
Lace: Non-blocking Split Deque

for Work-Stealing

Tom van Dijk� and Jaco C. van de Pol

Formal Methods and Tools, Dept. of EEMCS, University of Twente
P.O.-box 217, 7500 AE Enschede, The Netherlands

{t.vandijk,vdpol}@cs.utwente.nl

Abstract. Work-stealing is an efficient method to implement load ba-
lancing in fine-grained task parallelism. Typically, concurrent deques are
used for this purpose. A disadvantage of many concurrent deques is that
they require expensive memory fences for local deque operations.

In this paper, we propose a new non-blocking work-stealing deque
based on the split task queue. Our design uses a dynamic split point
between the shared and the private portions of the deque, and only re-
quires memory fences when shrinking the shared portion.

We present Lace, an implementation of work-stealing based on this
deque, with an interface similar to the work-stealing library Wool, and
an evaluation of Lace based on several common benchmarks. We also
implement a recent approach using private deques in Lace. We show that
the split deque and the private deque in Lace have similar low overhead
and high scalability as Wool.

Keywords: work-stealing, task-based parallelism, dynamic load balan-
cing, lock-free algorithm, non-blocking deque.

1 Introduction

1.1 Task-Based Parallelism

In recent years, the importance of using parallelism to improve the performance
of software has become self-evident, especially given the availability of multicore
shared-memory systems and the physical limits of processor speeds. Frameworks
like Cilk [3,9] and Wool [7,8] allow writing parallel programs in a style similar
to sequential programs [1].

In task-based parallelism, a computation is divided into small tasks. Each
task only depends on the results of its own immediate subtasks for its execution.
Multiple independent subtasks can be executed in parallel. Especially recursive
algorithms are easily parallelized.

Cilk, Wool, and similar task-based parallel frameworks use keywords spawn
and sync to expose parallelism. The spawn keyword creates a new task. The
sync keyword matches with the last unmatched spawn, i.e., operating as if
spawned tasks are stored on a stack. It waits until that task is completed and

� The first author is supported by the NWO project MaDriD, grant nr. 612.001.101.

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 206–217, 2014.
c© Springer International Publishing Switzerland 2014



Lace: Non-blocking Split Deque for Work-Stealing 207

1 def spawn (task):
2 self.tasks .push(task)

3 def sync ():
4 status , t = self.tasks .pop ()
5 if status = STOLEN :
6 while not t.done:
7 steal_work (t.thief )
8 self.tasks. pop_stolen ()
9 return t.result

10 else: return t.execute ()

11 def steal_work (victim ):
12 t = victim .tasks.steal ()
13 if t != None:
14 t.thief = self
15 t.result = t.execute ()
16 t.done = True

17 thread worker (id, roottask ):
18 if id = 0: roottask .execute ()
19 else: forever :
20 steal_work (random_victim())

Fig. 1. Simplified algorithm of work-stealing using leapfrogging when waiting for a
stolen task to finish, i.e., steal from the thief. Note that stolen tasks are not removed
from the task pool until completed.

retrieves the result. Every spawn during the execution of the program must
have a matching sync. In this paper, we follow the semantics of Wool. In the
original work-stealing papers, sync waits for all locally spawned subtasks, rather
than the last unmatched subtask.

1.2 Work-Stealing

Work-stealing is a technique that efficiently implements load-balancing for task-
based parallelism. It has been proven to be optimal for a large class of problems
and has tight memory and communication bounds [4]. In work-stealing, tasks
are executed by a fixed number of workers. Each worker owns a task pool into
which it inserts spawned tasks. Idle workers steal tasks from random victims.

See Figure 1 for a simplified work-stealing algorithm. Workers start executing
in worker. One worker executes the first task. The other workers steal from
random victims. The task pool tasks acts like a stack with methods push and
pop, and provides steal for potential thieves. Tasks are typically stolen from the
bottom of the stack, since these tasks often have more subtasks. This reduces
the amount of total steals necessary and thus the overhead from stealing.

When synchronizing with a stolen task, the victim steals from the thief until
the stolen task is completed. By stealing back from the thief, a worker executes
subtasks of the stolen task. This technique is called leapfrogging [16]. When
stealing from random workers instead, the size of the task pool of each worker
could grow beyond the size needed for complete sequential execution [8]. Using
leapfrogging rather than stealing from random workers thus limits the space
requirements of the task pools to those of sequential execution.

1.3 Work-Stealing Deques

Task pools are commonly implemented using double-ended queues (deques) spe-
cialized for work-stealing. The first provably efficient work-stealing scheduler for
fully strict computations was presented in 1994 [4] and its implementation in



208 T. van Dijk and J.C. van de Pol

Cilk in 1996 [3]. One improvement of the original Cilk algorithm is the THE
protocol in Cilk-5 [9], which eliminates acquiring the lock in push and in most
executions of pop, but every steal still requires locking.

The first non-blocking work-stealing deque is the ABP algorithm, which uses
a fixed-size array that might overflow [2]. Two unbounded non-blocking deques
were proposed, the deque by Hendler et al. based on linked lists of small ar-
rays [10], and the Chase-Lev deque that uses dynamic circular arrays [5].

In weak memory models that allow reordering loads before stores, most deques
that allow any spawned task to be stolen require a memory fence in every pop

operation. Memory fences are expensive. For example, the THE protocol spends
half of its execution time in the memory fence [9].

Several approaches alleviate this problem. The split task queue by Dinan et
al. [6], designed for clusters of multiprocessor computers, allows lock-free local
access to a private portion of the queue and can transfer work between the public
and private portions of the queue without copying tasks. Thieves synchronize
using a lock and the local process only needs to take the lock when transferring
work from the public portion to the private portion of the queue. Michael et
al. propose relaxed semantics for work-stealing: inserted tasks are executed at
least once instead of exactly once, to avoid requiring memory fences and atomic
instructions [12]. In the work scheduler Wool [7], originally only the first N tasks
in the deque can be stolen, where N is determined by a parameter at startup.
Only executing pop on stealable tasks requires a memory fence. In a later version,
the number of stealable tasks is dynamically updated [8].

In somework-stealing algorithms, shared deques are replaced by private deques,
and work is explicitly communicated using a message-passing approach. Recently,
Acar et al. proposed two algorithms for work-stealing using private deques [1]. See
further [1] for an overview of other work with private deques.

Tasks are often stored as pointers that are removed from the deque when the
task is stolen [9,2,10,5]. To virtually eliminate the overhead of task creation for
tasks that are never stolen, Faxén proposed a direct task stack, storing tasks
instead of pointers in the work queue, implemented in Wool [7,8]. Rather than
synchronizing with thieves on the metadata of the queue (e.g. variables top and
bot in the ABP algorithm), Wool synchronizes on the individual task descriptors,
using locks when synchronizing with potential thieves, similar to the THE pro-
tocol. Sundell and Tsigas presented a lock-free version of Wool [15,8], which still
synchronizes on the individual task descriptors.

1.4 Contributions

Acar et al. write that concurrent deques suffer from two limitations: 1) local
deque operations (mainly pop) require expensive memory fences in modern weak-
memory architectures; 2) they can be very difficult to extend to support various
optimizations, especially steal-multiple extensions [1]. They lift both limitations
using private deques. Wool reduces the first limitation for concurrent deques by
using a dynamic number of stealable tasks, but is difficult to extend for steal-
multiple strategies, since tasks must be stolen individually.



Lace: Non-blocking Split Deque for Work-Stealing 209

We present a work-stealing algorithm that eliminates these limitations using
concurrent deques, by combining a non-blocking variant of the split task queue [6]
with direct task stealing from Wool [7,8]. This algorithm splits the deque into a
shared portion and a private portion. The split point between these portions is
modified in a non-blocking manner.

We present an implementation of this algorithm in a C library called Lace1,
which has the same interface as Wool. We evaluate the performance of Lace
using several benchmarks, including standard Cilk benchmarks and the UTS
benchmark [13]. We compare our algorithm with Wool and with an implementa-
tion of the receiver-initiated private deque algorithm [1] in the Lace framework.
Our experiments show that our algorithm is competitive with both Wool and
the private deque algorithm, while lifting both limitations described in [1]. Com-
pared to the private deque algorithm, our algorithm allows stealing of all tasks
in the shared deque without cooperation of the owner, while the private deque
algorithm requires cooperation of the owner for every steal transaction.

2 Preliminaries

We assume a shared memory system with the x86 memory model. The x86
memory model is not sequentially consistent, but allows reordering loads before
stores. Memory writes are buffered before reaching the memory, hence reads
can occur before preceding memory writes are globally visible. Memory fences
flush the write buffer before reading from memory. Apart from memory fences,
we use the atomic memory operation compare and swap (cas) to ensure safety.
The cas operation atomically compares a value in memory to an expected value
and modifies it only if the values match. We use cas to ensure that exactly one
worker performs a transition.

We assume that the system consists of one or more processor chips and one or
more memory chips, connected using an interconnection network, for example
in Non-Uniform Memory Access (NUMA) shared-memory systems. We also as-
sume that data on this interconnection network is transferred in blocks called
cachelines, which are typically 64 bytes long.

3 Algorithm

3.1 Design Considerations

To obtain a low execution time when performing work-stealing with all available
workers, we aim at low overhead compared to purely sequential programs and
good scalability with increasing worker count. Memory fences and cas operations
increase the overhead compared to purely sequential programs. Some memory
fences are unavoidable, since thieves may steal a task while the owner is retrieving
it. By splitting the deque into a shared deque and a private deque (see Figure 2),

1 Lace is available at http://fmt.ewi.utwente.nl/tools/lace/

http://fmt.ewi.utwente.nl/tools/lace/


210 T. van Dijk and J.C. van de Pol

t s h

• • • • • • •

Fig. 2. The split deque, with tail t,
split point s and head h. A task at
position x is stolen if x < t. It is
shared if x < s, and private other-
wise. Of the 7 tasks in this example,
4 are shared and 1 is stolen.

t sh

• • • • • • •
s t h

• • • • • • •
t s h

• • • • • • •

Fig. 3. The owner shrinks the
shared portion of the deque, but
thieves may have stolen tasks bey-
ond the new split point. The owner
detects this and updates the split
point to its final position.

we only need a memory fence when shrinking the shared deque, to detect the
scenario of Figure 3. Also, cas operations are only needed to coordinate stealing.

The deque is described using variables tail, split and head, which are in-
dices in the task array. To steal work, thieves only require knowledge of tail
and split, and only need to modify tail. The owner uses head and o split (a
private copy of split) to operate on the private deque. The owner only accesses
tail and split when changing the split point.

Thieves are not allowed to change the split point, since this would force a
memory fence on every execution of pop. Instead, thieves set a shared flag
splitreq on a dedicated cacheline when there are no more unstolen shared
tasks. Since splitreq is checked at every execution of pop and push, it should
always be in the processor cache of the owner, and no traffic on the intercon-
nect network is expected until the flag is set. There is no other communication
between the owner and the thieves, except when tasks are stolen soon after their
creation, or when the owner is waiting for an unfinished stolen task.

If the owner determines that all tasks have been stolen, it sets a flag allstolen
(and a private copy o allstolen). Thieves check allstolen first before attempt-
ing to steal tasks, which results in a small performance gain. When the owner
already knows that all tasks are stolen, it does not need to shrink the shared
deque until new tasks are added.

Similar to the direct task stack in Wool, the deque contains fixed-size task
descriptors, rather than pointers to task descriptors stored elsewhere. Stolen
tasks remain in the deque. The result of a stolen task is written to the task
descriptor. This reduces the task-creation overhead of making work available for
stealing, which is important since most tasks are never stolen. Another advantage
is that the cachelines accessed by a thief are limited to those containing the
task descriptor and the variables tail, split and (rarely) splitreq, while in
designs that use pointers, there is at least one additional accessed cacheline. If
task descriptors are properly aligned and fit into one cacheline, then thieves only
access two cachelines per successful steal. Also, in a pointer-based design, there
are many pointers per cacheline, which can increase contention on that cacheline.



Lace: Non-blocking Split Deque for Work-Stealing 211

1 def steal ():
2 if allstolen : return None
3 (t,s) = (tail ,split)
4 if t < s:
5 if cas ((tail ,split ),

(t,s), (t+1,s)):
6 return Task(t)
7 else: return None
8 if ! splitreq : splitreq =1
9 return None

10 def push(data):
11 if head == size: return FULL
12 write task data at head
13 head = head + 1
14 if o_allstolen :
15 (tail ,split) = (head -1, head)
16 allstolen = 0
17 if splitreq : splitreq =0
18 o_split = head
19 o_allstolen = 0
20 elif splitreq : grow_shared ()

21 def pop ():
22 if head = 0: return EMPTY ,-
23 if o_allstolen :
24 return STOLEN , Task(head -1)
25 if o_split = head:
26 if shrink_shared():
27 return STOLEN , Task(head -1)
28 head = head -1
29 if splitreq : grow_shared ()
30 return WORK , Task(head)

31 def pop_stolen ():
32 head = head -1
33 if ! o_allstolen :
34 allstolen = 1
35 o_allstolen = 1

36 def grow_shared ():
37 new_s = (o_split +head +1) /2
38 split = new_s
39 o_split = new_s
40 splitreq = 0

41 def shrink_shared():
42 (t,s) = (tail ,split )
43 if t != s:
44 new_s = (t+s)/2
45 split = new_s
46 o_split = new_s
47 MFENCE
48 t = tail # read again
49 if t != s:
50 if t > new_s :
51 new_s = (t+s)/2
52 split = new_s
53 o_split = new_s
54 return False
55 allstolen = 1
56 o_allstolen = 1
57 return True

Fig. 4. Algorithm of the non-blocking split deque. Thieves have access to the cacheline
with tail, split and allstolen and to the cacheline with splitreq. The owner also
has access to the cacheline with head, o split and o allstolen.

3.2 Algorithms

See Figure 4 for the deque algorithms. Note that if allstolen is not set, then
tail ≤ split ≤ head. If allstolen is set, then tail ≥ split and tail ≥ head.

The steal operation tries to steal a task by increasing tail, using cas on
the (consecutive) variables tail and split. The cas operation fails when other
thieves have changed tail, or when the owner has changed split. If there is
no available work, then splitreq is set. It is important that splitreq is only
written to if it must be changed, to avoid unnecessary communication.

Method push adds a new task to the deque and increases head. If this is the
first new task (i.e., allstolen is set), then tail and split are set to reflect that
the new task is shared and that it is the next task to be stolen. All tasks before
the new task remain stolen tasks. Note that tail and split must be updated
simultaneously. If thieves have set splitreq, then push calls grow shared to
move the split point.



212 T. van Dijk and J.C. van de Pol

Method pop determines whether the last task is stolen. This is the case when
allstolen is set, or when all tasks are shared (i.e., o split = head) and the
method shrink shared reports that all tasks are stolen. If the last task is stolen,
then it remains on the deque. If the last task is not stolen, then head is decreased,
and if splitreq is set, pop calls grow shared.

If the last task is stolen, then pop stolen is called after the stolen task is
completed (see Figure 1). Leapfrogging may have changed the state of the deque,
therefore allstolen is set again, since the remaining tasks are still stolen.

In grow shared, the new value of the split point is the ceiling of the average of
split and head. Since grow shared is only called if not allstolen, i.e., split ≤
head, the shared deque will always grow and therefore atomic operations or
memory fences are not necessary.

Method shrink sharedmoves the split point to decrease the size of the shared
deque. It then detects whether thieves have stolen tasks beyond the new split
point, and if so, it moves the split point again. If all tasks were stolen, then
shrink shared sets allstolen and returns True. It returns False otherwise.
Since shrink shared is called by the owner only if split = head, line 43 really
checks whether tail = head, i.e., whether all tasks are stolen. If not, then the
split point is moved between tail and split. The memory fence ensures that the
new split point is globally visible before reading tail. Once the new split point
is globally visible, no tasks can be stolen beyond the new split point. Therefore,
we only need to check once whether more tasks are stolen. If at that point all
remaining tasks are stolen, then allstolen is set and shrink shared returns
True. If not, then if only some tasks are stolen beyond the new split point, the
split point is moved again. Finally, shrink shared returns False.

3.3 Extensions

There are several possible extensions to the work-stealing deque.
Resizing. Our work-stealing deque uses a fixed-size array. Given that virtual

memory is several orders of magnitude larger than real memory and the ability of
modern operating systems to allocate only used pages, we can avoid overflows by
allocating an amount of virtual memory much higher than required. The deque
could be extended for resizing, for example using linked lists of arrays, but we
feel this is unnecessary in practice.

Steal-multiple strategies. One extension to work-stealing is the policy to steal
more than one task at the same time, e.g., stealing half the tasks in the deque,
which has been argued to be beneficial in the context of irregular graph applic-
ations [11,6]. This is easily implemented by modifying line 5 to steal multiple
tasks, and executing the stolen tasks in reverse order (last one first). However,
in experiments on a single NUMA machine, this did not improve performance.

Other memory models. The algorithm in Figure 4 is designed for the x86
TSO memory model, which only allows reordering loads before stores. Weaker
memory models may for example allow reordering stores. Assuming that reorder-
ing only takes place on independent operations, we believe no additional memory



Lace: Non-blocking Split Deque for Work-Stealing 213

fences are required in Figure 4 to ensure correctness. Memory fences are however
required in Figure 1 to ensure that result is set before done.

4 Evaluation

We implemented Lace, a C library that provides a work-stealing framework sim-
ilar to Wool and Cilk. The library creates one POSIX thread (pthread) for each
available core. Our implementation is NUMA-aware, i.e., all pthreads are pinned
to a NUMA domain and their program stack and the deque structures for each
worker are allocated on the same NUMA domain as the worker.

We evaluate Lace using several benchmarks compared to the work-stealing
framework Wool [8] using the classic leapfrogging strategy. This version of Wool
has a dynamic split point and does not use locking. We compare the performance
of Lace and Wool, for two reasons. Our implementation resembles the implement-
ation of Wool, making a comparison easier. Also, [8] and [14] show that Wool
is efficient compared to Cilk++, OpenMP and the Intel TBB framework, with
a slight advantage for Wool. We also compare our algorithm to the receiver-
initiated version of the private deque of Acar et al. [1], using the alternative
acquire function, which we implemented in the Lace framework.

4.1 Benchmarks

For all benchmarks, we use the smallest possible granularity and do not use
sequential cut-off points, since we are interested in measuring the overhead of
the work-stealing algorithm. Using a larger granularity and sequential cut-off
points may result in better scalability for some benchmarks.

Fibonacci. For a positive integer N , calculate the Fibonacci number by cal-
culating the Fibonacci numbers N − 1 and N − 2 recursively and add the res-
ults. This benchmark generates a skewed task tree and is commonly used to
benchmark work-stealing algorithms, since the actual work per task is minimal.
Number of tasks: 20,365,011,073 (fib 50).

Queens. For a positive integer N , calculate the number of solutions for placing
N queens on a N ×N chessboard so that no two queens attack each other. Each
task at depth i spawns up to N new tasks, one for every correct board after
placing a queen on row i. Number of tasks: 171,129,071 (queens 15).

Unbalanced Tree Search. This benchmark is designed by Olivier et al. to eval-
uate the performance for parallel applications requiring dynamic load balancing.
The algorithm uses the SHA-1 algorithm to generate geometric and binomial
trees. The generated binomial trees (T3L) have unpredictable subtree sizes and
depths and are optimal adversaries for load balancing strategies [13]. The geo-
metric tree (T2L) appears to be easy to balance in practice. Number of tasks:
96,793,509 (uts T2L) and 111,345,630 (uts T3L).

Rectangular matrix multiplication. Given N , compute the product of two ran-
dom rectangular N ×N matrices A and B. We use the matmul algorithm from
the Cilk benchmark set. Number of tasks: 3,595,117 (matmul 4096).



214 T. van Dijk and J.C. van de Pol

Benchmark
Lace Speedup

T1 T48 TS/T48 T1/T48

fib 50 144 4.13 34.5 34.9
uts T2L 86.0 1.81 46.1 47.4
uts T3L 44.2 2.23 18.7 19.9
queens 15 602 12.63 42.2 47.7
matmul 4096 781 16.46 47.0 47.5

Private deque

fib 50 208 5.22 23.2 39.8
uts T2L 86.1 1.83 45.7 47.0
uts T3L 44.8 2.55 17.3 17.5
queens 15 541 11.34 43.3 47.7
matmul 4096 774 16.34 47.3 47.4

Benchmark
Wool Speedup

T1 T48 TS/T48 T1/T48

fib 50 185 4.38 34.1 42.2
uts T2L 85.1 2.00 42.5 42.5
uts T3L 44.3 2.12 19.4 20.9
queens 15 539 11.23 47.5 48.0
matmul 4096 780 16.40 47.2 47.5

TS Sequential

fib 50 149.2 - - -
uts T2L 84.5 - - -
uts T3L 43.11 - - -
queens 15 533 - - -
matmul 4096 773 - - -

Fig. 5. Averages of running times (seconds) for all benchmarks. Speedups are calcu-
lated relative to both the time of the sequential version (TS) and the parallel version
with one worker (T1). Each T48 data point is the average of 50 measurements. Each
T1/TS data point is the average of 20 measurements.

4.2 Results

Our test machine has four twelve-core AMD Opteron 6168 processors. The sys-
tem has 128 GB of RAM and runs Scientific Linux 6.0 with kernel version 2.6.32.
We considered using less than 48 cores to reduce the effects of operating system
interference, but we did not see significant effects in practice. We compiled the
benchmarks using gcc 4.7.2 with flag -O3.

See Figure 5 for the results of the benchmark set. Each T48 data point is the
average of 50 measurements. Each T1 and TS data point is the average of 20
measurements. This resulted in measurements with three significant digits. In
general, Figure 5 shows similar performance for all three algorithms. The three
benchmarks uts T2L, queens and matmul are trivial to parallelize and have no
extra overhead with 48 workers, i.e., T1/T48 ≈ 48.

Comparing TS and T1 for all benchmarks, we see that the overhead of work-
stealing is small for all three work-stealing algorithms, with the exception of the
fib benchmark. For benchmark fib with our algorithm, T1 < TS , which appears
to be related to compiler optimizations. During implementation, we observed
that variation in T1 is often related to code generation by the compiler. In some
cases, removing unused variables and other minor changes even increased T1

by up to 20%. It is therefore difficult to draw strong conclusions regarding the
overhead of the algorithms, except that it is small compared to the sequential
program.

We measured the runtimes of fib and uts T3L using 4, 8, 16, 24, 32 and
40 workers to obtain the speedup graph in Figure 6. This graph suggests that
the fib benchmark scales well and that similar results may be obtained using
a higher number of processors in the future. The scalability of the uts T3L

benchmark appears to be limited after 16 workers. We discuss this benchmark
below.



Lace: Non-blocking Split Deque for Work-Stealing 215

Workers

S
p
ee
d
u
p

0

10

20

30

40

0 10 20 30 40

Benchmark

fib

fib-ri

uts-t3l

uts-t3l-ri

Fig. 6. Absolute speedup graph (T1/TN ) of the fib and uts T3L benchmarks us-
ing Lace with our algorithm and Lace with the private deque receiver initiated (-ri)
algorithm. Each data point is based on the average of 20 measurements.

Benchm. #steals #leaps #grows #shrinks

fib 50 865 50,569 70,789 97,750
uts T2L 4,554 82,440 72,222 57,701
uts T3L 158,566 4,443,432 2,173,006 846,509
queens 15 1,964 6,053 5,694 6,618
matmul 4096 2,492 12,456 13,081 9,911

Fig. 7. The average total number of steals, leaps,
grows and shrinks over 7 runs with 48 workers

Algo. T1 T48 T1/T48

Lace 44.26 1.154 38.3
Private 44.83 1.240 36.2
Wool 44.27 1.172 37.8

Fig. 8. Averages of
runtimes (seconds) of uts

T3L with transitive leapfrog-
ging (Wool) or random
stealing (Lace/Private)

We also measured the average number of steals during a parallel run with
48 workers. See Figure 7. We make a distinction between normal stealing when
a worker is idle, and leapfrogging when a worker is stalled because of unfin-
ished stolen work. We also measured the amount of split point changes by
grow shared and shrink shared. The number of ‘grows’ indicates how often
thieves set splitreq. The number of ‘shrinks’ is equal to the number of memory
fences. In the uts T3L benchmark, the high number of leaps and split point
changes may indicate that the stolen subtrees were relatively small.

4.3 Extending Leapfrogging

Benchmark uts T3L appears to be a good adversary for all three algorithms.
This is partially related to the leapfrogging strategy, which forces workers that



216 T. van Dijk and J.C. van de Pol

wait for the result of stolen tasks to steal from the thief. This strategy can result
in chains of thieves waiting for work to trickle down the chain. For example,
when worker 2 steals from worker 1, worker 1 will only steal from worker 2. If
worker 3 steals from worker 2 and worker 4 steals from worker 3, new tasks will
be generated by worker 4 and stolen by worker 3 first. Worker 3 then generates
new work which can be stolen by workers 2 and 4. Worker 1 only acquires new
work if the subtree stolen by worker 4 is large enough. The updated version of
Wool [8] implements an extension to leapfrogging, called transitive leapfrogging2.
Transitive leapfrogging enables workers to steal from the thief of the thief, i.e.,
still steal subtasks of the original stolen task.

We extended Lace to steal from a random worker whenever the thief has no
available work to steal. See Figure 8 for the results of this extension, compared
to transitive leapfrogging in Wool. Compared to the results in Figure 5, all
benchmarks now have reasonable speedups, improving from a speedup of 20x to
a speedup of 36x with 48 workers.

Our extension has the disadvantage of not guaranteeing the upper bound on
the stack size that leapfrogging and transitive leapfrogging does. It is, however,
very simple to implement, while resulting in similar performance. We measured
the peak stack depth with the uts T3L benchmark for all 48 workers. We ob-
served an increase from a peak stack depth of 6500-12500 tasks with normal
leapfrogging to 17000-21000 tasks with the random stealing extension. Since
every task descriptor for uts T3L is 64 bytes large (including padding), this
strategy required at most 1 extra megabyte per worker for uts T3L. We also
observed that the number of ‘grows’ decreased by 50%.

5 Conclusion

In this paper, we presented a new non-blocking split deque for work-stealing.
Our design has the advantage that it does not require memory fences for local
deque operations, except when reclaiming tasks from the shared portion of the
deque. Furthermore, we implemented this deque in a C library called Lace, which
has an interface similar to Wool. This framework has the advantage of a small
source code footprint. We also implemented the receiver-initiated version of the
private deque algorithm described by Acar et al. in Lace.

Our experiments show that our algorithm is competitive with Wool and with
the private deque algorithm. We gain near optimal speedup for several bench-
marks, with very limited overhead compared to the sequential program. Extend-
ing leapfrogging with random stealing greatly improves scalability for the uts

T3L benchmark.
Several open questions remain. When growing the shared deque, the new split

point is the average of split and head, and when shrinking the shared deque,
the new split point is the average of tail and head. It is unknown whether more
optimal strategies exist. A limitation of our approach is that tasks can only be

2 This feature is documented in the distribution of Wool version 0.1.5alpha, which is
currently available at http://www.sics.se/~kff/wool/

http://www.sics.se/~kff/wool/


Lace: Non-blocking Split Deque for Work-Stealing 217

stolen at the tail of the deque. This limits work-stealing strategies. Designs that
allow stealing any task may be useful for some applications. Our benchmarks
all consist of uniformly small tasks. Benchmarking on larger or irregular sized
tasks may be disadvantageous for the private deque algorithm, since it requires
owner cooperation on every steal. Finally, we performed our experiments on
a single NUMA machine. On such machines, communication costs are low com-
pared to distributed systems. It may be interesting to compare the work-stealing
algorithms on a cluster of computers using a shared-memory abstraction. Espe-
cially steal-multiple strategies may be more beneficial when communication is
more expensive.

References

1. Acar, U.A., Charguéraud, A., Rainey, M.: Scheduling parallel programs by work
stealing with private deques. In: PPOPP, pp. 219–228. ACM (2013)

2. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread Scheduling for Multipro-
grammed Multiprocessors. Theory Comput. Syst. 34(2), 115–144 (2001)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An Efficient Multithreaded Runtime System. J. Parallel Distrib. Com-
put. 37(1), 55–69 (1996)

4. Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work
Stealing. In: FOCS, pp. 356–368. IEEE Computer Society (1994)

5. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: SPAA, pp. 21–28.
ACM (2005)

6. Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha, J.: Scal-
able work stealing. In: SC. ACM (2009)

7. Faxén, K.F.: Wool-A work stealing library. SIGARCH Computer Architecture
News 36(5), 93–100 (2008)

8. Faxén, K.F.: Efficient Work Stealing for Fine Grained Parallelism. In: ICPP,
pp. 313–322. IEEE Computer Society (2010)

9. Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-5 Mul-
tithreaded Language. In: PLDI, pp. 212–223. ACM (1998)

10. Hendler, D., Lev, Y., Moir, M., Shavit, N.: A dynamic-sized nonblocking work
stealing deque. Distributed Computing 18(3), 189–207 (2006)

11. Hendler, D., Shavit, N.: Non-blocking steal-half work queues. In: PODC,
pp. 280–289. ACM (2002)

12. Michael, M.M., Vechev, M.T., Saraswat, V.A.: Idempotent work stealing. In:
PPOPP, pp. 45–54. ACM (2009)

13. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., Tseng, C.W.:
UTS: An Unbalanced Tree Search Benchmark. In: Almási, G.S., Caşcaval, C., Wu,
P. (eds.) KSEM 2006. LNCS, vol. 4382, pp. 235–250. Springer, Heidelberg (2007)

14. Podobas, A., Brorsson, M.: A comparison of some recent task-based parallel pro-
gramming models. In: Programmability Issues for Multi-Core Computers (MULTI-
PROG 2010), Pisa (January 2010)

15. Sundell, H., Tsigas, P.: Brushing the Locks out of the Fur: A Lock-Free Work
Stealing Library Based on Wool. In: The Second Swedish Workshop on Multi-Core
Computing MCC 2009. University of Bor̊as. School of Business and Informatics
(2009)

16. Wagner, D.B., Calder, B.: Leapfrogging: A portable technique for implementing
efficient futures. In: PPOPP, pp. 208–217. ACM (1993)


	Lace: Non-blocking Split Deque for Work-stealing
	1
Introduction
	1.1
Task-Based Parallelism
	1.2
Work-Stealing
	1.3
Work-Stealing Deques
	1.4
Contributions

	2
Preliminaries
	3
Algorithm
	3.1
Design Considerations
	3.2
Algorithms
	3.3
Extensions

	4
Evaluation
	4.1
Benchmarks
	4.2
Results
	4.3
Extending Leapfrogging

	5
Conclusion
	References




