mode for a
technique based on inject and repair cycles. The points of injection are determined
by the essential bits fi le and these bits are the ones attacked. The method is based on
the idea that when a CB is attacked, this change of value will not affect another
confi guration bit, otherwise the technique is not strictly valid, because the effect of
a fault would remain present in the FPGA after a reset. The attack model is described
then, as follows:

 1. Selection of the confi guration bit and clock cycle that will be attacked (WHERE
and WHEN).

 2. Initial reset, and execute the application until the injection instant.
 3. Using partial reconfi guration, the frame that corresponds to the CB is retrieved

from the FPGA
 4. (alt) this step can be substituted by the theoretical value coming from the .ebc fi le.
 5. Write the opposite value in the desired CB
 6. Resume the execution and compare primary output values.
 7. While execution, compare with Gold theoretical values.
 8. If a discrepancy is found or end of run is reached, repair the CB, following the

step 3.

 This mode is repeated in many execution runs following the procedure estab-
lished in the method of injection selected. If time zero is selected, then the injection
is produced just at the beginning of the experiment. If time is a variable, then the
system is driven to any clock cycle following the programmed selection pattern
(Fig. 4.2).

 The user can proceed to send a complete confi guration at any certain number of
injections in order to refresh it and erase any unexpected lateral effect.

 Also the system allows avoiding the step 7 and studying possible accumulated
effects.

 Fig. 4.2 Dynamic injection execution model. (a) Time zero injection (b) Variable time injection

H. Guzmán-Miranda et al.

55

 The most important difference between this system and other developments is
the consideration of the time as variable. It is very important to dedicate effort to the
elaboration of the test vectors, because they must be representative of the real appli-
cation, in order to make the results of the test more realistic and valuable.

 The second advantage of the current platform is that the designer can compare
between how the faults behave in the same framework from the point of view of
ASIC mode and FPGA mode, and compare both. This is especially interesting,
because in normal fl ight, the faults are detected using a specifi c detection circuit and
monitored at any primary output.

 The current system is based on Virtex 5 technology, and all the transactions are
performed through the SelectMap port in parallel mode.

4.4 A Case of Study

 This chapter will explain a case of study that characterizes the system. All the results
come from the FT-UNSHADES2 platform. We have developed a set of examples to
characterize the process. The examples b01 , b13 , b20 and keccak sponge function,
the former are complex circuits taken from the ITC99 benchmark suite and the latter
is part of a cryptocodec found in internet. All of them are examples that have avail-
able the high level description code with a stimuli set. In the case of keccak example
we have used two different sets of vectors to show the dependence of the observ-
ability on the application.

 Previous to the experimental activity a study about the essential bits has been
performed. For a blind attack, a complete sweep of all the used frames and all the
confi guration bits has been performed injecting in a blind way, say, if they are in the
subset of essential bits or not. Then the essential bits were attacked. All the critical
bits were detected in both subsets matching almost perfectly, with the unique differ-
ence of several bits in some frames of the blind sweep, corresponding to the LUTs
and FF contents, that are not part of the essential bits. This experiment was per-
formed over b01 and b13 circuits.

 The results of these previous experiments confi rm that the essential bits are a
good subset for an effective fault injection campaign, as promised by Xilinx.
However there are user memories that are not included in the essential bits subset.
These bits should be added to those bits that are critical.

 The fi rst analysis has been performed to compare static analysis versus dynamic
analysis. This experience pursues to compare the basic injection process. The
number of injection points is given by the essential bits static analysis generated
from the bitgen tool. In our examples set, the target device is XCV5FX70T, con-
taining 18,936,096 bits.

 For all the benchmarks, the fi rst cycle is the assertion of the reset signal. This
vector erases the possible functional value stored in previous execution runs and
starts the current one from a known state (Table 4.1).

4 A Fault Injection technique oriented to SRAM-FPGAs

56

 The pair workload/circuit is fi rstly tested as “ASIC mode” in order to test the
fault propagation capabilities of each benchmark. The keccak example is used twice
with different input vector databases. One is a single frame of data, and the second
comprises ten frames (Table 4.2).

 This experiment shows how the circuit structures propagate the faults. B01, B13
and keccak are examples that provide a high level of observability of faults, because
they can be easily propagated to the primary outputs. It is very important to test, for
each design-stimuli pair, their respective fault propagation capacity. Attacking the
user registers, it is possible to measure this effect.

 The keccak example shows that there is a dependence with how the stimuli set
helps this propagation.

 The next table shows the examples injecting only over those frames and confi gu-
ration bits that belong to the CLBs. The injection technique implemented is the
previously described inject and repair one. Table 4.3 shows the results for Time Zero
experiment:

 For comparison, the same experiment has been made but randomly selecting the
injection cycle . A small decrease of the percentage of detected faults is expected,
due to faults that could not have enough clock cycles to propagate to the outputs.
Table 4.4 shows this effect with a smaller percentage of errors in all the examples.
This situation is much more realistic than the previous one.

 Benchmark Registers Workload Essential bits

 b01 10 245 3,216
 b13 66 7,640 14,572
 b20 434 10,933 475,230
 keccak1 1,683 856 622,168
 keccak10 1,683 8,798 622,168

 Table 4.1 Characterization
of each benchmark

 Benchmark Inject. Errors Percentage Time (s)

 b01 10,000 7,666 76.6 5
 b13 10,000 8,072 80.7 42
 b20 100,000 16,105 16.1 428
 keccak1 50,000 45,421 90.8 27
 keccak10 50,000 46,420 92.0 239

 Table 4.2 ASIC mode results

 Benchmark Inject. Errors Percentage Time (s)

 b01 10,000 6,765 67.6 25
 b13 10,000 5,960 59.6 426
 b20 200,000 1,525 0.75 4,840
 keccak1 622,168 40,578 6.52 3,637
 keccak10 622,168 49,190 7.91 30,896

 Table 4.3 FPGA mode in
time zero

H. Guzmán-Miranda et al.

57

 The keccak10 experiment is performed about three times per confi guration bit.
This shows that the experiment becomes similar to the time zero one. As the
percentage shows, the time zero will be an upper bound of the real experiment,
more pessimistic than the random time experiment.

 The fi rst conclusion is that not all the essential bits present errors. That means
that the essential bit set is compounded by two subsets: the fi rst one, is the critical
ones, where faults introduce errors in the processing data and are detected at the
outputs affecting to the processed data. The second is related to those bits whose
error produces perturbations only in the propagation time of the connections, so
they only change the parasitic capacitances of the wires. They are diffi cult to detect,
but easy to prevent. In fact the critical ones are the candidates of being measured
and if possible, mitigated. They give the real vulnerability degree of the design
running in the current FPGA. The fi rst group needs to be repaired using any logical
mitigation technology plus the necessary scrubbing process to erase the errors.

 These results also show that the FPGA mode is strongly related to the ASIC
mode. The global observability of a design shows the propagation capacity of a
particular design to the detection mechanism, that in these examples are simply the
primary outputs. The experiments over B01, B13 and keccak circuits have high
controllability and observability so it is expected that faults have an easy propaga-
tion to primary outputs. However B20 has a bad architecture for propagating faults.
These numbers do not show that there is a high difference between the time zero
experiment and dynamic experiment, but they show that the capacity of a design to
propagate the perturbation is a very important measurement of its behavior.

4.5 Conclusions

 This paper presents, for the fi rst time, a fl exible platform that is ready to perform
fault injection over designs that are synthesized specifi cally for FPGA. The paper
discusses the differences between the ASIC and FPGA modes, where there is a
connection between them. Also this paper shows the procedure for the robustness
assessment of a design, and how to implement the design in one device and translate
it to another that belongs to the same family. It is also shown the infl uence of the
workload in the processing data, showing that the workload has to be representative
of the fi nal functionality. This paper shows how different models of SEU tests can
offer results depending on the timing scheme of the study.

 Benchmark Inject. Errors Percentage Time (s)

 b01 10,000 6,275 62.7 26
 b13 10,000 5,366 53.6 440
 b20 200,000 1,239 0.60 4,937
 keccak1 1,000,000 49,131 4.91 5,936
 keccak10 2,000,000 153,612 7.68 99,671

 Table 4.4 FPGA mode in
random time

4 A Fault Injection technique oriented to SRAM-FPGAs

58

 Further work will study larger and more complex designs where new conclusions
can be extracted.

 Acknowledgments The authors would like to thank Junta de Andalucía, Spain for funding the
EDELWEISS: Design of a Highly Effi cient Intra-Satellite Wireless Communications System
project (reference P11-TIC-7095), the European Space Agency for funding the FT-UNSHADES2
project (reference PI-0072/2010), and Luis Sanz for his help and insight with the mass processing
of the fault injection results.

 References

 1. Heiner J, Sellers B, Wirthlin MJ, Kalb J (2009) FPGA partial reconfi guration via confi guration
scrubbing. In: Proceedings of the fi eld programmable logic conference 2009, PL‘09, pp 99–104

 2. Guzman-Miranda H, Sterpone L, Violante M, Aguirre MA, Gutierrez-Rizo M (2011) Coping
with the obsolescence of safety- or mission-critical embedded systems using FPGAs. IEEE
Trans Ind Electron 58(3):814–821

 3. Rollins N, Wirthlin M, Caffrey M, Graham P (2003) Evaluating TMR techniques in the
presence of single event upsets. In: Proceedings for the 6th annual international conference
on military and aerospace programmable logic devices (MAPLD) Washington, DC, NASA
Offi ce of Logic Design, AIAA, Sept 2003, p P63

 4. Wirthlin M, Johnson E, Rollins N, Caffrey M, Graham P (2003) The reliability of FPGA
circuit designs in the presence of radiation induced confi guration upsets. In: Proceedings of the
2003 IEEE symposium on fi eld-programmable custom computing machines, 9–11 Apr 2003,
pp 133–142

 5. Quinn HM, Black DA, Robinson WH, Buchner SP (2013) Fault simulation and emulation
tools to augment radiation-hardness assurance testing. IEEE Trans Nucl Sci 54(1):252–261

 6. Morgan K, Caffrey M, Graham P, Johnson E, Pratt B, Wirthlin M (2013) SEU-induced persis-
tent error propagation in FPGAs. IEEE Trans Nucl Sci 60(3):2119–2142

 7. Lopez-Ongil C, Garcia-Valderas M, Portela-Garcia M, Entrena L (2007) Autonomous fault
emulation: a new FPGA-based acceleration system for hardness evaluation. IEEE Trans Nucl
Sci 54(1):252–261

 8. Velazco R, Mansour W, Pancher F, Costa Marques G (2011) ASTERICS—a platform for the
simulation of radiation effects on processors by fault injection. Open access paper: https://
www.rd-access.eu/edatools/system/fi les/_edaTools/ubooth_submission/2011/209.pdf

 9. Bernardi P, Sonza Reorda M, Sterpone L, Violante M (2004) On the evaluation of SEU sensi-
tiveness in SRAM-based FPGAs. In: Proceedings of the international on-line testing sympo-
sium (IOLTS), 2004, pp 115–120

 10. Lima F, Carmichael C, Fabula J, Padovani R, Reis R (2001) A Fault injection analysis of Virtex
FPGA TMR design methodology. In: IEEE European conference on radiation and its effect on
component and systems, 2001, pp 275–282

 11. Nazar GL, Carro L (2012) Fast single-FPGA fault injection platform. Defect and fault toler-
ance in VLSI and nanotechnology systems (DFT), 2012 IEEE international symposium on,
3–5 Oct 2012, pp 152–157

 12. Bolchini C, Castro F, Miele A (2009) A Fault analysis and classifi er framework for reliability-
aware SRAM-based FPGA systems. In: Proceedings of the international symposium on defect
and fault tolerance in VLSI and nanotechnology systems (DFT), 2009, pp 173–181

 13. Sterpone L, Violante M, Rezgui S (2006) An analysis based on fault injection of hardening
techniques for SRAM-based FPGAs. IEEE Trans Nucl Sci 53(4):2054–2059

 14. Sterpone L, Violante M (2007) A new partial reconfi guration-based fault-injection system to
evaluate SEU effects in SRAM-based FPGAs. IEEE Trans Nucl Sci 54(4):965–970

H. Guzmán-Miranda et al.

https://www.rd-access.eu/edatools/system/files/_edaTools/ubooth_submission/2011/209.pdf
https://www.rd-access.eu/edatools/system/files/_edaTools/ubooth_submission/2011/209.pdf

59

 15. Alderighi M, et al (2007) Evaluation of single event upset mitigation schemes for SRAM
based FPGAs using the FLIPPER fault injection platform. In: Proceedings of the 2007 inter-
national symposium defect and fault tolerance in VLSI systems, Rome, Italy, Sept 2007,
pp 105–113

 16. Xilinx App note Xapp 538. April 2012
 17. Mogollon JM, Guzman-Miranda H, Napoles J, Barrientos J, Aguirre MA (2011)

FTUNSHADES2: A novel platform for early evaluation of robustness against SEE. Radiation
and Its effects on components and systems (RADECS), 2011 12th European conference on,
19–23 Sept 2011, pp 169–174

 18. Sterpone L, Aguirre M, Tombs J, Guzmán-Miranda H (2008) On the design of tunable fault
tolerant circuits on SRAM-based FPGAs for safety critical applications. Proceeding of the
design automation and test in Europe conference DATE 2008. Munich, Germany. 2008,
pp 336–341

4 A Fault Injection technique oriented to SRAM-FPGAs

	Chapter 4: A Fault Injection technique oriented to SRAM-FPGAs
	4.1 Introduction
	4.2 Fault Injection in SRAM-FPGA
	4.2.1 Fault Injection Oriented to User Registers
	4.2.2 Fault Injection Over the Configuration Plane
	4.2.3 Static vs. Time Zero Analysis

	4.3 FT-UNSHADES2 in FPGA Mode
	4.4 A Case of Study
	4.5 Conclusions
	References

