
135© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_10

 Chapter 10
 Multiple Fault Injection Platform for SRAM-
Based FPGA Based on Ground-Level
Radiation Experiments

 Jorge Tonfat , Jimmy Tarrillo , Lucas Tambara , Fernanda Lima Kastensmidt ,
and Ricardo Reis

 Abstract Fault injection by emulation is a well-known method to analyze the
reliability of a circuit. SRAM-based FPGAs provide the hardware infrastructure to
implement fault injectors taking advantage of dynamic partial reconfi guration. This
chapter presents the details of a Multiple Fault Injection Platform and the analysis
of the configuration memory upsets of the FPGA. Results of fault injection
campaigns are presented and compared with accelerated ground-level radiation
experiments.

10.1 Introduction

 Field-Programmable Gate Arrays (FPGAs) nowadays are not only used for ASIC
prototyping but also to replace them in some ground-level and space applications.
SRAM-based FPGAs take advantage of the latest semiconductor fabrication pro-
cesses, allowing high-density logic integration. This scenario allows them to achieve
expected performance levels in a variety of applications. Moreover, the reconfi gu-
rability feature of SRAM-based FPGAs allows the same device to perform multiple
functionalities during its lifetime.

 These characteristics make SRAM-based FPGAs attractive to critical applica-
tions. But since confi guration bits are stored into volatile SRAM cells, radiation
effects can generate single or multiple bit-fl ips in the confi guration memory. Such
single event upsets (SEUs) or multiple bit upsets (MBUs) can induce functional
errors in the implemented design. In order to tolerate these faults, many techniques
were proposed in the literature. However, it is necessary to validate the effi ciency of
these techniques closest to the real effect as possible, but also considering the
controllability, observability and cost.

 Jimmy Tarrillo • Lucas Tambara • Ricardo Reis • J. Tonfat (*) • F. L. Kastensmidt
 Instituto de Informática , Universidade Federal do Rio Grande do Sul (UFRGS) ,
 Porto Alegre , Brazil
 e-mail: jorgetonfat@ieee.org; fglima@inf.ufrgs.br

mailto:jorgetonfat@ieee.org
mailto:fglima@inf.ufrgs.br

136

 Fault injection by emulation is an important method to predict in the early stages
of the design phase the susceptibility of the design under upsets. Emulation of SEUs
and MBUs by fl ipping the confi guration bits on an FPGA is an attractive technique
to evaluate the behavior of a design before it is working in radiation environments.
In addition, fault injectors can take advantage of partial reconfi guration capabilities
of FPGAs to reduce even more the time to inject upsets. The main goal of this
approach relies on the fact that it allows fast injection campaigns, once the circuit
under test (CUT) executes at the full FPGA speed and not on simulation speed.

 Moreover, the amount of injected faults per unit of time (upset rate) is higher
compared to radiation tests on particles accelerators because a bit-fl ip is directly
injected in the memory cell. The control of the test is also superior compared to a
radiation test, since a precise location is fl ipped (a known bit), which allows the user
to reproduce a real radiation test.

 The fault injection can be performed by an external or internal programmable
port of the FPGA. The internal confi guration access port (ICAP) [1] provides some
advantages such as the possibility to reconfi gure frame by frame without the neces-
sity of using input/output pins. The ICAP can be controlled by the SEU controller
macro [2] and an embedded soft-core as PicoBlaze; or by a specifi c control design
developed by the user [3]. SEUs can be injected in the bitstream in random loca-
tions, sequentially (every confi guration bit or confi guration control register is
fl ipped in sequential order), or user-defi ned.

10.2 Related Works

 Other fault injection platforms are available to inject SEU in SRAM-based FPGAs
as described in [4]. FLIPPER [5] that is targeted to Virtex-2 devices is one example.
It uses a scheme based on a control motherboard and a DUT board. The fault injec-
tor is implemented in the mother-board FPGA and a host PC. The DUT board
contains the target FPGA. The confi guration memory of this FPGA is modifi ed with
partial reconfi guration using an external confi guration port. In [6] the fault injector
and the DUT are implemented in the same FPGA and in order to inject faults a host
PC creates faulty bitstreams. FT-SHADES [7] and [8] are other examples of fault
injectors but in this case they use an internal injection approach using the ICAP to
inject single faults in the bitstream.

 With internal fault injection [7 – 9], we do not need to reconfi gure the entire
FPGA, so the fault injection speed is increased, but a problem arises. The quality of
the fault injection can be reduced by fault injection side-effects as shown in [9].
A fault injected in the confi guration memory can affect the fault injector itself.
So the fault injection can stop unexpectedly or even worst, the fault injector can
wrongly report that a fault is injected.

 In this work, we present a multiple fault injector platform able to emulate SEU
and MBU in the confi guration memory bits of an SRAM-based FPGA. Our goal is
to replicate the effects of radiation to validate protection techniques and improve the

J. Tonfat et al.

137

radiation test methodologies and test plans under accumulated multiple faults.
The proposed Fault Injection Platform uses the ICAP module to fl ip a confi guration
bit, and takes the bit location from an external database bank. The bit-fl ip locations
were taken from previous experiments in neutron radiation test from ISIS facilities
[10] and also generated by a MATLAB pseudo-random generator. During the fault
injection procedure, the fault injector takes the necessary actions to guarantee a correct
fault injection and minimize the side-effects improving the quality of the results.

10.3 Hardware Implementation of the Multiple Fault
Injection Platform

 The proposed Multiple Fault Injection Platform is composed of a single SRAM-
based FPGA, a fl ash-based external memory and a host computer. We use the
Digilent Genesys prototype board containing a Xilinx Virtex-5 FPGA, part
XC5VLX50T-FFG1136 and other resources. For our fault injection platform, we
use the external fl ash memory connected to the FPGA to store the bit-fl ip locations.
This memory stores the SEU locations database bank. A block diagram of the
Multiple Fault Injection Platform is shown in Fig. 10.1 .

 The FPGA contains the DUT (Design Under Test) and the fault injector. It is
well-known that internal injectors suffer from side-effects because an injected fault
can provoke an error on the injector itself. But to mitigate these effects, the fault
injector can avoid bit-fl ips in its confi guration bits.

 The fault injector is composed of an ICAP controller, a fl ash memory controller
and a PicoBlaze 8-bit soft processor.

 Fig. 10.1 Architecture of the Multiple Fault Injection Platform

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

138

 The main function of the PicoBlaze is to control the execution of the fault
injection campaign. The ICAP controller manages all the commands to read and
write frames from the confi guration memory using the ICAP. The ICAP is the inter-
face that enables access to the confi guration memory from an internal circuit in the
FPGA. With a suitable set of commands, we can modify the confi guration memory
without stopping the application running in the FPGA. This method is also known
as dynamic partial reconfi guration.

 In order to control the ICAP, we must understand the confi guration memory of
the FPGA and the way to read and write in this memory.

10.3.1 Organization of Virtex-5 FPGA Confi guration Memory

 The FPGA can be seen as a device with two layers. One is the logic layer that
includes all the user application resources such as the Confi gurable Logic Blocks
(CLB), the Block RAMs, I/O blocks, etc. The other is the confi guration layer that
comprises the confi guration memory and the associated access ports.

 Understanding the organization of the confi guration memory will allow us to
know the relation between confi guration bits and resources of the FPGA.

 The following information is based on the Virtex-5 Confi guration User Guide [1].
 The FPGA confi guration memory is composed of small memory segments called

 confi guration frames . So a confi guration frame is the smallest addressable segment
of the FPGA confi guration memory, and the frame size varies among FPGA fami-
lies. In the case of Virtex-5, it is composed of 41 words of 32 bits (1,312 bits).

 Each frame has a unique address that is related to the physical position in the
FPGA fl oorplan. Each frame address has fi ve fi elds. Each fi eld is described in
Table 10.1 and corresponds to the organization of the FPGA fl oorplan.

 Due to this organization, frame addresses are not consecutive. A graphical
description of the organization of the fl oorplan is shown in Fig. 10.2 .

 The fl oorplan is divided into two main regions: top and bottom. Each region is
organized in rows and columns. One frame has the height of a row, and the columns
are organized according to the type of resource (ex. CLB, BRAM, DSP, etc.). Each

 Table 10.1 Frame address fi eld descriptions

 Field Description

 Type Defi nes the type of frame. Can be a confi guration frame (type 0), BRAM
content (type 1) and other two types not well documented in the literature

 Top/bottom Defi nes the half (top or bottom) of the FPGA where the frame is located
 Row Defi nes the frame row. The row number increases from the middle of the

FPGA
 Column Defi nes the frame column. A column is defi ned by the type of resource

(ex. CLB, DSP, etc.)
 Frame in column Defi nes the frame position inside the column

J. Tonfat et al.

139

column contains a group of frames. The number of frames on each column depends
on the type of column as shown in Table 10.2 .

 Depending on the device selected, some of the frames in this organization are not
implemented. This case is common for IOB columns, where not all the rows of an
IOB column have the corresponding frames since the IOB resources depend on the
number of pins of the FPGA.

10.3.2 Methodology for a Fault Injection Campaign

 With the information about the organization of the confi guration memory and the
specifi c commands sequence to read and write frames, we can fl ip any bit of the
confi guration memory thus emulating the effect of an SEU.

 Fig. 10.2 Example of the organization of the confi guration memory of a Virtex-5 FPGA

 Table 10.2 Number of
frames per column

 Column type Number of frames

 CLB 36
 DSP 28
 Block RAM (confi guration) 30
 IOB 54
 CLK 4

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

140

 Figure 10.3 shows the procedure executed by the ICAP controller to inject one
fault into the confi guration memory. The only information needed to fl ip a bit is the
selected frame address and the selected bit inside this frame. This information
comes from the SEU database stored in the external memory and is managed by the
PicoBlaze soft processor. It is important to mention that this method can also
emulate intra-frame multiple bit-fl ips.

 Since the smallest segment of the confi guration memory is a frame, the ICAP
controller needs to read the entire frame and store it in a temporal buffer. Then the
selected bit(s) position(s) are fl ipped. Finally, the modifi ed frame is written back to
the confi guration memory. In order to verify the correct insertion of the fault, the
frame is read back again and compared to the modifi ed frame stored in the temporal
buffer. If differences are found between them, the ICAP controller reports a fault
injection error.

 Most of the time injection errors are due to the inexistence of the selected frame
address in the FPGA as mentioned in the previous section. This type of error injec-
tion does not interfere with our results since these missing frames cannot be fl ipped

 Fig. 10.3 Flow diagram of the procedure to inject one fault

J. Tonfat et al.

141

by real SEUs. The ICAP controller reports failed injections to take into account this
information when the fault campaign report is generated.

 So a complete fault injection is completed in 310 clock cycles. With a clock
frequency of 50 MHz, one injection is completed in 6.2 μs.

 The PicoBlaze manages the execution of a complete fault injection campaign.
The procedure is described in Fig. 10.4 . The procedure starts with the defi nition of
the parameters of the campaign. These parameters are the start memory position of
the SEU database, the fault injection rate and the defi nition of the fault-free area.

 Fig. 10.4 Flow diagram of the procedure to control a fault injection campaign

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

142

 The start memory position of the SEU database is the reference point to the
PicoBlaze in order to read consecutively from this point the bit-fl ip data stored in the
external memory. The fault injection rate defi nes the amount of faults injected per
time unit. This parameter can be used to emulate different radiation environments.

 The defi nition of the fault-free area is to protect the circuits that can interfere
with the execution of the fault injection campaign. For instance, the fault injector
area needs to be included in this protected area. This method minimizes the possi-
bility of a functional error in the fault injector itself that is one of the side-effects of
internal fault injection. Other circuits that can be included are, for example, the
circuit that controls the execution of the DUT. Since a functional error in this block
can generate a false functional error of the DUT, we must protect this block from
bit-fl ips. The fault-free areas need to be in agreement with the placement constraints
set during the design implementation phase.

 So when the fault injection campaign starts, each SEU position read from the
external memory is analyzed to determine if it is inside the fault-free area. When the
bit-fl ip position is inside the protected area, the bit-fl ip is not injected, and the next
SEU position is loaded. If not, the PicoBlaze commands the ICAP controller to
inject the corresponding fault.

 At the top level, the host PC is in charge of the execution of multiple fault
injection campaigns. The procedure is shown in Fig. 10.5 . The fi rst step is to set the
corresponding parameters.

 The fi rst parameter is the maximum time for a single fault injection campaign.
This time is variable and depends on the DUT and the fault injection rate. This set-
ting helps to determine when a fault injection campaign reaches an unknown state.

 The start memory position of the SEU database defi nes the starting point of the
fi rst fault injection campaign. The subsequent campaigns will start from the last
injected SEU position. In this way, we assure different SEU patterns for each fault
injection campaign.

 The fault injection rate and fault-free areas are also defi ned. These parameters
can be fi xed for all the fault injection campaigns or can be variable among campaigns
according to the user needs.

 When all parameters are set, the host PC confi gures the FPGA with the DUT and
the fault injector module through the JTAG interface and the fault injection
campaigns begins.

 To recognize the end of a fault injection campaign, it is necessary a DUT end
condition event. In our case, we want to test the maximum number of accumulated
faults that a design can tolerate before it starts to fail. When it reaches a certain
condition, the DUT sends a signal that is captured by the host computer. It also
receives the information of SEU positions injected and the information when a fault
injection has failed.

 The fault injector was implemented into the XC5VLX50T FPGA on the Genesys
Digilent board and the synthesis result is detailed in Table 10.3 .

J. Tonfat et al.

143

 Fig. 10.5 Flow diagram of the procedure to control multiple fault injection campaigns

 LUTs Registers Block RAMs

 PicoBlaze soft processor 147 76 1
 Flash memory controller 86 68 0
 ICAP controller 705 417 1
 Total 938 561 2

 Table 10.3 Resource
utilization of the fault injector

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

144

10.4 Methodology for Capturing and Modeling Single Bit
Upsets

 The injected faults are modeled mainly with two different approaches:

• By using a radiation database from previous radiation experiments.
• By using a computer generated database based on a pseudo-random generator

with a uniform distribution.

10.4.1 Modeling Using Data from Previous Ground-Level
Radiation Experiments

 The database is composed of multiple and accumulated faults in Virtex-5
FPGA. These faults were obtained from previous radiation experiments at ISIS
facilities of Rutherford Appleton Laboratory (Didcot, United Kingdom).

 During the tests, bit-fl ips in the confi guration memory were detected using a
readback procedure as described in Fig. 10.6 . It is important to mention that this
procedure logs bit-fl ips in the confi guration memory and the content of block
RAMs. So we use the mask fi le (generated by Xilinx tools) to fi lter our logs from
bit-fl ips in block RAMs and bit-fl ips due to shift registers or LUT RAMs used by
the DUT.

 Fig. 10.6 Procedure to capture bit-fl ips in the confi guration memory

J. Tonfat et al.

145

 Based on our knowledge of the FPGA confi guration memory and the readback
bitstream, we can precisely determine the frame address and bit position of each
SEU registered during the experiment. The location of the bit-fl ip is the information
needed by the fault injector to inject a bit-fl ip.

 We developed a software tool to automate this process. The tool takes the text
reports from the radiation experiments and creates the binary fi le for the external
fl ash memory automatically. Figure 10.7 shows a screenshot of the GUI of this tool.

 In our previous radiation experiments, more than 2,600 SEUs were identifi ed.
This information is stored in the external fl ash memory. In the case of the Genesys
board, it has a fl ash memory of 256 Mbit (organized as 16-bit by 16 Mbytes) for
non-volatile storage of FPGA confi guration fi les. We used three memory addresses
to store the information of each SEU. The fi rst two positions store the frame address
and the last position store the bit position inside the frame. So, up to fi ve million
SEUs can be stored in this memory.

10.4.2 Modeling SEUs Using Computer Generated Data

 Based on the analysis of the accumulated bit-fl ips obtained from radiation experi-
ments at ISIS, we also generate bit-fl ips locations that resemble the original ones.
We achieve this using MATLAB and a pseudo-random generator with a uniform

 Fig. 10.7 GUI of the tool to create SEU databases

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

146

distribution. Figure 10.8 shows a graphical comparison between collected bit-fl ips
and generated bit-fl ips. Each bar represents the number of accumulated bit-fl ips
per resource in the FPGA (ex. 1 CLB). The color scale is only for visualization
purposes. In the case of the Virtex-5 XC5VLX50T FPGA, the resources form a
matrix of 120 rows by 39 columns.

 The option to generate bit-fl ips is also included in the same tool that creates the
SEU database from radiation experiments.

10.5 Fault Injection Campaign Results and Comparisons

 In order to validate the fault injection platform, we have evaluated one case study
design. Then we have compared the fault injection results with the neutron radiation
experiments results.

 This design implements an N-modular redundancy (nMR) scheme as a technique
to tolerate multiple fault accumulation. The nMR is composed of n functionally
identical modules, which receive the same m -bits input and deliver p -bits output to
the Self-Adapted voter (SAv), Fig. 10.9 [11].

 The SAv receives n × p bits from all modules and generates the fault-free p -
output , n -error status fl ags (ESF), and a non-masked fault signal (NMF). In this
scheme, the system allows the accumulation of defective modules, until remaining
at least two modules without fault. The SAv is a majority voter, considering as
population fault-free modules.

 The implemented design is a 7-MR adder chain. The architecture is shown in
Fig. 10.10 . The criteria for selecting this design were the low logic masking of faults

 Fig. 10.8 Comparison of bit-fl ips from radiation experiments and MATLAB generated. (a) 50
ISIS bit-fl ips, (b) 50 MATLAB generated bit-fl ips

J. Tonfat et al.

147

and the ease to scale. This design has a control module to manage the input pattern
generator of the adder chains and to monitor the correct response of the 7-MR system.
When a functional error is detected, the control block sends error signals to the host
PC, and the fault injection campaign ends.

 Figure 10.11 shows the fi nal placement of the 7-MR adder chain and the fault
injector. The areas of the fault injector and the control module are included in the
fault-free area of the fault injector.

 The objective of the test is to determine if the fault injector can predict the toler-
ance of this design under neutron radiation. So the test reports the number of accu-
mulated faults needed to provoke the failure of each of the seven modules. The end
condition of the test is when only two correct modules remain.

Module 1

Module 2

Module 3

…..

Module n

S
A
v

m

p

p

p

Error status
flag (ESF)

I
n
p
u
t

output

m

m

m

p

p

Fault-free
output (FFO)

SRAM-based FPGA

Non-masked
fault (NMF)

MOD
1

MOD
2

MOD
3

MOD
n

 Fig. 10.9 nMR-based
technique with SAv voter

 Fig. 10.10 Block diagram of the adders chain DUT and the fault injector

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

148

 Figure 10.12 presents the results of the fault injection campaigns. We run 25
injection campaigns and it was injected an average of 98.33 faults per campaign.

 Figure 10.13 shows the results from the radiation experiment. Due to beam time
restrictions, we were able to run the test few times.

 And Fig. 10.14 shows the comparison between the results from fault injection
and radiation experiments. Both present similar average accumulated faults for each
of the faulty modules count.

10.6 Conclusions

 This work presents a multiple fault injection platform to evaluate accumulated SEU
effects in Virtex-5 FPGA. The platform uses bit-fl ip positions generated by a
pseudo-random generator or taken from a database composed of pre-collected real
bit-fl ips location detected from previous neutron accelerated experiments at ISIS
facilities. The fl ipped bits distribution of real radiation test and fault injector were
shown and analyzed. Also, the effects of accumulation SEUs on a design using real

 Fig. 10.11 Placement of the adders chain DUT and the fault injector

J. Tonfat et al.

149

 Fig. 10.12 Number of accumulated faults needed to provoke multiple faulty modules under fault
injection for the adder chain case-study

 Fig. 10.13 Number of accumulated faults needed to provoke multiple faulty modules under radia-
tion experiment for the adder chain case-study

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

150

radiation test and fault injection were tested. Results show the real capability of the
platform proposed to predict the effects of radiation in FPGA designs and mitigate
successfully the side-effects related to internal fault injectors.

 References

 1. Xilinx, UG191 (2012) Virtex-5 FPGA confi guration user guide, 19 Oct 2012
 2. Chapman K (2010) SEU strategies for Virtex-5 devices. XAPP864 v2.0
 3. Tarrillo J, Escobar FA, Lima Kastensmidt F, Valderrama C (2014) Dynamic partial reconfi gu-

ration manager. In: 2014 IEEE 5th Latin American symposium on circuits and systems
(LASCAS), 25–28 Feb 2014, pp 1–4

 4. Alexandrescu D, Sterpone L, Lopez-Ongil C (2014) Fault injection and fault tolerance meth-
odologies for assessing device robustness and mitigating against ionizing radiation. IN: 2014
19th IEEE European test symposium (ETS), 26–30 May 2014, pp 1–6

 5. Alderighi M, Casini F, Citterio M, D’Angelo S, Mancini M, Pastore S, Sechi GR, Sorrenti G
(2008) Using FLIPPER to predict irradiation results for VIRTEX 2 devices. In: Radiation and
its effects on components and systems (RADECS), pp 300–305

 6. Sterpone L, Violante M, Rezgui S (2006) An analysis based on fault injection of hardening
techniques for SRAM-based FPGAs. IEEE Trans Nucl Sci 53(4):2054–2059

 7. Guzman-Miranda H, Tombs JN, Aguirre MA (2008) FT-UNSHADES-uP: a platform for the
analysis and optimal hardening of embedded systems in radiation environments. In: IEEE
international symposium on industrial electronics, ISIE 2008, pp 2276–2281

 8. Nazar GL, Carro L (2012) Fast single-FPGA fault injection platform. In: 2012 IEEE interna-
tional symposium on defect and fault tolerance in VLSI and nanotechnology systems (DFT),
3–5 Oct 2012, pp 152–157

 Fig. 10.14 Comparison between fault injection and radiation experiment results of adder chain
case study

J. Tonfat et al.

151

 9. Kretzschmar U, Astarloa A, Jimenez J, Garay M, Del Ser J (2014) Compact and fast fault
injection system for robustness measurements on SRAM-based FPGAs. IEEE Trans Ind
Electron 61(5):2493–2503

 10. Violante M, Sterpone L, Manuzzato A, Gerardin S, Rech P, Bagatin M, Paccagnella A,
Andreani C, Gorini G, Pietropaolo A, Cardarilli G, Pontarelli S, Frost C (2007) A new hard-
ware/software platform and a new 1/E neutron source for soft error studies: testing FPGAs at
the ISIS facility. IEEE Trans Nucl Sci 54(4):1184–1189

 11. Tarrillo J, Rech P, Kastensmidt F, Valderrama C, Frost C (2013) Neutron cross-section of
N-modular redundancy technique in SRAM-based FPGAs. In: 2013 14th European confer-
ence on radiation and its effects on components and systems (RADECS). IEEE, Oxford,
pp 1–6

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

	Chapter 10: Multiple Fault Injection Platform for SRAM-­Based FPGA Based on Ground-Level Radiation Experiments
	10.1 Introduction
	10.2 Related Works
	10.3 Hardware Implementation of the Multiple Fault Injection Platform
	10.3.1 Organization of Virtex-5 FPGA Configuration Memory
	10.3.2 Methodology for a Fault Injection Campaign

	10.4 Methodology for Capturing and Modeling Single Bit Upsets
	10.4.1 Modeling Using Data from Previous Ground-Level Radiation Experiments
	10.4.2 Modeling SEUs Using Computer Generated Data

	10.5 Fault Injection Campaign Results and Comparisons
	10.6 Conclusions
	References

