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Abstract. High-level languages such as Python offer convenient lan-
guage constructs and abstractions for readability and productivity. Such
features and Python’s ability to serve as a steering language as well as
a self-contained language for scientific computations has made Python
a viable choice for high-performance computing. However, the Python
interpreter’s reliance on shared objects and dynamic loading causes scal-
ability issues that at large-scale consumes hours of wall-clock time just
for loading the interpreter.

The work in this paper explores an approach to bypass the con-
ventional software stack, by replacing the Python interpreter on com-
pute nodes with an adaptable runtime system capable of executing the
compute intensive portions of a Python program. Allowing for a single
instance of the Python interpreter, interpreting the users’ program and
additionally moving program interpretation off the compute nodes.
Thereby avoiding the scalability issue of the interpreter as well as pro-
viding a means of running Python programs on restrictive compute notes
which are otherwise unable to run Python.

The approach is experimentally evaluated through a prototype imple-
mentation of an extension to the Bohrium runtime system. The evalua-
tion shows promising results as well as identifying issues for future work
to address.
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1 Introduction

Python is a high-level, general-purpose, interpreted language. Python advo-
cates high-level abstractions and convenient language constructs for readabil-
ity and productivity. The reference implementation of the Python interpreter,
CPython, provides rich means for extending Python with modules implemented
in lower-level languages such as C and C++. Lower-level implementations can be
written from scratch and conveniently map to Python data-structures through
Cython[4], function wrappers to existing libraries through SWIG[3,2], or using
the Python ctypes1 interface.

1 http://docs.python.org/2/library/ctypes.html
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The features of the language itself and its extensibility make it attractive
as a steering language for scientific computing, which the existence of Python
at high-performance compute sites confirms. Furthermore, there exists a broad
range of Python wrappers to existing scientific libraries and solvers[11,20,13,8,9].

Python transcends its utilization as a steering language. SciPy2 and its accom-
panying software stack[17,18,12] provides a powerful environment for developing
scientific applications. The fundamental building block of SciPy is the multidi-
mensional arrays provided by NumPy[17]. NumPy expands Python by providing
a means of doing array-oriented programming using array-notation with slicing
and whole-array operations. The array-abstractions offered by NumPy provides
the basis for a wealth of existing[6] and emerging[19,21,14] approaches that in-
creases the applicability of Python in an HPC environment. Even though ad-
vances are made within these areas, a problem commonly referred to as the the
import problem[1,15,22] still persists at large-scale compute sites. The problem
evolves around dynamic loading of CPython itself, built-in modules, and third
party modules. Recent numbers reported on Hopper[22] state linear scale with
the number of cores, which amount to a startup time of 400 seconds on 1024
cores and one hour for 8000 cores.

The approach in this paper explores a simple idea to avoid such expensive
startup costs: execute one instance of the Python interpreter regardless of the
cluster size. Furthermore, we allow the Python interpreter to run on an external
machine that might not be part of the cluster. The machine can be any one of;
the user’s own laptop/workstation, a frontend/compile node, or a compute node,
e.g. any machine that is accessible from the compute-site.

A positive complementary effect, as well as a goal in itself, is that the Python
interpreter and the associated software stack need not be available on the com-
pute nodes.

The work in this paper experimentally evaluates the feasibility of bypass-
ing the conventional software stack, by replacing the Python interpreter on the
compute nodes with an adaptable runtime system capable of executing the com-
putationally heavy part of the users’ program. The approach facilitates the use of
Python at restrictive compute-sites and thereby broadens application of Python
in HPC.

2 Related Work

The work within this paper describes, to the authors knowledge, a novel approach
for handling the Python import problem. This section describes other approaches
to meeting the same end.

Python itself support a means for doing a user-level override of the import
mechanism3 and work from within the Python community has improved upon
the import system from version 2.6 to 2.7 and 3.0. In spite of these efforts, the
problem persists.

2 http://www.scipy.org/stackspec.html
3 http://legacy.python.org/dev/peps/pep-0302/
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One aspect of the import problem is the excessive stress on the IO-system
caused by the object-loader traversing the filesystem looking for Python mod-
ules. Path caching through collective operations is one approach to lowering
overhead. The mpi4py[7] project implements multiple techniques to path caching
where a single node traverses the file-system and broadcasts the information to
the remainingN−1 nodes. The results of this approach show significant improve-
ments to startup times from hours to minutes but relies on the mpi4py library
and requires maintenance of the Python software-stack on the compute-nodes.

Scalable Python4, first described in[9], addresses the problem at a lower level.
Scalable Python, a modification of CPython, seeks to address the import problem
by implementing a parallel IO layer utilized by all Python import statements. By
doing so only a single process, in contrast to N processes, perform IO. The result
of the IO operation is broadcast to the remaining N − 1 nodes via MPI. The
results reported in[9] show significant improvements towards the time consumed
by Python import statements at the expense of maintaining a custom CPython
implementation.

Relying on dynamically loaded shared objects is a general challenge for large-
scale compute-sites with a shared filesystem. SPINDLE[10] provides a generic
approach to the problem through an extension to the GNU Loader.

The above described approaches apply different techniques for improving per-
formance of dynamic loading. A different strategy which in this respect is the-
matically closer to the work within this paper is to reduce the use of dynamic
loading. The work in[15] investigate such strategy by replacing as much dynamic
loading with statically compiled libraries. Such technique in a Python context
can by applied through the use of Python freeze5 and additional tools6 exists to
support it.

3 The Approach

The previous sections describe and identify the CPython import system as the
culprit guilty of limiting the use of Python / NumPy at large-scale compute
sites. Dynamic loading and excessive path searching are accomplices to the havoc
raised. The crime committed is labelled as the Python import problem.

Related work let the culprit run free and implement techniques to handling
the havoc raised. The work within this paper focuses on restricting the culprit
and thereby preventively avoiding the problem.

The idea is to run a single instance of the Python interpreter, thereby keeping
the overhead constant and manageable. The remaining instances of the inter-
preter are replaced with a runtime system capable of efficiently executing the
portion of the Python / NumPy program responsible for communication and
computation. Leaving the task of interpreting the Python / NumPy program,

4 https://gitorious.org/scalable-python
5 https://wiki.python.org/moin/Freeze
6 https://github.com/bfroehle/slither
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conditionals, and general program flow up to the interpreter. The computation-
ally heavy parts are delegated to execution on the compute nodes through the
runtime system.

3.1 Runtime System

Fig. 1. Illustration of communication be-
tween the runtime system components with-
out the use of the proxy component

The runtime used in this work is
part of the Bohrium[19] project7. The
Bohrium runtime system (BRS) pro-
vides a backend for mapping array
operations onto a number of differ-
ent hardware targets, from multi-core
systems to clusters and GPU enabled
systems. It is implemented as a virtual
machine capable of making runtime
decisions instead of a statically com-
piled library. Any programming lan-
guage can use BRS in principle; in this
paper though, we will use the Python
/ NumPy support exclusively.

The fundamental building block of BRS is the representation of programs in
the form of vector bytecode. A vector bytecode is a representation of an operation
acting upon an array. This can be one of the standard built-in operations such as
element-wise addition of arrays, function promotion of trigonometric functions
over all elements of an array, or in functional terms: map, zip, scan and reduction,
or an operation defined by third party.

BRS is implemented using a layered architecture featuring a set of interchange-
able components. Three different types of components exist: filters, managers,
and engines. Figure 1 illustrates a configuration of the runtime system config-
ured for execution in a cluster of homogenous nodes. The arrows represent vector
bytecode sent through the runtime system in a top-down fashion, possibly alter-
ing it on its way.

Each component exposes the same C-interface for initialization, shutdown,
and execution thus basic component interaction consists of regular function calls.
The component interface ensures isolation between the language bridge that runs
the CPython interpreter and the rest of Bohrium. Thus, BRS only runs a single
instance of the CPython interpreter no matter the underlying architecture –
distributed or otherwise.

Above the runtime, a language bridge is responsible for mapping language
constructs to vector bytecode and passing it to the runtime system via the C-
interface.

Managers manage a specific memory address space within the runtime sys-
tem and decide where to execute the vector bytecode. In figure 1 a node man-
ager manages the local address space (one compute-node) and a cluster-manager

7 http://www.bh107.org
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which handles data distribution and inter-node communication through MPI. At
the bottom of the runtime system, we have the execution engines, which are re-
sponsible for providing efficient mapping of array operations down to a specific
processing unit such as a CPU or a GPU.

3.2 Proxy Manager

Currently, all Bohrium components communicate using local function calls, which
translates into shared memory communication. Figure 1 illustrates the means of
communication within the BRS prior to the addition of the proxy component. As
a result, the language bridge, which runs a CPython interpreter, must execute
on one of the cluster-nodes. In order to circumvent this problem, we introduce
a new proxy component.

Fig. 2. Illustration of communication between the run-
time system components with the use of the proxy com-
ponent

This new component
acts as a network proxy
that enables Bohrium com-
ponents to exchange vec-
tor bytecode across a net-
work. Figure 2 illustrates
the means for communi-
cation which the Proxy
component provides. By
using this functionality,
separation can be achieved
between the implementation of any application using Bohrium and the actual
hardware on which it runs. This is an important property when considering
cases of supercomputers or clusters, which define specific characteristics for the
execution of tasks on them.

The proxy component is composed of two parts – a server and a client. The
server exposes the component interface (init, execute, and shutdown) to its par-
ent component in the hierarchy whereas the client uses its child component
interface. When the parent component calls execute with a list of vector byte-
codes, the server serialize and sends the vector bytecodes to the client, which
in turn uses its child component interface to push the vector bytecodes further
down the Bohrium hierarchy. Besides the serialized list of vector bytecodes, the
proxy component needs to communicate array-data in two cases.

When the CPython interpreter introduces existing NumPy arrays and Python
scalars to a Bohrium execution. Typically, this happens when the user applica-
tion loads arrays and scalars initially. When the CPython interpreter access the
result of a Bohrium execution directly. Typically, this happens when the user
application evaluates a loop-condition based on some array and scalar data.

Both the server and the client maintain a record of array-data locations thus
avoiding unnecessary array-data transfers. Only when the array-data is involved
in a calculation at the client-side will the server send the array-data. Similarly,
only when the CPython interpreter request the array-data will the client send
the array-data to the server.
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In practice, when the client sends array-data to the server it is because the
CPython interpreter needs to evaluate a scalar value before continuing. In this
case, the performance is very latency sensitive since the CPython interpreter is
blocking on the scalar value. Therefore, it is crucial to disable Nagle’s TCP/IP
algorithm[16] in order achieve good performance. Additionally, the size of the
vector bytecode lists is significantly greater than the TCP packet header thus
limiting the possible advantage of Nagle’s TCP/IP algorithm. Therefore, when
the proxy component initiates the TCP connection between server and client it
sets the TCP NODELAY socket option.

4 Evaluation

Fig. 3. Octuplets and DCSC two physi-
cally and administratively disjoint clusters
of eight and sixteen nodes. Octuplets is
a small-scale research-cluster managed by
the eScience group at the Niels Bohr In-
stitute. DCSC is a larger compute-site for
scientific computation in Denmark. Gbit
ethernet facilitate the connection between
Manjula and the octuplet cluster and
100Mbit ethernet between Manjula and
DCSC.

The basic idea of the approach is to
have a single instance of CPython in-
terpreting the user’s program, such as
figure 2 illustrates. With a single iso-
lated instance of the interpreter the
import problem is solved by design.
The second goal of the approach is
to facilitate execution of a Python
program in a restricted environment
where the Python software stack is
not available on the compute nodes.

The potential Achilles heel of the
approach is in its singularity, with
a single remote instance of the in-
terpreter network latency and band-
width limitations potentially limit ap-
plication of the approach.

Network latency can stall execution
of programs when the round-trip-time
of transmitting vector bytecode from the interpreter-machine to the compute
node exceeds the time spent computing on previously received vector bytecode.
Bandwidth becomes a limiting factor when the interpreted program needs large
amounts of data for evaluation to proceed interpretation and transmission of
vector bytecode. The listing below contains descriptions of the applications used
as well as their need for communication between interpreter and runtime. The
sourcecode is available for closer inspection in the Bohrium repository8.

Black Scholes implements a financial pricing model using a partial differen-
tial equation, calculating price variations over time[5]. At each time-step
the interpreter reads out a scalar value from the runtime representing the
computed price at that time.

8 http://bitbucket.org/bohrium/bohrium
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Heat Equation simulates the heat transfer on a surface represented by a two-
dimensional grid, implemented using jacobi-iteration with numerical con-
vergence. The interpreter requires a scalar value from the runtime at each
time-step to evaluate whether or not simulation should continue. Addition-
ally when executed with visualization the entire grid is required.

N-Body simulates interaction of bodies according to the laws of Newtonian
physics. We use a straightforward algorithm that computes all body-body
interactions,O(n2), with collisions detection. The interpreter only needs data
from the runtime at the end of the simulation to retrieve the final position of
the bodies. However, the interpreter will at each time-step, when executed
for visualization purposes, request coordinates of the bodies.

Shallow Water simulates a system governed by the Shallow Water equations.
The simulation initates by placing a drop of water in a still container. The
simulation then proceeds, in discrete time-steps, simulating the water move-
ment. The implementation is a port of the MATLAB application by Burkardt
9. The interpreter needs no data from the runtime to progress the simulation
at each time-step. However, the interpreter will at each time-step, when ex-
ecuted for visualization purposes, request the current state of the simulated
water.

We benchmark the above applications on two Linux-based clusters (Fig. 3).
The following subsections describe the experiments performed and report the
performance numbers.

4.1 Proxy Overhead

Fig. 4. Elapsed wall-clock time in seconds
of the four applications on the octuplet
compute nodes with and without the proxy
component

We begin with figure 4 which show the
results of running the four benchmark
applications on the octuplet cluster
using eight compute nodes and two
different configurations:

With Proxy The BRS configured
with the proxy component and the in-
terpreter is running on Manjula. This
configuration is equivalent to the one
illustrated in figure 2.

Without Proxy The BRS config-
ured without the proxy component.
The interpreter is running on the
first of the eight compute nodes. This
setup is equivalent to the one illus-
trated in figure 1.

We cannot run Python on the DCSC cluster for the simple reason that the
software stack is too old to compile Python 2.6 on the DCSC compute nodes.

9 http://people.sc.fsu.edu/~jburkardt/m_src/shallow_water_2d/
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Thus, it is not possible to provide comparable results of running with and without
the Proxy component.

The purpose of this experiment is to evaluate the overhead of introducing the
proxy component in a well-behaved environment. There were no other users of
the network, filesystem, or machines. Round-trip-time between Manjula and the
first compute node was average at 0.07ms during the experiment. The error bars
show two standard deviations from the mean. The overhead of adding the proxy
component is within the margin of error and thereby unmeasurable.

4.2 Latency Sensitivity

Fig. 5. Slowdown of the four applications
as a function of injected latency between
Manjula and octuplet compute node

Fig. 6. Slowdown of the four applications
as a function of injected latency between
Manjula and DCSC compute node.

We continue with figures 5 and 6. The BRS configured with the proxy com-
ponent, running the interpreter on Manjula. Figure 2 illustrates the setup. The
purpose of the experiment is to evaluate the approach’ sensitivity to network
latency. Latencies of 50, 100, 150, and 200ms are injected between Manjula and
the compute node running the proxy client. The figures show slowdown of the
applications as a function of the injected latency.

The applications Shallow Water and N-body are nearly unmeasurably affected
by the injected latency. The observed behavior is as expected since the interpreter
does not need any data to progress interpretation. It is thereby possible to overlap
transmission of vector bytecode from the interpreter-machine with computation
on the compute nodes.

The injected latency does, however, affect the applications Heat Equation
and Black Scholes. The observed behavior is as expected since the interpreter
requires a scalar value for determining convergence criteria for Heat Equation
and sampling the pricing value for Black Scholes. Network latency affects the
results from the DCSC cluster the most, with a worst-case of a 2.8 slowdown.
This is due to the elapsed time being lower when using the sixteen DCSC com-
pute nodes. Since less time is spent computing more time is spent waiting and
thereby a relatively larger sensitivity to network latency.
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4.3 Bandwidth Sensitivity

The last experiment sought to evaluate the sensitivity to high network band-
width utilization. Figures 7 and 8 show the results of an experiment where the
four applications were running with visualization updated at each time-step.
The BRS configured with the proxy component; Manjula is running the Python
interpreter. Figure 2 illustrates the setup.

Fig. 7. Elapsed wall-clock time of the four
applications with and without visualiza-
tion on the octuplet compute nodes.

Fig. 8. Elapsed wall-clock time of the four
applications with and without visualiza-
tion on the DCSC compute nodes.

When executing with visualization, the interpreter requires a varying ( de-
pending on the application) amount of data to be transmitted from the compute
nodes to the interpreter-machine at each time step. Thereby straining the avail-
able bandwidth between the interpreter-machine and the compute node running
the proxy-client.

Black-Scholes although sensitive to latency due to the need of transmitting
the computed price at each time-step, does not require any significant amount
of data to be transferred for visualization, neither does the N-Body simulation.
However, the two other applications Heat Equation and Shallow Water require
transmission of the entire state to visualize dissipation of heat on the plane and
the current movement of water. These two applications are sufficient to observe
a key concern of the approach.

We observe a slowdown of about ×1260 (Heat Equation) and ×257 (Shallow
Water) when running on the DCSC nodes. We observe a slowdown of about
×32.8 (Heat Equation) and ×8.5 (Shallow Water) when running in the octuplet
nodes. These results clearly show that network bandwidth becomes a bottleneck,
with disastrous consequences in terms of execution time and thus a limiting
factor for applying the approach for such use.

The slowdown is much worse when running on the DCSC compute nodes
compare to the slowdown on the octuplet nodes. This is due to the interconnect
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being 100Mbit ethernet to the DCSC in relation to the 1Gbit ethernet connection
to the octuplet nodes.

5 Future Work

The evaluation revealed bandwidth bottlenecks when the machine running the
interpreter requests data for purposes such as visualization. The setup in the
evaluation was synthetic and forced requests of the entire data-set at each time-
step without any transformation of the data, it can, therefore, be regarded as a
worst-case scenario.

One could argue that the setup is not representative for user behaviour and
instead assume that the user would only need a snapshot of data at every
timestep/K iteration and with lowered resolution such as every I’th datapoint
and thus drastically lowering the bottleneck. However, to address the issue future
work will involve compressed encoding of data transmitted as well as suitable
downsampling for the visualization purpose.

The primary focus point for future work is now in progress and relates to the
effective throughput at each compute-node. The current implementation of the
execution engine uses a virtual-machine approach for executing array operations.
In this approach the virtual machine delegate execution of each vector bytecode
to statically compiled routine. Within this area, a wealth of optimizations are
applicable by composing multiple operations on the same data and hereby fusing
array operations together.

Random-number generators, linear spaces of data, and iotas, when combined
with reductions are another common source for optimization of memory uti-
lization and locality. Obtaining such optimizations within the runtime require
the use of JIT compilation techniques and potentially increase the use dynamic
loading of optimized codes. The challenge for this part of future work involves ex-
ploration of how to get such optimization without losing the performance gained
to runtime and JIT compilation overhead.

6 Conclusions

The work in this paper explores the feasibility of replacing the Python interpreter
with an adaptable runtime system, with the purpose of avoiding the CPython
scalability issues and providing a means of executing Python programs on restric-
tive compute nodes which are otherwise unable to run the Python interpreter.

The proxy component, implemented as an extension to the Bohrium runtime
system (BRS), provides the means for the BRS to communicate with a single re-
mote instance of the Python interpreter. The prototype implementation enabled
evaluation of the proposed approach of the paper.

Allowing the interpreter to execute on any machine, possibly users’ own work-
stations/laptops, leverages a Python user to utilize a cluster of compute nodes
or a supercomputer with direct realtime interaction. However, it also introduces
concerns with regards to the effect of network latency and available bandwidth,
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between the machine running the interpreter and the compute node running
the proxy client, on program execution. These concerns were the themes for the
conducted evaluation.

Results showed that the overhead of adding the proxy component and thereby
the ability for the BRS to use a remote interpreter was not measurable in terms
of elapsed wall-clock time, as results were within two standard deviations of
the measured elapsed wall-clock. The results additionally showed a reasonable
tolerance to high network latency, at 50ms round-trip-time, slowdown ranged
from not being measurable to ×1.3−×1.4. In the extreme case of 200ms latency
ranged from not being measurable to a slowdown of ×1.9−×2.8.

The primary concern, and focus for future work, presented itself during evalu-
ation of bandwidth requirements. If the Python program requests large amounts
of data then the network throughput capability becomes a bottleneck, severely
impacting elapsed wall-clock as well as saturating the network link, potentially
disrupting other users.

The results show that the approach explored within this paper does provide a
possible means to avoid the scalability issues of CPython, allowing direct user in-
teraction and enabling execution of Python programs in restricted environments
that are otherwise unable to run interpreted Python programs. The approach is,
however, restricted to transmission of data such as vector bytecode, scalars for eval-
uation of convergence criteria, boolean values, and low-volume data-sets between
the interpreter-machine and runtime. This does, however, not restrict processing
of large-volume datasets within the runtime on and between the compute nodes.
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