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Abstract. Systems with large numbers of cores have become common-
place. Accordingly, applications are shifting towards increased parallelism.
In a general-purpose system, applications residing in the system compete
for shared resources. Thread and task scheduling in such a multithreaded
multiprogramming environment is a significant challenge. In this study,we
have chosen the Intel Xeon Phi system as a modern platform to explore
how popular parallel programming models, namely OpenMP, Intel Cilk
Plus and Intel TBB (Threading Building Blocks) scale on manycore ar-
chitectures. We have used three benchmarks with different features which
exercise different aspects of the system performance. Moreover, a multi-
programming scenario is used to compare the behaviours of these models
when all three applications reside in the system. Our initial results show
that it is to some extent possible to infer multiprogramming performance
from single-program cases.

1 Introduction

There are various programming models and runtime libraries that help devel-
opers to move from sequential to parallel programming. In this paper, we have
chosen three well-known parallel programming approaches to compare their per-
formance on a modern manycore machine. Before going into the details of these
models, we would like to introduce the manycore platform chosen for this study:

1.1 Intel Xeon Phi

The Intel Xeon Phi 5110P coprocessor is an SMP (Symmetric Multiprocessor)
on-a-chip which is connected to a host Xeon processor via the PCI Express
bus interface. The Intel Many Integrated Core (MIC) architecture used by the
Intel Xeon Phi coprocessors gives developers the advantage of using standard,
existing programming tools and methods. Our Xeon Phi comprises of 60 cores
connected by a bidirectional ring interconnect. The Xeon Phi has eight memory
controllers supporting 2 GDDR5 memory channels each. The clock speed of the
cores is 1.053GHz. According to Jeffers [6], the Xeon Phi provides four hardware
threads sharing the same physical core and its cache subsystem in order to hide
the latency inherent in in-order execution. As a result, the use of at least two
threads per core is almost always beneficial.
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Each core has an associated 512KB L2 cache. Data and instruction L1 caches
of 32KB are also integrated on each core. Another important feature of the Xeon
Phi is that each core includes a SIMD 512-bit wide VPU (Vector Processing
Unit). The VPU can be used to process 16 single-precision or 8 double-precision
elements per clock cycle. The third benchmark (Sect. 3.3) utilises the VPUs.

1.2 Parallel Programming Models

In order to have a fair comparison, we have chosen three programming models
that are all supported by ICC (Intel C/C++ Compiler).

OpenMP. OpenMP, which is the de-facto standard for shared-memory pro-
gramming, provides an API using the fork-join model. Threads communicate by
sharing variables. OpenMP has been historically used for loop-level and regular
parallelism through its compiler directives. Since the release of OpenMP 3.0, it
also supports task parallelism. Whenever a thread encounters a task construct,
a new explicit task is generated. An explicit task may be executed in parallel
with other tasks by any thread in the current team, and the execution can be
immediate or deferred until later [1].

Intel Cilk Plus. Intel Cilk Plus is an extension to C/C++ based on Cilk++[8].
It provides language constructs for both task and data parallelism. Is has become
popular because of its simplicity and higher level of abstraction (compared to
frameworks such as OpenMP or Intel TBB). Cilk provides the cilk spawn

and cilk sync keywords to spawn and synchronise tasks; cilk for loop is
a parallel replacement for sequential loops in C/C++. The tasks are executed
within a work-stealing framework. The scheduling policy provides load balance
close to the optimal [10].

Intel TBB. Intel Threading Building Blocks (TBB) is another well-known
approach for expressing parallelism [9]. Intel TBB is an object-oriented C++
runtime library that contains data structures and algorithms to be used in par-
allel programs. It abstracts the low-level thread interface. However, conversion
of legacy code to TBB requires restructuring certain parts of the program to
fit the TBB templates. Each worker thread in TBB has a deque (double-ended
queue) of tasks. Newly spawned tasks are put at the back of the deque, and each
worker thread takes the tasks from the back of its deque to exploit temporal
locality. If there is no task in the local deque, the worker steals tasks from the
front of the victims’ deques [7].

2 Experimental Setup

All the parallel benchmarks are implemented as C++ programs. They are exe-
cuted natively on the MIC. For that purpose, the executables are copied to the
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Xeon Phi, and we connect to the device from the host using ssh. For the OpenMP
applications, the libiomp5.so library is required. The libcilkrts.so.5 is
needed for Cilk Plus applications and the libtbb.so.2 library is required for
the TBB programs. The path to these libraries should be set before the ex-
ecution, e.g. export LD LIBRARY PATH=./:$LD LIBRARY PATH. The TBB pro-
grams should be compiled with the -ltbb flag. The OpenMP programs need
-openmp flag. The Intel compiler icpc (ICC) 14.0.2 is used with -O2 -mmic

-no-offload flags for compiling the benchmarks for native execution on the
Xeon Phi. All speedup ratios are computed against the running time of the
sequential code implemented in C++.

3 Single-Programming Benchmarks

Three different benchmarks have been used for the purposes of this study. They
are intentionally simple, because we want to be able to reason about the observed
differences in performance between the selected models. We first compare the
results for each single program.

3.1 Fibonacci

We consider a parallel Fibonacci benchmark as the first testcase. The Fibonacci
benchmark has traditionally been used as a basic example of parallel comput-
ing. Although it is not an efficient way of computing Fibonacci numbers, the
simple recursive pattern can easily be parallelised and is a good example of cre-
ating unbalanced tasks, resulting in load imbalance. In order to achieve desirable
performance, a suitable cutoff for the recursion is crucial. Otherwise, too many
fine-grained tasks would impose an unacceptable overhead to the system. The
cutoff limits the tree depth in the recursive algorithm, which results in generat-
ing 2tree depth tasks.

Figure 1 shows all the results taken from running this benchmark with differ-
ent programming models. Figure 1(a) shows the speedup chart for the integer
number 47 with 2048 unbalanced tasks at the last level of the Fibonacci heap.
Cilk Plus and TBB show similar results. Increasing the number of threads causes
visible performance degradation for OpenMP. Setting KMP AFFINITY=balanced

results in a negligible improvement of the OpenMP performance.
Figure 1(b) shows the importance of a proper cutoff on the performance of

this unbalanced problem. Having more tasks (as long as they are not too fine-
grained) gives enough opportunities for load balancing.

Total CPU Time

This is a lower-is-better metric that shows the total CPU times consumed in the
system from the start until the accomplishment of the job(s). This metric and the
detailed breakdown of CPU times are obtained using Intel’s VTune Amplifier
XE 2013 performance analyser [5]. Figures 1(d) to 1(f) are screenshots taken
from the VTune Amplifier when running Fib 47 with cutoff 2048 natively on the
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Fig. 1. Parallel Fibonacci benchmark for the integer number 47. The best performance
can be obtained by using Cilk Plus or TBB. Choosing a proper cutoff value is key
to good performance. If there are enough tasks in the system, the load balancing
techniques become effective and yield better speedup. A detailed breakdown of overall
CPU time for the case with 240 threads and cutoff value 2048 is illustrated for each
approach in the charts (d) to (f). TBB consumes less CPU time in total while providing
good performance, and Cilk Plus has the best performance. The y-axis on the (d) to
(f) charts is the time per logical core, from 0 to the maximum number specified in
seconds.
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Xeon Phi. The x-axis shows the logical cores of the Xeon Phi (240 cores), and
the y-axis is the CPU time for each core.1

For the Fibonacci benchmark, OpenMP consumes the most CPU time, and
its performance is bad, the worst amongst the three approaches.

3.2 MergeSort

This benchmark sorts an array of 80 million integers using a merge sort algo-
rithm. The ith element of the array is initialised with the number i∗((i%2)+2).
The cutoff value determines the point after which the operation should be per-
formed sequentially. For example, cutoff 2048 means that chunks of 1/2048 of the
80M array should be sorted sequentially, in parallel, and afterwards the results
will be merged two by two, in parallel to produce the final sorted array.

For the MergeSort benchmark, tasks are not homogeneous, i.e. there are chil-
dren and parent tasks. The same scenario existed in the previous Fibonacci
benchmark, but the parent tasks were integer additions that did not impose
overhead to the system. Here, the parent tasks are heavyweight merge opera-
tions, and this is what makes this benchmark distinct from the previous one.

As shown in Fig. 2(a) with larger numbers of threads, there is either no
noticeable change (in the case of TBB), or a slowdown (in the case of OpenMP
and Cilk Plus). Using thread affinity for OpenMP in this case does not make an
appreciable difference.

Figures 2(c) to 2(f) are again based on the results obtained by the VTune
Amplifier when running the benchmark with 240 threads and cutoff 2048. Since
all merges in a branch of the task tree can run on the same core as their children,
there would be no need to have balanced load for good performance. In other
words, the unbalanced distribution in Fig. 2(f) does not imply a poor behaviour
of the TBB runtime system.

3.3 MatMul

This benchmark performs a naive matrix multiplication by a triple nested loop
with ikj loop ordering for caching benefits on square matrices of N×N double-
precision floating point numbers. This is a completely data parallel problem
which fits very well to OpenMP and its for worksharing construct. There is a
concept similar to the cutoff in the loop parallelism context to control chunk-
ing. It specifies the size of chunk for each thread in a data parallel worksharing
scenario. If the cutoff value is assumed as the number of chunks, the chunk
(grain) size can be specified for the OpenMP for as follows: #pragma omp

for schedule(dynamic, N/cutoff). The dynamic keyword can be replaced by
static as well. Grain size in the Cilk Plus is similarly specified via a pragma:

1 It should be noted that for all experiments, results from the benchmark’s kernel are
considered in the figures (a) and (b), while in the other results taken from the VTune
Amplifier, all information from the start of the application, including its initial phase
and the CPU time consumed by the shared libraries is taken into account.
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Fig. 2. Parallel MergeSort benchmark for an array of 80 million integers. This bench-
mark does not scale well. The best performance, however, can be obtained by using
OpenMP or Cilk Plus. For this memory-intensive benchmark, cutoff values greater
than 64 are enough to lead to good performance with as many threads as the num-
ber of cores. TBB consumes significantly less Total CPU Time. With small number
of threads, OpenMP and Cilk Plus yield better performance, but finally (with 240
threads) OpenMP and TBB provide slightly better performance.
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#pragma cilk grainsize = N/cutoff. Intel TBB has a template function
called parallel for, which can be called with simple partitioner() to con-
trol the grain size.

Before going into details of the results, we would like to focus on some technical
considerations:

In order to achieve automatic vectorization on the Xeon Phi, the Intel TBB
and OpenMP codes have to be compiled with the -ansi-alias flag.

The schedule clause used with OpenMP for specifies how iterations of the
associated loops are divided (statically/dynamically) into contiguous chunks,
and how these chunks are distributed amongst threads of the team. In order to
have a better understanding of the relations between the cutoff value (number
of the chunks), number of threads, and the thread affinity on the Xeon Phi,
consider the following example. Suppose that for the MatMul benchmark, the
OpenMP for construct with static schedule is used, which means that iterations
are divided statically between the execution threads in a round-robin fashion:

Example

#pragma omp for schedule(static, N/cutoff).

Runtime of the case(a) on the Xeon Phi is ≈3× better than that of the case(b).

a) omp set num threads(32), cutoff=32, KMP AFFINITY=balanced
The threads will be spread across 32 physical cores. With the balanced affin-
ity, they have to be distributed as evenly as possible across the chip, which
is one thread per physical core. As a result, every chunk will be run on a
separate physical core.

b) omp set num threads(240), cutoff=32, KMP AFFINITY=balanced
The threads will be spread across all 60 physical cores. But the work will
be distributed between 8 physical cores, which are the first 32 hardware
threads. The reason is that with 240 threads, there will be one thread per
logical core, and with cutoff 32, every thread with the thread id from 0 to
31 gets a chunk of size N/32.

With these considerations, we are ready to run the MatMul benchmark and
compare the programming models in a data parallel scenario. The results can
be found in Fig 3.

4 Discussion

One way to reason about the differences between these parallel programming
models is to compare the amount of the Total CPU Time consumed by their
runtime libraries. We have therefore summarised the results as the percentage
of time spent on the shared libraries in each case.

Table 1 gives a better understanding of where the CPU times have been con-
sumed. For instance, for the OpenMP runtime library, the wasted CPU time
generally falls into two categories: I) A master thread is executing a serial re-
gion, and the slave threads are spinning. II) A thread has finished a parallel
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Fig. 3. Parallel MatMul benchmark on a 4096×4096 matrix of double numbers. The
best results can be obtained by using OpenMP approaches. For the cutoff values greater
than 256, OpenMP with dynamic scheduling has the best scaling amongst all. Again
the Total CPU Time of TBB is the least amongst all. There is an evident distinc-
tion between the distribution of CPU times in the charts (d) and (e) that shows how
OpenMP load balancing, when using dynamic scheduling leads to better performance.
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Table 1. Percentage of the Total CPU Time consumed by the runtime libraries

Benchmark OpenMP
(libiomp5.so)

Cilk Plus
(libcilkrts.so.5)

TBB
(libtbb.so.2)

Fibonacci 50% 16% 5%

MergeSort 78% 81% 3%

MatMul 22% (Dynamic)
20% (Static)

6% 1%

region, and is spinning in the barrier waiting for all other threads to reach that
synchronisation point. Although sometimes in solo execution of the programs,
these extra CPU cycles have negligible influence on the running time (wall time),
we will show in the next section, how they will affect other programs under mul-
tiprogrammed execution.

5 Multiprogramming

In this section, we consider a multiprogramming scenario to see how these models
behave in a multiprogramming environment. The metric used for the comparison
is the user-oriented metric Turnaround Time [3], which is the time between
submitting a job and its completion in a multiprogram system.

The three benchmarks have the same input sizes as the single-program cases
with the cutoff value 2048 and the default number of threads 240 (the same as
the number of logical cores in the Xeon Phi). We do not start all of them at the
same time. Rather, we want the parallel phases to start almost simultaneously,
such that all of the applications’ threads compete for the resources. For that
purpose, the MergeSort benchmark enters the system first. Two seconds later
the MatMul benchmark enters the system, and half a second after that, the Fib
benchmark starts2.

Based on the single-program results, we expect TBB to perform best because
it has the least Total CPU Time in all three benchmarks. It might not affect the
runtime of a single program significantly, but when there are multiple programs
competing for the resources, the wasted CPU time can play an important role. In
other words, CPU time wasted by each program can influence the performance
of other programs reside in the system.

The results are shown and discussed in Fig. 4

5.1 Related Work

Saule and Catalyurek [10] have compared the same three programming models
on the Intel Xeon Phi. They have focused on the scalability of graph algorithms,

2 The sequential phase of the MergeSort benchmark with the input size 80 million is
around 2 seconds, and the initial phase of the MatMul benchmark with the input
size 4096×4096 is about half a second.
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Fig. 4. A multiprogramming scenario with the three benchmarks This is what hap-
pens when the three benchmarks compete for the resources: (a) shows that the best
turnaround times are obtained with TBB. The hardware event, number of Instructions
Executed, sampled by the VTune Amplifier in (b), implies a significant difference be-
tween TBB and the other two competitors. Results from the Total CPU Time in chart
(c) is similar to those in chart (b) and they both show why TBB performs better than
OpenMP and Cilk Plus. A detailed breakdown of overall CPU time in the (d) to (f)
charts illustrates how OpenMP consumes more CPU time in total, and therefore has
the worst performance.
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while we have highlighted more differences between these programming models
by adding the Total CPU Time as another performance aspect, and targeted the
case of multiprogramming as well.

We have shown that the overhead of the runtime libraries play an important
role in the parallel computing world, particularly in multiprogrammed systems.
Besides the extra energy dissipation they impose on the system, they have no-
ticeable influence on the performance of multiprogram workloads.

Emani et al. in [2] have used predictive modelling techniques to determine an
optimal mapping of a program in the presence of external workload. Harris et
al. have introduced Callisto [4] as a user-mode shared library for co-scheduling
multiple parallel runtime systems (mainly for OpenMP programs). However,
their current version does not support OpenMP tasks.

Varisteas et al. [14] have proposed an adaptive space-sharing scheduler for
the Barrelfish operating system to overcome the resource contention between
multiple applications running simultaneously in a multiprogrammed system.

In [12], a thread mapping method based on the system’s load information is
developed for OpenMP programs. Performance of the multiprogram workloads in
Linux can be improved by sharing the load information and using it for thread
placement. However, for this method to be effective, the optimal number of
threads for each single program should be known to the programmer. Most of
time, though, programs are run with the default number of threads, similar to
what we did in this work.

We are currently developing a methodology inside our research framework,
called Glasgow Parallel Reduction Machine (GPRM) [11] which allows the ap-
plications to use default numbers of threads (i.e. as many as the number of cores),
and the same time improves the turnaround time by sharing some information
globally. The main focus of GPRM is on tasks rather than threads to decrease
the overhead of the runtime system. We have shown its potential, particularly in
comparison with OpenMP [13]. We plan to add GPRM to the comparison with
these three programming models. We aim to show that having a low-overhead
runtime system is crucial in multiprogrammed systems.

6 Conclusion

We have compared some of the performance aspects (in particular speed-up,
CPU balance, and the Total CPU Time) of three well-known parallel program-
ming approaches, OpenMP, Cilk and TBB, on the Xeon Phi coprocessor. We
used three different parallel benchmarks, Fibonacci, Merge Sort and Matrix Mul-
tiplication. Each benchmark has different characteristics which highlight some
pros and cons of the studied approaches. Our multiprogramming scenario is to
run all three benchmarks together on the system and observe how the different
programming models react to this situation.

Based on the results obtained from the single program scenarios, particularly
the Total CPU Time, we predicted that the Intel TBB approach would be more
suited to a multiprogramming environment, and our experiment confirmed this.
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Based on our learnings from these preliminary experiments, we plan to extend
the work with more testbenches as well as more programming models.

In addition, since the way Linux deals with multithreaded multiprogramming
is sub-optimal, we conclude that there is a need to share additional information
on thread placement between the applications present in the system in order to
get better performance. We are currently developing this idea inside our novel
experimental framework.
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