
Digital Image Operations

Matthew C. Forman

Contents
Introduction . 458

Raster Image Processing Format . 458
Color Image Processing . 459

Global Pixel Operations . 459
Intensity Transformations . 460
Color Saturation Adjustment and Matrix Methods . 461
Application Example: White Point Correction . 462

Geometric Image Operations and Resampling . 463
Raster Image Resampling and Scaling . 464
Image Rotation . 465
Other Geometric Image Operations . 467
Implementation of Fast Geometric Transformations . 467

Summary . 468
Further Reading . 469

Abstract
In applications that deal with digitally represented visual images, various forms of
processing are generally required before the results are ready to be displayed.
Although many of the methods used are complex, all have their roots in a small
number of core concepts and techniques. This chapter looks at these common
core spatial domain operations, firstly reviewing those that rely on applying
transformations of brightness and color in place within digital images. It then
moves on to consider geometric manipulation of image data and resampling
issues.

M.C. Forman (*)
Create-3D, Sheffield, UK
e-mail: matt@create-3d.co.uk

Springer International Publishing Switzerland 2016
J. Chen et al. (eds.), Handbook of Visual Display Technology,
DOI 10.1007/978-3-319-14346-0_26

457

mailto:matt@create-3d.co.uk

List of Abbreviations
API Application programming interface
CPU Central processing unit
GPU Graphics processing unit
HSV Hue, saturation, value (color space)
RGB Red, green, blue (color space/color storage method)
Y0CbCr Luma, blue-difference chroma, red-difference chroma (color space/

color storage method)

Introduction

The rapid growth of digital storage of visual images has been driven by several
factors. Digital representations inherently have far better robustness and noise
immunity than direct analog recordings. This is extremely advantageous where
both long-term storage and communication are concerned. One of the most signif-
icant advantages of digital representation, however, is the ease with which useful and
complex processing operations can be implemented.

The precise details of a particular implementation of a digital image storage
scheme depend on the application: the manner of source content creation, storage
or transmission system requirements, and the final destination of the image. At a low
level, however, an image is stored in either a raster (also commonly known as
bitmap or pixmap) or vector representation. A vector representation consists of
instructions and parameters for drawing the final image, element by element, from
geometric primitives such as lines, curves, polygons, and text. A raster format
represents a lower level of abstraction of image data. It contains a sampled repre-
sentation of any captured or synthesized image and thus offers a more general means
of storage. Since display systems themselves are addressed in this manner, the final
destination for all image representations is effectively raster; an image in a vector
format is rasterized for display by executing the appropriate drawing instructions
and sampling the result. This article therefore concentrates on processing that can be
achieved when an image is stored in a raster format.

Raster Image Processing Format

In the most general sense, a raster image is comprised of a rectangular array of pixels
(“picture elements”) (Watt and Policarpo 1998; Gonzalez and Woods 2008). Each
pixel is a sample of the information in a finite area of a spatially continuous image
source, centered on a particular geometric location in the plane. The sample value
may simply be the scalar irradiance arriving at an image sensor pixel, or equivalently
the emittance of a display pixel; an array of these represents a grayscale image.
Alternatively a pixel may carry color information, typically by encoding irradiance/
emittance proportions of red, green, and blue light; the array of such pixels can

458 M.C. Forman

represent a full-color image. Figure 1 illustrates the layout of a general raster image
(note that the origin is also commonly at bottom left).

Color Image Processing

Although color images are usually RGB encoded in capture and display devices,
such a color representation is not necessarily best suited for supplying full-color
image data to image processing operations. Hence, for processing, images are often
transformed into alternative color spaces that are more compatible with the operation
(s) to be carried out, or simply for ease of implementation. For example, it is often
desired to separate the luma (brightness) from the chroma (color) information and

process them separately – theY â€2CbCr (luma, chroma blue, and chroma red) space is
commonly used in these cases. In other operations the HSV space may be
appropriate.

Many image processing operations may be carried out directly in the pixel spatial
domain – some of which may require resampling – though others are more easily
applied in a spatial frequency domain such as Fourier space.

This chapter continues by looking at spatial domain pixel operations, a group of
common global processing operations that rely on applying transformations of
brightness and color within digital images.

Global Pixel Operations

A fundamental class of image processing techniques, global pixel operations, apply
a single operation identically to each pixel. This section introduces a number of
intensity-only and color-specific pixel operations. A second class of local pixel
operations, where a number of values in a local neighborhood of the operation
pixel are considered, is often used in filtering and enhancement applications.

Origin

Pixel sample value
at (x,y): f (x,y)

H

W

y

xFig. 1 General raster
(bitmap) image layout

Digital Image Operations 459

Intensity Transformations

An intensity transformation uses a linear transfer function to remap input pixel
intensity values (Watt and Policarpo 1998). If f(x, y) represents an intensity raster
image and Ti) is an intensity transfer function, then the processed image is:

g x, yð Þ ¼ T f x, yð Þð Þ:
A general remapping facility such as this allows a number of practical enhancement
operations to be carried out. It is convenient to visualize the transfer function as a line
plot relating output to corresponding input values, and software with intensity
transformation features often allows transformations to be defined graphically in
this way, generally with reference to the intensity histogram of the image. Some
common intensity transformations are illustrated by Fig. 2, which also shows their
effects on sample images.

Contrast stretching (Fig. 2a) expands the intensity range of an image in parts of
intensity space (typically the center) while compressing or clamping the intensity
dynamic range in other parts. The goal is to improve the utilization of dynamic range
for the most important parts of the image. The results can be seen in the example
shown as improved contrast. Here, limiting low- and high-intensity ranges have been
clamped to black and white.

Original image & histograma

b

Processed image & histogramTransfer function

T(i)

i

T(i)

Log

i

Log

Fig. 2 Intensity transformation operations on sample images. (a) Contrast stretching. (b) Nonlinear
brightness adjustment

460 M.C. Forman

Normalization is a related process that determines stretch limits automatically
from the image brightness histogram, so that the image’s existing intensity range is
mapped exactly on to the maximum range available. This is particularly useful to
compensate for photographic underexposure.

An offset can be added to the transfer function to increase or decrease overall
image brightness; however, this generally results in saturation at the white or black
level. As an alternative, nonlinear brightness adjustment (Fig. 2b) applies a smooth
curve to increase or decrease overall image brightness in such a way that saturation at
maximum or minimum intensity cannot occur. A power function, such as that used
for display gamma correction (see chapter “▶Luminance, Contrast Ratio, and Gray
Scale”), is often used.

As in the examples shown, any intensity transformation can be applied to a color
image by first transforming the image data into a color space which represents intensity
information separately from color information, applying the transformation to the
intensity component and then transforming back to the original color space. Using

the Y â€2CbCr space, for example, the luma (YÊ1) component would be subject to
transformation, while the chroma components (Cb andCr) would be passed unchanged.

Color Saturation Adjustment and Matrix Methods

It is often desired to make adjustments to color saturation in an image in RGB space.
One way to accomplish this is to convert the image data into HSV space and make
the appropriate modification to the S (saturation) component before transforming the
data back to RGB for display. However, this requires several separate operations and
hence may not result in a particularly efficient implementation. It also carries the risk
of introducing precision, rounding, and overflow issues.

A convenient way to implement global pixel processing operations directly in
RGB space uses a general matrix-based framework (Haeberli 1993). The matrix
multiplication of the input color pixel value (in the form of a column vector) with an
operation matrix yields the output pixel value. We define the operation as a 4 �
4 matrix to result in a general linear transformation, and several operations can then
be concatenated into one just by multiplying operation matrices. The input pixel
vector,

F x, yð Þ ¼ f R f G f B 1½ �T

with fR, fG, and fB being the source red, green, and blue component values, and the
output pixel vector,

G x, yð Þ ¼ gR gG gB gw½ �T

with gR, gG, and gB being the destination red, green, and blue component values, and
gw is not generally computed. If T is a 4 � 4 matrix defining the desired pixel
operation, then the overall operation is represented as

Digital Image Operations 461

http://dx.doi.org/10.1007/978-3-319-14346-0_143
http://dx.doi.org/10.1007/978-3-319-14346-0_143

G x, yð Þ ¼ T:F x, yð Þ:
The operation matrix for saturation adjustment is

Tsat sð Þ ¼

�20cαþ s β γ 0

α β þ s γ 0

α β γ þ s 0

0 0 0 1

2
6664

3
7775with α ¼ 0:3086 1� sð Þ

β ¼ 0:6094 1� sð Þ
γ ¼ 0:0820 1� sð Þ

Here, Î�, Î2, and Î3 are factors derived according to the contributions of red, green,
and blue components, and s is the saturation adjustment value. If s = 0, all color is
removed leaving only brightness information. If s= 1, there is no change, and values
0 < s < 1 result in various levels of desaturation. For values s > 1, saturation is
enhanced.

Figure 3 demonstrates the effects of applying saturation enhancement (example
value s = 1.35) and desaturation (example value s = 0.65) to a sample image, using
this process.

Intensity transformations for contrast and brightness changes, as well as many
color-specific transformations – for example, hue rotation – can be specified con-
cisely and applied using the matrix framework. Combined operations can also be
computed efficiently, concatenating individual operations by multiplying together
the appropriate matrices before applying the result.

Matrix pixel transformations can be implemented efficiently using precomputed
lookup tables. The fast matrix arithmetic facilities of GPUs and some CPUs are also
useful for this.

Application Example: White Point Correction

When source material is shot, the color and luminance responses of the scanner or
camera used are ideally calibrated and known. Color management techniques (see

decnahne noitarutaSegami ecruoS
(s = 1.35)

De-saturated
(s = 0.65)

Fig. 3 Image color saturation modifications using matrix methods in RGB space

462 M.C. Forman

chapter “▶Fundamentals of Image Color Management”) can then be used to ensure
that the image that is ultimately displayed is perceived to be as close as possible to
the original scene, with neutral shades being reproduced as accurately as possible at
the display. The response of a camera is not always known a priori, however, or
material may have been shot with an incorrect white point setting in force. Correc-
tion can be achieved by remapping the white point using a simple global color pixel
operation, with the capture device having been used to record a physical reference
white point in the scene. This operation is also useful for deliberate manipulation of
the white point of an image as for special effect purposes. There are a number of
options when defining this operation, particularly with regard to color space
(Viggiano 2004). Here we assume operation in the RGB space of the camera itself.

If the measured color pixel value of the white point reference,

W ¼ wRwGwB½ �;
then assuming the full-scale color component value is 255 (i.e., 8 bits per component
color), the white point correction operation can be defined in the matrix framework
above as

Twpt ¼
�20c255=wR 0 0 0

0 255=wG 0 0

0 0 255=wB 0

0 0 0 1

2
664

3
775:

Note that if any color component is zero, the result of the corresponding computation
above would be undefined. Although this is very unlikely in practice, it must be
considered in an implementation. Also, because of the likelihood of saturation of at
least one color component of a white reference to the full-scale representable value,
it is often more reliable to measure at least one known gray physical reference
instead. The white point reference, W, can then be computed from these values.

Geometric Image Operations and Resampling

A further important set of processing techniques commonly applied to image data is
the class of geometric image operations. Image resizing (scaling), rotation, and
morphing are some very common practical applications. In the case of vector
images, any required geometric transformations are generally applied directly in
the vector representation, before rasterization for display takes place. Indeed this
point encapsulates the chief advantage of using a vector rather than a raster repre-
sentation whenever possible: although images destined for digital display inevitably
must be sampled into raster form eventually, transformations applied before sam-
pling effectively take place in a continuous domain and are therefore scale
independent.

Digital Image Operations 463

http://dx.doi.org/10.1007/978-3-319-14346-0_25

Geometric transformations on images in raster form must take account of the fact
that these images have already been sampled and discretized. While the pixel
processing methods outlined in the previous section deal with modifications only
to color or intensity sample values in raster digital images, geometric operations
involve changes to the positions of image samples.

Raster Image Resampling and Scaling

Scaling is a very common requirement in image processing, for example, when
zooming at the display to inspect detail closely, or preparing an image optimally for a
display device with a certain resolution. Consider for example that an image must be
scaled up so that every six pixel rows and columns are instead represented by seven
in the destination image. Figure 4a illustrates a section of a single row of pixels of the
source image and also the corresponding section of pixels in the destination, scaled
image. The problem now is of determining appropriate values for the new pixels.
Many of the destination pixel centers are not aligned with source pixel centers, so the
source pixel values must be mapped onto the destination pixel grid and resampled. A
naïve approach simply selects the closest source pixel value to the center of each
destination pixel; however, this results in significant image distortion with portions

Original pixel samples
a

b

Original pixel samples

Reconstructed signal

New pixel samples
(magnification)

New pixel samples

Filter function Reconstruction by convolution

Tent

Cubic

Fig. 4 Image scaling and resampling. (a) New pixel centers are not aligned with original ones. (b)
Filtered resampling using tent and cubic filter functions

464 M.C. Forman

of the image information being deleted completely or replicated. An approach to
scaling without introducing such distortion involves approximating the original
continuous intensity/color surface and sampling it at locations corresponding to
the new pixel centers (Schumacher 1995).

This approximation is made by convolving the source image pixels with a filter
impulse response function and setting destination pixel values at locations in the
convolved signal that correspond to their centers. The theoretically ideal reconstruc-
tion filter is defined by the sinc function; it corresponds to an ideal low-pass cutoff
characteristic in the spatial frequency domain. However, the sinc function contains
negative values and has infinite support, and thus is not practical to use directly.

Increasing the scale of an image as above (magnification) requires resampling to a
higher pixel rate. This corresponds to interpolation in signal processing terms.
Reducing image scale, sometimes known as minification, requires resampling to a
lower pixel rate – decimation in signal processing terms. Note that in this case, care
must be taken that the new, lower sampling rate is still adequate for the spatial
frequency content of the image so as not to introduce aliasing distortion. This is
generally achieved by scaling the filter function before convolution.

The reconstruction process is illustrated in Fig. 4b using two typical filter
functions: the “tent” (corresponding to linear interpolation between samples) and
cubic filters (describing the shapes of their impulse responses). The cubic function
approximates the ideal sinc function with better precision resulting in higher fidelity
results, but is slower to compute than the “tent.” Others such as the Lanczos filter,
offer still better reconstruction accuracy (Turkowski 1995). In implementation, the
filter is generally applied one dimensionally through all rows and all columns
separately.

Image Rotation

A second extremely useful geometric operation is the rotation of an image. For
rotation through multiples of 90�, resampling is not required unless pixels are
nonsquare; a simple transfer of pixel values directly from one location to another
is sufficient. However, rotation of an image through an arbitrary angle is often
needed, and this does require resampling (see Fig. 5). A general, direct implemen-
tation would use filter functions for reconstructing the continuous intensity surface,
and then resample this according to new, rotated pixel centers. Such an approach is,
however, computationally inefficient and cumbersome to implement.

A more practical algorithm is due to Paeth (1995). Here, the rotation operation to
be applied anticlockwise through angle Î is decomposed into three simple shear
operations. If source and destination pixel coordinates are represented as column

vectors S ¼ sx sy
� �T

and D ¼ dx dy
� �T

, respectively, a general transformation from
source to destination coordinates according to matrix M is

D ¼ M:S:

Digital Image Operations 465

The rotation matrix can be considered as the product of three shear matrices:

Mrot ¼ cos θ � sin θ
sin θ cos θ

� �
¼ 1 � tan θ=2ð Þ

0 1

� �
1 0

sin θ 1

� �
1 � tan θ=2ð Þ
0 1

� �
:

Implementation of shear operations is straightforward, requiring only a shift of pixel
data along one axis (effectively, resampling of translated pixels using a simple tent
function) proportional to the distance along the second axis. Figure 6 illustrates the
process for a clockwise rotation through 10�. Note that as a consequence of rotation,
the rectangular pixel array area required to hold the image is increased, though
cropping is often used to retain a rectangular subregion that does not include the
rotated image boundary. For improved accuracy, rotations by angles of 90� or more

Original pixel grid

Rotated pixel grid

Fig. 5 Arbitrary rotation of a
raster image requires
resampling due to the
complex overlay of source
and destination pixels

Source image [Partial 1] [Partial 2] Final rotated result

Shear 3

(y axis)

Shear 2

(x axis)

Shear 1

(y axis)

Fig. 6 Rotation of a raster image using the three-shear method

466 M.C. Forman

are implemented by transfer of pixels for right angle portions followed by the three-
shear algorithm for the remaining portion.

Other Geometric Image Operations

In addition to scaling and rotation, a number of other geometric operations requiring
resampling are possible on raster image data. Considering straightforward affine
transformations, the simple shear has already been outlined in its application to
rotation using the Paeth method. Translation is also sometimes useful – this is
effectively a phase shift of pixel data by an amount which is not necessarily an
integer number of pixels.

More general remapping and warping techniques are often required in certain
higher level applications (Watt and Policarpo 1998). An image may be mapped to a
regular or irregular mesh, and mesh nodes manipulated to apply modifications to the
image structure in a local sense. A common application of such a technique is
perspective transformation, often used (with knowledge of camera parameters) to
correct for perspective distortion in an image captured from a camera. Warping
methods are also used in morphing: creating a smooth transition from one image to
another, driven by relationships between the nodes of the mesh in both images,
defined by the user. A closely related application to morphing is the synthesis of new
viewpoints of a scene, given at least two known viewpoint images and a set of
correspondences between mesh nodes in the source images. This is useful in three-
dimensional imaging and modeling.

Implementation of Fast Geometric Transformations

Modern commodity GPUs have evolved chiefly to accelerate three-dimensional
object transformations and rendering for computer entertainment and visualization
applications. The parallel processing facilities that make this possible, however, also
greatly simplify implementation of very fast geometric operations on raster images –
both affine transformations and more complex warps (Qureshi 2001). This can be
achieved through common APIs such as OpenGL (Silicon Graphics 1992) and
Microsoft DirectX (Akenine-Möller et al. 2008).

A general technique for implementing 2D affine transformations of raster images
is as follows (see Fig. 7):

1. Define a virtual camera, usually with an orthogonal projection and a viewport
mapping to a destination pixel buffer.

2. Create a geometric entity in object space. For affine transformations, a simple
quadrilateral surface is suitable.

3. Using the texture handling facilities of the API, map the source image to the
geometric entity just created.

Digital Image Operations 467

4. Transform the vertices of the geometric surface, either directly or using the vertex
affine transformation facilities of the API. Since the geometric surface is “carry-
ing” the source image, the final rendered result will be a destination image
transformed accordingly. The GPU’s texture lookup filtering functionality
ensures that appropriate resampling takes place automatically.

General mesh warps can also be achieved directly, simply by using more complex
geometry to define a suitable mesh containing internal vertices and then
transforming those vertices as necessary to apply the desired warp.

Summary

All practical image and video processing applications are built on a core set of
low-level operations on digital representations of images. Some of these are applied
in place at the pixel level, but others involving geometric transformations result in
changes to the inherent structure of the image representation, and therefore must take
into account sampling issues. It is relatively straightforward to use modern graphics
hardware and APIs to implement extremely fast fundamental image processing
operations.

Destination projection and viewport
(Mapped to destination pixel buffer) Source image texture-mapped

to our geometry

Example B: Perspective warp
Vertices translated individually in (x,y) plane

Example A: Rotation
All 4 vertices transformed by rotation in z axis

Vertex transformation

y
V1

Geometry to carry source
image Quadrilateral in (x,y)

with vertices:
V1,V2,V3,V4

V2

V4V3

x
[z into paper]

Fig. 7 Fast geometric transforms

468 M.C. Forman

Further Reading

Akenine-Möller T, Haines E, Hoffman N (2008) Real-time rendering, 3rd edn. A. K Peters, Natick
Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Pearson Prentice Hall,

New York
Haeberli P (1993) Matrix operations for image processing. http://www.graficaobscura.com/matrix/

index.html. Accessed Nov 1993
Paeth AW (1995) A fast algorithm for general raster rotation. In: Kirk D (ed) Graphics gems.

Academic, Boston
Qureshi S (2001) Image rotation using OpenGL texture maps. C/C++ User J 19:10–17
Schumacher D (1995) General filtered image rescaling. In: Kirk D (ed) Graphics gems III.

Academic, Boston
Silicon Graphics, Inc (1992) The OpenGL graphics system: a specification. Version 1.1
Turkowski K (1995) Filters for common resampling tasks. In: Glassner AS (ed) Graphics gems.

Academic, Boston
Viggiano JAS (2004) Comparison of the accuracy of different white balancing options as quantified

by their color constancy. In: Proceedings of the SPIE, vol 5301. Bellingham
Watt A, Policarpo F (1998) The computer image. Addison-Wesley, Reading

Digital Image Operations 469

http://www.graficaobscura.com/matrix/index.html
http://www.graficaobscura.com/matrix/index.html

	Digital Image Operations
	Introduction
	Raster Image Processing Format
	Color Image Processing

	Global Pixel Operations
	Intensity Transformations
	Color Saturation Adjustment and Matrix Methods
	Application Example: White Point Correction

	Geometric Image Operations and Resampling
	Raster Image Resampling and Scaling
	Image Rotation
	Other Geometric Image Operations
	Implementation of Fast Geometric Transformations

	Summary
	Further Reading

