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    Chapter 4   
 A Fault Injection technique oriented 
to SRAM-FPGAs 

             H.     Guzmán-Miranda     ,     J.     Barrientos-Rojas    , and     M.  A.     Aguirre    

    Abstract     Fault injection is an accepted method for emulating the effect of ionizing 
radiation on digital electronic circuits. It can be oriented either to ASIC designs or 
to SRAM-FPGA designs. When the target device is an SRAM-FPGA the injection 
has to be assessed both in the functional plane and in the confi guration plane. It has 
been demonstrated that the classical protections oriented to the functional structure 
are not enough, so the confi guration plane has to be analyzed, in the same way. This 
paper describes the adaption of the FT-UNSHADES2 platform as a fault injection 
system that tests faults in the confi guration plane. The mechanism that assesses the 
effect of faults in the confi guration is read-modify-write, in cycles of inject and 
repair, based on partial reconfi guration. 

 In this paper the authors categorize that there are four types of possible faults in 
the FPGA that should be considered: unrelated, non-damage, outer-propagated and 
inner-propagated. Faults in the unrelated and non-damage confi guration bits are 
affordable and can be fi xed using scrubbing techniques. The damage and propa-
gated faults propagate from the confi guration plane to the current data processed 
and a complete scrubbing followed by a master reset should be asserted to recover 
the functional behavior of the device. 

 Other result found is the relationship between the faults in the functional observ-
ability and the confi guration bits. A result that only can be found if the injection 
system can distinguish between the faults over the above mentioned planes.  

4.1          Introduction 

 SRAM-FPGAs are digital electronic devices that provide an attractive solution to 
many aerospace applications [ 1 ]. They introduce certain fl exibility to the airborne 
systems and space payloads which allow the actualization and improvement of 
the electronic subsystems, and also deal with the possible obsolescence of their 
components [ 2 ]. 
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 The main drawback of this kind of devices is their extreme sensitivity to ionizing 
radiation due to the huge quantity of memory cells that compound their structure 
and the large critical area exposed. 

 Faults in confi guration bits (CB) react in a different way than faults in user 
registers. While faults in user registers are treated as transient anomalous values 
that produce corrupted states in the cadence of the circuit, faults in the confi guration 
bits have to be treated as structural modifi cations which remain permanent until the 
confi guration is overwritten or repaired. Classical protections introduced in the 
design structure, like Triple Modular Redundancy (TMR) [ 3 ,  4 ] are still insuffi cient, 
because confi guration faults can affect simultaneously to circuits belonging to 
several clock domains, or propagate the fault to user logic. 

 Errors in the confi guration are much more probable than the user register ones, 
due to the abundance of sensitive points. They can be detected by means of a com-
plete  Readback  of the device, in the same way than a normal SRAM-memory [ 5 ]. 

 However, the number of CBs related to a particular design is a small fraction of 
the total CBs. Xilinx has developed a special mitigation method based on the so 
called Soft Error Mitigation (SEM) core [ 6 ]. It combines with an option in the 
 bitgen  application known as “essential bits”. This option generates two fi les that 
determine the CBs that are related to the design. Essential bits are obtained by 
means of a static analysis of the design; this analysis calculates those CBs that are 
related to the implementation of the design, regardless of their actual value, and are 
strictly part of the confi guration of any element of the FPGA. LUTs, BRAM 
contents and FF contents are not included in this fi le. 

 We take the advantage of this option for the adaption of the FT-UNSHADES2 
tool to the injection of faults oriented to the essential bits. We will characterize the 
tool with a small example. 

 The rest of the paper is organized as follows: A general introduction about how 
the fault injection procedures are, when an SRAM FPGA is the user platform. In the 
third section the FT-UNSHADES2 system is described and also the skills imple-
mented in the system to target the FPGA as object of injection and fi nally a case of 
study is introduced to show the system behavior.  

4.2     Fault Injection in SRAM-FPGA 

4.2.1     Fault Injection Oriented to User Registers 

 SRAM-FPGAs are a very attractive solution for fault injection tasks when the 
designer wants to analyze how the design structure treats the faults: where the weak-
est elements are and how the protections work within the circuit structure. There are 
several proposals in the literature for platforms that develop this concept. Basically 
they consist of the implementation of a mechanism that produces one or several 
spontaneous changes in the content of implemented registers (WHERE) at any 
clock cycle of the execution workload (WHEN), and if there is a predefi ned method 
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of injection (HOW). The most important characteristic of this procedure is that the 
injection is performed over the circuit registers, or registers instantiated due to the 
high level description of sequential statements. A good survey can be found in [ 6 ]. 

 A very well-known system based on this approach is “Autonomous Emulation” 
system [ 7 ], that make use of any kind of SRAM-FPGA, instrument each register the 
circuit for being tested and make a fast emulation of the system in fault. The plat-
form ASTERICS [ 8 ] is another example of how to inject faults reconfi guring.  

4.2.2     Fault Injection Over the Confi guration Plane 

 Another category that is completely different (but almost always confusing) is those 
platforms that are dedicated to study the proper SRAM-FPGA as the target device. 
This problem is completely different because the SEE can impact not only on the 
instantiated registers but also in the confi guration bits of the elements that are 
related to the design [ 9 ,  10 ]. The consequences of SEE are totally different than in 
the former category because the faults remain in the confi guration bit over time and 
will only be removed when the confi guration is overwritten. During the time that 
the fault is active the fault can be propagated to the user logic and then the processed 
state becomes corrupted. 

 Overwriting the state of the confi guration is done periodically, and the timing is 
known as scrubbing period, so the time between reconfi gurations is the vulnerable 
time. In a scrubbing cycle, the confi guration is overwritten “softly”, in such a way 
that the current state represented by the content of the memory elements of the 
FPGA remains untouched. This method by itself does not detect if the state of 
the design is currently corrupted or not, and the scrubbing process takes extra and 
undesired power due to the internal commutations of the transistors. One goal of the 
design is to optimize time and power consumption. 

 Mitigation with scrubbing is not enough, because data remains already corrupted 
after the soft reconfi guration, so it is necessary to introduce another mitigation tech-
nique, in this case, focused on the repairing of data. 

 Several platforms have been created, mainly for the measurement of the global 
sensitivity of a design to SEE in a particular FPGA device. The main goal consists 
in studying the design behavior when the device is confi gured, and then reconfi gure 
it in a blind manner. The number of errors found versus the number of injections is 
considered as a measurement of how reliable, running in this device, the circuit 
is. This is a very ineffi cient mechanism due to the large amount of confi guration bits 
unrelated to the design. These bits are sensitive from the point of view of the device, 
but most of them are not, considering the confi gured action. Many of the injections 
can be saved if we can distinguish between the related bits and the unrelated. 

 Few platforms have been developed to test designs running on the SRAM-FPGA 
(e.g. FLIPPER tool) [ 11 – 15 ], and few correct approaches have been addressed 
because a platform is needed for the exact device that is going to be fl own in the 
fi nal application. One solution is to study the design as a hard macro of the design, 
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a part of the identical confi guration that will integrate the fi nal device. This is a 
method to migrate the design within the same technology.  

4.2.3     Static vs. Time Zero Analysis 

 There are approaches that provide information about the reliability of the design just 
by studying the possible related bits. This is done by software tools like STAR [ 13 ] 
and the Xilinx  bitgen  routines for essential bits determination [ 16 ]. The former goes 
ahead, because it provides rules for a new placement that diminishes the number of 
critical confi guration bits: the RORA tool [18]. 

 Static analysis provides information regardless of whether a particular resource 
is used or not in the execution of the design. Of course this is the best situation but 
when the user has to take actions for reducing the number of critical resources the 
situation is not clear, as there is not idea about the sensitivity of each zone of the 
circuit to make it more reliable. One possible solution is the use of the SRAM- 
FPGA executing the design with a representative application workload. The 
confi guration is modifi ed in the clock cycle zero and the effect of the fault is 
recorded during the workload if there is any propagation path. 

 If any critical point is not detected, either its effect remains latent within the 
circuit or the resources are not well stimulated by the workload [ 5 ]. 

 Time zero analysis is less restrictive and more realistic than the static one. 
It identifi es the part of the circuit that can propagate faults. It consists of injecting 
the fault before the execution of the circuit is started. Normally it starts with a reset 
assertion and if the circuit is modifi ed by the fault in the confi guration, the fault is 
propagated during the workload to any primary output. Platforms watch this 
sequence of values and detect any anomaly or wrong value. If this is done, the injec-
tion is representative of an error rate for a specifi c implementation of the circuit and 
workload. 

 There are few but well known platforms described in the literature. All of them 
are devoted to the study of fault injection rates injecting using several techniques 
and internal resources of the Xilinx FPGA. 

 Again the next step is to provide rules for a new and more reliable implementa-
tion. The work should be done iteratively to minimize the criticality of the imple-
mentation. Next section will present the option of dynamic injection. The idea is to 
open the injection to any clock cycle of the workload.   

4.3     FT-UNSHADES2 in FPGA Mode 

 Authors intentionally have omitted the platform FT-UNSHADES2 [ 17 ]. This plat-
form traditionally has been described and classifi ed in the set of tools dedicated to 
test SEE oriented to inject faults in the user registers that belong to the custom logic, 
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but in this section we are going to describe the adaptation of the tool to the test of 
designs implemented in FPGAs, so the injection procedures are produced over the 
 confi guration bits , instead of the  user registers  of the FPGA. 

 The principle of the method is essentially the same: use partial reconfi guration to 
read, modify and write a particular frame of the confi guration map where the CB is 
allocated. The identifi cation of the injection point provides a rich information about 
the reliability of the design, or some critical parts of it (Fig.  4.1 ).

   The adaptation of one method, called  ASIC mode,  to the other, called  FPGA 
mode,  is at API level. Very low level commands are basically the same. The struc-
ture of the system is still based on two identical FPGAs running in parallel, synchro-
nized, both receiving the same sequence of stimuli, and only one of them receiving 
the injections. The comparison is cycle by cycle at the primary outputs. This proce-
dure is performed repeatedly, always with a known starting state at cycle 1. Every 
execution of the workload is called  run . At each run one or several injections are 
performed selecting the target registers (WHERE and HOW) and clock cycles 
(WHEN) to inject. 

 The effect of a fault can be inspected either by on line comparison with the 
primary outputs coming from the twin FPGAs ( error  faults) or by reading the 
internal state of all the registers of both FPGAs and comparing their values one to 
one. This method detects the internal  latent  faults. 

 In  ASIC mode  the faults are injected only in user registers, faults can be compen-
sated through functional structures, so they can be repaired if the circuit is prepared 
to. At every injection cycle, the signal reset is asserted in order to initialize the 
registers content. 

 In  FPGA mode  the faults are injected in CBs. The abundance or possible target 
bits (tens of millions) makes the problem very diffi cult to deal with if there is no 
previous selection of these CBs. Xilinx has provided a tool very similar to STAR 
that extracts the CBs that are related to the actual implementation of the design. The 
rest of CBs are unrelated and should not affect to the design behavior if they receive 
a bit fl ip. The tool provides in fact two fi les, one marking the bits that are related and 

  Fig. 4.1    Hardware for 
injection model       
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other with the theoretical value of those confi guration bits. These fi les are part of a 
mechanism of on-line repairing of the SEE in the confi guration plane. Xilinx has 
developed this procedure for Virtex 5, 6 and 7 families. 

 FT-UNSHADES2 has taken these fi les as reference for the FPGA mode for a 
technique based on inject and repair cycles. The points of injection are determined 
by the essential bits fi le and these bits are the ones attacked. The method is based on 
the idea that when a CB is attacked, this change of value will not affect another 
confi guration bit, otherwise the technique is not strictly valid, because the effect of 
a fault would remain present in the FPGA after a reset. The attack model is described 
then, as follows:

    1.    Selection of the confi guration bit and clock cycle that will be attacked (WHERE 
and WHEN).   

   2.    Initial reset, and execute the application until the injection instant.   
   3.    Using partial reconfi guration, the frame that corresponds to the CB is retrieved 

from the FPGA   
   4.    (alt) this step can be substituted by the theoretical value coming from the .ebc fi le.   
   5.    Write the opposite value in the desired CB   
   6.    Resume the execution and compare primary output values.   
   7.    While execution, compare with Gold theoretical values.   
   8.    If a discrepancy is found or end of run is reached, repair the CB, following the 

step 3.     

 This mode is repeated in many execution runs following the procedure estab-
lished in the method of injection selected. If time zero is selected, then the injection 
is produced just at the beginning of the experiment. If time is a variable, then the 
system is driven to any clock cycle following the programmed selection pattern 
(Fig.  4.2 ).

   The user can proceed to send a complete confi guration at any certain number of 
injections in order to refresh it and erase any unexpected lateral effect. 

 Also the system allows avoiding the step 7 and studying possible accumulated 
effects. 

  Fig. 4.2    Dynamic injection execution model. ( a ) Time zero injection ( b ) Variable time injection       
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 The most important difference between this system and other developments is 
the consideration of the time as variable. It is very important to dedicate effort to the 
elaboration of the test vectors, because they must be representative of the real appli-
cation, in order to make the results of the test more realistic and valuable. 

 The second advantage of the current platform is that the designer can compare 
between how the faults behave in the same framework from the point of view of 
ASIC mode and FPGA mode, and compare both. This is especially interesting, 
because in normal fl ight, the faults are detected using a specifi c detection circuit and 
monitored at any primary output. 

 The current system is based on Virtex 5 technology, and all the transactions are 
performed through the SelectMap port in parallel mode.  

4.4     A Case of Study 

 This chapter will explain a case of study that characterizes the system. All the results 
come from the FT-UNSHADES2 platform. We have developed a set of examples to 
characterize the process. The examples  b01 ,  b13 ,  b20  and  keccak  sponge function, 
the former are complex circuits taken from the ITC99 benchmark suite and the latter 
is part of a cryptocodec found in internet. All of them are examples that have avail-
able the high level description code with a stimuli set. In the case of keccak example 
we have used two different sets of vectors to show the dependence of the observ-
ability on the application. 

 Previous to the experimental activity a study about the essential bits has been 
performed. For a blind attack, a complete sweep of all the used frames and all the 
confi guration bits has been performed injecting in a blind way, say, if they are in the 
subset of essential bits or not. Then the essential bits were attacked. All the critical 
bits were detected in both subsets matching almost perfectly, with the unique differ-
ence of several bits in some frames of the blind sweep, corresponding to the LUTs 
and FF contents, that are not part of the essential bits. This experiment was per-
formed over  b01  and  b13  circuits. 

 The results of these previous experiments confi rm that the essential bits are a 
good subset for an effective fault injection campaign, as promised by Xilinx. 
However there are user memories that are not included in the essential bits subset. 
These bits should be added to those bits that are critical. 

 The fi rst analysis has been performed to compare static analysis versus dynamic 
analysis. This experience pursues to compare the basic injection process. The 
number of injection points is given by the essential bits static analysis generated 
from the  bitgen  tool. In our examples set, the target device is XCV5FX70T, con-
taining 18,936,096 bits. 

 For all the benchmarks, the fi rst cycle is the assertion of the reset signal. This 
vector erases the possible functional value stored in previous execution runs and 
starts the current one from a known state (Table  4.1 ).
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   The pair workload/circuit is fi rstly tested as “ASIC mode” in order to test the 
fault propagation capabilities of each benchmark. The keccak example is used twice 
with different input vector databases. One is a single frame of data, and the second 
comprises ten frames (Table  4.2 ).

   This experiment shows how the circuit structures propagate the faults. B01, B13 
and keccak are examples that provide a high level of observability of faults, because 
they can be easily propagated to the primary outputs. It is very important to test, for 
each design-stimuli pair, their respective fault propagation capacity. Attacking the 
user registers, it is possible to measure this effect. 

 The keccak example shows that there is a dependence with how the stimuli set 
helps this propagation. 

 The next table shows the examples injecting only over those frames and confi gu-
ration bits that belong to the CLBs. The injection technique implemented is the 
previously described inject and repair one. Table  4.3  shows the results for  Time Zero  
experiment:

   For comparison, the same experiment has been made but randomly selecting the 
injection  cycle . A small decrease of the percentage of detected faults is expected, 
due to faults that could not have enough clock cycles to propagate to the outputs. 
Table  4.4  shows this effect with a smaller percentage of errors in all the examples. 
This situation is much more realistic than the previous one.

 Benchmark  Registers  Workload  Essential bits 

 b01  10  245  3,216 
 b13  66  7,640  14,572 
 b20  434  10,933  475,230 
 keccak1  1,683  856  622,168 
 keccak10  1,683  8,798  622,168 

  Table 4.1    Characterization 
of each benchmark  

 Benchmark  Inject.  Errors  Percentage  Time (s) 

 b01  10,000  7,666  76.6  5 
 b13  10,000  8,072  80.7  42 
 b20  100,000  16,105  16.1  428 
 keccak1  50,000  45,421  90.8  27 
 keccak10  50,000  46,420  92.0  239 

  Table 4.2    ASIC mode results  

 Benchmark  Inject.  Errors  Percentage  Time (s) 

 b01  10,000  6,765  67.6  25 
 b13  10,000  5,960  59.6  426 
 b20  200,000  1,525  0.75  4,840 
 keccak1  622,168  40,578  6.52  3,637 
 keccak10  622,168  49,190  7.91  30,896 

  Table 4.3    FPGA mode in 
time zero  
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   The keccak10 experiment is performed about three times per confi guration bit. 
This shows that the experiment becomes similar to the time zero one. As the 
percentage shows, the time zero will be an upper bound of the real experiment, 
more pessimistic than the random time experiment. 

 The fi rst conclusion is that not all the essential bits present errors. That means 
that the essential bit set is compounded by two subsets: the fi rst one, is the critical 
ones, where faults introduce errors in the processing data and are detected at the 
outputs affecting to the processed data. The second is related to those bits whose 
error produces perturbations only in the propagation time of the connections, so 
they only change the parasitic capacitances of the wires. They are diffi cult to detect, 
but easy to prevent. In fact the critical ones are the candidates of being measured 
and if possible, mitigated. They give the real vulnerability degree of the design 
running in the current FPGA. The fi rst group needs to be repaired using any logical 
mitigation technology plus the necessary scrubbing process to erase the errors. 

 These results also show that the FPGA mode is strongly related to the ASIC 
mode. The global observability of a design shows the propagation capacity of a 
particular design to the detection mechanism, that in these examples are simply the 
primary outputs. The experiments over B01, B13 and keccak circuits have high 
controllability and observability so it is expected that faults have an easy propaga-
tion to primary outputs. However B20 has a bad architecture for propagating faults. 
These numbers do not show that there is a high difference between the time zero 
experiment and dynamic experiment, but they show that the capacity of a design to 
propagate the perturbation is a very important measurement of its behavior.  

4.5     Conclusions 

 This paper presents, for the fi rst time, a fl exible platform that is ready to perform 
fault injection over designs that are synthesized specifi cally for FPGA. The paper 
discusses the differences between the ASIC and FPGA modes, where there is a 
connection between them. Also this paper shows the procedure for the robustness 
assessment of a design, and how to implement the design in one device and translate 
it to another that belongs to the same family. It is also shown the infl uence of the 
workload in the processing data, showing that the workload has to be representative 
of the fi nal functionality. This paper shows how different models of SEU tests can 
offer results depending on the timing scheme of the study. 

 Benchmark  Inject.  Errors  Percentage  Time (s) 

 b01  10,000  6,275  62.7  26 
 b13  10,000  5,366  53.6  440 
 b20  200,000  1,239  0.60  4,937 
 keccak1  1,000,000  49,131  4.91  5,936 
 keccak10  2,000,000  153,612  7.68  99,671 

  Table 4.4    FPGA mode in 
random time  
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 Further work will study larger and more complex designs where new conclusions 
can be extracted.     
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