
3© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_1

Chapter 1
Radiation Effects and Fault Tolerance
Techniques for FPGAs and GPUs

Fernanda Kastensmidt and Paolo Rech

Abstract  This book introduces the concepts of soft errors in FPGAs and GPUs.
The chapters cover radiation effects in FPGAs, fault-tolerant techniques for FPGAs,
use of COTS FPGAs in aerospace applications, experimental data of FPGAs under
radiation, FPGA embedded processors under radiation, and fault injection in
FPGAs. Since dedicated parallel processing architectures such as GPUs have
become more desirable in aerospace applications due to high computational power,
GPU analysis under radiation is also discussed.

1.1  �Introduction

Field Programmable Gate Array (FPGA) components are very attractive for aero-
space applications, as well for many applications at ground level that require a high
level of reliability, as automotive, bank servers, processing farms, and others. The
high amount of resources available in programmable logic devices can be applied to
add flexibility to the on-board computer in satellites and to the automotive industry,
for example. As FPGAs can be configured in the field, design updates can be per-
formed until very late in the development process. In addition, new applications and
features can be configured after a satellite is launched, or updated in hash environ-
ments. Modern FPGAs are System-on-Chip (SoC) composed of variety of soft and
hard processors, embedded DSP and memories and a large number of complex
configurable logic blocks able to customized to implement the user’s design.

Graphics Processing Units (GPUs), traditionally employed to accelerate graph-
ics rendering in personal computers or portable devices. In multimedia applications
reliability is not a concern as the probability of failure is pretty low and a given
number of errors are tolerated, as human eye could not distinguish them.
Nevertheless, lately GPUs start to be employed also in applications in which
reliability matters. Thanks to their efficiency, computing capabilities, and low power

F. Kastensmidt (*) • P. Rech
Federal University of Rio Grande do Sul, Porto Alegre, Brazil
e-mail: fglima@inf.ufrgs.br; prech@inf.ufrgs.br

mailto:fglima@inf.ufrgs.br
mailto:prech@inf.ufrgs.br

4

consumption compare to traditional CPUs, GPUs are in fact part of projects in the
aerospace and automotive field. GPUs parallel capabilities could be exploited to
compress images on satellites, to limit the bandwidth required to send them to
ground. Additionally, GPUs are used to implement the Advanced Driver Assistance
Systems (ADAS) that helps the driver to avoid accidents. Finally, GPUs are heavily
employed as accelerators in High Performance Computing (HPC) centers. A large
HPC center has thousands of GPUs that work in parallel, increasing significantly
the probability of having at least one GPU corrupted by radiation.

Unfortunately both FPGAs and GPUs have been found to be very sensitive to
radiation, mainly as they are fabricated in nanometric process technologies. It is
fundamental to experimentally measure the soft error rate of the available resources,
as well as the output error rate of specific applications, to evaluate if they meet the
project reliability requirements. The experimental characterization of those pro-
grammable components and GPU are mandatory to sustain its applicability under
transient faults. The test methodology and characterization of FPGAs and GPUs
under radiation is needed to appropriate select and evaluate fault tolerant techniques
to make those components more resilient to radiation. Radiation experiments,
although complex and costly, are the only known and certified way to precisely
measure the probability of failure in modern integrated circuits.

1.2  �Radiation Effects

Integrated circuits operating in radiation environment are sensitive to transient
faults caused by the interaction of ionizing particles with silicon. A particle is con-
sidered ionizing if it has the capability of dividing a quite atom into ions. Ionizing
radiation generates failures in electronic devices as the deposited charge may per-
turb a transistor state. The charge may be deposited directly (if the ionizing particle
is charged) or indirectly. Neutrons impact, for instance, generates secondary parti-
cles (alpha particles, ions, protons), which are charged and then may perturb a tran-
sistor. The interaction of the ionizing particles with the transistors may provoke
transient and permanent effects depending on the location and amount of charge
transferred (directly or indirectly) to the material as a consequence of the particle
collision with the silicon.

The effects that are caused by a single event interaction are called Single Event
Effects (SEE) and they can be transient or permanent [1]. When the SEE has a tran-
sient behavior, it is called a Soft Error, as the device is not permanently damaged.
Examples of Soft Errors are Single Event Upset (SEU) and Single Event Transient
(SET). An SEU is a bit-flip that occurs when the ionizing particle hitting a transistor
of a memory cell deposits enough change to revert the state of the cell. The memory
cell still works perfectly in the sense that a write or read operation is performed
normally, but the stored information is corrupted. When the ionizing particle hits a
logic cell, it generates a voltage spike that, if latched, leads to a SET. Again, the
logic cell is not damaged in the sense that a new operation will eventually be

F. Kastensmidt and P. Rech

5

correctly performed. It is worth noting that the fact of being Soft does not reduce the
severity of radiation-induced errors. On the contrary, the propriety of being transient
and stochastic makes Soft Errors extremely hard to be identified and corrected.
A permanent fault in a memory cell simply marks the cell as unused, while the pos-
sibility of having SEU makes the whole memory array as possible faulty. It is worth
noting that with the shrink of transistor dimensions it is possible, for one single
impinging particle, to interact with more than one transistor, generating a Multiple
Cell Upset (MCU) in memory arrays. If the corrupted bits belong to the same mem-
ory word the MCU is called Multiple Bit Upset (MBU). MBU are particularly criti-
cal as they undermine the effectiveness of Error Correcting Codes (ECC). Figure 1.1
exemplifies SEU, MBU and SET in integrated circuits.

Radiation can generate also permanent faults as Single Event Latchup (SEL),
Single Event Gate Rupture (SEGR), or Single Event Burnout (SEB). Finally, the
accumulation of particle interactions causes an effect named Total Ionizing Dose
(TID) and it represents degradation in the performance of the transistors as it modi-
fies the threshold voltage and leakage current.

The radiation environment is composed of various particles generated by sun and
stars activity [2]. The space is full of galactic cosmic rays, which are heavy ions
produced by explosion of supernovas or collisions among celestial bodies. The
atoms released, wondering around the universe, loses protons or electrons and, thus,
gain charge. Interacting with the magnetic fields of planets and stars those ions are
accelerated, reaching energies in the order of GeV. The sun produces a flux of pro-
tons and electrons, which reach the earth with low energies as they do not have
sufficient time to be accelerated.

The particles can be classified as two major types: (1) energetic particles such as
neutrons, electrons, protons and heavy ions, and (2) electromagnetic radiation (pho-
tons), which can be X-ray, gamma ray, or ultraviolet light. The main sources of
energetic particles that contribute to radiation effects are protons and electrons
trapped in the Van Allen belts, heavy ions trapped in the magnetosphere, galactic
cosmic rays and solar flares. The charged particles interact with the silicon atoms
causing excitation and ionization of atomic electrons.

Fig. 1.1  SEU and MBU in the sequential logic and SET in the combinational logic

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

6

At the ground level, neutrons are the most frequent cause of upset. Neutrons
are created by cosmic ion interactions with the oxygen and nitrogen in the
upper atmosphere. It is worth noting that while the solar wind is trapped in the
Van Allen belts due to its low energy, galactic cosmic rays are so energetic to
pass the belts and hit the upper level of the terrestrial atmosphere. The neutron
flux is strongly dependent on key parameters such as altitude, latitude and
longitude. There are high-energy neutrons that interact with the material gen-
erating free electron hole pairs and low energy neutrons. Those neutrons inter-
act with a certain type of Boron present in semiconductor material creating
others particles. Alpha particles are secondary types of particles emitted from
interactions with radioactive impurities present in the device itself or in the
packaging materials and they are the greatest concern. Materials aim to minimize
the emission of alpha particles. However, it does not eliminate the problem
completely.

As an energetic particle traverses the material of interest for instance a reverse-
biased n+/p junction, it deposits energy along its path, as detailed explained in [3].
This energy is measured as a linear energy transfer (LET), which is defined as the
amount of energy deposited per unit of distance traveled, normalized to the materi-
al's density. It is usually expressed in MeV-cm2/mg. The total number of charges is
proportional to the LET of the incoming particle. Depending on the fabrication
details and the electrical characteristics of each sensitive node such as resistance
and capacitance, different amplitude and duration of the transient voltage pulse are
generated.

1.3  �Soft Errors in FPGAs

Field-Programmable Gate Arrays (FPGAs) are configurable integrated circuit based
on a high logic density regular structure, which can be customizable by the end user
to realize different designs. The FPGA architecture is based on an array of logic
blocks and interconnections customizable by programmable switches. Several dif-
ferent programming technologies are used to implement the programmable switches.
There are three types of such programmable switch technologies currently in use:
SRAM, where the programmable switch is usually a pass transistor or multiplexer
controlled by the state of a SRAM bit (SRAM based FPGAs); Antifuse, when an
electrically programmable switch forms a low resistance path between two metal
layers (Antifuse based FPGAs); and EPROM, EEPROM or FLASH cell, where the
switch is a floating gate transistor that can be turned off by injecting charge onto the
floating gate.

Customizations based on SRAM are volatile. This means that SRAM-based
FPGAs can be reprogrammed as many times as necessary at the work site and
that they loose their contents information when the memories are not con-
nected to the power supply. The antifuse customizations are non-volatile, so

F. Kastensmidt and P. Rech

7

they hold the customizable content even when not connected to the power
supply and they can be programmed just once. Each FPGA has a particular
architecture. Programmable logic companies such as Xilinx, MicroSemi,
Aeroflex (licensed for Quicklogic FPGAs), Atmel and Honeywell (licensed
for Atmel FPGAs) offer radiation tolerant FPGA families. Each company uses
different mitigation techniques to better take into account the architecture
characteristics.

1.3.1  �Single Event Effects on SRAM-Based FPGAs

The SRAM-based FPGA is composed of an array of configurable logic blocks
(CLB), a complex routing architecture, an array of embedded memories (Block
RAM), an array of digital signal processing components (DSP) and a set of control
and management logic. The CLBs are composed of Look-up Table (LUT) that
implements the combinational logic, and flip-flops (DFF) that implements the
sequential elements. The routing architecture can be very complex and composed of
millions of pre-defined wires that can be configured by multiplexers and switches to
build the desirable routing.

The configuration of all CLBs, routing, Block RAMs, DSP blocks and IO blocks
is done by a set of configuration memory bits called bitstream. According to the size
of the FPGA device, the bitstream can contain millions of bits. The memory bits that
store the bitstream inside the FPGA is composed of SRAM memory cells, so they
are reprogrammable and volatile. When an SEE occurs in the configuration memory
bit of an SRAM-based FPGA, it can provoke a bit-flip. This bit-flip can change the
configuration of a routing connection or the configuration of a LUT or flip-flop in
the CLB. This can lead to catastrophic effects in the designed circuit, since an SEE
may change its functionality.

SEE in the configuration memory bits of an SRAM-based FPGA has a persis-
tent effect and it can only be corrected when a new bitstream is loaded to the
FPGA [4]. In the combinational logic, the effect of an SEE is related to a persis-
tent fault (zero or one) in one or more configuration bits of a LUT. Figure 1.2
exemplifies an SEU occurrence in a LUT configuration bit and in a bit controlling
a routing connection. SEE in the routing architecture can connect or disconnect a
wire in the matrix. This is also a persistent effect and its effect can be a modifica-
tion in the mapped circuit, as a logic change or a short circuit in the combinational
logic implemented by the FPGA. It can take a great number of clock cycles before
the persistent error is detected and recovery actions are initiated, as the load of a
faulty-free bitstream. During this time, the error can propagate to the rest of the
system.

Bit-flips can also occur in the flip-flop of the CLB used to implement the user's
sequential logic. In this case, the bit-flip has a transient effect and the next load of
the flip-flop will correct it.

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

8

1.3.2  �Single Event Effects on Flash-Based FPGAs

Flash-based FPGAs have a reconfigurable array composed of VersaTiles and routing
resources that are programmable by turning ON or OFF switches implemented by
floating gate (FG) transistors (NMOS transistor with a stacked gate) [5]. The FG
switch circuit is a set of two NMOS transistors: (1) a sense transistor to program the
floating gate and sense the current during the threshold voltage measurement and
(2) a switch transistor to turn ON or OFF a data-path in the FPGA (Fig. 1.3). The
two transistors share the same control gate and floating gate. The threshold voltage
is determined by the stored charge in the FG. Figure 1.3 illustrates VersaTiles used
to implement some common logic gates. The VersaTiles are connected through a
four-level hierarchy of routing resources: ultra-fast local resources; efficient long-
line resources; high-speed, very-long-line resources; and the high-performance
VersaNet networks.

Each VersaTile can implement any 3-input logic functions, which is functionally
equivalent to a 3-inputs Lookup Table (3-LUT). But it is important to highlight that
the electrical implementation of the VersaTile is totally different than the electrical

Fig. 1.2  Example of an SEU occurrence in a LUT and in the routing of an SRAM-based FPGA

F. Kastensmidt and P. Rech

9

implementation of a Lookup Table (LUT). Hence, the VersaTile may have a different
electrical behavior to variability effects with respect to a 3-inputs LUT. The
VersaTile can also implement a latch with clear and reset, or D flip-flop with clear
or reset, or enable D flip-flop with clear and reset by using the logic gate transistors
and feedback paths inside the VersaTile block. For each configuration in the
VersaTile block, the number of FG switches and transistors in the critical path
changes. Single Event Transient (SET) pulses can hit the drain of the transistor at
OFF state as presented in Fig. 1.3 provoking a transient pulse in the configuration
switches. Or it can hit the sensitive nodes of the transistors in the VersaTile provok-
ing SET or bit-flip according to the customization of the tile (Fig. 1.4). Chapter 11
is focused on the evaluation of radiation-induced error in 65 nm Flash-Based
FPGAs. Chapter 14 gives an overview of the effects induced by neutrons in Mixed-
Signal Flash-based FPGAs.

Word

Floating Gate Switch In

Switching

Switch Out

Sensing

Fig. 1.3  SET in the
Flash-based FPGA
programmable switch

Fig. 1.4  SET and SEU in the Flash-based FPGA VersaTile

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

http://dx.doi.org/10.1007/978-3-319-14352-1_11
http://dx.doi.org/10.1007/978-3-319-14352-1_14

10

1.3.3  �Single Event Effects on Antifuse-Based FPGAs

Antifuse-based FPGAs consists of a regular matrix composed of combinational
(C-cells) and sequential (R-cells) surrounding by regular routing channels. All the
customizations of the routing and the C-cells and R-cells are done by an antifuse
element (programmable switch). Results from radiation ground testing have shown
that programmable switches either based on ONO (oxide-nitride-oxide) or MIM
(metal- insulator-metal) technology are tolerant to ionization and total dose effect
[6]. Therefore, the customizable routing is not sensitive to SEU, only combinational
logic and the flip-flops used to implement the design user sequential logic are sensi-
tive to SEE.

Another well known antifuse-based FPGA is from Aeroflex and QuickLogic. Its
architecture is composed of a regular matrix of configurable logic cells used to
implement the combinational logic and flip-flops, surrounding by a regular routing
matrix. Programmable switches called ViaLink connector are used to do all the
customizations.

In order to summarize the SEU and SET effects in FPGAs, Table 1.1 shows the
susceptible parts of the architectures and classifies the effects as transient or persis-
tent, when it is needed reconfiguration to correct the fault.

1.4  �Soft Errors on GPUs

Graphics Processing Units are complex parallel computing systems that dispose of
large memory structures as L2 and L1 caches or register files, efficient Arithmetic
Logic Units (ALU), and tasks schedulers and dispatchers.

Radiation can produce Single Event Upset as well as Multiple Bit Upset in the
memory structures of a GPU. If radiation corrupts a register the process using that
register for computation is likely to produce a wrong output. The peculiarity of
being parallel makes errors in the caches to be more critical for GPUs than for tra-
ditional CPUs. In fact, the L1 cache is shared among all the parallel processes in a
Steaming Multiprocessor (SM) while the L1 is shared among all the SMs. So, an
error in the L1 cache may, in the worst case, propagate to all the parallel processes
assigned to the struck SM. Similarly, an error in the L2 cache may affect all the
processes running on the GPU [7].

Table 1.1  Summary of SEU and SET effects in FPGAs

FPGA

SEU/SET in the logic of
the configuration basic
block Routing connections

Configurable
switches

SRAM-based persistent persistent persistent
Flash-based transient no no
Antifuse-based transient no no

F. Kastensmidt and P. Rech

11

When the impinging particle hit a logic gate, it may produce a Single Event
Transient. As for SEU, the criticality and the overall effect on the output of a SET
depends on the struck node. If the SET affects a logic gate inside a single core, the
thread assigned to that core for computation will probably produce a single failure
in the output. However, if the SET corrupts the parallel processes scheduler or
dispatcher, it could affect the computation of several processes, as well as induce an
application crash or system hang [8].

To have an exhaustive evaluation of GPU sensitivity is it then not sufficient to
measure the radiation sensitivity of the single resources like memories or logic
gates. It is also necessary to analyze how those resources are used in computation.
To do so, radiation experiments can be performed on a representative set of applica-
tions, to have sufficient data to extend to other algorithms. An alternative is to cal-
culate the program Architectural Vulnerability Factor (AVF), i.e. the probability for
the corrupted resource to generate an output failure, as done in [9]. Chapter 20
details the possible radiation effect on GPUs and presents possible way to evaluate
GPUs behaviors under radiation.

1.5  �Fault Tolerance Techniques

Fault-tolerance is defined as a set of techniques to provide a service capable of ful-
filling the system function in spite of (a limited number of) faults. Fault-tolerance
on semiconductor devices has been meaningful since upsets were first experienced
in space applications several years ago. Since then, the interest in studying fault-
tolerant techniques in order to keep integrated circuits (ICs) operational in such
hostile environment has increased, driven by all possible applications of radiation
tolerant circuits, such as space missions, satellites, high-energy physics experiments
and others. Spacecraft systems include a large variety of analog and digital compo-
nents that are potentially sensitive to radiation and therefore fault-tolerant techniques
must be used to ensure reliability.

1.5.1  �Resilience Techniques for FPGAs

Different fault tolerance techniques can be applied to FPGAs according to their type
of configuration technology, architecture and target operating environment.
Techniques can be implemented by the user at hardware description language
(HDL) before the design is synthesized into the FPGA. In this book, authors focus
on techniques that can be applied by the user at the HDL design.

The main techniques are either based on spatial redundancy or temporal redun-
dancy [10]. Spatial redundancy is based on the replication of n times the original
module building n identical redundant modules, where outputs are merged into a
majority voter. Usually n is an odd number. The voter decides de correct output by

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

http://dx.doi.org/10.1007/978-3-319-14352-1_20

12

choosing the majority of the equal output values. The most common case of
n-modular redundancy (nMR) is when n is equal to 3, where it is called Triple
Modular Redundancy (TMR). In this case, a majority voter is used that is able to
vote out 2 out of 3 values that are fault free. The TMR can be implemented in dif-
ferent ways by using large grain TMR, or breaking into small blocks and adding
extra voters. There is local TMR when only the flip-flops are triplicated, or global
TMR, also known as XTMR, where all the combinational and sequential logic is
triplicated. Also Diverse TMR (DTMR) can be used, where each redundant module
may present a different architecture implementation.

When dealing with the routing, different techniques can be chosen to increase or
decrease fan-out, delay and set of connections, which may have a different impact
in the SEE sensitivity. In addition, for those FPGAs programmable by SRAM,
reconfiguration is mandatory to correct upsets in the configuration bitstream. The
continuously blind full reconfiguration is called scrubbing and it is responsible to
fully reconfigure the FPGA by a golden bitstream. Partial reconfiguration can also
be used.

For embedded processors, one can use different mitigations based on software
redundancy, or processor redundancy like lock-step and recomputation. Software-
based fault tolerance techniques exploit information redundancy, control flow anal-
ysis and comparisons to detect errors during the program execution. For that
purpose, software-based techniques use additional instructions in the code area,
either to recompute instructions or to store and to check suitable information in
memory elements. In the past years, tools have been implemented to automatically
insert such instructions into C or assembly code, reducing significantly the harden-
ing costs.

Time redundancy is based on capturing a value twice or three times in time to
vote out a transient fault. The values are shifted by a delay [11]. The idea is to be
able to capture 2 out of 3 upset free values to be able to mask the fault.

Each of these techniques can protect SEU or SET, or both, as shown in Table 1.2
and they will be addressed in the chapters of this book.

Very often, System-on-Chip (SoC) implemented in FPGAs use a set of the forehead
mentioned mitigation techniques. Chapters 2 and 3 present a System on Chip (SoC)

Table 1.2  List of mitigation techniques that can be applied by the user in designs targeting FPGAs

Mitigation technique Abstraction level SET SEU

Local TMR HDL X
Global TMR or XTMR HDL X X
Large grain TMR HDL X X
Diverse TMR (DTMR) HDL X X
Voter insertion HDL X X
Reliability-oriented place and route algorithm FPGA Flow X X
Temporal redundancy HDL X
Embedded processor redundancy HDL/software-based X X
Scrubbing/partial reconfiguration System X

F. Kastensmidt and P. Rech

http://dx.doi.org/10.1007/978-3-319-14352-1_2
http://dx.doi.org/10.1007/978-3-319-14352-1_3

13

designs using SRAM-based FPGA with embedded processor cores for satellite applica-
tions where a set of mitigation techniques is employed. Chapter 6 details a failure
detection, isolation, and recovery framework that takes advantage of the resources avail-
able in heterogeneous systems. Chapter 7 proposes a novel scrubbing strategy for the
configuration memory of FPGAs. Chapter 8 evaluates the power requirements of
n-modular redundancy, Chapter 9 presents a fault-tolerant manager core for dynamic
partial reconfiguration in FPGAs. Chapter 12 proposes the use of C-Slow retiming for
safety-critical applications. Chapter 13 proposes a more efficient implementation of
EDAC function in Radiation-Hardened FPGAs. Chapter 15 presents hardening tech-
niques for embedded processors, while Chaps. 16 and 19 propose hardening techniques
for soft-core processors. Chapters 17 and 18 study how to reduce the overheads of
common hardening solutions for circuits and processors.

1.5.2  �Resilience Techniques for GPUs

As GPUs were initially designed to accelerate graphic rendering, the reliability
research on GPUs is in its infancy. Most of the available GPUs does not offer any
reliability solutions, preferring performances to fault tolerance. Only lately some of
the GPUs produced for the High Performance Computing market include Error
Correcting Codes in their major memory structures (L1 and L2 caches and internal
registers). The available ECC is a Single Error Correction Double Error Detection
(SECDED) one. It is then capable of correcting SEU and only detecting
MBU. Experimentally, it was measured that about 30 % of the radiation induced
failures in modern GPUs memory structures are actually multiple failures. Thanks
to memory interleaving (i.e. logic bits belonging to the same word are physically
separated), only the 5 % of errors are multiple errors affecting bits in the same word.
Moreover, an MBU with more than 2 bits corrupted was never observed experimen-
tally. Thus, the SECDED ECC seems sufficient to guarantee high reliability.
Nevertheless, logic resources are computing structures and schedulers are left
unprotected and internal flip-flops and queues are not covered by ECC. As a result,
the ECC may not guarantee high levels of reliability [12].

Lately, some software-based hardening solutions for parallel codes have been
proposed. The basic idea is to try to duplicate the parallel tasks to identify failures
or to add coding-encoding procedures to detect and, eventually, correct, failures.
Duplication With Comparison (DWC) is extremely easily implemented in a GPU,
as the whole programming philosophy of the device is voted to parallelism [12].
Even if DWC seems promising and efficient to detect errors, it introduces a non-
negligible computing overhead. As a result, redundancy may be non applicable to
HPC applications or embedded systems with strict power consumption constraints.
It is also essential to duplicate wisely the parallel processes, avoiding threads
belonging to the same domain to be executed on the same Streaming Multiprocessor,
as they would share the same cache. An error in a shared location will then propagate
to both copies and remain undetected. Another hardening philosophy applied to
parallel codes is the Algorithm Based Fault Tolerance (ABFT) one. ABFT is based

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

http://dx.doi.org/10.1007/978-3-319-14352-1_6
http://dx.doi.org/10.1007/978-3-319-14352-1_7
http://dx.doi.org/10.1007/978-3-319-14352-1_8
http://dx.doi.org/10.1007/978-3-319-14352-1_9
http://dx.doi.org/10.1007/978-3-319-14352-1_12
http://dx.doi.org/10.1007/978-3-319-14352-1_13
http://dx.doi.org/10.1007/978-3-319-14352-1_15
http://dx.doi.org/10.1007/978-3-319-14352-1_16
http://dx.doi.org/10.1007/978-3-319-14352-1_19
http://dx.doi.org/10.1007/978-3-319-14352-1_17
http://dx.doi.org/10.1007/978-3-319-14352-1_18

14

on the encoding of input data, the modification of the algorithm to be executed on
coded data and, finally, the decoding of the output with error detection and correc-
tion. ABFT is algorithm-specific, and requires great algorithm analysis and code
implementations efforts to be implemented. At the moment, the only algorithms for
which an ABFT strategy is available are matrix multiplication and Fast Fourier
Transform [7, 13]. Chapter 20 provides an overview of the available hardening
strategies to apply to modern parallel processors.

1.6  �Characterizing FPGAs and GPUs Radiation Sensitivity

1.6.1  �Fault Injection

In FPGAs, one very important step of the design flow is the validation of the fault
tolerance technique that is usually done by fault injection. The original bitstream
configured into the FPGA can be modified by a circuit or a tool in the computer by
flipping one of the bits of bitstream, one at a time. This flip emulates a SEU in the
configuration memory cells. The output of the design under test (DUT) can be con-
stantly monitored to analyze the effect of the injected fault into the design. If an
error is detected, this means that the fault tolerant technique implemented is not
robust for that specific fault (SEU) in that target configuration memory bit.

It is possible to inject faults in all the configuration bits and to analyze the most critical
parts of the design [14]. This can help to guide designers in early stages of the development
process to choose the most appropriated fault tolerant design, even before any radiation
ground testing. The entire fault injection campaign can spend from few hours to days
depending on the amount of bits that are going to be flipped and the connection to the fault
injection control circuit. When the entire system (fault injection control+DUT+golden
designs) is implemented at the hardware level (board), avoiding the communication with
the computer, the process is speeded up in orders of magnitude.

Chapters 4 and 5 present some techniques for fault injection in SRAM-based
FPGAs. Chapter 10 presents a fault injection framework that reproduce multiple
and accumulation of upsets collected from real radiation experiments.

However, fault injection on GPUs has several limitations. Only few resources of
the GPU are accessible by the user and to access those resources to inject fault it is
necessary to change the flow of the algorithm, introducing artificial behavior. There
is one fault injector for GPU available, the GPU-Qin [15], which allows the user to
insert faults only on instantiated values.

1.6.2  �Radiation Test Methodologies to Predict and Measure
SER in FPGAs and GPUs

The test of FPGAs under radiation depends on a test plan developed for each type of
FPGA and design architecture. Here we will detail the radiation test for SRAM-
based FPGAs. There are two types of tests: the static test and the dynamic test.
The static test can be done in SRAM-based FPGAs for instance, where the experiment

F. Kastensmidt and P. Rech

http://dx.doi.org/10.1007/978-3-319-14352-1_20
http://dx.doi.org/10.1007/978-3-319-14352-1_4
http://dx.doi.org/10.1007/978-3-319-14352-1_5
http://dx.doi.org/10.1007/978-3-319-14352-1_10

15

consists on configuring the FPGA with a golden bitstream containing the test-design
and then constantly read back the FPGA configuration memory with the Xilinx
iMPACT tool through the JTAG interface. In the experiment control computer, the
golden bitstream is compared against the readback bitstream. If differences are
found, the FPGA is reconfigured with the golden bitstream and the differences are
stored in the computer. Faults are defined as any bit-flip in the configuration memory
detected by the readback procedure. In this case, it is possible to calculate the upset
rate in the configuration memory bits for that specific particle flux.

The cross-section per bit shows the sensitive area of a device and it is used to
compare radiation sensitivity between devices. It is calculated as defined in Eq. 1.1.

	
s SEU bit

SEU

neutron bits

N

N- =
´F 	

(1.1)

Where NSEU is the number of SEU in the configuration memory bits, Φneutron is the
neutron fluence and Nbits is the number of bits of the device. The fluence is measured
by neutron per cm2, and it is calculated by multiplying the neutron flux by the time
the device has been exposed to that flux.

The dynamic test analyzes the design output mapped into the FPGA. In this case,
the expected error rate is much lower than the static test. In case of SRAM-based
FPGAs, based on the Xilinx Reliability Report [16], in average it is necessary 20
upsets in the configuration memory bits to provoke one error in the design output.
This relation may of course vary according to the logic density, mapping, routing
and the chosen architecture for the design. In case of using redundancy such as
TMR or n-MR, the number of accumulated upsets in the bitstream without provok-
ing functional error can increase significantly. In case of Flash-based FPGAs and
antifuse based FPGAs, the soft error rate comes from the susceptibility of the con-
figurable logic to the SET and SEU (bit-flips) only as the programmable cells (anti-
fuse and flash cells) are normally not susceptible to transient upsets.

The static test of GPUs follows the same philosophy as the FPGA one. Basically a
known pattern is loaded into the main memory structures of the device and then read
back. There is not a special port to access the memory structures, so the test should be
engineered to take advantage of normal GPU processes to write the pattern and read
it back. The dynamic test of a GPU requires the selection of proper benchmarks to run
on the device. It is worth noting that for being useful the benchmark must be represen-
tative of a given workload of application. Otherwise results would be valid only for the
particular configuration tested. Normally the benchmark is executed with a pre
selected input vector and results are checked with a pre computed golden copy of the
output. When a mismatch is detected, it should be counted as an error. To evaluate
the cross section it is necessary to evaluate the fluence hitting the device only when the
code is being executed, and not during results check. Alternatively, one can calculate
the cross section diving the observed error rate (errors/s) by the average flux provided
by the facility during the test (particles/(cm2 s)).

There are only few facilities in the world that provides good fluxes and spectrum
of energies to ease the scale of experimental result to the expected natural error rate.
Examples of neutron facilities are LANSCE, in Los Alamos, NM, USA, TSL,
Uppsala, Sweden, TRIUMF, Vancouver, Canada, and ISIS, Didcot, UK.

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

16

In this book results were gathered from experiments performed at Los Alamos
National Laboratory’s (LANL) Los Alamos Neutron Science Center (LANSCE)
Irradiation of Chips and Electronics House II and in the VESUVIO beam line in
ISIS, Rutherford Appleton Laboratories, Didcot, UK. As shown in [17], both of
these facilities provide a white neutron source that emulates the energy spectrum of
the atmospheric neutron flux. The ISIS spectrum has a lower component of high-
energy neutrons with respect to the LANSCE and the terrestrial one. The relation-
ship between neutron energy and modern devices cross section is still an open
question. Nevertheless, ISIS beam has been empirically demonstrated to be suitable
to mimic the LANSCE one and the terrestrial radiation environment [17].

Figures 1.5 and 1.6 show the setup of experiments under neutron at ISIS Facility
in United Kingdom and Los Alamos, respectively, composed of many different
types of FPGAs and GPU performed in parallel.

Fig. 1.5  Neutron experiment Setup in ISIS for FPGAs and GPUs

Fig. 1.6  Neutron experiment Setup in Los Alamos for FPGAs and GPUs

F. Kastensmidt and P. Rech

17

References

	 1.	Nicolaidis M (2011) Soft errors in modern electronic systems. Springer, New York, p 318
	 2.	Stassinopolous EG, Raymond JP (1988) The space radiation environment for electronics. Proc

IEEE 76:1423–1442
	 3.	Dodd PE, Massengill LW (2003) Basic mechanisms and modeling of single-event upset in

digital microelectronics. IEEE Trans Nucl Sci 50(3):583–602
	 4.	Kastensmidt FL, Reis R, Carro L (2006) Fault-tolerance techniques for SRAM-based FPGAs

(frontiers in electronic testing). Springer, New York
	 5.	Microsemi. ProASIC3, IGLOO and SmartFusion flash family FPGAs datasheet. www.

microsemi.com
	 6.	Rezgui S, Louris P, Sharmin R (2010) SEE characterization of the new RTAX-DSP (RTAX-D)

antifuse-based FPGA. IEEE Trans Nucl Sci 57(6):3537–3546
	 7.	Rech P, Aguiar C, Frost C, Carro L (2013) An efficient and experimentally tuned software-

based hardening strategy for matrix multiplication on GPUs. IEEE Trans Nucl Sci
60(4):2797–2804

	 8.	Rech P, Pilla L, Navaux POA, Carro L (2014) Impact of GPUs parallelism management on
safety-critical and HPC applications reliability. In: Proceeding IEEE international conference
on dependable systems and networks (DSN), June 2014, pp 455–466

	 9.	Mukherjee SS, Emer J, Reinhardt SK (2005) The soft error problem: an architectural perspec-
tive. In: High-performance computer architecture, 2005. HPCA-11. 11th international sympo-
sium on, 12–16 Feb 2005, pp 243–247

	10.	Schrimpf RD, Fleetwood DM (2004) Radiation effects and soft errors in integrated circuits and
electronic devices. Word Scientific, Singapore

	11.	Anghel L, Alexandrescu D, Nicolaidis M (2000) Evaluation of a soft error tolerance technique
based on time and/or space redundancy. In: The Proceedings of symposium on integrated cir-
cuits and systems design, SBCCI, 13, pp 237–242

	12.	Oliveira DAG, Rech P, Pilla LL, Navaux POA, Carro L (2014) GPGPUs ECC efficiency and
efficacy. In: International symposium on defect and fault tolerance in VLSI and nanotechnol-
ogy systems

	13.	Pilla LL, Rech P, Silvestri F, Frost C, Navaux POA, Sonza Reorda M, Carro L (2014) Software-
based hardening strategies for neutron sensitive FFT algorithms on GPUs. IEEE Trans Nucl
Sci 61(4):1874–1880

	14.	Sterpone L, Violante M (2007) A new partial reconfiguration-based fault-injection system to
evaluate SEU effects in SRAM-based FPGAs. IEEE Trans Nucl Sci 54(4):965–970

	15.	Fang B, Pattabiraman K, Ripeanu M, Gurumurthi S (2014) GPU-Qin: A methodology for
evaluating the error resilience of GPGPU applications. In: Proceedings of the IEEE interna-
tional symposium on performance analysis of systems and software (ISPASS)

	16.	Xilinx, Inc. (2013) Device reliability report third quarter 2013. http://www.xilinx.com/
support/documentation/user_guides/ug116.pdf

	17.	Violante M, Sterpone L, Manuzzato A, Gerardin S, Rech P, Bagatin M, Paccagnella A,
Andreani C, Gorini G, Pietropaolo A, Cargarilli G, Pontarelli S, Frost C (2007) A new hard-
ware/software platform and a new 1/E neutron source for soft error studies: testing FPGAs at
the ISIS facility. IEEE Trans Nucl Sci 54(4):1184–1189

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

http://www.microsemi.com/
http://www.microsemi.com/
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf

	Chapter 1: Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs
	1.1 Introduction
	1.2 Radiation Effects
	1.3 Soft Errors in FPGAs
	1.3.1 Single Event Effects on SRAM-Based FPGAs
	1.3.2 Single Event Effects on Flash-Based FPGAs
	1.3.3 Single Event Effects on Antifuse-Based FPGAs

	1.4 Soft Errors on GPUs
	1.5 Fault Tolerance Techniques
	1.5.1 Resilience Techniques for FPGAs
	1.5.2 Resilience Techniques for GPUs

	1.6 Characterizing FPGAs and GPUs Radiation Sensitivity
	1.6.1 Fault Injection
	1.6.2 Radiation Test Methodologies to Predict and Measure SER in FPGAs and GPUs

	References

