
A Visual Programming Model to Implement

Coarse-Grained DSP Applications on Parallel
and Heterogeneous Clusters

Farouk Mansouri, Sylvain Huet, and Dominique Houzet

GIPSA-LAB, 11 rue des Mathmatiques
Grenoble Campus BP46, France

firstname.lastname@gipsa-lab.grenoble-inp.fr

Abstract. The digital signal processing (DSP) applications are one of
the biggest consumers of computing. They process a big data volume
which is represented with a high accuracy. They use complex algorithms,
and must satisfy a time constraints in most of cases. In the other hand,
it’s necessary today to use parallel and heterogeneous architectures in
order to speedup the processing, where the best examples are the su-
percomputers ”Tianhe-2” and ”Titan” from the top500 ranking. These
architectures could contain several connected nodes, where each node
includes a number of generalist processor (multi-core) and a number
of accelerators (many-core) to finally allows several levels of parallelism.
However, for DSP programmers, it’s still complicated to exploit all these
parallelism levels to reach good performance for their applications. They
have to design their implementation to take advantage of all heteroge-
neous computing units, taking into account the architecture specifici-
ties of each of them: communication model, memory management, data
management, jobs scheduling and synchronization . . . etc. In the present
work, we characterize DSP applications, and based on their distinctive-
ness, we propose a high level visual programming model and an execution
model in order to drop down their implementations and in the same time
make desirable performances.

1 Introduction

The DSP applications require a high computing power. They process increased
data volume (data length) which reach ten or so of Go. Also, data units are
represented more and more precisely (data floating point encoding), from sin-
gle precision (32 digits) to quadruple precision (128 digits). They use complex
algorithms (time complexity) in linear, quadratic or exponential time, and are
usually constrained in execution time (latency or throughput).

To satisfy this need, it’s possible today to get a Tera-flop computing power
with a thousand dollars price by using parallel and heterogeneous hardware ar-
chitectures, which include generalist multi-core processors (Intel Xeon or AMD
Opteron), supported by many-core accelerators (GPU, Xeon phi, Cell) and struc-
tured in the form of a cluster of connected nodes with a high bandwidth network.

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part I, LNCS 8805, pp. 141–152, 2014.
c© Springer International Publishing Switzerland 2014



142 F. Mansouri, S. Huet, and D. Houzet

Certainly, these architectures can be the best response for computing power re-
quirements of DSP applications. However, they present some difficulties of use.
In fact, to produce performance with that last, the programmer has to deal
with heterogeneous computing units using different languages or API. He has
to manage synchronization, memory allocation, data transfer and the load bal-
ance between the processes. Consequently, programming models are necessary
to hide all this hardware specifications, and produce easily and efficiently the
desired performance.

In the present work, we propose a visual programming model based on
data flow graph (DFG) model which allows to users to easily express their ap-
plications. It includes an execution model (Runtime) based on StarPU, and
adapted for DSP implementing on heterogeneous platform (CPU, GPU, Cell)
and dynamically scheduling of tasks on computational units. First, we present
in section 2 the DSP applications and highlight their characteristics and dis-
tinctiveness. In the section 3, we give the features to efficiently implement
them and discuss the existing programming models to do that. In the sec-
tion 4, we describe our programming model and explain its conception parts.
Finely, in the section 5, we present experimentations and results of applying our
model of programming (MoP) on a real world application.

2 Distinctiveness of DSP Applications

DSP applications are in form of repetitive (iterative) processing of data set of
input digital signals, which produce an output signals or a results (Fig.1). In the
classic algorithmic aspect as shown in the example Algorithm 1, it represents
the main loop which iteratively process all data units using several functions.

Fig. 1. Illustration of DSP applications

Theses functions, also called operators or kernels, fire each data unit of input
signal, where each of them represents an independent processing with some input
and output arguments. So, in almost cases of DSP applications, it’s possible to
model them in form of DFG [9,2], where nodes of the graph represent the kernels
and the edges represent the data trading between operators as a flow. The figure
(Fig.2) illustrates this DFG model representing the given example in Algorithm
1. That model emphasizes the movement of data and models programs as a
series of connections. Explicitly defined input and output arguments synchronize
operations. Where an operation runs as soon as all of its inputs become valid.
Thus, that model are inherently parallel and allows to user to easily express
task parallelism on his application. In addition, in DSP applications, all input
data units are processed using the same actors (kernels), for example in video
processing, each input image is processed in the same manner using the same



A Visual Programming Model for DSP Applications 143

Algorithm 1. Synthetic DSP application

Input: Number of iterations (Nbr). Input data set (Datain).
Output: Output data set (Dataout).
1: for each Dataunit in Datain do
2: V ar1 ← Producer()
3: V ar2 ← kernel1(V ar1)
4: V ar31 ← Kernel2(V ar2)
5: V ar32 ← Kernel3(V ar2)
6: V ar4 ← Kernel4(V ar31 , V ar32)
7: V ar5 ← Kernel5(V ar4, V ar′4)
8: V ar′4 ← V ar4
9: Consumer(V ar5)
10: end for

algorithm. So, the idea is to overlap the execution of multiple DFG, where each
DFG processes one date unit. Also, according to the data kind and the algorithm
of each kernel, it’s interesting in most of cases to offload the execution of certain
of kernels on a massively parallel computation unit (accelerators) like GPU,
Xeon Phi or Cell.

Fig. 2. Data flow graph (DFG) model of DSP application (the example)

Taking into account these characteristics, we set up some rules to apply in
implementation and execution of DSP applications on parallel and heterogeneous
architectures: First, express task parallelism using the DFG modeling. It allows
to highlight the dependencies between the tasks and detect the tasks able to
be executed in parallel. Second, optimize data parallelism. Identify the tasks
according to their Flynn taxonomy [6]. The MISD (Memory bounds) tasks are
oriented to generalist processors and the SIMD tasks (Compute bounds) towards
the accelerators. Third, implement graph parallelism. In fact, in order to optimize
the occupancy of computing units composing the cluster, deal with several graphs
to process several input data unit in the same time.

In the next section (Section 3), based on extracted distinctiveness and the
rules cited above, we focus on the implementation side of the DSP applications,
and we discuss on which programming model is more suitable for programmers
to easily and efficiently porting these applications on parallel and heterogeneous
architectures.



144 F. Mansouri, S. Huet, and D. Houzet

3 Implementing DSP Applications on Clusters

As presented in the preceding section (Section 2), the DSP applications have
some characteristics that programmers must exploit in order to take advantage
of targeted heterogeneous and parallel architectures. First: To highlight the ker-
nels able to be executed in parallel (task parallelism), they have to express their
algorithm in the form of a set of tasks using threads or process technologies.
They have to manage these threads for communicating between them or to be
synchronized, according to the application’s dependencies on the both shared
and distributed memory architectures. In addition, to profit from the accelera-
tor’s capacity to speedup the SIMD processing (data parallelism), the user has
to offload a part of their task towards these compute units. To do this, he has to
deal with memory allocation on accelerators, copy-in the input data, launch the
execution, copy-out the results and finally freedom the used memory zone. Also,
the DSP applications are mostly iterative, so it’s a good idea to unroll the main
loop of the application and therefore process a number of data units in the same
time (graph parallelism) in order to increase the occupancy of computing units.
To do that, the code writers must duplicate the process (thread) in charge of ex-
ecuting the main loop taking care to guarantee the data coherence by restricting
some variables or sharing others. All this implementation features are necessary
for porting DSP applications on heterogeneous clusters but not enough to op-
timize productivity of the hardware. In fact, the programmer must cope with
others difficulties like communication cost which must be masked by overlap it
with the computation time, or the load balancing between the computational
units which must be assumed by a good scheduling of tasks.

Applying all these implementation rules is very hard. The programmer has
to combine the handling of some API, language or extension of language which
are low level for certain or restricted to specific hardware for others. For exam-
ple, the programmer has to use Pthread , TBB [13] or OpenMP [4] to generate
threads and express task parallelism on each node of the cluster (shared mem-
ory architecture), but also the MPI [11] or PGAS [5] model to manage them by
creating processes onto many nodes (distributed memory architectures). He has
to use CUDA [14] or OpenCL [10] to address accelerators like the GPU, Cell or
Xeon-Phi and offload a part of a SIMD work on it. In the other case, the higher
level tools like OpenACC [8], OmpSS [3] or StarPU [1] which are based on the
low level tools, must be the solution. They offer more abstraction of the hard-
ware and can target the complete cluster. But some of them are restricted to a
particular MoP, for example OpenAcc express only the data parallelism. Others
of them like OmpSS are rather oriented to decorating an existing sequential code
by inserting some PRAGMA directive and transforming it at compilation time
into a parallel code. The rest, based on API like StarPU is, in our opinion, the
most adapted programming models to implement high level applications on het-
erogeneous cluster. It offers an interface based on a large routines and structures
which the programmers can use to design their applications, and in addition pro-
poses a runtime which manages the tasks, their dependencies and dynamically
schedule their executions on the architecture. However, it’s not adapted (speci-



A Visual Programming Model for DSP Applications 145

fied) to DSP applications as characterized in the section 2 with their iterative and
repetitive form, and also it’s still complicated to handle because of the number
of routines and data structures proposed to the user as interface to implement
their applications. Because of these reasons, we propose in the next section, a
programming model based on a DFG model to make easier the application mod-
elling and automatize the generation of the directional acyclic graph (DAG) of
tasks in order to adapt StarPU to the implementing of DSP applications on
heterogeneous cluster.

4 Proposed Programming Model

We propose, in this section, a visual programming model as an extension of
StarPU programming model [1] which we enrich by giving some functionalities
specified to DSP applications, in order to allow for programmers to implement
easily and efficiently their programs on parallel and heterogeneous clusters. Our
MoP is a high level abstraction concept. The programmers don’t have to worry
about several architecture specificities, like memory management, task creation
and synchronization, load balancing etc. . . They can implicitly express task, data
and graph parallelisms in their implementations to optimally take advantage of
hardware. Also, because it’s based on StarPU, our MoP take in charge shared
and distributed memory architectures, and deal with many-node cluster using
the messages passing interface (MPI [11]).

Fig. 3. SignalPU design: Three levels of processing

Bellow, we present our proposed MoP in form of 3 levels of processing as
shown in the figure (Fig.3). First, the user can easily express his application, by
using an XML interface, in the form of DFG. Thus, he is saved to manipulate
the StarPU’s API for creating tasks, for managing the buffers between each cou-
ple of tasks, or for submitting jobs onto the corresponding computation unit.
Second, the implementation of application is designed by using some function-
alities like: graphs unfolding techniques [12], pipelining of tasks, buffers re-use,
initialization saving . . . etc. The aim is to produce a DAG of independent tasks.
Also here, the user doesn’t have to deal with the API to unroll the main loop
or to manage necessary memory buffers for that.Finally, in the third level, the
StarPU runtime is used to physically manage the set of tasks and execute it on
the cluster according to a dynamic scheduling to balance the load and favour
the locality.



146 F. Mansouri, S. Huet, and D. Houzet

Fig. 4. The DFG-XML of the synthetic DSP application

Next, we describe all these steps of our proposed MoP with more details
through a synthetic example of DSP application:

4.1 Level 1: SignalPU DFG-XML Interface

In this step, programmer has to express his application using the DFG-XML
interface. First, he has to describe each kernel (operator) of his algorithm in
the form of a node (vertex) using an XML structure. He has to put the name
of functions which will be called in the code, the number of input and output
arguments of these functions, and the architecture kind corresponding to each of
them (CPU, GPU, Cell, Xeon Phi . . . ). Second, he has to describe in the same
manner all data flows in the form of graph edges with a structure including
information about type and size of data which is traded between kernels. After
that, a DFG of application is produced as exemplified in the figure Fig.4, which
represents DFG-XML modelling of Algorithm 1.

4.2 Level 2: SignalPU Implementation Design

In this step, illustrated in the figure Fig.5, a DAG of tasks is iteratively pro-
duced from the result of the previous processing level (the DFG-XML interface)
using some functionalities adapted to DSP applications. This DAG represents
a set of independent tasks linked by several kinds of data dependencies (Fork-
join, producer-consumer, inter-graph producer-consumer), witch are ready to be
concurrently executed on the cluster. The aim of this step is to design the ex-
ecution in order to optimally take advantage of all levels of parallelism (task,
data, graph parallelism) by overcoming overheads due to the execution man-
agement, like memory management (Allocation, affectation and free of buffers),
data management (Copy-in, copy-out), tasks management (Creation, dependen-
cies management, scheduling, status updating, destruction) . . . etc. Next, we de-
scribe used functionalities to do that:

First, from the DFG-XML model of application, we create a set of ”codlet”
which is a StarPU structure and represents a mould of tasks. So, for each node in
the DFG we match a ”codlet” which contains all informations about the corre-
sponding kernel (Number of input arguments, the number of output arguments,



A Visual Programming Model for DSP Applications 147

Fig. 5. The creation process of DAG of tasks of synthetic DSP application

function identifiers, architecture kinds . . . ), which will characterise his tasks chil-
dren. After that, based on unfolding techniques [12] which allow to unroll the
main loop of the application to unravel hidden concurrency, we iteratively create
tasks corresponding to all codlets, and progressively we connect them according
to the dependency informations contained in the DFG-XML structure (Data
type, data size, input argument, output argument, input node, output node).
Also, during that process, we affect in turn to tasks the corresponding buffers
according to a ”First available-First affected” rule. So a buffer is affected to a
new task, if and only if it’s not still used by the old ”sister” task. So, by using
that technique named ”Buffers re-use”, we reduce the overhead due to memory
management by the allocation and the freeing. In addition, in order to reduce
overhead due to tasks management, we limit the number of submitted tasks
by using pipelining functionality. So, at runtime, only a fixed levels of task is
managed (Dependencies, scheduling, task status updating, . . . etc), where each
pipeline level corresponds to a graph level in the DAG. Finally, we use a func-
tionality which we call ”Initialisation saving” to preserve the initialisation part
of each task. So, each task leaves his initialisation data to his sister task on each
device. Thus, the production or the copy of that initialisation data is made only
one time per kernel per device.

4.3 Level 3: SignalPU Runtime (StarPU)

In this step, the submitted DAG of tasks generated in the previous level is
physically processed by StarPU runtime. So, he manages tasks by creating the



148 F. Mansouri, S. Huet, and D. Houzet

submitted one, he updates their status according to data dependencies synchro-
nization, he schedules them thanks to different algorithms like the work stealing
(ws) or the heterogeneous earliest finish time (heft) [1] in order to balance the
load and to highlight the locality, and finally, he executes them on the corre-
sponding devices. The figure Fig.6 illustrates that process made by the StarPU
runtime.

Fig. 6. StarPU runtime’s levels

Thus, according to these three steps of our proposed MoP, the programmer can
easily implement his DSP applications in high abstraction level, and efficiently
take advantage of the optimizations: Task parallelism (TP) by extracting tasks
in the DFG which are able to be executed in the same time. Data parallelism
(DP) by off-loading some tasks on (SIMD) accelerators. Graph parallelism (GP)
by overlapping the processing of some graphs. And the optimally scheduling
tanks to load balance versus data locality using StarPU runtime.

5 Validation

In this section we present a real world experimentation in order to validate our
approach and demonstrate the interest of its usage. We use the saliency appli-
cation to process a set of images on the heterogeneous CPU-GPU architecture.
First, we describe the saliency application and give its algorithm. Then, we ex-
plain its implementation using our programming model. And finally, we give the
results and discuss their impacts.



A Visual Programming Model for DSP Applications 149

5.1 The Saliency Application

Based on the primate’s retina, the visual saliency model is used to locate re-
gions of interest, i.e. the capability of human vision to focus on particular places
in a visual scene. The implementation that we use is the one proposed by [7].
His algorithm (Algorithm 2) is: First, the input image (r-im) is filtered by a
Hanning function to reduce intensity at the edges. In the frequency domain,(cf -
fim) is processed with a 2-D Gabor filter bank using six orientations and four
frequency bands. The 24 partial maps (cf -maps[i; j]) are moved in the spatial
domain (c-maps[i; j]). Short interactions inhibit or excite the pixels, depending
on the orientation and frequency band of partial maps. The resulting values are
normalized between a dynamic range before applying Itti’s method for normal-
ization, and suppressing values lower than a certain threshold. Finally, all the
partial maps are accumulated into a single map that is the saliency map of the
static pathway.

Algorithm 2. Static pathway of visual model

Input: An image r im of size w · l
Output: The saliency map
1: r fim ← Hanningfilter(r im)
2: cf fim ← FFT (r fim)
3: for i ← 1 to orientations do
4: for j ← 1 to frequencies do
5: cf maps[i, j] ← GaborF ilter(cf fim, i, j)
6: c maps[i, j] ← IFFT (cf maps[i, j])
7: r maps[i, j] ← Interactions(c maps[i, j])
8: r normaps[i, j] ← Normalizations(r maps[i, j])
9: end for
10: end for
11: saliency map ← Summation(r normaps[i, j])

5.2 The SignalPU Implementation

To implement the application with our programming model, the first step is to
model its algorithm (Algorithm 2) given before in the form of DFG-XML using
the SignalPU interface. For this, we represent each of all functions
(Hanningfilter(), FFT (), GaborF ilter(), IFFT (), Interactions(),
Normalizations(), Summation()) with a node in the graph including the char-
acteristics of each of them (architecture kind, input arguments, output argu-
ments). Then, we represent the data flow between each twice kernels with an
edge in the graph including its characteristics (data type, data size). In the figure
(Fig.7) we present the DFG result of this step.

At runtime, the DFG-XML description of the saliency application is analyzed
and DAG of independent tasks is iteratively generated, where each task repre-
sents the execution of each kernel’s code (function’s code) for each image on



150 F. Mansouri, S. Huet, and D. Houzet

Fig. 7. The DFG-XML model of the visual saliency application

the corresponding computation unit (CPU,GPU). Thus, we haven’t to use the
StarPU’s API for describing the application’s tasks. Also, we have not to man-
age the buffer’s allocating and freeing. We haven’t written the main loop which
processes the set of input images, and don’t have to unroll it. The StarPU’s API
is almost entirely masked.

5.3 The Results

In this subsection, we present the results of experimentations where we show
the performance provided by the implementation based on our programming
model using the proposed optimizations (Graph unfolding, Dynamic scheduling,
Buffers reuse, Tasks pipelining, Initialization saving). The aim is to highlight the
performance gain by using these optimizations to take advantage of parallelism
and heterogeneity of clusters. The architecture used for the experimentations is a
CPU-GPU node composed of a 4 cores CPU (intel-i7 core) and 3 GPU (NVIDIA
Quadro 400, NVIDIA Quadro 400, NVIDIA GeForce GTX TITAN).

In the figure Fig.8, we present the total time necessary to process 1000 im-
ages (512x512 pixels) of 3 executions using different processing units. This total
time is composed of the effective execution time on the processing units, plus
the sleeping time which represents the time went without doing anything on the
device, plus the overhead time which represents additional time consumed by
managing the work (Tasks management, Scheduling, Buffer management, . . . ).
For the first execution, we use 1 CPU core and 1 GPU (Quadro) to process
images. In the GPU bar chart, we can show that execution time is higher com-
pared to overhead time and sleeping time thanks to graph unfolding optimization
which reduce waiting time. In the CPU bar chart, execution time is lower be-
cause the application is more GPU need. In the second experimentation, we use
1 CPU core and 2 GPU (Quadro). Here, we can show that total time necessary
decreases compared to the first execution, so we note a speedup equal to 1.7
x. Also, thanks to dynamic scheduling, we can see the result of load balance
between the 2 GPUs processing unit, thus the execution time is the same in the
both GPU bar chart. In the third execution, we use 1 CPU core and 3 GPUs to
enhance performance. And, we obtain a speedup equal to 2.2x compared to the
first execution. Also here, we can note the advantage of using dynamic schedul-
ing to reduce execution time and balance the load, and the graph unfolding to
reduce sleeping time. But also the advantage of using the buffers reuse technique,
the pipelining of tasks and the initialization data saving to stabilize overhead
time.



A Visual Programming Model for DSP Applications 151

Fig. 8. Processing time of 1000 images using different processing units

6 Conclusion

In this paper we presented our proposed programming model used to implement
DSP applications, allowing a high level abstraction from the hardware speci-
ficities thanks to its visual data-flow programming capabilities, and in the same
time, producing a good performance of application’s implementation through ex-
ploiting task parallelism, data parallelism, graph parallelism (graph unfolding),
and dynamic scheduling. First, we described DSP applications and specified
their characteristics in order to implement them in an optimal way. Then, we
proposed an XML interface to easily describe DSP applications in the form of a
DFG model. In addition, we proposed an execution model based on StarPU run-
time and exploiting some techniques. We used unfolding techniques to construct
DAG of independent tasks, which we submit in pipeline mode and configured to
reuse a static buffers and to save the initializations data on devices in order to
reduce overhead time, after that we dynamically schedule and process them on
heterogeneous and parallel architecture. Finally, we experimented our MoP on
the real-world saliency application and shown that’s easier to use our program-
ming model to design it, but at the same time, it’s possible to efficiently take
advantage of architecture’s power to speed up the execution.

References

1. Augonnet, C., Thibault, S., Namyst, R.: StarPU: a Runtime System for Schedul-
ing Tasks over Accelerator-Based Multicore Machines. Research Report RR-7240.
INRIA (2010)



152 F. Mansouri, S. Huet, and D. Houzet

2. Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for dsp
systems. Trans. Sig. Proc. 49(10), 2408–2421 (2001),
http://dx.doi.org/10.1109/78.950795

3. Bueno, J., Martinell, L., Duran, A., Farreras, M., Martorell, X., Badia, R.M.,
Ayguade, E., Labarta, J.: Productive cluster programming with ompss. In: Jeannot,
E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 555–
566. Springer, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2033345.2033405

4. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Par-
allel Programming in OpenMP. Morgan Kaufmann Publishers Inc., San Francisco
(2001)

5. Chen, W.Y.: Optimizing Partitioned Global Address Space Programs for Cluster
Architectures. Ph.D. thesis, EECS Department, University of California, Berkeley
(December 2007),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-140.html

6. Flynn, M.: Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers C-21(9), 948–960 (1972)

7. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid
scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998),
http://dx.doi.org/10.1109/34.730558

8. Kirk, D.B., Hwu, W.M.W.: Programming Massively Parallel Processors: A Hands-
on Approach, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2010)

9. Lee, E., Messerschmitt, D.: Static scheduling of synchronous data flow programs for
digital signal processing. IEEE Transactions on Computers C-36(1), 24–35 (1987)

10. Munshi, A., Gaster, B., Mattson, T., Ginsburg, D.: OpenCL Programming Guide.
OpenGL, Pearson Education (2011),
http://books.google.fr/books?id=M-Sve_KItQwC

11. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann Publishers Inc.,
San Francisco (1996)

12. Parhi, K., Messerschmitt, D.: Static rate-optimal scheduling of iterative data-flow
programs via optimum unfolding. IEEE Transactions on Computers 40(2), 178–195
(1991)

13. Reinders, J.: Intel threading building blocks - outfitting C++ for multi-core pro-
cessor parallelism. O’Reilly (2007)

14. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming, 1st edn. Addison-Wesley Professional (2010)

http://dx.doi.org/10.1109/78.950795
http://dl.acm.org/citation.cfm?id=2033345.2033405
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-140.html
http://dx.doi.org/10.1109/34.730558
http://books.google.fr/books?id=M-Sve_KItQwC

	A Visual Programming Model to Implement Coarse-Grained DSP Applications on Parallel and Heterogeneous Clusters
	1 Introduction
	2 Distinctiveness of DSP Applications
	3 Implementing DSP Applications on Clusters
	4 Proposed Programming Model
	4.1 Level 1: SignalPU DFG-XML Interface
	4.2 Level 2: SignalPU Implementation Design
	4.3 Level 3: SignalPU Runtime (StarPU)

	5 Validation
	5.1 The Saliency Application
	5.2 The SignalPU Implementation
	5.3 The Results

	6 Conclusion
	References




