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Preface

Euro-Par is an annual series of international conferences dedicated to the pro-
motion and advancement of all aspects of parallel and distributed computing.
Euro-Par 2014, held in Porto, Portugal, was the 20th edition of the series. The
conference covers a wide spectrum of topics from algorithms and theory to soft-
ware technology and hardware-related issues, with application areas ranging from
scientific to mobile and cloud computing. Euro-Par conferences host a set of tech-
nical workshops, with the goal of providing a space for communities within the
field to meet and discuss more focused research topics. The coordination of the
workshops was in the hands of Workshop Chairs Luc Bougé, also with the Euro-
Par Steering Committee, and Lúıs Lopes, with the local organization. In the
coordination process, we were kindly assisted by Dieter an Mey, one of the work-
shop chairs for the Euro-Par 2013 event at Aachen, to whom we wish to express
our warm thanks for his availability, expertise, and advice. In early January
2014, a call for workshop proposals was issued, and the proposals were reviewed
by the co-chairs, with 18 workshops being selected for the 2-day program:

APCI&E – First Workshop on Applications of Parallel Computation in Industry
and Engineering

BigDataCloud – Third Workshop on Big Data Management in Clouds
DIHC – Second Workshop on Dependability and Interoperability in Heteroge-

neous Clouds
FedICI – Second Workshop on Federative and Interoperable Cloud Infrastruc-

tures
HeteroPar – 12th International Workshop on Algorithms, Models and Tools for

Parallel Computing on Heterogeneous Platforms
HiBB – 5th Workshop on High-Performance Bioinformatics and Biomedicine
LSDVE – Second Workshop on Large-Scale Distributed Virtual Environments

on Clouds and P2P
MuCoCoS – 7th International Workshop on Multi-/Many-Core Computing

Systems
OMHI – Third Workshop on On-chip Memory Hierarchies and Interconnects:

Organization, Management and Implementation
PADABS – Second Workshop on Parallel and Distributed Agent-Based Simu-

lations
PROPER – 7th Workshop on Productivity and Performance – Tools for HPC

Application Development
Resilience – 7th Workshop on Resiliency in High-Performance Computing with

Clouds, Grids, and Clusters
REPPAR – First International Workshop on Reproducibility in Parallel

Computing
ROME – Second Workshop on Runtime and Operating Systems for the

Many-Core Era



VIII Preface

SPPEXA – Workshop on Software for Exascale Computing - Project Workshop
TASUS – First Workshop on Techniques and Applications for Sustainable

Ultrascale Computing Systems
UCHPC – 7th Workshop on UnConventional High-Performance Computing
VHPC – 9th Workshop on Virtualization in High-Performance Cloud

Computing

Furthermore, collocated with this intensive workshop program, two tutorials
were also included:

Heterogeneous Memory Models – Benedict R. Gaster (Qualcomm, Inc.)
High-Performance Parallel Graph Analytics – Keshav Pingali

(UT Austin) and Manoj Kumar (IBM)

Paper submission deadlines, notification dates, and camera-ready submission
deadlines were synchronized between all workshops. The new workshop coor-
dination procedures, established with the 2012 edition, turned out to be very
helpful for putting together a high-quality workshop program. After the confer-
ence, the workshop organizers delivered a workshop management report on the
key performance indicators to the Workshop Advisory Board and the Steering
Committee. These reports will help to improve the procedures for, and the qual-
ity of, the workshop program of future Euro-Par conferences. Special thanks are
due to the authors of all the submitted papers, the members of the Program
Committees, the reviewers, and the workshop organizers. We had 173 paper
submissions, with 100 papers being accepted for publication in the proceedings.
Given the high number of papers, the workshops proceedings were divided into
two volumes with the following distribution:

LNCS 8805 – APCI&E, BigDataCloud, HeteroPar, HiBB, LSDVE, PADABS,
REPPAR, Resilience

LNCS 8806 – DIHC, FedICI, MuCoCoS, OMHI, PROPER, ROME, TASUS,
UCHPC, VHPC, SPPEXA

We are grateful to the Euro-Par general chairs and the members of the Euro-
Par Steering Committee for their support and advice regarding the coordination
of workshops. We would like to thank Springer for its continuous support in
publishing the workshop proceedings.

It was a great pleasure and honor to organize and host the Euro-Par 2014
workshops in Porto. We hope all the participants enjoyed the workshop program
and benefited from the ample opportunities for fruitful exchange of ideas.

October 2014 Lúıs Lopes
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Workshop Introduction and Organization

First Workshop on Applications of Parallel Computation
in Industry and Engineering (APCI&E 2014)

Workshop Description

The APCI&E minisymposium/workshop series started in 2008 at the Work-
shop on State of the Art in Scientific and Parallel Computing (PARA) and
continued at the International Conference on Parallel Processing and Applied
Mathematics (PPAM). Since PARA was held on even years and PPAM on
odd years, the APCI&E minisymposium alternated between these two con-
ference series on parallel computing. The minisymposium was held at PARA
2008 in Trondheim (Norway), PPAM 2009 in Wroclaw (Poland), PPAM 2011
in Torun (Poland), PARA 2012 in Helsinki (Finland), and PPAM 2013 in War-
saw (Poland). This year the minisymposium was renamed as workshop and was
held at the International European Conference on Parallel Processing
(Euro-Par).

The Workshop APCI&E provided a forum for researchers and practitioners
using parallel computations for the solution of complex industrial and engineer-
ing applied problems. Topics discussed included application of parallel numerical
methods to engineering and industrial problems, scientific computation, parallel
algorithms for the solution of systems of PDEs, parallel algorithms for opti-
mization, solution of data and computation-intensive real-world problems, and
others.

Organizers

Raimondas Čiegis Vilnius Gediminas Technical University,
Lithuania

Julius Žilinskas Vilnius University, Lithuania

Program Committee

Jesus Carretero Carlos III University of Madrid, Spain
Raimondas Čiegis Vilnius Gediminas Technical University,

Lithuania
Francisco Gaspar University of Zaragoza, Spain
Jacek Gondzio University of Edinburgh, UK
Mario Guarracino CNR, Italy
Pilar Mart́ınez Ortigosa University of Almeŕıa, Spain
Antonio J. Plaza University of Extremadura, Spain
Mindaugas Radziunas Weierstrass Institute for Applied Analysis and

Stochastics, Germany
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Vadimas Starikovičius Vilnius Gediminas Technical University,
Lithuania

Roman Wyrzykowski Czestochova University of Technology, Poland
Julius Žilinskas Vilnius University, Lithuania

Additional Reviewers

Algirdas Lančinskas Vilnius University, Lithuania
Natalija Tumanova Vilnius Gediminas Technical University,

Lithuania

Third Workshop on Big Data Management in Clouds
(BigDataCloud 2014)

Workshop Description

The Workshop on Big Data Management in Clouds was created to provide a
platform for the dissemination of recent research efforts that explicitly aim at
addressing the challenges related to executing big data applications on the cloud.
Initially designed for powerful and expensive supercomputers, such applications
have seen an increasing adoption on clouds, exploiting their elasticity and eco-
nomical model. While Map/Reduce covers a large fraction of the development
space, there are still many applications that are better served by other models
and systems. In such a context, we need to embrace new programming models,
scheduling schemes, hybrid infrastructures and scale out of single data centers
to geographically distributed deployments in order to cope with these new chal-
lenges effectively.

In this context, the BigDataCloud workshop aims to provide a venue for
researchers to present and discuss results on all aspects of data management
in clouds, as well as new development and deployment efforts in running data-
intensive computing workloads. In particular, we are interested in how the use
of cloud-based technologies can meet the data-intensive scientific challenges of
HPC applications that are not well served by the current supercomputers or
grids, and are being ported to cloud platforms. The goal of the workshop is
to support the assessment of the current state, introduce future directions, and
present architectures and services for future clouds supporting data-intensive
computing.

BigDataCloud 2014 followed the previous editions and the successful series
of BDMC / CGWS workshops held in conjunction with EuroPar since 2009. Its
goal is to aggregate the data management and clouds/grids/p2p communities
built around these workshops in order to complement the data-handling issues
with a comprehensive system / infrastructure perspective. This year’s edition
was held on August 25 and gathered around 40 enthusiastic researchers from
academia and industry. We received a total of ten papers, out of which four
were selected for presentation. The big data theme was strongly reflected in
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the keynote given this year by Dr. Toni Cortes from Barcelona Supercomputing
Center. The talk introduced the idea of self-contained objects and showed how
third party enrichment of such objects can offer an environment where the data
providers keep full control over data while service designers get the maximum
flexibility.

We wish to thank all the authors, the keynote speaker, the Program Com-
mittee members and the workshop chairs of EuroPar 2014 for their contribution
to the success of this edition of BigDataCloud.

Program Chairs

Alexandru Costan IRISA/INSA Rennes, France
Frédéric Desprez Inria ENS Lyon, France

Program Committee

Gabriel Antoniu Inria, France
Luc Bougé ENS Rennes, France
Toni Cortes Barcelona Supercomputing Center, Spain
Kate Keahey University of Chicago/ANL, USA
Dries Kimpe Argonne National Laboratory, USA
Olivier Nano Microsoft Research ATLE, Germany
Bogdan Nicolae IBM Research, Ireland
Maria S. Pérez Universidad Politecnica De Madrid, Spain
Leonardo Querzoni University of Rome La Sapienza, Italy
Domenico Talia University of Calabria, Italy
Osamu Tatebe University of Tsukuba, Japan
Cristian Zamfir EPFL, Switzerland

Second Workshop on Dependability and Interoperability
in Heterogeneous Clouds (DIHC 2014)

Workshop Description

The DIHC workshop series started in 2013 with the aim of bringing together
researchers from academia and industry and PhD students interested in the de-
sign, implementation, and evaluation of services and mechanisms for dependable
cloud computing in a multi-cloud environment. The cloud computing market
is in rapid expansion due to the opportunities to dynamically allocate a large
amount of resources when needed and to pay only for their effective usage. How-
ever, many challenges, in terms of interoperability, performance guarantee, and
dependability, still need to be addressed to make cloud computing the right
solution for companies, research organizations, and universities.

This year’s edition consisted of three sessions and focused on heterogeneous
cloud platforms and aspects to make cloud computing a trustworthy environment
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addressing security, privacy, and high availability in clouds. The accepted papers
address issues to manage complex applications and facilitate the seamless and
transparent use of cloud platform services, including computing and storages
services, provisioned by multiple cloud platforms. The workshop also covered
HPC applications with the need of a new generation of data storage, management
services and heterogeneity-agnostic programming models for a better utilization
of heterogeneous cloud resources for scientific and data-intensive applications
while dealing with performance and elasticity issues. Privacy and security aspects
in cloud computing from theory to practical implementations were presented and
discussed.

In addition to the presentation of peer-reviewed papers, the 2014 edition
of the DIHC workshop includes a presentation on “Identities and Rights in e-
Infrastructures” by the invited keynote speaker Jens Jensen. The keynote pre-
sented lessons from the state-of-the-art technology used to identify management
in clouds and took a look into standards and the future solutions for federated
identity management.

Program Chairs

Roberto G. Cascella Inria, France
Miguel Correia INESC-ID/IST, Portugal
Elisabetta Di Nitto Politecnico di Milano, Italy
Christine Morin Inria, France

Program Committee

Vasilios Andrikopoulos University of Stuttgart, Germany
Alvaro Arenas IE Business School, Spain
Alysson Bessani University of Lisbon, Portugal
Lorenzo Blasi HP, Italy
Paolo Costa Imperial College London, UK
Beniamino Di Martino University of Naples, Italy
Federico Facca Create-Net, Italy
Franz Hauck University of Ulm, Germany
Yvon Jégou Inria, France
Jens Jensen STFC, UK
Paolo Mori CNR, Italy
Dana Petcu West University of Timisoara, Romania
Paolo Romano INESC-ID/IST, Portugal
Louis Rilling DGA-MI, France
Michael Schöttner University of Düsseldorf, Germany
Thorsten Schütt ZIB Berlin, Germany
Stephen Scott ORNL/Tennessee Technological University,

USA
Gianluigi Zavattaro University of Bologna, Italy

Additional Reviewer

Ferrol Aderholdt Tennessee Technological University, USA
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Second Workshop on Federative and Interoperable Cloud
Infrastructures (FedICI 2014)

Workshop Description

Infrastructure as a service (IaaS) cloud systems allow the dynamic creation, de-
struction, and management of virtual machines (VM) on virtualized clusters.
IaaS clouds provide a high level of abstraction to the end user that allows the
creation of on-demand services through a pay-as-you-go infrastructure combined
with elasticity. As a result, many academic infrastructure service providers have
started transitions to add cloud resources to their previously existing campus and
shared grid deployments. To complete such solutions, they should also support
the unification of multiple cloud and/or cloud and grid solutions in a seamless,
preferably interoperable way. Hybrid, community, or multi-clouds may utilize
more than one cloud system, which are also called cloud federations. The man-
agement of such federations raises several challenges and open issues that require
significant research work in this area.

The Second Workshop on Federative and Interoperable Cloud Infrastruc-
tures (FedICI 2014) aimed at bringing together scientists in the fields of high-
performance computing and cloud computing to provide a dedicated forum for
sharing the latest results, exchanging ideas and experiences, presenting new re-
search, development, and management of interoperable, federated IaaS cloud
systems. The goal of the workshop was to help the community define the current
state, determine further goals, and present architectures and service frameworks
to achieve highly interoperable federated cloud infrastructures. Priority was given
to submissions that focus on presenting solutions to interoperability and efficient
management challenges faced by current and future infrastructure clouds.

The call for papers for the FedICI workshop was launched early in 2014, and
by the submission deadline we had received six submissions, which were of good
quality and generally relevant to the theme of the workshop. The papers were
swiftly and expertly reviewed by the ProgramCommittee, each of them receiving
at least three qualified reviews. The program chair thanks the whole Program
Committee and the additional reviewers for the time and expertise they put into
the reviewing work, and for getting it all done within the rather strict time limit.
Final decision on acceptance was made by the program chair and co-chairs based
on the recommendations from the Program Committee. Being half-day event,
there was room for only four of the contributions, resulting in an acceptance
ratio of 66%. All the accepted contributions were presented at the workshop
yielding an interesting discussion on the role that federated management may
play in the broad research field of cloud computing. Presentations were organized
in two sessions: in the former, two papers discussed performance analysis issues
of interoperating clouds, while in the later session, two papers were presented on
the topic of elastic management of generic IaaS and MapReduce-based systems in
interoperable and federated clouds. These proceedings include the final versions
of the presented FedICI papers, taking the feedback from the reviewers and
workshop audience into account.
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The program chairs sincerely thank the Euro-Par organizers for providing
the opportunity to arrange the FedICI workshop in conjunction with the 2014
conference. The program chairs also warmly thank MTA SZTAKI for its financial
support making it possible to organize the workshop. Finally, the program chairs
thank all attendees at the workshop, who contributed to a successful scientific
day. Based on the mostly positive feedback, the program chairs and organizers
plan to continue the FedICI workshop in conjunction with Euro-Par 2015.

Program Chairs

Gabor Kecskemeti MTA SZTAKI, Hungary
Attila Kertesz MTA SZTAKI, Hungary
Attila Marosi MTA SZTAKI, Hungary
Radu Prodan University of Innsbruck, Austria

Program Committee

Jameela Al-Jaroodi United Arab Emirates University, UAE
Salvatore Distefano Politecnico di Milano, Italy
Eduardo Huedo Cuesta Universidad Complutense de Madrid, Spain
Philipp Leitner University of Zurich, Switzerland
Daniele Lezzi Barcelona Supercomputing Center, Spain
Nader Mohamed United Arab Emirates University, UAE
Zsolt Nemeth MTA SZTAKI, Hungary
Ariel Oleksiak Poznan Supercomputer and Networking

Center, Poland
Anne-Cecile Orgerie CNRS, Myriads, IRISA, France
Simon Ostermann University of Innsbruck, Austria
Dana Petcu Western University of Timisoara, Romania
Ivan Rodero Rutgers the State University of New Jersey,

USA
Matthias Schmidt 1&1 Internet AG, Germany
Alan Sill Texas Tech University, USA
Gergely Sipos European Grid Infrastructure, The Netherlands
Massimo Villari University of Messina, Italy

Additional Reviewers

Matthias Janetschek University of Innsbruck, Austria
Weiwei Chen University of Southern California, USA
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12th International Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Platforms
(HeteroPar 2014)

Workshop Description

Heterogeneity is emerging as one of the most profound and challenging charac-
teristics of today’s parallel environments. From the macro level, where networks
of distributed computers, composed by diverse node architectures, are intercon-
nected with potentially heterogeneous networks, to the micro level, where deeper
memory hierarchies and various accelerator architectures are increasingly com-
mon, the impact of heterogeneity on all computing tasks is increasing rapidly.
Traditional parallel algorithms, programming environments, and tools, designed
for legacy homogeneous multiprocessors, will at best achieve a small fraction of
the efficiency and the potential performance that we should expect from parallel
computing in tomorrow’s highly diversified and mixed environments. New ideas,
innovative algorithms, and specialized programming environments and tools are
needed to efficiently use these new and multifarious parallel architectures. The
workshop is intended to be a forum for researchers working on algorithms, pro-
gramming languages, tools, and theoretical models aimed at efficiently solving
problems on heterogeneous platforms.

Program Chair

Emmanuel Jeannot Inria, France

Steering Committee

Domingo Giménez University of Murcia, Spain
Alexey Kalinov Cadence Design Systems, Russia
Alexey Lastovetsky University College Dublin, Ireland
Yves Robert Ecole Normale Supérieure de Lyon, France
Leonel Sousa INESC-ID/IST, Technical University of

Lisbon, Portugal
Denis Trystram LIG, Grenoble, France

Program Committee

Rosa M. Badia BSC, Spain
Jorge Barbosa University of Porto, Portugal
Olivier Beaumont Inria, France
Paolo Bientinesi RWTH Aachen, Germany
Cristina Boeres Fluminense Federal University, Brazil
George Bosilca University of Tennessee, USA
Louis-Claude Canon Université de Franche-Comté, France
Alexandre Denis Inria, France
Toshio Endo Tokyo Institute of Technology, Japan
Edgar Gabriel University of Houston, USA
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Rafael Mayo Gual Jaume I University, Spain
Toshihiro Hanawa University of Tokyo, Japan
Shuichi Ichikawa Toyohashi University of Technology, Japan
Helen Karatza Aristotle University of Thessaloniki, Greece
Hatem Ltaief KAUST, Saudi Arabia
Pierre Manneback University of Mons, Belgium
Loris Marchal CNRS, France
Ivan Milentijevič University of Nis, Serbia
Satoshi Matsuoka Tokyo Institute of Technology, Japan
Wahid Nasri ESST de Tunis, Tunisia
Dana Petcu West University of Timisoara, Romania
Antonio Plaza University of Extremadura, Spain
Enrique S. Quintana-Ort́ı Jaume I University, Spain
Thomas Rauber University of Bayreuth, Germany
Vladimir Rychkov University College Dublin, Ireland
Erik Saule University of North Carolina at Charlotte, USA
H. J. Siegel Colorado State University, USA
Pedro Tomás INESC-ID/IST, University of Lisbon, Portugal
Jon Weissman University of Minnesota, USA

Additional Reviewers

Jose Antonio Belloch Jaume I University, Spain
Adrián Castelló Jaume I University, Spain
Ali Charara KAUST, Saudi Arabia
Vladimir Ciric University of Nis, Serbia
Diego Fabregat-Traver RWTH Aachen, Germany
João Guerreiro University of Lisbon, Portugal
Francisco D. Igual Jaume I University, Spain
Samuel Kortas KAUST, Saudi Arabia
Ĺıdia Kuan University of Lisbon, Portugal
Emina Milovanovic University of Nis, Serbia
Aline Nascimento Fluminense Federal University, Brazil
Elmar Peise RWTH Aachen, Germany
Alexandre Sena Fluminense Federal University, Brazil
Paul Springer RWTH Aachen, Germany
François Tessier University of Bordeaux, France
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5th International Workshop on High-Performance
Bioinformatics and Biomedicine (HiBB 2014)

Workshop Description

The HiBB workshop series started in 2010 and its first edition was held at Is-
chia (Italy) in conjunction with the Euro-Par conference. Since then, the work-
shop has been held, always in conjunction with Euro-Par, at Bordeaux (France),
Rhodes (Greece), Aachen (Germany), and Porto (Portugal), respectively, in
2011, 2012, 2013, and 2014.

Since 2010, the HiBB workshop series has included 25 regular papers, two
invited talks, two panels, and one tutorial on several aspects of parallel and dis-
tributed computing applied to bioinformatics, health informatics, biomedicine,
and systems biology.

The main motivation for the HiBB workshop is the increasing production of
experimental and clinical data in biology and medicine, and the needs to provide
efficient storage, preprocessing, and analysis of these data to support biomedical
research.

In fact, the availability and large diffusion of high-throughput experimental
platforms, such as next-generation sequencing, microarray, and mass spectrom-
etry, as well as the improved resolution and coverage of clinical diagnostic tools,
such as magnetic resonance imaging, are becoming the major sources of data in
biomedical research, and the storage, preprocessing, and analysis of these data
are becoming the main bottleneck of the biomedical analysis pipeline.

Parallel computing and high-performance infrastructures are increasingly used
in all phases of life sciences research, e.g., for storing and preprocessing large ex-
perimental data, for the simulation of biological systems, for data exploration
and visualization, for data integration, and for knowledge discovery.

The current bioinformatics scenario is characterized by the application of
well-established techniques, such as parallel computing on multicore architec-
tures and grid computing, as well as by the application of emerging compu-
tational models such as graphics processing and cloud computing. Large-scale
infrastructures such as grids or clouds are mainly used to store in an efficient
manner and to share in an easy way the huge amount of experimental data pro-
duced in life sciences, while parallel computing allows the efficient analysis of
huge data. In particular, novel parallel architectures such as GPUs and emerg-
ing programming models such as MapReduce may overcome the limits posed by
conventional computers to the analysis of large amounts of data.

The fifth edition of the HiBB workshop aimed to bring together scientists
in the fields of high-performance computing, bioinformatics, and life sciences,
to discuss the parallel implementation of bioinformatics algorithms, the deploy-
ment of biomedical applications on high-performance infrastructures, and the
organization of large-scale databases in biology and medicine.

These proceedings include the final revised versions of the HiBB papers
taking the feedback from the reviewers and workshop audience into account.
The program chair sincerely thanks the Program Committee members and the
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additional reviewers, for the time and expertise they put into the reviewing
work, the Euro-Par organization, for providing the opportunity to arrange the
HiBB workshop in conjunction with the Euro-Par 2014 conference, and all the
workshop attendees who contributed to a lively day.

Program Chair

Mario Cannataro University Magna Græcia of Catanzaro, Italy

Program Committee

Pratul K. Agarwal Oak Ridge National Laboratory, USA
Ignacio Blanquer Universidad Politecnica de Valencia, Spain
Daniela Calvetti Case Western Reserve University, USA
Werner Dubitzky University of Ulster, UK
Ananth Y. Grama Purdue University, USA
Concettina Guerra Georgia Institute of Technology, USA
Pietro H. Guzzi University Magna Græcia of Catanzaro, Italy
Vicente Hernandez Universidad Politecnica de Valencia, Spain
Salvatore Orlando University of Venice, Italy
Horacio Perez-Sanchez University of Murcia, Spain
Omer F. Rana Cardiff University, UK
Richard Sinnott University of Melbourne, Australia
Fabrizio Silvestri Yahoo Labs, Barcelona, Spain
Erkki Somersalo Case Western Reserve University, USA
Paolo Trunfio University of Calabria, Italy
Albert Zomaya University of Sydney, Australia

Additional Reviewers

Giuseppe Agapito University Magna Græcia of Catanzaro, Italy
Barbara Calabrese University Magna Græcia of Catanzaro, Italy
Nicola Ielpo University Magna Græcia of Catanzaro, Italy
Alessia Sarica University Magna Græcia of Catanzaro, Italy
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Second Workshop on Large-Scale Distributed Virtual
Environments on Cloud and P2P (LSDVE 2014)

Workshop Description

The LSDVE workshop series started in August 2013, in Aachen, where the first
edition of the workshop was held in conjunction with Europar 2013. LSDVE
2014, the second edition of the workshop, was held in Porto, in August 2014,
again in conjunction with Europar.

The focus of this edition of the workshop was on cooperative distributed
virtual environments. The recent advances in networking have determined an
increasing use of information technology to support distributed cooperative ap-
plications. Several novel applications have emerged in this area, like computer-
supported collaborative work (CSCW), large-scale distributed virtual worlds,
collaborative recommender and learning systems. These applications involve sev-
eral challenges, such as the definition of user interfaces, of coordination protocols,
and of proper middle-ware and architectures supporting distributed cooperation.

Collaborative applications may benefit greatly also from the support of cloud
and P2P architectures. As a matter of fact, with the emergence of readily avail-
able cloud platforms, collaborative applications developers have the opportunity
of deploying their applications in the cloud, or by exploiting hybrid P2P/cloud
architectures with dynamically adapting cloud support. This brings possibilities
to smaller developers that were reserved for the big companies until recently. The
integration of mobile/cloud platforms for collaborative applications is another
challenge for the widespread use of these applications.

The LSDVE 2014 workshop aim was to provide a venue for researchers to
present and discuss important aspects of P2P/cloud collaborative applications
and of the platforms supporting them. The workshop’s goal is to investigate open
challenges for such applications, related to both the application design and to the
definition of proper architectures. Some important challenges are, for instance,
collaborative protocol design, latency reduction/hiding techniques for guaran-
teeing real-time constraints, large-scale processing of user information, privacy
and security issues, state consistency/persistence. The workshop presented as-
sessment of current state of the research in this area and introduced further
directions.

LSDVE 2014 was opened by the invited talk “Decentralization: P2P and Per-
sonal Clouds” by Prof. Pedro Garcia Lopez, Universitat Rovira i Virgili. The
program of the workshop included two sessions, “Cooperative Distributed Envi-
ronments”and“Architectural Supports.”The papers presented in the first session
regard novel cooperative distributed applications, like social networks and mas-
sively multi player games, while those of the second session present architectural
supports, both cloud and P2P based, for these applications.

We remark that the number of submissions to LSDVE 2014 has almost dou-
bled over the previous edition. Finally, the extended version of selected papers
accepted and presented at the workshop will be published in a special issue of
the Springer journal Peer-to-Peer Networking and Applications (PPNA).
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We wish to thank all who helped to make this second edition of the workshop
a success: Prof. Pedro Garcia Lopez who accepted our invitation to present
a keynote, authors submitting papers, colleagues who refereed the submitted
papers and attended the sessions, and finally the Euro-Par 2014 organizers whose
invaluable support greatly helped in the organization of this second edition of
the workshop.

Program Chairs

Laura Ricci University of Pisa, Italy
Alexandru Iosup TU Delft, Delft, The Netherlands
Radu Prodan Institute of Computer Science, Innsbruck,

Austria

Program Committee

Michele Amoretti University of Parma, Italy
Ranieri Baraglia ISTI CNR, Pisa, Italy
Emanuele Carlini ISTI CNR, Pisa, Italy
Massimo Coppola ISTI CNR, Pisa, Italy
Patrizio Dazzi ISTI CNR, Pisa, Italy
Juan J. Durillo Institute of Computer Science, Innsbruck,

Austria
Kalman Graffi University of Düsseldorf, Germany
Alexandru Iosup TU Delft, The Netherlands
Dana Petcu West University of Timisoara, Romania
Andreas Petlund Simula Research Laboratory, Norway
Radu Prodan Institute of Computer Science, Innsbruck,

Austria
Duan Rubing Institute of High Performance Computing,

Singapore
Laura Ricci University of Pisa, Pisa, Italy
Alexey Vinel Tampere University of Technology, Finland
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7th International Workshop on Multi-/Many-Core
Computing Systems (MuCoCos 2014)

Workshop Description

The pervasiveness of homogeneous and heterogeneous multi-core and many-core
processors, in a large spectrum of systems from embedded and general-purpose
to high-end computing systems, poses major challenges to the software indus-
try. In general, there is no guarantee that software developed for a particular
architecture will run on another architecture. Furthermore, ensuring that the
software preserves some aspects of performance behavior (such as temporal or
energy efficiency) across these different architectures is an open research issue.

Therefore, a traditional focus of the MuCoCos workshop is on language level,
system software and architectural solutions for performance portability across
different architectures and for automated performance tuning.

The topics of the MuCoCoS workshop include but are not limited to:

– Programming models, languages, libraries and compilation techniques

– Run-time systems and hardware support

– Automatic performance tuning and optimization techniques

– Patterns, algorithms and data structures for multi-/many-core systems

– Performance measurement, modeling, analysis and tuning

– Case studies highlighting performance portability and tuning.

Besides the presentation of selected technical papers, MuCoCos 2014 featured
a keynote talk on “Execution Models for Energy-Efficient Computing Systems”
by Philippas Tsigas, Chalmers University, Sweden.

Previous workshops in the series were: MuCoCoS 2008 (Barcelona, Spain),
MuCoCoS 2009 (Fukuoka, Japan), MuCoCoS 2010 (Krakow, Poland), MuCoCoS
2011 (Seoul, Korea), MuCoCoS 2012 (Salt Lake City, USA), and MuCoCoS 2013
(Edinburgh, UK).

Program Chairs

Siegfried Benkner University of Vienna, Austria
Sabri Pllana Linnaeus University, Sweden

Program Committee

Beverly Bachmayer Intel, Germany
Eduardo Cesar Universitat Autonoma de Barcelona, Spain
Milind Chabbi Rice University, USA
Jiri Dokulil University of Vienna, Austria
Franz Franchetti Carnegie Mellon University, USA
Michael Gerndt TU Munich, Germany
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Joerg Keller FernUniversität Hagen, Germany
Christoph Kessler Linkoping University, Sweden
Shashi Kumar Jönköping University, Sweden
Erwin Laure KTH, Sweden
Renato Miceli Irish Centre for High-End Computing, Ireland
Lasse Natvig NTNU Trondheim, Norway
Beniamino Di Martino Seconda Università di Napoli, Italy
Samuel Thibault University of Bordeaux, France
Philippas Tsigas Chalmers University, Sweden
Josef Weidendorfer TU Munich, Germany

Additional Reviewers

Pasquale Cantiello Seconda Università di Napoli, Italy
Antonio Esposito Seconda Università di Napoli, Italy
Francesco Moscato Seconda Università di Napoli, Italy
Kameswar Rao Vaddina NTNU Trondheim, Norway
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Tilman Kuestner TU Munich, Germany
Terry Cojean University of Bordeaux, France
Jens Breitbart TU Munich, Germany
Minh Le TU Munich, Germany
Luka Stanisic University of Grenoble, France
Toni Espinosa Universitat Autonoma de Barcelona, Spain
Rocco Aversa Seconda Università di Napoli, Italy

Third International Workshop on On-chip Memory
Hierarchies and Interconnects (OMHI 2014)

Workshop Description

The gap between processor and memory performances has been growing for more
than four decades since the first commercial microprocessor was built by Intel
in 1971. To avoid the memory access times caused by this gap, manufacturers
implemented cache memories on-chip. Moreover, as the memory latency became
larger, more cache levels were added to the on-chip memory hierarchy, and, as a
consequence, on-chip networks were also integrated to interconnect the different
cache structures among the different levels.

Nowadays, commercial microprocessors include up to tens of processors shar-
ing a memory hierarchy with about three or four cache levels. In the lowest lev-
els of the on-chip memory hierarchy, the cache structures can store hundreds of
megabytes, requiring alternative memory technologies (such as eDRAM or STT-
RAM) as well as new microarchitectural techniques to limit energy consumption
and power dissipation. In addition, advanced on-chip networks are needed to cope
with the latency and bandwidth demands of these complex memory hierarchies.
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Finally, new manufacturing techniques, such as 3D integration is considered to
enlarge even more the capacity and complexity of these memory hierarchies and
interconnection networks.

In this context, the synergy between the research on memory organization
and management, interconnection networks, as well as novel implementation
technologies becomes a key strategy to foster further developments. With this
aim, the International Workshop on On-chip Memory Hierarchy and Intercon-
nects (OMHI) started in 2012 and continued with its third edition that was held
in Porto, Portugal. This workshop is organized in conjunction with the Euro-
Par annual series of international conferences dedicated to the promotion and
advancement of all aspects of parallel computing.

The goal of the OMHI workshop is to be a forum for engineers and scientists
to address the aforementioned challenges, and to present new ideas for future
on-chip memory hierarchies and interconnects focusing on organization, manage-
ment and implementation. The specific topics covered by the OMHI workshop
have been kept up to date according to technology advances and industrial and
academia interests.

The chairs of OMHI were proud to present Prof. Manuel E. Acacio as keynote
speaker, who gave an interesting talk focusing on the key topics of the workshop
entitled “Increased Hardware Support for Efficient Communication and Syn-
chronization in Future Manycores,”which jointly with the paper sessions finally
resulted in a nice and very exciting one-day program.

The chairs would like to thank the members of the Program Committee for
their reviews, the Euro-Par organizers, Manuel E. Acacio and the high number of
attendees. Based on the positive feedback from all of them, we plan to continue
the OMHI workshop in conjunction with Euro-Par.

Program Chairs

Julio Sahuquillo Universitat Politècnica de València, Spain
Maria Engracia Gómez Universitat Politècnica de València, Spain
Salvador Petit Universitat Politècnica de València, Spain

Program Committee

Manuel Acacio Universidad de Murcia, Spain
Sandro Bartolini Università di Siena, Italy
João M. P. Cardoso University of Porto, Portugal
Marcello Coppola STMicroelectronics, France
Giorgos Dimitrakopoulos Democritus University of Thrace, Greece
Pierfrancesco Foglia Università di Pisa, Italy
Crisṕın Gómez Universidad de Castilla-La Mancha, Spain
Kees Goossens Eindhoven University of Technology,

The Netherlands
David Kaeli Northeastern University, USA
Sonia López Rochester Institute of Technology, USA
Pierre Michaud Inria, France
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Iakovos Mavroidis Foundation for Research and Technology –
Hellas, Greece

Tor Skeie Simula Research Laboratory, Norway
Rafael Ubal Northeastern University, USA

Second Workshop on Parallel and Distributed Agent-Based
Simulations (PADABS 2014)

Workshop Description

The Parallel and Distributed Agent-Based Simulations workshop series started
in 2013.

Agent-based simulation models are an increasingly popular tool for research
and management in many fields such as ecology, economics, sociology, etc..

In some fields, such as social sciences, these models are seen as a key in-
strument to the generative approach, essential for understanding complex social
phenomena. But also in policy-making, biology, military simulations, control of
mobile robots and economics, the relevance and effectiveness of agent-based sim-
ulation models has been recently recognized.

The computer science community has responded to the need for platforms
that can help the development and testing of new models in each specific field
by providing tools, libraries, and frameworks that speed up and make massive
simulations.

The key objective of the workshop is to bring together researchers who are
interested in getting more performances from their simulations, by using:

– Synchronized, many-core simulations (e.g., GPUs)
– Strongly coupled, parallel simulations (e.g., MPI)
– Loosely coupled, distributed simulations (distributed heterogeneous setting).

Program Chairs

Vittorio Scarano Università di Salerno, Italy
Gennaro Cordasco Seconda Università di Napoli, Italy
Rosario De Chiara Poste Italiane, Italy
Ugo Erra Università della Basilicata, Italy

Program Committee

Maria Chli Aston University, UK
Claudio Cioffi-Revilla George Mason University, USA
Biagio Cosenza University of Innsbruck, Austria
Nick Collier Argonne National Laboratory, USA
Rosaria Conte CNR, Italy
Andrew Evans University of Leeds, UK
Bernardino Frola The MathWorks, Cambridge, UK
Nicola Lettieri Università del Sannio and ISFOL, Italy
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Sean Luke George Mason University, USA
Michael North Argonne National Laboratory, USA
Mario Paolucci CNR, Italy
Paul Richmond The University of Sheffield, UK
Arnold Rosenberg Northeastern University, USA
Flaminio Squazzoni Università di Brescia, Italy
Michela Taufer University of Delaware, USA
Joanna Kolodziej Cracow University of Technology and

University of Science and Technology,
Poland

Additional Reviewers

Carmine Spagnuolo Università di Salerno, Italy
Luca Vicidomini Università di Salerno, Italy

7th Workshop on Productivity and Performance – Tools
for HPC Application Development (PROPER 2014)

Workshop Description

The PROPER workshop series started at Euro-Par 2008 in Gran Canarias,
Spain. Since than it has been held at every Euro-Par conference. It is orga-
nized by the Virtual Institute – High Productivity Supercomputing (VI-HPS),
an initiative to promote the development and integration of HPC programming
tools.

Writing codes that run correctly and efficiently on HPC computing systems
is extraordinarily challenging. At the same time, applications themselves are
becoming more complex as well, which can be seen in emerging scale-bridging
applications, the integration of fault-tolerance and uncertainty quantification, or
advances in algorithms. Combined, these trends place higher and higher demands
on the application development process and thus require adequate tool support
for debugging and performance analysis. The PROPER workshop serves as a
forum to present novel work on scalable methods and tools for high-performance
computing. It covers parallel program development and analysis, debugging, cor-
rectness checking, and performance measurement and evaluation. Further topics
include the integration of tools with compilers and the overall development envi-
ronment, as well as success stories reporting on application performance, scala-
bility, reliability, power and energy optimization, or productivity improvements
that have been achieved using tools.

This year’s keynote on “Rethinking Productivity and Performance for the
Exascale Era” was given by Prof. Allen D. Malony, Department of Computer
and Information Science, University of Oregon. The talk discussed directions for
parallel performance research and tools that target the scalability, optimization,
and programmability challenges of next-generation HPC platforms with high
productivity as an essential outcome. Further, Prof. Malony stated that it is
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becoming more apparent that in order to address the complexity concerns un-
folding in the exascale space, we must think of productivity and performance in
a more connected way and the technology to support them as being more open,
integrated, and intelligent.

Program Chairs

José Gracia High-Performance Computing Center
Stuttgart, Germany

Steering Committee

Andreas Knüpfer (Chair) Technische Universität Dresden, Germany
Michael Gerndt Technische Universität München, Germany
Shirley Moore University of Texas at El Paso, USA
Matthias Müller RWTH Aachen, Germany
Martin Schulz Lawrence Livermore National Laboratory, USA
Felix Wolf German Research School for Simulation

Sciences, Germany

Program Committee

José Gracia (Chair) HLRS, Germany
Denis Barthou Inria, France
David Böhme German Research School for Simulation

Sciences, Germany
Karl Fürlinger LMU München, Germany
Michael Gerndt TU München, Germany
Kevin Huck University of Oregon, USA
Koji Inoue Kyushu University, Japan
Andreas Knüpfer TU Dresden, Germany
Ignacio Laguna Lawrence Livermore National Laboratory, USA
John Mellor-Crummey Rice University, USA
Matthias Müller RWTH Aachen, Germany
Shirley Moore University of Texas at El Paso, USA
Martin Schulz Lawrence Livermore National Laboratory, USA
Nathan Tallent Pacific Northwest National Laboratory, USA
Jan Treibig RRZE, Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Felix Wolf German Research School for Simulation

Sciences, Germany
Brian Wylie Jülich Supercomputing Centre, Germany
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First International Workshop on Reproducibility in
Parallel Computing (REPPAR)

Workshop Description

The workshop is concerned with experimental practices in parallel computing
research. We are interested in research works that address the statistically rig-
orous analysis of experimental data and visualization techniques of these data.
We also encourage researchers to state best practices to conduct experiments
and papers that report experiences obtained when trying to reproduce or repeat
experiments of others. The workshop also welcomes papers on new tools for ex-
perimental computational sciences, e.g., tools to archive large experimental data
sets and the source code that generated them. This includes (1) workflow sys-
tems for defining the experimental structure of experiments and their automated
execution as well as (2) experimental testbeds, which may serve as underlying
framework for experimental workflows, e.g., deploying personalized operating
system images on clusters.

Program Chairs

Sascha Hunold Vienna University of Technology, Austria
Arnaud Legrand CNRS, LIG Grenoble, France
Lucas Nussbaum CNRS, LORIA, France
Mark Stillwell Cranfield University, UK

Program Committee

Henri Casanova University of Hawai‘i, USA
Olivier Dalle University of Nice - Sophia Antipolis, France
Andrew Davison CNRS, France
Georg Hager University of Erlangen-Nuremberg, Germany
James Hetherington University College London, UK
Olivier Richard LIG Grenoble, France
Lucas M. Schnorr Universidade Federal do Rio Grande do Sul,

Brazil
Jesper Larsson Träff Vienna University of Technology, Austria
Jan Vitek Purdue University, USA
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Second Workshop on Runtime and Operating Systems for
the Many-core Era (ROME 2014)

Workshop Description

Since the beginning of the multicore era, parallel processing has become preva-
lent across the board. However, in order to continue a performance increase
according to Moore’s Law, a next step needs to be taken: away from common
multi-cores toward innovative many-core architectures. Such systems, equipped
with a significant higher amount of cores per chip than multi-cores, pose chal-
lenges in both hardware and software design. On the hardware side, complex
on-chip networks, scratchpads, and memory interfaces as well as cache hierar-
chies, cache-coherence strategies and the building of coherency domains have to
be taken into account.

However, the ROME workshop focuses on the software side because with-
out complying system software, runtime and operating system support, all these
new hardware facilities cannot be exploited. Hence, the new challenges in hard-
ware/software co-design are to step beyond traditional approaches and to wage
new programming models and OS designs in order to exploit the theoretically
available performance as effectively and power-aware as possible.

This focus of the ROME workshop stands in the tradition of a successful series
of events originally hosted by the Many-core Applications Research Community
(MARC). Such MARC symposia took place at the Hasso Plattner Institute in
Potsdam in 2011, at the ONERA Research Center in Toulouse in 2012 and at
the RWTH Aachen University in 2012. This successful series was then continued
by the 1st ROME workshop (Runtime and Operating Systems for the Many-
core Era) at the Euro-Par 2013 conference in Aachen as a thematically related
follow-up event for a broader audience.

This year, this tradition was again pursued by holding the Second ROME
workshop in conjunction with the Euro-Par 2014 conference in Porto. The orga-
nizers were very happy that Prof. Norbert Eicker from Jülich Supercomputing
Centre (JSC) volunteered to give an invited keynote for this workshop with
the title “Running DEEP – Operating Heterogeneous Clusters in the Many-core
Era.”

Program Chairs

Stefan Lankes RWTH Aachen University, Germany
Carsten Clauss ParTec Cluster Competence Center GmbH,

Germany

Program Committee

Carsten Clauss ParTec Cluster Competence Center GmbH,
Germany

Stefan Lankes RWTH Aachen University, Germany
Timothy Mattson Intel Labs, USA
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Jörg Nolte BTU Cottbus, Germany
Eric Noulard ONERA, France
Andreas Polze Hasso Plattner Institute, Germany
Michael Riepen IAV GmbH, Germany
Bettina Schnor University of Potsdam, Germany
Oliver Sinnen University of Auckland, New Zealand
Christian Terboven RWTH Aachen Univeristy, Germany
Carsten Trinitis TU München, Germany
Theo Ungerer Universität Augsburg, Germany
Josef Weidendorfer TU München, Germany

Additional Reviewers

Christian Bradatsch Universität Augsburg, Germany
David Büttner TU München, Germany
Steffen Christgau University of Potsdam, Germany
Ralf Jahr Universität Augsburg, Germany
Tilman Küstner TU München, Germany
Simon Pickartz RWTH Aachen University, Germany
Randolf Rotta BTU Cottbus, Germany
Roopak Sinha University of Auckland, New Zealand
Vincent Vidal ONERA, France

7th Workshop on Resiliency in High-Performance
Computing in Clusters, Clouds, and Grids (Resilience
2014)

Workshop Description

Clusters, clouds, and grids are three different computational paradigms with the
intent or potential to support high performance computing (HPC). Currently,
they consist of hardware, management, and usage models particular to differ-
ent computational regimes, e.g., high-performance cluster systems designed to
support tightly coupled scientific simulation codes typically utilize high-speed
interconnects and commercial cloud systems designed to support software as a
service (SAS) do not. However, in order to support HPC, all must at least utilize
large numbers of resources and hence effective HPC in any of these paradigms
must address the issue of resiliency at large scale.

Recent trends in HPC systems have clearly indicated that future increases in
performance, in excess of those resulting from improvements in single-processor
performance, will be achieved through corresponding increases in system scale,
i.e., using a significantly larger component count. As the raw computational per-
formance of these HPC systems increases from today’s tera- and peta-scale to
next-generation multi-peta-scale capability and beyond, their number of compu-
tational, networking, and storage components will grow from the ten-to-one-
hundred thousand compute nodes of today’s systems to several hundreds of



XXXII Workshop Introduction and Organization

thousands of compute nodes and more in the foreseeable future. This substantial
growth in system scale, and the resulting component count, poses a challenge
for HPC system and application software with respect to fault tolerance and
resilience.

Furthermore, recent experience in extreme-scale HPC systems with non-
recoverable soft errors, i.e., bit flips in memory, cache, registers, and logic added
another major source of concern. The probability of such errors not only grows
with system size, but also with increasing architectural vulnerability caused by
employing accelerators, such as FPGAs and GPUs, and by shrinking nanometer
technology. Reactive fault-tolerance technologies, such as checkpoint/restart, are
unable to handle high failure rates due to associated overheads, while proactive
resiliency technologies, such as migration, simply fail as random soft errors can-
not be predicted. Moreover, soft errors may even remain undetected resulting in
silent data corruption.

The goal of this workshop is to bring together experts in the area of fault
tolerance and resilience for HPC to present the latest achievements and to discuss
the challenges ahead. The program of the Resilience 2014 workshop included one
keynote and six high-quality papers. The keynote was given by Ives Robert from
ENS Lyon with the title “Algorithms for Coping with Silent Errors.”

Workshop Chairs

Stephen L. Scott Tennessee Technological University and Oak
Ridge National Laboratory, USA

Chokchai (Box) Leangsuksun Louisiana Tech University, USA

Program Chairs

Patrick G. Bridges University of New Mexico, USA
Christian Engelmann Oak Ridge National Laboratory, USA

Program Committee

Ferrol Aderholdt Tennessee Institute of Technology, USA
Vassil Alexandrov Barcelona Supercomputer Center, Spain
Wesley Bland Argonne National Laboratory, USA
Greg Bronevetsky Lawrence Livermore National Laboratory, USA
Franck Cappello Argonne National Laboratory, USA
Zizhong Chen University of California at Riverside, USA
Nathan DeBardeleben Los Alamos National Laboratory, USA
Kurt Ferreira Sandia National Laboratory, USA
Cecile Germain Université Paris-Sud, France
Larry Kaplan Cray Inc., USA
Dieter Kranzlmueller Ludwig Maximilians University of Munich,

Germany
Sriram Krishnamoorthy Pacific Northwest National Laboratory, USA
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Scott Levy University of New Mexico, USA
Celso Mendes University of Illinois Urbana-Champaign, USA
Kathryn Mohror Lawrence Livermore National Laboratory, USA
Christine Morin Inria Rennes, France
Mihaela Paun Louisiana Tech University, USA
Alexander Reinefeld Zuse Institute Berlin, Germany
Rolf Riesen Intel Corporation, USA

Workshop on Software for Exascale Computing
(SPPEXA 2014)

Workshop Description

SPPEXA is a priority program of the German Research Foundation (DFG).
It targets the challenges of programming for exascale performance, which have
been recognized in recent years and are being addressed by national and inter-
national research initiatives around the world. Exascale computing promisses
performance in the range of 1018 floating-point operations per second. Today’s
fastest supercomputers are just a factor of 30 away from this mark. Software
technology faces extreme challenges, mainly because of the massive on-chip par-
allelism necessary to reach exascale performance, and because of the expected
complexity of the architectures that will be able to deliver it.

The DFG runs close to 100 priority programs at any one time, each lasting
up to six years. SPPEXA started in January 2013 and will run through to the
end of 2018. It consists of two three-year funding periods. In the first period, 13
projects were chosen from 67 proposals. Each project is being run by a multi-site
consortium with between three and five funded research positions. The overall
funding amounts to roughly 3.7 million Euro per year. Each project addresses
at least two and concentrates on at most three of the following six challenges:

– Computational algorithms
– System software
– Application software
– Data management and exploration
– Programming
– Software tools

The program is more than the sum of the individual projects. There are inter-
project collaborations and program-wide activities like an annual SPPEXA Day
and an annual Coding Week devoted each year to a specific theme.

This workshop started with a keynote by Rosa Badia from the Barcelona
Supercomputing Center and then continued with the initial results of the follow-
ing six of the 13 projects:
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– EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications
– DASH: Data Structures and Algorithms with Support for Hierarchical Lo-

cality
– ExaStencils: Advanced Stencil-Code Engineering
– EXAHD: An Exa-Scalable Two-Level Sparse Grid Approach for Higher-

Dimensional Problems in Plasma Physics and Beyond
– ESSEX: Equipping Sparse Solvers for Exascale
– Catwalk: A Quick Development Path for Performance Models

For more information on the program and the individual projects, please
consult the website: http://www.sppexa.de.

Program Chairs

Christian Lengauer University of Passau, Germany
Wolfgang Nagel Technical University of Dresden, Germany

Program Committee

Christian Lengauer University of Passau, Germany
Wolfgang Nagel Technical University of Dresden, Germany
Christian Bischof Technical University of Darmstadt, Germany
Alexander Reinefeld Humboldt University of Berlin, Germany
Gerhard Wellein Friedrich Alexander University, Germany
Ramin Yahyapour University of Göttingen, Germany

First Workshop on Techniques and Applications for
Sustainable Ultrascale Computing Systems (TASUS 2014)

Workshop Description

The TASUS workshop series started in 2014 to join researchers on ultrascale
computing systems (UCS), envisioned as a large-scale complex system joining
parallel and distributed computing systems, perhaps located at multiple sites,
that cooperate to provide solutions to the users. As a growth of two or three or-
ders of magnitude of today’s computing systems is expected, including systems
with unprecedented amounts of heterogeneous hardware, lines of source code,
numbers of users, and volumes of data, sustainability is critical to ensure the
feasibility of these systems. Due to these needs, currently there is an emerging
cross-domain interaction between high-performance computing in clouds or the
adoption of distributed programming paradigms, such as Map Reduce, in sci-
entific applications, the cooperation between HPC and distributed system com-
munities still poses many challenges toward building the ultrascale systems of
the future. Especially in unifying the services to deploy sustainable applications
portable to HPC systems, multi-clouds, data centers, and big data.
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The TASUS workshop focuses specially on the software side, aiming at bring-
ing together researchers from academia and industry interested in the design,
implementation, and evaluation of services and system software mechanisms to
improve sustainability in ultrascale computing systems with a holistic approach,
including topics like scalability, energy barrier, data management, programma-
bility, and reliability.

Program Chairs

Jesus Carretero Carlos III University of Madrid, Spain
Laurent Lefevre Inria, ENS of Lyon, France
Gudula Rünger Technical University of Chemnitz, Germany
Domenico Talia Universitá della Callabria, Italy

Program Committee

Francisco Almeida Universidad de la Laguna, Spain
Angelos Bilas ICS, FORTH, Greece
Pascal Bouvry University of Luxembourg, Luxembourg
Harold Castro Universidad de los Andes, Colombia
Alok Choudhary Northwestern University, USA
Michele Colajanni Università di Modena e Reggio Emilia, Italy
Toni Cortes BSC, Spain
Raimondas Ciegis Vilnius Gediminas Technical University,

Lithuania
Georges DaCosta Université Paul Sabatier, Tolouse 3, France
Jack Dongarra University of Tennessee, USA
Skevos Evripidou University of Cyprus, Cyprus
Thomas Fahringer University of Innsbruck, Austria
Sonja Filiposka University of Ss Cyril and Methodius,

FYR Macedonia
Javier Garcia-Blas University Carlos III of Madrid, Spain
Jose D. Garcia University Carlos III of Madrid, Spain
Florin Isaila Argonne National Labs, USA
Emmanuel Jeannot Inria Bordeaux Sud-Ouest, France
Helen Karatza Aristotle University of Thessaloniki, Greece
Alexey Lastovetsky University College Dublin, Ireland
Dimitar Lukarski Uppsala University, Sweden
Pierre Manneback University of Mons, Belgium
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7th Workshop on UnConventional High-Performance
Computing (UCHPC 2014)

Workshop Description

Recent issues with the power consumption of conventional HPC hardware re-
sulted in new interest in both accelerator hardware and low-power mass-market
hardware. The most prominent examples are GPUs, yet FPGAs, DSPs, and
other embedded designs may also provide higher power efficiency for HPC ap-
plications. The so-called dark silicon forecast, i.e., that not all transistors can be
active at the same time, may lead to even more specialized hardware in future
mass-market products. Exploiting this hardware for HPC can be a worthwhile
challenge.

As the word “UnConventional” in the title suggests, the workshop focuses
on usage of hardware or platforms for HPC that are not (yet) conventionally
used today, and may not be designed for HPC in the first place. Reasons for its
use can be raw computing power, good performance per watt, or low cost. To
address this unconventional hardware, often, new programming approaches and
paradigms are required to make best use of it. A second focus of the workshop
is on innovative, (yet) unconventional new programming models.

To this end, UCHPC tries to capture solutions for HPC that are unconven-
tional today, but could become conventional and significant tomorrow, and thus
provide a glimpse into the future of HPC.

This year was the seventh time the UCHPC workshop took place, and it was
the fifth time in a row that it was co-located with Euro-Par (each year since
2010). Before that, it was held in conjunction with the International Confer-
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ence on Computational Science and Its Applications 2008 and with the ACM
International Conference on Computing Frontiers 2009. However, UCHPC is a
perfect addition to the scientific fields of Euro-Par, and this is confirmed by the
continuous interest we see among Euro-Par attendees for this workshop.

While the general focus of the workshop is fixed, the topic is actually a moving
target. For example, GPUs were quite unconventional for HPC a few years ago,
but today a notable portion of the machines in the Top500 list are making use
of them. Currently, the exploitation of mobile processors for HPC – including
on-chip GPU and DSPs – are a hot topic, and we had a fitting invited talk on
the EU Mont-Blanc project given by Axel Auweter, LRZ, Germany.

These proceedings include the final versions of the papers presented at UCHPC
and accepted for publication. They take the feedback from the reviewers and
workshop audience into account.

The workshop organizers want to thank the authors of the papers for joining
us in Porto, the Program Committee for doing the hard work of reviewing all
submissions, the conference organizers for proving such a nice venue, and last
but not least the large number of attendees this year.
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9th Workshop on Virtualization in High-Performance
Cloud Computing (VHPC 2014)

Workshop Description

Virtualization technologies constitute a key enabling factor for flexible resource
management in modern data centers, and particularly in cloud environments.
Cloud providers need to dynamically manage complex infrastructures in a seam-
less fashion for varying workloads and hosted applications, independently of the
customers deploying software or users submitting highly dynamic and hetero-
geneous workloads. Thanks to virtualization, we have the ability to manage
vast computing and networking resources dynamically and close to the marginal
cost of providing the services, which is unprecedented in the history of scien-
tific and commercial computing. Various virtualization technologies contribute
to the overall picture in different ways: machine virtualization, with its capa-
bility to enable consolidation of multiple underutilized servers with heteroge-
neous software and operating systems (OSes) and its capability to live-migrate
a fully operating virtual machine (VM) with a very short downtime, enables
novel and dynamic ways to manage physical servers; OS-level virtualization,
with its capability to isolate multiple user-space environments and to allow for
their co-existence within the same OS kernel, promises to provide many of the
advantages of machine virtualization with high levels of responsiveness and per-
formance and I/O virtualization allowing physical NICs/HBAs to take traffic
from multiple VMs.



Workshop Introduction and Organization XXXIX

The workshop series on Virtualization in High-Performance Cloud Comput-
ing (VHPC) – originally the Workshop on Xen in High-Performance Cluster
and Grid Computing Environments – started in 2006. It aims to bring together
researchers and industrial practitioners facing the challenges posed by virtual-
ization. VHPC provides a platform that fosters discussion, collaboration, mutual
exchange of knowledge and experience, enabling research to ultimately provide
novel solutions for virtualized computing systems of tomorrow.

VHPC 2014 was again successfully co-located with Euro-Par. We would like
to thank the organizers of this year’s conference and the invited speakers: Helge
Meinhard, CERN, and Ron Brightwell, Sandia National Laboratories, for their
very well received talks.
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André Brinkmann, and Stephan Krempel

Planning Live-Migrations to Prepare Servers for Maintenance . . . . . . . . . . 498
Vincent Kherbache, Eric Madelaine, and Fabien Hermenier

Virtual Cluster Deployment with Dynamically Detachable Remote
Shared Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Yusuke Tanimura and Takahiro Hamanishi

Hecatonchire: Towards Multi-host Virtual Machines by Server
Disaggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
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Artur Mariano, Özgür Dagdelen, and Christian Bischof

Data Parallelism in Traffic Control Tables with Arrival Information . . . . 60
Juan F.R. Herrera, Eligius M.T. Hendrix, Leocadio G. Casado,
and René Haijema
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Maŕıa del Pilar Arroyo, and Gracia Ester Mart́ın Garzón



Table of Contents – Part I XLIX

GPU Accelerated Stochastic Inversion of Deep Water Seismic Data . . . . . 239
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Abdelhafid Mazouz, Benôıt Pradelle, and William Jalby

Stepping Stones to Reproducible Research: A Study of Current
Practices in Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Alexandra Carpen-Amarie, Antoine Rougier, and Felix D. Lübbe
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and Piotr Zierhoffer

FlipIt: An LLVM Based Fault Injector for HPC . . . . . . . . . . . . . . . . . . . . . . 547
Jon Calhoun, Luke Olson, and Marc Snir

Efficient Reliability in Volunteer Storage Systems with Random Linear
Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
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Abstract. The wide exploitation of cloud resources has been hindered by the 
diversity on the provision of these resources and thus resulting in heterogeneity 
between them. Research efforts on the design of cloud applications, leveraging 
resources form heterogeneous cloud environments, have been concentrated on 
traditional cloud platform resources such as deployment capabilities and data 
stores. However, the emergence of the cloud application platforms has made 
available a wide range of platform basic services (e.g. e-mail, message queue 
and authentication service) that can drastically decrease the application 
development time. Our work focuses on eliminating the heterogeneity among 
the providers offering those services. To this end we propose an ontology-
driven framework, which facilitates the seamless and transparent use of 
platform basic services provisioned by multiple clouds environments. 
Ontologies are leveraged to enable the homogeneous description of the 
functionality of the service providers.  

Keywords: Multi-Cloud, Ontologies, Cloud platform service description. 

1 Introduction 

Cloud application platforms [1] are becoming increasingly popular and have the 
potential to change the way applications are developed, involving compositions of 
platform basic services. A platform basic service, in the Platform as a Service level 
(PaaS), can be considered as a piece of software which offers certain functionality and 
is reusable. Examples of such services are authentication mechanisms, logging 
mechanisms, message queues and email service. Such services are considered to be 
interwoven in the creation of many applications running from a cloud application 
platform and thus using the service instead of creating the corresponding code is of 
great benefit to the application developer. A service can be offered natively by the 
platform, such as the e-mail service offered by Google App Engine [2] and Amazon 
Elastic Beanstalk [3]. Alternatively, Independent Software Vendors (ISVs) can offer 
added-value services for a given platform, such as Heroku [4]. 
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The cloud application platforms have the potential to lead to a new paradigm of 
designing service-based cloud applications. Applications rather than being developed 
from the ground up, they can be synthesised from services offered by multiple clouds. 
This way developers can drastically increase their productivity and significantly 
shorten the time to market of the product. 

However, an impediment for the wide exploitation of the available platform basic 
services constitutes the heterogeneity among the offered solutions. The heterogeneity 
mainly arises from (i) the variability in the workflow required to complete an 
operation [5] and (ii) the differences in the web API through which the service 
providers provision their services. This paper focuses on the latter variability point. 
For developers to leverage the full capabilities of services provided by multiple 
platforms should not be forced to develop an application directly against proprietary 
APIs, but rather should use either (i) standard and widely adopted technologies; or (ii) 
abstraction layers which decouple standard end-user APIs from the platform-specific 
APIs. To this end, this paper proposes an ontology-driven framework, which 
promotes the uniform access to platform basic services via the use of an abstract 
reference cloud API.  

The use of ontologies is primarily motivated by their ability to support separation 
of concerns [6], that is enable the development of an application where the logic is 
separated from the data upon which it operates. This allows for data to be altered as 
much as it is required without altering the code related to the logic that operates on 
the data. In our case the data are the descriptions of the platform basic services that 
could be consumed by the various applications. Therefore, future service providers 
can be supported on the fly through an ontological description of their service. The 
framework is capable of reading the description and generating automatically the 
provider specific source code. 

The rest of the paper is organised as follows. The next Section attempts to 
contextualise the scope of the proposed framework by defining the cluster of cloud 
platforms that it will focus on. Established work on the field related to the proposed 
solution is reviewed in Section 3. Thereafter, the main components of the framework 
are described namely, the ontologies and the core engine, which is responsible for 
generating the provider specific code. 

2 Clustering of Cloud Platforms 

Before stepping into the details of the proposed solution, the application scope of the 
approach needs to be defined. Particularly, we attempt a high-level clustering of the 
cloud platforms environments and subsequently we state the focus of our research. 
The clustering of the cloud platforms has been primarily based upon the adopted 
technologies and the provisioning of additional platform services either natively or 
via a service marketplace. From earlier surveys and reports [7], [8], [9], [10], [11], 
[12], [13] we find that cloud platform solutions can be clustered into three broad 
categories: 

The first category includes platforms, which adopt standard and widely used 
technologies, such as popular programming languages and databases. They provide 
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basic development resources only, such as an application server and a database, and 
do not offer further cloud platform services or a service marketplace. An example 
platform in this category is CloudBees [14]. 

The second category includes platforms, which offer additional services via APIs 
such as e-mail service, image manipulation service and a message queue service. The 
services are offered natively by the platform such as the Google App Engine [2]. 
Alternatively the platforms may offer additional services via a marketplace such as 
the Heroku [4] add-ons.  

The third category includes platforms, which adopt a native application 
development paradigm, where developers are expected to use bespoke visual tools 
and graphical interfaces to create the applications. Additional services can be offered 
by ISVs via marketplaces. However, those services are tightly integrated to the 
platform and no programming library or web interface is exposed. Platforms in this 
category include Zoho Creator [15]. 

Regarding the provisioning of services, platforms in the first category offers only 
deployment capabilities without any additional services. On the other edge of the 
spectrum, platforms in the third category are characterised by proprietary 
development tools and technologies. The lack of programming APIs makes them 
intractable when it comes to abstracting the offered services. Consequently, this paper 
focuses on platforms in the second category. Specifically, we are interested in the 
proprietary APIs that the services expose and the way these APIs can be abstracted in 
order to enable uniform and transparent access to the services.  

3 Related Work 

The constant increase in the offering of platform basic services has resulted in a 
growing interest in leveraging services from multiple clouds. Significant work has 
been carried out on the field, which can be grouped into three high-level categories: 
middleware platforms, Model-driven Engineering techniques and library based 
solutions. Representative work on each of the three categories is listed. 

Library-based solutions such as jclouds [16] and LibCloud [17] provide an 
abstraction layer for accessing specific cloud resources such as compute, storage and 
message queue. While, library-based approaches efficiently abstract those resources, 
they have a limited application scope which makes it difficult to reuse them for 
accommodating additional services.  

Middleware platforms constitute middle layers, which decouple applications from 
directly being exposed to proprietary technologies and deployed on specific 
platforms. Rather, cloud applications are deployed and managed by the middleware 
platform, which has the capacity to exploit multiple cloud platform environments. 
mOSAIC [18] is such a PaaS solution which facilitates the design and execution of 
scalable component-based applications in a multi-cloud environment. mOSAIC offers 
an open source API in order to enable the applications to use common cloud resources 
offered by the target environment such as virtual machines, key value stores and 
message queues.  
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Initiatives that leverage MDE techniques present meta-models, which can be used 
for the creation of cloud platform independent applications. The notion in this case is 
that cloud applications are designed in a platform independent manner and specific 
technologies are only infused in the models at the last stage of the development. 
MODAClouds [19] and PaaSage [20] aim at cross-deployment of cloud applications. 
Additionally, they offer monitoring and quality assurance capabilities. They are based 
on CloudML, a modelling language which provides the building blocks for creating 
applications deployable in multiple IaaS and PaaS environments. Hamdaqa et al. [21] 
have proposed a reference model for developing applications which leverage the 
elasticity capability of the cloud infrastructure. Cloud applications are composed of 
CloudTasks which provide compute, storage, communication and management 
capabilities. MULTICLAPP [22] is a framework leveraging MDE techniques during 
the software development process. Cloud artefacts are the main components that the 
application consists of. A transformation mechanism is used to generate the platform 
specific project structure and map the cloud artefacts onto the target platform. 
Additional adapters are generated each time to map the application`s API to the 
respective platform`s resources. 

The solutions listed in this Section focus mainly on eliminating the technical 
restrictions that each platform imposes, enabling this way multi-cloud deployment of 
applications. Additionally, they offer monitoring and quality assurance capabilities as 
well as the creation of elastic applications. On the contrary, the vision of the authors 
is to facilitate the use of platform services, such as e-mail service, authentication 
service etc. and concrete providers from heterogeneous clouds in a seamless manner. 
To this end, we envision the creation of a framework, which enables the uniform 
description of the API of the services and the concrete providers. In turn, this will 
facilitate the design of applications, which leverage services from multiple cloud 
application platforms without being bound to the specific proprietary APIs. 

4 Ontology Driven Framework 

Towards enabling the design of service-based cloud applications, we present our 
solution approach, which is based on an ontology driven framework. With respect to 
the classification of the cloud platforms performed in Section 2, the proposed solution 
targets the platforms in the second category, namely the ones who offer platform 
services either natively or via a marketplace through a web API. The framework 
receives a description of the service functionality and subsequently generates 
automatically the client adapter to map onto the abstract reference API for the specific 
service. 

In order to evaluate the effectiveness of the framework we apply the solution 
approach to the cloud e-mail service. The e-mail service allows a cloud application to 
send and receive e-mails without the need for the developer to set up and maintain an e-
mailing server. Instead the service is offered by the cloud provider via a web interface. 
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The choice of the e-mail service was motivated primarily by the need for enabling 
cloud applications to leverage services from multiple clouds. The emergence of the 
cloud application platforms and the service marketplaces has made available a wide 
range of services which the cloud application should be capable of exploiting. To this 
end, the role of ontologies is explored as enablers for vendor specific API abstraction. 
The concrete provider`s API is captured in an ontology and subsequently is mapped 
to the abstract reference API which is exposed to the cloud developers. 

4.1 Benefits of Using Ontologies 

Ontologies are the novel aspect of the framework. They are used in order to allow a 
uniform description of the platform basic services. According to Gruber [23], they are 
formal knowledge over a shared domain that is standardized or commonly accepted 
by certain group of people.  

The advantages here are two-fold. First, ontologies allow to define clearly the 
domain model of our interest; in our case the domain model is the cloud platform 
services offered by multiple platforms. The fact that an ontology is shared and 
commonly accepted description of a service, contributes towards the homogenisation 
of the latter. The cloud vendors can adhere to and publish the description of their 
service based on the common and shared ontology.  

Moreover, ontologies can be reused and expanded if necessary. Thus, an ontology 
describing a platform basic service may not be constructed from the ground up but 
may be based on an existing one such as USDL (Unified Service Description 
Language) [24].  

The reasoning capabilities that ontologies offer may be exploited for consistency 
check of the service descriptions.  

Furthermore, mature tools are available in order to create and manipulate an 
ontology. Specifically, Protégé [25] is a well-established tool that allows users to 
create and edit ontologies, whereas the OWL API [26] and Jena framework [27] are 
among the popular Java frameworks that enable developers to manipulate ontologies 
using the Java language. 

It is not the first time that ontologies are used in the cloud computing domain to 
enable service description. mOSAIC [28] ontology is used to enable service discovery 
and brokerage. This further motivates our choice of using ontologies for enabling 
service description. However, while the mOSAIC ontology focuses on describing the 
general and quality characteristics of a service, our ontology aims at the concrete 
functionality and the API of the services. 

4.2 Architecture of the Ontology Driven Framework 

Figure 1 depicts the high-level overview of the abstraction framework. The developer 
initiates the development of the application using a popular development environment 
such as Eclipse and a programming language such as Java. When the application 
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requires a platform basic service that is supported by the framework, the API 
description of the service is inserted into the framework. Consequently, the service 
description is parsed and the source code for the particular service is generated. The 
proposed cloud abstraction framework consists of two main parts: the models that 
represent the supported platform basic services and the core engine of the framework. 
 

  

Fig. 1. High-level overview of the ontology-driven framework 

Platform Service Models. The models represent the services that the framework 
supports. As mentioned in the previous Section, ontologies are used in order to build 
the models. The models, as seen in Figure 2 are structured into three levels. 
Inspiration has been gained by the Meta-Object-Facility (MOF) standard [29] defined 
for the Model Driven Engineering domain. Specifically, the hierarchy of the 
ontologies resembles the bottom three levels of the MOF structure, namely the meta-
models, the models and the instances of the models. 

The level 2 Ontology (O2) includes the description of the abstract platform 
services. Common concepts that define the platform basic services are captured at this 
level. Information about the configuration settings and the authentication mechanisms 
of the service are included. The O2 level also contains concepts, such as Operations 
and Attributes, required to describe an API.  
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Fig. 2. The three levels of the ontology hierarchy 

The level 1 Ontologies (O1) includes the concrete description of each of the 
platform basic services, which are supported by the framework. A dedicated ontology 
corresponds to each of the services and captures information about the functionality 
that they expose. For example, in the case of the cloud e-mail service, information 
that is captured in the O1 ontology describes the functionality for performing actions 
related to sending, receiving and manipulating e-mails. The ontologies in the O1 level 
are also referred to as Template ontologies.  

The level 0 Ontologies (O0) include the description of the specific platform service 
providers. A dedicated ontology corresponds to each of the service providers and 
describes the native vendor specific API. For example, in the case of the e-mail 
service, an O0 ontology describes the concrete operations and attributes that a 
provider specific API exposes. The ontologies in the O0 level are also referred to as 
Instance ontologies. The users of the framework can form the Instance ontologies 
after reading the service providers` API. Alternatively, the Instance ontologies are 
created and published by the service providers and are automatically discovered by 
the framework. 

In order to further clarify the use of the three levels of ontologies and the 
relationships among them, a simple description of a vendor specific API is 
constructed. The example that follows serves only illustrative purposes. Therefore, for 
the sake of simplicity only the necessary amount of information has been included. 
The example focuses on the cloud e-mail service and particularly on the description 
of the operation, which allows the users to send e-mails. 
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ontologies can be fed manually to the Ontology Handler. Then, it performs a 
consistency check to reassure that the Instance ontology conforms to the respective 
Template ontology. For that reason the capabilities of reasoning in ontologies may be 
exploited. Consequently, the ontology is parsed and an object representation is 
created in memory. The object representation of the ontology is then forwarded to the 
Code Generator.  

The Abstract Platform Service models contain a collection of abstract models, 
which correspond to the Template ontology and describe the service. They can be 
considered as the scaffold of the service. They are later enriched with the provider`s 
specific API information. 

The Code Generator, as the name implies, is responsible for generating the 
concrete source code for the target service provider. It receives as input the object 
representation of the parsed Instance ontology and the abstract service models. Then 
it enriches the abstract models with the provider specific information and outputs the 
provider specific source code. Thus, while the developer uses a single common API 
to access a platform service, internally the source code is adjusted to map each time to 
the concrete service provider API. 

In order to illustrate the functionality of the proposed framework, the example of 
the cloud e-mail service has been used. However, the generic nature of the framework 
enables the support of any platform basic service offered via a web API. As described 
in Section 4, the Template and Instance ontologies are required. The former captures 
the reference functionality that is exposed to the developers. The latter includes the 
provider specific API and the mapping to the reference functionality.  

The proposed solution is capable of abstracting efficiently the heterogeneities 
among the cloud providers` APIs and thus eliminating the exposure of the application 
to proprietary APIs. However, the approach is inherently limited to the abstraction of 
the common functionality offered by the cloud providers. This means that specific 
functionality that is provided only by one vendor is not included in the Template 
ontologies and therefore not mapped to the abstract reference API. In order to allow 
developers to use the provider specific functionality, the latter is described directly in 
the Instance ontologies. Then, additional client adapters can be generated and used by 
the developers. In case the functionality is adopted by additional providers it can be 
also included in the Template ontology. Therefore, the proposed framework rather 
than being static, it is continuously updated to accommodate new features offered by 
the platform basic services.  

5 Conclusions 

In this paper, we addressed the issue of the design of service-based cloud applications 
capable of leveraging services offered by multiple cloud environments. To this end, 
we presented an ontology driven framework, which facilitates: (i) the description of 
the functionality of concrete service providers, (ii) the provisioning of a common 
platform service API to be used independently of the target provider and (iii) the 
automatic generation of the client adapters required to consume the target services. 
The proposed solution comprises two main parts: the ontological description of the 
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services and the core engine. The first one includes the Template and Instance 
ontologies, which contain the abstract and the provider specific service description 
respectively. The second part reads the Instance ontology and generates the source 
code for the target provider. Thus, the use of the ontology driven framework 
facilitates the design of applications exploiting services from multiple platforms using 
provider independent API rather than being bound to proprietary technologies. 
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Abstract. The widespread use of cloud storage in the last few years
can be attributed to the existence of appealing applications such as file
backup, data archival and file sharing. File sharing in particular, is im-
plemented in different ways by distinct cloud storage services. These
differences can appear at the offered permission types and in the form
they are applied. We present a survey of these differences for several
popular cloud storage services. We also show how to realize secure data
sharing using these services, allowing the implementation of equivalent
data sharing features in different clouds, an important requirement for
secure multi-cloud systems.

1 Introduction

With more people accessing their files online, an important part of file sharing
today is done by taking advantage of cloud storage. This can be done through
personal file synchronization services like Dropbox [4], Google Drive [6], Mi-
crosoft OneDrive [13], Box [3] or Ubuntu One [18], which store users’ data in the
cloud. These services have been extremely successful, as attested by the success
of DropBox, which has announced last April that it reached 275 million users [5].

These systems perform file sharing through dedicated application servers
which are responsible for controlling access to the files as well as user groups
management, data deduplication, etc. It means that the security of the file shar-
ing requires trusting not only the storage service (for instance, Dropbox is built
on top Amazon S3 [4]), but also these application servers.

An alternative for using these services is to mount the cloud storage (e.g.,
Amazon S3) in a user-level file system and access it directly. S3QL [17],
BlueSky [26] and SCFS [24] are examples of this kind of systems.

BlueSky uses a proxy that acts as a network file server, which is accessed by
the clients in order to store their data. This proxy is responsible for sending the
users’ data to the storage clouds. Nonetheless, as in synchronization services,
clients need to trust this component and the cloud storage provider.

On the other hand, S3QL and SCFS allow clients to share data without a
proxy. In S3QL, the clients just mount the file system to access the storage
service objects as files, with no concurrency control. SCFS, on the other hand,
offers controlled file sharing where concurrent updates and file version conflicts
are avoided through the use of locks. Moreover, in SCFS clients are able to take
advantage of DepSky [23] to store data in a multiple cloud providers, i.e., a
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cloud-of-clouds. DepSky and SCFS ensure the privacy, integrity and availability
of the data stored in the clouds as long as less then a third of the cloud providers
are faulty.

SCFS uses the pay-per-ownership model, in which each user pays for the files
he/she creates. A more simple model where all the clients use the same cloud
account could be used, and automatically share all the data stored by the system.
This alternative raises some problems. First, all users could access all data stored
in the clouds. In this way, each client must trust all the system users since they
can access, delete or corrupt all stored data. Second, just one organization will
be charged for all the data stored in the system.

In this paper we present a survey of the access-control techniques provided
by some popular cloud storage services. We also show how to implement secure
data sharing using these services, allowing the implementation of equivalent data
sharing features in different clouds, a fundamental requirement for multi-cloud
systems.

In summary, we contribute with (1) a study of several cloud storage ser-
vices’ access control models (i.e., Amazon S3 [1], Google Storage [7], Window
Azure Storage [19], RackSpace Cloud Files [15], HP Public Cloud [9], and Luna
Cloud [11]), i.e, a study of the techniques used by these services to apply the
permissions they provided and (2) a set of protocols that allow the sharing of
files between clients according with pre-defined access control patterns for each
of the studied storage clouds.

2 Access Control on Storage Clouds

To allow users to share their data, all cloud storage services provide some mech-
anisms that enable data owners (users) to grant access over their resources to
other principals.

In all these storage services, the resources can be either buckets or objects. A
bucket, or container, represents a root directory where objects must be stored.
There could be several buckets associated with a single cloud storage account.1

However, in most of the services, buckets must have unique names. Objects are
stored in a bucket and can be either files or directories.

On the other hand, the cloud storage services differ in the techniques they
provide to allow users to grant access over their resources, and also in the per-
mission types that users are able to specify. In this paper these techniques will
be called access-granting and the permission types that can be specified with
them will be named permissions.

Access-granting Techniques. These are the techniques provided by cloud
storage services to allow users to give others access to their resources. The users
are able to specify a set of permissions in each technique. To apply these permis-
sions over the resources, different storage clouds could offer different techniques.

1 Some storage clouds has a limited number of buckets. For instance, an Amazon S3
account can have at most 100 buckets.
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In this paper we cover three of them: Per Group Predefined Permissions, Tem-
porary Constraints and Access Control Lists (ACLs).

In the first one the users are able to make their stored data accessible to some
predefined group. The second technique allows users to give other users a ticket
that grant access for a resource by a predefined period of time. The last one,
ACLs, permits to associate with each resource a list of grantees that are able to
access it.

Permissions. When a user wants to share some resource with another user, i.e.,
with a different account/user, he/she needs to specify what are the capabilities of
this other user with respect to the shared resource(s). Permissions are specified
in the access-granting techniques. Each permission has a semantic that specifies
the capabilities of the grantees of some resource.

However, different storage clouds provide a different set of specifiable permis-
sions. For example, Amazon S3’s users cannot grantwrite permission to specific
objects. On the other hand, RackSpace Cloud Files users can do that [15] (see
Section 3).

Moreover, equal permissions could have different semantics. As an example,
in Amazon S3 [1] when a read permission over a bucket is given, grantees
can list objects inside it. On the other hand, the same permission in Windows
Azure [19] does not allow grantees to list the objects in a bucket, instead it
grants the permission to read all the objects it contains.

3 Permissions

To allow users to define the grantees’ capabilities over a shared resource, all
clouds provide a set of permissions with documented semantics. As explained
before, the same permission could have different semantics in different clouds.
Table 1 shows the available permissions for buckets and objects in several cloud
storage providers.

As can be seen, Amazon S3 [1] and LunaCloud [11] provide the largest set
of permissions among all the services studied. They permit users to give read,
write, read acp, write acp and full control permissions [2,12] over both
buckets and objects. Google Storage [7] have almost the same set of permissions.
The difference is that Google Storage does not allow users to apply read acp
and write acp permissions separately [8]. Instead, it put together these two
permissions into the full control one. This means that if a user wants to
give other users the capability of read some resource’s ACL, he/she is forced to
also grant the capability to write or update that ACL.

Interestingly, in most clouds the read permission over a bucket does not allow
a grantee to read an object inside it. Instead, it only allows grantees to list the
objects inside the bucket. To grant read access, a read permission need to be
applied on the desired objects. On the other hand, the write permission on
the bucket allows a grantee to write, overwrite or delete any object inside that
bucket. In this case, the same permission is not applicable to objects. Given that,
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Table 1. Storage services available permissions

it is impossible to grant write access to a subset of the objects inside a bucket.
This means that there is no way to grant write access over objects individually.

Another important thing to highlight is that those clouds allow users to give
others the right to read or write a resource’s ACL through the read acp,
write acp and full control permissions. It is also important to notice that
when a grantee have the permission to update an ACL, he/she is able to grant
access over it to other users without being the resource owner.

HP Public Cloud [9] and RackSpace Cloud Files [15] available permissions are
more simple [10,14]. These two services only provide two different permissions,
either for buckets and objects: read and write. The only difference between
these two storage clouds is that the read permission on the bucket for Hp Public
cloud allow grantees to list and read its objects (contrary to Amazon S3, Luna-
Cloud and Google Storage), while for RackSpace only allow grantees to read the
objects inside it. Also different of Amazon S3, LunaCloud and Google Storage,
in these two clouds is impossible give other users the right to read/update the
bucket permissions.

The Windows Azure Storage’s [19] set of permissions [20] differs from all other
studied cloud storage services. Basically, the write and delete permissions are
separated, as well as the read and the list. In the other clouds these permissions
are grouped in one permission, i.e., when the write access is granted, grantees
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have also the capability to delete resources. Similarly with HP Public Cloud and
RackSpace, a grantee cannot update/read the bucket permissions.

4 Access-granting Techniques

4.1 Per Group Predefined Permissions

Using Per Group Predefined Permissions, the users are able to apply permis-
sions on buckets or objects granting access for two kinds of groups: All Users
and Authenticated Users. The All Users group refers to anyone in the internet.
In turn, the Authenticated Users group represents all users that have an account
in the cloud provider. However, to give permissions to these groups, the own-
ers must use some predefined permissions that the storage clouds provide. For
instance, Amazon S3 and LunaCloud call this technique Canned ACLs, while
Google Storage name it Predefined ACLs.

The first column of Table 2 shows the available predefined permissions for
each group, as well as the type of access that each one grants. As we can see,
Amazon S3 and Google Storage provide the same Per Group Predefined Permis-
sions [2,8].2 These default permissions allow users to make their resources public
for the All Users group, for both read and write. For the Authenticated group,
the storage clouds only allow the users to grant read permission over buckets
or objects. Notice that the bucket-owner-read and bucket-owner-full-control pre-
defined permissions over objects for Amazon S3 and Google Storage, only grant
access permissions to resources owners (not for the Authenticated Group). These
predefined permissions are provided because the bucket owner could not be the
object owner. In these two clouds, each user is the owner of the objects he up-
loads, even if the uploads are made to a bucket owned by other user. Thus, they
are useful to give access rights to the bucket owner when a user uploads an object
to a bucket that is not owned by him. The LunaCloud’s predefined permissions
are similar to the Amazon S3 and Google Storage (see Table 2), with the excep-
tion that they do not have the bucket-owner-read and bucket-owner-full-control
permissions over the objects.

Windows Azure differs from the previous clouds in two ways. First, there is
no predefined permissions to the Authenticated Users group. Second, it provides
no way to give write permissions over buckets or objects, allowing only users
to grant read access to the All Users group [21].

Although not shown in the table, all the clouds that provide predefined per-
missions also provide a special permission that gives full control to the
bucket/object owner, with no one else getting any access to it. In fact, this
is the default predefined permission for a resource on its creation.

HP Public Cloud and RackSpace Cloud Files do not provide Per Group Prede-
fined Permissions. However they allow users to make their buckets public through
different techniques.

2 There are some other predefined permissions for this two storage clouds that are not
shown in the figure.
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4.2 Temporary Constraints

Temporary Constraints is another way to give access permissions to other users.
However, using this technique, the access will be temporary. The second col-
umn of Table 2 shows the studied clouds that implement this access-granting
technique. As can be seen, only three of the studied clouds have this feature.
RackSpace and HP Public Cloud provide Temporary URLs [16,10], while Win-
dows Azure provide Shared Access Signatures [22]. Temporary URLs are used to
support the sharing of objects (and only objects), whereas Shared Access Signa-
ture allows the sharing of both buckets and objects. These temporary constraints
work as a capability given by resource owners to other users in order for them
to access to the specified resource. In this case the ticket that proves the right to
access the object is the URL. This URL contains information about the period of
time that the access will be valid, the path to the resource over which the access
is being granted, the permissions granted, and a signature. This signature, not
to be confused with a digital signature [25], is different from cloud to cloud:

Table 2. Storage services access-granting techniques
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– RackSpace Cloud Files: SHA-1 HMAC computed over the URL information
and a key.

– HP Public Cloud: SHA-1 HMAC computed over the URL information and
a key.

– Windows Azure Storage: SHA-256 HMAC computed over the URL informa-
tion and a key.

In the first case, the key is a sequence of letters chosen by the user, while
in the others, it is the secret key used to access the account. This signature
ensures (with high probability) that the URL cannot be guessed or changed by
an attacker even if he knows the other fields of the URL.

4.3 Access Control Lists – ACLs

As shown in Table 2, Amazon S3 [2], Google Storage [8], HP Public Cloud [10]
and RackSpace Cloud Files [14] are the clouds that allow users to specify access
rights to other users through ACLs. Contrary to the use of Temporary Con-
straints, by using ACLs, the user does not need to give to grantees a capability
(a URL like described in Section 4.2). In this case the user who wants to share
data needs to create an ACL and include the names or ids (depending on the
cloud) of the clients whom he want to give access together with the corresponding
permissions and associate it with the shared objects.

However, there are some differences among the storage clouds that provide
ACLs. One difference between Amazon S3 and Google Storage, and RackSpace
and HP Public Cloud is that in the last two, the users can only manage ACLs
for containers. This means that it is impossible for a user to associate an ACL
with an object. Another difference is that, while Amazon S3 and Google Storage
allow users to grant access to a user from a different account, RackSpace and
HP Public Cloud only allow they to set an ACL for sub-users.3

All clouds that allow sharing across different accounts through ACLs, do not
permit buckets to have the same name, even if they belong to different accounts.

5 Setting Per User Permissions

Table 3 summarizes which clouds implement mechanisms for securely sharing
buckets and objects between different users (which is a requirement for imple-
menting the cloud-of-clouds models of DepSky [23] and SCFS [24]). Among the
studied clouds, LunaCloud is the only one that does not provide enough fea-
tures for this, since it only provides Per Group Predefined Permissions. In the
remaining clouds, the per user sharing can be done through ACLs or Tempo-
rary Constraints. However, none of these clouds provide mechanisms for securely
sharing a bucket in a simple way.

To clarify what we mean by “securely” and “simple”, we define a minimum
set of rules to share a bucket in a secure way:

3 A sub-user is a user within an account owned by other user. Such users can be
associated to an account by associating with him a username and a password.
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– Rule A: the permissions on the bucket allow a grantee to list, delete, create,
read and write any object inside it.

– Rule B : only grantees and the bucket owner can operate on the bucket.
– Rule C : a grantee cannot delegate access rights to other users.

Sharing a container using a cloud storage service that satisfies these rules
and support ACL as access-granting technique would be very simple. First, the
bucket owner gathers the ids of the accounts he wants to grant access to, and then
he creates/associates a bucket with an ACL granting the desired permissions for
those accounts.

Unfortunately, as described before, this simple protocol cannot be applied
to any cloud we are aware of. However, equivalent functionalities can be imple-
mented in most clouds, albeit using additional steps. In the following subsections
we present the steps required for sharing a bucket with specific users in the dif-
ferent clouds in which this is possible.

Table 3. Per user permissions in storage services

5.1 Sharing with Amazon S3 and Google Storage

Sharing a bucket among specific users in Google Storage and Amazon S3 is
quite similar. In the following we describe a protocol (illustrated in Figure 1) for
sharing a bucket in these storage clouds.

1. The bucket owner needs to gather the ids of the users he want to share with.
In the case of Amazon S3, this is the Canonical User ID while for Google
Storage this is the email associated with the account.

2. The bucket owner must create the bucket and associate with it an ACL
with the ids of grantee X and Y granting read and write permissions. The
bucket owner can always get the bucket ACL from the cloud, add more or
remove users to it, and update it again.

3. All the ids, including the id of the bucket owner, must be sent to all grantees.
4. When a grantee or the bucket owner uploads an object, it needs to associate

an ACL granting read access to the other grantees (including the bucket
owner).

The permissions provided by these two clouds are different from the set of
permissions we defined in Section 5, therefore, this protocol is more costly than
the protocol exemplified in that section. For instance, Rule A is not respected
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Fig. 1. Sharing a bucket with Amazon S3 and Google Storage

in the second step: there is no permission on the bucket that allows grantees
to read all objects inside it. This leads to the third and fourth step described
above: when an object is uploaded to the shared bucket we need to associate an
ACL with it to ensure read access to all grantees.

Assuming that all grantees are trusted, this algorithm fulfill all the require-
ments present in the set of rules we defined in Section 5. However, if any of them
deviate from the protocol, some new issues can arise. In these clouds each user is
the owner of the objects he uploads, consequently, he/she can grant read access
over his objects to other users without the knowledge of bucket owner, or even
give no access to other grantees. The first case does not respect Rule C, while the
last case contradicts Rule A. Notice that it is impossible to the grantee to give
write access to others because these two clouds provide no write permission
for objects. If the bucket owner detect these situations, it can always delete the
objects the grantee uploaded and revoke his access permissions.

5.2 Sharing with HP Public Cloud and RackSpace Cloud Files

HP Public Cloud and RackSpace are the only two clouds, of the five we studied,
that allow per user permissions and that provide ACLs and Temporary Con-
straints to share resources. However, their temporary URLs only allow users
to share objects, not buckets (see Section 4.2). Figure 2 illustrates the steps
required for sharing a container using ACLs.

1. The bucket owner needs to get the grantees’ names and emails. This is the
information needed to add a sub-user. Notice that the grantees do not need
to have an HP Public Cloud or RackSpace account.

2. The bucket owner adds the grantees as sub-users of its account. By default,
a sub-user cannot access any service until the account owner allows it.

3. After that, the bucket should be created and an ACL with read and write
permissions granting access for the previous added users must be associated
with it. For RackSpace in particular, there is no way to update an ACL
already associated with a bucket in the cloud, only to replace it. This means
that if the bucket owner updates an ACL only granting access to grantee X,
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when updating the ACL for giving access to grantee Y, the access to grantee
X must be granted again.

4. The next step is to provide to grantees the credentials they need to get
authenticated as sub-users. The bucket owner can get these credentials after
adding the grantees to its account (step 2).

5. From now on, the grantees can authenticate themselves with cloud service
using the referred credentials.

6. Thereafter, they can operate in the bucket that was granted access.

Since RackSpace do not allow grant list access to grantees (see Section 3), in
this case Rule A is not respected. However, in the case of HP Public Cloud all
rules that we specify in Section 5 are covered. Despite that, in both cases, Rule
B and Rule C are only respected as long as all grantees are trusted. Otherwise, a
non-trusted grantee can provide non-authorized users with the access credentials,
making them able to read, write, delete and list on the bucket. This contradicts
Rule C. However, the bucket owner can revoke grantees permissions just by
deleting them from the bucket ACL, or even by removing their sub-users.

Fig. 2. Sharing a bucket with HP Public Cloud and RackSpace Cloud Files

Another issue is that these two clouds do not allow sharing across different
accounts. This increase the number of necessary steps of the protocol. More
specifically, there is the need of steps 2, 4 and 5. It is important that the step 4
is executed over a secure connection to ensure that no one can read the access
credentials from the network.

5.3 Sharing with Windows Azure

The only way to share a container with other users using Windows Azure is
through a Temporary Constraint. Figure 3 illustrates the required steps.

1. The bucket owner creates the bucket he wants to share.
2. Generate the Shared Access Signature to this bucket with all the permissions

that Windows Azure provide: read, write, delete and list.
3. Disseminate the URL among the grantees.
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4. Once the grantee have the URL, he can use it to access the bucket for read,
write, delete and list until its expiration.

As in the previous protocols, there is the need to assume that the grantees
are trusted. The second step of the protocol allows the creation of a URL with
the rules we define in Section 5. However, using a Temporary Constraint as an
access-granting technique raises some issues. Firstly, step 3 should be done via a
secure connection. The second one relates to the fact that a grantee can give to
others the URL, thus breaking rule C. This means that other users can access
the bucket for read, write, list and delete. Finally, there is the inconvenience of
repeating the process (with the exception of step 1) every time the URL expires.

5.4 Suggestions for Improvements

In each cloud service there are some aspects that can be modified in order to
make secure sharing easier. Here they are summarized.

Fig. 3. Sharing a bucket with Windows Azure

Amazon S3 and Google Storage. As explained above, when a user wants
to give the capability of read the content of the files inside a bucket, it needs to
give the read permission to each object inside that bucket. This obviously does
not scale in applications with a large number of objects. To solve this problem,
these services should provide bucket permissions that give users read access to
all objects inside that bucket. In order to prevent grantees to give others access
to files they upload, these clouds just need to use a model where the bucket
owner is the owner of all objects inside the buckets it pays for, instead of the
model where the owner of an object is the user who uploads it.

RackSpace Cloud Files and HP Public Cloud. These clouds require addi-
tional steps for defining the credentials for grantees to have access to the shared
data. These steps are needed because neither of these services allow cross-account
sharing, and could be avoided if this was supported. Specially for RackSpace
Cloud Files, a permission to grant list access to grantees should be provided.
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Windows Azure Storage. With Shared Access Signatures a malicious grantee
is always able to give others the URL allowing anyone to access the shared
resources. To solve this issue, Windows Azure just need to provide other access-
granting technique, such as ACLs, allowing users to share data between accounts.

6 Conclusion

This paper presents a study of the access control capabilities of some storage
cloud services that permit users to share data using the unmodified clouds di-
rectly and assuming a model where each user pays for the storage of the objects
he/she creates. The storage clouds studied were Amazon S3, Google Storage,
HP Public Cloud, RackSpace Cloud Files, Windows Azure Storage and Luna
Cloud.

We described the permissions provided by the services, their semantics, and
the different access-granting techniques that are used to apply these permissions
to specific users. Additionally, a set of protocols for sharing data securely in
several public storage clouds were presented. These protocols were defined by
extending an ideal set of properties required for sharing data between different
users of a cloud service.

We concluded that none of the studied cloud services offer the tools to imple-
ment an optimal solution that respect all these properties, but it is possible to
implement sharing in most of them.
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Abstract. In spite of the rapid growth of Infrastructure-as-a-Service offers, sup-
port to run data-intensive and scientific applications large-scale is still limited.
On the user side, existing features and programming models are insufficiently
developed to express an application in such way that it can benefit from an elas-
tic infrastructure that dynamically adapts to the requirements, which often leads
to unnecessary over-provisioning and extra costs. On the provider side, key per-
formance and scalability issues arise when having to deal with large groups of
tightly coupled virtualized resources needed by such applications, which is es-
pecially challenging considering the multi-tenant dimension where sharing of
physical resources introduces interference both inside and across large virtual
machine deployments. This paper contributes with a holistic vision that imagines
a tight integration between programming models, runtime middlewares and the
virtualization infrastructure in order to provide a framework that transparently
handles allocation and utilization of heterogeneous resources while dealing with
performance and elasticity issues.

Keywords: heterogeneous clouds, cloud storage, HPC, data analytics.

1 Introduction

Data analytics and data-intensive scientific applications are undoubtedly a major driving
force behind scientific advancement and business insight. Over the years, the increa-
sing complexity of such applications has led to a rapid evolution of the computational
infrastructure, to the point where massive computational facilities and data-centers are
necessary in order to satisfy the computing and data storage needs. In a ceaseless quest
for performance, a large variety of hardware devices and software stacks were develo-
ped to catch up with the increasing requirements. Unsurprisingly, such infrastructures
are prohibitively expensive to own and maintain for the vast majority of users, which
makes infrastructure clouds particularly appealing as an alternative, thanks to their pay-
as-you-go model.

However, current usage patterns of clouds are mostly concentrated on long-running
scale-out deployments that exhibit little dependencies between the virtual machines
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(VMs) or data sharing constraints: most large commercial cloud providers, such Ama-
zon AWS and Rackspace, follow a philosophy of “throwing” more VMs at an appli-
cation in order to deal with scalability issues. While this scale-out solution works for
workloads that are loosely coupled, in the context of scientific and enterprise applica-
tions, there is a need to introduce support for closer coordination between virtualized
resources in order to enable a tighter coupling in an efficient fashion.

These patterns were long ago acknowledged as difficult to deal with at large scale in
the HPC (high performance computing) community, with decades of efforts dedicated
to overcome them. In this context, the introduction of IaaS clouds as an alternative to
high-end, privately-owned infrastructure presents a new challenges that calls for disrup-
tive solutions, because the whole viewpoint needs to be changed: instead of optimizing
the application to make the best out of a fixed physical infrastructure, we need to adopt
the opposite: adapt the infrastructure to the dynamic needs of the application in order
to satisfy performance requirements while incurring minimal costs. Thus, we cannot
simply “port” techniques developed in the HPC community for IaaS clouds: novel ap-
proaches need to be developed that are designed to adopt the viewpoint from scratch.
This has consequences across the whole IaaS software stack, from low level virtualiza-
tion technologies up to the programming models exposed directly at application level.

More specifically, there are several important dimensions to this problem, related
both to functional and non-functional aspects. With respect to functional aspects, ap-
plication developers need programming models and tools to automate resource allo-
cation. This aspect is non-trivial due to increasing complexity of cloud offers, which
overwhelm not only new but also existing users: for example, if they opt to use Amazon
EBS [2], they have to choose from 36 services, 20 instance types, 6 instance families, 2
generations of instances, 3 types of billing models and 2 types of block storage options.
This level of complexity is already present for a single provider, not to mention the sce-
nario of leveraging multiple at the same time, which in addition to increased complexity,
also introduces the need to address interoperability. Furthermore, once the application
is up and running, elasticity is an issue: programming models need to expose the right
abstractions to let applications express their needs to grow and shrink dynamically in
an easy way, while hiding the complexity of resource allocation.

With respect to non-functional aspects, performance and optimal resource utilization
are key concerns. In particular, the problem of efficient resource sharing under concur-
rency to improve both performance and resource utilization is more difficult in IaaS
clouds, considering they are multi-tenant and thus susceptible to more system noise and
jitter compared to bare-bone architectures, for which this is already a problem [12].
On the other hand, the multi-tenant aspect also introduces new exploitable avenues,
since common access patterns and synergies between different users can be detected
and leveraged to improve both performance and resource utilization (e.g. data dedupli-
cation can be used to find common data between users and store only a single copy).

We argue in this paper for the need to provide a framework of tightly integrated
layers that enables seamless access to high-performance heterogeneous resources by
exposing the right programming models and abstractions at user level, while optimi-
zing the performance and cost effectiveness of the infrastructure specifically for tightly
coupled scientific and data-intensive applications running at large scale. As the target
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users of such applications are mostly domain-experts and do not necessarily have a deep
understanding of the technical details of the infrastructure, transparency is crucial: we
propose to hide the functional and non-functional challenges as much as possible from
the users, such that they can leverage simplified programming models that enable them
to focus on the domain-specific aspects without giving up on performance, while at the
same time enabling cloud providers to maximize infrastructure utilization and introduce
competitive targeted offers with reduced costs.

2 High Priority Areas of Improvement

On the road to materialize our vision, we identified several high priority areas listed
below.

2.1 Virtualization and Storage

Large scale scientific and data-intensive applications are often tightly coupled, which
introduces the need for frequent synchronization and data sharing under a high de-
gree of concurrency. Naturally, this leads to intense communications and exchanges of
data, putting a high pressure on the networking infrastructure. Network virtualization
overhead in this context was known to be a major barrier [9], however it is gradually
improving thanks to wider adoption of single root I/O virtualization [6]. On the other
hand, two major areas still remain open: scalable data storage and management, and
access to accelerators.

Scalable Data Storage and Management. In an IaaS cloud, data storage is typically
achieved by manually provisioning raw virtual disks that are then attached to running
VM instances. All details related to the management of such raw disks, including what
size or type to pick, how to use it (e.g., with what file system) and when to attach/detach
a virtual disk are the responsibility of the user, which greatly increases complexity and
leads to several issues. First, there is limited support to address sharing under concur-
rency: users have to manage sharing themselves or deploy a higher level abstraction
(e.g. parallel or distributed file system) on top of their VMs, which is a solution that
suffers from performance penalties in cloud environments. Second, there is limited po-
tential to leverage elasticity: to avoid the complexity of manually managing disks, user
often over-provision storage to cover the worst-case scenario, which leads to unnec-
essary tied-up resources that generate costs. Thus, it is important to introduce novel
storage abstractions that can handle these aspects transparently to reduce application
complexity while addressing the aforementioned issues.

Access to Accelerators. There are a few technologies to enable access to accelera-
tors within a VM (e.g. pass-through [20]). However, these often force exclusive ac-
cess to the accelerator, which negates any resource optimization opportunities due to
multi-tenancy. Although there is progress in this direction especially in the context of
GPUs [3], general purpose accelerators beyond GPUs were not explored so far from
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this perspective. Furthermore, several advanced virtualization features that are crucial
on IaaS clouds (such as live migration) are not yet supported. Besides multi-tenancy
support, elasticity is also an important issue: users cannot dynamically turn on/off ac-
celerators and easily move between general purpose CPUs and accelerators in order to
optimize utilization and reach their goals with minimal costs. Thus, it is important to
introduce novel abstractions that overcome these limitations and hide the complexity of
accelerator management and sharing from the upper layers.

2.2 Provider Heterogeneity

Cloud Service Providers (CSPs) typically have their own Application Programming
Interfaces (APIs) that allow customers to deploy and manage their cloud resources.
However, users accessing multiple CSPs face the challenge of adapting their applica-
tions to a multiplicity of cloud environments with mostly incompatible APIs. Besides
this drive, the multi-cloud migration is necessary for backup purposes when a CSP be-
comes unavailable at a certain point [24]. Moreover, the financial argument is another
motivation for approaching the portability challenge as it enables seamless switching
between CSPs when economic factors change [10]. Further reasons for using multiple
Clouds have been identified in [21].

The Open Cloud Computing Interface (OCCI) [8] initiative aims to circumvent the
vendor locks-in problem by engaging with a several initiatives such as SLA@SOI [7]
and OpenNebula/OpenStack. The OCCI aims to standardize the RESTful APIs for task
management. The standardization was started for the IaaS and now is extensible for
SaaS and PaaS. However, OCCI fails to exhibit common platform for vendor APIs to
define VM and their operations [14].

The application requirements are currently only partially taken into account in the
application deployment and execution phases. By combining the benefits of SLA@SOI
[7] and RESERVOIR [23], Metsch et. al. [13] have delivered a framework working with
OCCI and providing a proof-of-concept of inter-operation between clouds. For scalable
provisioning of resources and services, Buyya et. al. [5] have proposed an architecture
for federated cloud environments. Similarly, the Contrail project used a Virtual Execu-
tion Platform (VEP) [11] to provide the virtual distribution of the resources and deploy
the users applications independently. Enhanced with a proprietary Cloud broker, the
mOSAIC project [22] provided an open-source deployable platform as a service that
allows code portability between major IaaS providers.

However, the above mentioned approaches do not necessarily take into account the
structure of a given application when elastically expanding and contracting resources in
a widely distributed environment with heterogeneous resources. Thus, there is a need to
automate elasticity across cloud providers given specific application requirements and
fine resource granularity that goes beyond VMs.

2.3 Automation

Automation is a current challenge which requires to be adopted across cloud comput-
ing services, in order to increase efficiency and to facilitate the interaction of users
with cloud services. An automation tool should arguably provide full automation with
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little or no human interaction. Automation solutions such as Chef, Puppet Labs, and
CFEngine are currently tested. The Chef configuration management system can be used
in order to automate the installation and configuration of the applications. If the OVF
format is used, the flexibility is therefore increased and the creation of a specific Chef
recipes is not required for each cloud middleware [4].

There are a number of proprietary and open-source commercial tools such as Right-
Scale, Amazon’s CloudFormation and AutoScaling, SlipStream, Dell Cloud Manager,
and Scalr which automate the access, deployment, and/or management of resources.
Several research initiatives have been also recently initiated. PANACEA (www.pana-
cea-cloud.eu) is currently developing solutions for a proactive autonomic management
of cloud resources, based on a set of machine learning techniques and virtualization.
CELAR (www.celarcloud.eu) intends to provides automatic resource allocation for ap-
plications that activates a right amount of resources based on application demands.

However, the work is still incomplete. Additional features should be made available
to the current tools such as: automated configuration and deployment of applications,
automated user management, auto-scaling, automated recovery, automated backup, or
automated governance.

2.4 Ubiquitous Access

The design of a well-structured and optimized access layer is mandatory for a cloud
computing platform focused on high demanding data analytics applications. An access
layer should be responsible for making the applications available from a wide variety of
devices including smart-phones, tablets or workstations, as well as available from the
main operative systems. It must not only collect the data needed for the computation
(even if the data is stored externally), but also prepare the acquired data and to send it
to the computational platform in order to be processed. The way the access layer has
to communicate with external data sources depends largely on the data analytics appli-
cation. In case of the application described in Section 3, the images are collected from
healthcare information systems; to do so, clinical information guidelines developed by
Integrating the Healthcare Enterprise need to be followed.

Interoperability becomes an important issue when mobile users need to interact and
communicate with the cloud. The current interface between mobile users and cloud are
mostly based on the web interfaces. The rapid advances in HTML5 have resulted in a
much more mobile friendly version of the best-known Web language, which has paved
the way for web applications to work on any HTML5-compliant web browser.

Finally, in order to define and implement all the required functionalities of the ac-
cess layer, a standard language could be used to describe a topology of cloud based web
services, their components, relationships, and the processes that manage them. Nowa-
days one of the most used solutions is the Amazon AWS CloudFormation Template
[1], a JSON data standard that allow cloud application administrators to define a col-
lection of related AWS resources. However, platforms such OpenStack that includes
Heat orchestrator are migrating from the AWS proprietary solution to a neutral, native
Heat Template format/DSL. The Topology and Orchestration Specification for Cloud
Applications (TOSCA [19]) is an emerging standard language that includes specifica-
tions to describe processes that create or modify web services. TOSCA is expected to
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interoperate with the upcoming Heat Native DSL. An access layer can use a generic
definition of the services architecture based on standard languages such as the TOSCA.
This allows the adaptability of the access layer capabilities to fit the requirements of
future applications. Moreover, such an approach will allow the reusability of common
web services facilitating the easy deployment of new applications.

3 Case Study: Multi-biomarker Profile Imaging

In what follows we describe an case study and in the next section we reveal how an
advance of the state-of-the-art is possible.

Problem Description. The next generation of medical imaging will provide patient-
specific images relative to the biological-processes underlying the tissues as a non-
invasive tool for the diagnosis, prognosis, treatment and follow-up of complex diseases,
such as cancer and neurological disorders. The current medical imaging techniques
enhance anatomical and functional aspects of the human body in three-dimensional
spaces. Nevertheless, the characterization of the underlying biological processes at
voxel level requires the combination of complementary biomarker images that enhance
different characteristics from the tissues. The typical input of these studies is a 5-
dimensional structure for each patient where each voxel has a set of biomarkers’ val-
ues positioned in a 3D space at a specific moment of a time series. The calculation of
multi-biomarker profile images is therefore computational and space-demanding, as it
involves several phases over a stack of images from different acquisitions and protocols
of the same patient or even of several patients. Each case typically takes more than 900
minutes on a state-of-the-art workstation.

The computation of the multi-biomarker profile images can be divided in five se-
quential phases: pre-processing, quantification, feature extraction, feature reduction and
classification. The pre-processing phase is composed by seven steps that may be applied
to each independent image of the study: denoising, inhomogeneity correction, super-
resolution, registration, skull strepping and intensity range normalization. This phase
can arguably be done concurrently for each image. Next, the quantification step calcu-
lated derived biomarkers’ images relative to the underlined biological processes of the
tissues from the functional images. Those functional images are usually sequences of
images, hence, this step can be done concurrently at the acquisition level. After the pre-
processing and quantification steps, additional features are extracted from the anatomi-
cal images and biomarkers’ images. Those features, such as first-order central moments
(mean, variance, skewness, and kurtosis), increase the information extracted from the
patient. This phase can be parallelized at the image level. After the feature extraction,
the number of features for each voxel may be high (e.g. from 20 to 100). Hence, lin-
ear and non-linear reduction techniques are applied to obtain a non-redundant repre-
sentation of the data. This phase can be parallelized at patient level. Afterwards, the
supervised or non-supervised classification using structured or unstructured algorithms
receive the reduced 5D structure of data to classify each voxel into a biological-relative
label. When unsupervised methods are applied, a post-processing step may be required
to construct the final biological relative labels. This phase can be done concurrently at
patient level.
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Expected Benefits and Challenges of Moving to IaaS Clouds. As described above,
the computation involves a high degree of parallelism not only per-patient but also from
the perspective of handling multiple patients independently in parallel. Thus, moving
to a cloud infrastructure has the potential to speed up not only the number of cases that
can be handled at the same time, but also each individual case itself. However, such a
move is difficult for a domain expert that has limited knowledge about IaaS cloud infras-
tructures. Specifically, there are several difficulties: (1) how to parallelize the various
computational phases and orchestrate the I/O between them for the purpose of speeding
up individual cases; (2) how to interleave and pipeline the individual cases together in
order to process as many cases in parallel with as little computational and storage re-
sources as possible; (3) how to elastically grow and shrink the computational and stor-
age capability to match the needs of the hospital; (4) how to enforce quality-of-service
constraints and priorities (e.g. some cases have tight deadlines). Thus, it is important to
come up with a programming model and runtime that focuses on the requirements and
the description of the workflow, while hiding all details about parallelization, resource
provisioning and elasticity from the domain expert.

4 Towards an Integrated Framework

Figure 1 explains our vision in a nutshell: users write their applications using special-
ized programming models that enable simple ways to determine and attain goals on
parallelism, elasticity, task dependencies, functional requirements, and performance-
cost optimization.

Fig. 1. General schema of the proposed framework
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A specialized runtime environment is expected to interpret the user requirements
(expressed through the programming models) and automates the provisioning and or-
chestration of lower-level resources. The key here is to enable autonomic elasticity
and data sharing, potentially over multiple clouds, in order to minimize resource us-
age and cost, whilst preserving functional and non-functional constraints (e.g. perfor-
mance requirements, SLAs, security etc.). Lower-level resources are exposed by the
high performance heterogeneous cloud infrastructure (HPHCI) layer. They include data
storage and management services and accelerator-enabled computational capabilities
that are specifically designed to deliver high performance at large scale while enabling
efficient sharing and transparent elasticity. The programming model runtime and the
HPHCI layer integrate into the overall cloud ecosystem through a dedicated application
platform integration layer that is responsible to ensure inter-operability through stan-
dardized APIs, effectively enabling our approach not only to co-exist with other cloud
building blocks and tools, but also to span multiple cloud providers. Furthermore, an
additional ubiquitous access layer is responsible to provide easy access and control to
jobs to users of the software stack from a variety of devices, both static and mobile.

4.1 High Performance Heterogeneous Cloud Infrastructure

The framework intends to provide cloud infrastructure building blocks. These blocks are
specifically targeted at data analytics applications which use advanced programming
models in order to take advantage of both the cloud elasticity and the heterogeneous
hardware. In this context, we propose several approaches to handle the two directions
identified in Section 2.1.

Data Storage and Management. Build a lightweight storage layer that is centred
around the idea of “storage neighbourhoods.” Such neighbourhoods encompass groups
of VMs that share storage resources based on interest, access patterns, resilience, and
high availability requirements. The key in this context is that the VMs can help each
other out to meet these sharing requirements for tightly coupled application without
the need for a heavyweight repository that enables sharing at global level (e.g. parallel
file system) while at the same time increasing the scalability and elasticity potential
thanks to the focus on locality. Preliminary work [15,16,18,17] undertaken so far shows
interesting potential for this avenue.

Access to Accelerators. Introduce virtualization techniques that enable sharing of ac-
celerators between VMs at scale and consolidation in a multi-tenant environment. Sim-
ilar to the storage neighbourhood concept, VM can cooperate to achieve elasticity and
improve the utilization of the CPUs and accelerators by offloading work remotely or
migrate on-the-fly as a whole to different physical nodes altogether.

Starting from these two high-priority areas, building higher level data abstractions on
top of them specifically designed to enhance the potential of data-intensive applications
is essential. In this context, the idea is to enrich raw data with metadata and active
storage aspects that optimize the application and the programming model runtime with
respect to high level data processing requirements, such as graph analytics or NoSQL.
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4.2 Programming Model Runtime

A programming model is needed to enable the user to express functional and non-
functional requirements (e.g. performance requirements, SLAs, security) and the pro-
visioning and orchestration of low-level resources.

One important aspect to consider in this context is heterogeneity of multiple clouds
and how to avoid vendor lock-in. We propose to create generic deployment templates
based on different IaaS providers by deconstructing the complete description regarding
an instance running in a standardized form. Based on the OVF, such deployment tem-
plates will be based on architectural patterns and forwarded to instantiate the
pre-configured virtual machines on the specific IaaS platform. Moreover, the automated
installation of applications onto the deployment template will be executed through
open-source tools such as Chef cookbooks. Application programmers will not need
to know the specifics of different APIs of the underlying IaaS from different vendors.
New optimization mechanisms are needed to support transparent elasticity of resources
between heterogeneous cloud platforms through the programming model.

Elasticity is intended to provide targeted performance constraints and on-demand
provisioning and de-provisioning of cloud resources between heterogeneous cloud plat-
forms, driven by usage policies, availability, and costs. Consequently, the efficiency of
deployment and configuration of computationally-demanding and/or data demanding
applications across multiple cloud providers will be arguably improved by the automa-
tion framework. At current state-of-the-art, the application developers not only need to
have expertise in both areas (i.e. application domain and cloud services), but also need
to manually implement the complex workflows, a time consuming error prone process.
This will allow the realization of a seamless inter-operability in a multi-target environ-
ment, which is currently perceived as a drawback of adopting the cloud services.

4.3 Ubiquitous Access

The development and deployment of an access and visualization platform is necessary
to allow seamless access to the computational resources of the high-performance het-
erogeneous cloud infrastructure from a multiplicity of devices. We propose to focus on
three main features: (1) the cross-platform compatibility and rich interaction environ-
ment, (2) the capability of collecting and preparing the data needed for the computation,
even if the data is stored in external data sources, and (3) the capability of interchanging
heterogeneous data with the computational resources. In the development and deploy-
ment of the seamless access and visualization platform an effort will be done to enhance
the reusability of the modules and services developed.

Methodology-wise, an approach as described above is experimental in nature. It sys-
tematically leverages a set of standardized, and representative applications, in order to
study their access patterns and identify the functional and non-functional limitations and
weaknesses to formulate best practices and software products that can be confidently
used by industry practitioners and academics. Once we have obtained the desired per-
formance levels, we can build the higher level data abstractions closely aligned to the
infrastructure building blocks. Their design will be based on the results and lessons
learned from the prototyping, and will include again an iterative improvement phase to
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make sure desired performance and resource utilization levels are satisfied. Once the
higher level data abstractions are complete, they will be integrated into the program-
ming model runtime via standardized APIs and open data formats, integrated vertically
to the application which will then be ubiquitously accessible.

4.4 How the Proposed Framework Enhances the Multi-biomarker Use Case

A cloud-based service can be developed to generate multi-biomarker profile images
from the combination of a set of anatomical and functional images that can be seam-
lessly accessed and that agrees with the security constrains of medical information.
Specifically, this approach can be applied to perfusion-weighted images to segment the
tumoral, peritumoral, and edema regions of primary glioblastoma tumours in biologi-
cal signatures relative to the aggressiveness of the tumour, such as the neoangiogenesis
and microvascular proliferation. The development of this cloud computing technology
can provide support in the decision-making to clinical centres, medical image analysis
SMEs, and expert radiologists, with independence of their computational capabilities,
infrastructures, location and devices. The cloud-based system should provide access
to these services through mobile devices and low performance computers optimizing
available resources by the institutions involved in this process. The services can be used
in a flexible and scalable manner, establishing the necessary resources based on de-
mand. Several alternatives will be implemented for the computer-intensive modules to
take advantages of heterogeneous computing infrastructures, such as those composed
by CPUs and GPUs. Finally, the use of a cloud-based service allows the easy update of
the analysis algorithms and fast inclusion of new features.

5 Conclusions

In this paper we insisted on several challenges that result from the change in the way
we reason about large scale scientific and data intensive computations on IaaS clouds,
which involves adapting the infrastructure dynamically to the needs of the application
in order to satisfy performance requirements while incurring minimal costs. In this
context, automated resource allocation, interoperability, elasticity, performance and
optimal resource utilization are key goals that are difficult to achieve with existing ap-
proaches, both because of the complexity introduced by specific IaaS aspects (such as
multi-tenancy), as well as the fact that previous work was mostly designed to leverage
a fixed infrastructure.

To this end, we advocated for a new generation of data storage and management
services, accelerator-enabled computational capabilities, parallel pattern-oriented and
heterogeneity-agnostic programming models in order to achieve the aforementioned
goals in a transparent fashion, ultimately enabling users to easily adopt the advan-
tages of IaaS clouds without sacrificing performance, while at the same time enabling
cloud providers to maximize infrastructure utilization and introduce competitive tar-
geted offers with reduced costs. We suggested several high priority areas that range
from low-level virtualization and storage capabilities to high level abstractions that fa-
cilitate ubiquitous access. We believe that the key to enable such high priority areas
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to best contribute to a new disruptive approach that specifically addresses the needs of
large scale scientific and data-intensive applications on IaaS clouds in an efficient fash-
ion is an integrated co-design that guides all software layers according to the unified
goals and the feedback from domain-experts that come with real-life use cases.
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Abstract. Infrastructure cloud systems offer basic functionalities only
for managing complex virtual infrastructures. These functionalities de-
mand low-level understanding of applications and their infrastructural
needs. Recent research has identified several techniques aimed at en-
abling the semi-automated management and using applications that span
across multiple virtual machines. Even with these efforts however, a truly
flexible and end-user oriented approach is missing. This paper presents
the One Click Cloud Orchestrator that not only allows higher level of
automated infrastructure management than it was possible before, but
it also allows end-users to focus on their computational problems instead
of the complex cloud infrastructures needed for their execution. To ac-
complish these goals the paper reveals the novel building blocks of our
new orchestrator from the components closely related to infrastructure
cloud to the ways virtual infrastructures are modeled. Finally, we show
our initial evaluation and study on how the orchestrator fulfills the high
level requirements of end-users.

1 Introduction

Infrastructure as a service (IaaS) cloud systems allow automated construction
and maintenance of virtual infrastructures [2]. Such infrastructures exploit the
concept of virtualization and use virtual machines (VMs) as the smallest building
block. Thus, IaaS systems enable the creation, management and destruction of
VMs through a convenient and machine accessible API as their core functional-
ities. Their reliability and the possibility of virtually infinite sized infrastructure
of commercial IaaSs lead to their fast adoption and widespread use.

Unfortunately, even with these IaaS functionalities, setting up and using com-
plex virtual infrastructures is the privilege of a few due to several reasons: (i)
current IaaS APIs barely manage more than single VMs, but (ii) even if they do
so, they are mostly focused on network management among user controlled VMs.
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Thus, IaaS systems have severely limited applicability because they require deep
knowledge of system administration. This highlights the need for techniques ca-
pable of automating the creation and management of large-scale applications
deployed over potentially thousands of virtual machines without knowing how
particular virtual machines or their networking are set up [17].

Recent research answered these needs with the cloud orchestrator concept [3,8]
that shifts the center of attention from sole VMs to the required functionalities.
To reduce the needed networking knowledge, orchestrators also expect the de-
scription of dependencies between the different functional blocks of a large-scale
application. Although this description greatly reduces the expertise needed to
operate complex infrastructures, there are still several outstanding issues (e.g.,
VM creation conforming to required functionalities, cross VM or cross-cloud er-
ror resilience, autonomous scaling techniques that not only consider application
load but other properties – like cost, energy – as well, high level user interfaces).

In this paper, we propose a new orchestrator technique – called the One Click
Cloud Orchestrator (OCCO) – that targets these issues with novel approaches.
Our technique is based on a virtual machine management technique indepen-
dent of infrastructures. Next, OCCO encompasses several software delivery ap-
proaches from custom and on-the-fly virtual machine construction (e.g., with
Chef) to supporting user built virtual machine images that are optimized for a
particular purpose. The proposed orchestrator also incorporates a unified infras-
tructure state model (which allows the system to determine what functionalities
are missing or perform below expectations). Finally, on top of these components,
OCCO offers customizable techniques for automated infrastructure maintenance
(ranging from simple multi-VM infrastructure creation, to highly available and
scalable application management).

To reveal OCCO’s capabilities, we have investigated several academic use case
scenarios that presumably require such advanced orchestrators. We have selected
a scenario that is capable to run parametric study based scientific workflow ap-
plications in a built-to-order virtual infrastructure. Afterwards, we implemented
a prototype system to evaluate the applicability of our findings. We showed that
the prototype is capable of hiding the details of the infrastructure and can man-
age scientific workloads automatically while it also increased the productivity of
scientists with no experience in management of computing infrastructure.

The rest of the paper is organized as follows. First, in Section 2, we shortly
overview the currently available orchestrator solutions. Afterwards, Section 3
provides a discussion on the architecture devised for our One Click Cloud Or-
chestrator. Later, we reveal a prototype implementation of the new orchestra-
tor in Section 4. Then, the last section provides a conclusion with our closing
thoughts and future plans to enhance our orchestrator.

2 Related Works

One type of orchestration tools covers development and operations aspects. Such
tools, also called as configuration management tools, are aimed at automating
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development and system administration tasks such as delivery, testing and main-
tenance releases to improve reliability and security but these mechanisms can
also perform orchestration activities such as creating, deploying and managing
virtual machines. These are well known and are briefly listed here: Saltstack [15],
Puppet [14], Chef [4], Docker [7], Juju [16] and Cloudify [5]. These provide lower
level, basic functionalities in comparison to OCCO, but OCCO may include
some of them in its VM Reshaper (a Chef example is provided in Section 3.)

Beyond these general-purpose utilities there is another category of orches-
tration tools with specific aims. Liu et al. [11] propose a data-centric approach
(Data-centric Management Framework, DMF) to cloud orchestration where cloud
resources are modeled as structured data that can be queried by a declarative
language, and updated with well-defined transactional semantics. This data cen-
tric approach is further advanced by an additional Cloud Orchestration Policy
Engine (COPE) in [12]. COPE takes policy specifications (of system wide con-
straints and goals) and cloud system states and then optimizes compute, storage
and network resource allocations within the cloud such that provider operational
objectives and customer SLAs can be better met. In contrast to OCCO, this so-
lution is focused on global policies and system-wide optimisation. In other words,
it is data-center oriented as opposed to the application centered OCCO.

Dynamic orchestration obviously appear in mobile and volatile environments.
Orchestrator [9] is aimed at sensor-rich mobile platforms where it enables multi-
ple, context aware applications that simultaneously run and share highly scarce
and dynamic resources. Applications submit high-level context specifications and
comply with Orchestrator’s resource allocation. Resource selection and binding
is postponed until resources’ availability is sufficiently explored. The major in-
novation of Orchestrator, the notion of active resource use orchestration, is ex-
plored in [10]. Where resource needs are decoupled from the actual binding to
physical resources and can be changed dynamically at runtime. Opposed to pas-
sive resource use orchestration, where the resource needs are programmed in the
application, this approach provides adaptivity via demand based, selective use
of alternative plans for application requests. Merwe at al. define a Cloud Con-
trol Architecture for a ubiquitous cloud computing infrastructure [6]. The Cloud
Control Architecture has a layered design where orchestration is in a separate
layer and connects the Service Abstraction (presents service logic to users) and
Intelligence (gathers information about the cloud infrastructure) and derives ab-
stract knowledge. The Orchestration layer collects both the requests from Service
Abstraction and actual data from Intelligence and makes decision about initial
placements, resource allocation, resource adjustment and movement of resources.
In all these approaches the key idea is to provide fair resource provisioning in a
limited and competitive environment, which is not the case for OCCO.

Lorincz et al. present a very different way or resource orchestration in Pixie:
resource tickets [13]. A ticket is an abstraction for a certain part (capacity) of a
resource and all orchestration actions are mediated via the tickets. Tickets are
generated by resource allocators and managed by resource brokers. A ticket pro-
vides information about the resource, the allocated capacity and the timeframe.
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Fig. 1. Internal behavior of OCCO

Resources can be manipulated by operations on tickets such as join (increasing
resource capacity), split (sharing), revoke or redeem (collecting specific tickets
for a certain operation) just to mention a few. This approach also decouples
actual resources from resource requests and gives a great flexibility in planning,
advance requests and adaptation. The ticketing scheme provides a logic control
of resource orchestration. Due to the entirely different approach, such global
coordination is not applicable in OCCO.

3 Architecture

3.1 The View of an Infrastructure Maintainer

This sub-section reveals the internal components of our architecture and how
these components interact to automatically operate a virtual infrastructure de-
scribed by an infrastructure maintainer. In the scope of this paper, the term
infrastructure maintainer refers to those users of OCCO who have the capabili-
ties to describe a virtual infrastructure and its expected behavior. To understand
the design considerations of OCCO and the required knowledge of infrastructure
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maintainers, Figure 1 shows the main components of our proposed orchestrator.
These components are illustrated as boxes with gray boundaries in the figure.
The behavior of each component is exemplified inside the box through the oper-
ation of a simple virtual infrastructure. In the following we give an overview of
the components, then each component is going to be described in detail using
the examples shown in the component’s boxes.

OCCO has five major components: (i) Automated Infrastructure Mainte-
nance – infrastructure descriptor processing and VM management initiator;
(ii) Infrastructure Processor – internal depiction of a virtual infrastructure
(groups VMs with a shared aim); (iii) Cloud Handler – abstracts IaaS function-
ality (e.g., VM creation) for federated and interoperable use of clouds; (iv) VM
Reshaper – ensures awaited functionalities for VMs; and (v) Information Dis-
patcher – decouples the information producer and consumer roles across the
architecture. Except for Automated Infrastructure Maintenance, these compo-
nents have internal interfaces only (e.g., not even offered for an infrastructure
maintainer).

Automated Infrastructure Maintenance. This component is the only one
that sees the operated infrastructure with all of its complexity. It basically allows
two major operations: (i) submission of new virtual infrastructure requests and
(ii) destruction of already existing virtual infrastructures.

For the submission interface, OCCO expects an Infrastructure Deployment
Descriptor as an input. Defined by an infrastructure maintainer, the descrip-
tor contains vital information to construct and operate a virtual infrastructure.
First, the descriptor lists the node types needed to build a virtual infrastructure
(in Figure 1 types, such as an Apache server, are shown as capital letters in the
range of A–D). Then, it specifies the functional dependencies (that also imply
ordering) between these types of nodes (directed edges between nodes in the
figure). These dependencies allow the Automated Infrastructure Maintenance
component to determine which node types need to be instantiated first – in
cases when there is a loop in the dependency graph, the infrastructure main-
tainer should specify node types that could be deployed earlier than others.
Finally, the descriptor also includes rules for error resolution (e.g., what to do
when nodes are failing, under- or over-provisioned).

After the submission interface receives the descriptor, it is immediately com-
piled into an internal representation (in Figure 1 shown as a white graph with
annotated node types). In case of compilation failure immediate feedback is pro-
vided to the infrastructure maintainer allowing easy development and debugging
of deployment descriptors. On the other hand, successful compilation leads to
the enactment of the virtual infrastructure.

The enactor subcomponent is the fundamental component within the orches-
trator. During infrastructure construction, the enactor pushes node requests to
the Infrastructure Processor in the sequence determined by dependencies (the
figure shows this sequence as numbers in the nodes within the enactor). After
the sequence is pushed and the requested infrastructure is created, the enac-
tor continuously monitors the state of the infrastructure to detect errors and
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resolve them according to the rules specified in the descriptor. As an example,
rules could define the necessary actions – like node re-instantiation, dependency
re-evaluation – when a particular kind of node becomes inaccessible. Such error
resilience is exemplified through the node type D (in Figure 1 step 4 is a faulty
node and step 5 re-instantiates it). The rules also allow the scaling of the de-
scribed virtual infrastructure. Scaling rules define the number of necessary node
instances depending on the state of the virtual infrastructure, expressed as a
function of some properties of a node type (e.g., the CPU load of all instances
of a node) or time (e.g., on workdays we need more resources than on holidays).
Scaling is exemplified in Figure 1 with the node type C (see the multi instance
node configuration behind step 3). It is easy to conceive that such simple condi-
tion – action rules may easily lead to unstable or oscillating states. The enactor
eradicates this behavior via complex rules, i.e. ones that involve some global
parameters in their conditions such as ”stop asking for more instances unless
some time has passed since last changing the number of instances”.

The enactor maintains the virtual infrastructure completely autonomously
unless a change is needed in the Infrastructure Deployment Descriptor. In such
case, first, the infrastructure maintainer updates the descriptor, and then the
Automated Infrastructure Maintenance component compiles a new internal rep-
resentation and finally, the enactor switches to a transitional mode. In this mode,
the enactor checks the differences between the old and the new internal repre-
sentation. If it finds new error resolution rules only, then the enactor ensures the
infrastructure’s conformance with them (e.g., if a new scaling rule needs fewer
instances for the same load then the excess instances are terminated via the
Infrastructure Processor) and it returns to normal operation. If the evaluation
finds new node types and dependencies also, then the currently operated virtual
infrastructure is restructured according to the new deployment descriptor.

Finally, one can order the destruction of a virtual infrastructure. During de-
struction, the enactor pushes node destruction requests for previously created
nodes to the Infrastructure Processor. The request order is reversed compared
to node creation so every node can use its dependencies during its existence.

Infrastructure Processor. OCCO creates an abstraction for virtual infras-
tructures with this component. As discussed before, the Infrastructure Processor
receives node creation or destruction requests from the enactor. When the first
creation request is received for a virtual infrastructure, this component prepares
an administrative group for the future virtual infrastructure. Nodes of the virtual
infrastructure can share information between each other through this administra-
tive group (e.g., allowing newly created nodes to retrieve the dynamic properties
– like IP addresses – of existing ones). Depending on the underlying systems uti-
lized by the implementation these administrative groups can be mapped to lower
level concepts (e.g., if Chef is used behind the VM Reshaper component, then
administrative groups can be implemented through Chef’s environments).

Node creation requests are processed as follows. First, the processor ensures
that the VM Reshaper knows the node type that is going to be instantiated. Fol-
lowing the example above, if Chef is behind the VM Reshaper, then the processor
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checks for the presence of the type’s recipe. If the recipe is not present, then the
processor pushes the recipe of the type to the reshaper. The pushed recipe could
be retrieved either from another Chef server or from the extended node type def-
inition of the Infrastructure Deployment Descriptor. Once the reshaper knows
the node type, the Infrastructure Processor sends a contextualized VM request
to the Cloud Handler component. Within the contextualization information the
processor places a reference to the previously created administrative group and
the expected node type of the future VM. Figure 1 exemplifies processed re-
quests for creation with gray shaded circles. The example shows various stages
of a virtual infrastructure’s operation (from the initial phases on the left, to the
final developments in the right side of the Infrastructure Processor’s box). These
stages show how an infrastructure is constructed and how it is adopted to errors
and problematic situations identified by the enactor.

In contrast to node creation, node destruction requests are directly sent to the
Cloud Handler. If the last node is destructed in a virtual infrastructure then the
Infrastructure Processor also destroys its administrative group automatically.

Cloud Handler. As its basic functionality, this component provides an abstrac-
tion over IaaS functionalities and allows the creation, monitoring and destruction
of virtual machines. For these functionalities, it offers a plugin architecture that
can be implemented with several IaaS interfaces (currently we aim at support-
ing at least OCCI and EC2 interfaces). These plugins are expected to serve
all concurrently available requests as soon as they can manage. To increase the
throughput and flexibility of the deployed virtual infrastructure, the Cloud Han-
dler also offers VM scheduling across multiple clouds. If this functionality is used,
cloud selection criteria can be either specified by the infrastructure maintainer
– e.g., as a guideline – or by the user who initiated the virtual infrastructure.
The Cloud Handler always expects some selection criteria for each VM (e.g., a
static cloud mapping has to be specified in every deployment descriptor).

Our example in Figure 1 shows VM requests arriving at the handler, ordered
bottom-up (first at the bottom, last at the top, parallel requests side by side).
Cloud to VM request association is shown as arrows between requests and clouds.
At the end of arrows, little squares represent the actual VMs created in the
clouds. Each VM shows its contextualized node type with gray letters (A–D).

VM Reshaper. This component manages the deployed software and its config-
uration on the node level. This functionality is well developed and even commer-
cial tools are available to the public. Our VM Reshaper component therefore of-
fers interfaces to these widely available tools – e.g., [4, 5, 7, 14, 15]. These software
tools use their proprietary node type definitions (e.g., so called recipes in Chef
and manifests in Puppet). The VM Reshaper allows the reuse of these propri-
etary definitions for node types already described, even if stored at external – but
accessible – locations (thus, regular node type definitions are just references to
these proprietary definitions). On the other hand, new node types can be defined
in the infrastructure deployment descriptor in the extended node type definition.
The form of these definitions allows the Infrastructure Processor to select a VM
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Reshaper with matching node management tools behind (e.g., in case a recipe is
given as an extended node type definition then Chef will be the tool used). It is
expected that advanced infrastructure maintainers could create such node type
definitions for custom applications.

Returning to our example in Figure 1, node type definitions are presented as
dotted circles within the VM Reshaper. With arrows between the VMs and type
definitions, the figure also shows how VMs contact the VM Reshaper to retrieve
and apply node type definitions. These activities ensure the presence and correct
configuration of the software components needed VMs to fulfill their role.

Information Dispatcher. In order to make accurate decisions based on the
state of the ordered virtual infrastructure, our proposed architecture has a com-
mon interface to reach the diverse information sources from which the state
can be composed. In order to reduce redundancy and structural bottlenecks,
requests to our dispatcher component are directly forwarded to relevant infor-
mation sources. The minimal processing done inside the dispatcher is limited to
two activities: (i) request transformation and (ii) information aggregation. For
the first activity, the dispatcher transforms the – sometimes abstract or con-
ceptual – requests to the actual information pieces accessible from the various
components and underlying clouds of the OCCO (e.g., request for node D load
can be translated to the CPU utilization of the VM hosted in Cloud 1 or Cloud 3
in Figure 1). The second activity happens when the dispatcher receives requests
to information that is available only as a composite. In such cases, the dispatcher
forwards the request to all relevant OCCO components and if necessary to the
virtual infrastructure. Upon receiving their response, the dispatcher calculates
an aggregated value of the responses and presents this as a response to the orig-
inal request. For example, using our running example of Figure 1, a request for
node C load will be computed as an average of the CPU utilization of all VMs
hosting node type C in Cloud 2 and 3. In OCCO, generic transformation and
aggregation rules can be specified by the deployer of the Information Dispatcher
while specific rules for the particular kind of virtual infrastructure are given in
the Infrastructure Deployment Descriptor by the infrastructure maintainer.

In Figure 1, within the box of Information Dispatcher, we show by three
scenarios how querying this component can help with understanding the state
of the operating virtual infrastructure. We expect that the enactor regularly
queries the dispatcher. In the top graph within the dispatcher’s box, we see
that a query to the dispatcher is sent to check the availability of each node
in the virtual infrastructure. This query is then forwarded to all participating
virtual machines. Unfortunately, in this scenario, the dispatcher is not receiving
node D ’s response, thus it is reported unavailable (represented as striped circle
D). As this would render the virtual infrastructure unusable, the enactor will
immediately request a new node for type D through the Infrastructure Processor.
Similarly, in the middle two graphs we see requests for load of node type C. When
a single VM performs this type, the dispatcher transforms this request to CPU
load request on that VM. If the load is too high (shown with an exclamation
mark in the respective node of the figure) and it is expected that a single VM
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Fig. 2. User’s relation to OCCO

cannot handle the anticipated load, the enactor will increase the node count for
type C. This will make later requests to the dispatcher as composite. In the third
graph it is also shown that even a composite request reports unmanageably high
loads and thus the enactor will again increase the node count of type C.

3.2 The View of a Virtual Infrastructure User

After infrastructure maintainers complete an infrastructure deployment descrip-
tor, they can publish it in OCCO’s template store. The published infrastructure
templates are going to be available for regular cloud users with the need of de-
ploying complex but easily maintainable virtual infrastructures. Figure 2 reveals
the interfaces and the use case OCCO offers for these regular users.

The figure shows that regular users are expected to interface with OCCO
through a graphical user interface that allows browsing and customizing de-
ployment descriptors. This interface supports the user in the selection of the
appropriate kind of virtual infrastructure based on textual descriptions accom-
panied with templates in the store. Once a template is selected, users receive a
list of customization options that were added as hints for the GUI in the deploy-
ment descriptor by the infrastructure maintainer. These hints could range from
the supported IaaS providers to the possibility to specify an initial size of the
custom infrastructure, but hints could also include pricing and cost allowances.

When the customization is done, users can request the deployment of their
virtual infrastructure via the GUI. After the request is made, the monitoring of
the requested infrastructure is initiated at the notification service. This service
has two purposes: (i) let the user know when the requested infrastructure is com-
pletely available and (ii) monitor the changes – introduced by the infrastructure
maintainer – of the deployment template and propagate them to the Auto-
mated Infrastructure Maintenance component. The first purpose allows users to
immediately use the prepared infrastructure when it is ready. The notification
service can trigger automated actions (so the user’s application can react to
infrastructure availability immediately) or it can also send emails to interested
parties. The second purpose ensures that infrastructures are updated transpar-
ently to their latest, most secure and stable versions the particular maintainer
can produce.
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4 Evaluation

In order to test the concept of the new orchestrator, to perform analysis of
the internal operation and to provide a demonstration platform, we have imple-
mented a prototype of OCCO. It is currently limited to a single Infrastructure
Deployment Descriptor template, and it is publicly available1 for users.

The infrastructure template is aimed at providing a distributed computing in-
frastructure (DCI) with a science gateway attached as a front-end. The DCI is im-
plemented by a BOINC [1] based Desktop Grid project with a molecular docking
simulator called autodock. As an extra functionality, the BOINC project is asso-
ciated with a public IP address, therefore the user can attach his/her own BOINC
client to the server. Using automatically deployed and configured BOINC clients
in virtual machines, computational resources are automatically attached to this
BOINC project. Our descriptor template allows the customization of the number
of computational resources. Computing jobs arrive to the BOINC project as work
unitswith thehelpof theWS-PGRADE/gUSEsciencegateway(alsoautomatically
deployed as a node of the virtual infrastructure). Overall, the prototype shows how
a complete gatewayplusDCIwith resources canbe deployedbyOCCOandhowthe
components attach to each other. Detailed description of a similar infrastructure
is shown at http://doc.desktopgrid.hu/doku.php?id=scenario:unidg with
a different application.

In the prototype’s welcome- and request submission page (see Figure 3) the
user is requested to fill in the list of customization options, and he/she also must
provide some details for identification and justifying the use of the infrastructure.
After a request is submitted, the prototype first asks for approval by the SZTAKI
cloud administrators (due to local regulations) then initiates the infrastructure’s
creation with the Automated Infrastructure Maintenance component. Once the
infrastructure is created the notification service generates an email with all the
authentication and access details to the new infrastructure (e.g., url of the science
gateway and of the BOINC project plus user/password for login). With these
details, users just need to login to the gateway, submit a prepared autodock
workflowwith their inputs and inspect the operation (i.e. how the jobs are flowing
through the infrastructure and processed by the BOINC clients). To prevent
SZTAKI’s IaaS from overloading, virtual infrastructures created by OCCO have
a limited lifetime. Our notification service sends an email to the infrastrucure’s
user before the shutdown procedure is initiated.

As the aim of the prototype implementation is to demonstrate and test the
OCCO concept, we implemented the most crucial components with basic func-
tionalities only. The current Automated Infrastructure Maintenance component
provides virtual infrastructure creation and termination facilities only. The sim-
ple VM Reshaper can handle prepared VM images with pre-installed applications
and expects these applications to be configurable through IaaS contextualization
methods. Our Cloud Handler is already capable to support multiple IaaS clouds
as long as they offer EC2 interfaces.

1 http://desktopgrid.hu/oc-public

http://doc.desktopgrid.hu/doku.php?id=scenario:unidg
http://desktopgrid.hu/oc-public
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Fig. 3. Request submission page of the OCCO prototype

5 Conclusions and Future Work

Through the analysis of this paper we have found several issues with currently
existing scientific and commercial cloud orchestrators. Namely, recent solutions
lack support to functionality oriented VM creation, error resilience across VMs
or even clouds and high level user orientation with such advanced but hidden
features like automatic scaling of entire virtual infrastructures. To remedy these
issues, we have proposed the OCCO architecture that builds on the strengths
of past solutions (e.g. Chef). We have shown the behavior of OCCO from the
point of view of both a regular cloud user and also a maintainer of the virtual
infrastructure template. In the discussions we have shown the way maintainers
can describe virtual infrastructures. Finally, we have presented our initial proto-
type implementation of the architecture which already shows the high potential
of the architecture and available as a public service for the scientific community
with access to the SZTAKI cloud infrastructure.

Other than implementing a more complete and openly downloadable version
of OCCO, we also identified several future research areas. First, error resilience
and scaling are only based on simple reactive rules, in the future we plan to
incorporate proactive approaches combined with learning techniques. Next, de-
cisions on cloud use are made on a per VM request basis. However, in some cases
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(e.g. expected significant network activities between particular nodes), it would
be beneficial to make decisions considering more information about the operat-
ing virtual infrastructure. Finally, we are planning to increase the reliability and
failure handling of the internal components by introducing atomic operations
and cross-component transactions.
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Abstract. Cloud Computing has reached a maturity state and high
level of popularity that various Cloud services have become a part of our
lives. Mobile devices also benefit from Cloud services: the huge data users
produce with these devices are continuously posted to online services,
which may require the use of several Cloud providers at the same time
to efficiently store these data. Using Cloud-based storage services such
as Personal Clouds for these purposes are free for certain amount of
data; therefore uniting these separate storages can provide a suitable
solution for these user needs. In this paper we propose a novel solution
for autonomous data management among Personal Clouds. Our approach
applies a continuous monitoring component to track the performance of
the managed Cloud providers, and based on this measured historical
information it manages user data across the interconnected providers in
an autonomous way.

1 Introduction

Nowadays Cloud Computing has reached a maturity state and high level of
popularity that various Cloud services have become a part of our lives. These
services are offered at different Cloud deployment models ranging from the lowest
infrastructure level to the highest software or application level. Within Infras-
tructure as a Service (IaaS) solutions we can differentiate public, private, hybrid
and community Clouds according to recent reports of standardization bodies [8].
The previous two types may utilize more than one Cloud system, which is also
called as a Cloud federation [9]. One of the open issues of such federations is the
interoperable management of data among the participating systems. Another
popular family of Cloud services is called Cloud storage services or Personal
Clouds. With the help of such solutions, user data can be stored in a remote
location, in the Cloud, and can be accessed from anywhere. Mobile devices can
also benefit from these Cloud services: the enormous data users produce with
these devices are continuously posted to online services, which may require the
use of several Cloud providers at the same time to efficiently store and retrieve

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 50–61, 2014.
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these data. The aim of our research is to develop a solution that unites and
manages separate Personal Clouds in an autonomous way to provide a suitable
solution for these user needs.

In this paper we address the open issue of data interoperability in Clouds, and
propose a novel solution for interoperable personal data management in storage
Clouds. Our approach applies a continuous monitoring component to track the
performance of the managed Cloud providers, and based on this measured his-
torical information it manages user data across the interconnected providers in
an autonomous way. Therefore the main contributions of this paper are: (i) envi-
sioning a solution for autonomous data management among Personal Clouds, (ii)
the development of an application that is able to measure the performance of the
interconnected providers and use this information to distribute user data among
them, and (iii) the evaluation of our proposed approach with four providers.

The remainder of this paper is as follows: Section 3 presents an overview of
the addressed Cloud storage providers and introduces our motivation for this
work; Section 4 describes our approach for autonomous data management and
presents our proposed application. Finally, Section 5 discusses the performed
evaluations, and the contributions are summarized in Section 6.

2 Related Works

Regarding related works, the need for data interoperability and the extensive
use of Cloud storage services have been identified by various research and expert
groups (eg. [8,5,1]). Managing user data in the Cloud also raises privacy issues
[10,6] that need to be taken into account during data processing. Nevertheless
in this paper we refrain from legal issues and focus on interoperability problems.
Dillon et. al [2] gathered several interoperability issues that need to be considered
in Cloud research, and named a new category called Data Storage as a Service
to draw attention to the problem of data management in Clouds.

Drago et al. [3] have already analysed the usage of Dropbox on the Internet,
and showed that it is the most popular provider of Cloud-based storage services.
They presented an extensive characterization of Dropbox in terms of system
workload and typical usage scenarios. They concluded that the performance of
Dropbox is highly impacted by the distance between the clients and datacenters.
They also identified a variety of user behaviours, e.g. taking full advantage of its
functionalities by actively storing and retrieving files. In a later work [4] they
continued this investigation for comparing 5 providers. Their results showed
that all considered provider services suffer from some limitations, and in some
scenarios the upload of the same set of files can take much more time, so they
also acknowledged performance differences among these providers.

Garcia-Tinedo et al. [7] have also addressed performance issues of Personal
Clouds. They developed a tool for actively measuring three providers: Dropbox,
Box.com and SugarSync. They performed measurements for two months with
various data transfer load models to search for interdependency among data
sizes, transfer quality and speed. They published their measurement data and
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concluded that these providers have different service levels, and they often limit
the speed of downloading. This work also served as a motivation for our research,
but we decided to develop a more lightweight and easily extendible measuring
tool to support our further research goal of autonomous data sharing among
these providers.

3 An Approach for Autonomous Data Management
among Personal Clouds

Besides IaaS Cloud solutions the largest amount of user provided data are stored
at Cloud storage services also called as Personal Clouds [8,5]. Their popularity
is accounted for easy access and sharing through various interfaces and devices,
synchronization, version control and backup functionalities. The freemium na-
ture [11] of these services maintain a growing user community, and their high
number of users also implies the development of other higher level services that
make use of their cloud functionalities. To overcome the limits of freely granted
storage, users may sign up to services of different providers, and distribute their
data manually among them, which situation leads to a provider selection prob-
lem – see Figure 1. In this situation tracking the amount and location of the
already uploaded files and splitting larger files can be a difficult task for ev-
eryday users, which leads to the problem of Cloud provider selection – not to
mention their different capabilities concerning data transfer speeds. These facts
serve as a motivation for our research, and the main goal of this work is to
propose a higher level service that helps users to better manage their data by
providing automated access to a unified storage over these Clouds.

In this paper we addressed four providers, namely Dropbox [15], Google Drive
[14], SugarSync [17] and Box.com [18]. Their main properties are shown in Table
1. The foundation of Dropbox is originated in a problem we still face nowadays.

Fig. 1. Cloud provider selection problem
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Drew Houston, one of the founders of the company, kept on leaving his pen-
drive at home during attending courses at MIT. Since he used several computers
simultaneously, he had to email necessary files to stay updated at all devices,
which he got tired of soon. Hence no suitable online data sharing solution ex-
isted by that time, he invented one. In 2007 he founded Dropbox Inc, and their
service was kicked off in 2008. By 2011 it reached 14% market share by having 50
million registered users. According to the latest figures, this number exceeded
200 million in 2013 [16]. Its freemium model grants 2 GBs storage for a new
registration that can be extended up to 8 GBs by inviting others or perform-
ing certain tasks. Concerning the main properties of the service, it is written
in Python, supports version control, and applies the so called ”delta encod-
ing” technique, which only uploads the newly changed parts of a previously
uploaded file. It supports a wide range of APIs and has several SDKs, as shown
in Table 1.

Google Drive is a Personal Cloud solution of Google. It was initiated in 2012,
but it has several predecessors such as Google Docs since 2006. It also serves
as an in-house data store for several other Google services, therefore it provides
15 GBs freely for a new user. Thanks to the coupled services of Google, its web
interface is capable of previewing numerous file formats in a browser. SugarSync
was launched in 2009, but its predecessor Sharpcast Photos dates back to 2006.
It provided 5 GBs free storage for a newly registered user till December 2013,
when the owners announced to close freemium services till February 2014. Since
then its free service is only valid for 30 days trial period. Box.com was founded as
a startup company in 2005. Since 2010 it has a built-in file preview functionality.
It provides 10 GBs of free storage for a new user.

Table 1. The main properties of the managed providers

Provider
Initial Sto- Bonus Max. Sto- Supported Mobile
rage (GB) (GB) rage (GB) OS Platforms

Google Drive [14] 15 - 15 Win, Mac iOS, Android

Dropbox [15] 2 0.5 8
Win, Mac,

iOS, Android
Linux

SugarSync [17] 5 - 5 Win, Mac iOS, Android

Box.com [18] 10 - 10 Win, Mac iOS, Android

Provider
Version

Encryption
Num. of

API SDK
Control devices

Google Drive [14] + - - +
Java, Python, PHP,

.NET, Ruby

Dropbox [15] + + - +
iOS, Android, Python,
Ruby, Java, OS X

SugarSync [17] + + 1 + Java

Box.com [18] + + - +
iOS, Android, Python,
Ruby, Win, Java, C#
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4 The Proposed Solution

Now that we have stated our motivation and introduced the considered Cloud
providers in the previous section, we describe our proposed solution shown in
Figure 2.

Fig. 2. The proposed solution

Our approach is demonstrated with an application written in Java, which uses
the OAuth [12] standard to authenticate users. By using this protocol, client tools
can act on behalf of certain users to access certain files without knowing their
passwords, they use so called tokens instead with limited lifetime. Its version
2.0 is the latest since 2012. It is only a framework not a clearly defined protocol
so it can be regarded as a guideline, therefore different providers have slightly
different implementations. The application consists of three components:

– the MeasureTool component for performing monitoring processes,
– the DistributeTool component for splitting and distributing files,
– and the CollectTool component for retrieving splitted parts of a required file.

4.1 The MeasureTool Component

This component implements three basic functions: connecting to a user account
at a certain provider, uploading and downloading certain files to and from the
storage of this account. It has a plugin-based structure to separate methods for
different providers and to enable further provider support.
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A monitoring process for measuring the performance of a provider consists of
generating a file of a predefined size with randomized content, uploading this file
to the provider’s storage under a given user account, then downloading this file
back to the host of the application. The monitoring results and the measured
performance data for the mentioned providers are shown and discussed later in
Section 5.

4.2 The DistributeTool Component

The main task of this component is to apply certain policies for splitting up and
packaging files to be distributed among the participating Cloud providers in an
efficient way.

The file to be uploaded to the providers’ storages is first split to a prede-
fined number of files, what we call chunks, with equal sizes (large files are also
supported, since only parts of a file are in memory at a time using buffering).
The second step decides where to upload these file chunks. Once it has been de-
termined and a chunk is uploaded, the DistributeTool component stores chunk
identifiers (e.g. name, user token, file ID) to a local meta-data cache file. By
using this meta-data file, the CollectTool component can later fetch the required
chunk files from the different providers.

The provider selection in the second step is made upon the information gath-
ered by the MeasureTool component. Historical performance values are also
stored and taken into account, and it is the role of the application adminis-
trator to set the relevance (i.e. ratio) of historical and latest performance results
for provider selection. The measured performance values are converted to the
following format (denoting percentage shares – the sum of these values represent
100%) taking into account the aggregated historical performance values (h), the
latest performance values (l) and their ratio (r) by evaluating (h+ l ∗ r), e.g.:

{”googledrive” : 5392, ”dropbox” : 1615, ”box” : 1085, ”sugarsync” : 292 }

According to these configuration numbers, the DistributeTool component
takes the sum of these values (sum) and generates a random number inde-
pendently drawn from the range {0, sum} for each chunk by using Gaussian
distribution. The given number will determine the provider to be used for the
actual chunk (e.g. the randomly generated number 4537 denotes Google Drive,
while 7509 selects Box.com according to the example above (5392+1615+502)).
This selection criteria can be easily expanded later if needed, e.g. incorporating
the experienced number of failures during the measurements. Our further goal
is to support scenarios, where not only freemium storages are considered. In this
way provider selection could be optimized by payment minimization.

4.3 The CollectTool Component

As mentioned in the previous subsection, this component is able to collect the
previously uploaded user files from the Cloud providers by using the meta-data
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description file. Once the chunks of a required file are retrieved, they are unified
with an optimized buffering technique.

5 Evaluation

We have performed our evaluations on a private IaaS Cloud based on Open-
Nebula. It has been developed by a national project called SZTAKI Cloud [13],
which was initiated in 2012 to perform research in Clouds, and to create an
institutional Cloud infrastructure for the Computer and Automation Research
Institute of the Hungarian Academy of Sciences. Since 2013 it operates in exper-
imental state, and since 2014 it is in production state available for all researchers
associated with the institute. It runs OpenNebula 4.4 with KVM, and controls
over 440 CPU cores, 1790 GBs of RAM, 66 TBs shared and 35 TBs local storage
for serving an average of 250 Virtual Machines (VM) per day for the last month.

The application consisting of the previously discussed components has been
deployed in a VM started at SZTAKI Cloud. The evaluation architecture is
depicted in Figure 3.

Fig. 3. Evaluation architecture

5.1 MeasureTool Evaluation

For users, the most important metric for measuring provider performance is the
data transfer speed. Therefore we used this metric to monitor the providers, and
to use as a base for autonomous file sharing. To perform an evaluation of the
MeasureTool component, we up- and downloaded files to each Personal Cloud
with the following data sizes: 5, 10, 50 and 100 MBs, considering the following
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scenarios: (i) transferring two 5 MBs file or a 10 MBs file, (ii) transferring five
10 MBs file or a 50 MBs file, and (iii) transferring ten 10 MBs file or a 100 MBs
file.

In this way we arrived to 6 different cases, and we could also measure data
transfer performance for handling many small and few big files. We went through
all cases systematically, and performed the same measurements several times (at
least 5 for each case). Once the limit of the freemium storage of a provider got
exceeded, we halted the measurement and deleted all files on that storage to start
following tests. We performed the same measurements on different periods of a
week, i.e. on weekdays and at weekends. For measuring failures, we omitted failed
transactions caused by server-side errors. Finally, the measured time taken to
upload and download the files incorporates the writing of the files to the storage
discs at the providers’ side (in case of Google Drive we could have omitted this
interval, if we wanted to).

In the following diagrams we show the experienced performance values and
provide a discussion on these results. Figure 4 shows detailed values concerning
average, minimal and maximal transfer speeds. From these results we can see
that Google Drive has the best performance values followed by Dropbox and
Box.com, while SugarSync has the worst values, which is further acknowledged
by detailed results shown in Figure 5.

Fig. 4. Measured speed of the utilized Cloud providers

While the difference between Google Drive and SugarSync is obvious, it is
not easy to compare Box.com and Dropbox. As this figure suggests, many small
files are better handled by Dropbox, while bigger files are transferred faster by
Box.com. It is also an interesting observation that transfer speeds are acceler-
ating for larger files. This is caused by the fact that during transferring a small
file the connection won’t ”speed-up” in time, but for bigger files it can utilize
most of the available bandwidth. As mentioned before, the evaluation has been
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Fig. 5. Speed of providers for different amount of data

performed at different days of a week, but we experienced no major differences
in these cases.

Table 2 depicts the amount of data transferred to and from the utilized
providers. Of course, the same cases have been executed for all providers, the
differences among them lies in transaction restarts caused by failures or stor-
age limit exceeding (though ”delta encoding” and similar techniques could save
some amount of data transfers). The total amount of data moved to and from
these providers for the whole evaluation was more than 100 GBs by utilizing
freemium storages. Regarding reliability of the considered Cloud services, we
also measured the number of failures experienced during up- and download-
ing the files. For Box.com we experienced a relatively high number of failures
by downloading big files resulted in abortion of the transactions. On the other
hand, SugarSync was proved to be the most reliable provider without a single
failure.

Table 2. Data movements (in MBs) by Personal Cloud providers

Provider
Num. of Num. of

Uploaded Downloaded Sum
Transactions Failures

Google Drive [14] 1072 4 12100 12090 24190

Dropbox [15] 1106 8 11800 11800 23600

SugarSync [17] 567 0 4420 4415 8835

Box.com [18] 1014 120 14520 6570 21090



Towards Autonomous Data Sharing Across Personal Clouds 59

5.2 Data Distribution Evaluation

Based on the results of the evaluation of the MeasureTool component, our initial
hypothesis that service quality levels differ for various Cloud providers has been
proven. Now we continue with the evaluation of our proposed autonomous file
distribution solution.

In Section 4 we have introduced how the DistributeTool component works for
a sample configuration based on aggregated historical performance values, latest
performance values and their predefined ratio. In this subsection we evaluate
the performance of our proposed application with 4 different configurations (i.e.
r = 0, 0.1, 0.5, 0.9) for user data distribution for the same set of files represented
by the 6 cases introduced in the previous section, spread over the interconnected
Personal Clouds. The computed values for these configurations are depicted in
Figure 6.

Fig. 6. Configurations for data distribution

During these measurements the DistributeTool component performed the
splitting and packaging of the user files, selecting providers for the created file
chunks based on the performance values and configurations, and uploading the
files to these providers. The retrieval of the files was performed by the CollectTool
component by using the meta-data description file created by the DistributeTool
component. The average transfer speeds during the evaluation for the considered
providers is shown in Figure 7 – which correlates to the ones gathered in the pre-
vious subsection. Furthermore we can also observe that transfer speeds achieved
by our application by utilizing all providers are faster than single utilization of
three providers (only Google Drive performs better alone).

The final evaluation results for the different configurations are shown in Figure
8. As we can see on this diagram, slight modifications on the ratio of historical
and latest performance values (e.g. changing r from 0 to 0.1) do not imply big
differences, but relying more on the latest performance values (i.e. using r = 0.5)
results in faster uploading times for the overall user data.
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Fig. 7. The measured speed of Cloud providers during the evaluation

Fig. 8. Evaluation results for the proposed application with different configurations

6 Conclusion

The enormous data users produce with mobile devices are continuously posted
to online services, may require the use of several Cloud storage providers at the
same time to efficiently store and retrieve these data. The aim of our research in
this paper was to develop a solution that unites and manages separate Personal
Clouds in an autonomous way to provide a suitable solution for these needs.
We have introduced our proposed application consisting of three components re-
sponsible for monitoring providers, managing and distributing user data to these
providers, and retrieving user files in an autonomic way. Finally we evaluated our
approach by utilizing four real Cloud providers, and concluded that our solution
is capable of managing user data in a unified storage over these providers in an
autonomous way, and still provides a good performance as well.

Our future work aims at further examining the configuration capabilities of
our proposed application, and extending it with other service quality metrics, and
investigating replication mechanism to eliminate dependability, and incorporate
additional provider plugins to widen provider support.
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Abstract. By the rapid growth of computer systems, many IT applica-
tions that rely on cloud computing have appeared; one of these systems
is the data retrieval systems, which need to satisfy various requirements
such as the privacy of the data in the cloud. There are many proposed
Privacy-Preserving search (PPS) techniques that uses homomorphic en-
cryption to process the data after encryption, but these techniques did
not take into account the possibility of repetition of some values of
the features table (especially zero), even after the encryption, which
makes them vulnerable to frequency attacks. On the other hand, the
non-inclusion of these values may lead to the ability to infer some statis-
tical information about the data. In this paper, we took the advantages
of homomorphic encryption to encrypt the data as well as preventing
any ability to infer any kind of information about the data by normal-
izing the histogram of the features table while maintaining the quality
of the retrieval. The results showed that the proposed technique gave
better retrieval efficiency than the previously proposed techniques while
preventing frequency attacks.

Keywords: data clouds, security, homomorphic encryption, normaliza-
tion, frequency attacks, data retrieval.

1 Introduction

Recently, and with the quick production of the enterprise systems and the need
for competition with highly supported and resource-allocated systems, clouds
became essential in the IT industry. Cloud was defined by Buyya in [2] as a type
of parallel and distributed system consisting of a collection of interconnected
and virtualized computers that are dynamically provisioned and presented as
one or more unified computing resources based on service-level agreements es-
tablished through negotiation between the service provider and consumers. By
this way, any new or small system can has the same capabilities of the resources
(computing, storage, etc) as the enterprise systems in a cheap and scalable way,
also the enterprise systems can benefit from the clouds by increasing capacity
or adding capabilities, by pay-per-use service, according to their current needs.
Nowadays, there are many platforms for the cloud computing that are opened
for the users, such as Amazon’s EC2, IBM’s Smart Business cloud offerings, Mi-
crosoft’s Azure and Google’s AppEngine. Rad et al. surveyed many platforms

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 62–72, 2014.
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by comparing their arrangements, foundation and infrastructure services and
their main capabilities used in some leading software companies [10]. To re-
alize the cloud, many requirements should be satisfied as shown by Dikaiakos
in [4], suitable software/hardware architecture, data management, cloud inter-
operability, security, privacy, service provisioning and cloud economics are the
main requirements; these requirements can be extended into many more specific
requirements. Despite the advantages of using clouds and the ability to reduce
costs and to improve the productivity, security issues should be handled care-
fully; they may inhibit wide adoption of the cloud model [1]. Jansen and Grance
provided an overview of the security and privacy challenges pertinent to public
cloud computing, they pointed out considerations that organizations should con-
sider when they outsource their data, applications and infrastructure to a public
cloud environment [7]. According to Zhang et al. [15], the security and integrity
of the cloud images are the foundation of the overall security of the cloud. One
of the new security related research problems is the Privacy-Preserving Search
(PPS) over encrypted data. The importance of this problem comes from being
the cloud server untrusted or curious. Fig. 1 shows a simple model of data cloud
comprising of three actors: Data Owner, Cloud Server (or simply Cloud) and
Client. The Owner is the one who has a large set of data to be searched, she
encrypt the data and outsource it with the querying services to the Cloud, the
Cloud is responsible of storing and processing the data, while the Client will
query the data stored in the cloud using the trapdoors that are given by the
Owner, therefore, the following requirements need to be satisfied to achieve the
Privacy-Preserving search in such a model:

1. Neither the cloud nor the data owner is allowed to know or to be able to
deduce anything about the client’s queries.

2. The cloud should process the client’s queries.

Fig. 1. A simple Model of Data Clouds
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Gopal and Singh [5] proposed a technique for Privacy-Preserving search that uses
Gentry’s Fully Homomorphic encryption [13]. The technique uses the Homomor-
phic encryption to encrypt the number of occurrences of each keyword in the
documents (by the owner) and the query (by clients) using the same key, so, if
the cloud does not know the key, it will do calculations using the encrypted data
and query without being able to know what they mean. Cao et al. [3] proposed
a multi-keyword ranked search technique. The idea depends on encrypting these
vectors by some operations that includes adding dummy keywords, splitting of
the vectors and multiplication by the key (the key consists of one vector and
two matrices). On the other side, the client will also apply the same operations
(with some changes) on the query vector using the same key before sending it to
the cloud, which in turn processes the encrypted vectors (the query and index)
to generate the similarity vector. Li et al. [9] proposed a technique for fuzzy
keyword search over encrypted data; In this technique, the data owner builds
an index by constructing a fuzzy keyword set then computing trapdoor set with
a secret key shared between data owner and authorized users, the data owner
sends this index to the cloud. To search in the dataset, the authorized user com-
putes the trapdoor set for the query keyword using the same secret key shared
between her and the data owner then sends it to the cloud. Upon receiving the
search request, the cloud compares them with the index table and returns all
the possible encrypted file identifiers according to fuzzy keyword definition ex-
plained in their paper. For such techniques, deterministic encryption is needed
to give the right matches.

2 Problem Statement

In data mining, Term Frequency (TF) table is used to get feature vectors for the
documents (especially text documents). In this paper, we consider a dataset D
consists of N documents where D=(d1, d2, ..., dN), and the set of all the ID’s
of these documents is ID=(id1, id2, ..., idN), the total number of the unique
keywords in the entire documents is M, therefore, the set of all the unique key-
words is W=(w1, w2, ..., wM). For a TF table, the rows represents ID while the
columns representsW, so, TF=[ xn,m | 1<=n<=N and 1<=m<

=M ], the value of xn,m
represents how many times the m’th keyword is found in the n’th document. If
the value of an entity xn,m is zero, this means that the n’th document doesn’t
has the m’th keyword, also, any equal values in one column means that the cor-
responding documents has the same keyword with equal number of occurrences.
Creating TF table generates a lot of entities with zero value; to show that, stop-
words are removed from the documents of the “uw-can-data” dataset [6] using
three lists of stopwords, Table 1 shows that the ratio of the non-zero entities to
the zero entities in the TF table is 1.41%, which means large number of zeros
in the table. For retrieval efficiency, Term Frequency–Inverse Document Fre-
quency (TF-IDF) table [11] is used. Also, for security, these entities need to be
encrypted. In most efficient Privacy-Preserving Search techniques, the entities of
the comparable parts of the index need to be encrypted individually, therefore,
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Table 1. Statistics of the keywords in the “uw-can-data” dataset

The total
number of
keywords in
the documents

The total num-
ber of different
keywords in
the documents

The number of
non-zero’s in
the table

The number of
zero’s in the ta-
ble

The ratio of
the non-zero’s
to the zero’s in
the table (non-
zeros/ zero’s)

91923 21014 91923 6506473 1.413%

if the encryption has to be deterministic, the values in the TF-IDF table will be
mapped to new values in the encrypted TF-IDF table, which means a new table
with the same statistics but different values, this make the dataset vulnerable to
frequency analysis attacks, whatever the value that appears with largest number
of times in the encrypted TF-IDF table, it will be considered to represent the
zero’s in the TF table. During this paper we will call this “zero’s attack”.

2.1 Zero’s Attack

The matrix multiplication, as in Cao et al. [3] technique, may handle the zero’s
attack problem since each element in the vector will depend on the other ele-
ments in the same vector and the corresponding vector in the key matrix, so,
elements with zero or high frequently occurred values will have different values
after encryption according to the randomness of the key. But, this is not the case
with the techniques similar to Gopal et al. [5] since the entities of the features
table is encrypted using the same key. Also, for techniques similar to Li et al. [9],
where the encrypted keywords are compared to find the matches, it will need the
similar keywords before encryption keep similar after encryption which makes it
vulnerable to frequency analysis attacks. Therefore the proposed technique has
to be developed to prevent this frequency analysis attacks keeping in mind not
to affect the properties of homomorphic encryption and the retrieval efficiency.

2.2 Relations between Documents

Technique to be developed should not allow the cloud to deduce any relation
between documents from the encrypted index. Including only the keywords with
values greater than zero can also give an idea about which keywords are not
found in specific documents, which can be considered as threat as in [9] where
the index consists of the unique keywords and the document ID’s for only the
documents that include each of these keywords.

2.3 Retrieval Efficiency

Data retrieval quality depends on many different factors; one of these factors is
the way of choosing feature vectors for the documents. According to [12], binary
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term vectors give lower efficiency than weighted term vectors. Note that Cao used
the binary vectors while Gopal used the weighted vectors in their techniques.

3 Suggested Technique

As mentioned before, Cao et al. [3] can hide zero’s and high frequently oc-
curred values. However, because of using the binary vectors (beside the dummy
keywords), the retrieval efficiency will be lower than weighted term vector algo-
rithms. Therefore, Gopal technique [13] has to be improved to be able to handle
the three issues mentioned in Section 2. With reference to Fig. 1, the suggested
model is working as follows:

1. Data owner creates the TF table; the keywords in this table are hashed.
2. The names of the documents and the documents themselves are encrypted

separately using symmetric or asymmetric key (Ks).
3. TF-IDF is created from the TF table.
4. TF-IDF table is normalized using the technique which will be explained later

in this section.
5. The entities of the normalized TF-IDF table are encrypted individually using

homomorphic encryption with the same key (Kh), the encrypted TF-IDF
table is the index that will be outsourced to the cloud (encrypted data &
querying services).

6. Kh and Ks are sent from the data owner to the client (the trapdoors).
7. The client applies the same operations on the query using Kh before sending

it to the cloud.
8. The cloud calculates the similarity between the query and the documents

using operations on the encrypted data without revealing them.
9. The similarity vector is sent to the client to decrypt it using Kh and find the

best matches to be retrieved.
10. The client sent the names to the cloud and the cloud sends the encrypted

file that will be decrypted by the client using the secret key Ks.

Prior to explaining the suggested normalizing technique, the need of including
zero’s as well as hiding these zero’s and highly frequented values have to be
discussed. Assume that:

1. Keyword1 found in documents 1, 3 and 8 for 5, 12 and 6 times respectively.
2. Keyword2 found in documents 1, 3 and 9 for 3, 1 and 13 times respectively.
3. Keyword3 found in documents 4, 5 and 10 for 7, 9 and 2 times respectively.

Even the keywords, document names and frequencies are encrypted; one can end
up with some deductions such as:

1. Document 1 and document 3 are related (contain two common keywords)
2. Document 8 and document 4 are not related (have no common keywords)
3. Document 1 does not contain Keyword3
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Fig. 2. Histogram for the TF-IDF table of uw-can-data dataset

Even though such a simple example, it is seen that including zeros is necessary to
prevent such deductions. Fig. 2 shows the histogram for the TF-IDF table of uw-
can-data dataset [6], someTF-IDFvalues have frequenciesmore than others,which
can be considered as indicators to them in the frequency analysis attacks even after
encryption. So, the goal is to normalize these values before encrypting them.

Consider the number of the unique values in the TF-IDF table is Q, then U=
(u1, u2, ..., uQ) where U is the set of unique values in the TF-IDF table, in this

case, the histogram will be H=(h1, h2, ..., hQ) where hq represents the number

of times that uq appeared in the TF-IDF table for 1<=q<=Q. To normalize these
values, the following steps are done:

1. Order U increasingly in V=(v1, v2, ..., vQ). Values of H will be ordered

corresponding to V in HV=(hv1, hv2, ..., hvQ).

2. For each vq ∈ V, calculate eq =(vq+1 – vq)/(hvq × k), where k is scaling
factor that determines the size of difference between the original value and
the normalized values (will be discussed later in Section 4). For eQ, minimum

eq value is taken to be its value.
3. For each vq ∈ V :

(a) Define Sq=hvq-1

(b) Generate new set vq’ = (vq’0, vq’1, ..., vq’Sq) where 0 <= s <= Sq as follows:

– For s = 0 to (Sq)

• vq’s = vq + s × eq
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(c) Replace all the entities in the TF-IDF table that have the vq value by
the elements of the vq’ randomly without repetition.

In this case all the TF-IDF values will be different. Also, even in small difference
between the values will be hidden by the encryption process. So, the final step in
creating the index for the cloud is to encrypt the entities of the normalized TF-
IDF table using Homomorphic encryption [13]; this hides the actual values, but
operations on these values are still applicable. To discuss the effect of applying
this technique on the retrieval efficiency, the retrieval efficiency of the normalized
TF-IDF table is compared with the original TF-IDF table. Average precision
value (APV) is used to calculate the retrieval efficiency of the techniques as
follows:

1. For each document dn ∈ D, calculate the precision value prn as follows:

prn =
RetrievedDocuments ∩ RelatedDocuments

RetrievedDocuments
(1)

Where the number of retrieved documents is equal to the size of the cluster
containing the document dn in the original dataset

2. Calculate the APV as follows:

APV =

∑
n
prn

NumberofDocuments
(2)

4 Simulations and Results

In order to test the suggested technique, we used three different datasets: uw-can-
data [6], mini-classicdocs [14] and mini-20newsgroups [8]. Table 2 shows some
details about these three datasets. The datasets are prepared before being used
by the following steps:

1. html documents are parsed using htmlparser-1.6 to extract the data from
them.

2. Stopwords are removed using three different lists of stopwords: Long list,
Short list and Google list.

3. Porter stemmer is used to stem the keywords.
4. The datasets are classified using k-means classification with cosine similarity

distance.

Using the normalization technique will make all the histogram values of the
normalized TF-IDF table equal one. The number of different numbers of the TF-
IDF table will be equal to: number of unique keywords × number of documents
To know the effect of normalization on the retrieval efficiency, different values of
the factor k are used. As mentioned before, the factor k determines the size of the
difference between the original value (vq) and the expanded set of values (vq’)
in the normalization process. The technique was applied on the uw-can-data,
mini-20newsgroups and mini-classicdocs datasets separately as follows:
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– For z=1 to 10000 increasing by 5:

• Calculate APVz= the APV where k=z.

• Calculate AV= Average of APVz over all z values.

Table 2. Details of the three datasets (uw-can-data, mini-20newsgroups and mini-
classicdocs) used in the evaluation of the suggested technique

Dataset Number of
Documents

Number of
Classes

Description

uw-can-data 314 10 web pages from various web
sites at the University of Wa-
terloo, and some Canadian web-
sites

mini-20newsgroups 400 20 20 Newsgroups data set is a col-
lection of approximately 20,000
newsgroup documents, parti-
tioned (nearly) evenly across 20
different newsgroups, the num-
ber of documents is minimized
to 400 documents with the same
number of classes

mini-20newsgroups 800 10 Consists of 4 different docu-
ment collections: CACM, CISI,
CRAN, and MED. the number
of documents is minimized to
800 documents clustered in 10
classes

Table 3 shows the APV ’s using the original TF-IDF tables (without normaliza-
tion) for the three datasets in the first column, which is the case in Gopal et
al. [5] technique. The second column represents the APV ’s for the binary term
tables also for the three datasets, which is the case in Cao et al. [3] technique,
Finally, the third column represents the average APV ’s (AV ’s) for the normal-
ized TF-IDF tables with k = 1 to 10000 increased by 5 for the three datasets,
which is the case in the suggested technique in this paper.

5 Analysis

The effectiveness of proposed technique is discussed in this section with regard
to the results given in Section 4.
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Table 3. Comparison between normalized and unnormalized TF-IDF tables according
to AVP and AV values

Dataset APV without nor-
malization (Gopal
Technique)

APV With binary
term tables (Cao
Technique)

AV value for
the normalized
TF-IDF tables

uw-can-data 0.175935689 0.150279841 0.183681939

mini-20newsgroups 0.110836309 0.101195467 0,114799958

mini-20newsgroups 0.110236005 0.107274797 0.111710287

Table 4. Comparison between the three discussed techniques

Problem Gopal Technique Cao Technique Suggested Technique

Hiding Zero’s Doesn’t hide
Zero’s

Hides zero’s Hides zero’s

Relations Between
Documents

Can be deduced Hard to deduce Hard to deduce

Retrieval Efficiency Higher than Cao Lower than
Gopal

Higher than both

5.1 The Effects of the Used Normalization on Privacy

Using normalization gave different values with the same number of appearance
in the TF-IDF table which prevents any kind of frequency attacks (discussed
in 2.1 and 2.2 subsections). Although the difference between the values may be
small before encryption, the Homomorphic encryption will map them to different
values.

5.2 The Effects of the Normalization on Retrieval Efficiency

Results show that the retrieval efficiency does not decrease after normalization
of the TF-IDF tables. As shown in Table 3, the average of the APV ’s (AV ) after
normalization are higher than the precision values before normalization for the
three datasets.

5.3 The Effects of this Technique on the Time and Memory Costs

Time cost: The normalization technique will be done once in the setup of the
system (which is offline process), all the steps can be done using parallel proces-
sors, ordering the histogram increasingly according to the TF-IDF values is O(n
logn) for n unique keywords. Memory cost: Storing the different values after
normalization will be: (number of unique keywords × number of documents ×
size of each unit). Table 4 summarizes the comparison between the two discussed
techniques with the proposed technique with regard to the first three problems
have been introduced in Section 2.
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6 Conclusion

We started with three problems: Zero’s attack, hiding relations between doc-
uments and conserving retrieval efficiency. We proposed a technique that nor-
malizes the TF-IDF tables; this technique hides the large number of zeros (or
any highly frequented values) in the tables as well as any other relation between
documents since it keeps the zeros. The technique was applied on three different
datasets; results show that the technique improves the retrieval efficiency even
with small values. The next step is to find a technique to retrieve only the chosen
documents without giving any information about them to both the client and the
cloud, or in the case of sending the similarity vector to the client, she will not be
able to know anything about the unchosen documents, the technique should also
prevent the cloud from guessing any relation between the document lists and the
previous queries on the same dataset; this technique should integrate with the
suggested technique in this paper to satisfy the needs of a “Privacy-Preserving
Search in Data Clouds”
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O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA
2009, Part I. LNCS, vol. 5592, pp. 788–796. Springer, Heidelberg (2009)

http://pami.uwaterloo.ca/~hammouda/webdata


72 M. Dawoud and D. Turgay Altilar

11. Rajaraman, A., Ullman, J.D.: Data Mining: Mining of Massive Datasets. Cam-
bridge University Press (November 2011) Number 978-1107015357

12. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. In:
Information Processing and Management, pp. 513–523 (1988)

13. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

14. Volkan, T.: Data mining research - classic3 and classic4 datasets (January 2012),
http://www.dataminingresearch.com/index.php/

2010/09/classic3-classic4-datasets

15. Wei, J., Zhang, X., Ammons, G., Bala, V., Ning, P.: Managing security of virtual
machine images in a cloud environment. In: Proceedings of the 2009 ACM Work-
shop on Cloud Computing Security, CCSW 2009, pp. 91–96. ACM, New York
(2009)

http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets
http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets


Integrated Management of IaaS Resources

Fernando Meireles1,2 and Benedita Malheiro1,2

1 School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
2 INESC TEC, Porto, Portugal

{fmdms,mbm}@isep.ipp.pt

Abstract. This paper proposes and reports the development of an open
source solution for the integrated management of Infrastructure as a Ser-
vice (IaaS) cloud computing resources, through the use of a common API
taxonomy, to incorporate open source and proprietary platforms. This
research included two surveys on open source IaaS platforms (OpenNeb-
ula, OpenStack and CloudStack) and a proprietary platform (Parallels
Automation for Cloud Infrastructure - PACI) as well as on IaaS abstrac-
tion solutions (jClouds, Libcloud and Deltacloud), followed by a thorough
comparison to determine the best approach. The adopted implementa-
tion reuses the Apache Deltacloud open source abstraction framework,
which relies on the development of software driver modules to interface
with different IaaS platforms, and involved the development of a new
Deltacloud driver for PACI. The resulting interoperable solution success-
fully incorporates OpenNebula, OpenStack (reuses pre-existing drivers)
and PACI (includes the developed Deltacloud PACI driver) nodes and
provides a Web dashboard and a Representational State Transfer (REST)
interface library. The results of the exchanged data payload and time
response tests performed are presented and discussed. The conclusions
show that open source abstraction tools like Deltacloud allow the modu-
lar and integrated management of IaaS platforms (open source and pro-
prietary), introduce relevant time and negligible data overheads and, as
a result, can be adopted by Small and Medium-sized Enterprise (SME)
cloud providers to circumvent the vendor lock-in problem whenever ser-
vice response time is not critical.

Keywords: IaaS, Deltacloud PACI Driver, Multiple IaaS Interoperable
Management.

1 Introduction

The provisioning of the Infrastructure as a Service (IaaS) concept, initiated by
the Elastic Compute Cloud (EC2) [1] as part of Amazon Web Services (AWS)
[2], was rapidly adopted by other well-known technology enterprises with large
computing resources, that launched their own IaaS platforms. As a result, the
Research & Development (R&D) community as well as the involved enterprises
concentrated efforts on the development of new IaaS platforms. However, since
Cloud Computing was a recent concept, lacking pre-defined standards and a con-
sensual definition, the resulting platforms were highly heterogeneous in terms of
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functionalities, architecture and interface libraries. This diversity hinders the
selection of an IaaS platform and, above all, constitutes an obstacle to the in-
teroperability among cloud service providers.

To overcome this problem, this paper proposes and presents an open source
solution that promotes the interoperability and standardization between hetero-
geneous IaaS platforms. This work involved the research, proposal and devel-
opment of an interoperable open source solution with standard interfaces (both
Web and application programming interfaces) for the integrated management
of IaaS cloud computing resources based on new as well as existing abstraction
libraries or frameworks. The research consisted of two surveys covering exist-
ing open source and a proprietary IaaS platforms as well as open source IaaS
abstraction solutions.

The approach proposed and adopted, which was supported on the conclu-
sions of the carried surveys, reuses an existing open source abstraction solution
- the Apache Deltacloud framework [3]. Deltacloud relies on the development
of software driver modules to interface with different IaaS platforms, officially
provides and supports drivers to sixteen IaaS platform, including OpenNebula
and OpenStack, and allows the development of new provider drivers. The lat-
ter functionality was used to develop a new Deltacloud driver for PACI. Fur-
thermore, Deltacloud provides a Web dashboard and REpresentational State
Transfer (REST) API interfaces. To evaluate the adopted solution, a test bed
integrating OpenNebula, OpenStack and PACI nodes was assembled, deployed
and the time response and data payload via the Deltacloud framework and via
direct IaaS platform API calls was measured. The Deltacloud framework behaved
as expected, i.e., introduced additional delays, but no substantial overheads. The
Web and the REST interfaces produced identical results.

The developed interoperable solution for the seamless integration and provi-
sion of IaaS resources from PACI, OpenNebula and OpenStack IaaS platforms
fulfils the specified requirements, i.e., enables IaaS cloud providers to expand
the range of adopted IaaS platforms and offers a Web dashboard and REST API
for integrated management. The contributions of this work include the surveys
and comparisons made, the selection of the abstraction framework and, last, but
not the least, the PACI driver developed.

2 IaaS Platforms

The IaaS platforms surveyed include the OpenNebula [4], OpenStack [5] and
CloudStack [6] open source frameworks and the PACI [7] proprietary solution.

OpenNebula is the only European IaaS platform studied. This platform man-
ages virtual resources from public and hybrid clouds. It presents a layered
architecture, which enables the centralised management of data-centres, and
provides a detailed level of customization. At the top of the stack, it exposes
multiple API to communicate with AWS EC2 [1] and the OpenGrid Forum
(OGF) Open Cloud Computing Interface (OCCI) solutions [8][9].
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OpenStack is a highly dynamic platform, presenting several new functionali-
ties with each software release. However, it is fragmented into multiple soft-
ware modules (OpenStack projects) with dedicated interface libraries [10].
This fragmentation hardens the installation process, the management of the
platform and increases the complexity of the system. On the other hand, it
interacts with several third-party applications, uses RESTful interfaces and
offers OCCI [11], AWS EC2 [1] and S3 [12] interface libraries.

Apache CloudStack uses a modular architecture for the automation and cen-
tralised management of data-centres, which is organized in zones, pods and
clusters. It uses a Query API as well as an API translator so that applications
written for CloudStack can also run in AWS EC2 [1]. Although the studied
version of CloudStack (4.2.1) does not provide official OCCI support, it is
available via a third-party contribution [13].

PACI includes various proprietary products to enable the creation, manage-
ment, monitoring and billing of public or hybrid (if the PACI platform is used)
IaaS platforms. It exposes an open interface (RESTful API) to enable the
development of third-party applications for the interaction with the system.
However, PACI is a platform without software modules to support directly
the interaction with other IaaS platforms. This behaviour is common among
proprietary solutions in order to generate the user lock-in phenomenon.

Table 1 compares the authentication, hypervisors, management, interfaces,
network, storage and governance features of the studied IaaS platforms. The
main differences among the open source IaaS platforms are related to the archi-
tecture, interface libraries and governance models. This diversity is caused by

Table 1. IaaS platforms comparison

Features OpenNebula OpenStack CloudStack PACI

Author./Authen.

Password,
SSH RSA
keypair,
X509, LDAP

In-memory
Key-Value Store,
PAM, LDAP,
X509

Password, LDAP,
SSH RSA keypair

Password,
LDAP

Hypervisors
XEN, KVM,
VMware vSphere

KVM, LXC, UML,
VMWare vSphere,
Xen, PowerVM,
Hyper-V

VMware vSphere,
KVM, Citrix Xen

Parallels
hypervisor,
KVM

Management Centralized Scattered Centralized Centralized

Interfaces
XML-RPC API;
AWS EC2,
OCCI, OCA

RESTful API;
AWS EC2, S3,
EBS and OCCI

Query API;
AWS EC2,
OCCI,
Plug-in API

RESTful API

Network
Virtual router,
Contextualization

Nova-network,
Newtron

Virtual router POA

Storage Volume Storage

Volume and
Object storage
(Glance, Swift,
Cinder)

Volume Storage System DB

Governance Model
Benevolent
Dictator

Foundation
Technical
Meritocracy

Proprietary
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the absence of well defined architectural standards for the commoditization of
IaaS systems. Every IaaS platform tends to provide distinct functionalities and
be compatible with specific third-party services in order to monopolize the mar-
ket and impose its technologies as standards. OpenStack is a good example of an
IaaS platform that tries to monopolize the market. On the other hand, the pro-
prietary IaaS platform PACI has a limited set of features and no interoperable
mechanisms to interact with other platforms, which may purposely lead to a ven-
dor lock-in problem. There are also significant differences regarding the type and
number of interfaces, the level of customization, the organization of the groups
of operations as well as the structure of the request and response messages pro-
vided by the four IaaS platform interface libraries. OpenStack and PACI rely on
RESTful interfaces, while OpenNebula and CloudStack use natively XML-RPC
and Query (RESTlike) interfaces, respectively.

3 Abstraction Solutions

Interface abstraction libraries provide a collection of implementations for the
development of middleware systems that abstract the peculiarities of the under-
lying IaaS platform and offer a standard and unique API for the management of
multiple IaaS clouds. Deltacloud [3], jClouds [14] and Libcloud [15] are examples
of existing cloud abstraction solutions.

Deltacloud is an open source framework from the Apache Software Foun-
dation [16] that aims to abstract differences between IaaS cloud platform
interface libraries. It is written in Ruby and contains a Web dashboard, a
group of IaaS provider drivers [17] (including OpenNebula and OpenStack)
and multiple API – the Deltacloud RESTful API, the Distributed Manage-
ment Task Force (DMTF) open standard Cloud Infrastructure Management
Interface (CIMI) REST API [18] and the AWS (EC2 [1] and S3 [12]) API.
Each driver exposes the list of implemented Ruby collections. These collec-
tions describe the abstractions offered by the Deltacloud API [19] and each
collection represents an entity in the back-end provider node.

Apache jClouds and Libcloud are open source libraries, developed by Apache
Software Foundation [16] in Java and Python, that abstract the differences
among multiple cloud provider interface libraries. jClouds offers both portable
abstractions and cloud-specific features, which enable the management of
buckets (BlobStore) and compute operations (ComputeService), and has a
list of compatible cloud providers and IaaS platforms, including OpenStack
and CloudStack [20]. The Libcloud library supports an extensive group of
IaaS platforms [21], including OpenNebula, CloudStack and OpenStack and
allows users to manage compute, storage and network cloud resources.

Deltacloud, jClouds and Libcloud are among the most representative cloud
IaaS abstraction solutions and are used in several R&D cloud interoperability
related projects, e.g., Aeolus and mOSAIC [22][23]. Deltacloud, which provides
by default three different service API (native RESTful Deltacloud, CIMI and
AWS EC2 API), is a framework that includes a Ruby client, a Web dashboard
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and a driver development environment to support the integration of further
IaaS platforms. jClouds and Libcloud are standard programming libraries and,
unlike Deltacloud, do not integrate additional development tools. In terms of
IaaS platform support, Libcloud provides official integration with the studied
open source IaaS platforms (OpenNebula, OpenStack and CloudStack), jClouds
supports CloudStack and OpenStack while Deltacloud supports OpenNebula and
OpenStack. None of these abstraction solutions provides support for PACI. Table
2 presents the comparison between these open source abstraction solutions.

Table 2. Open-source abstraction solutions comparison

Features Deltacloud jClouds Libcloud

Type Framework Library Lybrary
Programming language Ruby Java Python
Supported providers 17 cloud providers 30 cloud providers 38 cloud providers

Supported operations
Compute, Storage,
Network

Compute, Storage
Compute, Storage,
Network

Platform integration Drivers
Maven
dependencies

Drivers

API REST, CIMI, AWS

Other interfaces
Web dashboard,
Ruby client

Although Libcloud provides official support for the analysed open source IaaS
platforms, there are also third-party drivers that integrate CloudStack with
Deltacloud [24]. Thus, the Deltacloud abstraction framework was adopted be-
cause it provides additional development tools and Web services (e.g., the Ruby
Command Line Interface and Web Dashboard), exposes broadly used interface
libraries (CIMI and AWS EC2) and provides documentation for the development
of Deltacloud drivers to integrate new IaaS platforms that can be used for the
development of the PACI driver.

4 Interoperable Service Proposal and Development

The Interoperable Service uses the Deltacloud abstraction framework as a mid-
dleware between cloud users and IaaS platforms, permitting the management
of multiple IaaS platforms via a single service. The architecture of this Inter-
operable Service is composed by the back-end driver modules (OpenNebula,
OpenStack, CloudStack and PACI driver), the software daemon deltacloudd

and the Graphical User Interface (GUI) and API services. Figure 1 illustrates
the architecture of the Interoperable Service.

The back-enddrivermodules, composed of theOpenNebula,OpenStack,Cloud-
Stack and PACI drivers, are integrated and developed to enable the abstraction
and interaction with the respective back-end IaaS platforms. These drivers de-
fine, through method instantiation and implementation, the Deltacloud opera-
tions that the IaaS platform provides. The software daemon deltacloudd is in-
cluded in the deltacloud-core component and is responsible for the start-up and de-
ployment of the front-end interface services (the GUI and API services). The GUI
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Fig. 1. Interoperable Service architecture

service presents a simple Web dashboard containing the driver implemented col-
lections and operations. The API service has a RESTful implementation that uses
the Deltacloud defined collections and operations to expose the cloud resources of
the IaaS platforms [19].

Depending on the configuration of the Deltacloud daemon, two different de-
ployments modes can be adopted: (i) the single tenant configuration where a
single Deltacloud daemon loads a pre-defined YAML file containing the creden-
tials and the cloud provider URL endpoint for each driver module; and (ii) the
multiple tenant configuration where multiple server instances, containing each
the GUI and API services, are defined by individual back-end driver modules,
i.e., each Deltacloud server instance contains a specific driver, port and cloud
provider endpoint URL to access the respective back-end IaaS platform.

5 Tests and Results

In order to test the developed Interoperable Service, a test bed containing Open-
Nebula, OpenStack, CloudStack nodes and Internet access to a PACI cloud
provider was assembled – Figure 2. This test bed is not intended to test the
individual properties and capabilities of each IaaS system.

The OpenNebula, OpenStack, CloudStack and PACI driver modules were
tested and evaluated in terms of functionality and interoperability performance
using this test bed. The experiments compared the Deltacloud API calls with
the direct IaaS platform API calls in terms of response time per operation (i.e.,
the total amount of time required to perform a HTTP request and obtain the
response) as well as the HTTP request packet length and HTTP response content
length. The execution of the API operations (via the Deltacloud API and via
the IaaS platform API) and the measurement of the corresponding response time
was performed with the cURL command line tool [25]. The HTTP request packet
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Fig. 2. Test bed platform

length and response payload were measured using the Wireshark software [26].
For the sake of these tests, the HTTP Secure Sockets Layer (SSL) encryption
security procedure was purposely discarded.

Problems were detected with the OpenNebula, OpenStack and CloudStack
drivers. The OpenNebula driver supplied with the Deltacloud framework had
two minor bugs related with an id argument mismatch in the destroy_image

method (included in the opennebula_driver.rb file) and the instantiation of
an unused xmlfile argument in the delete method of the occi_client.rb file.
Both problems were corrected and reported. The OpenStack driver, although
fully functional, lacked the start and stop VM operations in the OpenStack
rubygem. Moreover, the delete_instance method was defined as an alias of
the stop_instance method, causing the destruction of the VM whenever the
Stop Instance operation is invoked. The third party CloudStack driver, added
to Deltacloud in order to integrate the CloudStack IaaS platform, did not work.
From the analysis of the driver implementation, it was possible to conclude that
the driver is incomplete and, thus, non functional.

The results obtained for OpenNebula are presented in Table 3. The interaction
via the Deltacloud API, which relies on the OpenNebula driver module, increases
the operation response time, particularly in the listing operations, e.g., the List
Instances, List Images and List Hardware Profiles operations. It is also possible
to observe that the Delete Image and Create Instance operations have almost
the same average response time.

The HTTP request packet length and returned payload per operation reinforce
the interpretation of the response time results from Table 3. The HTTP request
packets length of the OpenNebula OCCI API operations are slightly bigger than
the ones of the Deltacloud API operations. This can be observed mainly in the
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Table 3. OpenNebula results

Time Response (s) Data (B)

OCCI API Deltacloud API OCCI API Deltacloud API
Request Response Request Response

List Collections 0.010 0.030 174 348 172 654
List Instances 0.130 0.582 194 6585 181 7376
Show Instance Information 0.089 0.150 183 1219 183 729
Create Instance 0.462 0.482 515 591 298 592
Stop Instance 0.295 0.426 349 1218 189 907
Start Instance 0.203 0.396 348 1219 190 639
Reboot Instance 0.194 0.359 348 1218 191 907
Delete Instance 0.323 0.361 187 0 187 0
List Images 0.105 0.529 194 2828 178 10 966
Show Image Information 0.071 0.133 183 287 180 1101
Delete Image 0.220 0.234 187 0 184 0
List Hardware Profiles 0.012 0.067 200 720 189 1232

Create Instance, Stop Instance, Start Instance and Reboot Instance operations.
On the other hand, the length of the HTTP response payload varies and is bigger
for the responses of Deltacloud API List Collections, List Instances, List Images,
Show Image Information and List Hardware Profiles operations (being the List
Instances and List Images the responses containing the larger values), identical
in the Create Instance operation and larger for the responses of the OpenNebula
OCCI API Show Instance, Stop Instance, Start Instance and Reboot Instance
operations. In the case of the Delete Instance and Delete Image operations, the
returned payload length is nil since they are silent.

The OpenStack response time as well as the HTTP request packet length
and returned payload (using the Deltacloud API and the OpenStack services
API) are presented in the Table 4. Since the authentication request is performed
in each Deltacloud API operation when using the OpenStack driver, the aver-
age HTTP authentication request response time was added to the average of
the OpenStack services (Nova and Glance) API operations time response. As
expected, the response time of the Deltacloud API operations is significantly
higher than the response time of the OpenStack services API (Keystone, Nova

Table 4. OpenStack results

Time Response (s) Data (B)

OpenStack API Deltacloud API OpenStack API Deltacloud API
Request Response Request Response

List Instances 0.131 1.196 2605 16 522 157 13 608
Show Instance Information 0.064 0.387 2635 2371 194 1346
Create Instance 0.380 0.848 2748 665 290 931
Reboot Instance 0.198 1.025 2721 0 202 1346
Delete Instance 0.244 0.947 2670 0 200 1346
List Images 0.095 0.508 2604 7050 154 16 547
Show Image Information 0.070 0.445 2634 967 191 1378
Delete Image 0.194 0.412 2669 0 194 0
List Hardware Profiles 0.024 0.216 2598 1356 165 2177
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and Glance) operations. This occurs for all listed operations except for the Delete
Image and List Hardware Profiles operations. In fact, the average response time
of operations like the List Instances, Create Instance and Reboot Instance Delta-
cloud API operations reached values higher than the operations performed via
the Deltacloud API using the OpenNebula driver.

The authentication procedure (authentication token) used by OpenStack is
reflected in the values of the HTTP request packet length of the OpenStack API
operations, which is substantially bigger than the values of the corresponding
Deltacloud API operations. On the other hand, the HTTP response payload
varies. The OpenStack API List Instance and Show Instance Information opera-
tions return bigger payloads than the corresponding Deltacloud API operations,
the Delete Image operation returns the same payload in both cases (a void
HTTP response body) and the remaining operations return a smaller payload
than the Deltacloud API counterparts. The Reboot Instance and Delete Instance
operations are silent. Usually, the HTTP response of the Delete Instance opera-
tion defined by the Deltacloud API is also silent. However, since the OpenStack
driver defined the stop_instancemethod as an alias of the destroy_instance

method, the pause of an OpenStack instance with the Deltacloud API deletes
the instance. In fact, it sends the Delete Instance operation, but returns the Stop
Instance operation result.

Contrary to the open source IaaS platforms (OpenNebula, OpenStack and
CloudStack), which were in the same test network as the laptop used to perform
the tests, the PACI IaaS platform was in an external network. This way, the
latency of the network was taken in consideration in the results presented in
Table 5. The analysis of the results shows that, despite the registered latency,
the time response values of the PACI API operations are lower than the values
registered for the OpenNebula OCCI API and OpenStack API operations, with
the exception of the List Images operation. Although, the List Image operation
lists 103 Images in comparison with the 10 images that were listed by the same

Table 5. PACI results

Time Response (s) Data (B)

PACI API Deltacloud API PACI API Deltacloud API
Request Response Request Response

List Instances 0.032 1.385 180 726 177 10 276
Show Instance Information 0.033 0.124 188 938 185 1128
Create Instance 0.374 0.647 675 165 343 932
Stop Instance 0.078 0.278 193 17 191 939
Start Instance 0.064 0.280 194 18 192 1126
Delete Instance 0.078 0.186 191 19 188 0
List Images 0.655 3.235 186 46 029 174 153 680
Show Image Information 0.042 0.094 206 449 194 1508
List Load Balancers 0.035 2.483 191 818 182 9592
Show Load Balancer Information 0.033 1.717 195 1063 186 947
Create Load Balancer 0.393 0.520 203 167 355 610
Delete Load Balancer 0.075 0.081 198 21 189 0
Associate Instance with LB 0.076 0.463 204 131 284 947
Dissociate Instance from LB 0.081 0.286 206 28 286 610
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operations of the OpenNebula OCCI API and OpenStack API. In comparison,
the results of the interaction with the Deltacloud API, using the PACI driver,
show a significantly response time increase, mainly with the List Instances, List
Images, List Load Balancers and Show Load Balancers Information operations.
The List Images operation presents the highest time response value, since the
driver has to process the information of 103 returned images. On the other hand,
the response time results for the remaining operations is justified by the need to
perform additional calls to the back-end PACI API and to process the returned
information. The refinement of this methodology may improve the measured
response time. Other Deltacloud API operations, e.g., Show Instance Informa-
tion, Stop Instance, Start Instance, Delete Instance and Show Image Information
present lower response time than the corresponding operations via the OpenNeb-
ula and OpenStack drivers.

The length of the HTTP request packets is larger for the PACI API operations
with the exception of the Create Load Balancer, Associate Load Balancer and
Dissociate Load Balancer operations. These Deltacloud API operations require
more parameters than the corresponding PACI API operations. The Deltacloud
API operations return a larger payload than the direct API calls with the excep-
tion of the Show Load Balancer Information, Delete Instance and Delete Load
Balancer operations. In the case of the last two operations, the Deltacloud API
does not send a HTTP response body.

6 Conclusions

In order to propose and develop an interoperable service for the integrated man-
agement of cloud resources provisioned by different IaaS platforms, a survey was
conducted to compare the features of the most popular open source IaaS plat-
forms - OpenNebula, OpenStack and CloudStack - and of a proprietary IaaS
platform - PACI. This survey concluded that, although the open-source IaaS
platforms expose similar functionalities, the architecture, interface library oper-
ations and governancemodels are significantly different. The proprietary solution
does not support directly the interaction with other IaaS platforms and origi-
nates, on purpose, the vendor lock-in problem to monetize new products and
paid support services. Additionally, the proprietary IaaS platform has a smaller
group of functionalities in comparison with the open source IaaS platforms stud-
ied. Regarding the interface libraries, the OpenNebula, OpenStack, CloudStack
and PACI client API showed significant differences in terms of type and number
of interfaces, level of customization, organization of the groups of operations and
structure of the request/response messages.

A second survey on existing IaaS abstraction solutions compared the Delta-
cloud framework and the jClouds and Libcloud libraries. The result was the
selection of the Deltacloud framework since it provides many of the desired func-
tionalities (Web dashboard, multiple API, a Ruby client application), includes
several IaaS platform driver modules and integrates new IaaS platforms through
the development of new dedicated driver modules.
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To evaluate the proposed solution, a test bed was assembled, deployed and
used to determine the time response and data payload via the Deltacloud frame-
work and via direct IaaS platform API calls. In terms of driver functionalities,
these experiments showed that the new PACI driver was fully functional, the
OpenNebula and OpenStack drivers were fully operational after minor correc-
tions and improvements and the CloudStack driver module was incomplete and
non functional. In terms of driver performance, the results showed that the use of
Deltacloud drivers to access the IaaS platform resources introduces an expected
response time delay when compared with the direct platform API calls. In the
majority of the operations, the HTTP request packet length of the Deltacloud
API was lower and the results of the HTTP response payload were substan-
tially higher in the case of the Deltacloud API listing operations. In general,
the Deltacloud abstraction framework reduces the HTTP request and response
detail to the essential information. The PACI platform, despite being located at
an external network, presented the lowest time response of the tested platforms.

The solution adopted for the integrated management and provision of IaaS
resources from PACI, OpenNebula and OpenStack IaaS platforms fulfils the
specified requirements, i.e., integrates multiple IaaS platforms and offers a Web
dashboard and a REST API for user management. The contributions of this
work include the surveys made, the selection of the abstraction framework, the
assembled test bed platform and, last, but not the least, the developed PACI
driver. Although the PACI driver performed well, it can be refined to enhance
the response time of certain operations. Future improvements to the Deltacloud
API may also enhance the performance of the included drivers. The PACI driver
was shared with the Deltacloud community and the detected OpenNebula and
OpenStack driver malfunctions were also reported.
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Abstract. The paradigm of Software as a Service (SaaS) offers an in-
teresting option to vendors of simulation software for providing their
applications to a wide circle of customers. However, this imposes a chal-
lenge to vendors whose applications exist only as classical desktop tools,
so far: Interfaces for the remote control have to be provided which are
as independent from the underlying cloud infrastructure as possible in
order to avoid vendor lock-ins. We present an interoperable platform
developed in the project Cloud4E (Trusted Cloud Computing for Engi-
neering), which allows the provisioning of existing simulation software
in form of a service in a cloud. The interoperability of the platform and
of the services is achieved by the usage of the Open Cloud Computing
Interface (OCCI) together with the Advanced Message Queuing Proto-
col (AMQP) where OCCI is not only used as interface to Infrastruc-
ture as a Service (IaaS) but also as interface to SaaS. Hence, the OCCI
server plays a central role within the platform and can quickly become a
bottleneck, which degrades the performance of the whole platform. We
present detailed performance investigations and suggest options to im-
prove the performance. The investigations were performed on the widely
used OCCI server implementation called rOCCI server connected to the
OpenNebula cloud middleware.

Keywords: Cloud4E, OCCI, rOCCI server, OpenNebula, CAE, cloud.

1 Introduction

Today, the design of technical systems usually requires computer simulations
like for example finite element method (FEM) computations. These computer-
aided engineering (CAE) simulations are frequently very compute intensive and
thus require an appropriate amount of computational power. Furthermore, are
the licenses for professional simulation software usually very cost-intensive. In
the publicly funded project Cloud4E [1] a platform was developed, which allows
vendors of such simulation software to provide their software as a service in a
cloud. This can be beneficial for the user as well as the software provider. The
user is able to use the soft- and hardware on a pay-per-use basis, which can yield
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significant cost savings and the simulation software provider is able to make its
tools available to users who were previously not able to use them due to cost
reasons.

In order to increase the user’s trust, it is envisaged that primarily regional
compute centers act as providers of the cloud resources on which the Cloud4E
services are deployed. Hence, it has to be ensured that the Cloud4E platform
and services are portable between different cloud middlewares. This is achieved
by the usage of OCCI [2,3], which is not only used as interface to IaaS but also
as interface to the services.

Since regional compute centers have only limited resources available, it has
to be possible to outsource computations to resources of other cloud providers
if necessary and if the user agrees. Thus, hybrid or federated clouds have to be
supported. This is enabled by the employment of OCCI together with AMQP
[4,5]. Since the communication via AMQP is done over a central server, VMs or
services can communicate, which can not directly reach each other. This makes
it possible to distribute tasks or services over VMs of multiple clouds, without
restricting the communication between them.

The Cloud4E platform was already used successfully to build services for the
CAE simulation software SimulationX [6] and the free FEM solver UNA [7].
Although the platform is intended for the provisioning of simulation software
as service, it can be used for the provisioning of other types of services as well.
For example, there are services for the parameter sweep tool GridWorker [8] and
the evolutionary algorithm framework FrogEA [8,9], which were both initially
developed for the usage in grids.

The OCCI server is besides the AMQP server a central component of the
Cloud4E platform, which acts as link among multiple service instances and be-
tween clients and services. In the project an open source Ruby implementation
named rOCCI server [10], which was adapted to the needs of Cloud4E, is used.
Experience has shown that the rOCCI server has a crucial impact on the perfor-
mance of the Cloud4E platform. This has been investigated in detail in order to
improve the performance. This manuscript presents the results of these investi-
gations and describes possibilities to improve the performance.

But first, in Section 2 related work is discussed before Section 3 gives an
overview of the complete Cloud4E platform. Then in Section 4 the rOCCI server
and the functional adaptions we made to it in Cloud4E are described more in
detail. Section 5 covers the performance investigation and tuning and finally,
Section 6 gives a short summary and conclusion.

2 Related Work

A number of simulation tools can already be used in form of cloud services.
Rescale [11] provides more then 30 simulation tools in form of services running
on their own infrastructure. A lot of CAE tools from Autodesk [12] can also be
used as cloud services.

Tsai et al. [13] developed SimSaaS – a framework and runtime environment
that allows the execution of simulations in service-oriented architectures. The
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framework is based on the description of simulations with PSML (Process Spec-
ification and Modeling Language) [14] combined with automatic code generation.
Thus, it is not suitable for integrating existing simulation software. The Euro-
pean projects CloudSME (Cloud based Simulation platform for Manufacturing
and Engineering) [15] and Fortissimo [16] have a similar scope like Cloud4E but
at the time of writing they were not started, yet.

OCCI is also used in other interoperable platforms than the Cloud4E platform.
Lezzi et al. [17] use the rOCCI server in order to execute applications over
the COMP Superscalar programming framework (COMPS) [18] in a federated
cloud operated by the EGI (European Grid Infrastructure). But in contrast to
Cloud4E, they use OCCI only for the control of IaaS. In the project BonFIRE
[19] the specification of OCCI was extend in order to use it for the monitoring
in federated clouds. They do not use an existing OCCI server. Instead, they use
the OCCI API of the cloud middleware if available or self-implemented servers,
otherwise. To the best of our knowledge there are no publications on performance
investigations related to OCCI, yet.

3 Overview of the Cloud4E Platform

The Cloud4E platform consists of several components that allow to easily create
and control portable simulation services. Figure 1 illustrates all the components
and their communication over OCCI. The components are able to communicate
with each other over an AMQP bus. Running instances of a simulation service
are connected over AMQP, as well.

Fig. 1. The Cloud4E architecture

Heart of the Cloud4E platform is a so called Service Controller. This is a node
where the following tools are running: A rOCCI server, which is reachable over
AMQP (see Section 4), a service registry, which stores all simulation services
available in the platform and an AMQP server (RabbitMQ in the project in-
frastructure). The Service Controller can be a physical host of the cloud, a VM
running in the cloud or even a host at the client side.
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With help of the rOCCI client library a client can start VMs in the cloud
over the rOCCI server of the Service Controller. In OCCI a VM is represented in
form of an OCCI compute resource. Such a compute resource contains attributes
providing information about the VM like the number of physical cores or the
state of the VM. Additionally, a compute resource provides actions that can be
triggered by a client – e.g. a restart- or a stop-action. Over these actions and
attributes an OCCI client can control running VMs. A compute resource can
be extended by a so called OCCI mixin which defines additional actions and/or
attributes.

In a VM a service stored in the service registry can be deployed. A service
consists of three components. One component is the simulation application pro-
vided by the service. Another component is the OCCI Service Adapter (OSA)
developed in Cloud4E. The OSA provides an OCCI interface to the simulation
tool in form of actions and attributes. It registers the interface in form of a mixin
to the rOCCI server and listens at an AMQP queue for incoming OCCI requests.

Since different simulation tools require different interfaces, there is a third
component named Service Connector. This is a Ruby (or JRuby) class which
defines the attributes and actions of the interface with help of a domain-specific
language and implements the actions in form of usual Ruby methods. This Ser-
vice Connector is used by the OSA to handle incoming OCCI requests. Thus,
the OSA forms a generic OCCI wrapper around a service connector, which in
turn forms a service dependent Ruby interface to the simulation software.

A client can query the interface description from the rOCCI server and can
control the service over the actions and attributes defined in the interface de-
scription. It can send an OCCI request either directly to the OSA of the service
or to the rOCCI server which forwards the request to the OSA. For the control
of a service a library provided by the OSA can be used. Thus, the OSA is used
at the service side as well as the client side and an OSA of a service can act as
client for the OSA of another service.

Since the client can dynamically query the interface description, it can be
implemented independent from the exact service to control. Thus, when a soft-
ware vendor wants to provide a certain simulation tool in form of a service, in
the simplest case he/she has only to provide the simulation tool and a Service
Connector. All other components of the Cloud4E platform are generic.

The usage of OCCI as described above required some modifications to the
rOCCI server described in the next section.

4 The rOCCI Server in Cloud4E

The rOCCI server has a modular design: A frontend is responsible for the com-
munication with a client while a backend acts as interface between the server and
the cloud middleware. More precisely, the backend is responsible for monitoring
and controlling the middleware as required. There are different backends for dif-
ferent cloud middlewares. The rOCCI server provides four backends: a dummy
backend for testing purposes, backends for OpenNebula and OpenStack and an
EC2 backend. Further backends can be added by the user if required.



Performance of the Cloud4E Platform 89

In order to use OCCI not only as interface to IaaS but also as interface to
services, the following adaptions to the rOCCI server were made in Cloud4E:

– The frontend was extended in order to support communication over AMQP
and not only over HTTP. This AMQP support will be adopted in future
official releases of the server.

– The actions and attributes that are offered by a service, which is running
on a certain VM are linked with the OCCI compute resource representing
this VM in form of an OCCI mixin. And the AMQP queue to which the
service is connected is linked as OCCI link to the compute resource. The
backend was appropriately extended to support this functionality: When a
link/mixin is registered to a compute resource, the link/mixin is stored in
a database. In subsequent queries of the compute resource the link/mixin is
added to that compute resource by the backend. Before adding the mixin,
the current values of the attributes stored in that mixin are retrieved from
the service over AMQP and are inserted into the mixin in order to ensure
that they are always up to date.

– When a client triggers an action on a service over the rOCCI server the
request is forwarded to the service over AMQP. Also this functionality was
added to the backend.

The described adaptions which concern the backend are integrated into the back-
ends for OpenNebula and for OpenStack since these two cloud middlewares are
used in Cloud4E.

5 Performance Investigations and Tuning

Initially, performance problems occurred during the test of Service Connectors
in the described infrastructure. These issues related to performance were inves-
tigated thoroughly and could be solved to the greatest extent. They are mainly
caused by the rOCCI server and the cloud middleware and thus do not solely
affect the platform used in Cloud4E. Therefore, in the following the results of
the investigations are presented and options to improve the performance are
described.

The performance problems particularly occur when worker services are start-
ed over a master service. The master-worker principle is a convenient method
to distribute work over multiple VMs or services: One service acts as a master,
which controlls multiple worker services and is responsible for distributing the
work over them. The master is also responsible for the start of the workers (the
worker VMs along with the worker services running on them). With the current
Cloud4E service connectors this is done in the following way: The user or client
triggers an action start workers on the master service and passes the desired
number of workers to start as parameter to the action. Then the master starts
the specified number of worker VMs and periodically queries their state from
the rOCCI server until the VMs and the services on them are running (the
services start automatically after the boot of the VMs). When the worker VMs
and services are running, the master is ready to distribute the work over them.
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Fig. 2. Start times for different numbers of workers during different stages of perfor-
mance improvement measured over the master service (Tm) and over the rOCCI server
(Tr) together with the time Tboot to start and boot the worker VMs over OpenNebula.

We measured the times it takes to start different numbers of workers from
1 to 40 without any performance optimizations. These times are shown as T 1

m

in Figure 2. The times are measured over the master service and represent the
timespan between triggering the start workers action and the moment when
the master recognizes that all workers are running. All values are averaged over
five measurements. The measurements are done in the following testbed: Version
0.5 of the rOCCI server is used, running over Ruby 2.0.0 and connected to
OpenNebula 4.0.1 (ON) as cloud middleware. The rOCCI server and ON are
running on the cloud frontend (with two AMD Opteron 2435 hex-cores) with
Debian as operating system. QEMU 1.1.2 is used as hypervisor and the physical
hosts (with two AMD Opteron 2216HE dual-cores, each) connected to ON are
running with Debian as well. After the master service has started the worker
VMs, it queries their states from the rOCCI server in intervals of five seconds
until all the started VMs are in the ON state running. From that moment
on it queries their states in intervals of 15 seconds until all worker services
are started. The worker VMs run Windows XP as operating system. During
the measurements, attribute updates were deactivated in order to omit their
influence on the start times of the workers.

The measurements show that T 1
m is increasing rapidly with an increasing

number of workers to start. While the start of one worker takes around 115 s,
the start of 40 workers takes ca. 13 min. It can be assumed that in practice
frequently far more than 40 workers are demanded – e.g. 100 workers. Based
on the increase of T 1

m, start times way beyond 30 min can be expected for 100
workers. Hence, it is necessary to investigate the reasons for such long start
times.
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One might argue that the reason is that the times required to start the worker
VMs over ON and to boot them rise with an increasing number of worker VMs.
That is quite possible since the workers are started with help of the ON qcow
transfer driver from overlay images that all depend on the same base-image,
which is shared over NFS (Network File System). Thus, it is possible that VMs
interfere with each other during boot. In order to figure out if this is the case, we
measured the times required to start different numbers of worker VMs directly
over ON. The VMs are started with the ON command line tool onetemplate. In
the VMs a small program is started automatically after boot which connects via
a socket to the cloud head node. We measured the times between creating the
VMs with onetemplate and the moment when all VMs have notified the head
node. The times are shown as Tboot in Figure 2 and they are averaged over 10
measurements. It has to be mentioned that we do not use the scheduler of ON for
the scheduling of the VMs to physical hosts. Instead, we use a self-implemented
scheduler [20] which delegates the scheduling to a cluster batch system (Oracle
Grid Engine) in order to better integrate the cloud infrastructure in our existing
cluster. The scheduling interval of this scheduler was set to 10 s. Thus, 10 to 20
seconds of the start times arise from the scheduling. As it can be seen in Figure
2, there is a certain increase of Tboot when the number of VMs is increased from
1 to 5. The reason for that is most likely that the VMs are configured with one
virtual CPU (VCPU) and thus, up to 4 VMs are scheduled to the same physical
host where they slightly interfere with each other. From 5 to 40 VMs Tboot is
only marginally increasing and it is much less than T 1

m. Thus, the reason for
the high start times of the workers is not that the worker VMs take too long to
start/boot.

Since the master has to query periodically the states of the worker services,
there is a certain delay between the moment when all worker services are started
and the moment when this is recognized by the master. In order to investigate if
that delay is responsible for the strong increase of T 1

m, we did not only measure
the start times of the workers over the master but simultaneously over the rOCCI
server. The times measured over the rOCCI server do not contain the delay, thus
representing the “real” start times. They are shown as T 1

r in Figure 2. It can
be seen that the gap between T 1

r and T 1
m increases with increasing number of

workers. For 20 workers it takes the master around 25 s to recognize that the
worker services are started. For 40 workers this time increases to around 135 s.
But nevertheless, T 1

r increases similarly strong as T 1
m. For 40 workers it amounts

to ca. 11 min.
Thus, it can be stated that the strong increase of T 1

m with increasing number
of workers is partly caused by an increase of the boot times of the VMs and
the increasing time it takes the master to recognize that the worker services are
running. But these are definitely not the main reasons. Hence, there has to be
a performance problem with the start of the worker services after the worker
VMs are booted. During the start of a worker service it sends five requests to
the rOCCI server in order to register its interface to the server. Along with
each request, authentication information for the cloud middleware is send to the



92 S. Limmer, M. Srba, and D. Fey

server. Thus, a service acts as a certain cloud user (for example the account
of the service provider or of the end user). For each request the rOCCI server
uses the authentication information for querying all relevant information from
the cloud middleware (per XML-RPC calls with help of the Ruby OCA gem in
the case of OpenNebula) that is accessible by the authenticated user, like VM
templates, VM images and so on. Especially, all running VMs are queried from
the cloud middleware. The obtained information about running VMs is then
parsed and converted into the internal OCCI format (OCCI compute resources).
It turned out that the time the rOCCI server requires to handle a request,
strongly depends on the number of VMs that are currently running for the user.
Figure 3 shows the times we measured for different numbers of running VMs.
All values are averaged over 10 measurements and the times are split up into the
time it takes the server to query all running VMs from ON, the time it takes to
parse the VM information and the rest of time it takes to handle the request.
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Fig. 3. Time required by the rOCCI server without any performance improvements to
handle a request when different numbers of VMs of the requesting user are running.

The time to query all VMs from ON slightly increases with an increasing
number of running VMs. The time to parse the VMs increases very strong and
the rest of time stays almost constant. With two running VMs the time to
handle a request takes ca. 0.69 s. With 41 running VMs it takes ca. 2.7 s.
When 40 workers are started, 41 VMs are running (the 40 workers VMs and the
master VM) and as already stated each worker service sends five requests to the
server. The requests of all worker services are send almost simultaneously and
the server handles all requests sequentially. Additionally to the requests of the
worker services, there are requests of the master in order to query the states of
the workers. This explains the long start times of the workers – the rOCCI server
becomes a bottleneck and so the worker services interfere each others start. This
would also be the case when the workers are started directly over the user client
and not over the master service.
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In order to improve the performance of the rOCCI server, we removed tasks
from it that are done during handling a request and that are either redundant
or not required for the Cloud4E infrastructure: During the parsing of a VM the
information about the VM is again queried from ON. This was removed since it
is not necessary. Additionally, the parsing of all information that is not relevant
for the Cloud4E infrastructure, like the used virtual network or the IP address
of the VM, was removed. We also removed the query of all VM images and all
virtual networks from ON.

This yielded a significant reduction of the start times of the workers. The
start times measured after the improvement of the performance of the rOCCI
server are shown as T 2

m and T 2
r in Figure 2. T 2

m are the times measured over the
master and T 2

r the times measured over the rOCCI server. It can be seen that the
increase of T 2

m and T 2
r is less strong than that of T 1

m and T 1
r . By the described

performance improvements the start time for 40 workers could be reduced from
about 13 min to 5 min. Additionally, the gap between T 2

m and T 2
r is less than

that between T 1
m and T 1

r .
But the start times are still unsatisfying. For 40 workers T 2

m is more than twice
as much as Tboot. Hence, we were looking for further possibilities to improve the
performance. By the described improvements of the rOCCI server the time to
parse the VMs is reduced and thus, the time to query the VMs from ON accounts
for a bigger portion of the total time required to handle a request. Measurements
yielded that the time required to query all running VMs from ON does not only
depend on the number of running VMs but also on the VMs accessible by the user
that are stored in the database of ON. For accounting purposes VMs, even those
that are already shutdown, are kept in a database. As configured per default,
we use a SQLite database for ON. During the measurements so far, between
21,000 and 23,000 VMs of the user as which the worker services authenticated
themself to the rOCCI server were stored in the ON database. Figure 4 shows
how long it takes the rOCCI server to query all running VMs of a user from ON
for different numbers of running VMs and different numbers of VMs of the user
in the ON database. The values are averaged over 10 measurements. When 40
VMs are running the time to query the running VMs with 25,000 VMs in the
database (0.4 s) is about 3 times as high as with 1,000 VMs in the database
(0.14 s). If only one VM is running the time with 25,000 VMs in the database
(0.26 s) is about 16 times as high as with 1,000 VMs (0.016 s). Although the
absolute differences in time are small, they sum up to a notable amount when
regarded over multiple requests to the rOCCI server. This can be seen from
T 3
m and T 3

r in Figure 2. These are the start times of the workers after deleting
already shutdown VMs from the ON database. For 40 workers the start time
could be reduced by more than one minute to 228 s only by deleting shutdown
VMs from the ON database.

But it is still ca. 100 s higher than Tboot. Hence, we tried to further improve the
performance by parallelizing the rOCCI server so that multiple requests can be
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handled in parallel. A parallelization on the thread level would yield no benefit
since Ruby threads do not run in parallel. But since we use AMQP as trans-
port protocol the server can be easily parallelized by starting multiple processes
of the server, which are all connected to the same AMQP queue. The requests
arriving on that queue are automatically distributed by the AMQP server per
round-robin among the multiple processes. A consequence of the parallelization
is that it can theoretically not be ensured that requests are finished in the same
order as they are send by a client. But usually clients wait for a response of the
server before sending a subsequent request and thus a fixed order is ensured.
The effect of the parallelization on the start times of the workers can be seen
from T 4

m and T 4
r in Figure 2. These are the times measured when the rOCCI

server runs with 4 processes. By the parallelization the start times of 40 workers
could be further reduced by 50 s and it can be seen that T 4

r is close to Tboot.
Figure 5 shows the start times of 40 workers with different numbers of processes
used by the rOCCI server (averaged over 10 measurements). As it can be seen,
starting with 4 processes an increase of the number of processes has no effect on
the start times. But for higher numbers of workers it can be assumed that an
increase of the number of processes would be beneficial. After all the described
performance improvements the “real” start time Tr of 40 workers is about 20 s
higher than the pure start time Tboot of the worker VMs and there is a delay of
about 30 s between Tr and the start time Tm measured over the master. Thus,
there might be further potential for improvements but the start times are now in
an acceptable range. T 4

m and T 4
r increase only slightly with an increasing number

of workers, leading to a much better scalability compared to the infrastructure
before the improvements. And although the performance investigations and tun-
ing focused on the start of workers because here the performance issues are most
obviouse, the whole OCCI communication in the Cloud4E platform is affected
by the performance improvements.
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6 Conclusion

The Cloud4E platform allows simulation software vendors to provide their ex-
isting applications in form of a cloud service. The employment of the open stan-
dards OCCI and AMQP ensures interoperability and avoids vendor lock-ins.
Integration tests yielded that the rOCCI server has a significant impact on the
performance of the whole platform. It can quickly become a bottleneck, espe-
cially during the start of multiple services. In order to improve the performance
of the rOCCI server, it can be beneficial to remove unneeded features from
it. Adaptions to the cloud middleware, like deleting VMs from the database of
OpenNebula, can increase the performance as well. The usage of AMQP as trans-
port protocol for the OCCI communication provides an easy way to parallelize
the rOCCI server, yielding an additional performance improvement. Thus, we
were able to enhance the performance of the rOCCI server connected to Open-
Nebula to an acceptable niveau. The next steps are to do analogous performance
improvements with OpenStack as cloud middleware and to enable EC2 based
middlewares in the Cloud4E platform by appropriate adjustments of the EC2
backend of the rOCCI server.
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Abstract. MapReduce is a programming model that allows users the
parallel processing of large data sets into a cluster. One of its major
implementation is the Apache Hadoop framework that couples both big
data storage and processing features. In this paper, we aim to make
Hadoop Cloud-like and more resilient adding a further level of paral-
lelization by means of cooperation of federated Clouds. Such an approach
allows Cloud providers to elastically scale up/down the system used for
parallel job processing. More specifically, we present a system prototype
integrating the Hadoop framework and CLEVER, a Message Oriented
Middleware supporting federated Cloud environments. In addition, in or-
der to minimize overhead of data transmission among federated Clouds,
we considered a shared memory system based on the Amazon S3 Cloud
Storage Provider.Experimental results highlight the major factors in-
volved for job deployment in a federated Cloud environment.

Keywords: Cloud Computing, Federation, Big data, MapReduce,
Hadoop.

1 Introduction

MapReduce is a programming model for the parallel processing of large data
sets. Hadoop MapReduce is one of the major implementation of the MapRe-
duce paradigm developed and maintained by the Apache Hadoop project, that
works in tandem with the parallel Hadoop File System (HDFS). Parallelization
capabilities of a system strongly depends on available resources into the clus-
ter. To fulfill several requests from many different users, an elastic approach for
resource management is required. Cloud computing, offers such a feature. By
means of virtualization resources can elastycally scale up/down. However for
each Cloud Provider (CP) the number of available virtual resources depends on
its own physical assets. In order to overcame such a limit, CPs can rent Virtual
Machines (VMs) from big commercial provider or they can establish a federation
relationship. The latter approch allows small-medium provider to cooperate in
order borrow/lend resources according to particual agreements. In this manner,
Cloud federation also offers to small/medium CPs new business opportunities,
guaranteeing high flexibility in service provisioning in a trasparent way for end
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users. We chose to use CLEVER because, although it arises as middleware for
the management of IAAS, it has been designed looking to the future and keeping
an eye to the federation issues [1]. In fact, all communications, both inter-domain
that intra-domain, use the technology XMPP, which in our opinion is a powerful
solution to manage and to support the Cluod federation. So, our work aims to
provide a Platform as a Service (PaaS) for a MapReduce processing of big data
in a federated Cloud scenario. In particular, the solution we propose integrates
the Hadoop functionalities into the the above mentioned CLEVER. Whenever a
client submits a job to a Cloud, it, which may be not able to meet the client’s re-
quest for computational tasks, processes the job exploiting resources distributed
across different administrative domains. Each CP offers its processing resources
according to the policies of the federation agreements and the provider that re-
ceives a commitment from the client manages the available pool of resources in
the federation till the job processing ends. Our work, therefore, by exploiting
the federated system potentialities, aims to add another parallelization layer to
Hadoop Framework, thus making it elastic, scalable and cloud-like.

The rest of the paper is organized as follows. In Section 2, we provide a brief
overview of current works on the topics dealt in the paper. Section 3 presents
the proposed distributed processing service and one of many possible use cases.
In Section 4, we introduce the technologies adopted in this work to arrange a
real federated environment, i.e., Hadoop, CLEVER which is a Message Oriented
Middleware (MOM) exploiting the Extensible Messaging and Presence Protocol
(XMPP) technologies to handle the communication among the different adminis-
trative domains. Architectural details on how to integrate Hadoop and CLEVER
are discussed in Section 4.3. In Section 5, we present experimental results high-
lighting the major factors involved for job deployment in a federated Cloud
environment arranged by means of Hadoop and CLEVER. Section 6 concludes
the paper.

2 Related Works

In the near future, the heavy penetration of sensing devices into Internet ap-
plications will cause the explosion of the amount of data to be stored and pro-
cessed. This problem, well known as Big Data issue, is becoming the new buz-
zword in ICT world, involving both IoT and Cloud Computing, [2] technologies.
Cloud Computing is already a consolidated technology useful for spreading mas-
sive computations on heterogeneous environments. In this perspective Cloud is
becoming even more the basis for Big Data computation needs. At the Infras-
tructure as a Service (IaaS) level, Big Data can leverage the Computation ca-
pabilities of Clouds where the computation relying onVMs. Such an example is
given in [3], where Hadoop is installed into VMs exploiting the Public Cloud
as Amazon EC2. Here the authors re-modeled the resource provisioning of the
VMs in public cloud platforms for big data applications. In particular the authors
relied only on modifying the configuration of two types of EC2 VM instances
that is Small instance and Extra Large (XLarge) instance for optimizing the
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processing of Big Data. Our work uses a similar approach of this ( [3]), but we
believe is much more challenging to setup a Hadoop environment in Federated
Clouds. Cloud Federation [4] [5] represents a compelling opportunity in which
IaaS Cloud Operators might achieve great business benefits, renting to others
cloud operators the computation resources on-demand (see [6]). The well-know
Hadoop platform can represent an appealing opportunity in this way because
its architecture is well consolidated and widely used. Any Cloud Operator might
offer Hadoop computation resources on-fly joining a federated cloud environ-
ment. Hadoop uses MapReduce paradigm, an high-level programming model for
data-intensive applications using transparent fault detection and recovery, widely
adopted in cloud datacenters such as Microsoft, Google, Yahoo, and Facebook.
Hadoop is an opensource implementation firstly developed by Yahoo [7]. In our
work it is possible to setup a high-level programming model even in Federated
and Heterogeneous Clouds. Deploying VMs in federated scenarios with Hadoop
nodes inside, is a challenge as shown in [8].Many works are trying to optimize
Hadoop computations in heterogeneous environment like shown in LATE [9],
TARAZU [10], Cross-Phase Optimization [11] and PIKACHU [12].These works
look at the paradigm attempting to optimize all processing tasks, in particular
the three main phases: map, shuffle and reduce. At the first stage of our solu-
tion, we are looking at the possibility to elastically increase the computation
resources leveraging even more VMs. A step over we should also consider similar
approach in which to organizer all MapReduces phases and tasks in a federated
way, that is selecting federated providers and deploying suitable VMs. Another
example of Big Data processing in the Cloud is presented in [13]. In this work the
computation framework used is Sailfish, a new MapReduce environment similar
to Hadoop. Sailfish was conceived for improving the disk performance for large
scale MapReduce computations. Hence it is possible to make the selection of
federated contributors based on types of MapReduce paradigms.

3 Distributed Processing Service in Cloud Federation

In a federated Cloud environment, a CP can benefit of the storage and compu-
tational resources other CPs acting on other administrative domains. To satisfy
client’s requests, each CP in the federation asks for available resources to the
other members of the federation, which offer their unused resources at that time.
Of course, the amount of resources offered for each request can be regulated by
specific federation agreements, but such issue is out of the scope of this paper. A
CP can require to establish a partnership with other CPs for multiple reasons: it
has saturated its own resources and it needs external assets, it wants to perform
software consolidation in order to save energy cost, it want to move part of pro-
cessing into other providers for improving security or performance in order to
respect particular Service Level Agreements (SLAs). In particular, in this paper,
we focus on a federated Cloud scenario offering MapReduce processing service.
MapReduce can take the advantages of data location, processing it on closer
storage assets in order to reduce data trasmission delay. Thus, in our scenario,
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Fig. 1. Processing service management

CPs hold their internal storage system where deploying data sets they have to
process. Since each CP stores a portion of data for local processing, we assume
that big files that have to be processed are stored in an external Cloud Storage
Providers (CSPs), such as Amazon S3, Google Drive, Dropbox, etc. The choise to
rely on external public CSP was made to minimize the overhead associated to the
data transmission between the federated domains. They, in this manner, have to
exchange, each other, only coordination and sincronization messages. The idea
behind such a service is shown in Figure 1. When a user requests to run a job,
he contacts his Cloud Provider (CP A in the example in Figure 1) and sends an
input file (Xml file) containing the parameters nedeed to the job to be executed.
CP A involves all (or just a part of, depending on the job requirements) the
CPs in the federation, giving them directives on the task they have to process.
Supposing that the input data to process is memorized in a CSP that supports
multipart download (i.e., the CSP splits the file in several blocks that clients
are able to download), each involved CP to accomplish its task has to download
only particular blocks of file. It is important to say that the system can scale
both horizontally and vertically. It scales horizontally when a CP A (Home CP)
dynamically forwards the user task request to the federated domains (Foreign
CP). But the system can also scales vertically when a chosen foreign CP, for some
reason, cannnot longer fully meet the forwarded request by the home CP. So the
foreign CP may in turn forward the sub-request to others available foreign CP.
In this case, therefore, the CP plays both the role of foreign CP, towards the CP
that initially sent the request, and the role of home cloud towards the new CPs
to which it is forwarding the sub-request. Once each CP have download their
respective blocks of data from CSP, it has to parallel process them by means
of pieces of parallel processing middleware running on VMs. Each downloaded
blocks is further divided in smaller chunks by the middleware used for parallel
processing running on the Cloud domain. For simplicity, we assume that each
CP in the scenario has an image of the VM including the piece of middleware for
processing the task. However, additional mechanisms for VM image provisioning
can be implemented to improve the flexibility of the offered service. At the end
of the task, each CP uploads the results of the processing into the repository
system and it notifies that to CP A. As soon as all the CP end their work, CP A
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Fig. 2. Processing service management

informs the client about the result of the processing. To better understand the
benefits of this scenario, let us consider a video transcoding job as possible use
case. A user would like to enjoy a movie that is available on a remote storage
repository by using his mobile device. Unfortunately, the movie is stored as HD
file and the user device is not able to play it. Thus, the user needs an on-fly
video transcoding to convert the file to another format. The steps accomplished
to obtain the transcoded video are shown in Figure 2. A client submits to his
provider (CP A) the job together with his credentials to access the service. If the
authentication process has success, CP A starts a resources discovery into the
federated environment to look for available resources. The generic CP n offers
its storage and computational resources, if possible, and waits for instruction on
the task to carry on and the chunks of file to process. The Hadoop framework
at CP A, exploiting the MapReduce features, parallelizes the transcoding pro-
cess of the video file thus to involve as much resources as possible. As soon as
CP n receives the file localization information, it starts the download of the file
chunks and put them (uploads) in its HDFS cluster for local processing. At the
end of the processing step, CP n stores the result of its processing in the CSP
and sends to CP A an end task notification. Once CP A has received all the
end task notifications from all the involved CPs, it generates a SMIL file, i.e., an
XML file used to play the video avoiding to merge all the processed chunks. Also
the SMIL file is uploaded into the CSP and it provides the base location of the
video chunks and the necessary information for the client player to rebuild the
whole video file. Finally, CP A notifies its client about the end of job execution
and provides him the location of the SMIL file.
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4 Reference Scenario

In this Section, we describe our reference scenario including CLEVER, Hadoop,
and Amazon S3.

4.1 Hadoop Overview

Hadoop MapReduce is a software framework to write and run applications in
processing in parallel huge amounts of data (e.g. terabyte of datasets) on large
clusters in a reliable, fault tolerant manner. A MapReduce job usually splits
the input data set into independent chunks, which are processed by the map
tasks in a completely parallel manner. The framework sorts the outputs of the
maps, which are then input to the reduce tasks. Both the input and the output
of the job are stored in a distributed file system, that is the Hadoop File Sys-
tem (HDFS).Typically the compute nodes and the storage nodes are the same,
that is, the MapReduce framework and the HDFS are running on the same set
of nodes. This configuration allows the framework to effectively schedule tasks
on the nodes where data is already present, resulting in very high aggregate
bandwidth across the cluster. The Hadoop framework has a Master/Slave ar-
chitecture. MapReduce components consist of a single master JobTracker and
one slave TaskTracker per cluster-node. The master is responsible for scheduling
the jobs’ component tasks on the slaves, monitoring them and re-executing the
failed tasks. The slaves execute the tasks as directed by the master. The master
node of the HDFS is called NameNode. It manages the namespace file system by
maintaining a file metadata image that includes file name, location and replica-
tion state. DataNodes manage storage resources into the host they run on and
allow read/write accesses. A typical Block size is 64 MB. Thus, a HDFS file is
chopped up into 64 MB chunks, and, if possible, chunks are located at different
DataNodes.

4.2 CLEVER Overview

The CLoud-Enabled Virtual EnviRonment (CLEVER) is a Message-Oriented
Middleware for Cloud comptuting (MOM4C), able to support several Cloud-
based services [14]. Each CLEVER Cloud includes several distributed hosts
organized in a cluster. Each Phisical Machine (PM) is controlled by a man-
agement module, called Host Manager (HM), and only one host runs a cluster
management module, called Cluster Manager (CM) that acts as interface be-
tween Cloud and clients. CM receives commands from clients, gives instructions
to HMs, elaborates information and finally sends back results to clients. It also
performs tasks for cluster orchestration. A CLEVER Cloud makes use of XMPP
to exchange all communication messages and presence information in a near-real
time fashion. A Jabber/XMPP server provides basic messaging, presence, and
XML routing features within the Cloud. All the PMs in the Cloud are connected
via a Multi User Chat (MUC) and cooperate according to the CM orchestration
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directives. In CLEVER, CM and HMs implements software Agents communicat-
ing through XMPP. Hence, it is easy to include new modules and functionalities
to the CLEVER environment by adding new Agents and updating the CM and
HMs configurations for the correct delivering of messages.

Fig. 3. CLEVER Federation Management

With CLEVER, each Cloud involved in the federation is identified by a Jabber
ID (JID). As shown in Figure 3, in order to set up a federation, CMs belonging
to different administrative domains exchange messages through the MUC with
the unique room ID Federation, and only the authenticated, by the XMPP server
itself or by external third party entities [15], ACTIVE CMs of federated Clouds
can access it.

4.3 Integration of Hadoop in CLEVER

To make the Hadoop functionalities cloud like, we make use of a virtual infras-
tructure provided by CLEVER. VMs run on HMs and work as slaves of the
Hadoop cluster. Virtual Hadoop slaves are coordinated by the Hadoop Master
arranged at the CLEVER CM. The first advantage of the integration of Hadoop
in CLEVER is that, typically, Hadoop uses the TCP/IP layer for communication,
and it is a problem during the inter-domain comunication due to heavy usage of
firewalls by each domain which take part to federation. Infact firewalls can block
inter-domain communication. So, integrating Hadoop in CLEVER, federation
messages can be sent on port 80 thanks to XMPP technology.The second one
is that the system can automatically scale according to real time requirements.
The two main software agents enabling CLEVER to integrate Hadoop are the
Hadoop Master Node (HMN) Agent and Hadoop Slave Node (HSN) Agent. In
the following, we discuss their activities and synchronization processes. Figure
4.a shows the software components at the CM. Through the HMs interface, the
CC communicates with all the HMs in the cluster, exchanging information on
available resources, running tasks, work specifications and offered services. The
CC makes use of the Client interface to interact with Cloud clients, in order
to receive client requests, and to give back inquired services. The Client in-
terface allows service provisioning to clients exchanging XML messages into the
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(a) Cluster Manager design. (b) Host Manager design.

Fig. 4. Integration of Hadoop in CLEVER

Shell Room. The VIM is the agent designed for managing virtual infrastructures.
Moreover, the CM makes use of an internal NoSQL database for storing current
system configurations, which is properly updated by the Data Base Manager
(DBM). Figure 4.b shows the software components at the HM. The agent specif-
ically designed to support the Hadoop activities in the Cloud is the HMN Agent.
It provides the configuration settings to all the virtual nodes in the Hadoop
cluster. The CLEVER HMN works as master for Hadoop cluster. Specifically,
it implements the Hadoop functionalities to manage the hadoop system. At the
startup, the HMN Agent reads the Hadoop configuration setup and then the CC
subscribes this new Agent in the list of all the active agents of CLEVER, in
order to make it reachable from the agents instantiated in the HMs. After the
early registration, the HMN Agent can receive Notifications from the agents at
the HMs.

4.4 Amazon S3

Amazon S3 is Cloud storage service. It is designed to make web-scale computing
easier for developers. Amazon S3 provides a simple web-services interface that
can be used to store and retrieve any amount of data, at any time, from anywhere
on the web. It gives any developer access to the same highly scalable, reliable,
secure, fast, inexpensive infrastructure that Amazon uses to run its own global
network of web sites. The service aims to maximize benefits of scale and to pass
those benefits on to developers.

5 Experiments

In this Section, we discuss several experiments, we conducted on a real testbed
involving four CLEVER/Hadoop administrative domains (i.e., A, B, C, and D)
acting as federated Cloud providers and Amazon S3 acting as real Cloud storage
provider. The objective of the experiments described in this Section consists to
know what are the main factors needed for the job submission in a federated
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Cloud environments and demonstrating, considering a real testbed, how Cloud
federation can enable Cloud providers to take the advantages of parallel dis-
tributed processing. it is important to emphasize that integrating Hadoop in
CLEVER we are adding a second livel of parallelization. In order to test the
whole environment, we considered a parallel video transcoding use case involv-
ing several federated cloud providers. In particular, we arranged the testbed
considering four physical servers (one per Cloud domain) running in total 10
VMs and Amazon S3. Experiments were conducted with the following hard-
ware configuration: CPU: Intel(R) Core(TM)2 CPU 6300; 1.86GHz, 3GB RAM,
running Linux Ubuntu 12.04 x86 64 OS and VirtualBox. Each experiment was
repeated 50 times in order to consider mean values and a low confidence inter-
vals.In the following, we summarize the main phases involved in our experiments.
The process starts at time t0 when a Cloud client sends a video transcoding re-
quest to a particular CLEVER domain. At time t1 the CLEVER cloud that
receives the request decides to establish a federation with the other CLEVER
domains, retrieving domains information. For simplicity, in this paper, we have
not treated how this process can be accomplished in autonomic fashion, but
we a priori arranged the environment using the CLEVER commands. At t2, the
Cloud provider, that has initiated the federation establishment process, performs
a task assignment involving the whole federated environment. Supposing that
the Cloud that has started the process uses an external Cloud storage service
provided by Amazon S3, each involved federated CLEVER Cloud will down-
load only a particular number of video chunks for processing using the multipart
download mechanism. In the end, t4 indicates the time taken by each CLEVER
Cloud to upload the previously downloaded video chunks in HDFS of the local
domain, so that the Hadoop task tracker slave node, controlled by means of
CLEVER, can process them. Figure 5.a shows the average time required for the
accomplishment of phase 1 (t1− t0). It is possible to observe that, independently
from the number of external administrative domains, the time for retrieving do-
main information remains constant taking roughly 5 seconds. We attribute this
overhead at the access operation to the local database needed to CLEVER to

(a) Average time required to retrieve
domain information on Clouds.

(b) Average time required to forward
a request to federated Clouds.

Fig. 5. Retrieving information and forward request times
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(a) Download Time
histogram for 20MB
block size.

(b) Download Time
histogram for 10MB
block size.

(c) Download Time
histogram for 7MB
block size.

Fig. 6. Download time from Amazon S3

retrieve the network parameters of the other domains. At phase 2, t2 − t1 in-
terval indicates the time required to forward the video transcoding request to
the external federated CLEVER Clouds domains. These times are shown in the
Figure 5.b. After that the CLEVER Cloud that has started the process, obtained
the network information regarding external Cloud domains, runs a new thread
for each of them, sending the requests in parallel. Thus, the average time does
not change if the number of the foreign domains does. Figure 5.a, 5.b, and 5.c
show respectively the distribution of the download times of 1/3, 1/2, and the
whole video files from Amazon S3. In our timing diagram, this time is repre-
sented by the t3 − t2 interval. Observing the Figure 6.a, 6.b, and 6.c, we can
notice that, if there is only one domain which takes part to the federation, it has
to download the whole video file(20MB), instead when there are other domains
into the federetion, each of them has to retrive only a block of the original file.
So, when the number of the federated domains increases, the download-time de-
creases. In particular Figure6.a, shows the download time when a single external
CLEVER Cloud administrative domain takes part to the federation, so that, it
has to download the whole video file(20MB) from Amazon S3. Figures 6.b and
6.c, instead, respectively show the download times when two and three external
CLEVER Cloud administration domains take part to the federation. In fact,
each domain downloads only specific block of video file. Observing the graphs,
we can note that the download time for the whole 20MB file takes roughly 40
seconds, while the times needed for downloading half file (10MB) and a third of
file ( 7MB) take respectively roughly 22 and 15 seconds. Figure 5 summarizes
the aforementioned results. Moreover, each download takes place in parallel, so
we have a double benefit, the first one due to the smaller blocks size to be down-
loaded, the second one due to the parallelization of the download in these blocks.
The average download time is depicted in Figure 7.a. Instead, Figure 7.b shows
how the average upload time of blocks of file in the HDFS of each domain. This
time changes according to the number of active DataNodes and video file sizes.
Observing the graph depicted in Figure 7.b, we can notice that increasing the
number of Hadoop Data Nodes the upload time increases too. We can motivate
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(a) Average download time of file
blocks from Amazon S3.

(b) Average Upload time of file
blocks in Hadoop.

Fig. 7. Average download and upload

this trend remembering that the Hadoop has been configured with a redundancy
parameter equal to 2. In fact with a single active DataNode, the upload time
has a very low value, because the system does not have the need to replicate
the file. Instead, due to Hadoop’s data replication mechanisms, increasing the
number of Data Nodes, we can notice a linear increase of the upload.

6 Conclusion

In this paper, we discussed how can be possible to apply theMapReduce paradigm
in a federatedCloud environment.MapReduce allows to performaparallel process-
ing of large data set stored into a file system. The Hadoop framework couples the
MapReduce algorithmswith theHDFSstorage system.Theproposed solution inte-
grates the Hadoop framework into CLEVERand uses Amazon S3 as external CSP.
We deeply discussed the proposed processing service focusing on job submission.

References

1. Panarello, A., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: A Requirements
Analysis for IaaS Cloud Federation. In: 4th International Conference on Cloud
Computing and Services Science, Barcelona, Spain (2014)

2. Petruch, K., Stantchev, V., Tamm, G.: A survey on it-governance aspects of cloud
computing. IJWGS 7(3), 268–303 (2011)

3. Yuan, Y., Wang, H., Wang, D., Liu, J.: On interference-aware provisioning for
cloud-based big data processing. In: 2013 IEEE/ACM 21st International Sympo-
sium on Quality of Service (IWQoS), pp. 1–6 (June 2013)

4. Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K., Tordsson,
J., Ragusa, C., Villari, M., Clayman, S., Levy, E., Maraschini, A., Massonet, P.,
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Abstract. Infrastructure-as-a-Service (IaaS) clouds are widely used to-
day, however there are no standardized or commonly used performance
evaluation methods and metrics that can be used to compare the services
of the different providers. Performance evaluation tools and benchmarks
are able to grasp some aspects or details of performance but for various
reasons are not capable to characterize cloud performance. Our aim is
to collect these elementary or primitive facets of performance and de-
rive high-level aggregated and qualitative performance characterization
semantically far above the output of tools and benchmarks. We designed
and implemented a framework that collects low-level raw performance
data (in terms of CPU, disk, memory and network) of cloud providers
based on standard benchmark tools and these data are aggregated and
evaluated using a hierarchical fuzzy system. In this process performance
characteristics are associated with symbolic values and fuzzy inference is
applied to produce the normalized qualitative comparable and readable
performance metrics. In this paper, we discuss the issues of cloud perfor-
mance analysis, present the concept and implementation of our method,
illustrate the proposed solution by comparing –in terms of performance–
the general purpose medium instance type of the Amazon EC2 cloud (in
Ireland) and the standard instance type of the OpenNebula installation
at MTA SZTAKI.

Keywords: cloud computing, performance evaluation, fuzzy sets, hier-
archical fuzzy inference.

1 Introduction

Cloud computing, from a user’s perspective is a contract: the provider offers a
service of negotiated quality and the consumer pays a negotiated fee. Just like in
any other commercial scenario, the consumer is curious if the value vs price ratio
is right and acceptable. Cloud vendors provide multi-tenant infrastructures and
generally do not disclose the technical details of the services (e.g., overprovision-
ing rate) that makes it difficult for customers to anticipate cloud performance.
Furthermore, cloud providers often use different terminologies for resource allo-
cation. Albeit, Service Level Agreements (SLAs) declare the guaranteed level of
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services, these are typically just the lower limits that neither express what the
consumer really gets nor make the services comparable to other providers. From
the consumers’ point of view the expected ”performance” would be interesting
so that it enables the comparison to other providers and to the costs. Albeit
in this work we discuss ”performance”, it is worth mentioning that characteriz-
ing a service involves many other aspects that are quite related to performance
such as Quality of Service (QoS), Quality of Experinece (QoE), in lesser extent
robustness, fault tolerance, trust and many others.

Performance analysis of parallel computing environments has been studied
extensively in the past (e.g., [7] [14] [8] [11] [2] just to mention a few.). Novel
distributed paradigms obsolete parallel performance analysis models and new
approaches and tools for characterizing large-scale inhomogeneous and dynamic
distributed systems are required [4][9]. The advent of cloud computing intro-
duced new features that rendered performance evaluation largely unsolved and
target of intensive research.

The challenges of cloud performance analysis largely stem from virtualization,
the complete separation of the physical and virtual entities. All former perfor-
mance evaluation approaches were focusing on the physical infrastructure and
the physical performance profile of resources. Virtualization, a characteristic and
inherent feature of clouds however, introduces another dimension of complexity:
the measured and evaluated performance, i.e. what a consumer gets, are not of
a physical machine. This requires new approaches and potential, new definitions
for performance evaluation for the following reasons. (i) Service providers may
split or merge physical resources to accommodate virtual machines. Hence, per-
formance measured at the physical level does not characterize the performance of
virtual machines. (ii) Service providers may offer different instance types. Thus,
performance of virtual machines is loosely coupled to physical machines: it is
a characteristics of a hypothetical (volatile) infrastructure and potentially not
characteristic to the entire or physical infrastructure. (iii) Multi-tenancy adds a
large uncertainty factor. (iv) Due to all these reasons, for the time being, there
are no widely accepted performance analysis techniques for cloud infrastructures.
Performance itself is multi-dimensional, composed of many facets, performance
metrics are not standardized, not comparable, sometimes even hard to interpret
and cannot be measured at the physical level.

Our work is aimed at establishing a framework that enables the performance
characterization of IaaS providers so that services of different providers or in-
stance types of the same provider became comparable by metrics that are (i)
symbolic for easy interpretation (ii) aggregated to cut down dimensions and data
volume (iii) comparable to each other. Furthermore, our method is (iv) especially
tailored for the virtualized machines. We apply logic and fuzzy inference to cre-
ate the abstract, symbolic performance characterizations from raw performance
data. The result is a readable, abstract yet precise and comparable description
of virtual machines.

As it was stated we try to characterize and compare cloud services from perfor-
mance point of view. This is not identical to the notion of performance analysis
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that typically refers to the performance of an application. On the other hand, it
is not benchmarking either. Benchmarking is a comparison of the performance of
the infrastructure as a whole to an established, industry-leading reference point
(such as the TOP500 list) where performance tests are carried out in a standard-
ised way in a closed environment (the number and specifications of the hardware
elements are known and static) under controlled (preferably non-existent) loads
and eliminating all intrusive effects. Hence, informally we call our approach as
performance characterization as opposed to, and differentiate from, benchmark-
ing or performance evaluation.

Furthermore, benchmarking is a questionable technique (as has been for grid
computing [9]) due to the fact that performance figures cannot be representative
to the entire cloud, just for some services — potentially a very small subset of
the cloud — actually utilized in the experiment and virtualization adds another
factor to unreproducible experiments. Hence, in our view, the traditional notion
of benchmarking physical resources is not applicable for the entire cloud. On
the other hand we do use benchmark tools but not for measuring the infras-
tructure rather, for providing raw data on the performance of a VM instance.
Benchmarking in this setting is part of the process but not the process itself.

In the followings, in Section 2 the related work is intorduced, in Section 3
the concept, design principles and technical details of our proposed performance
characterization method are presented. Test cases in Section 4 give a practical
validation of the approach and Section 5 concludes the paper.

2 Related Work

An overview of grid performance analysis and its tools [4] already surveyed the
difficulties of measuring any dynamic, heterogeneous computing infrastructure
and pointed out that well-established methods of (parallel) benchmarking are
not applicable where virtualization is present.

The primary goal of the CloudHarmony [1] is to make cloud services compa-
rable, therefore they provide objective, independent performance comparisons
between different cloud providers. Using these data, customers can quickly com-
pare providers and have reasonable expectations for cloud performance. How-
ever, CloudHarmony can only provide quantitative performance data in a raw
form produced by benchmark tools and can not present refined qualitative in-
formation created from processed benchmark results. As performance data are
produced by multiple benchmark tools, they quite often contain discrepancies,
contradictions or simply not easily interpretable by a human.

Garg et al. [3] also recognize the difficulty for customers to select service
providers. In their paper, they propose a mechanism and a framework to measure
the quality and prioritize Cloud services. This solution evaluates Cloud offerings
and rank them based on their ability to meet the users Quality of Service (QoS)
requirements. This work addresses slightly different aspects of characterizing a
service than our work: less emphasis on the performance and more on the quality.
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The notion of fuzzy inference for resource modeling appears in [18] in a dif-
ferent setting. The work is aimed at realizing a two-level resource management
system with autonomic resource allocation. To this end, local and global con-
trollers are using fuzzy logic to deal with the complexity of the virtualized data
center and the uncertainties of the dynamically changing workloads. Virtual con-
tainers are treated as black boxes and their behaviour is modeled without any
a priori knowledge using fuzzy logic. Ultimately, workload and related resource
needs to meet QoS criteria are learned by the system. Albeit strongly related to
our work, in this setting the fuzzy inference is used for resource control and not
for performance characterisation — performance data are simply input to the
mechanism.

Another aspect of fuzzy resource management appears in [17], namely fulfilling
performance guarantees in the presence of interference of requests (especially, for
non-partitionable resources) of co-hosted VMs. The aim of the fuzzy model is to
detect the performance coupling of co-hosted VMs using a fuzzy a multi-input-
multi-output model. The model quantifies the contention of competing resources
and this information is used for VM placement and resource allocation. This
approach is also similar to ours but analyses performance in a broader sense:
capturing the relationship between resource allocations and the performance of
the hosted applications.

The work presented in [13] applies the same mechanism to a different problem:
trust and trust management but defines performance as a component of trust.
Other factors are financial and agility and each such factor has many sub-metrics.
The similarity to our work appears in unifying the diverse quantities into a
single metrics of trust. They also propose a hierarchical (2-stage) fuzzy inference
framework. This work differs mainly in the scope and the level of details of
performance characterisation.

A.Vanitha et al., [16] investigate the cloud infrastructures as test bed envi-
ronments for software developments. They presented a similar notion of fuzzy
logic for performance evaluation. The most important difference to our work is in
the fuzzy inference mechanism: they apply multidimensional inference whereas
we propose hierarchical one. Their model uses a few input parameters only and
they do not take the CPU performance into account in the procedure. This
presumably could be the consequence of the complexity of multidimensional in-
ference. Our solution is aimed at eliminating this obstacle by a hierarchy and
hence, it can provide a generic framework for performance evaluation in cloud
environments.

3 A Novel Approach to Cloud Performance
Characterization

3.1 Principles

The theoretical and technical difficulties of performance characterization of a
complex infrastructure were presented in Section 1. In this section we narrow
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the scope to processing, presenting and interpreting the performance metrics.
We assume, raw performance data are gathered by some monitoring and/or
benchmarking tool. Still, this data set is inappropriate due to its large dimen-
sionality, incomparable and incompatible data types and lack of any structure.
Common approaches apply statistical methods, noise filtering, feature extraction
and similar numerical procedures to reduce the information to the most essential
details and get readable and comparable performance figures. Performance char-
acterisation has many dimensions and these are not independent. For instance,
comparing two CPUs is possible but comparing two CPUs so that the memory
is also taken into consideration is surprisingly complex: neither the CPU nor
the memory speeds determine the performance but their interaction via subtle
details in the actual application. These correlations are present in practically
all dimensions of performance yet, their exact formulation is extremely hard
analytically.

Fuzzy techniques have a vast range of features and potential application fields.
We focus on their ability to transform quantitative information into qualitative
one so that the resulted data is concise, readable, interpretable and comparable.
Fuzzy techniques are based on the negation of the basic principle in set theory
as ’a certain element is either element of a set or not’. Instead, fuzzy set theory
assumes a metric, how much, or in what degree a certain element belongs to a
set. This metric called membership function ranges between 0 (not element of
the set) and 1 (element of the set). In such a way uncertain values, subjective
measures can be captured and handled in a mathematical framework.

Fuzzy logic is a many-valued logic based on the fuzzy sets where logic vari-
ables have values between 0 (false) and 1 (true). It allows reasoning on uncertain
or partial information where different degrees of ’true’ is possible [20]. Fuzzy
values may also be assigned symbolic or linguistic tags resembling intuitive clas-
sification. A fuzzy inference is a method where fuzzificated (values assigned to
fuzzy sets) input variables are mapped onto output variables and the result is
defuzzificated.

Recall the example above, a CPU of architecture A and frequency f1 with
memory of sizeM1 and bandwidth b1 is hardly comparable numerically to a CPU
of architecture B and frequency f2 with memory of size M2 and bandwidth b2;
none of the numerical comparisons would yield a definite answer. However, after
fuzzification – transforming the values into fuzzy sets – this question is reduced to
a more comprehensible form of comparing an ’upper mediocre’ processor with
’large and fast’ memory to a ’lower top’ processor with ’small and very fast’
memory. The relationship between these sets can be precisely described by fuzzy
rules resulting a similarly readable and easily comparable result.

A fundamental problem in a fuzzy inference system is that the number of
rules increases exponentially with the system variables involved. The hierarchi-
cal fuzzy systems (HFS) [19] [6] have the advantage that the total number of
rules is greatly reduced by a hierarchical structure, linear with the number of
input variables [10]. A HFS divides the inference into stages so that a subset
of input variables produce intermediate results and these results are taken as
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inputs in subsequent stages whereas, the intermediate results may also possess
interpretable meaning.

The core of our concept is to build a hierarchical fuzzy system so that the
stages of the hierarchy correspond to certain aspects of performance. We consider
CPU, memory, disk and network as main determining factors. In an experimental
setup these were captured by 157 parameters. In a flat fuzzy inference system the
number of corresponding fuzzy rules would be in the magnitude of n157 where n
is proportional to the number of fuzzy sets (i.e., granularity of rules, how finely
the sets are described). We categorized the parameters according to the four
main aspects and established sub-categories within each (cf. Figure 2.) In such a
way input parameters to an inference stage do not exceed 7 and thus, the overall
number of rules in the system is bounded by c ∗ n7 where c is the number of
inference stages.

3.2 Framework Design

Figure 1 provides an architectural overview and presents the components of the
proposed system. At the lowest level of hierarchy input data called ”raw perfor-
mance data” are produced by benchmarking probes. These probes are realised
as virtual machines (VM instances) and executed on some cloud resources, in-
volving steps of authentication, deployment, and VM control. On one hand the
system core (depicted as Core & Valuator) provides a part of these essential
functions. The Image Repository and the IaaS client/API interface (top right)
are responsible for storing the disk image for the probes and handling (deploying,
launching and stopping) VM instances. The disk image contains a preconfigured
Phoronix Test Suite (PTS) application (a probe) for realizing the raw measure-
ment procedures on the infrastructure. Images are deployed on target clouds
(Cloud#1, Cloud#2, etc.) prepared and run as VM instances, called PerfVMs
in the followings. PerfVMs execute the appropriately configured benchmark suite
and push the raw results into the central object store. The Valuator part of the
Core & Valuator component realises database handling as well as evaluating
fuzzy results (to be described in details in Section 3.3).

3.3 Details of Valuator

The Valuator realizes the essential functionality of the performance characteriza-
tion as it aggregates raw benchmark data and associates symbolic performance
values with the IaaS clouds. It provides the fuzzy inferences systems and stores
the results in a database. The corresponding fuzzy rules are described in a stan-
dardized control language [5].

Figure 2 presents the proposed three layered HFS. In the first layer (L0), the
raw benchmark results produced by the probes of PerfVM are taken as inputs.
These are already processed by the probes so that erroneous measurements and
noise are filtered out and the deviation of the results are within limits. Data are
grouped by benchmark tools such as compilation performance, database per-
formance, disk write performance, numeric performance, etc. A fuzzy inference
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Fig. 1. Framework components

Fig. 2. Hierarchical fuzzy system
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Fig. 3. Example

produces a single output per input groups. The outputs of the first layer are the
inputs of the second layer (L1) where these values are grouped again by probe
types and a fuzzy inference is initiated on these inputs. For instance, first level
inputs are the execution times of three CPU benchmark tool. As an output, a
single fuzzy metric is produced that represents the CPU performance. Similar
tests are carried out for disk, memory and network. From the numerous raw
data items four outputs are generated representing each categories.

The last layer groups the component level values and provides a single value
(L3) that we consider characteristic to the cloud infrastructure in scope.

A key aspect is how fuzzy rules are constructed. The knowledge base contains
the membership functions, rules and reference benchmark values. These reference
values are used to establish the fuzzy sets and are empiric as a common practice
for designing and tuning fuzzy logic based systems and services. References were
established on a local IaaS cloud system running production services and also
used for developing and testing new products so the workload of the cloud is
diverse in different time periods (e.g., it is usually more utilized in the daytime).
Therefore, the infrastructure was measured during a month and the reference
values were calculated as averages of the benchmark results.

All fuzzy rules and membership functions are based on the same template. The
weighted rules with the membership functions, presented in Figure 3, provide
an appropriate characteristic, because they make the system insensitive against
the peak results and they penalize the low performance.

3.4 Implementation

For implementing the prototype of the framework, we solely relied on open source
components. The PerfVM uses Debian GNU/Linux operating system and PTS
for producing benchmark data from the target clouds. These data are stored in
central storage that is accessible via a Simple Storage Service (S3) compatible
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interface. The proposed framework is implemented in Python [15] and it uses
the freely available draft version of Fuzzy Control Language (FCL) and pyfuzzy
(a Python fuzzy library package). The FCLs describes (i) the requested input
variables and their fuzzy membership functions; (ii) the output variables; (iii)
the defuzzification method and rules. The system uses the Central of Gravity
(CoG) defuzzification method. The fuzzy inference results are stored in a MySQL
database. For the evaluation, the Fuzzy Toolbox of Matlab [12] was used.

4 Proof of Concept

In this section, we demonstrate the effectiveness of our proposed performance
characterization method by explaining a part of the whole procedure, the disk
performance process as an example. Experiments were carried out on raw per-
formance data collected from the SZTAKI Cloud and from the European region
of Amazon EC2. The experiment is a hypothetic performance (wrt. disk I/O)
comparison of the two services running on the general purpose m1.medium in-
stance type. We present the benchmark results both representing the ’common
approaches’ and the characterization produced by our method and contrast the
two. They are examined in terms of correctness, comparability and readability.

Figure 3 shows our example, the disk evaluation sub-process composed of a
two layered HFS.

DBench and fs mark produce the raw benchmark data (L0). The tool uses
I/O patterns that are similar to what a particular application performs. It can
simulate concurrent clients in order to predict the robustness and I/O through-
put of the underlying storage system. The fs mark tool can test synchronous
write workloads with different running options such as number of files, file size,
directory depth or number of used threads (for instance the third column in Ta-
ble 1, where the test wrote 5000 files through 4 threads with 1 MB size per file)
that makes it adequate for benchmarking I/O performance. Both tools provide
reliable information about the I/O system of the tested machines as presented
in Tables 1 and 2. Recall our aim as it was put forward in Section 1: customers
are curious if a service meet the expectations, if the performance of two services
can be compared objectively. If one examines the figures in Tables 1 and 2, no
clear conclusion can be drawn. For instance, raw performance figures in Table 1
suggest that SZTAKI Cloud is superior to Amazon EC2 yet, it is impossible to
trace how much it is better (differences are not proportional); in what measure it
exceeds the limits declared in SLAs. Roughly the same applies to measurements
presented in Table 2. Hence, it is a difficult to infer the performance character-
istic of clouds solely from the raw benchmark data at level L0. On the other
hand, performance metrics at level L1 produced by our method (denoted as Cal-
culated value in Tables 1 and 2) are a result of fuzzy inference, normalisation
and defuzzification.

Understanding and analysing raw benchmark data requires domain knowledge
whereas the calculated values are easily comprehensible: instead of a
vector of metrics, a single aggregated value between 0 and 100 represents the
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Table 1. fs mark results

Args [Options] 1000 Files,
1MB size

5000 Files,
1MB Size,
4 Threads

4000 Files,
32 Sub

Dirs, 1MB
Size

1000 Files,
1MB Size,
No Sync /
FSync

Calculated
value
[0-100]

SZTAKI [Files/s] 58.55 93.87 68.33 132.63 62.55
Amazon [Files/s] 38.87 49.73 40.83 119.07 43.60

Table 2. Dbench results

Arguments [Client(s)] 1 6 12 48 128 256 Calculated
value
[0-100]

SZTAKI [MB/s] 113.385 225.64 242.08 220.02 185.53 134.38 72.16
Amazon [MB/s] 80.14 174.37 166.09 176.74 177.51 119.48 62.06

Table 3. Aggregated results

Tool DBench fs mark Calculated value

SZTAKI [0-100] 72.16 62.55 62.98
Amazon [0-100] 62.06 43.60 47.05

characterization. Hence, comparison is straightforward. Reference values (e.g.,
limits) can also be transformed into the [0-100] scale that makes it possible to
compare the performance wrt. SLA minimums. In this particular example the
reference value was set to 50. Furthermore, these performance metrics produced
by a fuzzy calculation can be easily transformed to symbolic, easy-to-read values
for human interpretation such ”medium performance”, ”high performance”, ”up-
per medium performance” and similar tags in arbitrary details and resolution.
Accordingly, if reference values are introduced into the system, one may compare
symbolicaly as ”above the reference point”, ”close to the reference point”, etc.
At the next level of hierarchy these calculated values at level L1 are taken as
inputs and values for level 2 (component level in this example) are produced in
a similar way, cf. Table 3 for the summary of L1 and L2 values.

Important to notice the properties of the raw and calculated performance met-
rics as compared in Table 3. While benchmark tools typicaly generate outputs
by simply averaging the measurements, HFS is a more elaborate calculation that
is able to highlight or dampen (reward or penalize) certain aspects or details of
the performance characteristics. Observing the results and the generated level
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L2 system output surface, presented in Figure 3, it can be seen that the HFS or
its rules cannot be substituted by any linear approximation schemes.

In this particular experiment SZTAKI Cloud performed better than the ref-
erence system because both of the DBench and fs mark resulted a score above
than 50. In case of Amazon EC2, the DBench performance was better than the
reference value, however the fs mark was below. The introduced example and its
results demonstrated that the fuzzy inference method generated a performance
characterization that enabled the straightforward comparison or classification of
services based on their performances and the created HFS meets the require-
ments set in Section 1.

5 Conclusion and Future Work

In this paper, we discussed the difficulties of the performance characterisation
of IaaS clouds that originate mainly from virtualization. There is an evident
need for consumers to compare the cloud services in terms of ”performance”
on the other hand, it is not easy to capture the notion of ”cloud performance”
and the conventional performance tools such as benchmarks deliver large sets of
numeric data that are not necessarily consistent and hard to analyse or compare.
We analysed the reasons and background of this issue. Our work is aimed at
establishing a framework for normalized, comparable and readable performance
analysis of IaaS providers so that services of the different providers become easily
characterized.

Our method also builds on benchmark tools at the low level but performance
data are processed in a hierarchical fuzzy systems. The fuzzy framework allows to
transform multi-dimensional numeric (quantitative) values into symbolic (qual-
itative) metrics of lesser dimensionality. This transformation is based on fuzzy
inference governed by fuzzy rules. The large number of variables may lead to
unacceptable exponential complexity of rules. We alleviated this issue by a hi-
erarchical fuzzy inference system that both reduces the complexity of a single
inference stage and also classifies performance variables so that meaningful per-
formance characterization can be established at different levels and different
details of the system.

Finally, we evaluated the prototype by comparing the Amazon EC2 and SZ-
TAKI IaaS clouds that confirmed the applicability of the framework. In the fu-
ture, we plan to improve our framework by refining FCLs for more comprehensive
evaluations. Moreover, we plan to extend the framework with the capability of
assessing other aspects of performance (see Sections 1 and 2) such as Service
Level Agreement (SLA) violations of IaaS providers.
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Abstract. Recent evolution of supercomputer architectures toward mas-
sively multi-cores nodes equipped with many-core accelerators is leading
to make MPI-only applications less effective. To fully tap into the po-
tential of these architectures, hybrid approaches – mixing MPI, threads
and CUDA or OpenCL – usually meet performance expectations, but at
the price of huge development and optimization efforts.
In this paper, we present a programming framework specialized for

molecular dynamics simulations. This framework allows end-users to de-
velop their computation kernels in the form of sequential-looking func-
tions and generates multi-level parallelism combining vectorized and
SIMD kernels, multi-threading and communications. We report on pre-
liminary performance results obtained on different architectures with
widely used force computation kernels.

Keywords: Molecular dynamics, MPI, threads, TBB, vectorization,
OpenCL, object-oriented design, Lennard-Jones, EAM.

1 Introduction

Molecular dynamics (MD) is a method used to compute the dynamical prop-
erties of a particles system, widely spread in fields such as Materials Science,
Chemistry and Biology. With its scalable structure, MD took a substantial step
with the ever increasing computer capabilities: after starting at a few hundreds
particles [1], MD simulations have successfully coped with million particles sys-
tems in the 90s [11], before reaching one billion particles in 2005 [9].

Parallelism in most MD codes is limited to classical domain-decomposition
techniques, and the use of accelerators is still rare. In the same time, future
processor architectures are expected to feature a large number of cores with a
fair decrease of the available memory per core, and the use of a co-processor
has become quite common. The Intel R© Xeon PhiTM architecture illustrates this
trend well.

Stamp is a classical molecular dynamics production code which has been de-
veloped at CEA for twenty years [18]. Its flat MPI architecture and the absence

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 121–132, 2014.
c© Springer International Publishing Switzerland 2014
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of vectorization will obviously not fit requirements of next generation processors.
To the best of our knowledge, no existing MD program is able to exploit clus-
ters of such hybrid nodes, potentially equipped with different accelerators, in a
uniform way. The development of a new object-oriented framework ExaStamp,
capable of fulfill these new needs, began in 2012.

Optimized for large scale simulations of solid-state materials and shock phy-
sics, this framework supports several levels of parallelization. Besides the classical
hybrid programming model, we developed a tool which enable generation of effi-
cient vectorized code and OpenCL kernels for modern CPUs, GPUs and Intel R©

Xeon PhiTM accelerators. The complexity of implementing different parallelisms
has been hidden from the non-expert developer through its object-oriented de-
sign. For main algorithms, our framework contains parallelism in specific mod-
ules. In the case of compute-intensive parts, specific vectorized instructions can
be instantiated from the same sequential-looking code. Furthermore, data struc-
tures and their associated algorithms were carefully designed so as to keep the
memory footprint as low as possible, meeting the requirements of future many-
core architectures.

This paper discusses the design, implementation and performance of ExaS-
tamp framework. It is organized as follows: in Sect. 2 we introduce Molecular
Dynamics simulations and present the classical parallelization approaches. The
design and implementation of our approach are are presented in Sect. 3. Perfor-
mance results on different computers architectures are detailed and analyzed in
Sect. 4. Finally, some conclusions and perspectives are discussed.

2 Molecular Dynamics

The main principle of MD consists in numerically integrating Newton’s equation
of motion f = ma, where the force on a particle depends on the interactions
with all others [2]. Among the multiple ways to solve this equation, the Leapfrog
integrator and the Verlet integrator, which are equivalent, are the most used as
they offer greater stability, as well as other properties, for a low computational
cost [14].

update positions
(
Δt/2

)

compute force

update velocities
(
Δt/2

)

update positions
(
Δt/2

)

Fig. 1. Overview of a time-step in a MD simulation using the Leapfrog integrator
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In most MD simulations, particles are treated as points and the interacting
force between particles is approximated as a gradient of a potential that depends
on the distance between those particles. The force computation is obviously the
most challenging part: it contains all the physics of the simulation and can take
up to 95% of the total time. When this potential comes from quantum mechan-
ics principles, we talk about ab initio molecular dynamics; in the other case,
the term classical molecular dynamics is used. Potentials from classical MD are
empirical or semi-empirical; they are computed from an analytical formula, or
they can be interpolated from tabulated values [22]. In this paper, we will fo-
cus on short-range interactions: it means that beyond a given distance rc called
the cutoff distance, interactions will be neglected. This approximation is com-
pletely justified for solid materials, since distant atoms are “screened” by nearer
atoms. In case of systems with electrostatic or gravitational effects, long-range
interactions cannot be omitted and special algorithms have been designed [10].

Although it was first designed to study gases, the Lennard-Jones poten-
tial (LJ) [13] has been used in a large part of material science, and became
a standard benchmark for MD codes. The LJ potential is a pair potential, which
means that it describes the interaction between a pair of particles (within the
cutoff distance). For this potential, the expression of the energy on a particle i
is given by

Ei =
1

2

∑
j

V (rij) , with V (rij)
rij≤rc

= 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]
, (1)

where ε and σ are parameters which denotes respectively the well depth and the
bond length.

Yet, pair potentials remain limited when it comes to bonded interactions: as
an example, Stillinger and Weber developed a three-body potential for Silicon
crystals [19]. For the study of metals and their alloys, effects from the electron
charge density have a significant impact: the Embedded Atom Method (EAM)
provides an accurate model and an acceptable computational cost [6,8,7].

Ei =
1

2

∑
j

φ(rij) + F

⎛
⎝∑

j

ρj(rij)

⎞
⎠ , (2)

where φ is a simple pair potential, ρj the contribution of the electron density near
atom j, and F an embedding function representing the amount of energy required
to place atom i in the electron cloud. Both φ and ρ are canceled beyond the cutoff
distance. Common EAM potentials are for instance the Johnson potential, the
Sutton-Chen (SC) and the Tersoff potentials [12,20,21].

3 A Framework for Molecular Dynamics Simulations

ExaStamp has been designed to replace the production code Stamp on the next
generation of supercomputers. Targeting solid-state material and shock physics
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studies, it should be able to perform very large scale simulation of complex
systems (a billion particles with many-body potentials) on a various range of ar-
chitectures. As a future production code, all the programming refinement should
be hidden from standard developers. To this end, we chose the C++ language
and widely used C++11 standard features. With upcoming parallel architectures
in mind, we also focused on minimizing memory footprint of our data structures,
so as to handle large sets of particles.

There are three basic ways to parallelize work in a MD simulation: par-
allelization over particles, parallelization over pairs of particles and domain-
decomposition. As explained in [16], the first two proved inefficient, as they
require to many communications over the interconnection network, leaving the
third one as the only possibility despite potential load-balancing issues.

The latter method is typically used in MPI implementations: the global do-
main is split and each process is assigned to a sub-domain. To compute inter-
actions on the edges, each sub-domain will be enclosed in a ghost layer, which
consists in a copy of the boundaries with its neighboring sub-domains. In prac-
tice, the length of this ghost layer is generally the cutoff radius. The outline in
Fig. 1 is hardly modified: everything is performed in parallel, one extra step is
used to send and receive particles moving between sub-domains, and another
one to update the ghost layer.

3.1 Overall Parallelization Strategy

In our approach, the global domain is overdecomposed with respect to the un-
derlying cluster nodes (as illustrated in Fig. 2). Several domains can thus be
assigned to a single node, each being treated either by regular CPU cores or
by accelerators. We now present the main concepts and algorithms used in our
framework.

Node and Communication Manager. A Node is the top structure of the
code. We decided to use this terminology as we intend to use one Node structure
per machine node in production mode, so that we can take advantage of shared-
memory systems. Thus it contains the integration scheme, a list of one or several
domains, and a communication manager. The Node is also responsible for IOs.

The Communication manager structure is an object-oriented framework for
communications. It allows a developer to create its own custom types and
provides wrappers to use these types in communication.

Integration Scheme. The family of integration schemes depicted in Fig. 1
reveals that they are basically made of the same elementary functions: updat-
ing a quantity (particles positions or velocities) with an explicit (first or sec-
ond order) Euler scheme, or the force computation. Therefore we can define a
NumericalScheme as an object with a function oneStep(), which contains a se-
quence of predefined elementary functions. Implementing a new scheme does not
require the knowledge of lower classes implementation, as long as the requested
elementary functions are implemented.
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. . .Node

Domain – Grid

MPI

Cell

Node

Comm.
Manager

Integration
Scheme

Domain

Grid Array<Cell>

TBB or
OpenCL

Fig. 2. Overview of ExaStamp architecture: pseudo-UML diagram with main classes
of the code (left) with “physical” representation (right). The dark orange circle corre-
sponds to the area of influence of a particle, whereas the light orange zone is the set
of cells where neighbors will be looked for

Domain. Domain concept gathers an interface and its possible implementa-
tions. Domain interface contains basic accesses and elementary functions re-
quired by all NumericalScheme objects. A Domain proceeds to a reorganization
and code factorization of these requirements for their implementation in lower-
level classes.

Let us consider the force computation example. The code provides the possi-
bility to overlap communication with computation: it means that it is possible
to start updating ghost layers and compute forces inside the domain while com-
munications are processing. Once the ghost layer update is over, we can start
the force computation on the domain’s edges. A NumericalScheme object does
not need to know whether communication overlap has been enabled, it just asks
for the forces computation. In the Domain class, two different functions handled
by a strategy pattern are available.

Grid and Cells. When it comes to the force computation, each particle should
get a list of its neighbors. Let us partition the domain with a virtual cubic mesh
with a size slightly greater than the cutoff radius. Given a particle, we only have
to look for its neighbors in the cell where it lives and its neighboring cells, which
makes a total of 27 cells (in a three-dimensional space) to explore. This how
the linked-list cell method [2] starts, reducing a naive pair search in O(N2) into
a O(N) algorithm.

Though we will not use this method (linked-cell list are not well suited neither
for parallelism nor for vectorization), we will fully benefit from the cell parti-
tioning. The task of Grid object is to implement all services required by the
Domain class. In order to keep a high level of modularity without paying the
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cost of virtualization, we used a curiously recurring template pattern [5] in its
implementation. Apart from this, we could almost reduce the Grid object into
an array of Cell objects, which is where particles live.

We decided to focus the thread parallelism on this Cell array: it is roughly the
same idea than a parallelization over particles, with a bigger grain-size. To max-
imize threads efficiency, we chose to store particles as structure of arrays (SOA)
at the Cell level, which will become an array of structures of arrays (AOSOA)
at the Grid level. Indeed, this structure enable vectorization within cells and is
especially efficient when it comes to concurrent accesses: two threads working
on two different cells can add and remove particles from those cells (which po-
tentially means data reallocation). On the contrary, parallelization over one big
array of particles would have required critical regions, throwing away any goal
of performance on a many core system.

3.2 Code Specialization

Performing high performance molecular dynamics over hybrid machines requires
to use highly optimized computation kernels combining threads/tasks and vec-
torization over CPU cores or Intel R© Xeon PhiTMaccelerators, and highly parallel
SIMD code for GPU accelerators. In our Framework, domains assigned to regular
CPU cores are parallelized using Intel R©’s Threading Building Blocks (TBB) [4],
whereas domains assigned to GPU or Intel R© Xeon PhiTMaccelerators rely on a
series of OpenCL kernels which parallelize each step of an iteration loop.

Despite progress made by compilers regarding auto-vectorization, writing code
to maximize the number of vectorization opportunities detected by the compiler
remains a delicate process. Writing efficient OpenCL code is also a delicate task,
and actually requires to perform target-specific (and even platform-specific) op-
timizations. Intel, AMD and NVIDIA programming guides, for instance, each
suggest different optimizations which can actually lower performance on other
platforms. For all these reasons, implementing a new particle interaction po-
tential would normally require to develop and optimize multiple versions of the
force computation kernel (Fig. 1), in multiple languages.

To solve this problem, our framework allows force computation steps to be
written as a set of C++ sequential-looking functions, as illustrated on Fig. 3 for
the LJ potential.

When instantiated on multi-core architectures, this code is transformed us-
ing C++ template classes to generate intrinsic vector functions instead of scalar
operations, to guarantee that the force computation kernel is fully vectorized.
A unique sequential-looking code is used, whatever the type of vectorization is
performed (no vectorization, SSE, AVX, or IMCI1). The obtained vectorized
kernel is used inside Cells and is called from within a sequential loop iterating
over particles. At the upper level, each iteration step is parallelized using a TBB
parallel for loop iterating over Cells (as described in Section 3.1).

1 IntelR© Initial Many Core Instructions, a set of vector instructions for the KNC.
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void lennardJones ( double *ep_i,

*fx_i, *fy_i, *fz_i,

*rx_i, *ry_i, *rz_i ) {

vector_t t0, t1, t2, t3, t4, t5;

t0.load (rx_i);
t1.load (ry_i);
t2.load (rz_i);

t3 = inv(t0*t0 + t1*t1 + t2*t2);

t4 = t3 * _sigma2;
t5 = t4 * t4 * t4;
t4 = t5 * t5;

t5 = t4 - t5;
t4 = t5 + t4;

t5 = _2epsilon * t5;
t4 = _24epsilon * t4 * t3;

t0 = t0 * t4;
t1 = t1 * t4;
t2 = t2 * t4;

t0.store (fx_i);
t1.store (fy_i);
t2.store (fz_i);
t5.store (ep_i);

}

(a) double
(b) __m128d
(c) __m256d
(d) __m512d

(a) t1 * t1
(b) _mm_mul_pd(t1, t1)
(c) _mm256_mul_pd(t1, t1)
(d) _mm512_mul_pd(t1, t1)

template<...>
class vector_t

template<...> vector_t
operator * (...)
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Flags used to select right intrinsics
instructions (at compile time):
(a) <no flag>
(b) __vectorize_sse
(c) __vectorize_avx
(d) __vectorize_mic

Fig. 3. Implementation of force and energy computation function using a LJ potential.
If V denotes the potential as described in (1), we have to compute ei =

1
2
V (‖ri‖) and

f i = −∇‖ri‖V (‖ri‖). Written in a C-like way (except for the function signature which
contains templates and operator), it hides intrinsics functions enabled at compile-time
with predefined flags.

When instantiated on accelerators, the sequential version of the code (see
variant a on Fig. 3) is called from within an OpenCL force computation ker-
nel. This kernel is executed by as many OpenCL workitems as the number of
particles in the domain. The generic part of the kernel is optimized either for
GPUs (coalesced memory accesses, bank conflicts avoidance, weak code diver-
gence) or for Intel R© Xeon PhiTMaccelerators (vectorization, cache reuse), but all
these optimizations are hidden to the end-user. In the next Section, we present
the performance achieved by our framework on various hardware platforms.

4 Performance Evaluation

All tests in this Section have been performed on CCRT’s clusters2 (see Table 1 for
CPU specifications – the GPU used for OpenCL test is a NVIDIA Tesla K20c).

2 Centre de Calcul Recherche et Technologie –
http://www-hpc.cea.fr/en/complexe/ccrt.html

http://www-hpc.cea.fr/en/complexe/ccrt.html
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Table 1. Specifications of CPU used for our different tests. Cache size displayed are L3
sizes, except for the KNC which is L2. Airain’s Ivybridge and Standard partitions are
respectively made of 360 and 594 nodes connected with an Infiniband QDR network.

Airain Cirrus
Ivybridge Standard KNC

Model Intel R© Xeon R©
CPU E5-2680 v2

Intel R© Xeon R©
CPU E5-2680

IntelR© Xeon PhiTM

Coprocessor 5120D

Max Freq. (GHz) 2.8 2.7 1.05
Number of cores 2×10 2×8 60
Cache Size (MB) 25.60 20.48 30.00
Vectorization AVX AVX IMCI

Code was compiled using Intel R© compiler (version 14.0.2) with O3 optimization
and vectorization enabled. Simulations involve a FCC lattice (a=0.354 nm) of
copper at 600 K, using either a LJ (ε=0.583 eV, σ=0.227 nm and rc=0.227 nm)
or an analytic Sutton-Chen potential (c=33.2, ε=2.25 · 10−2 eV, a0=0.327 nm,
n=9.05, m=5.01 and rc=0.729 nm).

4.1 Vectorization

On a Single CPU Core. To compare compilers auto-vectorization capabilities
against hand-vectorized code, we use the sample code presented in Fig. 3 and
generate both a naive version (variant a) and a SIMD version (variant b, c or d).
Results in Table 2 clearly exhibit that hand-vectorization is mandatory to get
high performance on non-trivial computation kernels.

Fig. 4 presents vectorization performance over a full simulation, for two po-
tentials: a light one (LJ) and an expensive one (SC, with analytical functions).
As expected, the use of vector units is still quite efficient, especially for the SC
potential (which is about 40% faster). Its vectorization has been made possible

Table 2. Performances of our “SIMD” wrapper against a naive version for a LJ poten-
tial. Here we compare execution times in seconds (average on a million runs with arrays
of size 256) of both versions for different vectorization modes. Tests were performed on
an Ivybridge (first three lines) and a IntelR© Xeon PhiTM (last two lines).

Mode Flags Naive Simd Speedup

Default -O3 2.42 2.26 1.07
SSE -O3 -msse4.1 -D vectorize-sse 2.41 1.06 2.27
AVX -O3 -mavx -D vectorize-avx 2.48 0.73 3.39

Default -O3 46.80 36.24 1.29
IMCI -O3 -mmic -D vectorize-mic 46.79 5.10 9.17
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Fig. 4. Effect of vectorization for different potentials on Ivybridge (Airain). Simulations
performed on 128 time-steps with one million atoms. Tp,s,th. represents the time per
particle per iteration per thread.

thanks to Intel R© Short Vector Math Library (SVML), which provides intrin-
sic instructions for advanced math functions. Issues between Intel R© compiler
and C++11 standard prevented us from performing full native code simulations
on a Intel R© Xeon PhiTM.

4.2 Multithreading

In Fig. 3, we compared memory usage for different number of threads and MPI
processes. Memory usage was measured with the getrusage() function given
by the standard C library, and sum across processes when needed. If it remains
constant for simulations using only TBB, we observe that those which use only
MPI ones need up to 25% more memory. Differences are even more important
on a larger runs: for 4.3 billion particles on 16,384 cores, simulations with re-
spectively 1, 2 and 4 threads per MPI process need 11.5, 9.5, and 8.3 Terabytes
of memory, which make the full MPI about 40% more expensive.

Table 3. Comparison of maximum memory usage (in GB) between MPI and threads
simulations on one Ivybridge node. Simulations performed on 64 steps with a SC
potential.

Total Num. Cores 1 10 20
MPI × Threads 1× 1 10× 1 1× 10 20× 1 1× 20
2 · 106 atoms 3.82 4.35 3.85 4.80 3.87
5 · 106 atoms 9.46 10.12 9.51 10.82 9.59
10 · 106 atoms 18.86 19.77 18.97 20.90 19.06
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4.3 Scalability

Results from a weak scaling test up to 2,048 cores for different number of threads
are plotted on Fig. 5. If the 16 threads case is obviously out of touch, it can be
explained by NUMA accesses between sockets. From 1 to 8 threads the efficiency
drop is very well contained, with all values between 90 and 95% for 2,048 cores.
Runs with more than one thread are faster than the full-MPI one, although
efficiency values are very close. It seems tricky to establish a clear hierarchy.

2 8 32 128 512 2048
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Total number of cores
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ar
a
ll
el

effi
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1 thread
2 threads
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Fig. 5. Scaling tests of ExaStamp for different number of threads on Airain’s Standard
nodes. Simulations performed on 1,024 time-steps with 4.0 · 105 atoms per core using
a SC potential.

4.4 Performances on Accelerators

Fig. 6 reports results obtained with the LJ potential on a Intel R© Xeon PhiTM

and a GPU. We observe that the GPU needs only five millions atoms to reach its
peak performance, when the Intel R© Xeon PhiTM requires around twenty. In single
precision, the Intel R© Xeon PhiTM gets slightly better performances (10% faster
than the GPU), and this difference increases in double precision mode (+20%).
Memory usage is perfectly linear with the number of atoms. As expected, the
double precision mode requires twice the amount used for single precision one.

5 Related Work

Developed at Sandia National Laboratories, the LAMMPS [16] package has
become a reference in MD. It can perform simulations up to a billion atoms
on 64, 000 cores (using mainly MPI), covering physics from solid-state materi-
als to soft matter. Yet, its multithreads implementation is still limited to some
modules, with no better performance than full MPI [17, Sect. 5]. Gromacs [3]
and NAMD [15] are more recent high-performance oriented codes targeting bio-
molecular systems, which is far from condensed matter physics. As a result, these
programs require a completely different coding approach than ours.
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Fig. 6. Performance of OpenCL simulations on different accelerators, using LJ poten-
tial. For both single and double precision, we compare performance in term of atom
throughput (number of atoms per second per iteration) and memory footprint.

6 Conclusion and Future Work

We presented ExaStamp, a classical molecular dynamics framework designed
for production on new generation supercomputers. Its object oriented design
allowed us to hide complexity introduced by multiple levels of parallelism. On
that point, early returns by developers are very positive. Besides, performance
results in terms of vectorization, scaling and memory usage are very promising.

We will soon be able to start testing on ExaStamp with native code on Intel R©

Xeon PhiTM, which will undoubtedly be an important platform to achieve “real
physics” simulations. On top of development of new potentials and numerical
modules, we will also focus on the development of a dynamic load balancing
capability on nodes level.

Acknowledgment. This work is integrated and supported by the PERFCLOUD
project, a French FSN3 cooperative project that associates academic and indus-
trial partners to design and provide building blocks for new generations of HPC
data-centers.
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Abstract. The massively hardware multithreaded VLIW emulated
shared memory (ESM) architecture REPLICA has a dynamically re-
configurable on-chip network that offers two execution modes: PRAM
and NUMA. PRAM mode is mainly suitable for applications with high
amount of thread level parallelism (TLP) while NUMA mode is mainly
for accelerating execution of sequential programs or programs with low
TLP. Also, some types of regular data parallel algorithms execute faster
in NUMA mode. It is not obvious in which mode a given program region
shows the best performance. In this study we focus on generic stencil-like
computations exhibiting regular control flow and memory access pattern.
We use two state-of-the art machine-learning methods, C5.0 (decision
trees) and Eureqa Pro (symbolic regression) to select which mode to
use.We use these methods to derive different predictors based on the
same training data and compare their results. The accuracy of the best
derived predictors are 95% and are generated by both C5.0 and Eureqa
Pro, although the latter can in some cases be more sensitive to the train-
ing data. The average speedup gained due to mode switching ranges
between 1.92 to 2.23 for all generated predictors on the evaluation test
cases, and using a majority voting algorithm, based on the three best
predictors, we can eliminate all misclassifications.

1 Introduction

In the multicore era we do not only face the problems that parallel programming
brings; modern architectures and hardware platforms also expose the advantages
and problems of managing heterogeneity. Today’s computer systems usually have
multicore processor chips and dedicated accelerators such as GPUs. To utilize
these systems efficiently, boils down to selecting where and how to run a program.
How to achieve high performance for real applications ist not straight forward,
and predicting performance is even harder since aspects such as data locality
and movement has to be considered.

In this study we use the VLIW massively hardware multithreaded emulated
shared memory (ESM) architecture REPLICA. Each core has 512 hardware
threads and the processor pipeline is designed so that the high number of threads
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effectively can hide the latency of accessing the emulated shared memory. Since
it is realizes the PRAM (parallel random access machine) model [12] it is very
convenient to program. To get full performance an ESM needs programs with
large enough thread level parallelism (TLP). To solve the problem with low
TLP REPLICA can be reconfigured at run time so that the time slot of several
hardware threads are bunched together and access on-chip memory modules in
NUMA mode such that the PRAM emulation is switched off and the overhead
from plain ESM is removed [6,7]. Switching between PRAM and NUMA mode
take only a moderate number of clock cycles as overhead.

For the programmer, NUMA mode means that there are fewer threads and
the memory latency becomes ”visible” and has to be taken care of manually to
utilize the hardware fully. The main reason for having NUMA mode is to be
able to accelerate execution of sequential legacy programs and programs with
low thread level parallelism faster since they do not suit PRAM mode very well
[8]. To switch to NUMA mode the programmer can join all the threads on a core
at runtime, so each core becomes single threaded, and can execute faster. It is
not always obvious which parallel programs will run faster in NUMA mode, one
reason is that hashing of memory adresses is not exposed to the programmer.
To tackle this we use state-of-the-art machine-learning methods.

We have in earlier work, for example in [8], introduced REPLICAs PRAM-
NUMA programming model and given som basic examples and evaluations. We
have also earlier done a preliminary evaluation of REPLICA PRAM capabili-
ties [11], where one conclusion was that PRAM mode is very good for irregular
memory access and control flow problems in contrast to commercially avail-
able state-of-the-art CPUs and GPUs. However, REPLICA PRAM mode was in
several cases outperformed by cache based CPUs and GPUs when it comes to
regular memory accesses and control computations [11].

The main goal of this paper is to define an initial model that predicts when
to use NUMA mode and when to use PRAM mode in terms of performance.

Since PRAM mode already is very fast for irregular problems but possible
suboptimal for regular [11], we here focus on regular data parallel problems
namely, generic stencil computations. In [8] we also showed that locality and
latency optimizations could be beneficial in NUMA mode, these optimizations
suite of course regular problems well.

A secondary goal of this paper is to take two popular state-of-the-art machine
learning tools, one based on decision trees and one on symbolic regression, to see
if they can be used for modeling this kind of performance optimization problems
of heterogeneous architectures. For both methods we use the same training and
evaluation data sets. The accuracy of the best derived predictors are 95% and
are generated by both C5.0 and Eureqa Pro, although the later can in some
cases be more sensitive to the training data. The average speedup gained due to
mode switching ranges between 1.92 to 2.23 for all generated predictors on the
evaluation test cases. Using a majority voting algorithm, based on the three best
predictors, we can eliminate all misclassifications on the evaluation test cases.
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2 REPLICA Architecture

The REPLICA architecture is a chip multiprocessor (CMP) family of config-
urable emulated shared memory machines (CESM) [8] designed by VTT, Oulu,
Finland1. Different configurations of the processor have different numbers of
cores’, arithmetical logical units (ALUs), and memory units (MUs). The pro-
cessor cores memory modules are connected via a 2D multimesh network. In
this study we use the cycle accurate REPLICA simulator, however a hardware
prototype is under construction.

2.1 PRAM Mode

One main feature of the REPLICA architecture is PRAM mode. In PRAM
mode, the programming model of the processor exposed to the programmer
is the Concurrent Read Concurrent Write (CRCW) PRAM model. It gives a
deterministic synchronous programming model that allows concurrent memory
accesses and strict memory consistency [12]. To hide the memory latency each
core has 512 hardware threads. Each REPLICA core is a VLIW architecture;
in PRAM mode it supports chained functional units (FUs) which means that
the result of one functional unit can be used as input to the next unit in the
pipeline in the same step. This reduces the pressure on general purpose registers
and we are not dependent on the same degree of instruction level parallelism
(ILP) as ordinary VLIW architectures are to utilize all functional units. We
have specific code generation support and an optimization phase in our LLVM
based REPLICA compiler to support arbitrary numbers of chained functional
units [13].

In PRAM mode REPLICA supports so called multiprefix instructions [5].
Threads in the same thread group that execute the same multiprefix instruction
participate to calculate the result together. Multiprefix operations are consid-
ered important building blocks in parallel algorithms, see for example [12]. Pro-
gramming PRAM mode is straight forward, but to get good performance out of
PRAM mode the programmer should use the multiprefix operations if possible.

2.2 NUMA Mode

As mentioned before, the main motivation for NUMA mode is to be able to accel-
erate execution of sequential legacy programs and programs with low thread level
parallelism faster than in PRAMmode. To switch to NUMAmode REPLICA has
a specific assembly instruction JOIN that joins all threads in a thread group to a
NUMA bunch. To switch back to PRAM mode we use the SPLIT instruction. In
our C based REPLICA baseline language [8] we have a construct numa(s) that
switches the processor to NUMA mode, executes the statement s, and switches
back to PRAM mode. The construct also orchestrates setting up the stack point-
ers, thread ids etc. and restores them. The overhead of switching to NUMA and

1 REPLICA project site: http://www.vtt.fi/sites/replica/?lang=en

http://www.vtt.fi/sites/replica/?lang=en
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back is around 16000 clock cycles2 [8]. When the processor runs in NUMA mode,
no chaining of functional units is possible, the number of functional units is fixed
to the ones given in Table 1 even though it can have more in PRAM mode. This
is taken care of by the compiler [8]. Programming for NUMA mode is like pro-
gramming for traditional NUMA multicore processor with global shared memory
and private local memory.

In this paper we have selected a configuration (number of ALUs and MUs)
in PRAM mode that looks most similar to the fixed one in NUMA mode, to
be able to highlight the differences that comes from NUMA mode itself and not
from having a fat PRAM. See Table 1 for the specific processor configurations.

Table 1. Configurations used in this paper

Mode Cores Threads
per core

Pre mem-
ory ALU

MU Post
Memory
ALU

Compare
unit

Chained
FU

PRAM 4 512 1 1 0 1 Yes
NUMA 4 1 1 1 0 1 No

There are three paradigms for accessing shared memory in NUMA mode [8]:
– Freeze processor: the whole processor freezes until the data has arrived.
– Freeze bunch: only the bunch freezes until data has arrived.
– Load with explicit receive (LER): After an asynchronous shared load, an

explicit receive instruction REC0 need to be issued; in between, other in-
structions can execute.

These paradigms are fixed and can not be selected at runtime. If a REC0 is
issued directly after a load the bunch will freeze until data has arrived just like
int the case of ”freeze bunch”. It important to note that loding from shared
memory with the LER paradigm occupies the memory unit twice, once for the
load instruction (LD0) and once for the receive (REC0). With LER the result of
the load will be stored in a register and used as an input to the receive. The
used register will be kept alive until the receive is done. If we are short of the
registers the compiler will insert spill code to local memory (stack) wich can
reduce performance and it might have ben better to ”freeze” the bunch instead.
In this paper we still only focus on LER, since it gives more opportunities for
optimizations.

3 Parameterized Benchmark

In earlier initial work we have shown that PRAM mode suits programs with
irregular memory access and control flow very well, while regular problems do
not benefit from PRAM mode [11]. In that study we only focused on PRAM

2 About 11000 cycles for PRAM-NUMA switching and about 5000 vice versa. As
there are 512 PRAM threads per core in PRAM mode, this corresponds to about 32
PRAM instructions executing per thread for switching back and forth again.
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mode, still our experience is that in order to be able to make (any) practical use
of NUMA the problems needs to be very regular in terms of memory accesses and
control flow. We need to reduce loads and stores from shared memory, but also
reading and writing to local memory is considered expensive in NUMA mode.

To explore when NUMA mode can be beneficial we introduce a parameterized
benchmark that is very regular. It can be considered a stencil operation. Com-
pared to other regular algorithms, such as vector and matrix operations, stencil
operations are more generic especially regarding how much computation there is
per data element. We apply register pipelining [4] in order to load each element
once (recall that REPLICA has no caches), and obtain a typical software pipeline
code structure consisting of prologue (filling the pipeline), computational ker-
nel (steady state) and epilogue (draining the pipeline). We have the following
parameters:
– N : Problem size (number of array elements to update)
– P : Prologue size
– C: Number of instructions for local computations with no memory access
– LLS: Number of local loads and stores.
P models how many times we run the prologue, eg. the prefetching of data

in shared memory that we have to do before the kernel can start execute. The
computational kernel loop run for N iterations, once for each data element.
Inside the kernel we do LLS local loads and stores. Our experience shows that
in order to be able to get any performance out of NUMA mode we can only
access a shared memory data element once, otherwise the performance is ruined.
If we need the same data again, we must keep it locally (in local memory but
registers are preferred). The C parameter resembles the distance between the
load and the receive (REC0 instruction), and can be seen as how much local
(register based) computation we need to do, to hide the latency of the shared
memory access.

Optimizations done for NUMA, such as register pipelining [4] to avoid memory
accesses (both shared and local) are in our experience often also useful in PRAM
mode. To make a fair comparison between NUMA and PRAM mode we run
the exactly same program with the same optimizations (locality, registers etc)
for both NUMA and PRAM. The only difference is that we, of course, switch
to NUMA and the back-end compiler compiles NUMA code to fit the NUMA
pipeline (no chained FU). In NUMA mode we also access shared memory using
the LER concept (loads with explicit receive instruction). In PRAM mode we
also divide the work over all the available HW threads, e.g. 4× 512. In NUMA
mode we have joined all the threads per core, so we only have 4 cores (threads)
to divide the work among.

4 Machine-Learning Models

Using a random number generator (with lower and upper limits on each parame-
ter) we generated different training set and evaluation sets. The parameter space
is well covered, see the distribution of the parameters for the evaluation set SE in
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Fig. 1. Distribution of N (size), P (prologue) and LLS (local load store) parameters
in the evaluation set SE. LLS is shown in grayscale.

Figure 1. We generated programs in REPLICA baseline language (an extended
version of C), compiled them and run them on the cycle accurate REPLICA
simulator.

Initially we started with two training sets, S1 and S2 and their union S3,
where |S3| = 45 and |S1| ≈ |S2|. S1 and S2 are disjoint.

Using S3 we derive formulas for both NUMA and PRAM execution times
using the Eureqa Pro framework [18,17]. We assume that the execution time, tn,
for NUMA is tn = fn(N,C, P, LLS) and tp for PRAM in a similar way. Since
we want to make a predictor for when to switch to NUMA mode it is natural to
use the speedup, eg. only switch to NUMA if we get speedup larger than one,
e.g.

tp
tn

> 1.
For C5.0 [16] we tried S1, S2 and S3 as training sets, however the results were

not good enough so we decided to increase the size of the training data. The new
sets S′

1, S
′
2 and S′

3 = S′
1∪S′

2 contains the old sets in the following way: S1 ⊂ S′
1,

S2 ⊂ S′
2 where S3 ⊂ S′

3, |S′
3| = 98 and |S′

1| ≈ |S′
2|

For evaluation we use the set SE , it is shown in Table 2. It is independent
from the training sets and |SE | = 20 3. Figure 1 depicts SEs distribution of the
parameters N (size), P (prologue) and LLS (local loads and stores) where LSS
is shown with grayscale. Since C5.0 did not use the C parameter we do not show
its distribution in the picture.

4.1 Eureqa Pro

A First Model Using S3. With S3 we got the following execution time models.
NUMA: tn = an ∗ P + bn ∗ N + cn ∗ N ∗ C + dn ∗ LLS2, where an = 0,

bn = 9.65313889909994, cn = 0.224715696133425 and dn = 23005.0142108128.

3 Due to large simulation times, a significantly larger number of training and evalua-
tion samples was not feasible.
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PRAM: tp = ap∗P+bp∗N+cp∗N∗C+dp∗LLS2 where ap = 3561.80442755642,
bp = 5.91351736227114, cp = 0.232529731521942 and dp = 8662.82648471137.

As stated earlier we use the estimated speedup larger than one,
tp
tn

> 1, as a
predictor. The generated expressions for the execution time, are quite similar for
PRAM and NUMA, one interesting detail is that the P (prologue) is not used
for NUMA and that cn ≈ cp.

An Updated Model Using S′
3. When we double the training set size, adding

more training cases, using S′
3, we get different formulas for estimating the PRAM

and NUMA execution times.
NUMA: tn = an ∗LLS + bn ∗N + cn ∗N ∗LLS ∗

√
N + dn ∗ S ∗LLS2 where

an = 44201.802640319, bn = 8.01445073789093, cn = 0.0765782960682957 and
dn = −0.000128963606572698.

PRAM: tp = ap∗LLS+bp∗P+N ∗LLS+cp∗P ∗LLS+dp∗N ∗C+ep∗LLS2

where aP = 107691.057352967, bp = 2919.18227717314, cp = 107.696490731206,
dp = 0.26706472514021 and ep = −1605.81303793423. Note that the coefficient
for S ∗ LLS is 1.

Binary Model Using S′
3. Deriving the execution times as functions of N ,

P , C and LLS seems unstable for Eureqa Pro, i.e. very depending on the
specific training sets (see Table 4). However, we are only interested in rela-
tive performance. To handle this we introduced a binary model using Eureqa
Pro and S′

3. It gives 1 as result if NUMA should be used and 0 for PRAM:
NUMA = P > 0.000905177867360653 ∗N + 0.055818680067241 ∗ P ∗ LLS.

4.2 C5.0 Decision Trees

Running C5.0 on S′
1 we get the following decision tree:

LLS > 8: PRAM
LLS<= 8:
:...P > 400: NUMA

P <= 400:
:...N <= 174851: NUMA

N > 174851: PRAM

Running C5.0 on S′
2 we get the following decision tree:

LLS > 15: PRAM
LLS <= 15:
:...N <= 177417: NUMA

N > 177417:
:...P <= 643: PRAM

P > 643: NUMA

Running C5.0 on S′
3 we get the following decision tree:

LLS > 8: PRAM
LLS <= 8:
:...N <= 210765: NUMA

N > 210765:
:...P <= 500: PRAM

P > 500: NUMA

Note that no C5.0 model uses the C parameter and all the generated predictors
are quite similar to each other.
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4.3 Evaluation and Comparison of Eureqa Pro and C5.0 Models

Table 3 shows the results of evaluating the Eureqa Pro models based on S3

and S′
3 compared to actual results from test runs in the simulator. It might be

interesting to note that the average speedup error is 15.1% for S3 while it is
37.5% for the model based on S′

3. Table 4 shows the predicted mode for all cases
in SE for the models based on S′

1, S
′
2,S

′
3 and S3. The columns are sorted by

the number of misclassifications and also show the average real speedup gained
when using the corresponding predictors.

Table 2. The set of test cases, SE , for evaluation and comparison

Case N C P LLS

1 307200 104 300 4
2 153600 12 150 24
3 307300 16 500 8
4 38400 12 1000 8
5 38400 24 1000 16
6 222401 16 765 8
7 62709 72 59 1
8 286382 16 3475 92
9 78714 56 2034 44
10 32431 88 966 4

Case N C P LLS

11 202099 56 273 4
12 240096 56 841 4
13 131407 40 2463 8
14 277705 96 2720 44
15 55311 56 999 1
16 12155 88 212 8
17 203909 48 362 1
18 262394 80 1437 32
19 49693 80 1467 24
20 94664 0 1871 1

For our problem and training sets Eureqa Pro using our first execution time
based models seems to be some what unstable; it produces both their best and
worst predictor depending on the training set, see Table 4. Eureqa Pro gives
the best predictor with a smaller training set S3 than the larger S′

3. With our
binary Eureqa Pro predictor based on set S′

3 we get only one misclassification,
it seems as good as C5.0 for the same set. All predictors are very simple and
can be implemented with a few instructions so the overhead of invoking them at
runtime is very low.

All predictors give on average a speedup between 1.91 and 2.23. This is not
a ”magical range”, it comes from the evaluation set SE . In most cases misclas-
sifications do not ”hurt” so much since they are border cases and running in
”wrong” mode will only affect performance marginally. If we remove the three
worst predictors in terms of misclassifications and use the remaining predictors
together with a majority voting algorithm we would eliminate all misclassifi-
cations in our evaluation set and get an average speedup of 2.23. In Table 4
the speedup for C5.0 on S′

3 is also 2.23, even though it makes one misclassifi-
cation, as this misclassification only changes the average speedup with 0.03%
which can be explained by that there the PRAM and NUMA execution times
are very similar. We also evaluated our different models on two different parallel
1D-average computations, the parameters and results are shown in Table 5. The
only predictor that misclassifies is Eureqa on S′

3.
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Table 3. Real speedup from simulator, estimated speedup for Eureqa Pro using S′
3

and S3 and the speedup error in % compared to the real speedup

Case
Real
speedup

Eureqa S3

speedup

Eureqa S3

speedup
error %

Eureqa S′
3

speedup

Eureqa S′
3

speedup
error %

1 0.98 0.99 1.5 1.83 86.6
2 0.42 0.45 7.3 0.17 60.4
3 0.98 0.96 3.0 0.66 33.2
4 5.45 2.29 58.1 1.33 75.7
5 0.84 0.96 14.7 0.95 13.0
6 1.26 1.23 2.3 0.42 66.9
7 0.99 1.00 1.2 1.25 26.8
8 0.41 0.45 7.7 0.61 46.4
9 0.56 0.55 2.2 0.52 7.3
10 3.79 3.35 11.5 2.69 28.9
11 1.02 1.02 0.1 0.60 40.8
12 1.31 1.35 2.5 0.93 29.5
13 3.03 2.89 4.6 0.98 67.6
14 0.47 0.64 37.8 0.70 49.7
15 3.92 3.68 6.1 3.68 6.1
16 2.04 0.89 56.3 1.74 14.8
17 1.19 1.14 4.5 1.19 0.0
18 0.46 0.66 45.1 0.51 12.1
19 0.77 0.78 2.1 0.85 10.5
20 11.60 7.72 33.5 3.12 73.1

Table 4. Evaluation result using SE . Misclassifications are marked in boldface. Average
speedup for all 20 cases using the corresponding predictor.

Case Correct Eureqa S′
3 C5.0 S′

2 C5.0 S′
1 Eureqa S3 C5.0 S′

3 Eureqa bin S′
3

1 PRAM NUMA PRAM PRAM PRAM PRAM PRAM
2 PRAM PRAM PRAM PRAM PRAM PRAM PRAM
3 PRAM PRAM NUMA PRAM PRAM PRAM PRAM
4 NUMA NUMA NUMA NUMA NUMA NUMA NUMA
5 PRAM PRAM PRAM PRAM PRAM PRAM NUMA
6 NUMA PRAM NUMA NUMA NUMA NUMA NUMA
7 PRAM NUMA NUMA NUMA PRAM NUMA PRAM
8 PRAM PRAM PRAM PRAM PRAM PRAM PRAM
9 PRAM PRAM PRAM PRAM PRAM PRAM PRAM
10 NUMA NUMA NUMA NUMA NUMA NUMA NUMA
11 NUMA NUMA PRAM PRAM NUMA NUMA NUMA
12 NUMA NUMA NUMA NUMA NUMA NUMA NUMA
13 NUMA NUMA NUMA NUMA NUMA NUMA NUMA
14 PRAM NUMA PRAM PRAM PRAM PRAM PRAM
15 NUMA PRAM NUMA NUMA NUMA NUMA NUMA
16 NUMA PRAM NUMA NUMA PRAM NUMA NUMA
17 NUMA NUMA PRAM PRAM NUMA NUMA NUMA
18 PRAM PRAM PRAM PRAM PRAM PRAM PRAM
19 PRAM PRAM PRAM PRAM PRAM PRAM PRAM
20 NUMA NUMA NUMA NUMA NUMA NUMA NUMA

Misclassifications 6/20 4/20 3/20 1/20 1/20 1/20

Average real speedup 1.92 2.21 2.21 2.01 2.23 2.22
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Table 5. Parameters and evaluation results using a 1D average computation example.
Misclassifications are marked in boldface.

Evaluation N C P LLS Correct Eureqa S′
3 C5.0 S′

2 C5.0 S′
1 Eureqa S3 C5.0 S′

3 Eureqa bin S′
3

1 307200 60 8 1 PRAM NUMA PRAM PRAM PRAM PRAM PRAM

2 307200 80 8 1 PRAM NUMA PRAM PRAM PRAM PRAM PRAM

5 Related Work

The problem of selecting the best runtime mode for REPLICA is very related to
the implementation selection problem for heterogenous systems such as CPU-
GPU based systems; in both REPLICA and CPU-GPU case there are overhead
costs of switching and data transfers costs. Similarities such as small local mem-
ory also exist.

The parallel programming language framework PetaBricks [1] uses auto-tuning
that effectively explores the search space to select from multiple user provided
implementations the best one, depending on problem parameters [1]. Their com-
piler can generate OpenCL code that can execute on GPUs [15].

SkePU is a C++ skeleton programming library mainly for mapreduce prob-
lems with back-ends for both CPU and GPUS. It supports implementation selec-
tion using machine-learning methods to adopt skeletons to a given platform [3].

One example where C5.0 has been used for performance optimization of het-
erogeneous systems is [14], they use it to prune the search space when doing
off-line tuning of component composition.

Danylenko et al. compared different machine-learning approches for context-
aware composition in [2]. They consider decision tress, decision diagrams, naive
bayes and suport vector machine classifiers. They evaluate their results on three
different multicore machines.

In [10] Grewe and O’Boyle show how to select optimized mappings of OpenCL
tasks on a heterogeneous CPU-GPU system to get good load balancing. They
base their training on the support vector machine (SVM) model, and is based on
static features (number of floating point operations etc) just like we do. However
hybrid execution is not possible on REPLICA as the same hardware is used by
both PRAM and NUMA mode.

Elastic computing is a framework that supports heterogenous computing, such
multicore CPUs combined with FPGA accelerators. It separates functionality
and implementations using elastic functions which can be executed with different
parameters (input size etc) on different target architectures [20]. They use linear
regression based to predict execution time based input size and other metrics
captured by the specific performance model for each component.

As far as we know, Eureqa Pro has not been used before for performance
prediction and implementation selection before, however in [9] Goel uses Eureqa
for per-core power estimation and power aware scheduling for CMPs which is a
related problem area.
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6 Conclusion and Future Work

We used state-state-of-the-art machine-learning methods, decision trees and sym-
bolic regression, and tools based on them, namely C5.0 and Eureqa Pro. Using
the same training data we derive models to predict if to run the REPLICA archi-
tecture in PRAM or NUMA mode for a certain parameterized computation type
(parallel stencil operation). Without machine-learning it had not been possible
to derive predictors of when to use PRAM or NUMA mode.

The best predictors give a misclassification rate of 5%. Combining the three
best ones using a majority voting algorithm misclassifications can be eliminated
fully, at least on the test case. Average gained speedup over PRAM mode exe-
cution only ranges between 1.92 and 2.23 for all classifiers on the test cases.

For C5.0 it seems that adding more training data improves the accuracy while
for Eureqa Pro more training data can generate more instable models. However,
Eureqa Pro can be as good as C5.0 if the right training data is used and then
it makes correct classification for the case where all other predictors are wrong.
The derived formulas for PRAM and NUMA execution time are not accurate
enough to predict the execution time, however they are accurate enough to be
used for deciding if PRAM or NUMA mode should be used.

All the derived predictors are very simple, and can be implemented with a
few computation and comparison instructions. The overhead of invoking them
at runtime, if some parameters such as size are unknown statically, will be very
small. As far as we know, Eureqa Pro has not been used for this type of perfor-
mance predictions before.

Future work includes using the same methods on other problem types than
stencil-like algorithms. It would als be interesting to test this on heterogeneous
systems such as CPU-GPU based ones. Another interesting problem would be to
derive parameterized models of algorithms using a pattern matching framework
such as PRT [19] and combine it with machine learning. Each pattern could then
be annotated with a predictor for the pattern implementations’ best performance
for specific parameters and for a given type of hardware.
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Abstract. Programming models such as CUDA and OpenCL allow the
programmer to specify the independence of threads, effectively remov-
ing ordering constraints. Still, parallel architectures such as the graph-
ics processing unit (GPU) do not exploit the potential of data-locality
enabled by this independence. Therefore, programmers are required to
manually perform data-locality optimisations such as memory coalescing
or loop tiling. This work makes a case for locality-aware thread schedul-
ing : re-ordering threads automatically for better locality to improve the
programmability of multi-threaded processors. In particular, we analyse
the potential of locality-aware thread scheduling for GPUs, considering
among others cache performance, memory coalescing and bank locality.
This work does not present an implementation of a locality-aware thread
scheduler, but rather introduces the concept and identifies the potential.
We conclude that non-optimised programs have the potential to achieve
good cache and memory utilisation when using a smarter thread sched-
uler. A case-study of a naive matrix multiplication shows for example a
87% performance increase, leading to an IPC of 457 on a 512-core GPU.

1 Introduction

In the past decade, graphics processing units (GPUs) have emerged as a popular
platform for non-graphics computations. Through languages such as OpenCL
and CUDA, programmers can use these massively parallel architectures (and
other accelerators) for computational domains such as linear algebra, image pro-
cessing and molecular science. The increased popularity of such accelerators has
made programming, maintainability, and portability issues of major importance.
Although accelerator programming models have partially addressed these issues,
programmers are still expected to tune their code for aspects such as (in the case
of GPUs) memory coalescing, warp size, core count and the on-chip memories.

To counter the imminent memory wall [3], recent GPUs have been equipped
with software-managed on-chip memories (scratch-pad) and hardware-managed
on-chip memories (cache). In particular for integrated solutions with general-
purpose memories (e.g. ARM Mali, AMD Fusion, XBox One) off-chip memory
bandwidth is scarce: using the on-chip memories efficiently is required to exploit
the GPU’s full potential [13]. In fact, many GPU programs are memory band-
width intensive: for an example set of benchmarks, this is as much as 18 out of

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 146–157, 2014.
c© Springer International Publishing Switzerland 2014
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31 [5]. Specific examples of cache optimisations include cache blocking for sparse
matrix vector multiplication (5x speed-up) and loop tiling for a stencil compu-
tation (3x speed-up). Programmers of GPUs are therefore performing memory
coalescing to maximise off-chip throughput or tiling to improve data-locality.
Furthermore, programmers determine the allocation of threads to threadblocks,
affecting scheduling freedom and cache performance.

With programmingmodels such as CUDA and OpenCL, programmers create a
large number of independent1 threads that execute a single piece of program code
(a kernel). Still, microprocessors such as the GPU do not exploit the potential
of spatial and temporal data-locality enabled by this independence. Therefore,
we propose locality-aware thread scheduling: changing the schedule of threads,
warps and threadblocks with respect to a kernel’s memory accesses.

This work does not aim to improve performance for already optimised (e.g.
coalesced, tiled) code, but is instead motivated by non-optimised program code
and the performance potential of locality-aware thread scheduling. This improves
programmability, a metric intertwined with: 1) portability: the generality of pro-
gram code when targeting different microprocessors, 2) productivity: the time it
costs to design and maintain program code, and 3) performance: the speed or
energy efficiency of a program. Although the focus of this work lies on GPUs,
we make a note that the ideas are equally valid for other cache-based processors
that are programmable in an SPMD-fashion.

This work demonstrates that locality-aware thread scheduling can signifi-
cantly improve the programmability of GPUs. The main contributions are:

– Section 5: The potential of multi-level locality-aware thread scheduling for
GPUs is identified and quantified for several non-optimised benchmarks.

– Section 6: Two example kernels are evaluated further, identifying the effects
of thread scheduling on among others caches and memory bank locality.

2 Background

This section briefly introduces the GPU architecture and its execution model.
Additional background can be found in the CUDA programming guide [10].

We use NVIDIA’s Fermi architecture as an example in this paper. The Fermi
architecture has up to 16 cores (also known as streaming multiprocessors or
compute units). Each core contains 32 processing elements (or CUDA cores)
and a 64KB on-chip configurable memory, combining scratchpad and L1 data
cache (16/48KB or 48/16KB). All cores share a larger L2 cache (up to 768KB).

The CUDA and OpenCL programming models allow programmers to specify
small programs (kernels) that are executed multiple times on different data.
Each instance of a kernel (a thread in CUDA terminology, a workitem in OpenCL
terminology) has its own unique identifier. Programmers furthermore divide all
their threads in fixed-size blocks (threadblocks in CUDA terminology, workgroups

1 Independent apart from explicit per-threadblock synchronisation barriers.
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in OpenCL terminology). Threads within a block share an on-chip local memory
and can synchronise. However, synchronisation is not possible among blocks.

In a Fermi GPU, a threadblock is mapped in its entirety onto a core. Together,
threads from one or more threadblocks can form a set of active threads on a sin-
gle core. For Fermi GPUs, this is limited to 8 threadblocks or 1536 threads,
whichever limit is reached first [10]. Such a set of active threads executes con-
currently in a multi-threaded fashion as warps (NVIDIA) or wavefronts (AMD).
In Fermi, a warp is a group of 32 threads executing in an SIMD-like fashion on
a single core, dividing the workload over processing elements [10].

3 Related Work

Locality-aware thread scheduling has been investigated for non-GPU micropro-
cessors in earlier work. For instance, Philbin et al. [11] formalise the problem
of locality-aware thread scheduling for a single-core processor. In other work by
Tam et al. [14], threads are grouped based on data-locality for multi-threaded
multi-core processors, introducing a metric of thread similarity. Furthermore,
Ding and Zhong [2] propose a model to estimate locality based on reuse dis-
tances. These approaches cannot be applied directly to GPUs, as they do not
take into account aspects such as: scalability to many threads, cache sizes, the
thread-warp-block hierarchy, nor the active thread count.

Recent work on GPUs has investigated the potential of scheduling less active
threads to improve cache behaviour.Kayiran et al. [5] propose a compute/memory-
intensity heuristic to select the active thread count. Furthermore, Rogers et al. [12]
propose a hardware approach: the number of active threads is adapted at run-time
based on lost locality counters. However, these works only consider active thread
count reduction: they do not investigate thread scheduling.

Current scheduling research for GPUs is in the context of divergent control flow
rather than data-locality. By dynamically regrouping threads into warps, those
following the same execution path can be scheduled together. Dynamic warp for-
mation in the context of memory access coalescing is discussed in e.g. [6,7]. Recent
work has focussed on two-level warp scheduling to reduce the impact of memory
latency [4,8]. Althoughwe not address control flow, we note that an ideal scheduler
takes both aspects (data-locality and control flow) into account.

4 Experimental Setup

The experiments in this work are performed with GPGPU-Sim 3.2.1 [1] using a
GeForce GTX580 configuration (Fermi) with a 16KB L1 cache (128 byte cache-
lines) and a 768KB L2 cache. The GTX580 has 16 SIMT cores (or SMs) for a
total of 512 CUDA cores. From the simulation results we report IPC (higher is
better)2, cache miss rates (lower is better), and load balancing amongst off-chip
memory banks (higher is better).

2 IPC (instructions per cycle) is counted as the throughput of scalar operations and
load/store instructions over all CUDA cores and load/store units in the GPU.
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4.1 Implementation in GPGPU-Sim

The GPGPU-Sim simulator was modified to perform the thread scheduling ex-
periments presented in this work. The run-time scheduling mechanism of a GPU
(and of the simulator) is non-trivial, including multiple hierarchies and dynamic
aspects (e.g. influenced by memory latencies). This mechanism is therefore kept
intact in GPGPU-Sim. Instead, this work implements a pre-processing ‘mapping’
step to the thread and block identifiers. This mapping step takes thread identi-
fiers ti and block identifiers bi and calculates new identifiers as t′i = f(ti, bi) and
b′i = g(ti, bi). The functions f() and g() implement alternative thread schedules
as will be further discussed in Sect. 5.1. Because the mapping is applied before
the hardware run-time thread scheduling, the effect is equivalent to applying
the f() and g() to the software thread and block identifiers - a task currently
assigned to CUDA and OpenCL programmers.

4.2 Benchmark Selection

This paper includes results for 6 non-optimised CUDA benchmarks, i.e. sub-
optimal implementations rather than fine-tuned benchmarks (e.g. Parboil or
Rodinia). The main reason for this choice is that this work aims to improve the
programmability of the GPU rather than the maximum performance. In other
words, if performance of these naive non-optimised benchmarks can be improved
without having to change the program code, GPU acceleration is made available
to a wider audience (‘non-ninja programmers’). Even expert programmers can
benefit from increased flexibility and require fewer optimisations to achieve the
full potential of the GPU.

The benchmarks are: the computation of an integral image (row-major and
column-major), a 2D convolution (11 by 11), a 2D matrix copy (each thread
copies either a row or a column), and a naive matrix-multiplication. Image and
matrix sizes are 512 by 512. Fig. 1 illustrates their memory access patterns:

1. Integral image (row-wise): Every thread at coordinates (x, y) in a 2D
image produces a single output pixel at (x, y) by consuming all input pixels
(x′, y) for which x′ ≤ x. In the example, thread 0 consumes input 0 (red),
thread 1 consumes inputs 0 and 1 (red and blue), and so on.

2. Integral image (column-wise): Equal to the row-wise version, but each
thread instead consumes all input pixels (x, y′) for which y′ ≤ y.

3. 11 by 11 convolution: Each thread produces a single pixel in a 2D image
by consuming an input pixel at the same coordinates (blue) and its neigh-
bourhood of (11 · 11)− 1 elements (green).

4. Matrix-multiplication: Each thread with coordinates (x, y) consumes a
row (∗, y) of an input matrix and a column (x, ∗) of another input matrix to
produce a single element in an output matrix at (x, y).

5. Matrix copy (per row): Each thread consumes a row of an input matrix
to produce the corresponding row in an output matrix.

6. Matrix copy (per column): As before, but now columns instead of rows.
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Fig. 1. Illustrating the memory access patterns of the 6 benchmarks

5 Quantifying the Potential

Many GPU programs contain a large number of independent threads that can be
freely re-ordered. This re-ordering (changing the thread schedule) is motivated
by the following data-locality performance optimisations: 1) multiple threads
accessing a single cache-line must be grouped in a warp (memory coalescing),
2) threads having strong inter-thread locality must be grouped within a single
threadblock (sharing a L1 cache), 3) threadblocks with data-locality must be ex-
ecuted either on a single core in temporal vicinity or simultaneously on different
cores (sharing a L2 cache), 4) threads executing simultaneously must minimise
pollution of the shared caches, and 5) threads executing simultaneously must
spread their accesses as evenly as possible across the memory banks.

Consider an SPMD (single-program multiple-data) kernel with n threads
t1, t2, ..., tn, each referencing a number of data elements. This work assumes
that all n threads are independent3 and can be reordered as r = n! distinct
sequences s1, s2, ..., sr. The problem of locality-aware thread scheduling is to
find a sequence si of n threads such that execution time is minimal. On a GPU,
thread scheduling influences execution time in terms of efficient use of the caches,
memory coalescing, memory bank locality, and the number of active threads.

5.1 Candidate Thread Schedules

Various thread schedules are tested in GPGPU-Sim to quantify the potential of
locality-aware thread scheduling. Because the number of threads n is typically
large (e.g. 220), it is impractical to test all r orderings. Therefore, only a limited
set of schedules is considered: schedules with regularity and structure, matching
the target regular and structured programs. The selected schedules are illustrated
in Fig. 2 and briefly discussed below. Note that these schedules represent the
mapping step discussed in Sect. 4.1 and are still subject to the GPU’s multi-level
scheduling mechanism. The schedules are:

3 Dependences (e.g. barriers) can be added as constraints on the thread ordering.
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Fig. 2. Examples with 8 or 16 threads. The numbering shows the new sequence and
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Fig. 3. Two schedulers for threadblocks A–D, assuming locality between A and B (red)
and between C and D (purple). The results are L2 locality (left) or L1 locality (right).
The arrows represent the GPU scheduler applied after our ‘mapping’ (or ordering).

1. Sequential: The unmodified original ordering, i.e. f(x) = x and g(x) = x.
Note that, although it is a sequential ordering from a pre-processing per-
spective, the actual ordering is still subject to the GPU’s thread, warp, and
block scheduling policies.

2. Stride(a, b): An ordering with a configurable stride (a) and granularity (b)
(e.g. warp or threadblock granularity) with respect to the original ordering.
Strided schedules have the potential to e.g. ameliorate bad choices of a 2D-
coordinate to thread mapping [13].

3. Zigzag(a, b): An ordering assuming a 2D grid of threads, reversing the
ordering of odd rows. The parameters are the row-length (a) and the gran-
ularity (b). Zigzag can exploit 2D locality, but might degrade coalescing for
small granularities.

4. Tile(a, b, c): 2D tiling in a 2D grid. Tiling takes as parameter the length
of a row (a) and the dimensions of the tile (b x c). It has been shown that
tiling has potential to exploit locality on GPUs [13].

5. Hilbert(a): A space filling fractal for grids of size a by a with 2D locality.

Two threadblock-schedulers are implemented on top of the candidate sched-
ules (Fig. 3): either schedule threadblocks over cores in a round-robin fashion
(left) or allocate subsequent threadblocks to subsequent cores (right). In case
threadblocks with locality are grouped close to each other, the first threadblock-
scheduler can benefit from locality in the L2 cache (in space among cores), while
the second can benefit from locality in L1 (in time among threadblocks).

Our experiments consider a subset of 2170 schedules. This includes a sweep
over the 5 orderings, several small power-of-2 parameter values (e.g. stride-size),
the two threadblock-schedulers, and 5 active thread counts (64, 128, 256, 512,
1024) to identify the trade-offs between cache contention and parallelism [5,12].
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Fig. 4. Sorted IPC results (higher is better) from GPGPU-Sim for 2170 schedules per
benchmark. The vertical red arrow identifies the original schedule (no changes applied
to GPGPU-Sim). Darker and larger glyphs represent more active threads, lighter and
smaller glyphs represent fewer active threads.

5.2 Experimental Results

Fig. 4 gives the IPC results when simulating all candidate schedules for the bench-
marks with GPGPU-Sim. Each set of 2170 results is sorted by their achieved IPC.
The original (unmodified) schedule is highlighted, its horizontal position indicat-
ing the performance potential for a particular benchmark. Note that these graphs
are meant to identify the main shape of the ‘landscape’, detailed results are pre-
sented in Sect. 6. We observe the following:

1. Integral image (row-wise): There is a wide performance variation among
the different schedules: IPC ranges from 2 to 700. The default schedule is al-
ready performing well: it has coalesced memory accesses and uses the caches
efficiently. Still, there is opportunity for a 20% performance improvement,
achieved for example by using a 8 by 16 tiled schedule. The active thread
count is not strongly correlated to performance. Even so, the best 5% sched-
ules all use 1024 active threads.
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2. Integral image (column-wise): The default schedule at an IPC of 7 is
suffering from uncoalesced memory accesses and bad cache locality for this
purposely poorly design kernel. Using a schedule with a stride equal to the
width of the image resolves these problems, bringing performance back to
the level of the row-wise integral image computation.

3. 11 by 11 convolution: The overall results look similar to the row-wise
integral image case at first glance. However, inspection of the results shows
that the best candidates are zigzag as opposed to tiled schedules, achieving
up to 10% improvement over the default.

4. Matrix-multiplication: The results show that there is up to 87% to gain
over the default schedule in terms of performance (see Sect. 6.1 for details).

5. Matrix copy (per row): The active thread count is of significant im-
portance, although the performance is in general low due to the cache and
memory unfriendly assignment of work to threads. Schedules with 512 or
1024 active threads (including the default) yield an IPC of 5 at best, while
schedules with 64, 128, or 256 active threads achieve an IPC of up to 34. This
is the only test-case where more threads does not yield better performance.

6. Matrix copy (per column): Better overall performance compared to per-
row copy. Sect. 6.2 analyses the results and the 12% potential in detail.

Note that in contrast to the two integral image cases, it is not possible to achieve
equal performance for the two matrix copy cases. The reason is the integral
image’s flexibility: each thread computes a single result. In contrast, matrix copy
processes (in our implementation) an entire row / column per thread, limiting the
scheduling freedom: we do not consider changing the workload within a thread.

The same testing methodology was applied to several other naive benchmarks.
An example is the computation of an 8 by 8 discrete cosine transform (DCT)
on a 2048 by 2048 input using a nested for-loop in the kernel body with 64
iterations. A sweep through the different thread schedules led to a 3.2x speed-up
(an increase from an IPC of 175 to 570) using a schedule with a stride of 512 at
a granularity of 8, moving multiple groups of threads belonging to one 8 by 8
transform (64 threads) together into a single threadblock.

Similarly, a symmetric rank-k kernel from PolyBench shows a 3 times speedup.
Several other tested benchmarks have not shown significant changes at all.
This includes matrix-vector summation from the PolyBench benchmark and the
breath-first-search and SRAD kernels from Rodinia. These results were expected,
as closer inspection of these benchmarks shows already optimised code.

6 Two Case Studies

Sect. 5 illustrated that the performance potential varies from limited (e.g. 10% for
the convolution benchmark) to significant (e.g. 87% for matrix-multiplication).
We also saw different best schedules for different benchmarks and a varying cor-
relation between performance and active thread count. To get additional insight,
this section discusses two of the benchmarks in more detail. We only present a
subset of the data due to the large quantity (schedules, benchmarks, metrics).
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Fig. 5. Simulation results for the matrix-multiplication example for strided schedules.
Shown are the IPC (higher is better) and the L1 and L2 miss rates (lower is better).

6.1 Matrix-Multiplication

Matrix-multiplication is one of the examples that shows a significant perfor-
mance potential (up to 87%) from its default IPC of 245. To identify the reason
why certain schedules perform better than others, we take a detailed look at
the simulation results for the strided schedules. Because the stride ordering has
two parameters (P1 for the stride and P2 for the granularity), the data can be
visualised as a 2D heatmap. Fig. 5 shows the heatmaps for the IPC and the L1
and L2 cache miss rates, as well as their correlation.

Fig. 5 shows a high inverse correlation (-0.8) between the IPC and the L1
miss rate: the 4 best candidates (with IPC > 300) all have the lowest L1 miss
rate (16%). Although a low L2 miss rate also contributes to a high IPC, Fig. 5
(bottom right) shows a lower correlation. The results of Fig. 5 can be explained
after detailed investigation. First of all, schedules with a small granularity (P2
< 32) can reduce the amount of coalescing significantly, leading to a low IPC
and high cache miss rates. Second, schedules with a large stride and a large
granularity form small ‘tiles’ in the 2D space of the matrix, improving locality.
Finding the best tile dimensions is non-trivial and dependent on among others
matrix dimensions and cache configuration. In this case, a ratio of 8:1 for P1 and
P2 yields the best results for L1 and 2:1 for the L2 cache.
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Fig. 6. Correlation plots for IPC (higher is better) and cache miss rates (lower is better)
for the matrix-multiplication example (left) and the per-column matrix copy (right).
Different colours/shapes represent different schedule types.

The left hand side of Fig. 6 shows the correlation plots of all the 2170 schedules
for the matrix-multiplication example for 3 metrics: the top graph shows the
correlation between IPC (y-axis) and L1 miss rate (x-axis), the bottom between
IPC and L2 miss rate. From these results, we observe that the strided and tiled
schedules have similar behaviour: they both cover the entire IPC and miss rate
spectrum and show a high correlation between the IPC and L1 miss rate. We
also observe a large amount of schedules with a L1 cache miss rate of around
50%, including the default and zigzag schedules. The best result uses 32x2 tiles
with a width of 2048 and the first scheduler.

6.2 Per-column Matrix Copy

The correlation plots for the per-column matrix copy are shown on the right hand
side of Fig. 6. From these plots, we observe that the IPC and cache miss rates
are not as correlated as in the matrix-multiplication example. In fact, the best
performing schedules have L1 and L2 cache miss rates of 100%. We furthermore
observe that L1 cache miss rates only vary for tiled schedules and that most of
them are distributed in a log2 fashion: they have values of 100%, 50%, 25% and
12.5%. These ‘improved’ miss rates are cases where a lowered ( 1

2 ,
1
4 ,

1
8 ) memory

coalescing rate results in additional cache hits.
Unlike the matrix-multiplication example, cache miss rates are not correlated

with the IPC. Therefore, Fig. 7 focuses on other aspects: it shows the IPC
and DRAM bank efficiency (the fraction of useful over theoretical accesses) for
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Fig. 7. Simulation results for the per-column matrix copy using strided schedules.
Shown are IPC and DRAM bank efficiency (higher is better).

strided schedules. A low DRAM bank efficiency can be the cause of an uneven
distribution of accesses over the DRAM banks (6 for the simulated GPU): certain
phases of the benchmark access only a subset of DRAM banks, limiting the
DRAM throughput. Although DRAM bank efficiency is correlated to the IPC,
Fig. 7 also shows that it is not the only contributing effect. As with matrix-
multiplication, memory access coalescing4 also plays a role, explaining the low
IPC for P2 < 32. DRAM efficiency can still be high in this case, as the number
of accesses is increased as well.

7 Summary and Future Work

This work identified the potential for locality-aware thread scheduling on GPUs:
re-ordering threads to increase data-locality and subsequently performance and
energy efficiency. 2170 candidate schedules were simulated for 6 non-optimised
CUDA benchmarks, showing a performance potential varying from 10% to mul-
tiple orders of magnitude. The benchmarks were explicitly chosen to be non-
optimised: enabling competitive performance for such benchmarks will greatly
improve the programmability. Our study has also identified aspects to consider:
cache miss rates, coalescing, bank locality, and the number of active threads.
An example is a straightforward implementation of matrix multiplication, which
achieved a 87% performance increase by modifying the thread schedule.

Although this work has shown that locality-aware thread scheduling has the
potential to improve programmability (better performance without changing the
code), we have also shown that it is non-trivial to find the best thread schedule.
This work can therefore be seen as a first step towards an investigation of how
to find a good thread schedule: the ideas are presented, the potential has been
shown, but an implementation has not been presented. A solution could poten-
tially be found by evaluating schedules using a complete or partial performance
model. This is motived by the detailed studies in this work, which have shown

4 Coalescing is not visualised because GPGPU-Sim lacks the corresponding counters.
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that performance is correlated to one or more metrics such as memory access
coalescing or cache miss rate. An example of this is the use of the L1 cache model
presented in [9]. Another possibility would be to iterate efficiently through all
schedules, for example through auto-tuning (evaluating specific schedules on ac-
tual hardware), machine learning / neural networks (pre-training a model), or
using hardware counters to dynamically change schedules (e.g. [12]).
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Abstract. We present the performance analysis of OpenCL kernels for
three recently introduced many-core accelerator architectures: Intel Xeon
Phi coprocessor and NVIDIA Kepler and Fermi GPUs. We use a case
study of finite element numerical integration, a practically important and
theoretically interesting algorithm used in scientific computing. We de-
sign a single parametrized kernel for all three architectures and test the
performance obtained in numerical tests. We indicate possible further,
architecture dependent, optimizations and draw conclusions on the per-
formance portability for different accelerator architectures and OpenCL
programming model.
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1 Introduction

1.1 New Processor Architectures

Accelerated computer hardware plays increasingly important role in scientific
computing [18]. The most popular among recently introduced hybrid systems
are those equipped with cards containing either graphics processors (mainly
produced by NVIDIA) or new Intel Xeon Phi coprocessors [15]. New processor
and accelerator architectures pose several problems when porting existing nu-
merical codes. One of the most important, is the problem of programming efforts
required to reach satisfactory performance levels on different platforms, the sub-
ject thoroughly investigated in [3]. It turns out that the ”recompile and run”
approach, used successfully for classical microprocessors during the last decades
of the XXth century, either cannot be used at all, due to the differences in pro-
gramming and execution models, as is the case of graphics processors, or does
not bring expected results, as was reported for Intel Xeon Phi processors [16].

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 158–169, 2014.
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Therefore, to reach the goal of efficiently exploiting new processor designs, at
least several architecture characteristics has to be taken into account explicitly.
These characteristics correspond to the development trends in microprocessor
design, such as e.g.:

– the increasing number of processing cores
– the increasing role of SIMD scheduling
– the use of several levels of memory hierarchy
– the presence of vector registers and vector pipelines with increasing width

The first three development directions are well visible for massively multi-core
architectures of GPUs. The last direction becomes more and more indispensable
for getting the proper performance of not only special coprocessor cores [8], but
also cores of standard processors [17]. It would be then advantageous to have
a programming environment that would allow for exploiting all the mentioned
above trends in microprocessor design. The environment should also allow for
certain level of performance portability and eventually lead to performance lev-
els in the range of several tens percent of the theoretical maximum for each
considered hardware.

We choose OpenCL [6] as a programming model in order to reach the goals of
our research. On one hand, it is based on CUDA model [12] designed specifically
for GPUs and, thanks to this, capable of exploiting their possibilities. On the
other hand, due to sufficiently broad support from hardware vendors, OpenCL
software development kits exist for all popular processor and accelerator architec-
tures, and offer opportunities for relatively easy porting of developed programs.
The use of OpenCL as a tool for creating portable codes was investigated in the
context of classical processors and GPUs (see e.g. [14]). We extend this research
by considering the architecture of Xeon Phi and the problem of finite element
numerical integration.

1.2 Finite Element Software

Finite element method is one of the most popular methods for approximating
partial differential equations used in many application domains of science and
engineering. For each new computing architecture, investigations are performed
concerning the optimal mapping of finite element calculations.

Among the papers on finite elements on GPUs, several are of special interest
when considering the general problem of code portability. The first group of pa-
pers is related to efforts to create optimized versions of codes, based on abstract
specifications of weak formulations and suitable, sophisticated compilers that
transform specifications into optimized procedures [10]. The research on map-
ping of algorithms to modern computer architectures has its own significance, as
the basis for code development and further investigations concerning subsequent
architectures and new development tools. One of the most important papers in
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the category of analysis of finite element solution procedures is [4], where several
strategies for global linear system assembly are investigated and compared. Our
approach is similar. We analyse the code and formulate design guidelines that
can be further used in code design for particular hardware, but also for different
approximation methods and problems solved.

1.3 Current Contribution

In the current paper we investigate the possibility of solving, at least partially,
the problem of performance portability among different processor architectures,
by using a generic OpenCL programming environment and a proper analysis
and design of the code ported to new architectures.

As an algorithm for testing the development of portable OpenCL kernels we
choose finite element numerical integration. We consider low order finite ele-
ments, the most popular in practical applications. The use of high order ap-
proximations was the subject of our papers [1] and [9] where investigations were
conducted separately for GPUs and PowerXCell processor, respectively, the lat-
ter being a representative of architectures having specialized cores with extended
vector capabilities.

In the current paper we perform an analysis of numerical integration algo-
rithm and try to design a parametrized OpenCL kernel, that can be used for
three recent accelerator architectures: Intel Xeon Phi coprocessor and NVIDIA
Kepler and Fermi GPUs. We review briefly the OpenCL programming model
and the finite element numerical integration algorithm. We describe the design
of a parametrized kernel for numerical integration and analyse and test its per-
formance in practical calculations. We draw some conclusions concerning further
possible optimizations and porting to other processor architectures.

2 OpenCL Programming Model

We do not describe here the OpenCL programming model as it is defined in the
specification [6]. Instead, we present a model that we adopt for designing the
software, in some ways simplified, but including not only abstract specification of
calculations, but also the characteristics of code execution on different processors.

We assume that each piece of OpenCL code for an accelerator is specified in
the form of a kernel (a function written in a slightly modified variant of C99),
that after compilation is run in the form of a single thread (we use the notion of
”thread”, as more intuitively obvious than ”work-item” notion used in OpenCL).

In CUDA and OpenCL GPU programming models threads are grouped to-
gether into sets that are executed in a SIMD fashion (we do not discuss here
the problem of thread divergence, the situation that we avoid in our designs).
Threads in a single set are scheduled together and each thread is executed on a
single SIMD lane and the whole group is scheduled for a single SIMD (vector)
unit.
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This model can be useful also for looking at the execution on CPU cores
equipped with wide vector execution units. In fact, this is the perspective adopted
by creators of the OpenCL compiler for Xeon Phi coprocessors (that contain
modified Pentium CPU cores) [7]. Although the notions adopted in the com-
piler’s description are different, in our derivations and analyses we will reserve
the notion of a thread to a subsequent execution of instructions specified in the
kernel code. Hence, in our model one vector instruction executed on a CPU core
corresponds to a set of threads (contrary to a common perspective used e.g.
in OpenMP model and the perspective in [7], where it corresponds to a single
thread).

For both types of architectures, GPUs and Xeon Phi, we will use a notion
of SIMD group of threads, for a set of threads forming a unit of scheduling,
with individual threads executed on either separate scalar GPU cores or SIMD
lanes of a vector unit in CPU cores. The notion of SIMD groups is absent in the
OpenCL specification, however it is present in all CUDA and OpenCL perfor-
mance considerations (as warps for NVIDIA GPUs, wavefronts for AMD GPUs
and threads executing vector instructions for Xeon Phi).

Several SIMD groups form another level of thread organization, a workgroup.
The role of a workgroup in our model, is to provide access to the fast memory,
that is shared by all threads forming the workgroup. Apart from being units
associated with shared memory allocation, workgroups in OpenCL are used for
thread synchronization (mainly to arrange memory accesses).

The notion of fast shared memory (we use the notion of shared memory,
as reflecting its role in OpenCL programs, instead of an OpenCL notion of
local memory) is typical for GPU architectures. It is mapped to special memory
modules on GPUs. The notion of shared memory does not play an important
role in the Xeon Phi OpenCL model of execution. The documentation states
that it is mapped to a part of global memory. Nevertheless, the memory in
CPU-like architectures is cached and one may use OpenCL shared memory to
rewrite the content of data structures in global memory, so that, when properly
rewritten data are used by threads, the new data arrangement allow for lower
access times than in original storage (assuming that caching takes place). This
may resemble e.g. repackaging used for classical processors in high performance
implementations of linear algebra routines [5].

The OpenCL specification assumes that the whole workgroup is scheduled for
execution on a single compute unit. Compute units in GPUs are well defined
hardware blocks (e.g. streaming multiprocessors for NVIDIA GPUs). For the
OpenCL model of execution on Xeon Phi the hyperthreading capabilities of its
cores are utilized. Each workgroup is treated as one classical thread and, hence,
four workgroups are scheduled for concurrent execution on a single CPU core
(since Xeon Phi cores have 4-way hyperthreading).

Finally, a set of workgroups forms the whole set of threads executing a single
kernel on an OpenCL device. Workgroups are executed in a fully MIMD fashion
and no dependencies can exist between different workgroups.
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Apart from shared memory discussed above, we consider two other types of
memory available to threads: registers and global memory. In OpenCL (and
CUDA as well) there is a special type of variables (local variables) designed to
be stored in registers, whenever it is possible. However, when the number of such
variables exceeds the limits imposed by the hardware or programming model,
the compiler may ”spill” the variables to global memory. In the first generations
of GPUs, such a situation resulted in serious performance deterioration, since
global memory was not cached. In recent generations (and both architectures
that we consider in our paper), the global memory is cached and one can expect
lower penalties for register spilling.

The last aspect of programming and execution model that we mention in this
brief description is the time of accesses to shared and global memory. In classical
CPU programming, when creating a single thread code, the main design guideline
is to increase spatial and temporal locality. For GPUs one more aspect appears,
the proper organization of memory accesses for a SIMD group of threads. We try
to use in our design the safest method leading to optimal memory performance
(global as well as shared). Whenever threads access memory, the slowest memory
present in the instruction is accessed in such a way that subsequent threads access
subsequent memory locations (32 or 64-bit).

This method of accessing memory, should also work well for Xeon Phi archi-
tecture. When subsequent threads in a SIMD group access subsequent memory
locations, their accesses can be grouped into a single vectorized memory access,
that in turn should speed-up code execution.

3 Finite Element Numerical Integration

Finite element codes are based on integral weak statements of the problems
solved [2]. To effectively solve the problems, finite element codes transform weak
statements into systems of linear equations. Each entry in the system matrix
is obtained as a sum of integrals, performed for individual finite elements. The
most common way of calculating integrals is to use numerical integration. Hence,
numerical integration forms one of indispensable parts of generic finite element
codes in any application domain.

In the current paper we leave the problem of designing a generic numerical
integration procedure for different approximation methods and problems solved
and concentrate on two simple test cases for which we assess the performance of
an OpenCL kernel on different processor architectures.

We assume that numerical integration is performed in a loop over finite el-
ements and for each element a small dense matrix AiE is created, that is fur-
ther used in calculations. The algorithm of finite element numerical integration
adopted for analysis in the current paper can be represented as Algorithm 1.
Its essence lies in computing the entries to subsequent matrices AiE (element
stiffness matrices), based on the values stored, separately for each element, in
arrays c (coefficients) and ψ (element shape functions with their derivatives).
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Algorithm 1. The algorithm of numerical integration used in the study

1: read input data common to all elements processed by a thread
2: for iE = 1 to NE do
3: read input data specific to a given element (including coefficients c)
4: initialize element stiffness matrix, AiE

5: for iQ = 1 to NQ do
6: calculate derivatives of shape functions at a given integration point, ψ[iQ]
7: for iS = 1 to NS do
8: for jS = 1 to NS do
9: for iD = 1 to ND do
10: for jD = 1 to ND do
11: AiE [iS ][jS ]+ = c[iD][jD ]×ψ[iD][iS ][iQ]×ψ[jD ][jS ][iQ]
12: end for
13: end for
14: end for
15: end for
16: end for
17: store AiE in global memory
18: end for

One of the most important characteristics of Algorithm 1 is the range of its
loops. The parameters specifying the ranges are the following:

– NE - the number of finite elements, assumed to be in the order of millions
– NS - the number of element shape functions, in the order of several for low

order approximations analysed in the current paper
– NQ - the number of integration points within single element, in the order of

several for low order approximations analysed in the current paper
– ND - number of space dimensions plus one (in the algorithm it is assumed

that arrays ψ contain the values of functions and the values of their spatial
derivatives, index value 0 corresponds to the function itself, index values
different from zero correspond to its derivatives). In our investigations for
3D problems, ND is always equal to four.

Algorithm 1 takes as the input some data stored in global memory of the
device performing calculations. In the current paper we do not consider the
problem of transferring the input data from finite element data structures (that
may reside in a different memory). For each element the main input data consist
of parameters that describe the geometry of the element and the coefficients
for computing matrix entries. The geometry parameters are used for calculating
the derivatives of shape functions. In Algorithm 1 it is assumed that the input
coefficient matrices c are used in calculations without changes.

The output of the algorithm is represented as a set of element stiffness ma-
trices, that can be further assembled to the global matrix or used directly in
matrix-free linear system solvers [13].
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4 Computational Aspects of Numerical Integration
Algorithm

From the computational point of view, the algorithm of finite element numerical
integration is interesting as the one that combines relative simplicity with many
ways for introducing different optimizations. The difficulty of optimizing it lies
in the fact that PDE coefficients used in final calculations usually have different
non-zero structure for different types of approximated problems and may be
(e.g. for quasi-linear or non-linear problems) computed at each integration point
based on input matrices c (the option not considered in the current paper).
Moreover, the entries of arrays ψ are computed in different ways for different
types of finite element approximations. All these facts influence significantly the
optimizations that can be applied to the algorithm and the performance that
can be achieved as a result [10,4].

4.1 Parallelization

In the form presented in Algorithm 1, the most suitable for parallelization is
the loop over elements. The number of elements for large scale problems exceeds
many times the number of threads necessary for optimal usage of computing re-
sources (even for clusters with GPUs). When considering numerical integration
alone, the algorithm is embarrassingly parallel with no dependencies between
calculations for any two different elements (when considered as a part of finite
element calculations, special techniques, such as colouring, has to be often ap-
plied to avoid dependencies).

In the current paper we consider only the parallelization of the loop over
elements. The parallel code obtained from Algorithm 1 does not change at all, the
only thing that changes is the range of element indices assigned to a thread. We
pose the question how to design a portable OpenCL kernel for Algorithm 1, that
would properly map to computing resources of different processor architectures.
We test the performance obtained when the same, simple design guidelines are
applied for different architectures.

These guidelines are the following: we try to limit the number of global mem-
ory accesses and maximize the use of registers in main calculations. We utilize
the ability, offered by the OpenCL programming model, of explicitly manag-
ing the fast shared memory. However, we use shared memory with caution. For
GPUs, despite the fact that it is usually one order of magnitude faster than
global memory, it is several times slower than registers and, when its size for a
single workgroup grows, it can limit the number of concurrently working SIMD
groups and, in consequence, slow down execution by not allowing the concur-
rent execution of multiple SIMD groups to hide instruction and memory access
latencies.

4.2 Arithmetic Operations and Register Accesses

In analysing the parallel version of Algorithm 1 we accept, in the usual way,
the numbers of operations performed and the numbers of memory accesses, as
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the most important characteristics of code execution. The number of operations
depends on the non-zero pattern of array c (with all optimizations that it induces
taken into account) and the number of additional operations performed in line 6
of Algorithm 1. The number of global memory accesses, in the version adopted
in our study, is related only to the operations in lines 1,3 and 17 of Algorithm
1 (assuming that there is no register spilling to global memory). The number
of shared memory accesses depends on the details of operations in line 6 of
Algorithm 1, as well as the ability of the hardware to store all the data used in
main calculations in line 11 of Algorithm 1 in registers.

Typical for the situation when the number of required registers exceeds the
limits of the GPU hardware, is to consider the use of shared memory for some of
data used in calculations or even change the algorithm [1]. In the current study,
for the purpose of analysing the portability of the code, we leave to further papers
more elaborate investigations considering the optimal mapping of calculations
for different architectures and design the code assuming that all the data in main
calculations in line 11 of Algorithm 1 reside in registers and, in a manner typical
for CPU programming, relying on the compiler for the optimization of register
variable usage.

4.3 Memory Accesses

Reading input data in lines 1 and 3 of Algorithm 1 is assumed as reading from
global memory to shared memory. The accesses to global memory from different
threads in a SIMD group are organized in an optimal way with subsequent
threads accessing subsequent memory locations. In a similar way, accesses to
shared memory storing read data are organized during further calculations. The
accesses to global memory when writing output data are also performed in the
optimal manner. In that way, not optimal memory accesses are reduced to shared
memory accesses during reading of input data from global memory.

4.4 Arithmetic Intensity

Table 1 presents arithmetic intensity parameters for executing Algorithm 1 for
a single prismatic 3D finite element with linear approximation and two test
cases selected for the paper, associated with two example forms of arrays c.
The first case, corresponding to e.g. Laplace equations, has only 3 non-zero
entries, all equal to one, for all 16 combinations of indices iD and jD and lead
to 7 operations performed for calculations in lines 9–13 of Algorithm 1 (for
off-diagonal stiffness matrix entries symmetry can be taken into account). The
second case, corresponding e.g. to full convection-diffusion-reaction PDEs, has
all 16 entries non-zero and results in more than two times more operations
performed in loops over indices iD and jD in Algorithm 1. The relatively high
ratios of the number of floating point operations to the number of global and fast
memory accesses allow one to expect performance figures possible to obtain in
the range of several tens of maximum performances for floating point operations.
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Table 1. The ratio of the number of floating point operations to the number of global
and fast (shared and constant) memory accesses for an implementation of Algorithm 1

Type of problem:

For single finite element: Laplace conv-diff

The number of floating point operations 2916 4806

The number of global memory accesses 60 74

The arithmetic intensity for global memory ≈48 ≈65
The number of fast memory accesses 276 276

The arithmetic intensity for fast memory ≈10 ≈17

However, the numbers in Table 1 are obtained assuming that there are no
global memory accesses due to register spilling . Another factor that can limit
the performance, especially in the case of GPUs, is the fact that large register
and shared memory requirements, related to the optimal execution of individual
statements, can induce low ”processor occupancy”, i.e. low number of concur-
rently executed SIMD groups, that in turn will not allow for fully hiding the
latency of arithmetic and memory operations.

5 Numerical Experiments

5.1 Parametrized Implementation of Numerical Integration
Algorithm

We design a single OpenCL kernel implementing a specific version of Algorithm
1, based on the OpenCL model of programming and the design guidelines and
execution performance analysis described earlier. We parametrize the kernel with
several parameters that are specified either at compile time or runtime. There
are two parameters that adapt the kernel to processor architectures. The first
is the size of workgroups. Based on recommendations in programming guides
([12,7]) we choose 64 threads for a single workgroup for NVIDIA GPUs and 16
threads for Xeon Phi. The second is the number of workgroups. We assume that
at least 8 workgroups are assigned to each compute unit of GPUs, while there
is only one workgroup for one compute unit for Xeon Phi (i.e. there are four
workgroups for each of its cores).

5.2 Hardware Used for Testing

We performed numerical tests for Intel Xeon Phi coprocessor working in 5110P
accelerator card and NVIDIA GPUs working in Tesla accelerator cards: Tesla
M2075 for Fermi GPU and Tesla K20 for Kepler GPU. All cards are connected
to systems running Linux with kernel 2.6.32. For OpenCL code development on
NVIDIA GPUs, compilers and libraries from CUDA 5.5 SDK were used, while
for Xeon Phi we employed compilers and libraries from Intel SDK for OpenCL
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Table 2. Characteristics of accelerators used in computational experiments

OpenCL device Fermi Kepler Xeon Phi
Tesla M2075 Tesla K20m 5110P

Number of compute units 14 13 236

Number of cores per comp. unit 32 192 1/4

Total number of cores 448 2496 59

Shared (local) memory size [KB] 48 48 32

Number of registers per comp. unit 32768x32bit 65536x32bit 32x512bit

Device memory size [MB] 5375 4800 5773

Global max alloc size [MB] 1343 1200 1924

Peak DP performance [TFlops] 0.515 1.17 1.01

Benchmark (DGEMM) performance 0.36 1.10 0.84

Peak SP performance [TFlops] 1.03 3.52 2.02

Benchmark (SGEMM) performance 0.51 2.61 1.74

Peak memory bandwidth [GB/s] 150 208 320

Benchmark (STREAM) bandwidth 105 144 165

Applications XE 3.0. Table 2 presents several characteristics of the accelerators
used for testing1.

5.3 Results

Table 3 presents the results of test runs for all three accelerators, single preci-
sion and double precision calculations and two problem types introduced above:
Laplace and convection-diffusion-reaction. Several parameters are given for each
run: execution time for a single finite element, performance in GFLOPS and
as a percentage of the theoretical peak (the results are reported for the best of
several executions). Additionally for GPUs the table contains the information
provided by the nvcc compiler and concerning the number of registers used by
each thread and the size of stack frame in global memory related to spilled loads
and stores.

Several observations follow:

– the results vary significantly for both problems, different architectures and
different precision of data

– for Fermi architecture, the resources are sufficient for single precision calcu-
lations (especially for Laplace test case, for which the calculated occupancy
equals 33% and the performance reaches very high values around 60% of the
theoretical peak), but the number of registers and the size of shared memory
are too small to allow for high performance of the kernel for double precision
calculations (where small occupancy and register spilling occurs)

1 For Xeon Phi architecture the number of compute units reported by the OpenCL
compiler is four times larger than the number of cores. This is related to the ”hy-
perthreading” form of SMT for Intel x86 cores [11], where each core is seen as four
”logical processors” (and each logical processor is considered as a compute unit).
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Table 3. Finite element numerical integration execution characteristics and perfor-
mance results for two test cases: Laplace equation and convection-diffusion PDE and
three accelerator architectures: Fermi, Kepler and Xeon Phi. The same OpenCL kernel
is used for all calculations, execution times are reported for one element .

M2075 – Fermi K20 – Kepler 5110P–Xeon Phi

SP DP SP DP SP DP

Laplace

Execution time [ns] 4.5 43.1 3.79 10.73 18.75 32.0

Performance [GFLOPS] 648 67 769 272 155 91

Performance [% of peak] 62.9 13.0 21.8 23.2 7.6 9.0

The number of registers used 63 63 92 158 – –

The size of stack frame [B] 40 320 0 0 – –

convection-diffusion

Execution time [ns] 13.3 119.5 4.25 11.9 18.7 32.1

Performance [GFLOPS] 361 40 1131 404 257 150

Performance [% of peak] 35.0 7.7 32.1 34.5 12.7 14.8

The number of registers used 63 63 126 196 – –

The size of stack frame [B] 120 616 0 0 – –

– for Kepler architecture the results are consistent for single and double pre-
cision, while the performance is approximately 50% higher for the test case
with higher arithmetic intensity (reaching more than 30% of the theoretical
peak)

– the same observation holds for Xeon Phi, while the obtained performance,
as the percentage of the peak, is more than two times lower than for the
Kepler architecture

– the portable kernel used in the study, turned out to be the fastest for GPUs,
but not the best for Xeon Phi, for which the kernel with no explicit usage
of shared memory performed calculations approx. 20% faster

6 Conclusions

The analyses presented in the paper show how OpenCL notions can be used
for designing a single code for such different architectures as NVIDIA GPUs
and Xeon Phi. The same code, with only two parameters adapted to different
architectures, was created for an example algorithm of finite element numerical
integration. The performance results show that, using design process based on
several simple, general optimization guidelines, it is possible to obtain for each
architecture a reasonable performance, sometimes above 50% of its theoretical
maximum. However, at the current stage, with the performance for several cases
below 10% of the theoretical maximum, it cannot be concluded that full perfor-
mance portability, if defined as obtaining high performance with a single code
for all considered architectures, has been reached.
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Abstract. We propose a model for event-oriented programming under
shared memory based on access permissions with explicit parallelism.
In order to obtain safe parallelism, programmers need to specify the
variable permissions of functions. Blocking operations are non existent,
and callback-based APIs are used instead, which can be called in parallel
for different events as long as the access permissions are guaranteed. This
model scales for both IO and CPU-bounded programs.

We have implemented this model in the Eve language, which includes
a compiler that generates parallel tasks with synchronization on top of
variables, and a work-stealing runtime that uses the epoll interface to
manage the event loop.

We have also evaluated that model in micro-benchmarks in programs
that are either CPU-intensive or IO-intensive with and without shared
data. In CPU-intensive programs, it achieved results very close to mul-
tithreaded approaches. In the share-nothing IO-intensive benchmark it
outperformed all other solutions. In shared-memory IO-intensive bench-
mark it outperformed other solutions with a more or equal value of writes
than read operations.

Keywords: Event-oriented, Parallel Programming, IO performance.

1 Introduction

The high-performance of IO applications has become more important in the last
decades as the Internet applications are required to handle a large number of
clients with a high throughput and low latency. More recently, event-loop based
models have become popular for high-performance applications.

However, it is not possible to assert whether event-loop models are better
or worse than shared-memory multithreaded models. Event-loops have become
popular because several applications using that model have shown to have a lower
memory consumption, better performance and better scalability than equivalent
programs written in a threaded model [1] [2]. The event-based model is also
considered simpler than using threads, since threading requires proper synchro-
nization and it is more difficult to debug[3]. A counter-argument against events is
that reasoning about the control flow is difficult and with careful reengineering,
threaded approaches can achieve similar performance values[4].

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 170–181, 2014.
© Springer International Publishing Switzerland 2014
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The actor model has been a popular approach to unify both models, with each
actor running on its own thread, each with its own event-loop [5]. This approach
allows for an event-loop approach to scale across multiple processor cores with
a composable interface. However, the actor model limits the memory access to
the actor, which has less flexibility that threaded models for some applications.

The Eve language introduces a new model that supports the event-loop and
task-based parallelism to allow for both IO and CPU bounded programs to
achieve high concurrency. Unlike the actor model, the eve language is shared
memory and any task can access data from any other task. But in order to reduce
the complexity of handling all the synchronization necessary to avoid deadlocks
and to guarantee data consistency, the language makes use of access permissions,
which have to be specified in the program. From these access permissions, the
program is automatically parallelized, and monitors are added when necessary
to guarantee consistency. This works across the event loop, allowing for shared-
memory task-based parallelism inside the event loop.

The main contributions of this paper are: A new model for shared-memory
task parallelism within the event-loop; The definition of a language that supports
that model; The implementation of a compiler for that language and a runtime
library to support the execution; and an evaluation and comparison of that
language against popular languages.

The rest of the paper is organized as follows: Section 2 explains the new pro-
gramming model proposed; Section 3 details the implementation of the compiler
and runtime; Section 5 compares our model to other state of the art approaches;
finally Section 6 concludes the document and presents some future work.

2 Approach

We propose a model that combines the event loop and the shared-memory aspect
of threaded programming. We will focus firstly on the programming model, and
then on the execution aspect.

The three main differences between the programming model of Eve and those
of mainstream object-oriented languages is the usage of tasks, permissions and
event callbacks.

Eve allows programmers to execute methods and blocks of code as parallel
tasks. This is expressed using the @ symbol. Program 1 is a parallel implementa-
tion of the Fibonacci function. Since the a and b assignment statement is prefixed
with the @ symbol, they are executed in parallel. After the @, the programmer
has to write the access permissions required to execute that block of code. As
long as the access permissions are correct, tasks can be introduced in any part
of the code.

Permissions only apply to objects that are shared among different parts of the
code. Local objects do not require access permissions since they are guaranteed
to execute in the same thread without the need for synchronization.
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fib: (n: int) int:
if n < 2:

return n

a, b : int@
finish:

@ [+a, =n]: a = fib(n - 1)
@ [+b, =n]: b = fib(n - 2)

return a + b

Program 1. Parallel computation of the nth Fibonacci number using the finish block
for synchronization. int@ defines a shared object of base type int.

Objects can have three different permissions on a method of code block: If no
special annotation is added, the default permission is Read permission, which
allows function to access a certain object, but an attempt to modify it will
result in a compile-time error. If the programmer wants the shared object to be
modified, then a Full permission is required and the variable should be prepended
with a + sign. Finally, if only the reference is needed, without any read or write,
a Null permission can be annotated by using the - sign. The main usage for this
permission is to bind a reference to the object to the local context.

Using the same syntax as C++ a variable can be captured by copy or by
reference using the = and & prefixes respectively.

Since it is frequent for sub-tasks to require access to the same objects, those
operations must be executed inside a special finish block. When the execution
reaches the finish special block, it releases all shared object, so that they can be
used by the subtasks. This approach allows for a consistent view of the objects.
Inside a finish block tasks can only require a subset of the parent’s permission
set, which prevents deadlocks between parent and child tasks.

Tasks have further restrictions in order to guarantee the corrected of concur-
rent programs: Tasks may not have infinite loops or blocking operations, as this
could lead to live-locks. Instead, eve programs use a event-based non-blocking
asynchronous API to interact with the Operating System.

The event-based callback system is another of the core features in eve. Any
type in the language can enumerate the set of events if can trigger. Events are
named types and they can contain objects of any type. Objects that can emit
events can be used with the on construct to define a event callback. Program 2
shows an implementation of a simple socket-based chat showing the use of the on
keyword to define callbacks and the @ keyword for parallel execution of tasks.
When the socket object receives data, the on client data callback is executed,
for instance. While the buffer reading is done in the current task, the writes to
each client buffer is done in parallel tasks.

The execution model is based on the same task-oriented work-stealing sched-
uler present in Cilk[6] and many other frameworks. This approach has been
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import io.socket.*
import util.timeout

main: () void:
clients: set<socket@>@

tcp_socket.listen(8080):
connection = [+clients] (c: connection&) bool:

client: socket@ = c()
clients.insert(client)

on client data [clients]:
message : vector<char>@ = client.read_buffer()
@ for (c: socket@ in clients) [message, +c]:

c.write_buffer(message)

on client close [+clients]:
clients.remove(client)

return true

error = [+stderr] (e: error&) bool:
stderr.write("Failed to start server: %s", error)
return true

Program 2. A TCP broadcast server that accepts connections on port 8080

proved to support several CPU-bounded operations with a good occupation of
multiple processors. A fixed number of POSIX threads are created, each with
its own queue. Worker threads process the tasks in their queue and, when the
queue is empty, they steal tasks from other queues.

Whenever a new task is being scheduled, the required permissions are verified
that they are available. If they are not, the task is moved to the end of the
queue, for a later execution. Since this adds an unwanted overhead, tasks should
require as few permissions as possible.

New tasks can also be scheduled by the kernel, when a new kernel event is
generated. These tasks will have to be executed in the right order and they cannot
conflict on the shared objects that they required. In order to execute in the right
order, the first callback should execute completely. If there are some operations
pending because of other IO operations (such as writes), the remaining callbacks
for the first event will only be called when the callback for this new event is
completed.

3 Implementation

The implementation of the Eve language is divided in two main components:
the compiler and the runtime. The compiler follows a traditional approach, with
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the code-generator phase emitting C++ code instead of machine code, thus
being, in fact, a transpiler. Further compilation with GCC is performed to obtain
binary files. The generated code makes heavy use of the Eve runtime to obtain
parallelism and to enforce proper synchronization of data.

Fig. 1. Architecture of the
Eve runtime, and its connec-
tion with the Linux kernel us-
ing the epoll interface

The Eve runtime architecture (in Figure 1) has
a task management core, which is responsible for
task handling. This includes creating and manag-
ing the worker POSIX threads, the management
of tasks, load balancing of tasks using a work-
stealing approach and also to guarantee proper
access to shared objects. Additionally, the core of
the runtime is also responsible for wrapping the
epoll system calls, enabling the transition from
kernel callbacks to events in Eve. The Libraries
package exposes common system tasks, such as
socket operations, using event handling for call-
back registration.

The work-stealing approach was heavily based
on the THE algorithm[7] from Cilk[6], with the
suspend-steal method[8] for avoiding overheads
of double stealing. Since the runtime integrates
tightly with epool, workers call epoll wait() in-
stead of sleeping when it has no available tasks
for running.

While events in Eve are instances of any class,
event emitters have to extend the emitter<T>
class, indicating that it can emit events of type
T. Each instance of the class stores callbacks for
this event on this object. This allows for a distributed callback table, effectively
avoiding unnecessary contention with global table locks.

4 Evaluation

In this section we compare the performance of the Eve platform with existing
popular frameworks for high-performance IO and parallel programming. The
evaluation focused on two programs: Echo Server, representative of IO-intensive
applications; and Atomic Counter, representative of concurrent programs with
synchronization.

In terms of Lines of Code, one heuristic frequently used to compare complexity
of programming expression, programs written in Eve are smaller than other low-
level frameworks such as libev, TBB or Fork/Join. It also performs fairly well
against higher-level frameworks such as gevent and REV despite achieving much
better performance.

Each execution was repeated 30 times from which the average values and
respective standard deviations are shown. Additionally, a first execution was
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Table 1. Hardware specification of benchmark hosts

Ingrid Astrid

Motherboard Dell Inc. 0CRH6C SuperMicro X9DAi

Processor 2x Intel(R) Xeon(R) X5660
2.80GHz, 24 hardware threads

2x Intel(R) Xeon(R) E5-2650
2.00GHz, 32 hardware threads

Memory 24 GB DDR3 1333 MHz 32 GB DDR3 1600 MHz

Connectivity Broadcom Corporation NetXtreme
BCM5761 Gigabit Ethernet PCIe

Intel Corporation I350 Gigabit
Network Connection

performed before the 30 repetitions to avoid interference of the JIT compilation
and caching mechanisms. The information of the two machines used is presented
in Table 1. Single host benchmarks were executed on Astrid. For communication
benchmarks, Astrid was used for the server while Ingrid was used for the client.
The two hosts were directly connected using a ethernet cable, to avoid external
interference.

The following versions were used: GCC 4.7.2; Erlang R15B01 (-S16); Go 1.0.2;
GHC 7.4.2; node.js 0.6.19; Ruby 1.9.3p194; Python 2.7.3; Java OpenJDK 23.7-
b01; libev 1.4-2; Intel TBB 4.0+r233-1; gevent 0.13.7; REV 0.3.2.

4.1 Echo Server

Facilitating the developing high-performance web applications is one of the goals
of Eve. This benchmark compares Eve to other languages and frameworks used for
this purpose. The test consists of creating a server that accepts TCP connections
and re-emits the received data until the socket is closed. Although very simple,
this test enables the comparison of key features of web servers. The first measured
attribute is the request throughput. This indicates the number of requests per sec-
ond the server can handle. The second measured attribute is latency. Low latency
times are critical for soft real-time applications. Additionally, even for other ap-
plications, latency higher than 100ms is noticeable and has been linked to lower
user dissatisfaction, higher bounce rates and overall lower revenue [9].

For this benchmark, the following solutions were tested: eve, erlang,
haskell, go and Node.js are implementations of an echo server using the
respective languages, rev is an implementation using the Ruby Event Ma-
chine platform, gevent and libev make use of the homonymous libraries
(for python and C++ respectively), and finally cluster is a Node.js ap-
plication that uses the cluster library for parallelism. The source code for
each application was selected from an existing benchmark, publicly available
at https://github.com/methane/echoserver. However, this benchmark suite
does contain the cluster implementation. Additionally, the client software used
the thread-per-connection model which delivered low performance. A new im-
plementation based on this code was created using the Eve runtime. For each
test, 150 concurrent connections were created, each sending 10000 sixteen byte
messages.

https://github.com/methane/echoserver
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Fig. 2. Request throughput of the echo servers on the left, and reply latency on the
right

Figure 2 indicate the performance obtained using these solutions. The gevent
implementation is the slowest of all alternatives. This is most likely because the
entire framework is executed by the python interpreter which is inherently slower
than a native implementation. This is also true for Node.js and rev, although
not to the same extent (the event loop is implemented in native code). Addi-
tionally, gevent uses the libevent library while Node.js uses libuvand rev uses a
custom implementation. According to [10], libev outperforms libevent/libevent2
which also reinforces the poor performance of gevent. The epoll implemen-
tation makes direct access to the epoll() system call using C++ while libev
uses the wrapper library around epoll() on UNIX systems. As expected, their
performance is much better than the already mentioned solutions. In fact, libev
alone is 3.88 times faster than Node.js. However, in our case, the epoll imple-
mentation is slightly worse than libev. This is because the benchmarked epoll
code is poorly optimized, making use of unnecessary memory allocations that
are not present in libev.

All the remaining solutions make use of multi-threaded runtime environments
and were expected to outperform the single-threaded implementations. This is
not true for haskell and go. Regarding the first case, the haskell runtime has
known IO scalability issues. According to [11] this will be fixed in GHC version
7.8.1, which has not yet been released. The reason behind go’s poor performance
is more obscure since documentation of its runtime architecture is not available.
Both the erlang runtime and cluster implementation show good performance.
Nonetheless, the eve framework surpasses both with a 35.5% increase in through-
put on localhost, and a more modest 3% increase compared to erlang and 7%
increase compared to cluster on different hosts. One interpretation of these val-
ues is that the Eve runtime is more optimized and/or requires less operations.
In fact, the erlang language was designed for real-time systems and each actor
is scheduled using a preemptive fair algorithm. Even if no preemption occurs,
this algorithm is more expensive than the execution of eve tasks. Regardless,
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even though the Eve runtime provides less guarantees on the response time, the
obtained latency and jitter are comparable if not better than erlang’s.

Considering the libev implementation as a baseline for a single-threaded run-
time, one would expect the performance of parallel implementations to achieve
better speedups. Two reasons were found that can explain this fact. The first
is the very nature of the problem. Unlike CPU intensive tests, the echo server
test is IO intensive. In particular, read/write() operations require large mem-
ory bandwidth, which unfortunately does not scale with added worker threads.
To mitigate this bottleneck zero-copy operations could be implemented [12]. The
second has to deal with normal parallel slowdown causes. Problems such as cache
misses aggravate the memory bandwidth bottleneck and are more common in
parallel architectures due to inter-process invalidation [13]. Additionally, syn-
chronization is required to maintain a coherent application state. This synchro-
nization is employed by the Eve runtime (using spinlocks, monitors and atomic
operations), but also by the Linux kernel since spinlocks and mutexes are used
in epoll functions to prevent race-conditions. Even in the absence of concurrent
accesses, these primitives incur in additional overhead that is not present in sin-
gle threaded architectures. Additionally, this overhead may increase when used
simultaneously by more threads.

4.2 Atomic Counter

The echo test described in the previous section exemplifies an embarrassingly
parallel problem. There is no shared state between clients, which allows them
to be handled separately without synchronization. The atomic counter test is a
modification to this example, where shared state is maintained. In particular, a
single variable counter is accessed by all clients. Two types of operations are
permitted: read which allows each client to retrieve the value stored in counter
and increment which atomically reads and increases stored value by one and

Fig. 3. Throughput of the atomic counter servers subject to the percentage of read
operations
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returns the new value. These operations are transmitted through the network
using a single byte 00 and 01 respectively. Because both operations require a
response packet, this application has similar IO patterns to the echo server,
allowing the previous results to estimate an upper limit on performance.

Ideally, read operations can execute in parallel but each increment opera-
tion must be executed in mutual exclusion. The Eve implementation makes use
of the language’s access permissions to achieve this semantics. Erlang however,
does not have this feature. For this reason, the counter is maintained by a single
actor, using message passing for synchronization. This solution sequentializes all
accesses, including read operations. The remaining actions are still executed in
parallel (e.g.: IO, parsing). With Node.js cluster library, each worker executes
in a new process. For this reason, shared memory solutions are not possible. For
testing purposes we decided to approach this limitation with a commonly used
alternative: in-memory databases. In particular we selected mongodb which su-
ports the required atomic operations. Figure 3 shows the throughput obtained
for each server. The erlang implementation suffers from performance loss, av-
eraging at 74%. The large standard deviation observed for this test is very high,
ranging from 20.99% to 27.04%.

The proportion of read operations are key to the performance of the Eve
runtime. On one end, with 100% read operations the counter value is constant
and complete parallelization is possible. The performance obtained for this case
is around 90% of the expected value, indicating that the overhead of additional
synchronization is low. For this ratio, Eve outperforms the erlang by 25%. On
the other end, with 0% read operations, each action must wait for its predecessor
to relinquish access to the shared variable. In this case, the performance drops
to 43.5%, being slower than erlang by 35%. The other implementations do not
suffer significantly from this ratio: erlang’s implementation sequentializes every
operation and mongodb uses atomic operations instead.

5 Related Work
In this section we will focus on comparing Eve with other approaches that com-
bine the event oriented aspect with shared memory multithreading. As previously
mentioned, the Actor implementation in Scala[5]. Scala actors have two possi-
ble behaviors for processing an incoming message, one with threading semantics
and other with the same semantics of event-based programming. The second ap-
proach is based on continuations and allows for parts of the message processing
to be scheduled for a later time, without having to suspend the thread. While
this approach has good performance results on the actor model, Eve allows for
more flexible and complex programs, given that memory is fully shared, and not
partitioned by actor.

Capriccio[14] has a threading implementation that takes advantage of asyn-
chronous IO. Capriccio is implemented using user-level threads on top of corou-
tines. In terms of performance, Capriccio is always slower than epoll,
something that does not occur in our micro-benchmarks. Eve is a full program-
ming language, while Capriccio is a library that implements the POSIX threading
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API, which allows for usage in existing applications without much work. On the
other hand, the language features of Eve allow for more information regarding
shared objects, automatically synchronizing accesses, something not possible in
Capriccio.

Events and Threads have also been combined in GHC[15]. The main difference
to Capriccio is that there was an explicit asynchronous IO API with event han-
dlers, like in Eve. However, the threading API, including synchronization using
mutexes, is explicit unlike in Eve. Furthermore, the GHC makes use of Software
Transactional Memory, while Eve does not. Another work on GHC[16] has also
improved the performance of asynchronous IO on multithreaded environments
by improving the data structures on which the event handlers are stored, but in
multicore environments, each event source is attached to a single thread.

Libasync-smp[17] allows event handlers to be executed in parallel, as long as
they do not share any mutable state. This is done by assigning a tag (”color”)
to events according to the shared state they use in their computations. Thus,
events of different colors can be executed in parallel without any extra synchro-
nization. This approach is more similar to Eve, but less expressive as Eve requires
information regarding the variables and automatically detects the events that
can execute in parallel. In Libasync-smp programmers must express that using
colors, and fine-grained synchronization using shared variables is not supported.
Instead all events that shared memory, even if only in a small part of the handler,
execute serially.

Mely[18] uses the same API as Libasync-smp, but uses workstealing to lower
scheduling overheads to improve performance with short-running events. The
workers steal colors instead of tasks, in order to maintain the serial execution
inside each color. Although this is close to the implementation of Eve, the same
drawbacks of using colored events instead of annotating variables applies to Mely.

Finally, Eve can be compared to Æminium[19] in the sense that Æminium also
uses access permissions on variables to automatically manage synchronization
between different running tasks. While Æminium automatically parallelizes the
whole code based on the access permissions, Eve uses programmer annotations
to mark parallelization points in the code. However Æminium is only concerned
with CPU-bounded parallelism, without any event-oriented API.

Node.Scala[20] also shares a similar approach to Eve. Programmers write Scala
applications using a single-threaded event-loop approach, with the same API as
in Node.js. Event handlers can then be executed in parallel whether or not
they are marked as exclusive or not. Compared to Node.Scala, Eve can par-
allelize more than just event callbacks, featuring a full work-stealing scheduler,
more suitable for CPU-intensive tasks, while Node.Scala is optimized only for IO
processing.

6 Conclusions and Future Work

Event-driven architectures have been proved to work well for network-based
applications, but it has been hard to integrate asynchronous IO APIs in
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shared-memory multithreaded programming. This difficulty is two-folded. The
expressiveness of using multithreaded programming is not directly compatible
with the traditional callback-based single-threaded event-loop approach. Perfor-
mance is other field in which combining these two different programming styles
is not trivial, as event-loops are mostly bound to a single thread and require
extra synchronization, which adds an overhead.

We propose Eve as a parallel event-oriented language, in which programmers
use a event-oriented programming style and special syntax for creating new par-
allel tasks, and for access permissions on variables. This small extra annotations
on the code allow for parallel execution of different parts of the code, as well as
a guarantee of a safe parallel event callbacks execution.

Our benchmarks have shown Eve to have a similar performance as Intel TBB
and Java ForkJoin frameworks in CPU-bounded programs. Additional, Eve out-
performed other languages in IO-bounded programs by making a more efficient
use of threads in event-based programming. A Localhost share-nothing applica-
tion had a 35.5% improvement over the second best solution, and server-only
execution had a 7% increase. Another IO application with some 50% of the
requests requiring synchronization was 23% faster than the next best solution.

For future work, it would be important to improve the performance of epoll
in a multithread environment. The epoll set is currently shared by all workers,
causing synchronization to happen at the kernel level. It would be interesting
to have a epoll set per worker, in order to minimize contention, with an extra
global set for load-balancing.
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Abstract. There are billions of lines of sequential code inside nowadays
software which do not benefit from the parallelism available in modern
multicore architectures. Transforming legacy sequential code into a par-
allel version of the same programs is a complex and cumbersome task.
Trying to perform such transformation automatically and without the
intervention of a developer has been a striking research objective for a
long time. This work proposes an elegant way of achieving such a goal.
By targeting a task-based runtime which manages execution using a task
dependency graph, we developed a translator for sequential JAVA code
which generates a highly parallel version of the same program. The trans-
lation process interprets the AST nodes for signatures such as read-write
access, execution-flow modifications, among others and generates a set
of dependencies between executable tasks. This process has been applied
to well known problems, such as the recursive Fibonacci and FFT algo-
rithms, resulting in versions capable of maximizing resource usage. For
the case of two CPU bounded applications we were able to obtain 10.97x
and 9.0x speedup on a 12 core machine.

Keywords: Automatic programming, automatic parallelization, task-
based runtime, symbolic analysis, recursive procedures.

1 Introduction

Developing software capable of extracting the most out of a multicore machine
usually requires the usage of threads or other language provided constructs for
introducing parallelism [1,2]. This process is often cumbersome and error prone,
often leading to the occurrence of problems such as deadlocks and race condi-
tions. Furthermore, as the code base increases it becomes increasingly harder to
detect interferences between executing threads. Thus, one can understand why
sequential legacy applications are still the most common kind and, in some cases,
preferred as they provide a more reliable execution.

Automatic parallelization of existing software has been a prominent research
subject [3]. Most available research focuses on the analysis and transformation of
loops as the main source of parallelism [4,5]. Other models have also been studied,
such as the parallelization of recursive methods [6], and of sub-expressions in
functional languages.
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Our contribution is both a framework and a tool for performing the auto-
matic parallelization of sequential JAVA code. Our solution extracts instruction
signatures (read from memory, write to memory, control flow, etc.) from the
application’s AST and infers data dependencies between instructions. Using this
information we create a set of tasks containing the same operations as the origi-
nal version. The execution of these tasks is conducted by the Æminium Runtime
which schedules the workload to all available cores using a work-stealing al-
gorithm [7]. This approach supports a different number of processor cores by
adjusting the number of worker threads and generated tasks, as long as there is
enough latent parallelism in the program. With a simple runtime optimization,
our experiments show a 9.0 speedup on a 12-core machine for the naive recursive
Fibonacci implementation.

The remainder of this paper is organized as follows: in Section 2 we discuss the
related work. Section 3 specifies the methodology used by the Æminium compiler
throughout the entire process, from signature analysis to code generation. In
Section 4 we conduct benchmarking tests and analyze the results. Finally, in
Section 5 we present a summary of this paper’s contributions and discuss future
work.

2 Related Work

Extracting performance from a multicore processor requires the development of
tailored, concurrent applications. A concurrent application, is composed by a
collection of execution paths that may run in parallel. The definition of such
paths can be done explicitly by the programmer with the aid of language sup-
ported constructs and libraries. An example of this approach is Cilk [8]. In the
Cilk language, the programmer can introduce a division on the current execu-
tion path through the use of the spawn keyword. The opposite is achieved with
the sync statement. When this statement is reached, the processor is forced to
wait for all previously spawned tasks. A similar approach is used by OpenMP
[9] where the programmer annotates a C/C++ program using pre-compiler di-
rectives to identify code apt for parallelism. Parallelism can also be hidden from
the programmer. This is the case of paralleled libraries such as ArBB [8]. These
libraries provide a less bug-prone design by offering a black-box implementation,
where the programmer doesn’t need to ponder concurrency issues but, still has
no control over the amount of threads spawned for each library invocation.

For existing sequential program, these solutions require at least a partial mod-
ification of the application’s source code. This may impose high rework costs,
specially in the case of large applications, and may inadvertently result in the
introduction of new bugs.

Automatic parallelization is an optimization technique commonly performed
by compilers which target multicore architectures. By translating the original
single threaded source code into a multi-threaded version of the same program,
these compilers optimize resource usage and achieve lower execution times. Like
all compiler optimizations, the semantics of the original source code must be
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preserved. As such, compilers must ensure the correct execution order between
operations on multiple threads, taking into account their precedence in the orig-
inal program.

One of the primary targets for automatic parallelization are loops. Numerical
and scientific applications often contain loops consisting mostly of arithmetic
operations. These loops provide a good source of parallelism due to the lack of
complex control structures and can be parallelized with techniques such as doall,
doacross and dopipe [10]. When dependencies between iterations are found the
compiler may attempt to remove them by applying transformations such as vari-
able privatization, loop distribution, skewing and reversal. These modifications
are extensively described in [4].

Many algorithms however, are best implemented using a recursive definition
as this is often the nature of the problem itself. The parallel resolution of each
of the sub-problems has also been analyzed. In [11] this method is applied to
the functional language LISP by the introduction of the letpar construct. This
model can be used with success because the semantics of functional programming
imply that there is no interference between sub-expressions. For non-functional
languages, a technique known as thread-level speculation executes the operations
optimistically assuming no interference. If such speculation is wrong, specialized
hardware is used to rollback the faulty threads into a previous checkpoint [12].
In [13] recursion-based parallelism is applied to the JAVA language. In order to
avoid interference between sub-expressions, a static analysis of read and write
signatures is performed and the resulting data stored. At runtime, this informa-
tion is used to check which methods can be executed in parallel by replacing the
parameters with the actual variables in the stored method signatures. However,
this runtime verification inadvertently introduces overhead. Our approach, on
the other hand, does not resort to runtime support for dealing with this prob-
lem. By adding two new signatures, merge and control, we are able to solve
this problem without a runtime penalty.

3 Methodology

In order to extract parallelism from sequential programs, our framework decom-
poses a program into tasks to be scheduled at runtime using a work-stealing
algorithm [7]. The entire process is depicted in figure 1. The first stage of the
compilation process is the generation of the application’s AST. This task is ac-
complished using Eclipse’s JDT Core component which provides an API to read,
manipulate and rewrite JAVA code. Each AST node is augmented with semantic
information in the form of signatures. Signatures are a low-level description of
what an instruction does, such as a read from a variable or a jump in the flow
of the application. By transversing the AST in the same order as it would be
executed, data dependencies and control dependencies are extracted and stored.
Data dependencies identify mandatory precedence of operations due to concur-
rent access of the same variables whereas control dependencies indicate that the
first operation designates whether or not the second executes. After this analysis,



Dependency-Based Automatic Parallelization of Java Applications 185

Fig. 1. Parallelization process used in the Æminium framework. Filled stages identify
the source-to-source compilation described in this paper.

an optional phase of optimization takes place where redundant dependencies are
removed and nodes are assigned into tasks. This optimization is repeated until
no improvement is observed or a predefined threshold is achieved. Finally, this
information is used to produce JAVA code for each task respecting the data and
control dependencies in the program.

3.1 Signature Extraction

The analysis of the source program starts with the extraction of signatures
for each node in the AST. Formally, signatures can be defined as predicates
S : A × D+ → {true, false}, where A is a set of AST nodes and D+ is a set
of ordered datagroup tuples. A datagroup is a hierarchical abstraction of mem-
ory sections whose purpose is to facilitate static analysis of the application’s
memory (i.e.: function scopes, variables). A single datagroup, φ ∈ D, encom-
passes the entire application. This datagroup is broken down by classes, meth-
ods, fields, scopes, statements, expressions and variables forming sub-datagroups
τ := (φ, ϕ0, · · · , ϕn). As an example, a local variable v inside a method m of
a class c is identified by τvar := (φ, ϕc, ϕm, ϕvar). An additional datagroup
ψ ∈ D describes all memory sections unknown to the code submitted for analysis
(i.e.: external libraries or native calls). Furthermore, two special datagroups τthis
and τret are used as placeholders and are, in later stages, replaced by the actual
datagroups that represent the object identified by the this keyword and the
object returned by the containing method. A current limitation of the compiler,
which we are currently working on, is the lack of array subdivision. As such, an
entire array and each of its inner values are only modeled as a single datagroup.

Signatures are grouped into five categories. The read(α, τ) predicate indicates
that operations in the sub-tree with root α can read memory belonging to data-
group τ . Likewise, write(α, τ) expresses that operations in the same sub-tree
can write to datagroup τ . A more complex signature is merge(α, τa, τb). This
signature implies that after operations in α, τa is accessible through τb. In other
words, τb contains a reference to τa (i.e.: τb is an alias for τa), and an operation to
one of these datagroups might access or modify the other. The fourth predicate,
control(α, τ), denotes the possibility of operations in α to alter the execution
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flow of other operations inside the scope marked by the datagroup τ . The last
predicate callm(α, τo, τr, τp0 , · · · , τpn) is used as a placeholder for method calls;
τo is the datagroup of the object that owns the method, τr is the datagroup
where the return value is saved and τpx is the datagroup for each of the invoca-
tion arguments. In program 1 the reader can observe an example of signatures
extracted by the compiler. Also note that a merge(αret1 , τn, τret) signature is
detected as well. However, since n and ret are both integers this signature can
be omitted.

int f(int n) {

if (n < 2) { // read(αcond, τn)
return n; // write(αret1 , τret), control(αret1 , τf )

}

return f(n - 1) + f(n - 2); // callf (αinv1 ,∅, τinv1 , τp0)
}

Program 1. The Fibonacci function with a excerpt of the extracted signatures indi-
cated in comments. inv stands for function invocation, ret for return value, f for the
current function f and p0 is the first argument of the invocation.

Signature extraction is executed as a 2-pass mechanism. In the first pass, sig-
natures for each node are collected and stored. In the second pass, the transitive
closure is computed by iteratively adding each sub-node signature set with the
one from its parent. In this step, callm signatures are replaced with the full
signature set of the corresponding method. The set is trimmed down by ignor-
ing irrelevant signatures such as modifications to local variables, and modified
so that the signatures have meaning in the new context: (1) formal parameter
datagroups are replaced by the argument datagroups τpx (2) the τthis datagroup
is replaced by τo and (3) the τret datagroup is replaced by τr . During this same
step, merge signatures are also removed in a pessimistic manner by adding all
the read and write signatures as required to preserve the same semantics.

Regarding external functions, the compiler assumes they read and write to
the ψ datagroup (ensuring sequential execution). For a more realistic (and better
performing) analysis, the programmer can explicitly indicate the signature set
for these functions in a configuration file (e.g.: to indicate that Math.cos(x)

only reads from its first parameter τp0 and writes to τret).

3.2 Dependency Processing

In a sequential program, operation ordering is used to ensure the desired behav-
ior. Line ordering, operator precedence, and language specific constructs (i.e.:
conditional branches, loops, etc.) define an execution order σt on the set of
AST nodes. Our compiler starts by assigning each executable node to a separate
æminium task. As such, the same total order can be applied to the set of tasks.
Dependencies between tasks are used to define a partial order σp, obtained by an
arbitrary relaxation of σt. The operator α ≺x β is used to indicate precedence
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Fig. 2. Tasks generated for program 1 without optimization. Dotted arrows identify
child scheduling. Solid arrows are used to represent strong dependencies while dashed
arrows indicate weak dependencies. Filled tasks is the function root task

of α over β on the σx order. Therefor, when σx is the partial order of tasks σp,
then α ≺p β indicates the existence of a dependency from task β to task α. For
the dependency set to be correct, any possible scheduling that satisfies σp has
to have the exact same semantics has the one obtained with σt. The following
rules are used to ensure this property:

1. A task that may read from a datagroup must wait for the termination of the
last task that writes to it;

α ≺t β, ∀α, β ∈ A write(α, τ), read(β, τ)

∴ α ≺p β

2. A task that may write to a datagroup must wait for the conclusion of all
tasks that read from it since the last write;

α ≺t β ≺t γ, ∀α, β, γ ∈ A write(α, τ), read(β, τ), write(γ, τ)

∴ β ≺p γ

If two tasks may write to the same datagroup and there is no intermediary
task that reads from it, then the latter task must wait for the former to
complete; 1

α ≺t β, ∀α, β ∈ A write(α, τ), write(β, τ)

∴ α ≺p β

3. After a datagroup merge, the three previous restrictions must be ensured
across all datagroups;

α ≺t β ≺t γ, ∀α, β, γ ∈ A

write(α, τa), merge(β, τa, τb), read(γ, τb)

∴ α ≺p γ

1 This rule applies when operations require both read and write access (such as the
increment operator), or when tasks span more than a single operation.
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α ≺t β ≺t γ, ∀α, β, γ ∈ A

read(α, τa), merge(β, τa, τb), write(γ, τb)

∴ α ≺p γ

α ≺t β ≺t γ, ∀α, β, γ ∈ A

write(α, τa), merge(β, τa, τb), write(γ, τb)

∴ α ≺p γ

4. Control signatures enforce dependencies from all the tasks of the scope whose
execution path can be altered.

α ≺t β, ∀α ∈ A, β ∈ τscope control(α, τscope),

∴ α ≺p β

The set of dependencies is generated by transversing the AST tree using order
σt and processing the signatures obtained in Section 3.1. A lookup table is used
to store the set of tasks that access each datagroup. Furthermore, the information
regarding which datagroups are merged is also stored. For each task, all of its
signatures are parsed and dependencies are created to ensure properties 1 to 4.
These data structures are updated dynamically to reflect the changes introduced.
If a conditional jump is encountered, duplicates of the structures are created
and each branch is analyzed independently. When the execution paths converge,
both data structures are merged: 1) disparities between tasks are identified and
replaced with the task that encloses the divergent paths. 2) datagroup merge
sets are created by the pair-wise reunion of sets from both branches.

In Figure 2 we can observe the set of tasks generated from the AST for
Program 1. Dotted arrows identify the optional child scheduling that occurs
when the parent task is executing. Dashed arrows indicate a weak dependency
relationship meaning the source task must wait for completion of the target task.
Solid arrows denote a strong dependency, one where in addition to the property
of weak dependency also signifies that the source task must create and schedule
the target task before its execution.

3.3 Optimization

Optimization is an optional step present in most compilers. The Æminium java to
java compiler, in its current shape, is capable of performing minor modifications
to the generated code in order to minimize runtime overhead. This overhead is
closely related to task granularity and the number of dependencies generated.
As such, the optimization step focuses on these two properties. Nevertheless,
on the post-compilation of the generated code, all the expected optimizations
performed by the native JAVA compiler still occur.

This step solves the optimization problem using an iterative approach by find-
ing small patterns that can be locally improved. The transformations described
in the following sections are applied until no pattern is matched or a maximum
number of optimizations is reached.
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Redundant Dependency Removal. The algorithm for identifying task de-
pendencies performs an exhaustive identification of all the data and control
dependencies between tasks. And, although these dependencies are fundamental
for guaranteeing the correct execution of the parallel program, they are often
redundant. The omission of such dependencies from the final code will not help
to increase parallelism but will lower the runtime overhead. We identify two
patterns of redundancy. The first instance follows directly from the transitivity
relation of dependencies: given three tasks α, β and γ, if α ≺p β and β ≺p γ then
α ≺p γ. If the former is present it can be omitted from the dependencies set.
The second instance takes into account the definition of child tasks. If α ≺p β,
α ≺p γ and, simultaneously, β is a child task of γ, then the former dependency
can be omitted. This is possible because the runtime only moves a task to the
COMPLETED state when it and all it’s children tasks have finished.

Task Aggregation. The first pass is to create one task per each node of the
AST. However, the execution of a parallel program with one task for each AST
node is several times slower than the sequential program, which makes task ag-
gregation mandatory. By coarsening the tasks, we are able to lower the schedul-
ing overhead and the memory usage. This optimization step attempts to reduce
the number of generated tasks by merging the code of several tasks together in
one task. The aggregate(α, β) operation has the following semantics: given two
tasks α, β ∈ A, such that α is a strong dependency of β, we merge α into β by
transferring all the dependencies of α into β, and placing the instructions of α
before the instructions of β or a place of equal execution semantics (such as the
right-hand side of an assignment expression).

Given that the code inside each task executes sequentially, by over-aggregating
tasks the parallelism of the program is reduced. As such, we identify two types of
task aggregation. Soft aggregation reduces tasks without hindering parallelism:
if task β depends on α, and there is no other task γ that also depends on α,
then α can be merged into β without loss of parallelism.

soft � α ≺p β ∧ �α ≺p γ ⇒ aggregate(α, β) α, β, γ ∈ A

Hard aggregation on the other hand attempts to merge tasks even in other scenar-
ios, such as lightweight arithmetic operations. Currently the optimizer aggregates
all expressions with the exception of method invocations (including constructor
calls). Also, statements where execution must be sequential (e.g.: the then block
of an if statement) and their aggregation does not violate dependency con-
straints are also aggregated. Optionally full sequentialization of cycles can also
take place. Using this feature disables parallelization of loops, but generates a
lower runtime memory footprint.

3.4 Code Generation

The Æminium runtime executes and handles dependencies between Task’s. These
objects contain information about their state, and their dependencies. The ac-
tual code executed by each task exists in a execute() method of a class that
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implements the Body interface. This factorization allows for reuse of the same
body object for multiple tasks. Bodies are constructed with a single parameter:
a reference to the parent body if it exists and null otherwise. This allows ac-
cess to fields of upper tasks where local variables and method parameters will
be stored. Inside the constructor of the body, its task is created by calling the
Aeminium.createTask() function which receives the body as it first parameter.
The second parameter defines a hints object used by the runtime to optimize
scheduling. This functionality is not used by the compiler and the default value
of NO HINTS is used. Strong dependencies of the task are instantiated in the con-
structor of the task body. This operation must take place after the creation of
the task object (since it must be available as the parent task when scheduling
those dependencies), and before the schedule of the task itself (since those tasks
will be used inside the task dependency list).

Methods. In real-life applications, the same method is invoked many times in
different places. This makes the already mentioned approach of accessing par-
ent’s fields unsatisfactory for translating method tasks as it would require repli-
cating the same method based on it where it is invoked. Instead, in addition to
the parent object, these tasks receive the invocation arguments as arguments to
the constructor of the task body. However, this requires those values to be known
when the task is created. Therefore, its instantiation must take place inside the
execute() method of corresponding method invocation expressions, where the
tasks that compute each argument have already completed. Nonetheless, method
invocation expressions, as well as all other expressions, must save their value in
a special field ret before they reach the COMPLETED state. In order to do so, the
return task of the invoked method places the value in ret upon its own execu-
tion. Furthermore, as a consequence of having all values computed prior to the
construction of a method task, it is possible to conduct a runtime optimization.
By checking if enough parallelism is already achieved – by checking if enough tasks
are queued and all threads are currently working – it is possible to invoke the se-
quential (original) method. This optimization allows us to almost entirely remove
the overhead of the runtime once enough parallelism has been reached.

Loops. Loop statements such as while, for, and do...while allow for multi-
ple iterations to execute the same lines of code. However, the actual instructions
may vary from iteration to iteration. Furthermore, the instructions on the first
iteration must wait for instructions prior to the loop (e.g. a variable declaration)
while subsequent instructions only need to wait for one on the previous iteration
(last modification). To allow this duality of dependencies two trees of tasks are
created for each loop. The former contains dependencies belonging to the first
iteration while the latter includes dependencies associated with the following
iterations. The parent task of this second tree contains a previous field that
points to the preceding instance, and inside the execute() method creates an-
other instance of itself. Sub-tasks make use of this field to reference tasks of the
previous iteration for their dependency list.
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4 Evaluation

To validate our approach we compiled three sample applications using the
Æminium compiler and executed the resulting tasks in a machine with the fol-
lowing specification: 2 Intel R©Xeon R©Processor X5660 (6 cores each, with hyper-
threading, forming a total of 24 threads) and 24 GB of RAM. The applications
include the recursive implementation of the Fibonnaci program already men-
tioned in Section 3, an application to numerically approximate the integral of
a function given an interval, and finally a simple implementation of the Fast
Fourier Transform (FFT) on an array of 222 random complex numbers. The
FFT application requires the generation of an array of Complex objects. This
step is not considered for the benchmark time as it requires sequential invoca-
tions to Random.nextDouble(). Also, in order to minimize runtime overhead of
cycle scheduling the option to sequentialize loops (as described in 3.3) was used.
Each experiment was repeated 30 times. The results are depicted in Table 1 and
Figure 3.

Fig. 3. Execution time before and
after parallelization

]

Fig. 4. Scalability benchmark for
the three tests

Table 1. Measured average execution time (standard deviations) and speedups for the
three benchmarks

Application Sequential Parallel Speedup
Fibonacci 55.56 (8.90) s 6.17 (v0.59) s 09.00
Integrate 16.46 (0.56) s 1.50 (0.19) s 10.97
FFT 07.80 (0.40) s 5.33 (0.40) s 01.46

The first benchmark computes the 50th Fibonacci number. The sequential
execution of this problem took on average 55.56 seconds to complete, while the
parallel version only took 6.17 seconds. Although it consists of a 9.00x increase
in performance (p = 0.973), it is well bellow the possible 12x (linear) speedup.
The scalability test shown in Figure 4 indicates the cores/speedup relation. The
dashed line is the desired linear speedup. The dotted lines identify the the least-
squares method fitted to the Amdahl’s law [14] with the exception of the third
benchmark where an adjustment for linear ovearhead h was added.
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The second benchmark computes the integral of the function f(x) = x3 + x
in the interval [−2101.0, 200.0] up to 10−14 precision. The behaviour of this
test is similar to the previous, but with a slightly higher p = 0.978. The FFT
benchmark shows the lowest speedup among the three executed benchmarks
(pamdahl = 0.311 or p = 0.972, h = 0.746,). It is also the one with highest mem-
ory usage. This suggests that memory bandwidth is the primary bottleneck of
this particular implementation. In fact, this is the case for näıve FFT imple-
mentations as indicated in [15]. As a consequence, for larger arrays the speedup
decreases as cache hits become less and less frequent due to false sharing.

5 Conclusion and Future Work

By targeting a task-based runtime, our framework is capable of automatically
parallelizing a subset of existing java code. This solution provides respectable
performance gains without human intervention. The compiler is able to detect
parallelism available in loops, recursive method calls, statements and even ex-
pressions. The benchmarks executed show near-linear speedup for a selected set
of CPU bounded applications.

Future work for this project includes testing the approach on a large suite
of Java programs. In order to do that, the full set of Java instructions needs to
be supported. This includes exception handling, reflection instructions (such as
instanceof), class inheritance, interfaces, etc. The results on a large codebase
would allows for a thorough analysis of the performance and optimizations re-
quired. One of the potential optimizations if the usage of a cost analysis approach
to efficiently conduct hard aggregation of small tasks. This analysis should also
take into account task reordering to further merge task chains. The current im-
plementation of loop tasks introduces too much overhead to be of practical use,
so the creation of tasks that work in blocks or strides should provide a better
performing model.
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Abstract. Counting the occurrences of small subgraphs in large net-
works is a fundamental graph mining metric with several possible ap-
plications. Computing frequencies of those subgraphs is also known as
the subgraph census problem, which is a computationally hard task. In
this paper we provide a parallel multicore algorithm for this purpose. At
its core we use FaSE, an efficient network-centric sequential subgraph
census algorithm, which is able to substantially decrease the number of
isomorphism tests needed when compared to past approaches. We use
one thread per core and employ a dynamic load balancing scheme capa-
ble of dealing with the highly unbalanced search tree induced by FaSE
and effectively redistributing work during execution. We assessed the
scalability of our algorithm on a varied set of representative networks
and achieved near linear speedup up to 32 cores while obtaining a high
efficiency for the total 64 cores of our machine.

Keywords: Graph Mining, Subgraph Census, Parallelism, Multicores.

1 Introduction

Graphs are a flexible and powerful abstraction of many real-life systems. An
essential graph mining primitive is to compute the frequency of small subgraphs
in large networks. This is known as the subgraph census problem, and lies at the
core of several graph mining methodologies, such as network motifs discovery [6]
or graphlet based metrics [8]. Counting subgraphs is, however, a computation-
ally hard task, closely related to subgraph isomorphism, a classical NP-Complete
problem . This implies that the execution time grows exponentially with the size
of the network or the subgraphs being analyzed. Speeding up this computation
would have a significant and broad impact, making new size limits computation-
ally feasible, hence leading to a new insight on the networks.

Subgraph census algorithms generally follow one of three different paradigms;
network-centric algorithms, such as ESU [16], compute the frequency of all sub-
graphs with a certain number of nodes and then verify the type of each subgraph.
By contrast, subgraph-centric algorithms, such as the one by Grochow and Kel-
lis [3], compute the frequency of only one individual subgraph type at a time.
Set-centric approaches, such as g-tries as used in [9], are conceptually in the
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c© Springer International Publishing Switzerland 2014
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middle and allow the user to compute the frequency of a customized set of sub-
graphs that can be larger than a single subgraph but at the same time smaller
than all possible subgraphs of a certain size.

Here we are mainly concerned with the network-centric approach. In particu-
lar, we focus on the FaSE algorithm which is one of the most efficient sequential
alternatives for this conceptual approach to subgraph census [7]. The main con-
tribution of this paper is a scalable parallel version of FaSE geared towards
multicore architectures, which are nowadays ubiquitous, even on personal com-
puters, making them an ideal target for end users. Using an efficient dynamic
load balancing scheme our parallel algorithm is able to redistribute the work
contained in the highly unbalanced search tree produced by FaSE. We tested
our approach on a series of representative networks, obtaining very promising
results, with an almost linear speedup up to 32 cores and high efficiency for 64
cores. Sequential FaSE was already one or two orders of magnitude faster than
state-of-the-art algorithms and so our parallel version constitutes, to the best of
our knowledge, the fastest multicore network-centric algorithm.

The remainder of this paper is organized as follows. Section 2 formalizes the
problem and describes related work. Section 3 gives an overview of the sequential
FaSE algorithm. Section 4 details our parallel approach, while section 5 shows
our experimental results. Finally, section 6 sums up the presented work and gives
some possible directions for future research.

2 The Subgraph Census Problem

This section details more formally the problem tackled in this paper.

Definition 1 (Subgraph Census Problem). Given an integer k and a graph
G, determine the frequency of all connected induced subgraphs of size k in G.
Two occurrences of a subgraph are considered different if they have at least one
node that they do not share.

As previously stated, this metric plays a central role in several graph mining
methodologies. For instance, a network motif is defined as a statistically overrep-
resented subgraph, that is, a subgraph that appears more times than what would
be expected [6]. In practice, this means that the census must be computed both
on the original network and on an ensemble of randomized networks [10].

2.1 Related Work

There are several existing sequential algorithms for the subgraph and classical
examples are ESU [16] and Kavosh [4]. They are conceptually similar, both be-
ing network-centric and enumerating all possible subsets of k connected nodes,
relying on a third-party algorithm (nauty1) to identify the associated subgraph

1 http://cs.anu.edu.au/~bdm/nauty/

http://cs.anu.edu.au/~bdm/nauty/
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type. This means that each subgraph occurrence implies an individual isomor-
phism test. NetMODE augments this approach by considering very small subgraph
sizes and either caching isomorphism tests or building fast specialized heuristics
for a particular subgraph size. QuateXelero [5] and our own work with FaSE [7]
are two very recent algorithms which offer a different improvement by avoiding
the need to do one isomorphism test per occurrence. To that end, they both
encapsulate the topology of the subgraphs being enumerated on an auxiliary
data-structure (a quaternary tree in the case of QuateXelero, and a g-trie in
the case of FaSE). Other algorithms are either subgraph-centric, such as the
work by Grochow and Kellis [3] or set-centric, such as gtrieScanner [9]. Here
we concentrate on the network-centric approach and use FaSE as the basis for
our parallel algorithm.

Regarding parallel approaches, there are less alternatives. We provided a dis-
tributed memory approach for both ESU [12] and g-tries [11], using MPI. This
work stands out because it is aimed at shared memory environments with multi-
ple cores. A shared memory parallelization of the set-centric g-trie methodology
was also presented in [2]. This work diverges in its base sequential algorithm
and uses a different conceptual approach. Another parallel algorithm is given by
Wang et al [15]; however, they employ a static pre-division of work and provide
very limited experimental results while our approach dynamically balances load
by redistributing work during the computation and perform a more detailed scal-
ability analysis. Afrati et al. [1] provide a parallel map-reduce subgraph-centric
approach, from which we differ in both the target platform and the algorithmic
methodology. For more specific subgraph types there are other parallel alterna-
tives such as Fascia [14] (a multicore subgraph-centric method for approximate
count of non-induced tree-like subgraphs) or Sahad [17] (a Hadoop subgraph-
centric method for tree subgraphs), but here we aim towards generality and all
possible subgraph types.

3 Sequential FaSE Algorithm

As previously said, FaSE follows a network-centric paradigm. However, contrar-
ily to what previous approaches did, FaSE does not withhold the isomorphism
tests until the end of the enumeration. Instead, it partitions the subgraphs into
intermediate classes during the enumeration process. The only requisite is that
if two subgraphs pertain to the same intermediate class they are isomorphic.
Thus, a single isomorphism test per intermediate class is needed, contrasting to
previous methods that required one per enumerated subgraph. This results in a
major speedup when comparing with past approaches, since the number of inter-
mediate classes will be much smaller than the number of subgraph occurrences,
which is corroborated by the experimental results.

In practice the algorithm uses two main concepts: an enumeration process
and a tree that stores the information of both the intermediate classes and the
subgraphs being enumerated. The enumeration process simply iterates through
each subgraph occurrence and can be performed using any existing methods,
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provided it works by incrementally growing a set of connected vertices that par-
tially represents the current subgraph. Furthermore, a tree is used to encapsulate
the topological features of the enumerating subgraphs. It does so by generating
a new label, using a generic operation called LS-Labeling, which represents the
information introduced by each newly added vertex and uses it to describe an
edge in a tree. This effectively partitions the set of subgraphs into the mentioned
intermediate classes. This entire process is summarized in Algorithm 1.

Algorithm 1. The FaSE Algorithm

Input: A graph G, a g-trie T and a subgraph size k
Result: Frequencies of all k-subgraphs of G

1: procedure FaSE(G, T, k)
2: T ← ∅
3: for all vertex v of G do
4: enumerate({v}, {u ∈ N(v) : u > v}, T.root)
5: for all l in T.leaves() do
6: frequency[canonicalLabel(l.Graph)] += l.count

7: procedure enumerate(Vs, Vext, current)
8: if |Vs| = k then
9: current.count++
10: else
11: for all vertex v in Vext do
12: V ′

ext ← Vext ∪ {u ∈ Nexc(v, Vs) : u > Vs[0]}
13: V ′

s ← Vs ∪ {v}
14: current′ ← current.Child(LSLabel(Vs))
15: enumerate(V ′

s , V
′
ext, current

′)

3.1 Enumeration

As mentioned above, the enumeration process can be done by any algorithm
that grows a set of connected vertices. The reason to enforce so is to allow the
creation of a label describing the addition of the vertex and hence partition the
subgraphs set. The previously mentioned ESU [16] and Kavosh [4] algorithms fit
this constraint and since they present similar execution time, both would be a
good choice to integrate into FaSE. In our implementation we opted to use ESU,
which we will now describe in more detail.

It essentially works by enumerating all size k subgraphs only once. It does
so by keeping two ordered sets of vertices: Vs and Vext. The former represents
the partial subgraph that is currently being enumerated as a set of connected
vertices. The latter represents the set of vertices that can be added to Vs as a
valid extension. To begin, it takes each vertex v in the network sets Vs = {v}
and Vext = N(v), where N(v) are the neighbors of v (lines 3 and 4). Then, one
element u of Vext is removed at a time, and a recursive call is made adding u to
Vs and each element in Nexc(u, Vs) with label greater than Vs[0] to Vext (lines 12
and 13). Nexc(u, Vs) are the exclusive neighbors, that is they are the neighbors of
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u that are not neighbors of Vs. This, along with the condition u > Vs[0], ensure
that there is no subgraph enumerated twice. When the size of Vs reaches k it
means that Vs constitutes a new occurrence of a size k subgraph (line 8).

3.2 Using a Tree to Encapsulate Isomorphism Information

The enumeration step is wrapped by a data structure that stores information
of the subgraphs being enumerated in order to divide them into intermediate
classes. The conditions set on the behavior of the enumeration algorithm allow
for the use of a tree, as previously described. This tree, which is called a g-trie,
represents a different intermediate class in each node. When adding a new vertex
to the current subgraph, a new label is generated describing its relation to the
previously added vertices. This label will govern the edges in the tree, that is,
each edge is represented by a label generated by a vertex addition.

Label generation in each step is done by using a generic process called
LS-Labeling which deterministically partitions the different subgraphs into iso-
morphic classes. Additionally, it is required that it runs in polynomial time, as
otherwise it would be pointless to use the actual tree since we could simply use
the labeling as the isomorphism test. Thus there is a trade off between time spent
in creating the label and time spent enumerating and running isomorphism tests
on subgraphs. In this paper we use an adjacency list labeling, which generates a
label corresponding to an ordered list of at most k− 1 integers where each value
i (0 < i < k) is present if there is a connection from the new vertex to the i-th
added vertex. More details on this can be found in the original FaSE paper [7].

Figure 1 summarizes the FaSE algorithm. The tree on the left represents the
implicit recursion tree ESU creates. Note that it is naturally skewed towards the
left. This is an important fact that justifies why, as we will see later, we need to
redistribute work in the parallel version of the algorithm. The induced g-trie on
the right is a visual representation of the actual g-trie that FaSE creates.

Fig. 1. Summary of the enumeration and encapsulation steps of FaSE
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4 Parallel FaSE Algorithm

A main characteristic of our sequential algorithm is that it generates indepen-
dent branches. Each Vs and Vext pair can thus be regarded as a work unit and,
along with the position in the g-trie, are sufficient to resume computation. At
the start, Vs corresponds to each single node in the network and Vext to its
neighbors with higher index. As we have seen before, this distribution is intrin-
sically unbalanced since it places bigger restrictions on higher indexed nodes.
Furthermore, in the subgraph census problem, a few vertices, such as hubs, may
have most of the computing time while others are much lighter in comparison.
In our work we developed a strategy to efficiently distribute these work units
among the computing resources.

We decided to use one central g-trie, as opposed to one g-trie per thread.
While this option leads to contention when accessing the g-trie, it saves memory
and removes the redundant work caused by multiple threads creating their own
g-trie, with most connections being common for every thread. A major factor
for the efficiency of the sequential algorithm is that it does not create a queue of
work units, and instead implicitly stores them in the recursive stack. To achieve
the best efficiency we kept this characteristic in our parallel approach.

Our target platforms are multicore architectures, given their ubiquity and ease
of access for end users. Our implementation was done using Pthreads, which are
supported by all major operating systems.

4.1 Overall View

The algorithm starts by dividing the vertices evenly between the threads, with
one thread per core. All threads do the enumeration process separately, using
their respective Vs and Vext. If a thread arrives at a new type of node it updates
the g-trie. All threads see this change and do not need to update the g-trie if the
node is found again. When a thread P finishes its initially assigned work units
it sends a work request to an active thread Q. Thread Q stops its computation,
builds a work tree corresponding to its current state, gives half of the work to
P and informs it that it can resume work. Both threads execute their respective
portion starting at the bottom of the work tree so that only one Vs is needed for
a given point of sharing, exploiting graph sub-topology between g-trie’s ancestor
and descendant nodes. After the enumeration phase is completed, the resulting
leafs are split between the threads and isomorphism tests are performed to as-
sert to which subgraph type each leaf corresponds to. In the end, the subgraph
frequencies computed by all threads are aggregated.

4.2 Parallel Subgraph Frequency Counting

Algorithm 2 details our parallel FaSE algorithm. The graph G, the g-trie T and
the subgraph size k are global variables, while current is a pointer to the g-
trie location and is local for each thread. Computation starts with an initially
empty g-trie (line 2) and work queues (line 3) for every thread. The condition in
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Algorithm 2. The Parallel FaSE Algorithm

Input: A graph G, a G-Trie T and a subgraph size k
Result: Frequencies of all k-subgraphs of G

1: procedure ParallelFaSE(G, T, k)
2: T ← ∅
3: W ← ∅
4: i, j ← threadid
5: while i ≤ |V (G)| do
6: v ← V (G)i
7: if workRequest(P ) then
8: W.addWork()
9: (WQ,WP )← splitWork(W)
10: giveWork(WP , P )
11: resumeWork(WQ)

12: enumerate({v}, {u ∈ N(v) : u > v}, T.root)
13: i ← i+ numthreads

14: while j ≤ |T.leaves()| do
15: l ← T.leaves()j
16: frequency[canonicalLabel(l.Graph)] += l.count
17: j ← j + numthreads

line 12 of Algorithm 1, u > Vs[0], makes vertices with a smaller index probably
computationally heavier than higher indexed vertices. For that reason, network
vertices are split in a round-robin fashion, giving all threads |V (G)|/numthreads

top vertices to initially explore (lines 4 to 6 and 13). This division is not nec-
essarily balanced but finding the best possible division is as computationally
heavy as the census itself. If a thread does not receive a work request it does
the enumeration process starting at each of its assigned vertices (line 12). The
enumerate() procedure is very similar to the sequential version but with Vs and
Vext now being thread local and the count variable becoming an array indexing
threads, i.e. count[threadid], in each leaf. Another relevant difference is that,
when a new node in the g-trie needs to be created, its parent node has to be
locked before creation. This is done to ensure that the same node is not created
by multiple threads. Regarding work distribution, when a thread Q receives a
work request from P , it needs to stop its computation, add the remaining work
to W (line 8), split the work (line 9), give half of it to P (line 10) and resume its
computation (line 11). After the enumeration phase is finished, the leafs are also
distributed among the threads and isomorphism tests are performed to verify
the appropriate canonical type of each occurrence in parallel (lines 14 to 17).

4.3 Work Request

When a thread P has completed its assigned work it asks a random thread Q for
work. Random polling has been established as an efficient heuristic for dynamic
load balancing [13] and, furthermore, in our case predicting exactly how much
computation each active thread still has in its work tree can not be done without
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a serious overhead. If Q sends some unprocessed work, then P computes the work
it was given. If Q did not have work to share, P tries asking another random
thread. When all threads are trying to get work and no more work units are left
to be computed, the enumeration phase ends.

4.4 Work Sharing

When a thread is computing and receives a work request, the execution is halted
and work sharing is performed. In Figure 2 we show a work tree of a thread Q
and its division with thread P . The work tree is built by the recursive calls to
addWork(). The squares represent Vused and the current position in the g-trie.
We only need the Vs of the deepest level since the parent g-trie nodes share the
same vertices. The dotted nodes are work-units still to be explored. Note that
these nodes are not stored in the g-trie, and they will be explored by the threads
after sharing is performed and are presented only to give a more accurate view
of the complete work tree generated by FaSE.

Fig. 2. The constructed work tree of a thread Q and its division when a work request
is received from thread P

During work division, each thread is given a g-trie level, constituted by Vs,
Vused and the current g-trie position. In the given example, Q gets level 3 and 1
while P receives 2 and 4. The topmost level is fully split since that corresponds
to the initial division from lines 4 to 6 of Algorithm 2.

4.5 Work Resuming

When work is shared the threads need a mechanism to resume their computation
and that process is illustrates in Algorithm 3. The work levels are ordered from
top to bottom (lines 2 and 3) so that only one Vs is necessary. If a work request
is received, the general process of work sharing is performed (lines 4 to 8). No
call to addWork() is necessary since the work was either added previously to W
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Algorithm 3. Algorithm for resuming work after sharing is performed

1: procedure resumeWork(W )
2: OrderByLowest(W )
3: for all level L of W do
4: if WorkRequest(P ) then
5: (WQ,WP )← splitWork(W)
6: giveWork(WP , P )
7: resumeWork(WQ)
8: return
9: if L.depth = 0 then
10: for all vertex v of L.Vext do
11: enumerate({v}, {u ∈ N(v) : u > v}, T.root)
12: else
13: enumerate(L.Vs, L.Vext, L.current)

14: askForWork()

before the current resumeWork() call or was added by the recursive addWork()
calls from enumerate(). If the level being computed is the root of the g-trie,
the top vertices are individually computed (lines 9 to 11), in the same manner
as line 12 of Algorithm 2. Otherwise, the stored values of Vs, Vused and current
are used to continue the previously halted computation (lines 12 and 13). If the
thread finishes its alloted work it asks for more work (line 14).

5 Experimental Results

Experimental results were gathered on a 64-core machine; its architecture con-
sists of four 16-core AMD Opteron 6376 processors at 2.3GHz with a total of
252GB of memory installed. Each 16-core processor is split in two banks of eight
cores, each with its own 6MB L3 cache. Each bank consists of sets of two cores
sharing a 2MB L2 and a 64KB L1 instruction cache. Every single core has a ded-
icated 16KB L1 data cache. The turbo boost functionality was disabled because
that would lead to inconsistent results by having executions with less cores run-
ning at an increased clock rate. All code was developed in C++11 and compiled
using gcc 4.8.2.

We used over a dozen real-world networks and present here the results for
a representative subset of them. In Table 1 a general view of the content and
dimension of the chosen seven networks is shown. To showcase the general scal-
ability of our algorithm, networks that vary in their field of application, their
use of edge direction and their dimension were chosen. To decide what k to use,
we simply opted for choosing one that gave a sufficiently large sequential time
for parallelism to be meaningful but not so large that it would take more than
a few hours to complete the computation.
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Table 1. The set of seven different representative real networks used for our parallel
performance testing

Network |V (G)| |E(G)| |E(G)|
|V (G)| Directed Description Source

jazz 198 2,742 13.85 No Collaborations of jazz musicians [1]

polblogs 1,491 19,022 12.76 Yes Hyperlinks of politics weblogs [2]

netsc 1,589 2,742 1.73 No Network experiments co-authorship [2]

facebook 4,039 88,234 21.85 No Facebook friend circles [3]

company 8,497 6,724 0.79 Yes Media companies ownership [4]

astroph 18,772 198,050 10.55 No Astrophysics papers collaborations [3]

enron 36,692 367,662 10.02 Yes Email network [3]

Table 2. General execution information and results

Network
Subgraph #Leafs #Subgraph Sequential #Threads: speedup

size found types found time (s) 8 16 32 64

jazz 6 3,113 112 295.95 6.75 14.86 29.92 49.74

polblogs 6 409,845 9,360 1,722.55 7.85 15.56 30.04 47.48

netsc 9 445,410 14,151 295.12 7.83 15.05 23.82 26.54

facebook 5 125 19 3,598.41 7.67 15.34 31.00 51.81

company 6 1,379 310 739.12 7.94 15.81 31.02 48.53

astroph 4 17 6 179.47 6.62 13.60 24.69 30.42

enron 4 17 6 1,370.46 7.70 13.32 25.44 35.85

To have the parallel version with one thread performing similarly to the se-
quential algorithm, work queues were not artificially created. This choice lead to
a very small overhead (less than 5% for all tested cases) and, henceforth, parallel
execution with one thread will be referred to as the sequential time.

Our algorithm’s performance was evaluated up to 64 cores and results are
presented in Table 2. In that table, the size of the subgraphs being queried,
along with the number of g-trie leafs (the intermediate classes) and the actual
number of different subgraph types are shown. The sequential time and the
obtained speedups for 8, 16, 32 and 64 cores are also shown.

The results are promising and close to linear speedup up to 32 cores for ev-
ery case. Due to the machine’s architecture we did not achieve linear speedups
for 64 cores but still managed to obtain a high efficiency for 4 of the 7 cases.
Note that our algorithm performs worse in networks where many leafs need to
be created. This problems arises because an unique g-trie is used and must be
protected when a new node, leaf or label is inserted. Cases were found where
speedups were severely limited by this factor. On the other hand, using one

2 Arenas: http://deim.urv.cat/~aarenas/data/welcome.htm
3 Mark Newman: http://www-personal.umich.edu/~mejn/netdata/
4 SNAP: http://snap.stanford.edu/data/
5 Pajek: http://vlado.fmf.uni-lj.si/pub/networks/data/
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g-trie per thread would lead to much redundant work that would deteriorate our
algorithm’s performance. Memory also becomes a concern when many threads
are used because each leaf has an array to store the frequencies. This limits the
size of the subgraphs and networks that can be run. Another problem related to
storing the frequencies in the g-trie is that it can sometimes lead to false shar-
ing since many threads could be updating the array at the same time. A better
option would be to instead have each thread keep an array of the frequencies
for each leaf but, since the g-trie is created during runtime, the total number of
leafs is not known and setting a unique id for each one would require resorting
to locks. Finally, it was observed that memory allocations became heavier when
more threads were used. Something that could be further explored is an efficient
pre-alocation of memory, where the threads would retrieve it when needed. Fur-
thermore, an adjacency matrix was used to represent the input network that,
while giving the best possible algorithmic complexity for verifying node connec-
tions, imposes a quadratic memory representation. Different memory allocators,
like jemalloc and tcmalloc, were tried but found no significant performance
improvement.

By comparison, we have previous work parallelizing a set-centric approach
with g-tries for multicore architectures [2] and obtained almost linear speedup for
every case we tested. Besides using a conceptually different base algorithm (here
we follow a network-centric algorithm). The main difference between the two
approaches is that, in [2], the g-trie was pre-created before subgraph counting,
removing the need to have locks when modifying the g-trie and making it possible
to have subgraph frequencies outside of the g-trie, thus eliminating false sharing.

6 Conclusion

In this paper we presented a scalable parallel algorithm for the subgraph cen-
sus problem. At the core or our method lies the FaSE algorithm, an efficient
network-centric sequential approach which is able to drastically reduce the num-
ber of isomorphism tests needed when comparing to previous approaches such
as ESU or Kavosh. FaSE induces a highly unbalanced search tree with indepen-
dent branches and we devised a dynamic load balancing scheme capable of an
efficient redistribution of work during execution time. We tested our algorithm
on a set of representative networks and we achieved an almost linear speedup
up to 32 cores and a high efficiency for the total 64 cores of our machine. To
the best of our knowledge, this constitutes the fastest available method for a
network-centric approach, allowing users to expand the limits of subgraph cen-
sus applicability, not only on more dedicated computing resources, but also on
their personal multicore machines.

In the near future it is our intention to explore a hybrid methodology capable
of mixing both shared and distributed memory approaches. We also intend to
carefully examine the possibility of using GPUs for computing a subgraph census.
Finally, on a more practical angle, we will use our method to analyze several data
sets, searching for new subgraph patterns that can lead to novel insight into the
structure of these real-life networks.
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Abstract. Work-stealing is an efficient method to implement load ba-
lancing in fine-grained task parallelism. Typically, concurrent deques are
used for this purpose. A disadvantage of many concurrent deques is that
they require expensive memory fences for local deque operations.
In this paper, we propose a new non-blocking work-stealing deque

based on the split task queue. Our design uses a dynamic split point
between the shared and the private portions of the deque, and only re-
quires memory fences when shrinking the shared portion.
We present Lace, an implementation of work-stealing based on this

deque, with an interface similar to the work-stealing library Wool, and
an evaluation of Lace based on several common benchmarks. We also
implement a recent approach using private deques in Lace. We show that
the split deque and the private deque in Lace have similar low overhead
and high scalability as Wool.

Keywords: work-stealing, task-based parallelism, dynamic load balan-
cing, lock-free algorithm, non-blocking deque.

1 Introduction

1.1 Task-Based Parallelism

In recent years, the importance of using parallelism to improve the performance
of software has become self-evident, especially given the availability of multicore
shared-memory systems and the physical limits of processor speeds. Frameworks
like Cilk [3,9] and Wool [7,8] allow writing parallel programs in a style similar
to sequential programs [1].

In task-based parallelism, a computation is divided into small tasks. Each
task only depends on the results of its own immediate subtasks for its execution.
Multiple independent subtasks can be executed in parallel. Especially recursive
algorithms are easily parallelized.

Cilk, Wool, and similar task-based parallel frameworks use keywords spawn
and sync to expose parallelism. The spawn keyword creates a new task. The
sync keyword matches with the last unmatched spawn, i.e., operating as if
spawned tasks are stored on a stack. It waits until that task is completed and
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1 def spawn (task):
2 self.tasks .push(task)

3 def sync ():
4 status , t = self.tasks .pop ()
5 if status = STOLEN :
6 while not t.done:
7 steal_work (t.thief )
8 self.tasks. pop_stolen ()
9 return t.result

10 else: return t.execute ()

11 def steal_work (victim ):
12 t = victim .tasks.steal ()
13 if t != None:
14 t.thief = self
15 t.result = t.execute ()
16 t.done = True

17 thread worker (id, roottask ):
18 if id = 0: roottask .execute ()
19 else: forever :
20 steal_work (random_victim())

Fig. 1. Simplified algorithm of work-stealing using leapfrogging when waiting for a
stolen task to finish, i.e., steal from the thief. Note that stolen tasks are not removed
from the task pool until completed.

retrieves the result. Every spawn during the execution of the program must
have a matching sync. In this paper, we follow the semantics of Wool. In the
original work-stealing papers, sync waits for all locally spawned subtasks, rather
than the last unmatched subtask.

1.2 Work-Stealing

Work-stealing is a technique that efficiently implements load-balancing for task-
based parallelism. It has been proven to be optimal for a large class of problems
and has tight memory and communication bounds [4]. In work-stealing, tasks
are executed by a fixed number of workers. Each worker owns a task pool into
which it inserts spawned tasks. Idle workers steal tasks from random victims.

See Figure 1 for a simplified work-stealing algorithm. Workers start executing
in worker. One worker executes the first task. The other workers steal from
random victims. The task pool tasks acts like a stack with methods push and
pop, and provides steal for potential thieves. Tasks are typically stolen from the
bottom of the stack, since these tasks often have more subtasks. This reduces
the amount of total steals necessary and thus the overhead from stealing.

When synchronizing with a stolen task, the victim steals from the thief until
the stolen task is completed. By stealing back from the thief, a worker executes
subtasks of the stolen task. This technique is called leapfrogging [16]. When
stealing from random workers instead, the size of the task pool of each worker
could grow beyond the size needed for complete sequential execution [8]. Using
leapfrogging rather than stealing from random workers thus limits the space
requirements of the task pools to those of sequential execution.

1.3 Work-Stealing Deques

Task pools are commonly implemented using double-ended queues (deques) spe-
cialized for work-stealing. The first provably efficient work-stealing scheduler for
fully strict computations was presented in 1994 [4] and its implementation in
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Cilk in 1996 [3]. One improvement of the original Cilk algorithm is the THE
protocol in Cilk-5 [9], which eliminates acquiring the lock in push and in most
executions of pop, but every steal still requires locking.

The first non-blocking work-stealing deque is the ABP algorithm, which uses
a fixed-size array that might overflow [2]. Two unbounded non-blocking deques
were proposed, the deque by Hendler et al. based on linked lists of small ar-
rays [10], and the Chase-Lev deque that uses dynamic circular arrays [5].

In weak memory models that allow reordering loads before stores, most deques
that allow any spawned task to be stolen require a memory fence in every pop

operation. Memory fences are expensive. For example, the THE protocol spends
half of its execution time in the memory fence [9].

Several approaches alleviate this problem. The split task queue by Dinan et
al. [6], designed for clusters of multiprocessor computers, allows lock-free local
access to a private portion of the queue and can transfer work between the public
and private portions of the queue without copying tasks. Thieves synchronize
using a lock and the local process only needs to take the lock when transferring
work from the public portion to the private portion of the queue. Michael et
al. propose relaxed semantics for work-stealing: inserted tasks are executed at
least once instead of exactly once, to avoid requiring memory fences and atomic
instructions [12]. In the work scheduler Wool [7], originally only the first N tasks
in the deque can be stolen, where N is determined by a parameter at startup.
Only executing pop on stealable tasks requires a memory fence. In a later version,
the number of stealable tasks is dynamically updated [8].

In somework-stealing algorithms, shared deques are replaced by private deques,
and work is explicitly communicated using a message-passing approach. Recently,
Acar et al. proposed two algorithms for work-stealing using private deques [1]. See
further [1] for an overview of other work with private deques.

Tasks are often stored as pointers that are removed from the deque when the
task is stolen [9,2,10,5]. To virtually eliminate the overhead of task creation for
tasks that are never stolen, Faxén proposed a direct task stack, storing tasks
instead of pointers in the work queue, implemented in Wool [7,8]. Rather than
synchronizing with thieves on the metadata of the queue (e.g. variables top and
bot in the ABP algorithm), Wool synchronizes on the individual task descriptors,
using locks when synchronizing with potential thieves, similar to the THE pro-
tocol. Sundell and Tsigas presented a lock-free version of Wool [15,8], which still
synchronizes on the individual task descriptors.

1.4 Contributions

Acar et al. write that concurrent deques suffer from two limitations: 1) local
deque operations (mainly pop) require expensive memory fences in modern weak-
memory architectures; 2) they can be very difficult to extend to support various
optimizations, especially steal-multiple extensions [1]. They lift both limitations
using private deques. Wool reduces the first limitation for concurrent deques by
using a dynamic number of stealable tasks, but is difficult to extend for steal-
multiple strategies, since tasks must be stolen individually.
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We present a work-stealing algorithm that eliminates these limitations using
concurrent deques, by combining a non-blocking variant of the split task queue [6]
with direct task stealing from Wool [7,8]. This algorithm splits the deque into a
shared portion and a private portion. The split point between these portions is
modified in a non-blocking manner.

We present an implementation of this algorithm in a C library called Lace1,
which has the same interface as Wool. We evaluate the performance of Lace
using several benchmarks, including standard Cilk benchmarks and the UTS
benchmark [13]. We compare our algorithm with Wool and with an implementa-
tion of the receiver-initiated private deque algorithm [1] in the Lace framework.
Our experiments show that our algorithm is competitive with both Wool and
the private deque algorithm, while lifting both limitations described in [1]. Com-
pared to the private deque algorithm, our algorithm allows stealing of all tasks
in the shared deque without cooperation of the owner, while the private deque
algorithm requires cooperation of the owner for every steal transaction.

2 Preliminaries

We assume a shared memory system with the x86 memory model. The x86
memory model is not sequentially consistent, but allows reordering loads before
stores. Memory writes are buffered before reaching the memory, hence reads
can occur before preceding memory writes are globally visible. Memory fences
flush the write buffer before reading from memory. Apart from memory fences,
we use the atomic memory operation compare and swap (cas) to ensure safety.
The cas operation atomically compares a value in memory to an expected value
and modifies it only if the values match. We use cas to ensure that exactly one
worker performs a transition.

We assume that the system consists of one or more processor chips and one or
more memory chips, connected using an interconnection network, for example
in Non-Uniform Memory Access (NUMA) shared-memory systems. We also as-
sume that data on this interconnection network is transferred in blocks called
cachelines, which are typically 64 bytes long.

3 Algorithm

3.1 Design Considerations

To obtain a low execution time when performing work-stealing with all available
workers, we aim at low overhead compared to purely sequential programs and
good scalability with increasing worker count. Memory fences and cas operations
increase the overhead compared to purely sequential programs. Some memory
fences are unavoidable, since thieves may steal a task while the owner is retrieving
it. By splitting the deque into a shared deque and a private deque (see Figure 2),

1 Lace is available at http://fmt.ewi.utwente.nl/tools/lace/

http://fmt.ewi.utwente.nl/tools/lace/
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t s h
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Fig. 2. The split deque, with tail t,
split point s and head h. A task at
position x is stolen if x < t. It is
shared if x < s, and private other-
wise. Of the 7 tasks in this example,
4 are shared and 1 is stolen.

t sh

• • • • • • •
s t h

• • • • • • •
t s h
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Fig. 3. The owner shrinks the
shared portion of the deque, but
thieves may have stolen tasks bey-
ond the new split point. The owner
detects this and updates the split
point to its final position.

we only need a memory fence when shrinking the shared deque, to detect the
scenario of Figure 3. Also, cas operations are only needed to coordinate stealing.

The deque is described using variables tail, split and head, which are in-
dices in the task array. To steal work, thieves only require knowledge of tail
and split, and only need to modify tail. The owner uses head and o split (a
private copy of split) to operate on the private deque. The owner only accesses
tail and split when changing the split point.

Thieves are not allowed to change the split point, since this would force a
memory fence on every execution of pop. Instead, thieves set a shared flag
splitreq on a dedicated cacheline when there are no more unstolen shared
tasks. Since splitreq is checked at every execution of pop and push, it should
always be in the processor cache of the owner, and no traffic on the intercon-
nect network is expected until the flag is set. There is no other communication
between the owner and the thieves, except when tasks are stolen soon after their
creation, or when the owner is waiting for an unfinished stolen task.

If the owner determines that all tasks have been stolen, it sets a flag allstolen
(and a private copy o allstolen). Thieves check allstolen first before attempt-
ing to steal tasks, which results in a small performance gain. When the owner
already knows that all tasks are stolen, it does not need to shrink the shared
deque until new tasks are added.

Similar to the direct task stack in Wool, the deque contains fixed-size task
descriptors, rather than pointers to task descriptors stored elsewhere. Stolen
tasks remain in the deque. The result of a stolen task is written to the task
descriptor. This reduces the task-creation overhead of making work available for
stealing, which is important since most tasks are never stolen. Another advantage
is that the cachelines accessed by a thief are limited to those containing the
task descriptor and the variables tail, split and (rarely) splitreq, while in
designs that use pointers, there is at least one additional accessed cacheline. If
task descriptors are properly aligned and fit into one cacheline, then thieves only
access two cachelines per successful steal. Also, in a pointer-based design, there
are many pointers per cacheline, which can increase contention on that cacheline.
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1 def steal ():
2 if allstolen : return None
3 (t,s) = (tail ,split)
4 if t < s:
5 if cas ((tail ,split ),

(t,s), (t+1,s)):
6 return Task(t)
7 else: return None
8 if ! splitreq : splitreq =1
9 return None

10 def push(data):
11 if head == size: return FULL
12 write task data at head
13 head = head + 1
14 if o_allstolen :
15 (tail ,split) = (head -1, head)
16 allstolen = 0
17 if splitreq : splitreq =0
18 o_split = head
19 o_allstolen = 0
20 elif splitreq : grow_shared ()

21 def pop ():
22 if head = 0: return EMPTY ,-
23 if o_allstolen :
24 return STOLEN , Task(head -1)
25 if o_split = head:
26 if shrink_shared():
27 return STOLEN , Task(head -1)
28 head = head -1
29 if splitreq : grow_shared ()
30 return WORK , Task(head)

31 def pop_stolen ():
32 head = head -1
33 if ! o_allstolen :
34 allstolen = 1
35 o_allstolen = 1

36 def grow_shared ():
37 new_s = (o_split +head +1) /2
38 split = new_s
39 o_split = new_s
40 splitreq = 0

41 def shrink_shared():
42 (t,s) = (tail ,split )
43 if t != s:
44 new_s = (t+s)/2
45 split = new_s
46 o_split = new_s
47 MFENCE
48 t = tail # read again
49 if t != s:
50 if t > new_s :
51 new_s = (t+s)/2
52 split = new_s
53 o_split = new_s
54 return False
55 allstolen = 1
56 o_allstolen = 1
57 return True

Fig. 4. Algorithm of the non-blocking split deque. Thieves have access to the cacheline
with tail, split and allstolen and to the cacheline with splitreq. The owner also
has access to the cacheline with head, o split and o allstolen.

3.2 Algorithms

See Figure 4 for the deque algorithms. Note that if allstolen is not set, then
tail ≤ split ≤ head. If allstolen is set, then tail ≥ split and tail ≥ head.

The steal operation tries to steal a task by increasing tail, using cas on
the (consecutive) variables tail and split. The cas operation fails when other
thieves have changed tail, or when the owner has changed split. If there is
no available work, then splitreq is set. It is important that splitreq is only
written to if it must be changed, to avoid unnecessary communication.

Method push adds a new task to the deque and increases head. If this is the
first new task (i.e., allstolen is set), then tail and split are set to reflect that
the new task is shared and that it is the next task to be stolen. All tasks before
the new task remain stolen tasks. Note that tail and split must be updated
simultaneously. If thieves have set splitreq, then push calls grow shared to
move the split point.
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Method pop determines whether the last task is stolen. This is the case when
allstolen is set, or when all tasks are shared (i.e., o split = head) and the
method shrink shared reports that all tasks are stolen. If the last task is stolen,
then it remains on the deque. If the last task is not stolen, then head is decreased,
and if splitreq is set, pop calls grow shared.

If the last task is stolen, then pop stolen is called after the stolen task is
completed (see Figure 1). Leapfrogging may have changed the state of the deque,
therefore allstolen is set again, since the remaining tasks are still stolen.

In grow shared, the new value of the split point is the ceiling of the average of
split and head. Since grow shared is only called if not allstolen, i.e., split ≤
head, the shared deque will always grow and therefore atomic operations or
memory fences are not necessary.

Method shrink sharedmoves the split point to decrease the size of the shared
deque. It then detects whether thieves have stolen tasks beyond the new split
point, and if so, it moves the split point again. If all tasks were stolen, then
shrink shared sets allstolen and returns True. It returns False otherwise.
Since shrink shared is called by the owner only if split = head, line 43 really
checks whether tail = head, i.e., whether all tasks are stolen. If not, then the
split point is moved between tail and split. The memory fence ensures that the
new split point is globally visible before reading tail. Once the new split point
is globally visible, no tasks can be stolen beyond the new split point. Therefore,
we only need to check once whether more tasks are stolen. If at that point all
remaining tasks are stolen, then allstolen is set and shrink shared returns
True. If not, then if only some tasks are stolen beyond the new split point, the
split point is moved again. Finally, shrink shared returns False.

3.3 Extensions

There are several possible extensions to the work-stealing deque.
Resizing. Our work-stealing deque uses a fixed-size array. Given that virtual

memory is several orders of magnitude larger than real memory and the ability of
modern operating systems to allocate only used pages, we can avoid overflows by
allocating an amount of virtual memory much higher than required. The deque
could be extended for resizing, for example using linked lists of arrays, but we
feel this is unnecessary in practice.

Steal-multiple strategies. One extension to work-stealing is the policy to steal
more than one task at the same time, e.g., stealing half the tasks in the deque,
which has been argued to be beneficial in the context of irregular graph applic-
ations [11,6]. This is easily implemented by modifying line 5 to steal multiple
tasks, and executing the stolen tasks in reverse order (last one first). However,
in experiments on a single NUMA machine, this did not improve performance.

Other memory models. The algorithm in Figure 4 is designed for the x86
TSO memory model, which only allows reordering loads before stores. Weaker
memory models may for example allow reordering stores. Assuming that reorder-
ing only takes place on independent operations, we believe no additional memory
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fences are required in Figure 4 to ensure correctness. Memory fences are however
required in Figure 1 to ensure that result is set before done.

4 Evaluation

We implemented Lace, a C library that provides a work-stealing framework sim-
ilar to Wool and Cilk. The library creates one POSIX thread (pthread) for each
available core. Our implementation is NUMA-aware, i.e., all pthreads are pinned
to a NUMA domain and their program stack and the deque structures for each
worker are allocated on the same NUMA domain as the worker.

We evaluate Lace using several benchmarks compared to the work-stealing
framework Wool [8] using the classic leapfrogging strategy. This version of Wool
has a dynamic split point and does not use locking. We compare the performance
of Lace and Wool, for two reasons. Our implementation resembles the implement-
ation of Wool, making a comparison easier. Also, [8] and [14] show that Wool
is efficient compared to Cilk++, OpenMP and the Intel TBB framework, with
a slight advantage for Wool. We also compare our algorithm to the receiver-
initiated version of the private deque of Acar et al. [1], using the alternative
acquire function, which we implemented in the Lace framework.

4.1 Benchmarks

For all benchmarks, we use the smallest possible granularity and do not use
sequential cut-off points, since we are interested in measuring the overhead of
the work-stealing algorithm. Using a larger granularity and sequential cut-off
points may result in better scalability for some benchmarks.

Fibonacci. For a positive integer N , calculate the Fibonacci number by cal-
culating the Fibonacci numbers N − 1 and N − 2 recursively and add the res-
ults. This benchmark generates a skewed task tree and is commonly used to
benchmark work-stealing algorithms, since the actual work per task is minimal.
Number of tasks: 20,365,011,073 (fib 50).

Queens. For a positive integer N , calculate the number of solutions for placing
N queens on a N ×N chessboard so that no two queens attack each other. Each
task at depth i spawns up to N new tasks, one for every correct board after
placing a queen on row i. Number of tasks: 171,129,071 (queens 15).

Unbalanced Tree Search. This benchmark is designed by Olivier et al. to eval-
uate the performance for parallel applications requiring dynamic load balancing.
The algorithm uses the SHA-1 algorithm to generate geometric and binomial
trees. The generated binomial trees (T3L) have unpredictable subtree sizes and
depths and are optimal adversaries for load balancing strategies [13]. The geo-
metric tree (T2L) appears to be easy to balance in practice. Number of tasks:
96,793,509 (uts T2L) and 111,345,630 (uts T3L).

Rectangular matrix multiplication. Given N , compute the product of two ran-
dom rectangular N ×N matrices A and B. We use the matmul algorithm from
the Cilk benchmark set. Number of tasks: 3,595,117 (matmul 4096).
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Benchmark
Lace Speedup

T1 T48 TS/T48 T1/T48

fib 50 144 4.13 34.5 34.9
uts T2L 86.0 1.81 46.1 47.4
uts T3L 44.2 2.23 18.7 19.9
queens 15 602 12.63 42.2 47.7
matmul 4096 781 16.46 47.0 47.5

Private deque

fib 50 208 5.22 23.2 39.8
uts T2L 86.1 1.83 45.7 47.0
uts T3L 44.8 2.55 17.3 17.5
queens 15 541 11.34 43.3 47.7
matmul 4096 774 16.34 47.3 47.4

Benchmark
Wool Speedup

T1 T48 TS/T48 T1/T48

fib 50 185 4.38 34.1 42.2
uts T2L 85.1 2.00 42.5 42.5
uts T3L 44.3 2.12 19.4 20.9
queens 15 539 11.23 47.5 48.0
matmul 4096 780 16.40 47.2 47.5

TS Sequential

fib 50 149.2 - - -
uts T2L 84.5 - - -
uts T3L 43.11 - - -
queens 15 533 - - -
matmul 4096 773 - - -

Fig. 5. Averages of running times (seconds) for all benchmarks. Speedups are calcu-
lated relative to both the time of the sequential version (TS) and the parallel version
with one worker (T1). Each T48 data point is the average of 50 measurements. Each
T1/TS data point is the average of 20 measurements.

4.2 Results

Our test machine has four twelve-core AMD Opteron 6168 processors. The sys-
tem has 128 GB of RAM and runs Scientific Linux 6.0 with kernel version 2.6.32.
We considered using less than 48 cores to reduce the effects of operating system
interference, but we did not see significant effects in practice. We compiled the
benchmarks using gcc 4.7.2 with flag -O3.

See Figure 5 for the results of the benchmark set. Each T48 data point is the
average of 50 measurements. Each T1 and TS data point is the average of 20
measurements. This resulted in measurements with three significant digits. In
general, Figure 5 shows similar performance for all three algorithms. The three
benchmarks uts T2L, queens and matmul are trivial to parallelize and have no
extra overhead with 48 workers, i.e., T1/T48 ≈ 48.

Comparing TS and T1 for all benchmarks, we see that the overhead of work-
stealing is small for all three work-stealing algorithms, with the exception of the
fib benchmark. For benchmark fib with our algorithm, T1 < TS , which appears
to be related to compiler optimizations. During implementation, we observed
that variation in T1 is often related to code generation by the compiler. In some
cases, removing unused variables and other minor changes even increased T1

by up to 20%. It is therefore difficult to draw strong conclusions regarding the
overhead of the algorithms, except that it is small compared to the sequential
program.

We measured the runtimes of fib and uts T3L using 4, 8, 16, 24, 32 and
40 workers to obtain the speedup graph in Figure 6. This graph suggests that
the fib benchmark scales well and that similar results may be obtained using
a higher number of processors in the future. The scalability of the uts T3L

benchmark appears to be limited after 16 workers. We discuss this benchmark
below.
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Fig. 6. Absolute speedup graph (T1/TN ) of the fib and uts T3L benchmarks us-
ing Lace with our algorithm and Lace with the private deque receiver initiated (-ri)
algorithm. Each data point is based on the average of 20 measurements.

Benchm. #steals #leaps #grows #shrinks

fib 50 865 50,569 70,789 97,750
uts T2L 4,554 82,440 72,222 57,701
uts T3L 158,566 4,443,432 2,173,006 846,509
queens 15 1,964 6,053 5,694 6,618
matmul 4096 2,492 12,456 13,081 9,911

Fig. 7. The average total number of steals, leaps,
grows and shrinks over 7 runs with 48 workers

Algo. T1 T48 T1/T48

Lace 44.26 1.154 38.3
Private 44.83 1.240 36.2
Wool 44.27 1.172 37.8

Fig. 8. Averages of
runtimes (seconds) of uts

T3L with transitive leapfrog-
ging (Wool) or random
stealing (Lace/Private)

We also measured the average number of steals during a parallel run with
48 workers. See Figure 7. We make a distinction between normal stealing when
a worker is idle, and leapfrogging when a worker is stalled because of unfin-
ished stolen work. We also measured the amount of split point changes by
grow shared and shrink shared. The number of ‘grows’ indicates how often
thieves set splitreq. The number of ‘shrinks’ is equal to the number of memory
fences. In the uts T3L benchmark, the high number of leaps and split point
changes may indicate that the stolen subtrees were relatively small.

4.3 Extending Leapfrogging

Benchmark uts T3L appears to be a good adversary for all three algorithms.
This is partially related to the leapfrogging strategy, which forces workers that
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wait for the result of stolen tasks to steal from the thief. This strategy can result
in chains of thieves waiting for work to trickle down the chain. For example,
when worker 2 steals from worker 1, worker 1 will only steal from worker 2. If
worker 3 steals from worker 2 and worker 4 steals from worker 3, new tasks will
be generated by worker 4 and stolen by worker 3 first. Worker 3 then generates
new work which can be stolen by workers 2 and 4. Worker 1 only acquires new
work if the subtree stolen by worker 4 is large enough. The updated version of
Wool [8] implements an extension to leapfrogging, called transitive leapfrogging2.
Transitive leapfrogging enables workers to steal from the thief of the thief, i.e.,
still steal subtasks of the original stolen task.

We extended Lace to steal from a random worker whenever the thief has no
available work to steal. See Figure 8 for the results of this extension, compared
to transitive leapfrogging in Wool. Compared to the results in Figure 5, all
benchmarks now have reasonable speedups, improving from a speedup of 20x to
a speedup of 36x with 48 workers.

Our extension has the disadvantage of not guaranteeing the upper bound on
the stack size that leapfrogging and transitive leapfrogging does. It is, however,
very simple to implement, while resulting in similar performance. We measured
the peak stack depth with the uts T3L benchmark for all 48 workers. We ob-
served an increase from a peak stack depth of 6500-12500 tasks with normal
leapfrogging to 17000-21000 tasks with the random stealing extension. Since
every task descriptor for uts T3L is 64 bytes large (including padding), this
strategy required at most 1 extra megabyte per worker for uts T3L. We also
observed that the number of ‘grows’ decreased by 50%.

5 Conclusion

In this paper, we presented a new non-blocking split deque for work-stealing.
Our design has the advantage that it does not require memory fences for local
deque operations, except when reclaiming tasks from the shared portion of the
deque. Furthermore, we implemented this deque in a C library called Lace, which
has an interface similar to Wool. This framework has the advantage of a small
source code footprint. We also implemented the receiver-initiated version of the
private deque algorithm described by Acar et al. in Lace.

Our experiments show that our algorithm is competitive with Wool and with
the private deque algorithm. We gain near optimal speedup for several bench-
marks, with very limited overhead compared to the sequential program. Extend-
ing leapfrogging with random stealing greatly improves scalability for the uts

T3L benchmark.
Several open questions remain. When growing the shared deque, the new split

point is the average of split and head, and when shrinking the shared deque,
the new split point is the average of tail and head. It is unknown whether more
optimal strategies exist. A limitation of our approach is that tasks can only be

2 This feature is documented in the distribution of Wool version 0.1.5alpha, which is
currently available at http://www.sics.se/~kff/wool/

http://www.sics.se/~kff/wool/
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stolen at the tail of the deque. This limits work-stealing strategies. Designs that
allow stealing any task may be useful for some applications. Our benchmarks
all consist of uniformly small tasks. Benchmarking on larger or irregular sized
tasks may be disadvantageous for the private deque algorithm, since it requires
owner cooperation on every steal. Finally, we performed our experiments on
a single NUMA machine. On such machines, communication costs are low com-
pared to distributed systems. It may be interesting to compare the work-stealing
algorithms on a cluster of computers using a shared-memory abstraction. Espe-
cially steal-multiple strategies may be more beneficial when communication is
more expensive.
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1 Universitat Politècnica de Catalunya, 08034, Barcelona, Spain
2 Barcelona Supercomputing Center, 08034, Barcelona, Spain

Abstract. Task-based programming models are becoming increasingly
important, as they can reduce the synchronization costs of parallel pro-
grams on multi-cores. Instances of the same task type in task-based
programs consist of the same code, which leads us to the hypothesis
that their performance should be regular and thus their execution time
should be predictable. We evaluate this hypothesis for a set of 12 task-
based programs on 4 different machines: a high-end Intel SandyBridge,
an IBM POWER7, an ARM Cortex-A9 and an ARM Cortex-A15. We
show, that predicting execution time assuming performance regularity
can lead to errors of up to 92%. We identify and analyze three sources
of execution time impredictability: input dependence, multiple behav-
iors per task type and resource sharing. We present two models based
on linear interpolation and clustering, reducing the prediction error to
less than 12% for input dependent task types and to less than 2% for
task types with multiple classes of behavior. All in all, this work invali-
dates the assumption that performance is always regular across instances
of the same task type and quantifies its variability on a wide range of
benchmarks and multi-core systems.

Keywords: Execution Time Predictability, Task-Based Programming
Models, Multi-Core.

1 Introduction

Multi-core systems are integrating an increasing number of processor cores on
a single chip. This makes it difficult for programmers to exploit the available
on-chip thread-level parallelism.

Task-based programming models allow the programmer to specify program
parts called tasks. Tasks may execute concurrently and are typically instantiated
many times during execution. A runtime environment dynamically maps task
instances to threads. The intuitive program partitioning improves programma-
bility. At the same time, dynamic task scheduling reduces the inherent synchro-
nization costs of other shared memory programming models thanks to a better
load balancing [1].

The fact that all instances of the same task type consist of the same static code
suggests that they should exhibit similar performance and execution time and,
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therefore, execution time should be predictable. In this paper, we investigate
the execution time predictability of task-based programs based on performance
regularity. We carry out an analysis on four different state-of-the-art multi-core
machines, two based on ARM Cortex-A9 MPCore and Cortex-A15 MPCore mo-
bile CPUs, and the other two based on high-end Intel Sandy Bridge and IBM
POWER7 CPUs. This allows us to investigate if performance regularity depends
on the architecture. We expect performance variability to increase when increas-
ing the number of execution threads competing for shared resources. Therefore,
we analyze performance variability on a per-task-instance basis for thread counts
ranging from one to the number of cores on each machine. We reach similar
conclusions for the different machines, but find that architectures with more
aggressive performance optimizations show a higher performance variability.

We identify three sources of variability across instances of the same task
type: input dependence, multiple classes of behavior and contention on accessing
shared resources. For programs suffering from resource contention, we investi-
gate how sharing decreases performance and increases performance variability.
We also present a model based on linear interpolation to predict execution time
of input dependent task types. Furthermore, we use a clustering algorithm to
identify different behaviors in the same task type. Using our interpolation model
and clustering algorithm, we dramatically increase the accuracy of execution
time prediction. Prediction errors over 80% are reduced to less than 12% for
input dependent cases and less than 2% on the presence of multiple behaviors.

The contributions of this paper are the following:

– An analysis of performance variability across instances of the same task type
in task-based programs running on multi-core systems. This analysis shows
the variability on an instance by instance basis.

– A classification of sources of execution time variability on instances of the
same task type.

– A low-complexity model based on linear interpolation for predicting the ex-
ecution time of a task instance as a function of its instruction count.

– The use of a clustering algorithm to identify different classes of behavior in
the same task type. In our example, we successfully classify task instances
into clusters that exhibit, each of them, regular performance.

2 Related Work

To the best of our knowledge, this is the first analysis of execution time pre-
dictability on task-based programs. However, there are other performance anal-
yses of task-based programs focusing on other aspects.

Duran et al. [4] present a benchmark suite consisting of task-based OpenMP
programs. They give examples for different kinds of performance analyses of
these benchmarks. They evaluate total execution time as a function of various
parameters such as processor count and task creation cut-off parameters. Other
works [14,15] investigate task granularity and task creation cost as performance-
limiting factors in task-based programs. However, these works neither analyze
performance on a per-task-instance basis nor task execution time predictability.
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There are other works that use analytical models to predict execution
time [8,10,6]. These works use mathematical models to compute the delays of
certain events during execution. Most past works compute delays for events at
the instruction-level, such as instruction issue and commit, branch mispredic-
tions and cache misses. Our model works at a coarser granularity by computing
the delay of whole individual tasks.

Performance predictability of parallel applications on large HPC systems has
been explored from many perspectives. Some approaches combine the efficiency
of analytical models with the accuracy of simulation to generate accurate and
fast performance predictions [16]. Other approaches [9] explore performance pre-
dictability by developing application-specific performance models, which are for-
mulated from an analysis of the code, inspection of key data structures, and
analysis of traces gathered at runtime. While this methodology provides fast
and accurate predictions, it is application specific and it requires a deep under-
standing of the scientific codes. These works target MPI applications while the
work in this paper focuses on shared memory task-based programs.

3 Execution Time Predictability of Task-Based Programs

Many parallel implementations of numerical algorithms decompose the problem
domain into sub-domains called blocks or tiles. In task-based programming mod-
els the programmer specifies parts of a program as work units called tasks, each
one to perform a different operation. A task is usually instantiated many times,
each instance performing the common operation of the task on a separate block
or tile. Task instances can be scheduled to threads whenever they have their
dependencies satisfied. Typically, a thread executes many task instances before
reaching a synchronization point.

The fact that instances of the same task type consist of the same code leads us
to the assumption that they consist of similar numbers of instructions, exhibit
similar performance and therefore their execution time is predictable. However,
this assumption turns out to be wrong in some cases. Fig. 1 shows the total
execution time prediction error for a set of task based programs, assuming the
time of the first or the second executed instance for all instances of a task type.
The error is calculated according to Eqn. 1, with T the set of task instances of
the same task type, CSample the cycle count of the sample task instance and
Ci the cycle count of task instance i. We only investigate time spent in task
execution and ignore operating system and runtime system overheads.

Err =

(
1−

∣∣∣∣
∑

i∈T CSample∑
i∈T Ci

∣∣∣∣
)
· 100% (1)

Before conducting our detailed analysis, we envision three potential sources
of performance variability that potentially degrade performance predictability:

– Input dependence: The behavior of a task instance is input dependent. An ex-
ample is sparse algorithms in which task instances perform different amounts
of computation or exhibit different memory access patterns.
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Fig. 1. Percent error when assuming the execution time of the first / second executed
task instance for all task instances to predict total execution time. Results shown for
four different machines (see Tab. 2) and different thread counts.

– Several types of behavior per task type: Task instances of the same type
perform one out of several possible types of computation. An example is
recursive algorithms in which some task instances create more child tasks,
while others perform the actual computation when the recursion terminates.

– Shared resources contention: Multiple threads interfere with each other when
accessing shared resources. Different instances of the same task type may
suffer from different degrees of interference caused by other threads running
in the system and accessing shared resources. This includes shared caches,
interconnect structures and memory bandwidth.

4 Experimental Setup

In this section we present the experimental setup used for the performance anal-
ysis in this paper. First, we give a brief overview of OmpSs [5], the task-based
programming model used for our analysis. Afterwards, we explain how we mea-
sure the performance of OmpSs programs on a per-task basis. We present the
investigated benchmarks and explain how we configured them to obtain mean-
ingful results. Finally, we present the platforms on which we run our experiments.



222 T. Grass et al.

Programming Model: OmpSs is an extension of OpenMP 3.0. It consists of
the Mercurium compiler and the NANOS++ runtime environment. In addition
to the features of OpenMP 3.0, it allows to annotate tasks with data inputs and
outputs. The NANOS++ runtime system automatically manages inter-task data
dependencies and schedules and synchronizes task instances accordingly. These
OmpSs features were included in the recent OpenMP 4.0 specification.

Measuring the Performance of Tasks: We measure cycle count, instruction
count and numbers of L1 (data), L2 (data) and L3 cache misses using hardware
performance counters. We modify Mercurium to insert calls to a low-overhead
instrumentation library at the beginning and the end of each task instance. This
instrumentation library is an interface to the PAPI library [3]. Since NANOS++
can suspend a task instance before it completes, we also instrument NANOS++
to pause the performance measurement if a task is suspended.

Benchmarks: In this paper we investigate a set of 12 parallel benchmarks.
They are task-based programs implemented in the OmpSs programming model.
The benchmarks and their key characteristics are listed in Tab. 1. They cover a
wide range of algorithms that are widely used in HPC scientific applications and
include programs with different compute-to-memory ratios, different memory
access patterns and different amounts of parallelism and synchronization. The
first ten benchmarks have been successfully used in previous works to evaluate
HPC clusters [12,13], while fluidanimate and swaptions are part of the PARSEC
benchmark suite [2]. As we conduct this work, these are the only benchmarks of
the PARSEC suite for which there is an OmpSs implementation available. We
perform ten executions of each benchmark for each configuration and choose the
fastest one for our evaluation to minimize OS noise.

Application Tuning: We classified the benchmarks according to whether they
are compute-intensive or not. Because the working sets of all concurrently
executing task instances fit into the last level cache, we considered the follow-
ing benchmarks as compute-intensive: 2d-convolution, 3d-stencil, atomic-monte-
carlo-dynamics, merge-sort, dense-matrix-multiplication, fluidanimate and
swaptions.

We optimized compute-intensive benchmarks by adjusting the task working
set to fit into the on-chip last-level cache. This is one of the most straightforward
optimizations applied by programmers in blocked numerical algorithms. The
most cache constrained configuration is the Cortex-A9 running with four threads.
Therefore, we adjusted the task working set to fit a fourth of the last-level cache
in the Cortex-A9 chip. We use the same configuration for all platforms to have
the same basis for comparison.

For the remaining benchmarks, we configured the task working set for the
resulting task instances to be at least 100 000 instructions long. By doing so,
we ensure that the time spent in task execution is significantly larger than the
time spent in performance measurement code. The number of task instances per
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Table 1. Investigated benchmarks

Benchmark Properties

2d-convolution Strided accesses

3d-stencil Strided accesses

atomic-monte-carlo-dynamics Embarrassingly parallel

dense-matrix-multiplication High data reuse, compute bound

histogram Atomic operations

merge-sort Recursion, many synchronizations

n-body Irregular memory accesses

reduction Parallelism decreases over time

sparse-matrix-vector-multiplication Load imbalance, memory bound

vector-operation Regular, memory bound

fluidanimate Variable task instance size

swaptions Regular, computation bound

Table 2. Investigated machines

Micro-
arch.

Cores L1 size L2 size L3 size Memory

ARM Cortex-A15
MPCore

2 32KB+32KB
per core

1MB
shared

n/a 2GB 32-bit
DDR3L-1600

ARM Cortex-A9
MPCore

4 32KB+32KB
per core

1MB
shared

n/a 2GB 32-bit
DDR3L-15001

Intel
Sandy Bridge

8 32KB+32KB
per core

256KB
per core

20MB
shared

32GB 64-bit
DDR3-1600

IBM
POWER7

8 32KB+32KB
per core

256KB
per core

32MB
shared

64GB 64-bit
DDR3-1600

application is adjusted to a large enough number so there is enough parallelism
to use all threads at all times.

Investigated Platforms: Tab. 2 gives an overview of the characteristics of the
four machines used for the evaluation in this paper. The first two platforms are
based on low-power mobile systems-on-a-chip, while the other two are high-end
machines used in HPC environments. This selection of machines covers three of
the most important ISAs nowadays: x86-64, POWER ISA, and ARMv7. Even

1 DDR3L-1600 connected to a 750MHz interface.
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though ARM microprocessors are not used in HPC environments yet, there
is an increasing interest in integrating ARM chips in future server and HPC
machines [7,13]. Besides, these four machines cover a wide range of performance
levels as well as different ISAs, CPU, cache and memory technologies.

5 Evaluation

The results of the experiments conducted in the scope of this paper show that,
despite the obvious intuition, performance can be irregular across the instances
of the same task type. This directly affects execution time prediction (shown
in Fig. 1). In this section, we first show the results of our performance analysis
on a per-task-instance basis. Afterwards, we present a case of input dependent
task behavior and present a model to estimate the execution time of a task in-
stance as a function of its instruction count. We also show a case of multiple
classes of behavior within a single task type. We use a clustering technique to
distinguish different classes of behavior and improve execution time predictabil-
ity. Finally, we explain how resource sharing affects performance regularity and
analyze contention on different resources in the memory hierarchy.

5.1 Per-Task-Instance Performance Analysis

Fig. 2 shows boxplots of the measured instructions per cycle (IPC) per task
type. Each chart corresponds to one task type and shows the measured results
on four different platforms. Only one thread per core is executed in each experi-
ment, which limits the configurations to two threads (Cortex-A15), four threads
(Cortex-A9), and eight threads (Intel Sandy Bridge and IBM POWER7). The
solid box contains the interquartile range of the measured IPC values of all in-
stances of the respective task type, i.e., 50% of the observations are within this
range. The horizontal line within the box indicates the median. The whiskers
extend from the 5th to the 95th percentile. The lower and upper 5% of the
measured IPC values are treated as outliers.

Most of the investigated benchmarks only have one task type, whereas merge-
sort, n-body and reduction have two and fluidanimate has eight. The different
task types of fluidanimate show similar performance variability. Therefore, we
limit our evaluations to the task type ComputeForcesMT which accounts for
40% of fluidanimate’s total instruction count.

In our results we observe two general classes of behavior. The first class con-
sists of benchmarks for which IPC does not significantly degrade when increasing
the number of execution threads. This behaviour is exposed by the benchmarks
2d-convolution, atomic-monte-carlo-dynamics, merge-sort (both tasks), n-body
(both tasks), reduction (both tasks), fluidanimate (all task types) and swaptions.
We make the important observation that 2-d convolution, atomic-monte-carlo-
dynamics and n-body (task type 1) present a nearly constant IPC with very low
variability. This behavior is persistent across the different platforms.

The second class of behavior consists of the benchmarks for which IPC de-
grades when increasing the number of execution threads. This phenomenon is
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Fig. 2. IPC variation per task type on four different platforms (ARM Cortex-A9 and
A15, Intel Sandy Bridge and IBM POWER7)

known as work time inflation [11]. In our benchmark suite, this behavior is
exposed by the benchmarks 3d-stencil, histogram, sparse-matrix-vector-multipli-
cation and vector-operation. For these benchmarks, we also observe an increasing
performance variability. Note that the variability shown in Fig. 2 directly relates
to the prediction error shown in Fig. 1.
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5.2 Predictability of Irregular Behavior

In this subsection we identify three sources of irregular behavior, namely input
dependence, multiple classes of behavior per task type and resource sharing.
We predict execution time of task types with input dependent behavior using
an interpolation-based model. For task types with several classes of behavior
we use a clustering algorithm to detect clusters of similar behavior and predict
execution time on a per-cluster basis. Finally, we analyze the impact of resource
sharing on performance predictability.

Input Dependence: Input dependence is the dependence of the control flow
of a task instance on the input data. Fig. 3 shows heatmaps of the programs flu-
idanimate and merge-sort. Heatmaps are a representation of a two-dimensional
histogram. The colours indicate how many task instances have a certain instruc-
tion count and a certain IPC.

In the case of fluidanimate, the instruction count of task instances varies be-
tween 1 million and 70 million instructions, while IPC tends to be higher for
higher instruction counts. This results in different numbers of execution cycles.
Assuming the same cycle count for all task instances leads to the prediction error
shown in Fig. 1 which reaches over 80%. The instruction count and IPC variation
is caused by the fact that all task instances perform an index computation that
is highly inefficient for high indexes. We want to emphasize that this index com-
putation is part of the default implementation of the fluidanimate benchmark
and is not caused by porting the benchmark to the OmpSs programming model.

For the programs fluidanimate and merge-sort (task type 1) we apply a
sampling-based model to predict execution time as a function of instruction
count for all task instances. This model assumes that the instruction count of
each task instance is known apriori and works as follows. First, we add instruc-
tion count and execution time of the first executed task instance to the (empty)
set of support points. Afterwards, for each encountered task instance we check
if its instruction count is less than 90% of the smallest or more than 110% of
the largest instruction count in the set of support points. If this is the case, we
add it to the set of support points. Otherwise, we predict the execution time
by linear interpolation within the set of support points or by constant extrap-
olation in the range outside the support points. Fig. 4 shows that the error of
the total execution time prediction based on this model stays below 12% for all
configurations on the Intel Sandy Bridge machine.

Multiple Behaviors Per Task Type: For merge-sort (task type 2) we observe
two clusters in the heatmap plot, indicating two different behaviors. Strictly
speaking, this is also a case of input dependence. However, the difference to
the type of input dependence covered in the previous section is that there are
multiple classes of behavior. This is caused by the recursive implementation of
the merge sort algorithm. A task instance either creates two child instances,
resulting in the cluster on the left, or it performs a sorting operation, resulting
in the cluster on the right. Predicting execution time based on the assumption
of regular execution time and IPC leads to the error shown in Fig. 1.



Evaluating Execution Time Predictability of Task-Based Programs 227

Fig. 3. Instruction count vs. IPC histogram of benchmarks fluidanimate (task type
ComputeForcesMT) and merge-sort (task type 2)

For the aforementioned case, we perform a k-means clustering of all task
instances into two clusters, according to their instruction count. For each cluster,
we determine the centroid and chose the task instance closest to the centroid as a
representative of the respective cluster. Finally, we estimate the total execution
time of each cluster by multiplying the execution time of the representative by
the number of task instances in the cluster. Fig. 4 shows that the error of the
total execution time prediction based on this method is smaller than 2% for all
configurations on the Intel Sandy Bridge machine.

Resource Sharing: The third source of irregular behavior we identified is
resource sharing. In the following, we present four examples of resource sharing.
These examples have in common that contention on shared resources affects the
performance of task instances of the same task type to a different extent. This
increases performance variability and thus decreases performance predictability.
Fig. 5 shows boxplots of L2 data cache and L3 cache misses per 1000 executed
instructions (misses per kilo-instruction, MPKI) of the benchmarks for which we
observed a decrease of IPC for increasing thread counts. The measured number
of L3 cache misses includes misses caused by L2 data cache misses due to the
limitations of the available hardware performance counters.

For 3d-stencil we observe an increase of L2 MPKI when increasing the number
of threads. However, L3 MPKI stays nearly constantly low. Our theory is that
the increased L2 MPKI is caused by invalidations of data residing in the private
L2 caches by other threads.

The histogram benchmark shows not only an increase of L2 MPKI for increas-
ing thread counts, but also an increase in L2 MPKI variability. For increasing
thread counts there might be several threads competing to execute an atomic op-
eration, resulting in higher contention. Furthermore, the execution of the atomic
operation itself can invalidate data in other threads’ private caches.
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Fig. 5. L2 data and L3 cache misses per 1000 instructions (MPKI) for 3d-stencil,
histogram, sparse-matrix-vector-multiplication and vector-operation, executed on Intel
Sandy Bridge with 1, 2, 4 and 8 threads

In case of sparse-matrix-vector-multiplication, L2 MPKI and L3 MPKI are
nearly constant for increasing thread counts. Since the benchmark does not use
shared data, the decrease in IPC has to occur due to the limited capacity of
shared resources, e.g. memory bandwidth or cache bandwidth.

For vector-operation we observe a decrease of L2 MPKI when increasing the
number of execution threads. As memory bandwidth saturates for increasing
thread counts, threads progress at a slower rate and thus cause less demand
misses in the L2 cache.

6 Conclusions and Future Work

The analysis in this paper shows that the naive assumption of regular perfor-
mance within a task type is not always valid. However, we show that accurate
performance predictions can be derived from detailed performance information
of a relatively small number of task instances.
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We present techniques to improve prediction accuracy for task types with
irregular performance. These techniques are based on linear interpolation and
clustering. The prediction error is reduced from over 80% to less than 12% for
input dependent cases and less than 2% when having multiple classes of behavior.
Further research is needed to improve execution time predictability of task-based
programs experiencing contention on shared resources.

We envision a potential application of the insights in this paper in the fields of
multi-core architecture simulation and dynamic task scheduling on multi-cores.
If the performance of a task type is predictable it is only necessary to simulate
a subset of all task instances, and smart scheduling techniques can be applied
with apriori-knowledge of the execution time of a task instance.
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Abstract. Accurate characterization of modern systems and applica-
tions requires run-time and simultaneous assessment of several execution-
related parameters. Although hardware monitoring facilities in modern
multi-cores allow low-level profiling, it is not always easy to convert the
acquired data into insightful information. For this, a low-overhead mon-
itoring tool (SchedMon) is proposed herein, which relies on hardware
facilities and interacts with the operating system scheduler to capture
the run-time behavior of single and multi-threaded applications, even in
presence of nested parallelism. By tracking the attainable performance,
power and energy consumption of monitored applications, SchedMon also
allows their insightful characterization with the Cache-aware Roofline
model. In addition, the proposed tool provides application monitoring,
either in their entirety or at the level of the function calls, without requir-
ing any changes to the original source code. Experimental results show
that SchedMon introduces negligible execution overheads, while captur-
ing the interference of several co-scheduled SPEC2006 applications.

Keywords: Power and performance monitoring, application character-
ization, power and performance counters.

1 Introduction

Modern computing systems are complex heterogeneous platforms capable of sus-
taining high computing power. However, taking advantage of such complex sys-
tems requires accurate real-time monitoring tools to characterize the execution
of running application. As such, these tools allow identifying possible applica-
tion and architecture performance bottlenecks for real-case scenarios, thus giving
both the programmer and the computer architect hints on potential optimization
targets. While many profiling tools are developed in the last years, e.g., PAPI [4]
and OProfile [5], it is not always easy to convert the acquired data into insight-
ful information. This is particularly true for modern processors, which comprise
very complex architectures, including deep memory hierarchy organizations, and
for which several architectural events must be simultaneously analyzed.

Taking into account the complexity of modern processor architectures and the
effects of having different applications running concurrently in multiple cores, the
Cache-aware Roofline Model (CARM) [7] was proposed, which unveils architec-
tural details that are fundamental in nowadays application and architectural

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 230–241, 2014.
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optimization. The CARM [7] is a single-plot model that shows the practical
limitations and performance upper-bound of modern multi-core general-purpose
architectures. It models the attainable performance of a computer architecture
by relating the peak floating-point performance (Flops/s), the operational in-
tensity (Flops/byte), and the peak memory bandwidth for each cache level in
the memory hierarchy (Bytes/s). Hence, the CARM considers data traffic across
both on-chip and off-chip memory domains, as it is perceived by the core.

In this paper, a new application-oriented performance and energy monitor-
ing tool (SchedMon) is proposed1 that provides full control over the underly-
ing hardware interfaces and translates their full functionality into an intuitive
command-line interface. SchedMon allows not only to obtain the hardware event
counts of the target application, but also to perform run-time sampling of the
application execution either in its entirety or at the level of the function calls. As
a result, it allows a finer granularity evaluation of the benchmarking application
without requiring any changes to the original source code. In addition, SchedMon
is not limited to single-threaded applications, as it allows per-thread monitor-
ing of nested child threads and the complete scheduling path reconstruction of
a multi-threaded application execution. Experimental results demonstrate that
the proposed SchedMon is a highly accurate low overhead monitoring tool that
also allows identifying the interference between multiple running applications.

2 Related Work

Most modern processors contain PerformanceMonitoring Units (PMUs) that can
be configured to count micro-architectural events such as clock cycles, retired
instructions, branch miss-predictions and cache misses. To count these events,
a small set of Model-Specific Registers (MSRs) is provided, which limits the
total number of events that can be simultaneously measured (e.g., 4 on Intel Ivy
Bridge and AMD Athlon, and 6 on ARM Cortex-A8).

Recent architectures also provide a set of specific MSRs that allow extracting
power consumption information at runtime (e.g., Running Average Power Limit
(RAPL) on Intel [8] and ”Current Power in Watts” MSR on AMD [2]). However,
special permissions might be required in order to access these MSRs.

There are several options in the literature that provide access to performance
and/or energy hardware counters, e.g., perfctr [11] and perfmon2 [9] (depre-
cated from kernel 2.6.32) and perf events [13], which are low-level interfaces.
Perf events is built around file descriptors, and it can be configured by using
a single system call. Furthermore, from Linux kernel 3.14, it includes a RAPL
interface. Nevertheless, both energy and performance MSRs can be assessed and
configured through the Linux MSR driver.

Since the previous described interfaces are not always trivial for the common
user, there are also several other tools that target flexibility and easy config-
uration. This is the case of PAPI [4], OProfile [5], perf [1], SpyMon [3] and
LIKWID [12], among others. Some of these tools make use of the perf events

1 The proposed tool is available at http://sips.inesc-id.pt/tools/schedmon/

http://sips.inesc-id.pt/tools/schedmon/
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Fig. 1. SchedMon’s components interaction and disposition in the OS privilege layers

interface in order to obtain its functionality (PAPI, OProfile and perf), while
LIKWID uses the Linux MSR interface directly.

3 Scheduler-Based Monitoring Tool: SchedMon

The herein proposed SchedMon monitoring tool targets the profiling of complex
applications with nested multi-threading, either in its entirety or at the level of
user-specified functions. Accuracy of the measurements are achieved by interfac-
ing with the Operating System (OS) scheduler such as to guarantee monitoring
isolation from external threads. To fulfill the target objectives while imposing
minimum overheads to the running applications, it encapsulates its full func-
tionality in two specifically developed components, namely: i) a Linux kernel
module, or driver, which implements the SchedMon core functionalities; and ii)
a user-space tool (smon), which extracts the whole functionality of the underlying
driver and translates it into a simple and intuitive user interface.

Figure 1 illustrates the disposition of the SchedMon’s components in the OS
privilege layers, as well as their interaction mechanisms. The communication
between the user-space and the driver is made by means of memory mapping
and I/O specific system-calls (mmap and ioctl) to the SchedMon’s device. The
SchedMon’s device represents a specially created file in /dev directory, which
triggers specific driver functions upon receiving the requests from the user-space.
The set of user-space requests is integrated in the SchedMon’s library to ease
the access to the driver functionality from the smon user-space tool.

An additional communication mechanism between the main SchedMon’s com-
ponents is provided via a memory-mapped Ring-Buffer. The Ring-Buffer repre-
sents a shared memory medium between the user- and kernel-space, and it holds
the requested monitoring information (samples). The monitoring samples are ob-
tained by the Linux kernel module, which is responsible for the direct interaction
with the hardware monitoring facilities. For example, the monitoring samples
may refer to the performance and power/energy consumption information, which
is obtained from the PMU and RAPL facilities, respectively. In addition, a set
of software events is also provided as monitoring samples, e.g., task scheduling
or fork events, which are obtained by direct interaction with the OS scheduler.



SchedMon: A Performance and Energy Monitoring Tool 233

By coupling the functionality of the driver and smon tool, SchedMon also inte-
grates novel approaches for performance analysis based on CARM and function
call tracing, easing application performance evaluation and bottleneck detection.

3.1 SchedMon’s Linux Driver

As previously referred, SchedMon’s driver integrates the main functionality of the
tool. It is specifically designed to provide a finer control over the tool execution,
as well as to reduce the amount of monitoring overheads.

Depending on the user-space request, different system call types trigger dif-
ferent operation modes in the SchedMon’s driver, namely:

– ioctl for setting event configurations and registering monitoring tasks;
– mmap for initializing the shared memory Ring-Buffer;
– poll to implement the synchronization mechanisms that coordinate the read
and write operations over the allocated Ring-Buffer.

By relying on these calls, the full control and configuration of SchedMon’s driver
can be attained from the user-space. In brief, these mechanisms allow exploiting
the full functionality of the driver, including: i) profiling configuration (events,
event-sets and profiling environment); ii) profiling of multi-threaded applica-
tions; iii) OS scheduling event detection; and iv) handling of different sample
types, sampling methods and event multiplexing.

In particular, SchedMon keeps all the profiling configurations (events, event-
sets and environment) inside the driver. As presented in Fig. 2, there are three
main structures for registering the performance configurations, namely:

– event - holds configuration of an architecture-specific Performance Monitor-
ing Event (PME), e.g., Intel’s event-specific PERFEVTSEL configuration [8];

– event-set - a set of PMEs to be configured in the PMU, including selected
Performance Fixed Counters (PFCs) [8];

– environment - contains all the profiling configurations for a specific execu-
tion monitoring, e.g., required event-sets and sampling interval duration.

This hierarchal organization of profiling configuration allows not only reusing
the same event configurations across different event-sets, but also reusing the
same event-sets across distinct runs.

Envirorment
- Event-sets

- Pr
    sample time
    sample types
    (…)

Event-set

- Events

- PFCs

Event

    

Fig. 2. SchedMon main structures for profiling configuration



234 L. Taniça et al.

ms0 8 14 16 21 24 26 31 34

Event-set 0 Event-set 1 sched in/out take sample

Fig. 3. Sampling process example for a sampling time interval of 20ms and 2 event-sets

When profiling multi-threaded applications, SchedMon differentiates two types
of tasks: leaders and children. In detail, each application specified to the
SchedMon from the user-space is appointed as a leader. In case of multi-threaded
applications, each additional task descending from the leader is automatically
registered into the driver (as a child) by inheriting the leader’s environment.
It is worth emphasizing that SchedMon does not only allow monitoring of the
tasks that directly descend from the leader, but also monitoring of all the tasks
that descend from the children, recursively.

The SchedMon driver also implements OS scheduling event detection in order
to attain the full control over the execution of monitored tasks and to provide
accurate monitoring information. For example, SchedMon provides a per-task
monitoring isolation by detecting the exact intervals when the task is “scheduled
in” or “scheduled out” to/from a specific Logical Processor Core (LPC). This also
allows performing counter readings with low-overheads and without interrupting
the task execution, i.e., in the interval after the current task is “scheduled out”
and before the next task is “scheduled in”. The overall scheduling event detection
functionality relies on the following Linux tracepoints:

– sched switch() is used to detect when a monitored task is scheduled in
or out, in which case it performs the PMU context switch, by saving and
restoring the PMU configuration and counts depending on the detected task;

– sched process exec() is used to initiate application monitoring exactly
from the beginning of its execution;

– sched process fork() is used for detection of forked tasks (children) when
profiling simple or nested multi-threaded applications;

– sched migrate task() is used to track migration of threads across LPCs;
– sched process exit() is used to detect the termination of monitored tasks.

Different sample types can be selected via the environment structure during
the registration of a target task. SchedMon driver provides five sample types:

– PMU samples that contain the performance information (enabled by default);
– EPC samples for energy/power consumption information (e.g., via RAPL);
– MIG samples that provide migration information for a monitored task;
– FORK samples with the information about the generated children tasks;
– SCHED samples that contain context switch information.

In order to extract the profiling information at regular time intervals, the
SchedMon driver also implements the sampling functionality. To obtain accurate
samples that correspond to well defined application run-time intervals, SchedMon



SchedMon: A Performance and Energy Monitoring Tool 235

combines context switch detection with high-resolution timers (i.e., samples are
taken according to the run-time of the target task, which might not correspond
to the wall-time). If more than one event-set is provided, SchedMon divides the
sampling interval by the number of required event-sets. It then switches the
event-sets in a round-robin fashion, thus allowing to virtually extend the limited
number of available counters (event multiplexing). The final sample is obtained
by scaling the counts from different event-sets based on the total number of re-
tired instructions. To illustrate this process, Fig. 3 presents a real-case scenario
with a 20ms sampling interval and two configured event-sets. As it can be seen,
each event-set is assigned with a 10ms run-time sampling interval. Hence, the
Event-set 0 counts are obtained at 16ms wall-time, since it refers to 10ms of task
run-time (the task was scheduled out between 8ms and 14ms). Then, the PMU
is configured for the Event-set 1 and the final sample is obtained at 34ms. When
profiling multi-threaded applications, multiplexing is applied to each thread in-
dividually, thus providing samples per thread.

3.2 Smon: User-Space Tool

The SchedMon’s user-space component, smon, is integrated in the tool in order to
facilitate the access and handling of the underlying driver. The main function-
alities of smon include: i) the creation of events; ii) the definition of event-sets;
and iii) advanced application profiling and analysis, e.g., with CARM.

The herein proposed tool also integrates function call tracing, which refers to
the process of performance monitoring at the level of a specific function within
the monitored application. Smon implements this functionality by recurring to
the ptrace() system call and by injecting a trap instruction at the entering and
returning points of the target task function call (depicted as “CC” in Fig. 4).
Smon is also able to detect whenever a new process is forked or switches its
execution image, thus allowing call tracing for multi-threaded applications or
even when different tasks execute distinct binaries.

In order to translate the SchedMon’s full functionality to the end-user in a sim-
ple and intuitive way, Smon provides a command-line interface that is composed
by the following 4 main commands:

– smon-event for inserting new PME configurations into the tool;
– smon-evset for defining new event-sets from already defined events;

Fig. 4. Function call tracing instrumentation process
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– smon-profile for profiling a specified application, where several additional
parameters can be configured, such as sampling time interval, the required
sample types, the shared-memory size and the event-sets;

– smon-carm for performance evaluation of the target application according to
the CARM, with predefined event-set configurations and multiplexing.

4 Evaluation Results

To evaluate the proposed tool, we performed a set of experiments in a system
with a quad-core Intel i7 3770K processor (Ivy Bridge), containing 8 LPCs in
hyper-threading mode and a memory organization comprising 3 cache levels, i.e.,
L1 (32kB), L2 (256kB) and L3 (8MB). The L1 and L2 cache levels are shared
among the LPCs within the same core, while the last-level cache (L3) is shared
among all the cores. The system contains a two-channel DDR3 DRAM mem-
ory, operating at 2×933MHz. During the experimental evaluation, the processor
clock was set at a fixed frequency of 3.5GHz. Application characterization within
the SchedMon tool is performed by relying on the built-in hardware monitoring
facilities, i.e., 3 PFCs and 4 general-purpose counters for performance monitor-
ing, and a RAPL interface for energy consumption monitoring [8]. It is important
to refer that, in the following experiments, changing the sampling time intervals
do not significantly affect the performance behavior.

4.1 Performance Analysis: Application Interference

To evaluate the capability of the proposed tool to capture the interference when
several real-world applications are simultaneously co-scheduled, we conducted
the experimental evaluation by relying on four distinct SPEC CPU2006 bench-
marks, namely: milc, namd, GemsFDTD and tonto [6].

Figure 5 presents the experimentally obtained performance (in Gflops/s) in
different time intervals, when the tested benchmarks are executed without any
interference of the other applications (see Fig. 5(a), 5(c), 5(e) and 5(g)) and when
all four applications are simultaneously co-scheduled (see Fig. 5(b), 5(d), 5(f)
and 5(h)). As shown in Fig. 5, during the execution, each benchmark process
was pinned to a specific LPC, i.e., milc to core 0, namd to core 1, GemsFDTD to
core 2, and tonto to core 3. For each run, the sampling interval was set to 20ms.

By analyzing Fig. 5, several important observations can be extracted. First,
due to a shared resource contention, all tested applications achieve lower per-
formance when simultaneously co-scheduled. This can be especially observed
for milc benchmark, which performance degradation is higher than 20% when
compared to the solo execution (see Fig. 5(a) vs. 5(b)). Second, it can also be
observed that the duration of each benchmark is extended when its execution is
interfered by other applications. For example, the overall execution time of milc
benchmark is increased for about 34% over the solo execution.

Another interesting observation can be made regarding the execution footprint
of a single tested application, i.e., the shape of the plot. In detail, SchedMon allows
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(a) Milc running alone (core 0)
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(b) Milc running with others (core 0)
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(c) Namd running alone (core 1)
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(d) Namd running with others (core 1)
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(e) GemsFDTD running alone (core 2)
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(f) GemsFDTD with others (core 2)
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(g) Tonto running alone (core 3)
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(h) Tonto running with others (core 3)

Fig. 5. Performance analysis of SPEC CPU2006 benchmarks (20ms sampling interval)

detecting different performance phases of the application, which correspond to
different parts of the execution. For instance, when running the milc benchmark
alone (see Fig. 5(a)), at least three distinct execution phases can be identified,
where each of them occurs at regular time intervals and delivers different attain-
able performance. This can also be observed for tonto benchmark in Fig. 5(g),
which has at least two distinct execution phases.

Moreover, as shown in Fig. 5, co-scheduling several applications also affects
the shape of their execution footprint. For example, the shape of the GemsFDTD
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Fig. 6. Multi-thread FDTD OpenCL application full reconstruction

benchmark is clearly distorted due to the interference introduced by the other
applications (see Fig. 5(e) vs. 5(f)). This performance distortion can mainly
be attributed to the contention in the shared memory subsystem (i.e., L3 and
DRAM), since each benchmark was run in a different core, thus they do not
share the in-core computational resources nor the private set of caches. There-
fore, an interesting phenomenon can be observed for namd, which shape is not
significantly affected by the other benchmarks (see Fig. 5(c) vs. 5(d)). This is
mainly due to the compute-bound nature of the namd benchmark [3], i.e., its per-
formance is mainly limited by the computation capabilities of the architecture,
and does not significantly depend on the memory subsystem capabilities.

4.2 Scheduling Information for Highly Parallel Applications

In order to show the SchedMon capability to deliver scheduling information for
each individual forked task in multi-threaded applications with nested paral-
lelism, we based our experimental evaluation on profiling the execution of an
FDTD OpenCL application [10].

As presented in Fig.6(a), SchedMon allows generating the task dependency tree
of the target parallel application, which is composed by 9 tasks (enumerated by
the trailing two digits of their PID). Hence, the additional level of execution
complexity is introduced by the impossibility of simultaneously running 9 tasks
on 8 available LPCs. As it is shown in Fig. 6(b), SchedMon was capable of
capturing the decisions made by the OS scheduler when resolving this issue. In
detail, the OS scheduler interleaves the execution of different tasks by assigning a
certain portion of their computational load to different LPCs. Hence, in order to
provide load balancing, it constantly migrates the task 90 to different LPCs, e.g.,
from LPC5 to LPC6 at around 5ms. As it can be observed, SchedMon provides
detailed scheduling information of highly parallel applications on a per-thread
basis, even for tasks that do not descend directly from the main thread.

4.3 Application Profiling at the Level of Function Calls

As previously referred, real-world applications may contain several distinct ex-
ecution phases with different requirements and performance levels (see milc
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Fig. 7. Milc performance colored according to the function call tracing profile

benchmark in Fig. 5(a)). In order to ease the detection of bottlenecks and to
provide an in-depth analysis, SchedMon allows application profiling at the level
of individual function calls without instrumenting the source code.

Figure 7 depicts the performance analysis of milc benchmark. Different colors
of experimentally obtained performance samples refer to different high-level func-
tion calls. As it can be observed, each previously referred distinct performance
phase in milc benchmark corresponds to a different high-level function. Hence,
this allows not only evaluating different execution parts of a given application,
but also locating possible performance bottlenecks within the application.

4.4 CARM and Power Evaluation

In order to detect the possible architectural bottlenecks, SchedMon integrates the
insightful performance analysis based on the CARM. Figure 8(a) presents the
CARM evaluation for tonto, with the samples colored according to the traced
high-level function calls. As it can be observed, tonto contains two distinct
execution phases that attain different performance levels, namely: i) a memory
bound region, corresponding to the make fock matrix() function; and ii) a
higher performance region corresponding to the make constraint data() and
add constraint() functions. From the CARM perspective, the latter presents
a compute bound behavior for DLB(ADD,MUL) and SSE(ADD,MUL) rooflines.
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Fig. 8. Evaluation of the SPEC CPU2006 benchmark tonto (sample time of 50ms)
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(a) Instructions (b) Time

Fig. 9. Overhead of taking a PMU sample for different sampling intervals

Figure 8(b) presents the experimentallymeasured power consumption for differ-
ent phases of tonto execution. As it can be observed, different high-level functions
also yield different power consumption levels, e.g., make constraint data and
add constraint present slightly higher consumption than make fock matrix.

4.5 Overhead Discussion

Finally, to assess the overheads imposed by SchedMon, two different tests were
performed, namely: i) the tool was executed with a dummy (empty) applica-
tion to obtain the total number of instructions for taking a PMU sample (see
Fig. 9(a)); and ii) the driver was instrumented to obtain the time required to take
a PMU sample (see Fig. 9(b)). In both tests, the tool was configured to monitor
7 events (3 PFC and 4 general-purpose) across different sampling intervals.

As it can be observed in Fig.9(a), SchedMon presents a median overhead of
around 3000 instructions for taking a PMU sample, which remains constant
across different sampling intervals. It can also be observed in Fig. 9(b) that
the time for taking a PMU sample is constant for different sampling intervals
(≈1.39us). As such, for a sampling time interval of 25ms, an overhead of less than
0.006% is expected, which represents a negligible value to the overall execution.

It is worth emphasizing that the comparison of introduced overheads among
the proposed SchedMon and different state-of-the-art monitoring tools is not
provided, due to the impossibility of conducting the evaluation on a completely
fair basis. This is mainly due to different functional principles of different tools,
which generally require internal instrumentation of individual tool components.
For example, since most of the available tools use the perf events interface, it
would be required to patch the kernel to obtain fair overheads comparison.

5 Conclusion

This paper proposes a new monitoring tool (SchedMon), which provides the
means for tracking and monitoring the complete behavior of nested multi-
threaded applications, either in their entirety or at the level of the function
calls, without requiring any changes to the original source code. The proposed
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monitoring tool provides highly accurate measurements with a low overhead by
interacting with the OS scheduler. To unveil optimization opportunities in nowa-
days applications, the proposed SchedMon tool not only allows tracking each of
the child threads and plotting its execution on the Cache-aware Roofline Model
(CARM), as it also provides the means to measure the processor power and
energy consumption. SchedMon’s functionality can also be used to identify the
interference between multiple running applications.
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Abstract. As the rate of CPU clock improvement has stalled for the last
decade, increased use of parallelism in the form of multi- and many-core
processors has been chased to improve overall performance. Current high-
end manycore CPUs already accommodate up to hundreds of processing
cores. At the same time, these architectures come with complex on-chip
networks for inter-core communication and multiple memory controllers
for accessing off-chip RAMmodules. Intel’s latest Many Integrated Cores
(MIC) chip, also called the Xeon Phi, boasts up to 60 CPU cores (each
with 4-ways SMT) combined with eight memory controllers. Although
the chip provides Uniform Memory Access (UMA), we find that there
are substantial (as high as 60%) differences in access latencies for dif-
ferent memory blocks depending on which CPU core issues the request,
resembling Non-Uniform Memory Access (NUMA) architectures.

Exploiting the aforementioned differences, in this paper, we propose
a memory block latency-aware memory allocator, which assigns memory
addresses to the requesting CPU cores in a fashion that it minimizes
access latencies. We then show that applying our mechanism to the A-
star graph search algorithm can yield performance improvements up to
28%, without any need for modifications to the algorithm itself.

1 Introduction

Although Moore’s Law continues to drive the number of transistors per square
mm, the recent stop of frequency and Dennard scaling caused an architectural
shift in processor design towards multi- and many-core CPUs. Multicore proces-
sors usually implement a handful of complex cores that are optimized for fast
single-thread performance, while manycore units come with a large number of
simpler and slower but much more power-efficient cores that are optimized for
throughput-oriented parallel workloads [1].

There have been manycore chips already built with 48 [2], 64 [3], 72 [4] cores
and even an experimental processor with 1000 cores [5] has been announced. The
Intel R© Xeon PhiTM product family, also referred to as Many Integrated Cores
(MIC), is Intel’s latest manycore CPU providing sixty x86 cores [6].
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Although manycore CPUs tend to come with complex networks-on-chip (NOC)
and with multiple memory controllers [7], with respect to memory access there
are mainly two approaches. Uniform memory access (UMA) architectures pro-
vide uniform access latencies for the entire physical memory regardless which
CPU core is generating the request, while on the other hand, non-uniform mem-
ory access (NUMA) architectures allow explicit differences in terms of memory
access latencies depending on the physical address and the CPU core that is ac-
cessing it [8]. Despite the fact that the large number of CPU cores and complex
on-chip networks make it increasingly difficult to keep access latencies uniform,
most of the existing manycore processor do follow the UMA approach for the
sake of easy programmability.

The Xeon Phi also provides uniform memory access officially. However, we find
that memory access latencies differ significantly depending on which CPU core
accesses a given physical address. Access latencies to the same memory block can
vary by up to 60% when issuing requests from different CPU cores, resembling
NUMA architectures. Notice, that the above mentioned latency differences are
at the memory level, unlike for caches in NUCA architectures [9].

Applications which access small data structures in a relatively random fashion,
such as those operating on Recursive Data Structures (RDS) may experience
significant performance degradation simply by accessing memory blocks that
are located far from the CPU core that generates the request. RDSs include
linked lists, trees, graphs, etc., where individual nodes are dynamically allocated
from the heap, and nodes are linked together through pointers to form the overall
structure [10]. For example, the A* (A-star) algorithm [11], a widely used graph
search heuristic in artificial intelligence, exhibits exactly such characteristics.

Inspired by the above described observation, in this paper, we propose a mem-
ory allocator that is memory block latency-aware, i.e., it allocates memory to
particular CPU cores in a fashion that it minimizes access latencies. In summary,
we make the following contributions:

- We point out that hidden non-uniformity in otherwise uniform memory ac-
cess architectures can be significant on manycore CPUs.

- We propose a memory allocator, which is optimized for allocating small data
structures in a memory block latency-aware fashion and it lays out memory
in a way that access latencies for the requesting CPU cores are minimized.

- We show that applying our allocator can yield up to 28% performance im-
provements for the A-star graph search algorithm solving a 16-tile puzzle,
without any need for modifications to the application itself.

The rest of this paper is organized as follows. We begin with providing a
detailed overview of the Xeon Phi along with measurements on memory block
latencies as seen from different CPU cores in Section 2. Section 3 discusses our
target application, the A-star algorithm and Section 4 describes the proposed
memory allocator. Experimental evaluation is given in Section 5. Section 6 pro-
vides further discussion, Section 7 surveys related work, and finally, Section 8
presents future plans and concludes the paper.
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2 Background and Motivation

In this Section we provide an overview of the Xeon Phi processor focusing in
particular on components that contribute to memory access latency. The archi-
tectural overview of the Intel Xeon Phi processor is shown in Figure 1. The chip
we used in this paper comes on a PCI Express card, with 60 CPU cores, where
each core supports four hyperthreads (i.e., 4-way symmetric multithreading).

Fig. 1. Architectural overview of the Intel Xeon Phi manycore CPU. The
chip consists of 60 CPU cores, each core with 4-way symmetric multithreading and a
512kB private slice of the unified L2 cache. There are 8 GDDR memory controllers and
64 cache tag directories, which are all connected with a bidirectional ring.

Each processor core runs on up to 1.2GHz and besides the relatively low
clock frequency (compared to standard multi-core Xeon chips), cores on the
Xeon Phi have no support for out-of-order execution [6]. All CPU cores have
their own 32kB L1 caches (both data and instruction) and a 512kB private slice
of the unified L2 cache. Both the L1 and L2 caches use the standard MESI
protocol [12] for maintaining the shared state among cores. To address potential
performance limitations resulting from the lack of an O (Owner) state found in
the MOESI protocol [13], the Intel Xeon Phi processor coherence system uses
a distributed tag directory (DTD) of ownership similar to that implemented in
many multiprocessor systems [14].



Exploiting Hidden Non-uniformity of Uniform Memory Access 245

The card is equipped with 8 Gigabytes of GDDR5 memory for which there are
eight GDDR5 memory controllers encompassed in the chip and all components
are connected via a bi-directional ring. Intel does not provide detailed informa-
tion on how memory blocks are assigned to DTDs and memory controllers, but
assumably a hash function based on the address of the line is used [15]. There
is also no support for modifying the mapping.

Fig. 2. Differences in memory access latency on subsequent memory blocks
seen from four CPU cores. Data is ensured to be in RAM by invalidating both L1
and L2 caches before each access and prefetching is disabled.

When a core encounters a cache miss, it requests the line from the correspond-
ing DTD and eventually, from the corresponding memory controller. Considering
the distances between CPU cores, DTDs, and memory controllers, one can ex-
pect that access latencies to the same memory block likely vary across different
CPU cores.

We have developed a simple benchmark tool that measures differences in
memory latencies depending on which CPU core accesses a particular memory
block. Note that data is always ensured to be in RAM by invalidating both L1
and L2 caches before each access as well as disabling the compiler generated
prefetch instructions. Figure 2 reveals our findings for a couple of subsequent
memory blocks as seen from four different CPU cores. The X axis shows the
physical address of the given memory block, while Y axis represents the relative
access latency compared to the fastest access (lower is better). As shown, there
are significant differences among the values. For example, accessing the physical
address 0x125080 from CPU core 45 is approximately 60% slower than from
core 0. Such differences can easily show up in application performance, especially
when taking into account that the Xeon Phi cores can do only in-order execution.
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3 The A* Algorithm

This Section gives an overview of the A* (A-star) algorithm [11] emphasizing
attributes that can be exploited by a memory block latency-aware memory al-
locator for improving overall performance.

Listing 1.1. Pseudo code of the A* algorithm

1 function A∗( s ta rt , goa l )
2 c l o s e d s e t := the empty set // The set of nodes a l ready eva luated .
3 openset := { s t a r t } // The set of t en ta t i v e nodes to be eva luated .
4 s t a r t . came from := NULL
5
6 s t a r t . g s co r e := 0 // Cost from s t a r t along bes t known path .
7
8 // Estimated t o t a l co s t from s t a r t to goa l .
9 s t a r t . f s c o r e := s t a r t . g s c o r e + h eu r i s t i c c o s t e s t im a t e ( s ta r t , goa l )

10
11 while openset i s not empty
12 cur rent := the node in openset having the lowes t f s c o r e value
13 i f cur rent = goal
14 return re con s t ruc t pa th ( goa l )
15
16 remove cu rr ent from openset
17 add curr ent to c l o s e d s e t
18 for each neighbor in neighbor nodes ( cu rr en t )
19 // Find neighbor in c l o s ed s e t
20 i f neighbor in c l o s e d s e t
21 cont inue
22
23 t e n t a t i v e g s c o r e := curr en t . g s co r e +
24 di s t be tween ( current , neighbor )
25
26 i f neighbor not in openset or
27 t e n t a t i v e g s c o r e < neighbor . g sc o r e
28 neighbor . came from := cur rent
29 neighbor . g sc o r e := t e n t a t i v e g s c o r e
30
31 neighbor . f s c o r e := neighbor . g sc o r e +
32 h e u r i s t i c c o s t e s t im a t e ( neighbor , goa l )
33
34 i f neighbor not in openset
35 add neighbor to openset
36
37 return f a i l u r e
38
39 function r e con s t ruc t pa th ( curr ent node )
40 i f curr ent node . came from
41 p := recons t ruc t pat h ( cu rrent node . came from )
42 return (p + current node )
43 e lse
44 return curr ent node

A* is an informed best-first graph search algorithm which aims at finding the
lowest cost path from a given start to a goal node. During the search, both the
cost from the start node to current node and the estimated cost from the current
node to a goal state are minimized [16]. The pseudo code of the A* algorithm is
shown in Listing 1.1. The A* algorithm uses two sets of nodes for housekeeping,
the so-called open-set holds nodes to which the search can continue in subsequent
steps, while the closed-set stores nodes that have been already evaluated.

Depending on the problem being solved, these sets can grow considerably large
while at the same time lookup operations from these sets are required in each
iteration of the algorithm (see line 20 and 26 of the pseudo code). In order to
attain good lookup performance hash tables are normally utilized, however, as a
result memory accesses come with very low data locality, i.e., following a nearly
random access pattern. Moreover, problem state (i.e., a node of the graph) can
be often represented with relatively small data structures, fitting easily into the
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size of one cache line. As we will show later through quantitative evaluation, the
above mentioned characteristics of the A* algorithm suit well the assumptions
we described earlier in Section 1.

With respect to utilizing multiple CPU cores, since we are focusing on the
effect of hidden non-uniformity of memory accesses, we simply use different goal
states on different CPU cores. This keeps the parallel code simple, because open
and closed sets are separated per core, and it also eliminates the possibility of
false sharing. Note that there are several studies on how to parallelize efficiently
the A* algorithm when searching a shared global state [17], [18], [19] and further
investigating this issue is outside the scope of this paper.

4 Memory Block Latency-Aware Memory Allocator

We now describe the design and implementation of the memory block latency-
aware memory allocator.

As mentioned earlier we developed a simple tool that measures access latencies
to a particular memory block from different CPU cores. We used this tool to build
a latency data base, in which for each memory block (i.e., the physical memory
address of the block) access latencies for all CPU cores are stored. The basic
idea is that when memory is requested by the application the runtime system
pre-allocates a large chunk of memory and queries the physical addresses of the
corresponding pages from the acquired mapping. For the purpose of obtaining
the physical translation of an arbitrary virtual address, we introduced a new
system call (see below for details on the kernel we used). Once the physical
addresses are known, the latency data base is consulted to determine which
memory blocks have low latency access from CPU cores used by the application
and the runtime places the addresses onto the corresponding per-core allocator
lists. Although we are explicitly targeting small memory requests in this paper, it
is worth mentioning that larger allocations can be still satisfied simply by falling
back to the regular glibc memory allocator. For further discussion on larger
allocation sizes as well as on the memory efficiency of the proposed system refer
to Section 6.

The architecture of the memory block latency-aware allocator is shown in
Figure 3. The colored addresses on the left of the Figure represent memory
blocks which can be accessed with low latency by the CPU core designated by
the same color. The per-core lists hold these addresses (denoted by the black
squares) for each application core and memory allocation requests are directly
satisfied from these lists.

With regards to implementation details, the RIKEN Advanced Institute of
Computational Science and the Information Technology Center at the Univer-
sity of Tokyo have been designing and developing a new scalable system software
stack for a new heterogeneous supercomputer. Part of this project is an operat-
ing system kernel targeting manycore processors [20]. Our OS kernel is binary
compatible with Linux and supports all system calls so that applications using
pthreads can be executed without modifications.
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Fig. 3. Memory block latency-aware per-core allocator lists. The colored rect-
angles on the left indicate low latency memory blocks when accessed from a CPU core
denoted by the same color.

We have implemented the proposed allocator on top of our custom OS kernel
in the form of a library interposed between the application and glibc. We note
that as a proof of concept our prototype implementation distributes memory
blocks during initialization (i.e., memory pre-allocation) phase of the application,
but utilizing dedicated allocator threads the technique can be easily adapted to
an actual runtime solution. As for the memory block latency data base, it is
simply a collection of files which we store on local SSDs for fast access. It is also
worth mentioning that our custom kernel does not migrate application threads
among CPU cores, i.e., threads are pinned to the same core throughout the whole
execution of an application. This is with particular importance, since memory
addresses returned by the allocator yield low latency access only for the core
which performs the allocation and moving a thread to another core would defeat
the very purpose of the policy. Besides the custom system call for obtaining
physical address for a user mapping, we also provide a special call that returns
the APIC CPU core ID so that threads can easily determine where they execute.

5 Evaluation

5.1 Experimental Setup

Throughout our experiments the host machine was an Intel R© Xeon R© CPU E5-
2670. For the manycore processor we used the Knights Corner Xeon Phi 5110P
card, which is connected to the host machine via the PCI Express bus. As men-
tioned earlier, it provides 8GB of RAM and a single chip with 60 x86 cores run-
ning on up to 1.2GHz, each processor core supporting a multithreading depth
of four. The chip includes coherent L1 and L2 caches and the inter-processor
network is a bidirectional ring [6].
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5.2 Results

We used the A* algorithm solving the 16 tile puzzle problem to evaluate our
proposal, but it is worth noting that our approach could be generally applied to
a wide range of Recursive Data Structures (RDSs). RDS includes familiar objects
such as linked lists, trees, graphs, etc., where individual nodes are dynamically
allocated from the heap, and nodes are linked together through pointers to form
the overall structure [10].

(a) Relative performance to regular allo-
cator.

(b) Average number of memory read ac-
cesses that miss the internal cache per
A* iteration. (On CPU core 0.)

Fig. 4. Performance of memory block latency-aware allocator compared to
regular pre-allocation on the A* algorithm solving a 16 tile puzzle.

Specifically, we used a publicly available A* code [21] as reference implemen-
tation. The state space of the 16 tile puzzle is large enough so that the search
graph does not fit into the L2 cache of the Xeon Phi, and thus making the lookup
operations generate actual memory accesses.

We used two configurations of the application. First, we ran with regular
memory pre-allocator, i.e., memory is simply divided among the threads. We
then modified the allocation routine to call into our library and use the memory
block latency-aware allocation. We measured the number of graph nodes the
algorithm explores in unit time and report the normalized improvement of the
memory block aware allocator compared to the regular solution. Results are
indicated by Figure 4a, where each measurement was repeated five times and
the chart shows the average values.

As seen, performance improvement scales from 17% to 28% and varies de-
pending on the number of CPU cores utilized in the application. Initially we
expected there would be a gradual increase in performance improvement with
the growing number of cores, assuming that the on-chip traffic is better bal-
anced among the CPU cores and the memory controllers, an observation which
had been also pointed out for NUMA architectures previously [22]. Surprisingly,
however, there seem to be no direct relation between the performance improve-
ment and the number of cores involved in the execution. As the Figure shows,
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utilizing 12 and 20 cores yields the lowest improvement. Besides the random
nature of the regular allocator in terms of memory block latencies, we believe
the distributed tag directory based cache coherence may also contribute to this
effect. Intel doesn’t provide any details about the characteristics of the on-chip
network and thus it is hard to assess whether traffic congestion occurs due to
communication between cores and the tag directories or the memory controllers.
Nevertheless, we do observe the highest improvement for 56 CPU cores.

We also measured the number of read accesses that missed the internal data
cache on CPU core 0, where the same goal state was used across all runs to
ensure fair comparison. Results are shown in Figure 4b. As the number of cache
misses is approximately the same regardless the underlying memory allocator,
we believe that the observed performance improvement results indeed from the
lower latency memory accesses.

6 Discussion

This Section provides a short discussion on some of the limitations of our pro-
posed approach. First, since we exploit memory access latency differences at the
memory block level, allocations larger than a memory block size (i.e., 64bytes
on x86 64bit) cannot be laid out in a continuous fashion on to low latency mem-
ory blocks. At present, we simply return a regular allocation, however, splitting
structures in a clever way could also help to overcome this limitation [23]. Sec-
ond, the smaller the number of cores utilized by the application, the lower the
ratio of low latency memory blocks becomes corresponding to the participat-
ing cores. Consequently, our allocator provides the best memory usage efficiency
when the entire chip is utilized.

Third, we also need to note that our technique favors applications, where the
per-core data sets are distinct. Communication between the cores of course is
inevitable, and if necessary data from one core’s low latency line could be copied
over to another one’s, such as it would be required for the EM3D application
[10]. Forth, one might argue that spreading memory allocations over low latency
memory blocks will increase the price of TLB misses. In our experiments we used
large pages for memory mappings and both in case of regular and low latency
allocators, the per-core memory used could be covered by the L2 TLB entries.

Despite the above mentioned restrictions, we emphasize that our intention is
to demonstrate that it is possible to take advantage of hidden memory latency
differences in current many-core CPUs.

7 Related Work

As we mentioned earlier, the hidden non-uniformity of the UMA property offi-
cially provided by the Xeon Phi closely resembles non-uniform memory access
(NUMA) architectures.

A large body of management policies for memory and thread placement in
NUMA architectures have been previously proposed. Bolosky et al investigated
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page replacement policies so that data are placed close to the process that is
using them [24]. LaRowe et al. built an analytic model of the memory system
performance of a local/remote NUMA architecture and investigated heuristics
when pages should be moved or remotely referenced [25]. Verghese et al. studied
the performance improvements provided by OS supported dynamic page migra-
tion and replication in NUMA environments where remote access latencies were
significantly higher than those to local memory [26]. Avdic et al. demonstrated
the correlation of memory access latency with difference between cores and mem-
ory controllers through parallel sorting on the Intel SCC [27]. Although the goal
of the above mentioned studies is similar in nature to ours, i.e., to optimize for
access locality, they explicitly deal with NUMA system where the granularity
of access inequality is at least page size. On the contrary, we exploit hidden
non-uniformities at the memory block level.

Some recent studies approach memory management issues from the aspect of
resource contention. Knauerhase et al. argued that the OS can use data obtained
from dynamic runtime observation of task behavior to ameliorate performance
variability and more effectively exploit multicore processor resources, such as
the memory hierarchy [28]. Another recent work points out that performance
degradation in current NUMA systems doesn’t mainly derive from the cost of
remote accesses. Instead, congestion on memory controllers and interconnects
caused by memory traffic from data-intensive applications hurts performance
much more [22]. As the Xeon Phi’s on-chip network connects a large number
of various components, network congestion during communication among CPU
cores, cache tag directories and memory controllers likely constitute to perfor-
mance degradation of memory intensive applications. We believe that part of the
merit of assigning low latency memory blocks to CPU cores is the alleviation of
on-chip traffic congestion.

8 Conclusion and Future Work

Many-core CPUs come with an increasing number of components, such as CPU
cores, memory controllers, cache tag directories, etc., and the on-chip networks
connecting these components are becoming more and more complex. Neverthe-
less, uniform memory access is still the most frequently provided memory model
due to its ease of programmability.

In this paper, we have pointed out that many-core CPUs, such as Intel’s Xeon
Phi, can exhibit substantial hidden non-uniformity in memory access latencies
among CPU cores accessing the same memory block. To the best of our knowl-
edge, this is the first time such differences have been shown for a UMA archi-
tecture. We have proposed a latency-aware memory allocator and demonstrated
its superior performance on the A* search algorithm. Most importantly, we en-
courage chip manufacturers not to hide such differences or at least to provide
the system with the ability to reconfigure mappings so that NUMA properties
could be explicitly leveraged at the software level.
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In the future, we intend to look at further possible usage scenarios accelerating
applications relying on recursive data structures, such as the EM3D or Barnes-
Hut’s N-body problem [10] and Monte-Carlo based tree search algorithms.
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Abstract. The development of efficient and scalable cache coherence
protocols is a key aspect in the design of manycore chip multiprocessors.
In this work, we review a kind of cache coherence protocols that, despite
having been already implemented in the 90s for building large-scale com-
modity multiprocessors, have not been seriously considered in the current
context of chip multiprocessors. In particular, we evaluate a directory-
based cache coherence protocol that employs distributed simply-linked
lists to encode the information about the sharers of the memory blocks.
We compare this organization with two protocols that use centralized
sharing codes, each one having different directory memory overhead: one
of them implementing a non-scalable bit-vector sharing code and the
other one implementing a more scalable limited-pointer scheme with a
single pointer. Simulation results show that for large-scale chip multi-
processors, the protocol based on distributed linked lists obtains worse
performance than the centralized approaches. This is due, principally, to
an increase in the contention at the directory controller as a consequence
of being blocked for longer time while updating the distributed sharing
information.

1 Introduction

As the number of cores implemented in chip multiprocessors (CMPs) increases
following Moore’s law, design decisions about communication and synchroniza-
tion mechanisms among cores become a key aspect for the performance of the
multicore. If the current trend continues, multicore architectures with tens of
cores (i.e., manycores) will employ a sharing memory model that will rely on a
cache coherence protocol implemented in hardware to maintain the coherence of
the data stored in the private caches [9]. This way, communication and synchro-
nization (usually implemented through normal load and store instructions to
shared addresses) require an efficient cache coherence protocol to achieve good
performance levels.

The design of efficient cache coherence protocols for systems with a large
number of cores has been already studied for traditional multiprocessors. In
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that context, the most scalable protocols —those which kept sharing information
in a directory distributed among nodes— were classified in two categories [5]:
memory-based schemes and cache-based schemes. Memory-based schemes store
the sharing information about all the cached copies of each block in a single
place, which is the home node of that block. In traditional multiprocessors, the
home node was associated with the main memory, and that is why they were
called memory-based schemes. On the other hand, in cache-based schemes not all
the sharing information about a single block is stored in the home node. Instead,
it is distributed among the caches holding copies of the block while the home
node only contains a pointer to one of the sharers. Usually, one or two pointers
are stored along with each copy of the block, forming a distributed linked list of
sharers.

Nowadays, current cache coherence proposals for manycore architectures as-
sume centralized directory schemes. In the context of multicore architectures,
the name of memory-based is not very suitable because the home node is now
associated with the last level cache (LLC) in the chip, which is the L2 cache in
this work. Hence, we will use the term centralized sharing code. On the other
hand, although distributed schemes where employed in several commodity mul-
tiprocessors in the 90s ([6,3,7,12]), they have not been analyzed in the context
of multicore architectures. The main advantage of these schemes, which we will
call distributed sharing code schemes, is that they have lower directory memory
overhead than the centralized sharing code ones with the same precision [5]. How-
ever, they show several disadvantages, such as higher cache miss latency, some
modifications that must be introduced in the private caches, and the increased
complexity for managing cache evictions.

In this work, we evaluate the performance of a distributed sharing code scheme
in the context of CMPs. Particularly, we implement the simplest version of this
scheme which is based on the use of simply-linked lists, which we will call List.
We compare the performance of the implemented sharing code with two central-
ized organizations. The first one employs a non-scalable bit-vector (full-map)
sharing code. This configuration will be our baseline (called Base). The second
one is a limited pointer scheme that uses a single pointer. We call this configura-
tion 1-pointer. The three protocols use the MESI states and behave as similarly
as possible in all other aspects. Simulation results show that the three configura-
tions obtain similar performance for 16-core CMPs. However, for 64-core CMPs,
the distributed sharing code List obtains worse performance. We found that the
reason for this performance degradation is the increased contention that the List
protocol introduces at the level of the directory controller. This due to excessive
locking time for updating the list of sharers upon cache misses and evictions.

2 A Coherence Protocol Based on Simply-Linked Lists

The main difference between the protocol considered and evaluated in this work
(called List) and a traditional directory-based MESI cache coherence protocol is
that the former stores directory information in a distributed way. Particularly,
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the home node in the List protocol stores the identity of one of the sharers of
the memory block. This is done by means of a pointer field stored in the L2
entry of each memory block (in the tags’ portion of the L2 cache). The set of
sharers is represented using a simply-linked list, which is constructed through
pointers in each of the L1 cache entries. This way, each of the sharers can store
the identity of the next sharer in the list or the null pointer if it is the last
element in the list (the null pointer is represented by codifying the identity of
the sharer itself, i.e., the end of the list points to itself). Therefore, directory
information in this protocol is distributed between the home node and the set
of sharers of every memory block. As it will be shown, the fact that most of
the directory storage is moved to the L1 caches (which are much smaller than
the L2 cache) brings important advantages like reduced requirements of the
directory structure in terms of memory overhead (and thus, energy consumption)
and improved scalability. As an example, assuming a 6-core CMP configuration,
Figure 1 illustrates how directory information is stored when cores 1, 3 and 5
hold read-only copies of a memory block B, for which node 0 is the home node.

Fig. 1. Example of a simply-linked list for memory block B when cores 1, 3 and 5 are
the sharers. Node 0 is the home for block B

Since directory information is stored in a distributed way in the List protocol,
several messages are required between the sharers and the home node to update
this information. Some of these messages would not be needed in a traditional
directory protocol. List updates in the List protocol are always initiated from
the home node, which remains blocked (i.e., other requests for this memory block
are not attended) until the modification of the list structure has been completed.
This way, we guarantee that two or more update operations cannot take place
simultaneously.

2.1 How Read Misses Are Managed

The procedure to resolve read misses for uncached data (i.e., when the memory
block is not held by any of the private caches) is almost identical in both the
protocol with a distributed sharing code considered in this work (List) and a
traditional directory protocol with a centralized sharing code (such as Base):
once the request (read miss) reaches the corresponding home L2 bank, it sends
back a message with the memory block to the requester, which subsequently
responds with the Unblock message to the directory. The home L2 bank uses the
pointer available in the tags’ part of the L2 cache to store the identity of the
only sharer up to the moment.
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When the home L2 bank does not maintain a copy of the requested memory
block, the directory controller will send a request to memory and once data is
received, it will be stored in the L2 cache and a copy of the memory block will
be sent to the requester. In this case, the memory block will be put in the E

(Exclusive) state in the private cache that suffered the miss.
The main difference between the List and Base protocols with respect to read

misses is observed when one or more copies of the memory block already exist.
In this case, the home L2 bank in List stores the identity of just one of the
sharers. This information is sent to the requester along with the corresponding
memory block. Then, the requester stores the memory block in its L1 cache and
sets up the pointer field in the corresponding entry of this cache level to the
identifier included in the response message (its next sharer). After this, it sends
an Unblock message to the home L2 bank, which overwrites the pointer field
with the identity of the requester. This way, the list structure keeps the identity
of the sharers of a particular memory block in reverse order to how read misses
were processed by the home L2 cache bank.

If, on the contrary, the memory block is found in the M (Modified) state in the
home L2 cache bank (it has been previously modified in one of the L1 caches),
the read miss is forwarded by the directory controller to the only L1 cache that
holds a valid copy of it (the one that modified it). Upon receiving the forwarded
request, the corresponding L1 cache responds directly to the requester with a
message containing the memory block and its own identity. Then, the requester
proceeds just like in the previous case.

As it can be observed, updates of the list structure used to keep the identity of
all the sharers of every memory block do not need to introduce any new messages
in the List protocol with respect to Base. This is because response messages are
used to transport all the information (one identifier in this case) required to
maintain the list structure.

2.2 How Write Misses Are Managed

Write misses are resolved by invalidating all the copies of the memory block
held by the L1 caches. The corresponding directory controller at the home L2
cache bank starts the invalidation process in parallel with sending the response
message with data back to the requester.

On a write miss, in a traditional directory protocol with a centralized sharing
code (such as Base), the directory controller at the corresponding home L2 cache
bank sends one invalidation message to each one of the sharers. In this case, all
the information about the sharers is completely stored at the home L2 cache
bank, and therefore, invalidation messages can be sent in parallel (although if
the interconnection network does not provide multicast support they would be
created and dispatched by the directory controller sequentially). On the contrary,
the invalidation procedure in a directory protocol with a distributed sharing code
(such as List) must be done serially. In this case, the home L2 cache bank only
knows the identity of one of the sharers, which in turn knows the identity of
the next one, and so on. This way, invalidation messages must be created and
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sent one after another, as the list structure is traversed. Once the last sharer is
reached, a single acknowledgement message is sent to the requester as a notifi-
cation that all the copies in the L1 caches have been deleted. As it can be noted,
the latency of write misses is therefore increased, especially for widely shared
memory blocks. But this also brings one advantage: whereas in the Base protocol
all invalidation messages entail the corresponding acknowledgement response, in
the List protocol just one acknowledgement is required. This obviously reduces
network traffic when the number of sharers is large.

The memory block on a write miss is sent just like in the case of a read miss,
taking into account whether the block is in M state or not.

For both the Base and List protocols, the requester sends the Unblock message
to the home L2 cache bank only when the invalidation procedure has finished (it
has collected all the acknowledgements to the invalidation messages sent by the
directory controller in the case of the Base protocol, or the only acknowledgement
response that is needed in the List one) as well as the response with data has
arrived. As in the case of read misses, upon receiving the Unblock message the
directory controller takes note of the new holder of the memory block using the
pointer available at the L2 cache.

This way, the number of messages required in the List protocol to resolve write
misses is lower or equal than what is needed in the Base protocol. The coun-
terpart is that invalidation messages in List proceed serially, which presumably
can increase write miss latency.

2.3 How Replacements Are Managed

Replacements of memory blocks in M state (i.e., blocks that have been modified
by the local core) proceed exactly the same way in both List and Base protocols.
In these cases, the private L1 cache sends a request to the corresponding home
L2 bank asking for permission, and upon receiving authorization from the L2
cache, the L1 cache sends the modified memory block, which is kept at the L2
cache. By requiring the L1 cache to ask for authorization before sending the
replaced data to L2, the protocol avoids some race conditions that complicate
its design (and that, if not correctly addressed, would lead to deadlocks).

However, the main difference between the List and Base protocols has to
do with the management of replacements of clean data (memory blocks that
have not been modified locally, and thus, for which the L2 cache has a valid
copy). Whereas in the Base protocol replacements of this kind are silent (the
replaced line is simply discarded and no message has to be sent to the L2 cache),
the List protocol requires involving the home L2 cache bank and other nodes
in the replacement process. This is needed to ensure that the list structure is
correctly maintained after a replacement has taken place. Although not sending
replacement hints for clean data in the Base protocol can lead to the appearance
of some unnecessary invalidations, previous works have demonstrated that this
is preferable to the waste of bandwidth and increase in the occupancy of cache
and directory controllers that otherwise would be suffered. This is especially true
when the number of cores is large.
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As with replacements of modified data, before a clean memory block can be
replaced in the List protocol, a replacement request must be sent to the cor-
responding home L2 cache. When the L2 receives it and it is ready to handle
it, it sends a message authorizing the replacement. This message is answered
with another that carries the value of the pointer field kept at the L1 cache
which stores the identity of the following L1 cache in the list of sharers. If the
identity of the replacing node coincides with the sharer stored at the L2 cache,
then the value of the pointer at the L2 cache is changed to the identity of the
node included in the replacement request, and an acknowledgement message is
immediately sent back to the L1 cache that initiated the replacement. Upon
reception of this message, the L1 cache can discard the memory block and the
replacement operation is completed. Otherwise, the L2 cache forwards the re-
placement request to the sharer codified in its pointer field. The message keeps
propagating through the list of sharers until the node that precedes the replacing
node in the list is reached. At this point, the pointer in the preceding node is
updated with the information included in the message (the identity of the node
following the replacing node) and an acknowledgement is sent to the replacing
L1 cache. Finally, the replacing node sends an acknowledgement to the L2 and
the operation completes.

As we will show next, the fact that replacements for clean data in the List
protocol cannot be done silently significantly increases the number of messages
on the interconnection network (bandwidth requirements) and, what is more
important, the occupancy of the directory controllers at the L2 cache. It is
important to note that although write buffers are used at the L1 caches to
prevent delaying unnecessarily the cache miss that caused the replacement, the
fact that the directory controller “blocks” the memory block being replaced
results in longer latencies for subsequent misses to the replaced address.
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Fig. 2. Memory overhead of the evaluated protocols

3 Directory Memory Overhead Analysis

One of the reasons why directory protocols based on a distributed sharing code
were popular two decades ago was their good scalability in terms of the amount of
memory required to store sharing information. In the end, this results into lower
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area requirements and, what is more important nowadays, better scalability in
terms of static power consumption. Whereas the amount of bits required per
directory entry with a bit-vector sharing code (as the one used in the Base
protocol) grows linearly with the number of processor cores (one bit per core),
for a protocol like List the experienced growth is logarithmic. Additionally, the
List protocol needs one extra pointer in every entry of each L1 cache, but this
is not a problem since the number of entries in the L1 caches is much smaller
that in the L2 cache banks.

Figure 2 compares the directory protocols considered in this work in terms of
the memory overhead each one of them introduce. Particularly, we measure the
percentage of memory added by each protocol with respect to the total amount
of bits dedicated to the L1 and L2 caches. As we can see, the scalability of
the Base protocol is restricted to configurations with a small number of cores
(as expected). Replacing the bit-vector used in each of the L2 cache entries of
Base with a limited pointer sharing code with one pointer (1-pointer) ensures
scalability. In this case, the number of bits per entry grows as log2 N , being
N the total number of cores1. Finally, the scalability of the List protocol is
very close to that of 1-pointer. L1 caches are small, and therefore, the memory
overhead that the pointers add at this cache level does not make any noticeable
difference.

4 Evaluation Environment

We have done the evaluation of the cache coherence protocols mentioned in this
work using the PIN [8] and GEMS 2.1 [10] simulators, which have been connected
in a similar way as proposed in [11]. PIN obtains every data access performed by
the applications while GEMS models the memory hierarchy and calculates the
memory access latency for each processor request. We model the interconnection
network with the Garnet [1] simulator. The simulated architecture corresponds
to a single chip multiprocessor (tiled -CMP) with either 16 or 64 cores. The most
relevant simulation parameters are shown in Table 1.

For this work, we have implemented in GEMS a traditional directory-based
cache coherence protocol (called Base) using full-map sharing vectors, another
protocol (called 1-pointer) that uses a single pointer to the owner as sharing
information similarly to AMD’s MagnyCours [4], and a protocol (which we have
called List) that uses a distributed sharing code implemented by means of linked
lists, described in Section 2. In all the protocols, the L2 cache is strictly inclusive
with respect to the L1. Hence, the sharing code can be stored along with the L2
cache tags.

We have used all the applications from the SPLASH-2 benchmark suite with
the recommended sizes [13]. We have accounted for the variability of parallel
applications as discussed in [2]. To do so, we have performed a number of sim-
ulations for each application and configuration inserting random variations in

1 We also consider the overflow bit required in each entry to know when two or more
sharers are present, and therefore, coherence messages have to be broadcasted.
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Table 1. System parameters

Memory parameters
Block size 64 bytes
L1 cache (data & instr.) 32 KiB, 4 ways
L1 access latency 1 cycle
L2 cache (shared) 512 KiB/tile, 16 ways
L2 access latency 12 cycle
Cache organization Inclusive
Directory information Included in L2
Memory access time 160 cycles

Network parameters
Topology 2-D mesh (4×4 or 8×8)
Routing method X-Y determinist
Message size 5 flits (data), 1 flit (control)
Link time 1 cycle
Bandwidth 1 flit per cycle

each main memory access. All results in this work correspond to the parallel
part of the applications.

5 Evaluation Results

In this section we explain the results of the experiments. We analyze the miss
latency and how it is distributed, the network traffic and the execution time of
the applications with each protocol, both for 16- and 64-core configurations.

5.1 L1 Miss Latency

Cache miss latency is a key aspect of the performance of a multiprocessor, and the
sharing code used by the coherence protocol can affect it significantly. Figure 3
shows the normalized latency of L1 cache misses for configurations with 16 and
64 cores. This latency has been divided in four parts: the time to arrive to L2
(Reach L2 ), the time spent waiting until the L2 can attend the miss (At L2),
the time spent waiting to receive the data from main memory (Main memory)
and the time after the L2 sends the data or forwards the request until the
requester receives the memory block (To L1 ). The Main memory time will be 0
for most misses because the data can be found on chip most times, but it is still
a significant part of the average miss latency.

We can see that, for 16 cores (Figure 3(a)), miss latency is not much affected
by the sharing code employed. There is only a small increase in the To L1 time
for 1-pointer and a slightly higher increase for List. In both cases, this is due
to an increase in the latency of write misses. This increase happens for different
reasons in each case. In 1-pointer it is due to the higher number of messages
required to invalidate the sharers (a broadcast each time), while in List it is due
to serial nature of the invalidation process, as explained in Section 2.

When we look at the results for 64 cores (Figure 3(b)), we see a higher increase
in the To L1 latency due to the higher number of cores that need to receive
invalidation messages. However, the most worrying aspect of the results is the



262 R. Fernández-Pascual, A. Ros, and M.E. Acacio

barnes
cholesk

y fft fmm lu lunc
ocean

oceannc
radiosit

y radix
raytrace

volrend
waternsqwatersp

Average
0.00
0.25
0.50
0.75
1.00
1.25
1.50

La
te

nc
y 

(n
or

m
al

iz
ed

)
To_L2 At_L2 Main_memory To_L1

Base  1-pointer  List

(a) 16 cores

barnes
cholesk

y fft fmm lu lunc
ocean

oceannc
radiosit

y radix
raytrace

volrend
waternsqwatersp

Average
0.00
0.25
0.50
0.75
1.00
1.25
1.50

La
te

nc
y 

(n
or

m
al

iz
ed

)

To_L2 At_L2 Main_memory To_L1

1.732.74 2.89 1.67 2.44
Base  1-pointer  List

(b) 64 cores

Fig. 3. L1 cache miss latencies

sharp increase in many benchmarks of the time spent waiting for the L2 cache to
attend the miss (At L2 ). We see that, even when using the Base protocol, some
applications start to suffer the effects of L2 contention when going from 16 to 64
processors, but the List protocol exacerbates this effect. This happens because
the time needed to update the sharing list grows quicker than for the protocols
with centralized sharing information due to its sequential nature in the case of
List. Moreover, to avoid inconsistencies in the list, the update process happens
in mutual exclusion (i.e., only one update action can be done at the same time
to the same list), which forces the L2 cache to remain blocked and unable to
answer to other requests to the same memory block. For this reason, contention
will increase with the number of cores that access the line. The sharing list
needs to be updated also in case of a replacement of a shared line, as explained
in Section 2, which further increases L2 contention.

5.2 Network Traffic

Figure 4 shows the normalized traffic that travels through the network measured
in flits for configurations of 16 and 64 cores. This traffic has been divided in the
following categories: data messages due to cache misses (Data), data messages
due to replacements (WBData), control messages due to cache misses (Control),
control messages due to replacements of private data (WBControl) and control
messages due to replacements of shared data (WBSharedControl).
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Fig. 4. Interconnection network traffic

As can be seen in the results for the 16-core configuration (Figure 4(a)), the
sharing code used by 1-pointer increases the traffic due to control messages be-
cause this protocol needs to perform a broadcast of the invalidation message
whenever there is more than one sharer. On the other hand, List has the same
amount of traffic due to control messages for misses than Base (although the
messages are processed sequentially instead of in parallel), but it increases signif-
icantly the traffic due to replacements, especially in the case of the replacements
of shared data which can be done silently in the case of the other two protocols.
The replacement process, which updates the sharing list sequentially, contributes
to the increase of the L2 contention.

For the 64-core case (Figure 4(b)), the traffic of 1-pointer overcomes, on av-
erage, that of List because the cost of the broadcast communication required by
the invalidations grows quickly with the number of cores. This demonstrates that
although 1-pointer is as scalable as List in terms of storage overhead, it is much
less scalable in terms of traffic, and consequently in the energy consumption of
the interconnection network. This makes the 1-pointer protocol unsuitable for a
larger number of cores.

Finally, we also see that the traffic due to replacements of shared data increases
a great deal for 64 cores in the case of the List protocol, especially for some
benchmarks. This further shows that replacements handling is one key weak
point of the sharing code used by this protocol.
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5.3 Execution Time

Finally, we show how the different sharing codes affect the execution time of the
applications in Figure 5, as always both for 16- and 64-core configurations.
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Fig. 5. Execution time

The 16-core configuration (Figure 5(a)) is almost unaffected by the sharing
code in terms of execution time. However, in the case of 64 cores (Figura 5(b))
some applications suffer a significant increase in the execution time especially
for the List protocol. This increase can be observed most clearly in barnes,
fft, lu, ocean, oceannc and volrend. If we look back to the miss latency results
(Figure 3(b)), we can see that these are precisely the applications whose waiting
time at L2 cache increases the most.

6 Conclusions

In this work we have evaluated the behavior of a cache coherence protocol with
distributed sharing information based on simply linked lists in the context of
a multicore architecture. We have seen that protocols of this kind scale well
from the point of view of the amount of memory required for storing sharing
information. However, in terms of execution time, although it works as well as
the alternatives based on centralized sharing information for a small number of
cores, it does not scale well with the number of cores. We have shown that this is,
for the most part, due to a higher contention at the directory controllers (at the
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L2 cache banks in our case) which stay blocked for much longer and delaying
other misses to the same memory block. We have identified the handling of
replacements as the main contributor to this problem. Replacements work worse
than in the other protocols because the L2 cache controller stays blocked longer
and because shared replacements cannot be done silently.

Despite the results obtained until now, we think that this kind of protocols
based on distributed sharing information present interesting possibilities which
are worth exploring in the context of manycore architectures with a large number
of cores. In this way, as future work we plan to reduce the L2 cache busy time
by means of improved replacement strategies.
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Abstract. In recent years, there has been increasing interest on us-
ing task-level pipelining to accelerate the overall execution of applica-
tions mainly consisting of producer/consumer tasks. This paper presents
coarse/fine-grained data flow synchronization approaches to achieve
pipelining execution of the producer/consumer tasks in FPGA-based
multicore architectures. Our approaches are able to speedup the overall
execution of successive, data-dependent tasks, by using multiple cores
and specific customization features provided by FPGAs. An important
component of our approach is the use of customized inter-stage buffer
schemes to communicate data and to synchronize the cores associated to
the producer/consumer tasks. The experimental results show the feasi-
bility of the approach when dealing with producer/consumer tasks with
out-of-order communication and reveal noticeable performance improve-
ments for a number of benchmarks over a single core implementation
and not using task-level pipelining.

Keywords: Multicore Architectures, Task-level Pipelining, FPGA, Pro-
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1 Introduction

Techniques to speed up processing are becoming more and more important.
Task-level pipelining is an important technique for multicore based systems, es-
pecially when dealing with applications consisting of producer/consumer (P/C)
tasks (see, e.g., [1]). It may provide additional speedups over the ones achieved
when exploring other forms of parallelism. In the presence of multicore based
systems, task-level pipelining can be achieved by mapping each task to a distinct
core and by synchronizing their execution according to data availability. Task-
level pipelining can accelerate the overall execution of the applications consisting
mainly of the P/C tasks by partially overlap the execution of data-dependent
tasks (herein: Computing Stages).
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Many applications, such as image/video processing, are structured as a se-
quences of data-dependent computing stages, use the P/C pair communication
paradigm, and are thus amenable to pipelining execution [2,3]. Using task-level
pipelining, a consumer computing stage (e.g., identifying a loop or a set of nested
loops) may start execution before the end of the producer computing stage,
based on data availability. Performance gains can be achieved as the consumer
can process data as soon as it becomes available.

There are two types of data synchronization granularity between the producer
and the consumer: Fine-grained (referred herein as FG) and Coarse-grained
(referred herein as CG). In fine-grained schemes, each data element is used to
synchronize computing stages. In coarse-grained data synchronization schemes,
instead of each data element, chunks of elements or an entire array of elements
(e.g., an image) is considered to synchronize computing stages.

In our previous work [4], we presented an approach for fine-grained task-
level pipelining in the context of FPGA-based multicore architectures. In this
paper, we explore different coarse/fine-grained data synchronization schemes im-
plemented in customized multicore architectures for pipelining out-of-order com-
puting stages. We evaluate our approaches with FPGA implementations and
measurements with a set of out-of-order benchmarks (image processing kernels)
running on an FPGA board. We compare the execution speedup obtained by
our fine- and coarse-grained approaches to task-level pipelining over the execu-
tion of the benchmarks in a single core and without using task-level pipelining.
The results reveal the effectiveness of coarse/fine-grained techniques regarding
execution speedups and inter-stage buffer requirements for out-of-order bench-
marks. The experiments also analyze the impact of increasing the size of the
local memory used in the inter-stage buffer.

The remainder of this paper is organized as follows. Section 2 presents our
fine-grained data synchronization approaches for pipelining computing stages.
In Section 3, we present our coarse-grained data synchronization approaches.
Section 4 presents the experimental results. Section 5 describes the previous
related work in task-level pipelining. Finally, Section 6 concludes this paper.

2 Fine-grained Approaches (FG)

In the context of data communication and synchronization between cores, there
are several approaches to overlap some of the execution steps of computing stages
(see, e.g., [2,5]). In these approaches, functions or loops waiting for data may
start computing as soon as the required data items are produced in a previous
function or by a certain iteration of a previous loop. Decreasing the overall
program execution time is achieved by mapping each stage to a distinct core
(processor) and by overlapping the execution of computing stages. For task-
level pipelining, the applications are split into sequences of tasks (computing
stages) that represent P/C pairs. To perform fine-grained communication, in
the simple case of a sequence of two data-dependent computing stages (one as
a producer and the other as a consumer), FIFOs can be used to communicate
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data between the stages. FIFO channels with blocking reads/writes are sufficient
to synchronize data communications [6,5]. The use of FIFO channels is strictly
dependent on the order imposed by the communication pattern between P/C
pairs. Although FIFO channels are an effective solution for in-order P/C pairs,
they may not be efficient or practicable for out-of-order P/C pairs. Thus, it is
necessary to use other data communication mechanisms [4,7].

In our previous work, we presented a fine-grained data communication ap-
proach by considering an inter-stage buffer (ISB) between P/C pairs [4]. To
consider frequent communication of data between P/C pairs in these systems,
we assume in this paper that the producer and the consumer computing stages
process N arrays. The baseline architecture consists of experiments using a sin-
gle core with two data-dependent computing stages executing sequentially. The
execution time of this scheme provides a criterion to compare the performance
impact of different proposed coarse/fine-grained data synchronization and com-
munication approaches using task-level pipelining. Although our fine-grained
schemes can deal with a variable number of images, we assume N = 50 images.

2.1 FG Scheme Using Standard FIFO

In order to pipeline computing stages, the producer and the consumer can be
implemented as shown in Figure 1. In this scheme, computing stages are split
into two cores: one core as a producer and the other core as a consumer. The
communication component between P/C pairs can be a simple FIFO. Reads and
writes from/to the FIFO are blocking. When the FIFO is full, the producer waits
to write into the FIFO. Similarly, when the FIFO is empty, the consumer waits
until a data element is written to the FIFO. The producer sends data elements
(e.g., d0, d1) into the FIFO and the consumer reads data from the FIFO as
soon as it is available. The communication over FIFO channels requires that
the consumer reads FIFO data by the same order producer writes FIFO data,
otherwise the system enters in a deadlock status.

Fig. 1. Fine-grained data synchronization scheme using a FIFO

2.2 FG Scheme with ISB (Inter-Stage Buffer)

We have been exploring an alternative inter-stage scheme to provide task-level
pipelining between P/C pairs and to overcome the limitations related to inter-
stage communications based on FIFOs. Instead of a FIFO, we use an ISB between
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P/C pairs. As illustrated in Figure 2, for each data element being communi-
cated between the producer and the consumer, there is an empty/full flag. The
empty/full tagged memories have been used in [8], in the context of shared mem-
ory multi-threaded/multi-processor architectures. Our ISB provides an extension
to the empty/full tag memory model that considers a cache-based approach.

In our scheme (see Fig.2), the producer is connected to the ISB using one
channel responsible for communication between the producer and the ISB. The
consumer is connected to the ISB by using two channels: sending (requesting
index) and receiving (reading data). Our current approach uses blocking write
over the sending channel of the ISB and blocking read from the ISB over the
receiving channel. The consumer gets data from the ISB using the receiving
channel. The sending channel transmits the requests to the ISB concurrently.
In the architectures we use, the producer and the consumer are both connected
to an external shared memory1. The ISB gets the requested index from the
consumer side and checks the status of the respective flag addressed by the hash
function and verifies if the index matches. If the requested element is present
(i.e., if the respective flag bit is full and the index matches) in the ISB local
buffer, it is sent to the consumer and respective flag is set to empty. If consumer
requests an index which is not available in the local memory, the ISB checks if
it is available in main memory.

Fig. 2. Fine-grained data synchronization scheme using an Inter-Stage Buffer (ISB)
between P/C pairs

For each produced array element, the producer sends its index and value to
the ISB (e.g., i as an index and A[i] as a value). The ISB receives the index from

1 Note that the techniques presented in this paper can be also used in architectures
with distributed memories. The use of distributed memories possibly will increase
the performance impact of using task-level pipelining.



270 A. Azarian and J.M.P. Cardoso

producer side and maps the index into the local memory using a simple hash
function (e.g., using a number of least significant bits of the binary representation
of the index). The index and value produced are then stored in the ISB local
memory location defined by the address given by the hash function. Related to
the value stored in the ISB, there is a flag that indicates if a data element was
produced and thus can be consumed by the consumer. Although reading/writing
from/to local (on-chip) memory of the ISB is fast, the limitation of the size of
local memory may be a bottleneck to store all produced data in out-of-order
P/C pair cases. We may have a deadlock situation as the producer may stop
to produce data if the ISB local memory is full. To avoid deadlock situations,
we would need to determine before system deployment the minimum size of the
local memory needed. Such approach was proposed by [3] in the context of task-
level pipelining of application-specific architectures, where the buffer size was
determined using RTL simulation. Thus, to circumvent this problem, we use the
main memory if the flag bit in the local memory is full. In this case, the ISB
stores the flag and the data value in the main memory without using the hash
function. If both flag bits of the local and main memory are empty, the consumer
waits until the requested index (and related data element) is produced and is
stored in local or in main memory.

2.3 FG Scheme with ISB in Consumer

Figure 3 shows a fine-grained data synchronization scheme that uses a FIFO
between P/C pairs and includes an inter-stage buffer in the consumer. In this
scheme, the producer sends the produced indexes and data elements through the
FIFO. The consumer sends the requested index to the controller. The controller
reads the FIFO and checks if the current read index is equal to the requested
index of the consumer.

Producer 
Computing Stage

Consumer 
Computing StageControllerdata/index data/index

Hash

index
FIFO

data

index

data

Producer

Consumer

Local Memory

data

flag

data

flag Main 
Memory

data/index

Fig. 3. Fine-grained data synchronization scheme using a FIFO between P/C pairs
and considering the inter-stage buffer in the consumer

If the indexes are equal, the controller reads data from the FIFO and sends
it to the consumer directly. If the read index from the FIFO is different from
the requested index, the controller maps the index into the local memory of
the consumer. The local memory structure is based on the empty/full flag bit
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synchronization model. If the read index cannot be stored in local memory, the
controller stores the index and data in external memory. In a similar way, if the
requested index of consumer is not equal to the read index from the FIFO and
the consumer cannot load the requested index from the local memory or from
external memory, the controller stops reading the next requested index from the
consumer until the requested index is available in local or in external memory.

3 Coarse-grained Approaches (CG)

We present two different types of coarse-grained multicore architectures using
FIFOs between the producer/consumer pairs and a shared main memory.

3.1 CG Scheme with One FIFO

In this scheme, the FIFO contains the id of producing arrays (e.g., an image).
The producer stores the produced arrays in an external memory and puts the
id (e.g., base address of an image in external memory) in the FIFO (see, Figure
4 (a)). The consumer gets the id from the FIFO and reads the array directly
from the external memory using the base address of the array. Reading/writing
from/to the FIFO are blocking. If the FIFO is full, the producer stops produc-
ing. Similarly, if the FIFO is empty, the consumer waits until the producer puts
an id into the FIFO. The producer computes the id for each array (e.g., image)
and store data in external memory based on the base address of each array. In
the consumer side, the id read from the FIFO and the array data elements are
loaded from the external memory. In this scheme, the number of temporary ar-
rays (herein referred as M) stored in external memory is an important property.
If M = 1, it means that the producer waits for the consumer to consume the
entire previously generated array before generating another array. As soon as
the id of the array is available, the consumer can read the array from external
memory. Similarly, the producer is waiting for the confirmation id that indicates
the consumption of the array. Thus, when M = 1, the producer and consumer
run without task-level pipelining (e.g., sequentially) over the single core. There-
fore, task-level pipelining is achieved when the minimum number of temporary
arrays is M > 1.

(a) (b)

Fig. 4. Coarse-grained data synchronization block diagram using: (a) a single FIFO;
(b) two FIFOs
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3.2 CG Scheme with Two FIFOs

In this scheme, FIFO 1 (write from the consumer side/read from the producer
side) and FIFO 2 (write from the producer side/read from the consumer side)
are located between P/C pairs (see Figure 4(b)). In this scheme, FIFO 2 stores
the id of producing arrays. Similarly, FIFO 1 stores the id of consuming arrays.
When the consumer puts the consumed array’s id into FIFO 1, the producer
can reuse the memory by storing the new produced array in the location related
to the id from FIFO 1. It means that the number of temporary stored arrays
in external memory (referred herein as M ) is less or equal than the number of
arrays being computed (N ). However, in a previous scheme (using one FIFO)
the number of temporary stored arrays in external memory was equal to the
number of arrays. Therefore, the producer can store the new array in external
memory as soon as it is free. In a similar way, the consumer reads the id from
FIFO 2, consumes the array and sends the id to the producer using FIFO 1.

4 Experimental Results

For evaluating our task-level pipelining approaches, we used a Genesys Virtex-5
XC5LX50T FPGA Development Board [9]. Figure 5 shows the target archi-
tecture which was implemented using Xilinx EDK 12.3 tools. We used Xilinx
MicroBlaze processors (MB) [10] as cores. Each MicroBlaze is connected to on-
chip local memory (BRAMs). The MicroBlaze processors use Xilinx Fast Simplex
Link (FSL) to communicate directly with each other. All MicroBlaze processors
are connected to the shared DDR RAM memory through the PLB. In Figure
5(a) (two cores architecture), MicroBlaze 1 and MicroBlaze 2 are responsible to
execute the codes for the producer and consumer, respectively. In Figure 5(b)
(three cores architecture), we use an additional MicroBlaze (MicroBlaze 3) to
implement the ISB schemes. Although these architectures may not be the fastest
solutions, they provide the flexibility and ease of programmability required to
explore and evaluate different fine and coarse-grained data communication and
synchronization schemes.

Table 1 presents a set of image processing benchmarks used in our experi-
ments. By considering that most image/video processing benchmarks have out-
of-order data communication patterns, we use a set of out-of-order benchmarks
in our experiments, all consisting of two data-dependent computing stages (pro-
ducer and consumer). The set consists of Fast DCT (FDCT), Wavelet transform,
FIR-Edge, Edge-Detection and Gaussian blur. Note that in our previous work
[4], we shown that our fine-grained approach is efficient to deal with in-order
benchmarks.

Table 1 shows the execution clock cycles of each computing stage. To provide a
P/C data communication model, the original sequential code of the benchmarks
is partitioned into the separate computing stages (producer and consumer), being
each stage a sequence of loops or nested loops. We organize our results into two
categories, fine-grained and coarse-grained results.
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(a) (b)

Fig. 5. Target architectures with: (a) two MicroBlazes; (b) three MicroBlazes

Table 1. Benchmarks used in the experiments

Benchmarks Pattern Stages
Clock Cycles

S1 S2 Overall

Fast DCT (FDCT) out-of-order two (S1 and S2) 27,450,111 27,816,150 55,266,261
Wavelet Transform out-of-order two (S1 and S2) 69,660,426 67,260,579 136,921,005
FIR-Edge out-of-order two (S1 and S2) 27,546,828 20,245,503 47,792,331
Edge-Detection out-of-order two (S1 and S2) 7,891,875 7,152,558 15,044,433
Gaussian blur out-of-order two (S1 and S2) 1,544,962 263,459 1,808,421

4.1 Fine-grained Results

Table 2 shows the speedups obtained by considering fine-grained data synchro-
nization schemes with task-level pipelining vs. a single core architecture. For
comparisons, we use the highly optimistic theoretical speedup bounds (herein:
Upperbound A) for each application as calculated with Equation 1. This upper
bound reflects how the execution times of tasks are balanced (maximum of Up-
perbound is 2 and corresponds to the execution time equally split over the two
tasks and optimistic overlapping of execution of the tasks). In order to have an
idea about the possible upperbound (also optimistic) when data are communi-
cated between the two tasks (stages) using local buffers, we include Upperbound
B speedups. These were obtained calculating the execution time of each stage
considering the unrealistic scenario of inter-stage communicated data being fully
stored/loaded to/from internal FIFOs (as if data communication could be in-
order) instead of randomly stored/loaded in/from memory (local or external).

Theoretical Speedupbound = (TStage1 + TStage2) / Max(TStage1, TStage2) (1)

From Table 2, the highest speedup for all benchmarks in fine-grained data
synchronization model is obtained when using the ISB between P/C pairs. Al-
though including the ISB into the consumer may reduce the FPGA resources
required, it may not provide the same performance for out-of-order benchmarks
compared with the scheme using a separate ISB. The results with a separate
ISB illustrate speedups from 1.14× to 1.57×. For FIR-Edge and Gaussian blur
benchmarks, the measured speedups are fairly close to the theoretical speedup



274 A. Azarian and J.M.P. Cardoso

Table 2. Speedups obtained by considering fine-grained data synchronization schemes
with task-level pipelining vs. a single core baseline architecture, considering N = 50
arrays being computed, also compared with the theoretical and maximum upperbound
speedups. The default size of the local buffer is 1024.

Benchmark
Inter-Stage
Buffer (ISB)

ISB in
Consumer

Theoretical Upperbound

A B

FDCT 1.38× 1.37× 1.99× 2.42×
Wavelet 1.46× 1.27× 1.97× 2.22×
FIR-Edge 1.57× 1.21× 1.72× 1.73×
Edge-Detection 1.39× 1.21× 1.91× 1.94×
Gaussian blur 1.14× 0.55× 1.17× 1.28×
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Fig. 6. The impact of increasing the ISB buffer size on speedup (on left) and the
percentage of data communicated between stages using the local buffer (Usage) results
(on right)

bounds of 1.72× (FIR-Edge) and 1.16× (Gaussian blur). In the case of FDCT,
Wavelet and Edge-Detection benchmarks, although the speedup is considerable,
we have an small gap between the theoretical speedup and the real FPGA-based
achieved speedup (e.g., 1.38× to 1.99× for FDCT).
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In the case of the ISB in consumer, the performance resultant when using
task-level pipelining is lower. For example, in the case of Gaussian blur bench-
mark, the achieved performance is even lower than sequential execution of the
benchmark (0.55×).

We evaluated the impact of increasing the size of the local buffer (up to
4096 considering the limitation of BRAMs on our FPGA board) on the local
memory usage and on the speedup (see Figure 6). The highest speedup for all
benchmarks is obtained when the usage of local memory is at maximum. For
example, in FDCT, we obtained the maximum usage of local memory (100%)
by considering the size of local buffer to 128. Similarly, in Edge-detection and
Gaussian blur benchmarks, the maximum usage of local memory was obtained
when the size of local buffer is greater than 512, 2048 for FIR-Edge and 4096 for
Gaussian blur. The communication pattern in the wavelet transform benchmark
allowed only the 0.86% usage of local memory when considering a local buffer
with size 4096.

4.2 Coarse-grained Results

Figure 7 shows the achieved speedups in the coarse-grained data synchroniza-
tion scheme using one FIFO (CG One FIFO) and two FIFOs (CG Two FIFOs)
between P/C pairs. In these experiments, we considered a number of arrays (N)
being computed. For instance, in CG Scheme with one FIFO, the number of tem-
porary arrays (M) is equal to the number of arrays being produced/consumed.
As expected, If N = 1 and M = 1, the producer waits for the availability of
temporary array in external memory, thus, the producer and consumer execute
sequentially and therefore, none speedups are achieved. When the number of
temporary arrays in external memory is M > 1, the producer can process the
next array while the consumer core is consuming (processing) the previous array.
As shown in Figure 7(a), the results show that increasing the number of arrays
being computed (N) and allowing two temporary arrays being stored (M = 2)
in external memory significantly increases the performance. The performance
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Fig. 7. Speedups achieved by considering coarse-grained data synchronization schemes
using: (a) one FIFO; (b) two FIFOs for N = 50
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significantly increases for values of N between 2 and 20 and stays almost the
same for N > 20.

Figure 7(b) shows the results when using two FIFOs between P/C pairs. In
this scheme, the number of temporary arrays is 1 < M ≤ N . Based on the lim-
itation of available memory on our experimental board, we consider the range
of 1 to 32 for temporary arrays (M) and N = 50. The results show that the
performance with the number of temporary arrays M = 2 is very close to the
one obtained when increasing the value of M. This is somehow expected as
the existence of only one core for the producer and one core for the consumer
only allows two temporary arrays being processed (one produced and one con-
sumed). The producing of additional arrays while the consumer is still consuming
the previous one, or the consuming of another array while the producer is still
being producing the next one, seems as expected to have a small impact on
performance.

5 Related Work

In the context of data synchronization, there are several approaches to overlap
some of the execution steps of computing stages (see, e.g., [11], [7],[6] and [5]).
In these approaches, task-level pipelining model can be easily provided by using
a FIFO channel between producer/consumer tasks. Each FIFO stage stores an
array element or a set of array elements. Array elements in each FIFO stage can
be consumed by a different order than the one they have been produced. The
FIFO approach is sufficient when the order of consuming data is the same as
the order of producing the data. However, the FIFO may not be efficient when
the order of producing and consuming data is not the same. In the presence
of in-order P/C pairs, several attempts have been made to resolve the data
communication for out-of-order tasks in compile time. For instance, Turjan et al.
[7],[6],[12] address a task-level pipelining model maintaining the simple solution
based on the FIFO between P/C tasks and using a reordering mechanism to
deal with out-of-order tasks. In their approach, the order of the producer and
consumer is determined by using a rank and read functions. The rank function is
associated to each iteration point and gives a number that expresses the order of
this point which is executed relatively to other iterations. The read function gives
the order of each Consumer iteration point in which the needed data element
arrives through the FIFO. Based on the order of each P/C pair, a controller
checks whether a FIFO channel is sufficient for every P/C pair or an additional
memory is required. These approaches may not be feasible for all applications
and can be seen as an optimization phase for our approach. We focused on the
architectural schemes to enable task-level pipelining given in-order or out-of-
order applications with coarse/fine-grained data synchronization schemes and
without requiring code transformations besides the ones needed to split code
into computing stages.
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6 Conclusions

We presented fine- and coarse-grained approaches for task-level pipelining in the
context of FPGA-based multicore architectures. Our approaches are able to pro-
vide task-level pipelining for out-of-order computing stages in runtime. We an-
alyzed and compared different implementations of fine- and coarse-grained data
synchronization schemes for a set of out-of-order producer/consumer benchmarks.

All solutions proposed in this paper were implemented using an FPGA board.
The results with an Inter-Stage Buffer (ISB) between producer/consumer cores
show speedups from 1.14× to 1.57× for the benchmarks used when using our
multicore-based task-level pipelining approaches over the sequential execution of
computing stages in a single core. The results also show that an ISB consisting
of local (on-chip) memory is an efficient solution for out-of-order data commu-
nication between the producer and the consumer. In addition, the results show
that small sizes of local memory in the ISB are sufficient to achieve high per-
centages of inter-stage data communication using local memory and to achieve
close to maximum speedups. In the case of the task level pipelining using the
coarse-grained data synchronization model, the results show that a number of
temporary arrays in external memory equal to 2 is sufficient to achieve significant
performance improvements.

Ongoing work is focused on experiments with additional benchmarks, different
hash functions, and the impact of application dependent inter-stage communica-
tion schemes. Future work will address other schemes for the inter-stage buffer
and additional optimizations.
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Abstract. Spintronic memory (STT-MRAM) is an attractive alterna-
tive technology to CMOS since it offers higher density and virtually no
leakage current. Spintronic memory continues to require higher write en-
ergy, however, presenting a challenge to memory hierarchy design when
energy consumption is a concern. Various techniques for reducing write
energy have been studied in the past for a single processor, typically
focusing on the last-level caches while keeping the first level caches in
CMOS to avoid the write latency. In this work, use of STT-MRAM for
the first level caches of a multicore processor is motivated by showing
that the impact on throughput due to increased write latency is off-
set in many cases by increased cache size due to higher density. The
Parsec benchmark suite is run on a modern multicore platform simula-
tor, comparing performance and energy consumption of the spintronic
cache system to a CMOS design. A small, fully-associative level-0 cache
is then introduced (on the order of 8-64 cache lines), and shown to ef-
fectively hide the STT-MRAM write latency. Performance degradation
due to write latency is restored or slightly improved, while cache energy
consumption is reduced by 30-50% for 12 of the 13 benchmarks.

1 Introduction

As CMOS technology starts to face serious scaling and power consumption is-
sues, the current SRAM designs become unable to meet the demand of big,
fast and low power on-chip cache for multi-core implementations. A new tech-
nology, Spin-Transfer Torque-Magnetic RAM (STT-MRAM), one of the novel
non-volatile memory family, has drawn substantial attention in recent years.
STT-MRAM offers higher density than traditional SRAM cache, and its non-
volatility facilitates low leakage power [13]. Also, STT-MRAM is one of few
candidates that has almost the same read latency as current SRAM technology.
With this higher cell density and low leakage power, STT-MRAM is generally
considered as a viable potential alternative to SRAM in future on-chip caches.

STT-MRAM technology suffers from high dynamic energy consumption, how-
ever, due to high write current and longer write latency [16]. As others have
shown, leakage power at the large last-level caches is the dominant energy con-
sumer in CMOS cache hierarchies [1,9]. This work will consider a cache hierarchy
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with STT-MRAM last-level cache and CMOS first-level cache as the baseline
configuration, and study the impact of converting the first-level cache to STT-
MRAM as well. The impact on performance and energy over a range of write
latencies is analyzed in detail. As would be expected, STT-MRAM reduces leak-
age power of the first-level cache, but increases energy consumed by processor
writes significantly.

The write latency of STT-MRAM has the effect of reducing the available
bandwidth into the cache, since this latency cannot be hidden with pipelining
or other techniques. To address this fundamental limit, a small fully-associative
level-0 (L0) cache was placed in front of the main L1 cache, similar to that
proposed in [10]. This structure can be very small, yet have several benefits. By
acting as a write-back cache, it absorbs processor writes at full bandwidth, and
aggregates them into cache-line size writes to the STT L1 cache in the form of
write backs. This technique improves bandwidth into the L1 cache, and can save
energy if most of the processor writes can be absorbed there. Simulations show
that performance lost due to high write latency can be recovered, while total
cache energy consumption is reduced by 30% to 50% for 12 of the 13 benchmarks
analyzed.

The contributions of this work include:

1. A detailed performance and energy-consumption study comparing a CMOS
to a STT-MRAM first-level cache

2. An analysis of how well a small, fully-associative level-0 cache can overcome
the performance degradation caused by long write latency of STT-MRAM

3. An energy comparison of dynamic energy consumed by the caches with and
without the added level-0 cache

2 Experimental Methodology

Architectural simulations were performed with the gem5 simulator [4] running
the Parsec benchmark suite [3]. A sampling technique similar to that described in
SMARTS [22] was used to reduce simulation time while maintaining accuracy. All
data is reported just for the parallel region-of-interest (ROI) using checkpoints
compiled into the source by [5]. A four-processor system was simulated using a
four-wide out-of-order execution model running at 2GHz. The first level cache
is private to each CPU, while the last-level cache is shared. Cache coherence
is enforced using the MESI protocol with inclusion. The sampled simulation
data was verified by running complete simulations of the benchmark on selected
configurations, and were found to be quite accurate. Table 1 lists the values of
system parameters simulated for each benchmark. Every combination of these
parameters was simulated. Cache read latency was assumed to be the same for
CMOS and STT-MRAM technologies for the sizes utilized. The Parsec medium
data set was used for full simulation runs due to runtime, so the sample runs
use that data set as well.

To increase simulation throughput further, multiple simulations were run in
parallel on non-overlapping regions of the program. Multiple checkpoints for
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Table 1. Simulated Cache Configurations

Parameter Values

L1 DCache Size 64K CMOS, 128K & 256K STT

STT L1 Write Latency 3ns, 5ns, 8ns

Cache Read Latency L0 1 cycle, L1 3 cycles, L2 7 cycles (accessed sequentially)

L0 DCache Arrangement baseline none; 512B, 1K, 4K fully-associative, private

L1 DCache Arrangement 2-way associative, private per CPU

L2 Cache Arrangement 4MB STT, 6ns write, 8-way associative, shared

Coherence Protocol MESI with inclusion

each benchmark were created at 50 million cycle intervals using the simple atomic
CPUmodel, starting at the ROI. The number of checkpoints created ranged from
four for canneal to eighty-seven for freqmine. From each of these checkpoints,
simulations were run in parallel, using GNU Parallel [19] to run thousands of
small simulations in a relatively short period of time. Twenty-five samples were
gathered from each checkpoint for every configuration simulated. The simulator
was modified to allow switching between the simpler timing model CPU and
the detailed out-of-order CPU model at different intervals. The simpler timing
CPU was used to run the simulation forward for 900K cycles between periods
of detailed simulation, keeping the caches and other dynamic structures active.
The detailed out-of-order model was then switched in and run for 500K cycles,
with the simulation statistics reset at each switchover. Performance impact was
measured by comparing the instructions-per-cycle (IPC) of the benchmarks for
the different configurations of cache size and write latency. The IPC of each
benchmark was computed from the sampled set of IPCs of each interval simu-
lated. Confidence intervals for 95% confidence were computed as well, using the
techniques from [14]. In most cases the confidence intervals were very small so
they do not change interpretation of the data.

Performance data and event counts relevant to dynamic cache energy con-
sumption were gathered from the simulation statistics. Cacti [7] was modified
to model the increased density of STT-MRAM devices, as well as the different
leakage power and access transistor sizes required for different access times. A
32nm high-performance process was modeled by changing to bit-cell size from
146 F 2 to 40 F 2 with no leakage. Cacti is now able to model the fully associa-
tive caches used in this study. Parallel tag and data access was modeled for the
L0 and L1 caches, while serial tag lookup was modeled for the L2. Conservative
models were used for all values: L0 and L1 word write energy uses the line access
value, since most of the energy is consumed in the peripheral circuitry rather
than bit-cell access; array line loading still assumes a 6T cell array, in addition
to the larger access transistor for STT. Access energy values include both tag
and data array access, and leakage values include tag arrays and the different
amounts of circuitry for the different cache sizes and arrangements. For STT-
MRAM arrays, a per-bit energy of 300 fJ was added to the Cacti access energy
for write operations, 64b for word writes and 512b for cache lines. Table 2 lists
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C0 C1 C2 C3

L0 L0 L0 L0

L1 L1 L1 L1

L2

C0 C1 C2 C3

L1 L1 L1 L1

L2

(a) (b)

Fig. 1. The two-level hierarchy (a) evaluated in Sec. 3, with CMOS and STT-MRAM
as the L1. Then a small fully-associative L0 is added (b) and evaluated in Sec. 4.

Table 2. Energy consumption parameters for the various cache structures

Structure CMOS L1 STT L1 STT L2 CMOS Level-0

size 64kB 128kB 256kB 4MB 8-way 512B 1kB 4kB

read (nJ) 0.032 0.033 0.062 0.385 0.0165 0.0165 0.0168

lineWrite(nJ) 0.055 0.220 0.230 0.290 0.0165 0.017 0.0203

wordWrite(nJ) 0.055 0.086 0.096 - 0.0165 0.017 0.0203

leakage(mW) 25 10.0 11.7 92 4.1 4.26 5.65

the power and energy parameters used to compute energy consumption from
simulation activity.

3 Converting First Level from CMOS to STT-MRAM

Use of STT-MRAM at different levels of cache creates opposing performance
effects. The increased write latency can degrade performance when this latency
is exposed, while the larger caches enabled by higher density may increase per-
formance for some programs. It has been seen that the increased latency at the
L2 cache does not typically have much impact on performance due to a lower
demand on the bandwidth [13]. The cache hierarchies evaluated in this paper
are shown in Fig. 1. The configuration names and cache sizes listed in Table 3
are used in the figures and graphs that follow.

3.1 Performance Impact With L1 STT-MRAM

Typical sizes for L1 and L2 in CMOS are assumed to be 64kB for the L1 data
cache, and 1MB for a shared L2 unified cache. For the STT-MRAM L2, a den-
sity increase of 4× is assumed, so a cache of 4MB would fit in roughly the same
chip area and therefore have similar read latency, since read latency is a strong
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Fig. 2. Total IPC for Parsec benchmarks on a 4-CPU CMP, comparing CMOS2 (left-
most bar) to STT1 and STT2 with varying write latency. Harmonic mean of IPC across
all benchmarks is also shown, 1.9 for CMOS2. Mean IPC for STT1 is lower by 3% for
3ns write, 9% for 5ns, and 14% for 8ns writes. STT2 is virtually identical to STT1.

function of the length of wires and array size. For the L1 cache, while STT-
MRAM density is still high, the actual cache design may be limited by the
access transistor size rather than the magnetic tunnel junction device, so we
model both 2× and 4× increase in L1 size. Since prior work [2] has shown little
or no benefit from typical L3 cache sizes for the Parsec benchmarks, and because
use of a third cache level would add more dynamic and static energy, we begin
our analysis with a two-level cache hierarchy.

Figure 2 compares performance of CMOS2 to STT2 and STT1, with STT-
MRAM write latencies ranging from 3ns to 8ns across all the Parsec benchmarks.
The data is the sum of the individual core IPCs for a 4-CPU CMP, showing total
system throughput. The best case was no slowdown, while the worst was about
-27% for rtview at 8ns write latency. Eight of the thirteen benchmarks see less
than about 5% slowdown at the 3ns STT-MRAM technology point. Recent work
has shown experimental results achieving writes in the 1ns range [24,25], so it
may not be overly optimistic to presume that STT-MRAM write latency in this
range may become standard. At this design point, the worst slowdown among
all benchmarks is less than 10%. There also appears to be little difference in
performance between the two STT-MRAM L1 cache sizes considered, indicating
that the larger L1 of STT2 does not provide significant improvement. Chip area
may be better allocated to other features to improve throughput.

Table 3. Two-Level Hierarchy Configuration Names

Baseline Configuration Names L1 Cache L2 Cache

CMOS2 CMOS 64K STT 4MB

STT1 STT 128K STT 4MB

STT2 STT 256K STT 4MB
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Fig. 3. Breakdown of energy consumption in the 2-level hierarchy, normalized to
CMOS2

3.2 Energy Consumption With L1 STT-MRAM

Figure 3 shows the energy consumption of STT1 and STT2 cache configura-
tions, normalized to CMOS2 (the leftmost bar of each benchmark). Though
significantly reduced by implementing the L2 cache as STT-MRAM instead of
CMOS, L2 leakage is still a large contributor to total cache energy consumption.
L1 leakage (2nd segment from top) is also a large percentage of the total in the
CMOS2 configuration. The STT1 configuration shows a drop in total energy
compared to CMOS2, while the STT2 configuration causes an increase in total
energy on most benchmarks due to higher dynamic read energy caused by the
heavier loading of the internal array. Since performance was not improved with
the larger L1 cache of STT2, L1 capacity does not appear to be the best use
of chip area for these workloads. Dynamic energy of processor read and write
hits to the L1 cache are the next significant cause of energy consumption in
most benchmarks. The large amount of dynamic write hit energy indicates a
significant amount of program data stores, which are likely the main cause of
the performance drops seen in Figure 2. A technique to improve performance
of writes to a high-latency structure, while reducing total energy consumption,
would benefit the system in this case. One method to reduce both dynamic and
static energy consumed by read and write operations is to use smaller structures,
which also allow for faster access time. A fully-associative structure as small as
8 cache lines was added to the system to address these issues, with significant
improvement observed.

4 Addition of Fully-Associative Level-0 Cache

The performance impact of STT-MRAM cache is due to reduced bandwidth
into the cache stalling the processor. The portion of energy consumption due to
processor writes that hit the L1 cache is a function of the number of writes in
the program and the cache performance. To address both of these issues, the
addition of a small fully-associative structure in front of the STT-MRAM cache
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Fig. 4. Total IPC of benchmarks with L0 cache of various sizes, shown for the range
of STT write latency from 3-8ns. The IPC drop seen in the two-level hierarchy with
increasing write latency is not seen at the 3ns and 5ns configurations. The 8ns writes
show a slight drop in some cases. The mean IPCs show no drop with added write
latency.

is evaluated, similar to the scheme in [10]. This hierarchy is shown in Fig. 1b. A
small structure can be fast enough to keep up with the processor when writes
hit, and low enough energy to not offset the gains from implementing the larger
L1 cache with STT-MRAM. By acting as a regular write-back cache, effective
bandwidth to the L1 cache is increased by converting single-word writes into
cacheline writes. By absorbing a high enough percentage of the processor writes,
energy is reduced at the L1 cache since there are fewer write events. While at
a much smaller scale, the goals are similar to the write aggregation schemes of
mass storage systems [20,6].

Figure 4 shows the performance of the STT1 configuration with the added L0
cache of various sizes, ranging from 512B (8 lines) to 4KB (64 lines). As with
the trends seen in Fig. 2, the difference in performance between STT1 and STT2
was negligible, so STT2 graphs are not shown. The drop in IPC with increased
write latency is effectively eliminated in this scheme. In some benchmarks there
is a small increase in performance with increased L0 size, on the order of 10%
for ferret and swaptions, but most show little or no increase. Also shown, in the
rightmost bars of each benchmark, is performance of a CMOS L1 of 64kB and the
added L0 cache of the same three sizes to ensure a fair baseline. Performance was
identical to or slightly below the STT1 performance for the same L0 size. This
indicates that the L0 cache does hide the L1 write latency, while also allowing
the larger L1 size to increase performance in some cases.

4.1 Energy Consumption With Level-0 Cache

Including the L0 cache in the hierarchy changes the number of events seen at
the different cache levels. If enough high-energy events such as STT-MRAM
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2Level:   Energyfill = N x L1WordWriteEnergy 
3Level:   Energyfill = N / K x L1LineWriteEnergy + N x L0AccessEnergy

K = Ratio of CPU writes to L0 / L0 writes to L1
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Fig. 5. Model of energy consumption in the L0 and L1 caches combined, as a function
of the L1 STT-MRAM bit-cell write energy. Energy in the three-level (L0 + L1) is
shown normalized to the two-level configuration (L1 only). The X-axis is the ratio of
the number of CPU writes absorbed by the L0 to the number of lines written back
from the L0 to the L1. As L1 bit-cell writes use less energy, relatively fewer writes need
to be absorbed by the L0 to break even on energy.

writes are eliminated, the total energy consumed in the cache system is reduced.
Figure 5 models the change in energy consumption as the effectiveness of the
L0 in absorbing CPU writes changes. Portions of the energy equation that are
not reduced, such as L0 write energy and leakage, create a lower limit and cause
the slope to reduce farther to the right on the X-axis. The values in Table 2 use
0.3 pJ/bit for STT-MRAM write energy calculations.

Figure 6 shows the breakdown of energy consumption with the L0 cache in
place. The two leftmost bars of each benchmark show the original CMOS and
STT1 data of the two-level system, while the three rightmost bars show the
different L0 cache sizes with a 128KB STT-MRAM L1 cache (STT1). While the
motivation for use of the L0 cache was to reduce L1 dynamic write energy (the
second segments from the bottom in each bar, respectively), L1 dynamic read
energy also dropped significantly. The lowest two segments of the CMOS2 and
STT1 bars are replaced by the low three segments of the L0 bars, which include
L0 dynamic energy and L1 accesses. L0 leakage is also added, the third segment
from the top. Examining the data for one benchmark, blackscholes, it can be seen
that dynamic write energy (2nd segment from the bottom) grew significantly
when going from CMOS2 to STT1. When the L0 was added, dynamic write
energy was reduced to about the same magnitude as CMOS2 for the 512B case,
and even further for the 1kB L0 case. The effectiveness in absorbing writes, K
in Fig. 5, increased with the larger L0.

The size of the L0 does not change the total dynamic energy significantly
for about half of the benchmarks. For others, such as blackscholes, dedup, and
freqmine, a larger L0 further reduces L1 energy by reducing the L0 miss rate, as
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Fig. 6. Energy breakdown normalized to CMOS2 (two-level), showing CMOS2 and
STT1 two-level, followed by STT1 with the three L0 cache sizes added. The lowest
segments show L1 read for the two-level and L0 total dynamic energy for the 3-level;
the 2nd segments show L1 write hits for the two-level and L1 line fills for the 3-level,
one motivation for the L0 cache. Dynamic read energy is reduced significantly as well
as write energy, indicating that the L0 is quite effective.

Fig. 7. Miss rate at the L0 cache for each benchmark as L0 size is increased. Bars for
blackscholes at 4k and rtview are too small to show up at this scale.

shown in Fig. 7. Since the L0 modeled here is so small, it does not seem likely
that the benchmark dataset size would make much difference in these results,
but this should be verified with further simulation. Total energy consumption
is reduced in the range of 30-50% from CMOS2 levels. For STT1 the gains are
similar except for the canneal benchmark, which has poor locality and is more
sensitive to memory latency than any other system parameter.

5 Related Work

To address the write power and latency problems, researchers have pro-
posed several techniques: decreasing the retention time [16,17,9], modifying
the cache hierarchy to use a mix of structures with different properties
[13,23,11,17,21,8], implementing policies to limit write operations to high-power
structures [15,26,12,18,1]. Decreasing the retention time trades reliability for
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area and energy on a device level, requiring the use of timers and some form of
data restoration or movement to reliable structures. Device or circuit-level tech-
niques such as reduced retention time are orthogonal to our work; any technique
that reduces write energy at the array or bit-cell level can work in conjunction
with the cache hierarchies we have proposed. The various mixed structures are
mostly focused on using STT-MRAM at the larger L2 and LLC structures. We
are focused on getting maximum performance and energy efficiency when con-
verting as much of the cache hierarchy as possible to STT-MRAM. The hybrid
structures that utilize cache sets or ways with different properties require other
hardware such as timers and predictors to decide where to allocate lines, and
when to move lines from more volatile to less volatile areas. This extra data
movement is overhead for energy consumption. Our scheme does not require any
new hardware other than normal cache controllers and replacement logic.

6 Conclusions

The impact on performance and energy consumption of STT-MRAM use as first-
level cache in a modern chip-multiprocessor has been evaluated, first with a stan-
dard two-level hierarchy and then with the addition of a small fully-associative
structure. Performance with the STT-MRAM first-level cache was degraded in
most benchmarks, and continued to degrade further as write latency was in-
creased. Energy consumption of this configuration varied from a best-case of
20% reduction to worst-case of over 15% increase, since the various components
such as leakage and write events changed significantly. Processor writes that hit
the L1 cache became a high consumer of energy, more so than cache line fills
and other events, in most benchmarks.

To address the performance penalty and potentially reduce energy consump-
tion further, a small fully-associative structure was added to the system to act
as a level-0 cache. When used as a standard write-back cache with no other
additional hardware, a structure as small as eight cache lines was shown to be
completely effective at eliminating the performance penalty, and in some cases
enabled even higher performance to be realized by the larger STT-MRAM L1
cache. The total energy consumption of the cache hierarchy was reduced in the
range of 30-50% for every benchmark except canneal, showing that STT-MRAM
can be effectively used at the lower levels of the cache hierarchy when augmented
with this small, fast structure to hide the write latency. The resulting system has
no performance loss due to slow write operations, and in some cases speedups
were observed, in addition to significant energy savings.

References

1. Ahn, J., Yoo, S., Choi, K.: Dasca: Dead write prediction assisted stt-ram cache
architecture. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture, HPCA 2014 (February 2014)



Improving Energy and Performance with Spintronics Caches 289

2. Bhadauria, M., Weaver, V.M., McKee, S.A.: Understanding PARSEC performance
on contemporary CMPs. In: IEEE International Symposium on Workload Charac-
terization, IISWC 2009, pp. 98–107 (2009)

3. Bienia, C.: Benchmarking Modern Multiprocessors. Ph.D. thesis, Princeton Uni-
versity (January 2011)

4. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hes-
tness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib,
M., Vaish, N., Hill, M.D., Wood, D.A.: The gem5 simulator. SIGARCH Comput.
Archit. News 39(2), 1–7 (2011), http://doi.acm.org/10.1145/2024716.2024718

5. Gebhart, M., Hestness, J., Fatehi, E., Gratz, P., Keckler, S.W.: Running parsec 2.1
on m5. Tech. rep., The University of Texas at Austin, Department of Computer
Science (October 2009)

6. Gill, B.S., Modha, D.S.: Wow: Wise ordering for writes - combining spatial and
temporal locality in non-volatile caches. In: Proceedings of the 4th Conference on
USENIX Conference on File and Storage Technologies, FAST 2005, vol. 4, p. 10.
USENIX Association, Berkeley (2005)

7. Hewlett-Packard Development Company, L.: Cacti 6.5 (2009),
http://www.hpl.hp.com/research/cacti/

8. Jadidi, A., Arjomand, M., Sarbazi-Azad, H.: High-endurance and performance-
efficient design of hybrid cache architectures through adaptive line replacement.
In: ISLPED 2011: Proceedings of the 17th IEEE/ACM International Symposium
on Low-Power Electronics and Design. IEEE Press (August 2011)

9. Jog, A., Mishra, A.K., Xu, C., Xie, Y., Narayanan, V., Iyer, R.K., Das, C.R.: Cache
revive: Architecting volatile STT-RAM caches for enhanced performance in CMPs.
In: DAC 2012: Proceedings of the 49th Annual Design Automation Conference,
pp. 243–252 (2012)

10. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. ACM SIGARCH Computer Ar-
chitecture News 18, 364–373 (1990)

11. Kim, Y., Gupta, S.K., Park, S.P., Panagopoulos, G., Roy, K.: Write-optimized reli-
able design of STT MRAM. In: ISLPED 2012: Proceedings of the 2012 ACM/IEEE
international symposium on Low Power Electronics and Design. ACM Request Per-
missions (July 2012)

12. Kwon, K.W., Choday, S.H., Kim, Y., Roy, K.: AWARE (Asymmetric Write Ar-
chitecture With REdundant Blocks): A High Write Speed STT-MRAM Cache
Architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
22(4), 712–720

13. Park, S.P., Gupta, S., Mojumder, N., Raghunathan, A., Roy, K.: Future cache
design using STT MRAMs for improved energy efficiency: devices, circuits and
architecture. In: DAC 2012: Proceedings of the 49th Annual Design Automation
Conference. ACM Request Permissions (June 2012)

14. Patil, S., Lilja, D.J.: Using resampling techniques to compute confidence intervals
for the harmonic mean of rate-based performance metrics. Computer Architecture
Letters 9(1), 1–4 (2010)

15. Rasquinha, M., Choudhary, D., Chatterjee, S., Mukhopadhyay, S., Yalamanchili,
S.: An energy efficient cache design using spin torque transfer (STT) RAM. In:
ISLPED 2010: Proceedings of the 16th ACM/IEEE International Symposium on
Low Power Electronics and Design. ACM Request Permissions (August 2010)

http://doi.acm.org/10.1145/2024716.2024718
http://www.hpl.hp.com/research/cacti/


290 W. Tuohy et al.

16. Smullen, C.W.I., Mohan, V., Nigam, A., Gurumurthi, S., Stan, M.R.J.: Relaxing
Non-Volatility for Fast and Energy-Efficient STT-RAMCaches. In: 2011 IEEE 17th
International Symposium on High Performance Computer Architecture (HPCA),
pp. 50–61 (2011)

17. Sun, Z., Bi, X., Li, H.H., Wong, W.F., Ong, Z.L., Zhu, X., Wu, W.: Multi reten-
tion level STT-RAM cache designs with a dynamic refresh scheme. In: MICRO-44
2011: Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM Request Permissions (December 2011)

18. Sun, Z., Li, H., Wu, W.: A dual-mode architecture for fast-switching STT-RAM.
In: ISLPED 2012: Proceedings of the 2012 ACM/IEEE International Symposium
on Low Power Electronics and Design. ACM Request Permissions (July 2012)

19. Tange, O.: Gnu parallel - the command-line power tool. ;Login: The USENIX
Magazine 36(1), 42–47 (2011), http://www.gnu.org/s/parallel

20. Varma, A., Jacobson, Q.: Destage algorithms for disk arrays with non-volatile
caches. In: Proceedings of the 22nd Annual International Symposium on Computer
Architecture, pp. 83–95 (June 1995)

21. Wu, X., Li, J., Zhang, L., Speight, E., Xie, Y.: Power and performance of read-write
aware hybrid caches with non-volatile memories. In: Design, Automation Test in
Europe Conference Exhibition, DATE 2009, pp. 737–742 (April 2009)

22. Wunderlich, R.E., Wenisch, T.F., Falsafi, B., Hoe, J.C.: SMARTS: accelerating
microarchitecture simulation via rigorous statistical sampling. In: ISCA 2003: Pro-
ceedings of the 30th Annual International Symposium on Computer Architecture.
ACM (June 2003)

23. Xu, W., Sun, H., Wang, X., Chen, Y., Zhang, T.: Design of last-level on-chip cache
using spin-torque transfer ram (stt ram). IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 19(3), 483–493 (2011)

24. Yoda, H., Fujita, S., Shimomura, N., Kitagawa, E., Abe, K., Nomura, K., Noguchi,
H., Ito, J.: Progress of STT-MRAM technology and the effect on normally-off com-
puting systems. In: 2012 IEEE International Electron Devices Meeting (IEDM),
pp. 11.3.1–11.3.4 (2012)

25. Zhao, H., Glass, B., Amiri, P.K., Lyle, A., Zhang, Y., Chen, Y.J., Rowlands, G.,
Upadhyaya, P., Zeng, Z., Katine, J.A., Langer, J., Galatsis, K., Jiang, H., Wang,
K.L., Krivorotov, I.N., Wang, J.P.: Sub-200 ps spin transfer torque switching in in-
plane magnetic tunnel junctions with interface perpendicular anisotropy. Journal
of Physics D: Applied Physics 45(2), 025001 (2011)

26. Zhou, P., Zhao, B., Yang, J., Zhang, Y.: Energy reduction for STT-RAM using early
write termination. In: ICCAD 2009: Proceedings of the 2009 International Confer-
ence on Computer-Aided Design. ACM Request Permissions (November 2009)

http://www.gnu.org/s/parallel


Performance Measurement for the OpenMP 4.0
Offloading Model

Robert Dietrich1, Felix Schmitt1, Alexander Grund1, and Dirk Schmidl2

1 Center for Information Services and High Performance Computing,
Technische Universität Dresden, 01062 Dresden, Germany

{robert.dietrich,felix.schmitt}@tu-dresden.de,
alexander.grund@mailbox.tu-dresden.de

2 IT Center, RWTH Aachen University, 52056 Aachen, Germany
schmidl@itc.rwth-aachen.de

Abstract. OpenMP is one of the most widely used standards for enabling thread-
level parallelism in high performance computing codes. The recently released
version 4.0 of the specification introduces directives that enable application devel-
opers to offload portions of the computation to massively-parallel target devices.
However, to efficiently utilize these devices, sophisticated performance analysis
tools are required. The emerging OpenMP Tools Interface (OMPT) aids the de-
velopment of portable tools, but currently lacks the support for OpenMP 4.0 target
directives. This paper presents a novel approach to measure the performance of
applications utilizing OpenMP offloading. It introduces libmpti, an OMPT-based
measurement library for Intel MIC target devices. For host-side analysis we ex-
tended the OPARI2 instrumenter and prototypically integrated the complete ap-
proach into the state-of-the-art tool infrastructure Score-P. We demonstrate the
effectiveness of the presented method and implementation with a Conjugate-
Gradient (CG) kernel on an Intel Xeon Phi coprocessor. Finally, we visualize
the obtained performance data with Vampir.

Keywords: performance analysis, offloading, OpenMP 4.0, Intel MIC, Score-P.

1 Introduction

The directive-based programming model OpenMP is a popular way to develop multi-
threaded applications. Version 4.0 [9] of the specification introduces directives for
computation offloading; thus, taking the availability of accelerator hardware in recent
computing systems and processors into account. Although OpenMP 4.0 provides an in-
terface for programming of heterogeneous hardware, it does not ensure that the available
resources are efficiently exploited, e.g. load-balancing is getting more tedious. To iden-
tify and resolve new potential inefficiencies performance tools are challenged to support
the offloading directives.

For the simple reason that OpenMP does not provide a standardized performance
monitoring interface yet, several individual analysis approaches have emerged. Depend-
ing on the approach they come with inherent limitations and advantages. Although it
is not yet part of the specification, the OpenMP Architecture Review Board released
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the OpenMP Tools Interface (OMPT) as a technical report [2]. OMPT specifies an ap-
plication programming interface (API) that enables tool builders to develop portable
libraries for performance monitoring. First implementations of OMPT are available for
open-source OpenMP runtimes. However, OMPT is built on version 3.1 of the OpenMP
specification and lacks support for offloading directives.

This work presents a portable method to measure the performance of OpenMP 4.0
computation offloading. We further contribute with a prototypic implementation into
the measurement infrastructure Score-P. With regard to the OpenMP standard we build
our approach upon OMPT. As it is already a part of the Score-P infrastructure we use
the source-to-source instrumenter OPARI2 to implement features that are missing in
OMPT. We evaluate the proposed methods with an OMPT implementation in the open-
source version of the Intel OpenMP runtime [1] on the Intel Many Integrated Core
(MIC) architecture using a Conjugate-Gradient kernel.

The remainder of this paper is organized as follows: Section 2 presents related work
in the area of OpenMP performance analysis. In section 3 we depict the two OpenMP
instrumentation approaches this work is based on. Our contribution is discussed in sec-
tion 4 and the integration into the Score-P infrastructure in section 5. We demonstrate
the practicality of the proposed method by applying it to a use case in section 6. Finally,
we conclude this paper and outline future work in section 7.

2 Related Work

Score-P [6] is a unified performance measurement infrastructure for several tools like
Vampir [4] and Scalasca [3]. It supports different programming models such as MPI,
OpenMP and CUDA and it allows to generate profiles in CUBE format as well as traces
in OTF2 format. Considering OpenMP measurement, Score-P uses OPARI2 to instru-
ment application code and implements the POMP2 interface.

Scalasca [3] is a scalable performance analysis toolset which can handle Score-P
generated profiles and traces. It supports the analysis of hybrid MPI+OpenMP appli-
cations on the Intel Xeon Phi coprocessor using Intel’s symmetric execution model for
MIC [10], i.e. MPI communication is used between host and coprocessor. Our work is
different as we focus on the asymmetric offloading model based on OpenMP 4.0. Nev-
ertheless, our approach can be used for hybrid MPI+OpenMP programs on multiple
hosts and coprocessors.

Vampir [4] is a scalable visualization tool for OTF and OTF2 trace files. It consists
of a client front end and a parallel server back end. Information is visualized in various
displays, including an event timeline, function and message statistics and call stacks.
The integration of our measurement approach into Score-P allows us to use Vampir to
display performance data for offloaded regions.

HPCToolkit [5] is a set of sampling-based tools for measuring, evaluating and vi-
sualizing performance data for MPI, OpenMP and CUDA applications. Considering
OpenMP, HPCToolkit uses the OMPT interface to query state information for OpenMP
threads. States can include for example if a thread is currently executing a parallel re-
gion, it is idle or waiting on another. As OMPT currently does not provide support for
OpenMP target devices HPCToolkit cannot gather respective state information.
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The CUDA Profiling Tools Interface (CUPTI) [8] is a proprietary tools interface by
NVIDIA for their CUDA architecture, which is used by many tools like e.g. Vampir-
Trace and Score-P. It provides an API that allows tools to register for event callbacks,
measure performance counters, metrics and activity records. Since the CUPTI library
resides in the host address space, the tool is not required to transfer performance infor-
mation from the target device explicitly.

3 OpenMP Instrumentation

The OpenMP specification does not define a performance monitoring interface yet, but a
technical report (TR) which covers such an interface has been released by the OpenMP
Architecture Review Board. As upcoming OpenMP specifications will eventually in-
clude this TR we base our work on it. However, OpenMP 4.0 offloading directives are
neither defined in the current proposal nor is their implementation available in publicly
accessible OpenMP runtimes. To instrument OpenMP offloading anyway we prototyp-
ically extended the instrumenter OPARI2.

3.1 OMPT

OMPT [2] addresses two strategies for performance data collection: asynchronous sam-
pling and event-based monitoring. For tools that employ asynchronous sampling OMPT
provides routines to query information about the state of each OpenMP thread. States
are classified to be either mandatory, optional or flexible. In contrast to mandatory
states, an OpenMP implementation does not need to maintain optional states. Aside
from that it has some freedom when reporting a transition to a flexible state.

Event-based tools, like e.g. Score-P, can register function callbacks for particular
events that are triggered by the OpenMP runtime system. OMPT provides begin and end
events for most OpenMP constructs. However, the set of mandatory events is small and
allows tools to collect only basic information about the runtime behavior of OpenMP
programs. To gather more performance-critical information tools have to register for
optional events that might not be available for a given OpenMP runtime system.

OMPT is intended to be implemented by a compiler, an OpenMP runtime system or a
mixture of both. Therefore the interface defines function pointer addresses for outlined
functions of parallel regions and tasks as the only meta information on constructs. The
function pointers can be used to distinguish OpenMP constructs of the same type, re-
spectively identify regions of the same construct and to obtain source-code information
if available.

3.2 OPARI2

OPARI2 is the current version of the source-to-source instrumentation tool OPARI
(OpenMP Pragma and Region Instrumenter) [7], which inserts calls to the POMP2
monitoring interface at OpenMP pragmas and library calls. Similar to the events de-
fined in the OMPT interface the POMP2 event model provides events for the begin and
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the end of an OpenMP construct, enabling tools to gather performance information for
OpenMP programs.

As the OPARI2 instrumentation modifies the source code directly it is independent of
a specific OpenMP implementation but requires recompilation of the application. Addi-
tionally, OPARI2 creates POMP2 region handles for OpenMP constructs, e.g. parallel
regions and tasks, which include source information such as the file and line number
of the construct. Tools can utilize these handles to correlate performance information
directly with the source code, thereby aiding developers to easily identify performance-
critical code.

4 Measuring the OpenMP 4.0 Offloading Model

The OpenMP 4.0 specification introduces several new directives. This work focuses on
the measurement of the offloading model. We use the terms host device and target de-
vice according to the specification. The host device is the system from which code within
an OpenMP target construct is Since applications are started from the host device, this
is furthermore where the measurement environment executes. A target device describes
an accelerator or coprocessor to which the mentioned target region is offloaded. Regu-
larly, host device and target device do not share a common address space, which must
be taken into account when designing adequate tool support.

4.1 OpenMP 4.0 Target Directives

OpenMP 4.0 introduces the target directives to enable computation offloading. Encoun-
tering a target construct implicitly creates a device data environment and the subsequent
statement, loop or structured block is executed on the target device. The target data con-
struct explicitly creates a device data environment which can be used to avoid implicit
data transfers between host and target device for enclosed target regions.

When a map clause is present for a target or target data construct and the data have
not been mapped in a surrounding data environment before, they are mapped explic-
itly, according to the specified variables and map-types, at the beginning and end of the
block. Map-types are alloc, to, from, and tofrom. Depending on the hardware configu-
ration and the OpenMP runtime implementation, the mapping invokes a data transfer.
Variables not declared but referenced in a target construct are treated as if they ap-
peared in a map clause with a map-type tofrom, thus, they are implicitly transferred to
and from the target device. The target update construct is a stand-alone directive and
makes data on the host and target device consistent, according to the variables specified
in the motion-clause. Motion-clauses are to and from and update data on the target or
on the host, respectively. If a device clause is present in a target directive, it specifies
the target device. Otherwise the default device is used. When an if clause is present and
its expression evaluates to false the target directive does not take effect, as data are not
mapped nor is the execution offloaded to the target device.

There are other new directives in OpenMP 4.0 that might influence the execution
efficiency, such as e.g. the teams, the distribute and the simd directive. However, we do
not observe them in terms of performance measurement within the scope of this paper.
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Fig. 1. Execution sequence of measurement routines for an OpenMP parallel region enclosed in
a target region. A separate device data region has been added to measure the explicit mapping of
variables. OpenMP constructs are instrumented with POMP2 and OMPT calls.

4.2 Measurement Approach

The measurement of OpenMP target regions and other enclosed regions can be achieved
with a combination of OPARI2 instrumentation and OMPT callbacks. Figure 1 shows
the execution sequence of measurement routines for a simple program with a parallel
construct enclosed by a target construct. To record the runtime of a target region, timing
routines are added before the directive and after the associated code (statement, loop or
structured block). For target data regions a time stamp is recorded before the respective
begin directive and at the beginning of the associated code as well as at the end of the
associated code and after the target data region. As target data regions are executed
on the host device, the deployed measurement environment can directly record the re-
sulting data transfer times. If data transfers are only asynchronously invoked (e.g. for
GPGPUs), this approach does not measure the effective mapping. However, these types
of data transfers can be measured by other means (e.g. libcupti for CUDA devices).

Measuring data transfers for a target construct with a map clause is a bit more te-
dious. To obtain the transfer time for explicit data transfers specified in the map clause,
we move the respective clause to a newly generated target data construct enclosing the
original target construct. However, there might occur implicit data transfers that are in-
voked simply by referencing variables that are not declared for the target device. This
implicit data mapping can be recorded as part of the target region overhead, which is
measured by calling a timing routine before the execution of the respective directive
and at the beginning of the associated code as well as at the end of the associated code
and after the target region.

To record the execution of OpenMP constructs that are enclosed in a target region
we register callbacks for OMPT events. We record events on the master thread of a
thread team executing a parallel region and each explicit task. Additionally, we mea-
sure some optional events when available, such as barriers. Source-code correlation for
these events is added by inserting ompt control calls passing a region handle that is later
mapped to the corresponding statically created POMP2 region handle. After the tar-
get region finishes execution, the target device buffer is flushed (POMP2 Target flush).
This introduces most of the measurement overhead, but only at synchronous points in
the program execution. Furthermore, we insert synchronization points before and after
a target region that are necessary to convert the target device time stamps to host device
time stamps.
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4.3 Extending OMPT with Support for Target Directives

It is possible to measure the offloaded computation using OMPT without prior instru-
mentation. However, this would remove the possibility to correlate performance data
with the source-code location from where it originates. Even though OMPT’s outlined
function pointer enables the tool to identify the calling function, the Intel MIC software
stack for example does not provide any tools that are required to evaluate a backtrace
to identify source file and line for a memory address.

Without instrumentation, performance tools that use OMPT must be able to register
callbacks for synchronization points at which performance data can safely be collected
from the target device. Such synchronization points could be the begin and end of a tar-
get region. Similar callbacks would be beneficial to measure the data transfers induced
by target update directives. Note that none of these are yet available but they are likely
to be added to a future version of OMPT. Within the callback, the host tool could notify
the target device to flush its buffers and transfer the collected records to the host.

5 Integration into Score-P and OPARI2

5.1 Measurement Control Flow

We integrated our approach into the measurement infrastructure Score-P since it already
supports OpenMP performance analysis using OPARI2. When the Score-P compiler
wrapper detects OpenMP code, it invokes the OPARI2 instrumenter which has been
extended to enable the instrumentation of new OpenMP 4.0 directives. At application
start a small measurement library called libmpti that implements the OMPT interface is
preloaded on the target device. This library is responsible for capturing performance-
related events on the target device using OMPT. Once control is returned to the host
device after the target region has been executed, performance records are transferred
from the target to the host device by Score-P. The complete control flow is illustrated in
figure 2.

5.2 Extensions to the POMP2 Interface

To properly support the measurement of OpenMP 4.0 target constructs, we added six
functions to the POMP2 interface (cf. figure 1). POMP2 Target begin/end are inserted
before and after the target construct in order to perform host/target time synchroniza-
tion and setup appropriate data structures. Several calls to POMP2 Target map region
are inserted after the target construct to map runtime identifiers for OpenMP con-
structs, which are integral numbers, to their corresponding POMP2 region handles.
The latter contain source code information but cannot be used directly on the target
device because the OMPT interface allows to pass only values of type uint64 t to
ompt control. POMP2 Target flush is called directly before POMP2 Target end and
initiates the transfer of target device records from libmpti to Score-P on the host device.
Finally, POMP2 Target copy begin/end calls are added by OPARI2 around both begin
and end of a target data directive to measure the execution time of data transfers.
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POMP2_Target_begin()
#pragma omp target {
  // offload
}
POMP2_Target_end()
POMP2_Target_map_region()
POMP2_Target_flush()

{
  ompt_control()
  #pragma omp parallel for {
    ...
  }
  ompt_control()
}

Fig. 2. Control and Data Flow: Host OpenMP activities are captured by Score-P using
the POMP2 interface. Performance records for offloaded application parts are measured us-
ing libmpti, which implements OMPT on the target device, and transferred to the host during
POMP2 Target flush. OpenMP constructs enclosed in a target construct are instrumented with
ompt control calls to track their execution. The hatched area is the only platform-dependent part.

5.3 MIC Performance Tools Interface

The MIC Performance Tools Interface (libmpti) is a small library which implements
the OMPT interface for the Intel MIC architecture and is compiled as native MIC code
(i.e. using the -mmic compiler argument). Since the OMPT-instrumented open-source
version of the Intel OpenMP runtime cannot be compiled as a fat binary for the host and
the MIC, the library cannot be linked against the created executable directly. Instead,
libmpti is preloaded at application start using Unix’ LD PRELOAD mechanism. With
regard to Score-P, libmpti is not used directly in offloaded measurement code but only
by means of the portable OMPT control mechanism.

Registering for OMPT events, the library can record execution times for parallel re-
gions and explicit tasks on the target device. Per-thread data is available via OMPT
but not recorded as this would incur significant runtime overhead. Furthermore, libmpti
tracks the current state of each thread executing on the target device. This state in-
cludes only a stack of identifiers designating the currently executed construct. A region
identifier is pushed on this stack using ompt control calls inserted via OPARI2 instru-
mentation directly before an OpenMP parallel or task construct. Similarly, the current
identifier is popped from the stack after the respective construct has been left. This
allows libmpti to correlate generic region identifiers with target device records. When
Score-P receives those records from libmpti, it can map them to POMP2 region handles
which include information such as the source file and line number on the host device.

5.4 Visualization

Integration of our offloading measurement approach into Score-P allows developers
to take advantage of its OTF2 trace output. Resulting traces can be readily visualized
in the Vampir trace viewer. For offloading records created using libmpti, Score-P can
internally utilize the same mechanisms and data structures as for traditional OpenMP
performance data, resulting in a homogeneous Vampir experience for the user.
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Fig. 3. Visualization: Two MPI processes using OpenMP 4.0 task and target directives for het-
erogeneous computation: (a) naming of new MIC offloading locations (b) target device initializa-
tion overhead (c) explicit and implicit data transfers between host and target visualized as RDMA
messages (d) parallel region (parallel for) and implicit barrier on target device

Vampir allows to display hierarchies of processes and threads (locations) to present
OpenMP threads as children of the spawning process. Therefore, we create new child
locations for offloaded OpenMP, too. We add a new target location for each explicit task
and each master thread in a thread team executing a parallel region. This also includes
measurement and visualization of nested parallelism. As a result, we create similar ex-
perience to the visualization of CUDA kernels with dynamic parallelism. As threads on
an OpenMP target device are similar to locations (streams) on different CUDA devices,
we furthermore create a resembling naming for those executing on the MIC architecture
(see Figure 3 (a)).

Differences between the visualization of traditional and offloaded OpenMP code are
primarily in data transfers. OpenMP 4.0 uses both implicit and explicit data transfers
between host and target. In the case of Intel’s Xeon Phi coprocessor device, the con-
nection is realized using the PCI-Express interface and data transfers over this interface
can suffer from both latency and bandwidth restrictions. Hence, developers must be
able to identify OpenMP constructs that result in poor application performance due to
such transfers.

For data transfers, one RDMA location per target device is added. On this location,
we use the same visualization for both explicit and implicit transfers (see Figure 3 (c)).
All transfers are marked as RDMA messages from the spawning host thread to the
target’s RDMA location. Note that for implicit transfers, this also includes the launch
overhead for the target region as the two cannot be distinguished using OpenMP means.

6 Experiments on Intel Xeon Phi

We use an implementation of the sparse Conjugate-Gradient (CG) method to evaluate
our measurement approach. The algorithm consists of a matrix-vector multiplication
and some vector operations which have been offloaded to the target device. Addition-
ally, a target data construct was added to keep all vectors and the matrix on the target
until the computation has finished.

Figure 4 compares the visualization of the performance data with the same ker-
nel parallelized using OpenMP on an Intel Xeon Phi coprocessor and OpenACC on
a NVIDIA C2050 Fermi GPU. In both cases the target is shown as a separate location
in the timeline view where offloaded kernels are illustrated as activities on the target lo-
cation. This makes it easy for programmers already familiar with OpenACC and Vampir
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Fig. 4. Performance results for the CG method visualized in Vampir for OpenMP 4.0 (top screen-
shot) and OpenACC (bottom screenshot). Both show a timeline view (top-left), call stack views
for the target/device (middle-left) and the host (bottom-left), a function summary (top-right) and
the context view (bottom-right).

to navigate through the OpenMP target device activities. An advantage of libmpti is that
more detailed information is collected for the target device. As shown in the process
timelines in figure 4 (top), the call stack presents information on different OpenMP
regions, e.g. synchronization in barriers on the target and their nesting.

To investigate the measurement overhead on our test system, which is equipped with
two Intel Knights Corner devices with B0 stepping, 61 cores at 1090 MHz and 8 GB
GDDR5 at 5.5 GT/s, we compare the instrumented with the original code version. We
repeated each test 50 times and used 120 threads on the coprocessor. The average time
for the computational part of the solver was 5.21 sec in the original case and 5.82 sec
including performance measurement. The overhead for the measurements was about
12 %, which mainly stems from flushing the target device buffer at a synchronous point
in the program execution. It depends only on a fixed offloading latency and the number
of target device records to be transferred.

Intel allows to gather basic performance information for the offloaded regions by
setting the environment variable OFFLOAD REPORT. This results in a text report with
information about all regions. For our CG solver the report contained 600 entries, 598
compute regions and one entry for the enter and exit of the data region. In the trace we
also observed 598 compute regions on the target device and the data region was shown
as a separate region in the call stack of the master process. The accumulated time of all
regions in the measured trace was 5.82 sec which exactly matches the average compute
time for the kernel in the instrumented case.
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7 Conclusion and Future Work

This work presents a portable approach to obtain performance relevant information on
programs utilizing the new OpenMP 4.0 target directives. For performance measure-
ment on the target device we rely on OMPT. OPARI2 is used to instrument the target
constructs and to add source-code correlation. We show where instrumentation hooks
have to be added to measure explicit and implicit data transfers between host and target
device as well as the runtime and the overhead for the execution of a target construct.

We developed the measurement library libmpti to record the execution of OpenMP
constructs on Intel MIC target devices. For another target device, libmpti needs to be
replaced with a platform-specific implementation. approach and allow a visual analysis
of the performance data we extended the popular measurement infrastructure Score-P.
In a use case we compared the obtained information with an OpenACC version of the
same CG kernel. To extend our implementation, we plan to add instrumentation of the
target update directive and record respective data transfers.

Acknowledgements. Parts of this work were funded by the German Federal Ministry
of Research and Education (BMBF) under Grant Numbers 01IH11006(LMAC) and
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Abstract. High-level languages such as Python offer convenient lan-
guage constructs and abstractions for readability and productivity. Such
features and Python’s ability to serve as a steering language as well as
a self-contained language for scientific computations has made Python
a viable choice for high-performance computing. However, the Python
interpreter’s reliance on shared objects and dynamic loading causes scal-
ability issues that at large-scale consumes hours of wall-clock time just
for loading the interpreter.
The work in this paper explores an approach to bypass the con-

ventional software stack, by replacing the Python interpreter on com-
pute nodes with an adaptable runtime system capable of executing the
compute intensive portions of a Python program. Allowing for a single
instance of the Python interpreter, interpreting the users’ program and
additionally moving program interpretation off the compute nodes.
Thereby avoiding the scalability issue of the interpreter as well as pro-
viding a means of running Python programs on restrictive compute notes
which are otherwise unable to run Python.
The approach is experimentally evaluated through a prototype imple-

mentation of an extension to the Bohrium runtime system. The evalua-
tion shows promising results as well as identifying issues for future work
to address.

Keywords: Scalability, Python, import problem, dynamic loading.

1 Introduction

Python is a high-level, general-purpose, interpreted language. Python advo-
cates high-level abstractions and convenient language constructs for readabil-
ity and productivity. The reference implementation of the Python interpreter,
CPython, provides rich means for extending Python with modules implemented
in lower-level languages such as C and C++. Lower-level implementations can be
written from scratch and conveniently map to Python data-structures through
Cython[4], function wrappers to existing libraries through SWIG[3,2], or using
the Python ctypes1 interface.

1 http://docs.python.org/2/library/ctypes.html

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 302–313, 2014.
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The features of the language itself and its extensibility make it attractive
as a steering language for scientific computing, which the existence of Python
at high-performance compute sites confirms. Furthermore, there exists a broad
range of Python wrappers to existing scientific libraries and solvers[11,20,13,8,9].

Python transcends its utilization as a steering language. SciPy2 and its accom-
panying software stack[17,18,12] provides a powerful environment for developing
scientific applications. The fundamental building block of SciPy is the multidi-
mensional arrays provided by NumPy[17]. NumPy expands Python by providing
a means of doing array-oriented programming using array-notation with slicing
and whole-array operations. The array-abstractions offered by NumPy provides
the basis for a wealth of existing[6] and emerging[19,21,14] approaches that in-
creases the applicability of Python in an HPC environment. Even though ad-
vances are made within these areas, a problem commonly referred to as the the
import problem[1,15,22] still persists at large-scale compute sites. The problem
evolves around dynamic loading of CPython itself, built-in modules, and third
party modules. Recent numbers reported on Hopper[22] state linear scale with
the number of cores, which amount to a startup time of 400 seconds on 1024
cores and one hour for 8000 cores.

The approach in this paper explores a simple idea to avoid such expensive
startup costs: execute one instance of the Python interpreter regardless of the
cluster size. Furthermore, we allow the Python interpreter to run on an external
machine that might not be part of the cluster. The machine can be any one of;
the user’s own laptop/workstation, a frontend/compile node, or a compute node,
e.g. any machine that is accessible from the compute-site.

A positive complementary effect, as well as a goal in itself, is that the Python
interpreter and the associated software stack need not be available on the com-
pute nodes.

The work in this paper experimentally evaluates the feasibility of bypass-
ing the conventional software stack, by replacing the Python interpreter on the
compute nodes with an adaptable runtime system capable of executing the com-
putationally heavy part of the users’ program. The approach facilitates the use of
Python at restrictive compute-sites and thereby broadens application of Python
in HPC.

2 Related Work

The work within this paper describes, to the authors knowledge, a novel approach
for handling the Python import problem. This section describes other approaches
to meeting the same end.

Python itself support a means for doing a user-level override of the import
mechanism3 and work from within the Python community has improved upon
the import system from version 2.6 to 2.7 and 3.0. In spite of these efforts, the
problem persists.

2 http://www.scipy.org/stackspec.html
3 http://legacy.python.org/dev/peps/pep-0302/

http://www.scipy.org/stackspec.html
http://legacy.python.org/dev/peps/pep-0302/
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One aspect of the import problem is the excessive stress on the IO-system
caused by the object-loader traversing the filesystem looking for Python mod-
ules. Path caching through collective operations is one approach to lowering
overhead. The mpi4py[7] project implements multiple techniques to path caching
where a single node traverses the file-system and broadcasts the information to
the remainingN−1 nodes. The results of this approach show significant improve-
ments to startup times from hours to minutes but relies on the mpi4py library
and requires maintenance of the Python software-stack on the compute-nodes.

Scalable Python4, first described in[9], addresses the problem at a lower level.
Scalable Python, a modification of CPython, seeks to address the import problem
by implementing a parallel IO layer utilized by all Python import statements. By
doing so only a single process, in contrast to N processes, perform IO. The result
of the IO operation is broadcast to the remaining N − 1 nodes via MPI. The
results reported in[9] show significant improvements towards the time consumed
by Python import statements at the expense of maintaining a custom CPython
implementation.

Relying on dynamically loaded shared objects is a general challenge for large-
scale compute-sites with a shared filesystem. SPINDLE[10] provides a generic
approach to the problem through an extension to the GNU Loader.

The above described approaches apply different techniques for improving per-
formance of dynamic loading. A different strategy which in this respect is the-
matically closer to the work within this paper is to reduce the use of dynamic
loading. The work in[15] investigate such strategy by replacing as much dynamic
loading with statically compiled libraries. Such technique in a Python context
can by applied through the use of Python freeze5 and additional tools6 exists to
support it.

3 The Approach

The previous sections describe and identify the CPython import system as the
culprit guilty of limiting the use of Python / NumPy at large-scale compute
sites. Dynamic loading and excessive path searching are accomplices to the havoc
raised. The crime committed is labelled as the Python import problem.

Related work let the culprit run free and implement techniques to handling
the havoc raised. The work within this paper focuses on restricting the culprit
and thereby preventively avoiding the problem.

The idea is to run a single instance of the Python interpreter, thereby keeping
the overhead constant and manageable. The remaining instances of the inter-
preter are replaced with a runtime system capable of efficiently executing the
portion of the Python / NumPy program responsible for communication and
computation. Leaving the task of interpreting the Python / NumPy program,

4 https://gitorious.org/scalable-python
5 https://wiki.python.org/moin/Freeze
6 https://github.com/bfroehle/slither
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conditionals, and general program flow up to the interpreter. The computation-
ally heavy parts are delegated to execution on the compute nodes through the
runtime system.

3.1 Runtime System

Fig. 1. Illustration of communication be-
tween the runtime system components with-
out the use of the proxy component

The runtime used in this work is
part of the Bohrium[19] project7. The
Bohrium runtime system (BRS) pro-
vides a backend for mapping array
operations onto a number of differ-
ent hardware targets, from multi-core
systems to clusters and GPU enabled
systems. It is implemented as a virtual
machine capable of making runtime
decisions instead of a statically com-
piled library. Any programming lan-
guage can use BRS in principle; in this
paper though, we will use the Python
/ NumPy support exclusively.

The fundamental building block of BRS is the representation of programs in
the form of vector bytecode. A vector bytecode is a representation of an operation
acting upon an array. This can be one of the standard built-in operations such as
element-wise addition of arrays, function promotion of trigonometric functions
over all elements of an array, or in functional terms: map, zip, scan and reduction,
or an operation defined by third party.

BRS is implemented using a layered architecture featuring a set of interchange-
able components. Three different types of components exist: filters, managers,
and engines. Figure 1 illustrates a configuration of the runtime system config-
ured for execution in a cluster of homogenous nodes. The arrows represent vector
bytecode sent through the runtime system in a top-down fashion, possibly alter-
ing it on its way.

Each component exposes the same C-interface for initialization, shutdown,
and execution thus basic component interaction consists of regular function calls.
The component interface ensures isolation between the language bridge that runs
the CPython interpreter and the rest of Bohrium. Thus, BRS only runs a single
instance of the CPython interpreter no matter the underlying architecture –
distributed or otherwise.

Above the runtime, a language bridge is responsible for mapping language
constructs to vector bytecode and passing it to the runtime system via the C-
interface.

Managers manage a specific memory address space within the runtime sys-
tem and decide where to execute the vector bytecode. In figure 1 a node man-
ager manages the local address space (one compute-node) and a cluster-manager

7 http://www.bh107.org

http://www.bh107.org
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which handles data distribution and inter-node communication through MPI. At
the bottom of the runtime system, we have the execution engines, which are re-
sponsible for providing efficient mapping of array operations down to a specific
processing unit such as a CPU or a GPU.

3.2 Proxy Manager

Currently, all Bohrium components communicate using local function calls, which
translates into shared memory communication. Figure 1 illustrates the means of
communication within the BRS prior to the addition of the proxy component. As
a result, the language bridge, which runs a CPython interpreter, must execute
on one of the cluster-nodes. In order to circumvent this problem, we introduce
a new proxy component.

Fig. 2. Illustration of communication between the run-
time system components with the use of the proxy com-
ponent

This new component
acts as a network proxy
that enables Bohrium com-
ponents to exchange vec-
tor bytecode across a net-
work. Figure 2 illustrates
the means for communi-
cation which the Proxy
component provides. By
using this functionality,
separation can be achieved
between the implementation of any application using Bohrium and the actual
hardware on which it runs. This is an important property when considering
cases of supercomputers or clusters, which define specific characteristics for the
execution of tasks on them.

The proxy component is composed of two parts – a server and a client. The
server exposes the component interface (init, execute, and shutdown) to its par-
ent component in the hierarchy whereas the client uses its child component
interface. When the parent component calls execute with a list of vector byte-
codes, the server serialize and sends the vector bytecodes to the client, which
in turn uses its child component interface to push the vector bytecodes further
down the Bohrium hierarchy. Besides the serialized list of vector bytecodes, the
proxy component needs to communicate array-data in two cases.

When the CPython interpreter introduces existing NumPy arrays and Python
scalars to a Bohrium execution. Typically, this happens when the user applica-
tion loads arrays and scalars initially. When the CPython interpreter access the
result of a Bohrium execution directly. Typically, this happens when the user
application evaluates a loop-condition based on some array and scalar data.

Both the server and the client maintain a record of array-data locations thus
avoiding unnecessary array-data transfers. Only when the array-data is involved
in a calculation at the client-side will the server send the array-data. Similarly,
only when the CPython interpreter request the array-data will the client send
the array-data to the server.
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In practice, when the client sends array-data to the server it is because the
CPython interpreter needs to evaluate a scalar value before continuing. In this
case, the performance is very latency sensitive since the CPython interpreter is
blocking on the scalar value. Therefore, it is crucial to disable Nagle’s TCP/IP
algorithm[16] in order achieve good performance. Additionally, the size of the
vector bytecode lists is significantly greater than the TCP packet header thus
limiting the possible advantage of Nagle’s TCP/IP algorithm. Therefore, when
the proxy component initiates the TCP connection between server and client it
sets the TCP NODELAY socket option.

4 Evaluation

Fig. 3. Octuplets and DCSC two physi-
cally and administratively disjoint clusters
of eight and sixteen nodes. Octuplets is
a small-scale research-cluster managed by
the eScience group at the Niels Bohr In-
stitute. DCSC is a larger compute-site for
scientific computation in Denmark. Gbit
ethernet facilitate the connection between
Manjula and the octuplet cluster and
100Mbit ethernet between Manjula and
DCSC.

The basic idea of the approach is to
have a single instance of CPython in-
terpreting the user’s program, such as
figure 2 illustrates. With a single iso-
lated instance of the interpreter the
import problem is solved by design.
The second goal of the approach is
to facilitate execution of a Python
program in a restricted environment
where the Python software stack is
not available on the compute nodes.

The potential Achilles heel of the
approach is in its singularity, with
a single remote instance of the in-
terpreter network latency and band-
width limitations potentially limit ap-
plication of the approach.

Network latency can stall execution
of programs when the round-trip-time
of transmitting vector bytecode from the interpreter-machine to the compute
node exceeds the time spent computing on previously received vector bytecode.
Bandwidth becomes a limiting factor when the interpreted program needs large
amounts of data for evaluation to proceed interpretation and transmission of
vector bytecode. The listing below contains descriptions of the applications used
as well as their need for communication between interpreter and runtime. The
sourcecode is available for closer inspection in the Bohrium repository8.

Black Scholes implements a financial pricing model using a partial differen-
tial equation, calculating price variations over time[5]. At each time-step
the interpreter reads out a scalar value from the runtime representing the
computed price at that time.

8 http://bitbucket.org/bohrium/bohrium

http://bitbucket.org/bohrium/bohrium
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Heat Equation simulates the heat transfer on a surface represented by a two-
dimensional grid, implemented using jacobi-iteration with numerical con-
vergence. The interpreter requires a scalar value from the runtime at each
time-step to evaluate whether or not simulation should continue. Addition-
ally when executed with visualization the entire grid is required.

N-Body simulates interaction of bodies according to the laws of Newtonian
physics. We use a straightforward algorithm that computes all body-body
interactions,O(n2), with collisions detection. The interpreter only needs data
from the runtime at the end of the simulation to retrieve the final position of
the bodies. However, the interpreter will at each time-step, when executed
for visualization purposes, request coordinates of the bodies.

Shallow Water simulates a system governed by the Shallow Water equations.
The simulation initates by placing a drop of water in a still container. The
simulation then proceeds, in discrete time-steps, simulating the water move-
ment. The implementation is a port of the MATLAB application by Burkardt
9. The interpreter needs no data from the runtime to progress the simulation
at each time-step. However, the interpreter will at each time-step, when ex-
ecuted for visualization purposes, request the current state of the simulated
water.

We benchmark the above applications on two Linux-based clusters (Fig. 3).
The following subsections describe the experiments performed and report the
performance numbers.

4.1 Proxy Overhead

Fig. 4. Elapsed wall-clock time in seconds
of the four applications on the octuplet
compute nodes with and without the proxy
component

We begin with figure 4 which show the
results of running the four benchmark
applications on the octuplet cluster
using eight compute nodes and two
different configurations:

With Proxy The BRS configured
with the proxy component and the in-
terpreter is running on Manjula. This
configuration is equivalent to the one
illustrated in figure 2.

Without Proxy The BRS config-
ured without the proxy component.
The interpreter is running on the
first of the eight compute nodes. This
setup is equivalent to the one illus-
trated in figure 1.

We cannot run Python on the DCSC cluster for the simple reason that the
software stack is too old to compile Python 2.6 on the DCSC compute nodes.

9 http://people.sc.fsu.edu/~jburkardt/m_src/shallow_water_2d/

http://people.sc.fsu.edu/~jburkardt/m_src/shallow_water_2d/
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Thus, it is not possible to provide comparable results of running with and without
the Proxy component.

The purpose of this experiment is to evaluate the overhead of introducing the
proxy component in a well-behaved environment. There were no other users of
the network, filesystem, or machines. Round-trip-time between Manjula and the
first compute node was average at 0.07ms during the experiment. The error bars
show two standard deviations from the mean. The overhead of adding the proxy
component is within the margin of error and thereby unmeasurable.

4.2 Latency Sensitivity

Fig. 5. Slowdown of the four applications
as a function of injected latency between
Manjula and octuplet compute node

Fig. 6. Slowdown of the four applications
as a function of injected latency between
Manjula and DCSC compute node.

We continue with figures 5 and 6. The BRS configured with the proxy com-
ponent, running the interpreter on Manjula. Figure 2 illustrates the setup. The
purpose of the experiment is to evaluate the approach’ sensitivity to network
latency. Latencies of 50, 100, 150, and 200ms are injected between Manjula and
the compute node running the proxy client. The figures show slowdown of the
applications as a function of the injected latency.

The applications Shallow Water and N-body are nearly unmeasurably affected
by the injected latency. The observed behavior is as expected since the interpreter
does not need any data to progress interpretation. It is thereby possible to overlap
transmission of vector bytecode from the interpreter-machine with computation
on the compute nodes.

The injected latency does, however, affect the applications Heat Equation
and Black Scholes. The observed behavior is as expected since the interpreter
requires a scalar value for determining convergence criteria for Heat Equation
and sampling the pricing value for Black Scholes. Network latency affects the
results from the DCSC cluster the most, with a worst-case of a 2.8 slowdown.
This is due to the elapsed time being lower when using the sixteen DCSC com-
pute nodes. Since less time is spent computing more time is spent waiting and
thereby a relatively larger sensitivity to network latency.
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4.3 Bandwidth Sensitivity

The last experiment sought to evaluate the sensitivity to high network band-
width utilization. Figures 7 and 8 show the results of an experiment where the
four applications were running with visualization updated at each time-step.
The BRS configured with the proxy component; Manjula is running the Python
interpreter. Figure 2 illustrates the setup.

Fig. 7. Elapsed wall-clock time of the four
applications with and without visualiza-
tion on the octuplet compute nodes.

Fig. 8. Elapsed wall-clock time of the four
applications with and without visualiza-
tion on the DCSC compute nodes.

When executing with visualization, the interpreter requires a varying ( de-
pending on the application) amount of data to be transmitted from the compute
nodes to the interpreter-machine at each time step. Thereby straining the avail-
able bandwidth between the interpreter-machine and the compute node running
the proxy-client.

Black-Scholes although sensitive to latency due to the need of transmitting
the computed price at each time-step, does not require any significant amount
of data to be transferred for visualization, neither does the N-Body simulation.
However, the two other applications Heat Equation and Shallow Water require
transmission of the entire state to visualize dissipation of heat on the plane and
the current movement of water. These two applications are sufficient to observe
a key concern of the approach.

We observe a slowdown of about ×1260 (Heat Equation) and ×257 (Shallow
Water) when running on the DCSC nodes. We observe a slowdown of about
×32.8 (Heat Equation) and ×8.5 (Shallow Water) when running in the octuplet
nodes. These results clearly show that network bandwidth becomes a bottleneck,
with disastrous consequences in terms of execution time and thus a limiting
factor for applying the approach for such use.

The slowdown is much worse when running on the DCSC compute nodes
compare to the slowdown on the octuplet nodes. This is due to the interconnect
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being 100Mbit ethernet to the DCSC in relation to the 1Gbit ethernet connection
to the octuplet nodes.

5 Future Work

The evaluation revealed bandwidth bottlenecks when the machine running the
interpreter requests data for purposes such as visualization. The setup in the
evaluation was synthetic and forced requests of the entire data-set at each time-
step without any transformation of the data, it can, therefore, be regarded as a
worst-case scenario.

One could argue that the setup is not representative for user behaviour and
instead assume that the user would only need a snapshot of data at every
timestep/K iteration and with lowered resolution such as every I’th datapoint
and thus drastically lowering the bottleneck. However, to address the issue future
work will involve compressed encoding of data transmitted as well as suitable
downsampling for the visualization purpose.

The primary focus point for future work is now in progress and relates to the
effective throughput at each compute-node. The current implementation of the
execution engine uses a virtual-machine approach for executing array operations.
In this approach the virtual machine delegate execution of each vector bytecode
to statically compiled routine. Within this area, a wealth of optimizations are
applicable by composing multiple operations on the same data and hereby fusing
array operations together.

Random-number generators, linear spaces of data, and iotas, when combined
with reductions are another common source for optimization of memory uti-
lization and locality. Obtaining such optimizations within the runtime require
the use of JIT compilation techniques and potentially increase the use dynamic
loading of optimized codes. The challenge for this part of future work involves ex-
ploration of how to get such optimization without losing the performance gained
to runtime and JIT compilation overhead.

6 Conclusions

The work in this paper explores the feasibility of replacing the Python interpreter
with an adaptable runtime system, with the purpose of avoiding the CPython
scalability issues and providing a means of executing Python programs on restric-
tive compute nodes which are otherwise unable to run the Python interpreter.

The proxy component, implemented as an extension to the Bohrium runtime
system (BRS), provides the means for the BRS to communicate with a single re-
mote instance of the Python interpreter. The prototype implementation enabled
evaluation of the proposed approach of the paper.

Allowing the interpreter to execute on any machine, possibly users’ own work-
stations/laptops, leverages a Python user to utilize a cluster of compute nodes
or a supercomputer with direct realtime interaction. However, it also introduces
concerns with regards to the effect of network latency and available bandwidth,
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between the machine running the interpreter and the compute node running
the proxy client, on program execution. These concerns were the themes for the
conducted evaluation.

Results showed that the overhead of adding the proxy component and thereby
the ability for the BRS to use a remote interpreter was not measurable in terms
of elapsed wall-clock time, as results were within two standard deviations of
the measured elapsed wall-clock. The results additionally showed a reasonable
tolerance to high network latency, at 50ms round-trip-time, slowdown ranged
from not being measurable to ×1.3−×1.4. In the extreme case of 200ms latency
ranged from not being measurable to a slowdown of ×1.9−×2.8.

The primary concern, and focus for future work, presented itself during evalu-
ation of bandwidth requirements. If the Python program requests large amounts
of data then the network throughput capability becomes a bottleneck, severely
impacting elapsed wall-clock as well as saturating the network link, potentially
disrupting other users.

The results show that the approach explored within this paper does provide a
possible means to avoid the scalability issues of CPython, allowing direct user in-
teraction and enabling execution of Python programs in restricted environments
that are otherwise unable to run interpreted Python programs. The approach is,
however, restricted to transmission of data such as vector bytecode, scalars for eval-
uation of convergence criteria, boolean values, and low-volume data-sets between
the interpreter-machine and runtime. This does, however, not restrict processing
of large-volume datasets within the runtime on and between the compute nodes.
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Abstract. Systems with large numbers of cores have become common-
place. Accordingly, applications are shifting towards increased parallelism.
In a general-purpose system, applications residing in the system compete
for shared resources. Thread and task scheduling in such a multithreaded
multiprogramming environment is a significant challenge. In this study,we
have chosen the Intel Xeon Phi system as a modern platform to explore
how popular parallel programming models, namely OpenMP, Intel Cilk
Plus and Intel TBB (Threading Building Blocks) scale on manycore ar-
chitectures. We have used three benchmarks with different features which
exercise different aspects of the system performance. Moreover, a multi-
programming scenario is used to compare the behaviours of these models
when all three applications reside in the system. Our initial results show
that it is to some extent possible to infer multiprogramming performance
from single-program cases.

1 Introduction

There are various programming models and runtime libraries that help devel-
opers to move from sequential to parallel programming. In this paper, we have
chosen three well-known parallel programming approaches to compare their per-
formance on a modern manycore machine. Before going into the details of these
models, we would like to introduce the manycore platform chosen for this study:

1.1 Intel Xeon Phi

The Intel Xeon Phi 5110P coprocessor is an SMP (Symmetric Multiprocessor)
on-a-chip which is connected to a host Xeon processor via the PCI Express
bus interface. The Intel Many Integrated Core (MIC) architecture used by the
Intel Xeon Phi coprocessors gives developers the advantage of using standard,
existing programming tools and methods. Our Xeon Phi comprises of 60 cores
connected by a bidirectional ring interconnect. The Xeon Phi has eight memory
controllers supporting 2 GDDR5 memory channels each. The clock speed of the
cores is 1.053GHz. According to Jeffers [6], the Xeon Phi provides four hardware
threads sharing the same physical core and its cache subsystem in order to hide
the latency inherent in in-order execution. As a result, the use of at least two
threads per core is almost always beneficial.

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 314–325, 2014.
c© Springer International Publishing Switzerland 2014
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Each core has an associated 512KB L2 cache. Data and instruction L1 caches
of 32KB are also integrated on each core. Another important feature of the Xeon
Phi is that each core includes a SIMD 512-bit wide VPU (Vector Processing
Unit). The VPU can be used to process 16 single-precision or 8 double-precision
elements per clock cycle. The third benchmark (Sect. 3.3) utilises the VPUs.

1.2 Parallel Programming Models

In order to have a fair comparison, we have chosen three programming models
that are all supported by ICC (Intel C/C++ Compiler).

OpenMP. OpenMP, which is the de-facto standard for shared-memory pro-
gramming, provides an API using the fork-join model. Threads communicate by
sharing variables. OpenMP has been historically used for loop-level and regular
parallelism through its compiler directives. Since the release of OpenMP 3.0, it
also supports task parallelism. Whenever a thread encounters a task construct,
a new explicit task is generated. An explicit task may be executed in parallel
with other tasks by any thread in the current team, and the execution can be
immediate or deferred until later [1].

Intel Cilk Plus. Intel Cilk Plus is an extension to C/C++ based on Cilk++[8].
It provides language constructs for both task and data parallelism. Is has become
popular because of its simplicity and higher level of abstraction (compared to
frameworks such as OpenMP or Intel TBB). Cilk provides the cilk spawn

and cilk sync keywords to spawn and synchronise tasks; cilk for loop is
a parallel replacement for sequential loops in C/C++. The tasks are executed
within a work-stealing framework. The scheduling policy provides load balance
close to the optimal [10].

Intel TBB. Intel Threading Building Blocks (TBB) is another well-known
approach for expressing parallelism [9]. Intel TBB is an object-oriented C++
runtime library that contains data structures and algorithms to be used in par-
allel programs. It abstracts the low-level thread interface. However, conversion
of legacy code to TBB requires restructuring certain parts of the program to
fit the TBB templates. Each worker thread in TBB has a deque (double-ended
queue) of tasks. Newly spawned tasks are put at the back of the deque, and each
worker thread takes the tasks from the back of its deque to exploit temporal
locality. If there is no task in the local deque, the worker steals tasks from the
front of the victims’ deques [7].

2 Experimental Setup

All the parallel benchmarks are implemented as C++ programs. They are exe-
cuted natively on the MIC. For that purpose, the executables are copied to the
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Xeon Phi, and we connect to the device from the host using ssh. For the OpenMP
applications, the libiomp5.so library is required. The libcilkrts.so.5 is
needed for Cilk Plus applications and the libtbb.so.2 library is required for
the TBB programs. The path to these libraries should be set before the ex-
ecution, e.g. export LD LIBRARY PATH=./:$LD LIBRARY PATH. The TBB pro-
grams should be compiled with the -ltbb flag. The OpenMP programs need
-openmp flag. The Intel compiler icpc (ICC) 14.0.2 is used with -O2 -mmic

-no-offload flags for compiling the benchmarks for native execution on the
Xeon Phi. All speedup ratios are computed against the running time of the
sequential code implemented in C++.

3 Single-Programming Benchmarks

Three different benchmarks have been used for the purposes of this study. They
are intentionally simple, because we want to be able to reason about the observed
differences in performance between the selected models. We first compare the
results for each single program.

3.1 Fibonacci

We consider a parallel Fibonacci benchmark as the first testcase. The Fibonacci
benchmark has traditionally been used as a basic example of parallel comput-
ing. Although it is not an efficient way of computing Fibonacci numbers, the
simple recursive pattern can easily be parallelised and is a good example of cre-
ating unbalanced tasks, resulting in load imbalance. In order to achieve desirable
performance, a suitable cutoff for the recursion is crucial. Otherwise, too many
fine-grained tasks would impose an unacceptable overhead to the system. The
cutoff limits the tree depth in the recursive algorithm, which results in generat-
ing 2tree depth tasks.

Figure 1 shows all the results taken from running this benchmark with differ-
ent programming models. Figure 1(a) shows the speedup chart for the integer
number 47 with 2048 unbalanced tasks at the last level of the Fibonacci heap.
Cilk Plus and TBB show similar results. Increasing the number of threads causes
visible performance degradation for OpenMP. Setting KMP AFFINITY=balanced

results in a negligible improvement of the OpenMP performance.
Figure 1(b) shows the importance of a proper cutoff on the performance of

this unbalanced problem. Having more tasks (as long as they are not too fine-
grained) gives enough opportunities for load balancing.

Total CPU Time

This is a lower-is-better metric that shows the total CPU times consumed in the
system from the start until the accomplishment of the job(s). This metric and the
detailed breakdown of CPU times are obtained using Intel’s VTune Amplifier
XE 2013 performance analyser [5]. Figures 1(d) to 1(f) are screenshots taken
from the VTune Amplifier when running Fib 47 with cutoff 2048 natively on the
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Fig. 1. Parallel Fibonacci benchmark for the integer number 47. The best performance
can be obtained by using Cilk Plus or TBB. Choosing a proper cutoff value is key
to good performance. If there are enough tasks in the system, the load balancing
techniques become effective and yield better speedup. A detailed breakdown of overall
CPU time for the case with 240 threads and cutoff value 2048 is illustrated for each
approach in the charts (d) to (f). TBB consumes less CPU time in total while providing
good performance, and Cilk Plus has the best performance. The y-axis on the (d) to
(f) charts is the time per logical core, from 0 to the maximum number specified in
seconds.
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Xeon Phi. The x-axis shows the logical cores of the Xeon Phi (240 cores), and
the y-axis is the CPU time for each core.1

For the Fibonacci benchmark, OpenMP consumes the most CPU time, and
its performance is bad, the worst amongst the three approaches.

3.2 MergeSort

This benchmark sorts an array of 80 million integers using a merge sort algo-
rithm. The ith element of the array is initialised with the number i∗((i%2)+2).
The cutoff value determines the point after which the operation should be per-
formed sequentially. For example, cutoff 2048 means that chunks of 1/2048 of the
80M array should be sorted sequentially, in parallel, and afterwards the results
will be merged two by two, in parallel to produce the final sorted array.

For the MergeSort benchmark, tasks are not homogeneous, i.e. there are chil-
dren and parent tasks. The same scenario existed in the previous Fibonacci
benchmark, but the parent tasks were integer additions that did not impose
overhead to the system. Here, the parent tasks are heavyweight merge opera-
tions, and this is what makes this benchmark distinct from the previous one.

As shown in Fig. 2(a) with larger numbers of threads, there is either no
noticeable change (in the case of TBB), or a slowdown (in the case of OpenMP
and Cilk Plus). Using thread affinity for OpenMP in this case does not make an
appreciable difference.

Figures 2(c) to 2(f) are again based on the results obtained by the VTune
Amplifier when running the benchmark with 240 threads and cutoff 2048. Since
all merges in a branch of the task tree can run on the same core as their children,
there would be no need to have balanced load for good performance. In other
words, the unbalanced distribution in Fig. 2(f) does not imply a poor behaviour
of the TBB runtime system.

3.3 MatMul

This benchmark performs a naive matrix multiplication by a triple nested loop
with ikj loop ordering for caching benefits on square matrices of N×N double-
precision floating point numbers. This is a completely data parallel problem
which fits very well to OpenMP and its for worksharing construct. There is a
concept similar to the cutoff in the loop parallelism context to control chunk-
ing. It specifies the size of chunk for each thread in a data parallel worksharing
scenario. If the cutoff value is assumed as the number of chunks, the chunk
(grain) size can be specified for the OpenMP for as follows: #pragma omp

for schedule(dynamic, N/cutoff). The dynamic keyword can be replaced by
static as well. Grain size in the Cilk Plus is similarly specified via a pragma:

1 It should be noted that for all experiments, results from the benchmark’s kernel are
considered in the figures (a) and (b), while in the other results taken from the VTune
Amplifier, all information from the start of the application, including its initial phase
and the CPU time consumed by the shared libraries is taken into account.
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Fig. 2. Parallel MergeSort benchmark for an array of 80 million integers. This bench-
mark does not scale well. The best performance, however, can be obtained by using
OpenMP or Cilk Plus. For this memory-intensive benchmark, cutoff values greater
than 64 are enough to lead to good performance with as many threads as the num-
ber of cores. TBB consumes significantly less Total CPU Time. With small number
of threads, OpenMP and Cilk Plus yield better performance, but finally (with 240
threads) OpenMP and TBB provide slightly better performance.
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#pragma cilk grainsize = N/cutoff. Intel TBB has a template function
called parallel for, which can be called with simple partitioner() to con-
trol the grain size.

Before going into details of the results, we would like to focus on some technical
considerations:

In order to achieve automatic vectorization on the Xeon Phi, the Intel TBB
and OpenMP codes have to be compiled with the -ansi-alias flag.

The schedule clause used with OpenMP for specifies how iterations of the
associated loops are divided (statically/dynamically) into contiguous chunks,
and how these chunks are distributed amongst threads of the team. In order to
have a better understanding of the relations between the cutoff value (number
of the chunks), number of threads, and the thread affinity on the Xeon Phi,
consider the following example. Suppose that for the MatMul benchmark, the
OpenMP for construct with static schedule is used, which means that iterations
are divided statically between the execution threads in a round-robin fashion:

Example

#pragma omp for schedule(static, N/cutoff).

Runtime of the case(a) on the Xeon Phi is ≈3× better than that of the case(b).

a) omp set num threads(32), cutoff=32, KMP AFFINITY=balanced
The threads will be spread across 32 physical cores. With the balanced affin-
ity, they have to be distributed as evenly as possible across the chip, which
is one thread per physical core. As a result, every chunk will be run on a
separate physical core.

b) omp set num threads(240), cutoff=32, KMP AFFINITY=balanced
The threads will be spread across all 60 physical cores. But the work will
be distributed between 8 physical cores, which are the first 32 hardware
threads. The reason is that with 240 threads, there will be one thread per
logical core, and with cutoff 32, every thread with the thread id from 0 to
31 gets a chunk of size N/32.

With these considerations, we are ready to run the MatMul benchmark and
compare the programming models in a data parallel scenario. The results can
be found in Fig 3.

4 Discussion

One way to reason about the differences between these parallel programming
models is to compare the amount of the Total CPU Time consumed by their
runtime libraries. We have therefore summarised the results as the percentage
of time spent on the shared libraries in each case.

Table 1 gives a better understanding of where the CPU times have been con-
sumed. For instance, for the OpenMP runtime library, the wasted CPU time
generally falls into two categories: I) A master thread is executing a serial re-
gion, and the slave threads are spinning. II) A thread has finished a parallel
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Fig. 3. Parallel MatMul benchmark on a 4096×4096 matrix of double numbers. The
best results can be obtained by using OpenMP approaches. For the cutoff values greater
than 256, OpenMP with dynamic scheduling has the best scaling amongst all. Again
the Total CPU Time of TBB is the least amongst all. There is an evident distinc-
tion between the distribution of CPU times in the charts (d) and (e) that shows how
OpenMP load balancing, when using dynamic scheduling leads to better performance.
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Table 1. Percentage of the Total CPU Time consumed by the runtime libraries

Benchmark OpenMP
(libiomp5.so)

Cilk Plus
(libcilkrts.so.5)

TBB
(libtbb.so.2)

Fibonacci 50% 16% 5%

MergeSort 78% 81% 3%

MatMul 22% (Dynamic)
20% (Static)

6% 1%

region, and is spinning in the barrier waiting for all other threads to reach that
synchronisation point. Although sometimes in solo execution of the programs,
these extra CPU cycles have negligible influence on the running time (wall time),
we will show in the next section, how they will affect other programs under mul-
tiprogrammed execution.

5 Multiprogramming

In this section, we consider a multiprogramming scenario to see how these models
behave in a multiprogramming environment. The metric used for the comparison
is the user-oriented metric Turnaround Time [3], which is the time between
submitting a job and its completion in a multiprogram system.

The three benchmarks have the same input sizes as the single-program cases
with the cutoff value 2048 and the default number of threads 240 (the same as
the number of logical cores in the Xeon Phi). We do not start all of them at the
same time. Rather, we want the parallel phases to start almost simultaneously,
such that all of the applications’ threads compete for the resources. For that
purpose, the MergeSort benchmark enters the system first. Two seconds later
the MatMul benchmark enters the system, and half a second after that, the Fib
benchmark starts2.

Based on the single-program results, we expect TBB to perform best because
it has the least Total CPU Time in all three benchmarks. It might not affect the
runtime of a single program significantly, but when there are multiple programs
competing for the resources, the wasted CPU time can play an important role. In
other words, CPU time wasted by each program can influence the performance
of other programs reside in the system.

The results are shown and discussed in Fig. 4

5.1 Related Work

Saule and Catalyurek [10] have compared the same three programming models
on the Intel Xeon Phi. They have focused on the scalability of graph algorithms,

2 The sequential phase of the MergeSort benchmark with the input size 80 million is
around 2 seconds, and the initial phase of the MatMul benchmark with the input
size 4096×4096 is about half a second.
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Fig. 4. A multiprogramming scenario with the three benchmarks This is what hap-
pens when the three benchmarks compete for the resources: (a) shows that the best
turnaround times are obtained with TBB. The hardware event, number of Instructions
Executed, sampled by the VTune Amplifier in (b), implies a significant difference be-
tween TBB and the other two competitors. Results from the Total CPU Time in chart
(c) is similar to those in chart (b) and they both show why TBB performs better than
OpenMP and Cilk Plus. A detailed breakdown of overall CPU time in the (d) to (f)
charts illustrates how OpenMP consumes more CPU time in total, and therefore has
the worst performance.
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while we have highlighted more differences between these programming models
by adding the Total CPU Time as another performance aspect, and targeted the
case of multiprogramming as well.

We have shown that the overhead of the runtime libraries play an important
role in the parallel computing world, particularly in multiprogrammed systems.
Besides the extra energy dissipation they impose on the system, they have no-
ticeable influence on the performance of multiprogram workloads.

Emani et al. in [2] have used predictive modelling techniques to determine an
optimal mapping of a program in the presence of external workload. Harris et
al. have introduced Callisto [4] as a user-mode shared library for co-scheduling
multiple parallel runtime systems (mainly for OpenMP programs). However,
their current version does not support OpenMP tasks.

Varisteas et al. [14] have proposed an adaptive space-sharing scheduler for
the Barrelfish operating system to overcome the resource contention between
multiple applications running simultaneously in a multiprogrammed system.

In [12], a thread mapping method based on the system’s load information is
developed for OpenMP programs. Performance of the multiprogram workloads in
Linux can be improved by sharing the load information and using it for thread
placement. However, for this method to be effective, the optimal number of
threads for each single program should be known to the programmer. Most of
time, though, programs are run with the default number of threads, similar to
what we did in this work.

We are currently developing a methodology inside our research framework,
called Glasgow Parallel Reduction Machine (GPRM) [11] which allows the ap-
plications to use default numbers of threads (i.e. as many as the number of cores),
and the same time improves the turnaround time by sharing some information
globally. The main focus of GPRM is on tasks rather than threads to decrease
the overhead of the runtime system. We have shown its potential, particularly in
comparison with OpenMP [13]. We plan to add GPRM to the comparison with
these three programming models. We aim to show that having a low-overhead
runtime system is crucial in multiprogrammed systems.

6 Conclusion

We have compared some of the performance aspects (in particular speed-up,
CPU balance, and the Total CPU Time) of three well-known parallel program-
ming approaches, OpenMP, Cilk and TBB, on the Xeon Phi coprocessor. We
used three different parallel benchmarks, Fibonacci, Merge Sort and Matrix Mul-
tiplication. Each benchmark has different characteristics which highlight some
pros and cons of the studied approaches. Our multiprogramming scenario is to
run all three benchmarks together on the system and observe how the different
programming models react to this situation.

Based on the results obtained from the single program scenarios, particularly
the Total CPU Time, we predicted that the Intel TBB approach would be more
suited to a multiprogramming environment, and our experiment confirmed this.
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Based on our learnings from these preliminary experiments, we plan to extend
the work with more testbenches as well as more programming models.

In addition, since the way Linux deals with multithreaded multiprogramming
is sub-optimal, we conclude that there is a need to share additional information
on thread placement between the applications present in the system in order to
get better performance. We are currently developing this idea inside our novel
experimental framework.
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Abstract. Symmetric-ISA (instruction set architecture) asymmetric-
performance multicore processors (AMPs) were shown to deliver higher
performance per watt and area than symmetric CMPs (Chip Multi-
Processors). Previous work has shown that this potential of AMP sys-
tems can be realizable thanks to the OS scheduler. Existing scheduling
schemes that deliver fairness and priority enforcement on AMPs do not
cater to the fact that applications in a multiprogram workload may de-
rive different benefit from using fast cores in the system. As a result, they
are likely to perform thread-to-core mappings that degrade the system
throughput. To address this limitation, we propose Prop-SP, a schedul-
ing algorithm that aims to improve the throughput-fairness trade-off on
AMPs. Our evaluation on real hardware, and using scheduler implemen-
tations on a general-purpose OS, reveals that Prop-SP delivers a better
throughput-fairness trade-off than state-of-the-art schedulers for a wide
variety of multi-application workloads.

Keywords: asymmetric multicore, scheduling, operating systems.

1 Introduction

Single-ISA asymmetric CMPs combine several core types with the same
instruction-set architecture but different features such as clock frequency or mi-
croarchitecture. Previous work has demonstrated that asymmetric designs lead
to a more efficient die area usage and a lower power consumption than sym-
metric CMPs [12]. Notably, combining just two core types simplifies the design
and is enough to obtain most benefits from AMPs [13]. Major hardware players
appear to be following this trend, as suggested by the recent ARM big.LITTLE
processor [2] or the Quick-IA Intel prototype system [5].

Despite their benefits, AMPs pose significant challenges to the system soft-
ware. One of the main challenges is to efficiently distribute fast-core cycles among
the various applications running on the system. This task can be accomplished by
the OS scheduler [18,11] or by the VM hypervisor on virtual environments [14].
Most existing proposals have focused on maximizing the system throughput

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 326–337, 2014.
c© Springer International Publishing Switzerland 2014
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[13,21,18,11]. To make this possible the scheduler needs to map to fast cores pre-
dominantly application threads that use those cores efficiently since they derive
performance improvements (speedup) relative to running on slow cores [13]. Fur-
ther throughput gains can be achieved by using fast cores to accelerate sequential
phases of parallel programs [19,10].

Other important goals such as delivering fairness or priority enforcement
on AMPs have drawn less attention from the research community. Previously-
proposed OS-level schemes that deliver fairness on AMPs attempt to allocate a
fair heterogeneous CPU share to the various applications. This can be accom-
plished by fair-sharing fast cores among applications [3,18] or by factoring in
the computational power of the various cores when performing CPU account-
ing [15]. None of these techniques, however, exploit the fact that applications in
a multiprogram workload may derive different benefit from using the fast cores
in the AMP. For this reason, assigning the same heterogeneous CPU share to
equal-priority applications does not ensure an even slowdown across applications
due to sharing the AMP [20]. Moreover, not taking into account the diversity in
applications’ relative speedups when making scheduling decisions on AMPs may
also lead to degrading the system throughput [3,18].

To address these shortcomings, we propose Prop-SP, a novel scheduling al-
gorithm that delivers priority enforcement on AMPs and strives to even out
the slowdown experienced by equal-priority applications. Our proposal delivers
high system throughput without requiring hardware support nor changes in the
applications. We qualitatively and quantitatively compare Prop-SP with state-
of-the-art schedulers, such as A-DWRR [15] and CAMP [18]. Our experimental
analysis reveals that Prop-SP improves the throughput-fairness trade-off for a
broad spectrum of multi-application workloads.

The rest of the paper is organized as follows. Section 2 motivates our work.
Section 3 outlines the design of the Prop-SP scheduler. Section 4 showcases our
experimental results. Section 5 discusses related work and Section 6 concludes.

2 Motivation

We now present an analytical study regarding the system throughput and fair-
ness delivered by previously proposed scheduling algorithms for AMPs. Our
analysis demonstrates that existing schedulers that seek to optimize one metric
degrade the other significantly, thus achieving unacceptable tradeoffs.

To assess system throughput we avoided metrics depending on instructions
per cycle (IPC) or instructions per second (IPS) since they can be misleading
to evaluate the performance of multithreaded programs [1]. As such, we opted
to use a metric depending on completion time instead. In particular, we found
that the Aggregate Speedup captures differences in throughput caused by diverse
asymmetry-aware schedulers considerably better than other metrics proposed
for CMPs, such as STP [7]. The Aggregate Speedup is defined as follows:

Aggregate Speedup =

n∑
i=1

(
CTslow,i

CTsched,i
− 1

)
(1)
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Table 1. Synthetic workloads

Workload SF1 SF2 SF3 SF4

W1 3.4 3.4 1.2 1.2

W2 3.4 3.4 2.3 2.3

W3 2.3 2.3 1.9 1.9

W4 3.4 3.4 2.7 2.7

W5 3.4 3.4 3.4 3.4

W6 2.5 2.1 1.6 1.2

W7 3.0 2.1 2.1 2.1

W8 3.4 3.0 2.5 2.1

W9 2.9 2.5 2.1 1.2

Table 2. Analytical formulas to approximate the
aggregate speedup and unfairness for a workload
consisting of n applications running simultaneously
under a given thread scheduler.

Metric Definition

Agreggate Speedup
∑n

i=1

(
1

fi
SFi

+(1−fi)
− 1

)

Slowdownapp fapp + SFapp · (1− fapp)

Unfairness
MAX(Slowdown1,...,Slowdownn)

MIN(Slowdown1,...,Slowdownn)

where n is the number of applications in the workload, CTslow,i is the com-
pletion time of application i when it runs alone in the system and uses slow
cores only, and CTsched,i is the completion time of application i under a given
scheduler.

Regarding fairness, previous works have employed diverse definitions. Some of
them define a scheme to be fair if it assigns the same CPU share to equal-priority
threads [15]. Others consider a scheme as fair if equal-priority applications suffer
the same slowdown due to sharing the system with respect to the situation
in which the whole system is available to each application [8,16,6]. The latter
definition is more suitable for CMP systems where degradation due to contention
on shared resources may occur. Therefore, we opted to use this definition and
employ the unfairness metric [16,6], which is defined as follows:

Unfairness =
MAX(Slowdown1, ..., Slowdownn)

MIN(Slowdown1, ..., Slowdownn)
(2)

where Slowdowni = CTsched,i/CTfast,i, and CTfast,i is the completion time of
application i when running alone in the AMP (with all the fast cores available).

In our analytical study we assessed the effectiveness of different scheduling
algorithms when running several synthetic multi-programmed workloads on an
AMP system consisting on two fast cores (FC) and two slow cores (SC). All
workloads comprise four single-threaded applications each. In this hypothetical
scenario, we assume that applications exhibit fast-to-slow performance ratios
that range between 1.2 and 3.4, a similar speedup range than that of the SPEC
CPU2006 applications running on the Intel Quick-IA asymmetric system, as
reported in [5]. Note that for single-threaded programs, the speedup matches

the speedup factor (SF) of its single runnable thread, defined as
IPSfast

IPSslow
, where

IPSfast and IPSslow are the thread’s instructions per second ratios achieved on
fast and slow cores respectively. Each row in Table 1 shows the speedup factors
(SFs) of the four applications in a specific workload (Wi).

We derived a set of analytical formulas (shown in Table 2) to compute the
Unfairness and the Aggregate speedup (ASP) of a workload under a given
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work-conserving1 scheduler in this scenario. In deriving the formulas we assume
that all applications in the workload run continuously for a certain amount of
time T . To make the analytical derivation tractable we also assume that each
application exhibits a constant SF during the time interval. Throughout the ex-
ecution the given scheduler allots each application app a certain fast-core time
fraction, denoted as Fapp, such that 0 ≤ Fapp ≤ 1, where Fapp = 1 means that
the application would be mapped to a fast core the whole time. Equation 3 makes
it possible to obtain the fraction of instructions each application completes on
a fast core during the time interval – referred to as fapp– based on its speedup
factor (SF app) and Fapp. As evident, the formulas to approximate the ASP and
Unfairness only depend on SF app and fapp. The detailed derivation process for
these formulas as well as for Equation 3 can be found in [17].

fapp =
1

1
SFapp

·
(

1
Fapp

− 1
)
+ 1

(3)

Figure 1 shows the normalized unfairness and aggregate speedup for the ana-
lyzed workloads under five asymmetry-aware schedulers. The first one, denoted
as HSP (High-SPeedup), assigns all fast cores to the NFC (number of fast cores)
threads in the workload that experience the greatest fast-to-slow speedup (for
these applications Fapp=1); the remaining threads are mapped to slow cores
(Fapp=0). Such a scheduler has been proposed in previous work [13,11]. The
second scheduler is an asymmetry-aware round-robin (RR) policy that equally
shares fast cores (Fapp = NFC

n ) among applications [3,18]. The third scheduler
is our proposal, referred to as Prop-SP (Proportional-SPeedup) and explained
in detail in Section 3. In the scenario we explored, where workloads consist of
equal-priority single-threaded programs, Prop-SP assigns the fast-core share to
an application in proportion to its net speedup (i.e., SF app − 1).

The fourth and fifth schedulers, referred to as Opt-Unfairness and Opt-ASP-
Ref, constitute theoretical algorithms. The per-application FC cycle distribution
made by Opt-Unfairness ensures the maximum ASP value attainable for the
optimal unfairness. Opt-ASP-Ref, on the other hand, achieves the maximum
ASP possible ensuring an unfairness value no greater than the one achieved by
Prop-SP for a particular workload. We created a simple program which makes
use of the analytical formulas in Table 2 to determine per-application fast-core
cycle distributions for these theoretical algorithms.

Results from Figure 1 reveal that HSP optimizes the aggregate speedup (the
higher ASP, the better) at the expense of obtaining the worst unfairness numbers
by far (the higher the unfairness, the worse). As evident, the theoretical Opt-
Unfairness scheduler exhibits lower aggregate speedup than HSP in most cases.
This fact underscores that, in general, it is not possible to optimize both metrics
simultaneously. More importantly, much throughput has to be sacrificed in some
cases (up to 20% for W2) to achieve the optimal unfairness. As for the RR sched-
uler, results highlight that this policy always degrades both fairness and ASP

1 Such a scheduler does not leave idle cores when the total thread count is greater or
equal to the number of cores in the platform.
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Fig. 1. Aggregate speedup (ASP) and unfairness values for the analyzed workloads
under the various schedulers. The closer to the top left corner, the better the ASP-
Unfairness tradeoff for the workload in question. Both metrics have been normalized to
the (0,1) interval, where 0 represents the minimum value attainable for the metric in
the platform and 1 the maximum one. For the sake of clarity, the explicit comparison
between RR and Prop-SP has been replicated in a separate figure (right).

compared to Opt-Unfairness, thus providing a suboptimal solution. Notably, RR
sacrifices up to 47% of the maximum throughput attainable and in some work-
loads, such as W1, high throughput reductions are also accompannied by fairness
degradation. Finally, the results showcase good properties regarding the Prop-
SP scheduler. First, it delivers higher aggregate speedup than Opt-Unfairness
and RR across the board. Second, despite the slight fairness degradation, Prop-
SP ensures unfairness numbers within 0-10% of the maximum attainable for
all workloads (clearly, this is not always the case for HSP and RR). Third, re-
sults of the theoretical Opt-ASP-Ref scheduler reveal that Prop-SP delivers ASP
numbers very close to the maximum attainable for the provided unfairness.

3 The Prop-SP Scheduler

3.1 The Algorithm

Prop-SP assigns threads to fast and slow cores so as to preserve load balance in
the AMP, and periodically migrates threads between fast and slow cores to ensure
that they run on fast cores for a specific amount of time. To perform thread-
to-core assignments, it relies on two mechanisms: fast-core credit allocation and
inter-core swaps.

Fast-Core Credit Allocation is a mechanism to control the amount of fast-
core cycles allotted to the running threads on an AMP. At a high level, fast-core
credit allocation works as follows. Each thread has a fast-core credit counter
associated with it. When a thread runs on a fast core it consumes credits. Threads
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that have fast-core credits left (i.e., their credit counter is greater than zero) are
preferentially assigned to fast cores by Prop-SP. Every so often, the OS triggers
a credit assignment process that allots fast-core credits to applications with
runnable threads. The time period elapsed between two consecutive system-
wide credit assignments is set dynamically by the scheduler. We will refer to
this elapsed period as the execution period. Note that we borrowed the idea of
associating credits to threads from Xen’s Credit Scheduler (CS) [4]. However,
credit distribution in Prop-SP is completely different from that of CS.

Prop-SP awards fast-core credits to each application based on its associated
dynamic weight, which is defined as the product of its net speedup (speedup
minus one) and its static weight. In this context, the speedup indicates the
relative benefit that the application would derive if all fast cores in the AMP
were devoted to running threads from this application, with respect to running
all threads on slow cores. The speedup is estimated at runtime by Prop-SP
without the user intervention (see Section 3.2). The static weight, by contrast,
is derived directly from the application priority (set by the user).

The credit assignment process entails three steps as detailed in Algorithm 1.
After computing dynamic weights (step 1), Prop-SP allots credits to each appli-
cation based of its dynamic weight in competition with the sum of the dynamic
weights of all applications (step 2). Because the actual length of the next ex-
ecution period is computed afterwards so as to control the migration rate (we
will elaborate on this issue later), the credit distribution performed in step 2
is done assuming a fixed-width reference execution period. Once the length of
the execution period has been determined, awarded per-application credits are
scaled to the actual interval length. Finally, credits awarded to the applica-
tion are then distributed among its runnable threads (step 3). For sequential
programs, per-thread credit-distribution entails increasing the credit counter of
the only thread by the amount of credits awarded. For multi-threaded applica-
tions, Prop-SP supports two per-thread credit distribution schemes: Even and
BusyFCs. Even distributes credits uniformly across runnable threads in the ap-
plication. BusyFCs goes sequentially through runnable threads and assigns each
one the maximum amount of credits it can consume in the next execution pe-
riod (cred per fc next period) until there are no more credits left to share. We
found that the Even scheme is well-suited to coarse-grained parallel applications
while BusyFCs turns out beneficial for fine and mid-grained parallel programs.
The associated experimental analysis has been omitted due to space constraints.

Inter-Core Swaps is a thread-migration mechanism that ensures that threads
with fast-core credits get a chance to use up their credits without disturbing
load balance. In order to illustrate how this mechanism works, let us consider an
AMP with one fast core and one slow core. Suppose that there are two threads
with fast-core credits running on the system, each one mapped to a different core
to preserve load balance. Eventually, the thread running on the fast core runs
out of fast-core credits. At this point, the scheduler swaps both threads between
cores to make sure the thread that was running on the slow core gets a chance
to consume its fast-core credits while maintaining load balance.
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Algorithm 1: Credit Assignment Algorithm

{ • R is the set of applications with runnable threads.
• NFC is the number of fast cores (FCs).
• CRED 1FC REF is the amount of credits consumed on each FC during an

execution period used as reference.
• cred per fc next period is the amount of credits consumed on each FC during

the next execution period. }
S:= [ ]; total weight:=0; total credits:=CRED 1FC REF ∗NFC ;

{ STEP 1 ⇒ Compute apps’ dynamic weight and total weight }
foreach app in R do

speedupapp:= estimate speedup for app;
dyn weightapp:= (speedupapp − 1) ∗ static weightapp;
total weight := total weight + dyn weightapp;
Insert app into S so as to keep S sorted in descending order by dyn weightapp;

end

{ STEP 2 ⇒ Assign credits to apps based on dyn weightapp }
foreach app in S do

creditapp:=
total credits ∗ dyn weightapp

total weight
;

end

{ STEP 3 ⇒ Determine the length of the next execution period
and distribute credits among threads }
Compute cred per fc next period;
scale factor:=cred per fc next period/CRED 1FC REF;
foreach app in S do

creditapp:=creditapp ∗ scale factor;
Distribute creditapp credits among threads in app

end

3.2 Determining the Speedup

At runtime, Prop-SP needs to obtain the relative speedup that an application
derives from using all fast cores in the AMP. This value is used by the credit
distribution algorithm to compute the application’s dynamic weight.

As mentioned in Section 2, the speedup of a single-threaded application
matches the SF of its single runnable thread. To determine a thread’s SF online,
Prop-SP feeds a platform-specific estimation model with values from diverse per-
formance metrics collected over time2 (such as the IPC or the last-level-cache
miss rate). In this work, we leverage the technique proposed in our previous
work [19] to aid in the construction of SF estimation models. This technique,
which has been proven successful in a AMP prototype system where cores dif-
fer in microarchitecture, enables to generate SF models by analyzing offline-

2 In our setting, performance counters are sampled every 200ms, which leads to neg-
ligible overhead associated with sampling and SFs estimation.
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collected performance counter data from a representative set of single-threaded
CPU-bound programs.3

To obtain a speedup estimate for a multithreaded application, several factors
in addition to the SF must be taken into account [9,19], such as its amount of
thread-level parallelism (TLP) or how fast-core credits are distributed among its
threads. Prop-SP makes use of the following equations to estimate the applica-
tion speedup under the BusyFCs and the Even credit-distribution schemes:

SPBusyFCs =
SF−1

(
⌊

N−1
NFC

⌋
+1)2

+ 1 SPEven = MIN(NFC ,N)
N · (SF − 1) + 1

where N is the number of threads in the application, NFC is the number of
fast cores in the AMP and SF is the average speedup factor of the application
threads. The detailed derivation process for these formulas can be found in our
previous work [19,17].

4 Experimental Evaluation

In our experiments, we analyzed two variants of Prop-SP (static and dynamic),
which follow different approaches to determine a thread’s SF. The base im-
plementation of Prop-SP, referred to as Prop-SP (dynamic), estimates SFs on-
line using hardware counters. Prop-SP (static), on the other hand, asummes
a constant SF value for each thread, measured prior to the execution. We
compare both versions of Prop-SP against four previously-proposed schemes:
RR [3,18], A-DWRR [15], CAMP [19] and HSP (High-SPeedup) [3,11]. In previ-
ous work [18], we observed that considering the speedup of the application as a
whole rather than the speedup of individual threads when making thread-to-core
mappings leads to higher throughput in scenarios where parallel applications are
present. As such, for a fairer comparison, we modified HSP to perform thread-to-
core assignments taking into account the application-wide speedup rather than
per-thread speedup factors.

All the evaluated algorithms have been implemented in the Solaris kernel and
tested on real multicore hardware made asymmetric by reducing the processor
frequency of a subset of cores in the platform. In particular, we used a multicore
server consisting of two AMD Opteron 2435 “Istanbul” hex-core processors (12
cores). Each chip includes a 6MB shared L3 cache shared among cores. Emu-
lated AMP configurations on this system consist of “fast” cores that operate at
2.6GHz and “slow” cores running at 800MHz. To evaluate the different schedul-
ing algorithms, we used two AMP configurations: (1) 2FC-2SC – including two
chips with one fast core and one slow core (2) 2FC-10SC – two chips with one
fast core and 5 slow cores each.

3 In this work we obtained the SF estimation models by analyzing offline-collected data
from a subset of the SPEC CPU 2006 benchmarks. Note that we also experimented
with applications different to those employed to generate the models.
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Table 3. Multi-application workloads consisting of single- and multithreaded programs

Categories Benchmarks Categories Benchmarks
3STH-1HPH hmmer, gobmk, h264ref, fma3d m(9) 4STH povray, gobmk, bzip2, sjeng
3STH-1HPL povray, gamess, gobmk, swim m(9) 3STH-1STM povray, h264ref, perlbench, astar
2STH-1PSH-
1HPM

gamess, bzip2,
BLAST(4), wupwise m(6)

3STH-1STL A hmmer, namd, perlbench, soplex

1STH-1STM
-1STL-1PSH

gamess, astar,
soplex, blackscholes(9)

3STH-1STL B hmmer, h264ref, gobmk, milc

1PSH-1PSL semphy(6), FFTW3D(6) 2STH-2STM A povray, bzip2, leslie3d, sphinx3
2PSH-1HPM BLAST(4), semphy(4), wupwise m(4) 2STH-2STM B gamess, gobmk, xalancbmk, astar
1PSH-1HPL semphy(6), equake m(6) 2STH-2STL A hmmer, gobmk, lbm, soplex
1HPH-1HPL fma3d m(6), equake m(6) 2STH-2STL B povray, h264ref, lbm, omnetpp

1PSH-1HPH blackscholes(6), fma3d m(6)
1STH-1STM-
2STL

sjeng, leslie3d, lbm, soplex

Our evaluation targets multi-application workloads consisting of HPC bench-
marks from diverse suites (SPEC CPU 2006 and OMP 2001, PARSEC, NAS
Parallel Benchmarks and Minebench). We also experimented with BLAST – a
bioinformatics benchmark – and FFTW3D – an HPC benchmark performing the
fast Fourier transform. In all experiments, the sum of the number of threads of
all applications was set to match the number of cores in the platform, since this is
how runtime systems typically configure the number of threads for CPU-bound
workloads like the ones we used. We ensure that all applications in the workload
are started simultaneously and when an application terminates it is restarted
repeatedly until the longest application in the set completes three times. For
each application in a workload, CTsched is calculated as the geometric mean of
its completion times for the various executions. We measure CTfast for an ap-
plication by tracking its completion time when running alone in the AMP with
its best-performing per-thread credit distribution scheme.

Table 3 shows the analyzed multi-application workloads. The first nine work-
loads (left) consist of both sequential and parallel applications; the last nine
(right) comprise sets of single-threaded programs. In creating the workloads,
we categorized applications into three groups with respect to their parallelism:
highly parallel (HP), partially sequential (PS) –parallel applications with a se-
quential component of over 25% of the total execution time– and single-threaded
(ST). In order to cater to applications’ SFs as well, we further divided the three
aforementioned application groups into three subclasses based on their SFs –
high (H), medium (M) and low (L). The application categories are shown in
the table in the same order as the corresponding benchmarks. For example, in
the 1PSH-1HPL category, semphy is the PSH application and equake m is the
HPL one. The number in parentheses next to the name of each multithreaded
application indicates the number of threads it runs with.

Figure 2 shows the aggregate speedup and unfairness for the workloads under
the various schedulers. Overall, HSP and CAMP, which assign high-speedup ap-
plications to fast cores, yield the highest system throughput in most cases but
fail to deliver fairness accross the board. RR and A-DWRR, on the other hand,
do rather a good job in terms of both fairness and throughput for workloads
including single-threaded applications only. However, when multithreaded pro-
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Fig. 2. Aggregate speedup and unfairness of the investigated scheduling algorithms

grams are present in the workload, both schedulers degrade the system through-
put significantly. In this scenario, A-DWRR awards higher fast-core share to
those applications with a higher thread count. As shown in [18], this may lead
to throughput degradation since applications with a high active thread count
may experience low benefit from using the scarce fast cores in the platform.

The results reveal that Prop-SP is able to make efficient use of the AMP and
improve the throughput-fairness tradeoff for a wider range of workloads. Overall,
these benefits are especially pronounced for workloads including multithreaded
programs. In this scenario, Prop-SP is able to match the performance of HSP
and CAMP for 3STH-1HPH, 1PSH-1PSL and 1PSH-1HPH, while performing in
a close range for the remaining application mixes. At the same time, it achieves
much lower unfairness numbers than HSP and CAMP across the board and
exhibits comparable unfairness to A-DWRR and RR. Moreover, we observe that
the inacuracies of the SF estimation model used by Prop-SP (dynamic), do not
prevent it from reaping benefits similar to those of the static version.

5 Related Work

A large body of work has advocated the benefits of AMPs over symmetric
CMPs [13,12,9]. Despite these benefits, AMP systems pose significant challenges
to the system software [15]. OS scheduling is one of the most critical challenges,
and this is the focus of our paper.

Most existing asymmetry-aware schedulers strive to optimize the system
throughput. Schedulers targeting workloads consisting of single-threaded pro-
grams only [13,3,11,21,18] aim to maximize throughput by running on fast cores



336 J.C. Saez et al.

those applications with a higher SF. To maximize throughput in workload sce-
narios including multithreaded programs, the amount of thread-level parallelism
(TLP) in the applications must be taken into account. In this scenario, some
schedulers make use of fast cores in the AMP as accelerators for serial execu-
tion phases in parallel applications [18,19,10]. These schemes, however, do not
attempt to ensure fairness. In our proposal, the OS-level scheduler acts as a
global arbiter that delivers fairness by adjusting the fast-core share allotted to
the various programs in multiapplication scenarios.

To the best of our knowledge, A-DWRR [15] is the first scheduler aiming to de-
liver both fairness and priority enforcement on asymmetric single-ISA multicore
systems. Unlike Prop-SP, A-DWRR does not take into account that applica-
tions derive different speedups when using fast cores in the platform and that
these speedups may vary over time. Moreover, A-DWRR performs CPU-time
allocation on a per-thread basis rather than on a per-application basis. As our
experimental results reveal, these factors may lead A-DWRR to degrading the
system throughput significantly and prevent this scheduler from ensuring an
even slowdown for equal-priority applications on AMPs, especially when multi-
threaded applications are present in the workload.

6 Conclusions

In this paper we proposed Prop-SP, a scheduler that aims to improve the bal-
ance between fairness and throughtput on asymmetric multicores. To make this
possible, Prop-SP exploits the diversity in the fast-core efficiency of a workload
to even out the slowdown experienced by simultaneously running applications
(based on their priorities) when sharing the fast cores of an AMP. We imple-
mented Prop-SP in the Solaris kernel and compared it against several state-
of-the-art asymmetry-aware schedulers. Our experiments reveal that Prop-SP
is able to make efficient use of the AMPs and improve the throughput-fairness
tradeoff for a wider range of workloads. The benefits of the Prop-SP policy are
especially pronounced for workloads including multithreaded programs.

Key elements for the success of Prop-SP are the credit-based mechanism en-
abling the scheduler to adjust the fast-core share allotted to the different pro-
grams and its reliance on estimation models to approximate application speedup
online. As shown in previous work [19], asymmetry-aware schedulers relying on
SF estimation models, such as Prop-SP, can be seamlessly extended to differ-
ent forms of performance asymmetry. Evaluating Prop-SP on cutting-edge AMP
prototypes [5] is an interesting avenue for future work.

Acknowledgements. This work has been supported by the Spanish govern-
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Abstract. Traditionally, numerical simulations based on finite element
methods consider the algorithm as being divided in three major steps: the
generation of a set of blocks and vectors, the assembly of these blocks in a
matrix and a big vector, and the inversion of the matrix. In this paper we
tackle the second step, the block assembly, where no parallel algorithm
is widely available. Several strategies are proposed to decompose the
assembly problem while relying on a scheduling middle-ware to maximize
the overlap between stages and increase the parallelism and thus the
performance. These strategies are quantified using examples covering two
extremes in the field, large number of non-overlapping small blocks for
CFD-like problems, and a smaller number of larger blocks with significant
overlap which can be met in sparse linear algebra solvers.

1 Introduction

The increasing parallelism and complexity of hardware architectures requires
the High Performance Computing (HPC) community to develop more and more
complex software. To achieve high levels of optimization and fully benefit of
their potential, not only the related codes are heavily tuned for the considered
architecture, but the software is often designed as a single entity that aims to
simultaneously cope with both the algorithmic and architectural needs. If this
approach may indeed lead to extremely high performance, it is at the price of a
tremendous development effort, a lesser portability and a poor maintainability.

Alternatively, a more modular approach can be employed. The numerical al-
gorithm is described at a high level, independently of the hardware architecture,
as a Directed Acyclic Graph (DAG) of tasks where a vertex represents a task
and an edge represents a dependency between tasks. A second layer is in charge
of taking the scheduling decisions. Based on these decisions, a runtime system
will perform the actual execution of the tasks, maintaining data consistency and
ensuring that dependencies are satisfied. The fourth layer consists of the opti-
mized code for the related tasks on the underlying architectures. This approach
is starting to give successful results in various domains going from very regu-
lar applications [16,3,7] to very irregular ones [14,2,1]. However, building such
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complex applications on top of task-based runtime systems requires algorithmic
modifications of some core kernels of the application so that the flexibility offered
by the runtime system can be fully exploited. More precisely, these operations
need to be expressed as a task graph having enough parallelism to allow the
runtime system to overcome all the synchronizations/race conditions which can
be met with regular implementations of these kernels.

In this paper, we will focus on a specific operation, namely assembly operation,
which can be met in various application fields: finite elements (FEM) methods,
multifrontal sparse direct solvers, etc. This operation, even if not costly in terms
of operations count, is memory-bound and often a performance bottleneck when
the number of computational resources increases. Assembly operations can be
viewed as scatter/add operations used to process dense contribution blocks to
update a global, dense or sparse, matrix. This work is a first step toward a
larger context where numerical simulations will be expressed in a task-based
paradigm in order to diverge from the traditional fork-join model and relax
synchronizations. Our contributions are : 1) A tiled version (which enhances
parallelism) of the assembly operation is introduced and implemented on top of
two task-based runtime systems. 2) Several priority based dynamic scheduling
techniques which aim at reducing the makespan of the assembly operation are
presented. 3) An experimental study concerning two application fields, namely
FEM applications and multifrontal sparse direct solver, is presented.

The remainder of the paper is organized as follows. After a presentation of
existing techniques for parallelizing assembly operations, we will introduce our
tiled version of the assembly operations and show how it can be expressed in
two different task-based paradigms. Finally, we will evaluate our proposed ap-
proaches and compare them with state-of-the-art techniques.

2 Related Work

Considering the increasing complexity of modern high performance computing
platforms, the need for a portable layer that will insulate the algorithms and
their developers from the rapid hardware changes becomes critical. Recently,
this portability layer appeared under the denomination of task-based runtime.
A lot of initiatives have emerged in the past years to develop efficient runtime
systems for modern architectures. As stated above, most of these runtime sys-
tems use a task-based paradigm to express concurrency and dependencies by
employing a task dependency graph to represent the application to be executed:
PaRSEC [8], SMPSs [6], StarPU [5], etc. The main differences between all the
approaches are related to whether or not they manage data movements between
computational resources, to which extent they focus on task scheduling, and
how task dependencies are expressed. These task-based runtime systems aim at
performing the actual execution of the tasks, both ensuring that the DAG depen-
dencies are satisfied at execution time and maintaining data consistency. Most of
them are designed to allow writing a program independently of the architecture
and thus require a strict separation of the different software layers: high-level al-
gorithm, scheduling, runtime system, actual task implementation. Among these
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frameworks, we will focus in this paper on the StarPU and the PaRSEC runtime
systems. The dense linear algebra community has strongly adopted such a modu-
lar approach lately [16,3,7] and delivered subsequent production-level solvers. As
a result, performance portability is achieved thanks to the hardware abstraction
layer introduced by runtime systems. More recently, this approach was consid-
ered in more complex/irregular applications : sparse direct solvers [14,2], fast
multipole methods [1], etc. The obtained results are promising and illustrate the
interest of such a layered approach.

From the numerical simulation point of view, more precisely finite element
methods, significant efforts have been made to exploit modern heterogeneous
architectures (i.e. multicore systems equipped with accelerators) [13,11]. The
main idea is to be able to have efficient implementations of the core kernels
needed by the numerical simulation namely assembly operations, linear systems
solution, etc, for these architectures.We believe that these efforts are necessary to
understand the bottlenecks to obtain a good performance on such heterogeneous
architectures. However, we think that the modular approach proposed in this
paper, coupled with a fine grain task-based expression of the application will
ensure performance portability on any heterogeneous execution platform.

3 Background

3.1 Assembly Operations on Multicore Systems

1: Initialize the matrix A
2: for each contribution block c do
3: for each entry c[i][j] of c do
4: A[rmap(c, i), cmap(c, j)]+ = c[i][j]
5: end for
6: end for
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Algorithm 1. Assembly operation Fig. 1. Assembly operation with 2 con-
tribution blocks

From a general point of view, assembly operations can be viewed as scatter-
add operations of each contribution on the matrix following the scheme depicted
in Algorithm 1. This operation is commutative and contributions can be treated
in any order. For each contribution block, each entry is summed with the corre-
sponding entry of the matrix A. The association between elements of the contri-
bution blocks and entries of A are determined using indirection arrays rmap and
cmap which store the correspondence between local indices within the contribu-
tion block and global indices within the matrix A. For example, if we consider
the assembly operation the contribution block c1 (which is a 2 by 2 matrix)
presented in Figure 1, rmap(c1, 1) (resp. cmap(c1, 1)) will be equal to 1 while
rmap(c1, 2) (resp. cmap(c1, 2)) will be equal to 4.

Recently, a lot of work has targeted the implementation of efficient assembly
operations for finite element methods running on multicore architectures which
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may be enhanced with accelerators. The main issue with the parallelization of
assembly operations comes from the race conditions which occur when two dif-
ferent contribution blocks need to update the same entry of the global matrix. A
naive parallelization scheme of the assembly operation is to process the contribu-
tion blocks in a sequential way using a parallel implementation of the assembly
of a block. This strategy requires the contribution blocks to be large enough to
ensure performance.

Moreover, the approach suffers from the lack of scalability: only intra-block
parallelism is exploited. More Recently, in [9] Cecka et al. introduced a paral-
lelization approach based on a coloring of the contribution blocks where contri-
bution blocks having the same color can be treated in parallel. This property
is guaranteed by the fact that blocks having the same color do not contribute
to the same entries of the global matrix. This idea has been pushed further by
Markall et al. in [15] by improving the coloring scheme in a way such that the
number of colors used is reduced. Lately, Hanzlikova et al. proposed in [12] an
approach which extends the work from Cecka by using extra storage to avoid
synchronizations needed to prevent race conditions.

3.2 The StarPU Runtime System

As most modern task-based runtime systems, StarPU aims at performing the
actual execution of the tasks, both ensuring that the DAG dependencies are sat-
isfied at execution time and maintaining data consistency. The particularity of
StarPU is that it was initially designed to write a program independently of the
architecture and thus requires a strict separation of the different software layers:
high-level algorithm, scheduling, runtime system, actual code of the tasks. We
refer to Augonnet et al. [5] for the details and present here a simple example con-
taining only the features relevant to this work. Assume we aim at executing the
sequence fun1(x, y); fun2(x); fun1(z, w), where funi,i∈{1,2} are functions applied
on w, x, y, z data; the arguments corresponding to data which are modified by a
function are underlined. A task is defined as an instance of a function on a spe-
cific set of data. The set of tasks and related data they operate on are declared
with the submit task instruction. This is a non blocking call that allows one to
add a task to the current DAG and postpone its actual execution to the moment
when its dependencies are satisfied. Although the API of a runtime system can
be virtually reduced to this single instruction, it may be convenient in certain
cases to explicitly define extra dependencies. For that, identification tags can be
attached to the tasks at submission time and dependencies are declared between
the related tags with the declare dependency instruction. For instance, an ex-
tra dependency is defined between the first and the third task in Figure 2 (left).
Figure 2 (right) shows the resulting DAG built (and executed) by the runtime.
The id1 → id2 dependency is implicitly inferred with respect to the data hazard
on x while the id1 → id3 dependency is declared explicitly. Optionally, a priority
value can be assigned to each task to guide the runtime system in case multiple
tasks are ready for execution at a given moment. In StarPU, the scheduling sys-
tem is clearly split from the core of the runtime system (data consistency engine
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and actual task execution). Therefore, not only all built-in scheduling policies
can be applied to any high-level algorithm, but new scheduling strategies can be
implemented without having to interfere with low-level technical details of the
runtime system.

Fig. 2. Basic StarPU-like example (left)
and associated DAG (right).

1: PING(k) : k = 0 .. N
2: RW A ← (k == 0) ? A(k) : A PONG(k-1)
3: → A PONG(k)

4: PONG(k) : k = 0 .. N
5: RW A ← A PING(k)
6: → (k == N) ? A(k) : A PING(k+1)

Algorithm 2. Ping-Pong algorithm ex-
pressed in the PaRSEC dataflow descrip-
tion

3.3 The PaRSEC Runtime System

As described in [8], PaRSEC is a dataflow programming environment supported
by a dynamic runtime, capable of alleviating some of the challenges imposed by
the ongoing changes at the hardware level. The underlying runtime is a generic
framework for architecture-aware scheduling and management of micro-tasks on
distributed many-core heterogeneous architectures. The dynamic runtime is only
one side of the necessary abstraction, as it must be able to discover concurrency
in the application to feed all computing units. To reach the desired level of flexi-
bility, we support the runtime with a symbolic representation for the algorithm,
able to expose more of the available parallelism than traditional programming
paradigms. The runtime is capable of freely exploiting this parallelism to increase
the opportunities for useful computation, predict future algorithm behaviors and
increase the occupancy of the computing units.

Algorithm 2 represents a concise dataflow description of a ping-pong applica-
tion, where a data A(k) is altered by two tasks, PING and PONG, before being
written back into the original location A(k). Line 1 defines the task PING and
it’s valid execution space, ∀k ∈ [0..N ]. Line 2 depicts the input value A for the
task PING(k), where if k is 0 the data is read from an array A(), otherwise
it is the output A of a previous task PONG(k-1). Line 3 describes the output
flow of the tasks PING, where the locally modified data A is transmitted to a
task PONG(k). This task PONG(k) can be executed in the context of the same
process as PING(k) or remotely, the runtime will automatically infer the com-
munications depending on the location of the source and target tasks. Lines 4
to 6 similarly depict the complementary task PONG.

Each task consists in the addition to the dataflow definition depicted in the
above algorithm, several possible implementations of the code to be executed
on the data, the so called codelets. Each codelet is targeted toward a specific
hardware device (CPU, Xeon Phi, GPU) or a specific language or framework
(Open CL). The decision of which of the possible codelets to be executed is
controlled by a dynamic scheduling, aware of the state of all local computing
resources. Once the scheduling decision is taken, the runtime provides the input
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data located on the specific resource where the task is to be executed, and upon
completion will make the resulting data available for any potential successors.
As the task flow definition includes a description of the type of use made by
a task for each data (read, write or read/write) the runtime can minimize the
data movements while respecting the correct data versioning. Not depicted in
this short description are other types of collective communication patterns that
can be either described, or automatically inferred from the dataflow description.

4 Taskified Assembly Operation
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Fig. 4. Tiled scheme

We introduce in this section a taskified assembly operation where the objec-
tive is to enhance parallelism while leaving the management of data constraints
and possible race conditions to the underlying runtime system. The main phe-
nomenon which limits the amount of parallelism is the serialization of the as-
sembly of two contribution blocks updating the same block, serialization that
prevents possible race conditions. To increase the amount of parallelism, compu-
tations must be organized such that conflicting write operations are minimized.
A naive approach to express the global assembly operation would be to asso-
ciate a task to the assembly operation of each contribution block (see Figure 3).
In this context, all tasks will be serialized because of the write conflicts on the
global matrix. For example, if we consider the assembly operation presented in
Figure 3 where this naive scheme is used, the dependency task graph contains
2 tasks (namely t1,1 and t2,2) which have a write conflict on the global matrix.
Note that since the summation operator used during the assembly operation is
commutative and associative, the task graph where t1,1 is the predecessor of t2,1
is also valid. However, for the remaining of this study, we ignore the commuta-
tivity of the assembly operation, and will impose a writing order by ordering the
tasks generation and declaration. With such an approach, the runtime is now
responsible to order the assembly operations with respect to the depicted data
dependencies, preventing all conflicts between accesses to the same data.

In order to exhibit more parallelism, one could partition the global matrix into
blocks and associate a task to the assembly operation of each contribution block
into each tile of the global matrix (see Figure 4). Of course, if a contribution
block does not update a tile of the global matrix, the corresponding empty task
is not considered. By doing so, the amount of non-conflicting tasks is increased
leading to higher degree of parallelism. For example, if we consider now the
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assembly operation described in Figure 4 where this tile-based scheme is used,
we can see that the task graph contains now 5 tasks for which there is only one
conflict between t1,1 and t2,1. When using this scheme, the number of tasks and
subsequently the degree of parallelism is strongly linked to blocking factor used
for the global matrix. A trade-off needs thus to be found between the needed
parallelism and the management overhead induced in the runtime system. The
approach to taskify the assembly operation that we propose is a tiled approach
where the serialized tasks are sorted according to their computational cost in each
chain: the most costly tasks are treated first. The task graph is thus composed
by a set of independent chains of tasks. This scheme will be referred to as the
flat assembly operation scheme.

To overcome the overhead due the management of the large number of tasks,
one could decrease the number of tasks for a fixed tile size by merging the chains
of the flat assembly scheme into a single tasks. This will produce a fixed number
of tasks corresponding to the number of tiles of the global matrix. This approach
is similar to [9], in the sense that it builds a set of completely independent tasks
preventing all race conditions from occurring. This is illustrated in Figure 4,
where the chain is replaced by the dashed box surrounding it. In the rest of the
paper, this scheme will be referred to as no-chain assembly operation scheme.

4.1 Scheduling Strategies for Taskified Assembly Operations

Taskified assembly operations can are expressed using task dependency graphs
composed of independent chains of tasks (an example is given in Figure 4). In
this paper, we consider dynamic on-line scheduling strategies which are com-
monly used in various runtime systems. In order to efficiently assign tasks to the
computational resources it is important to take into account the weight of each
task in terms of workload and give priority to the largest ones (the larger the
contribution the higher its priority is). This strategy is used on the set of ready
tasks (i.e. tasks for which the corresponding dependencies are satisfied) and each
idle processing unit picks the task with highest priority from the set of ready
tasks. By doing so, the processing units are constantly working on the critical
path of the execution. Varying the tasks priorities allow for further improvement
of the scheduling strategy.
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Fig. 5. Fixed priorities
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A first approach to express the critical aspect of a task regarding the length
of the chain it belongs to, is to associate a priority related to the cost of the
entire chain. This illustrates in Figure 5, where the priorities of the entire chain



Assembly Operations for Multicore Architectures 345

are constant, and are computed based on the cost of the entire chain. We will
refer to this priority scheme as fixed priority scheme.

This priority management can be pushed further so that the priorities, not
only take into account the absolute length of the critical path but its current
length at the moment where the scheduling decision is taken. Thus, the priority
of a task is computed based on the remaining workload on the chain it belongs
to. This allows the working units to select the tasks that are currently the most
critical. Figure 6 depicts the same example as before using this new priority
assignment scheme. This time the tasks belonging to a chain have a priority
linked to the length of the remaining part of the chain. We will refer to this
priority scheme as adaptive priority scheme.

One of the major differences between StarPU and PaRSEC is the way the
list of ready tasks is managed. In StarPU, the user divides data, precomputes a
list of tasks working on those data, and submits, in advance, all the tasks. This
sequential submission of tasks creates implicit dependencies between the tasks.
In PaRSEC, the dependencies are explicitly specified by the user, and the tasks
are dynamically discovered by the runtime based on completed dependencies and
the symbolic description of the algorithm. From the scheduling point of view,
StarPU gives the opportunity to the user to write his own scheduler while in
PaRSEC, a highly optimized scheduler is provided, where priorities are secondary
to enforcing a coherent data locality policy.

5 Experimental Results

We evaluate the behavior and performance of our task-based approach on the
riri platform, composed by 4 Intel E7-4870 processors having 10 cores clocked
at 2,40 GHz and having 30 MB of L3 cache. The platform has uniform memory
access (UMA) to it’s 1 TB of RAM. In all cases the results presented are averages
over multiple runs (at least 10), where the outliers have been cleaned. In addition
to the results presented here, we also analyzed the standard deviation, but we
decided not to report it as is was under the system noise (2%).

We have chosen to illustrate the behavior of our approaches on two different
classes of problems. The first class correspond to assembly operations met in fi-
nite element methods. We consider in the following study both 2D and 3D finite
element continued method applied on structured meshes. The difference between
the two cases resides in the connectivity between elements. While on a 2D grid,
each element has at most 8 neighbors, in 3D, each hexahedron has 26 neighbors
leading to higher overlapping between contribution blocks for the 3D case. The
second class correspond to a less structured assembly operations met in a sparse
direct method (namely the multifrontal method [10]). The considered configu-
ration has been generated using the MUMPS sparse direct solver [4] using input
problems coming from the University of Florida Sparse Matrix Collection 1. To
be more precise, we extracted configurations met during the assembly phases

1 http://www.cise.ufl.edu/research/sparse/matrices

http://www.cise.ufl.edu/research/sparse/matrices
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needed by the sparse LU factorization. The contribution blocks for these config-
urations are very irregular with sizes varying from 0.01% to 99% of father’s size.
Thus, we are not analyzing the task-based implementation asymptotically on
large benchmarks, but on real-life cases extracted existing applications. Finally,
two parameters will vary in our experiments, the size of the tile and the number
of computational resources. The bigger the tile size, the lesser parallelism one
will be able to exhibit. Thus, one shall find an acceptable value in sync with the
second parameter, the number of computing resources units available.

Fig. 7. Comparison of the performance of an assembly operation using a 2D mesh with
2025 blocks of size 1212 based on the granularity of the operation (as depicted by the
tile size). The matrix has 203k entries and respectively 61, 31, and 13 active tiles (from
left to right).

Figure 7 depicts the performance of the assembly operation when used in
the context of a finite element method application in a 2D mesh case. This
corresponds to a case where the overlapping between contribution blocks is small.
First of all, we can observe that, by increasing the concurrency (leftmost plot),
the taskified assembly operation obtains a very good behavior with all strategies
in PaRSEC. Moreover, we observe that the StarPU implementation has a good
behavior on a small number of processing units but seems less efficient when
the number of resources increases. As shown in the bottom part of the graph
this is mainly due to the overhead induced by the management of the tasks, the
tasks are not compute intensive enough to amortize the overhead of the StarPU
runtime system (which is mainly due to the inference of task dependencies).
Similarly, we can notice that independently from this observation, the no-chain
assembly operation scheme behaves well in both runtime systems mainly because
there are no race conditions in this strategy. We can see also, that this strategy
gives performance equivalent to the one obtained with the coloring strategy
described in [9] and outperforms it in certain configurations (typically when
there the global matrix is tiled using fine grain blocks). This illustrates the
interest of our taskified assembly scheme on this simple scenario.
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In Figure 8 we investigate the behavior of the taskified assembly operation on
the two runtime systems in the context of a finite element method application
in a 3D mesh case. This time both the size of the contribution blocks and their
overlapping increased in comparison with the 2D case.

Fig. 8. Comparison of the performance of an assembly operation using a 3D mesh with
512 blocks of size 5122 based on the granularity of the operation (as depicted by the tile
size). The matrix has 185k entries and respectively 121, 44, and 10 active tiles (from
left to right).

We can observe that the functioning of our taskified schemes have a good
behavior for all tile sizes. Moreover, we can observe that the overhead of the
runtime system is negligible compared with the computational cost of the tasks
and allow all the strategies to expose a scalable behavior. Concerning the coloring
scheme, it is outperformed by all the strategies when the number of computa-
tional resources increased. Finally, once again, the no-chain assembly operation
scheme is the most efficient variant for both runtime systems.

Finally, Figure 9 reports the results gathered in the context of the most irregu-
lar and complex case: assembly operations arising in the sparse LU factorization
using the multifrontal method. First of all, note that in this case, it is not pos-
sible to use the coloring heuristic since the overlapping between contributions
blocks may be arbitrarily large (the cost of the coloring heuristic is prohibitive
in this case). We can observe that PaRSEC has a good performance with all
tiling strategies and all scheduling policies. We can also see that the adaptive
priority scheduling policy is the one with the most scalable behavior. Finally,
we can observe that the overhead induced by the runtime is minimal with PaR-
SEC. Concerning StarPU, when the granularity of the tiles is small, we measure
that the overhead of the runtime system tends to increase with the number
of resources leading to a significant performance loss. However, increasing the
granularity allows to overcome the runtime overhead and the behavior of StarPU
becomes equivalent to the one obtained with PaRSEC. Once again, the no-chain
assembly operation scheme is the most efficient variant for both runtime systems.
Finally, we report also, the behavior of the naive implementation using based
on OpenMP where all the global matrix is not tiled and the contribution blocks
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are treated sequentially using as many threads as provided by the user for each
contribution block. We can see, that our taskified assembly scheme is much more
stable in terms of behavior and outperforms the OpenMP implementation for
most non-trivial cases. Even though our strategies and the OpenMP implemen-
tation are extremely close on some experiments, our approach permits to relax
synchronizations once integrated into an application, enabling additional over-
lap between the assembly operations and the rest of the computations and the
entire application will benefit. From this perspective, these experimental results
illustrate the interest of our taskified scheme.

Fig. 9. Comparison of the performance of an assembly operation coming from the
MUMPS solver based on the granularity of the operation

6 Conclusion

In this work we evaluated the usability and effectiveness of general-purpose task-
based runtime systems for parallelizing the assembly operation, which is a main
operation in several application fields. We expressed the assembly operation as
tasks with data dependencies between them and provided the resulting task
graph to a runtime systems. Several algorithms aiming at enhancing the concur-
rency while trying to reduce the number of race conditions have been proposed,
and they were analyzed under different dynamic constraints: tasks priority and
granularity. Overall, the results clearly indicates that for both runtime systems,
namely PaRSEC and StarPU, our approach exhibits encouraging performance,
especially when the right balance is reached between the task granularity and
the overhead of the runtime system.

In the near future, we plan to further extend this work by using accelerators
(GPU, Intel Xeon-Phi, etc) to minimize the time-to-solution. This will be done
by relying on existing assembly kernels for the different accelerators and leave the
data management and scheduling decisions to the runtime systems (the schedul-
ing policies need to be adapted to the heterogeneous context). Moreover, it could
be of interest to consider intra-task parallelism which may offer more flexibility
to enhance concurrency. In a longer term, this work represents a necessary kernel
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which will be used to design complex numerical simulation applications on top
of modern runtime systems. This will allow the application to run in a more
asynchronous way without relying on the classical fork-join paradigm.

Acknowledgments. This work was partially supported by the French ANR
through the MN (Solhar ANR-13-MONU-007 project) program, and the US
Department of Energy through the DE-FG02-13ER26151.

References

1. Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., Takahashi, T.: Task-
based fmm for multicore architectures. SIAM SISC 36(1) (2014)

2. Agullo, E., Buttari, A., Guermouche, A., Lopez, F.: Multifrontal QR factoriza-
tion for multicore architectures over runtime systems. In: Euro-Par 2013 Parallel
Processing - 19th International Conference, pp. 521–532 (2013)

3. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: The
PLASMA and MAGMA projects. Journal of Physics 180(1) (2009)

4. Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling
for the parallel solution of linear systems. Parallel Computing 32(2), 136–156 (2006)

5. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency
and Computation: Practice and Experience 23, 187–198 (2011)

6. Badia, R.M., Herrero, J.R., Labarta, J., Pérez, J.M., Quintana-Ort́ı, E.S.,
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Abstract. With the evolution toward fast networks of many-core pro-
cessors, the design assumptions at the basis of software-level distributed
shared memory (DSM) systems change considerably. But efficient DSMs
are needed because they can significantly simplify the implementation
of complex distributed algorithms. This paper discusses implications of
the many-core evolution and derives a set of reusable elementary opera-
tions for future software DSMs. These elementary operations will help in
exploring and evaluating new memory models and consistency protocols.

1 Introduction

Parallel algorithms are based on distributing computation tasks over multiple
execution threads. In shared memory programming models, these threads can
access the computation’s data directly in a logically shared address space. Most
parallel algorithm can be expressed easily with respect to correctness because
manual data partitioning and transfers are not necessary, c.f. [10]. Just the inter-
task data dependencies require explicit synchronisation.

However, attaining optimal performance with shared memory programming
is challenging. In fact, multi- and many-core processors are distributed shared
memory (DSM) systems that use message passing internally. They implement
the illusion of a shared memory by implicit inter-thread communication. For
performance optimisation, it is necessary to understand the distributed structure
and the behaviour of the employed consistency protocols, see for example [24].

Message passing could be used directly [19] and would provide explicit con-
trol over all communication. But this often requires a considerable effort, which
distracts from high-level optimisation. For example, optimising data access lo-
cality instead of communication locality and balancing the task decomposition is
more effective and easier with shared memory [29]. Furthermore, hardware-based
DSMs are efficient on a small scale [21]. On larger scales, software-level DSMs
can incorporate algorithm-specific knowledge for higher performance [20,7,4].
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Fig. 1. Elementary operations bridging memory models and hardware

The first software DSMs targeted networks single-threaded computers. With
the transition to many-core architectures, the hardware evolved considerably and
became more diverse and heterogeneous. Therefore, the many-core age poses a
good opportunity to improve upon past DSM research. Examples such as the
Quarks DSM for fast networks [8,30] show that rethinking the design of software
DSMs is worthwhile. In addition, emerging memory models like in C++11 de-
mand new consistency protocols for software DSMs. A generic infrastructure is
needed in order to cope with the many possible combinations of memory models,
consistency protocols, and hardware platforms (Fig. 1). This paper presents a
set of elementary operations that serve as reusable building blocks for DSMs.

The paper is organised as follows. The design of efficient software-level DSMs
depends a lot on the underlying hardware’s structure and the interface to the
applications on top of the shared memory. Section 2 analyses the implications
of the hardware’s and software’s evolution toward many-core architectures. The
section also gives an overview of existing implementation approaches.

Thereafter, Section 3 derives a software architecture of elementary operations
from the previous section’s analysis. The elementary operations serve as building
blocks for DSMs that can be reused in many implementations. They encompass
communication mechanisms, memory management operations, and access track-
ing mechanisms. The final section concludes with a summary and directions of
future work.

2 Software DSMs in the Many-Core Age

DSMs provide a shared logical address space across multiple threads, which do
not necessarily have global access to all of the memory. The illusion of a shared
memory within this address space is created by forwarding access requests and
fetching data into local replica. The DSM has to implement mechanisms to
detect read and write access, to communicate changes between the replica, and
to synchronise concurrent access on behalf of the applications.

Memory models define what applications have to expect about the time and
order in which their data changes become visible to other nodes in the worst case.
Below these models, consistency protocols define how the DSMs actually achieve
a compliant behaviour. Consistency protocols usually provide much stronger
guarantees than the memory model they implement. However, programming
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against a memory model ensures the portability of the applications and leaves
space for the hardware-specific optimisation of consistency protocols.

The next subsection summarises existing DSM implementations with focus on
core mechanisms. Then, the second subsection discusses the hardware’s evolution
toward many-core architectures and its impact on DSM implementations. The
last subsection discusses related memory models and consistency protocols.

2.1 Common Software DSM Mechanisms

The most distinctive aspect of DSM systems is the handling of data replica-
tion. DSMs that always forward access requests to an owner without replication
fall into the family of Partitioned Global Address Spaces (PGAS), see for exam-
ple [11,9,14,32]. They need only little bookkeeping and their implicit communica-
tion patterns are still very easy to comprehend. On the downside, repeated access
to remote data is inefficient because it is mapped to repeated data transfers. In
contrast, replication-based DSMs manage local copies of recently accessed data,
see for example [20,7,4]. Similar to hardware-based caches, they try to exploit
spatial and temporal locality in the application’s data access patterns. While
this can speed up the execution of many algorithms, the necessary bookkeeping
can induce considerable overhead [30].

DSMs can be split into three categories with respect to the interface they pro-
vide to applications: The first category are systems aimed at unmodified legacy
shared memory programs, usually implemented as a wrapper around system
libraries or included in the operating system [2,16,15,17,20,12,18]. They usu-
ally use hardware-support to track the application’s memory accesses. Secondly,
library-based DSMs provide an explicit programming interface [7,4,30,32,25].
The applications have to call specific functions in order to prepare for data
access, commit changes, and request synchronisation. Finally, language-based
DSMs provide explicit sharing constructs [11,9,14]. In addition, the compiler
can convert shared data access into respective library calls for a library-based
DSM. In all three cases, the employed programming languages need a mem-
ory model suitable for shared memory programming. Otherwise, the compiler’s
optimisation can break the consistency by assuming a too weak model [5].

Deeply related to the application interface are mechanisms that detect and
track the application’s access to shared data. Explicit application programming
interfaces export DSM functions to the application. These have to be called tell
about read/write accesses and synchronisation requests. In high-level languages
like C++, such calls can be hidden quite well behind standard interfaces [32,1].
Language and compiler extensions can be used to convert access to shared vari-
ables into respective library calls. An especially interesting approach is abusing
transactional memory extensions because these produce detailed read/write logs
and library calls for code sections that are marked as transactions.

Another common approach are memory protection traps [25,18]. Within page-
based logical address spaces, read/write access rights can be revoked temporarily
for individual pages. Any access to such address ranges raises a trap, which is
then handled by the consistency protocol. Data modifications in affected pages
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can be reconstructed by comparing against golden copies. Detecting the destina-
tion of individual accesses through separate traps is possible but inefficient. An
alternative are virtual machines. These apply binary code transformation and
just-in-time compilers to insert DSM library calls where necessary.

Finally, high-level knowledge about memory access patterns can be exploited
directly. Some programming models, such as data flow based models, expose
coarse grained data dependency information [6]. This is used mainly to order
the execution of tasks but can be used also to replicate, update, and invalidate
data that is shared by tasks.

2.2 From Single-Core to Many Cores

Early DSM systems like Ivy [20] and Munin [7] targeted networks of single-
threaded processors. Apart from expensive high performance computing hard-
ware, the typical inter-processor networks used to be weakly coupled with low
bandwidth and very high latency relative to local memory accesses. In com-
parison to the network, the processors were quite fast and designed for high
single-thread performance.

The high latency and processing overhead of the networking hardware pe-
nalised high numbers of relatively small messages like they are exchanged by
simple consistency protocols [7]. In order to communicate with fewer and larger
messages, complex memory models allowed to manually state application-level
knowledge and the consistency protocols adapted to observed access patterns.
Because of the relatively fast processors, the implied bookkeeping overhead
was negligible. Nevertheless, manual message passing seemed to be much more
straightforward and easier to optimise [8].

The development of many-core architectures is driven by the need for higher
energy and space efficiency [3,27]. In order to increase the compute throughput
per watt for parallel computations, inefficient features that just increase the
single-thread performance are stripped away from the cores. This leads to small
efficient cores, which can be integrated in high number on a single chip. Also,
networking hardware is integrated tightly into the processors. On-chip networks
like [26] provide high throughput communication between a large number of
cores and memory controllers. Likewise low latency processor-interconnects such
as QPI, PCIe, and Infiniband are widely used now.

Many-core DSMs have to address three major aspects: Consistency islands,
mandatory parallelism, as well as diversity and heterogeneity.

Caches often reduce the communication volume between threads and main
memory. The consistency of their replicated data is maintained by cache consis-
tency protocols. These can be efficient even with a large number of threads, but
most rely on a fixed upper bound of participating threads [21]. Hence, scaling out
many-core processors to larger setups, like in the DEEP project [13], does not
extend to global cache consistency. This leads to networks of consistency islands.
Each island contains many threads that can cooperate through hardware-based
cache consistency. The network between islands may provide remote memory
access and even atomics to enforce ordering. But remote data replicated in local



Shared Memory in the Many-Core Age 355

caches can become inconsistent because no notifications about write accesses are
communicated between islands.

In conclusion, software DSMs span multiple consistency islands and the
threads inside each island should share their data replica. Otherwise, storing
separate replica for each of the many threads would waste memory and cache
space. The additional overhead of coordinating the concurrent access to shared
replica is hopefully compensated by sharing the costs of replica management
between all threads.

Secondly, any bookkeeping overhead of software DSMs is amplified by the
slow performance of single threads. For example, remote memory access over
Infiniband links can be as fast as 2μs, which corresponds to just 8 cache misses
on the Intel Xeon Phi (280ns/miss) [24]. Frequent remote memory accesses might
be more efficient than managing local replica. In addition, it is significantly more
efficient to use 2MiB instead of 4kiB pages to describe the logical address spaces.
Thus, page-based access tracking has to process 512x larger pages.

In consequence, exploiting all types of parallelism in DSM implementations is
mandatory to fully utilise the high throughput of whole consistency islands. Just
designing simpler protocols like in the Quarks DSM [30] will not be sufficient.

Finally, DSMs have to deal with diversity between and heterogeneity inside
many-core platforms, even though they share the same instruction set and data
encoding. Depending on the application domain, different design trade offs be-
tween network bandwidth, cache size, and micro-architecture features are more
efficient. Similarly, mixing cores optimised for single-thread throughput with
cores optimised for high parallel throughput is useful for a large class of appli-
cations [13]. Hence, abstractions over the platform’s structure are needed.

2.3 Memory Models and Consistency Protocols

Memory models define the permitted reordering and elimination of concurrent
accesses to shared memory. Applications usually target the memory model of
the used programming language or software-level DSM. Compilers and DSMs
translate this onto the memory model(s) of the underlying hardware.

The strictest model, called sequential consistency, executes all accesses exactly
in the order that was expressed by the programmer. However, to improve the
performance, modern hardware and compilers employ optimisations that reorder
the accesses [22]. For example, the compiler can eliminate any access to memory
locations that are considered private by the compiler. Similarly, the hardware
does not have to keep modified data in caches consistent with the main memory
immediately. This results in a logical reordering of reads and writes from the
main memory’s point of view. Other common optimisation techniques include
store buffers, request queues, out-of-order execution, and speculation techniques
such as branch prediction and prefetching.

For single-threaded programs, these optimisations do not result in any observ-
able change of program logic. But surprising effects can arise with multi-threaded
programs. Most programming languages do not state their memory model explic-
itly and the compilers are free to assume a sequential execution of the generated
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Fig. 2. Architectural overview of memory consistency support for parallel runtimes.
The architecture provides basic mechanisms supporting the implementation of a con-
sistency protocol.

instructions. On processors with a relaxed memory model, additional synchro-
nisation instructions would be needed to regain the intended behaviour. Newer
languages with explicit support for multi-threading, such as C++11, address
this issue by defining a memory model based on sequential consistency for data
race free programs. There, application programmers have to explicitly resolve
data races by applying atomic operations instead of normal read/write access.

The compilers, DSM implementations, and low-level system programmers rely
on the hardware’s memory model. Some architectures provide a formal defini-
tion of their model, for example SPARC-TSO. Most architectures, for instance
x86, only provide ambiguous descriptions in prose although their models can
be specified formally [28]. These models start with very relaxed semantics and
provide memory barriers to enforce stricter models.

Another common primitive to regain control over concurrent memory access
are atomic operations. They are especially useful for the implementation of high-
level synchronisation primitives and lock-free data structures. These instructions
differ between hardware architectures but usually include variants of test-and-set
(TAS), compare-and-swap (CAS/DCAS), fetch-and-increment (FAI), and Load
Linked/Store Conditional (LL/SC). Depending on the memory model, these
operations do not provoke a full memory barrier but only give guarantees for
the affected memory addresses and direct data dependencies.

Memory models are a contract between application and system on a seman-
tic level. Below these, consistency protocols represent concrete strategies that
achieve compliant effects. Different consistency protocols can realise the same
model. Apparently, a consistency protocol for sequential consistency also satis-
fies more relaxed models and can simply ignore all memory barriers.

3 Elementary Operations for Many-Core DSMs

Future distributed shared memory programming should look more like current
shared memory programming on relaxed memory models. The shared memory
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abstraction needs a flexible definition of its memory consistency model. Relax-
ations in this model are the key point for performance improvements exploiting
implementation freedoms. This is analogous to the memory models provided by
hardware. However, the semantics of these models must be defined rigorously [31]
in order to be useful and to prove their correctness. There is an ongoing process
defining the memory models for shared memory architectures. The semantics of
the distributed models must be treated equally.

Most programmers should not need to care about the underlying hardware
memory model. Instead, a useful abstraction should let them state the needed
guarantees in the form of an explicit memory consistency model. This explicit
model is provided by the implementation of a consistency protocol. The im-
plementations of custom protocols benefit from reuse of common functional-
ity. Elementary mechanisms map this functionality to fitting operations on the
underlying hardware model. In distributed shared memory, such as clusters of
many-cores, this hardware model is most likely heterogeneous, forming consis-
tency islands on which more efficient mappings exist. When consistency related
events are restricted to such an island, more efficient implementations of these
mechanisms can be used.

Whereas past DSM systems provided the programmer with a distinct pro-
gramming model, we rather treat DSM as an optimizing feature to existing
programming models. The envisioned use case is an augmentation of parallel
runtime environments through replication.

In combinations like these, consistency guarantees for programmers must be
based on data-race-freedom. Providing fixed guarantees without race freedom
requires tight control over the whole stack of programming language, compiler
optimizations, and hardware architecture while it significantly inhibits perfor-
mance optimization. Providing a guatanteed consistency model for data-race-free
programs is possible in a compiler-agnostic way.

3.1 Communication Mechanisms

The basic shared memory abstraction provided by a given programming model
needs to provide a means by which memory can be managed and accessed. A
basic communication mechanism is needed for coordination. It should provide
the following features:

Data Transfer as a mechanism to read and write memory contents in a dis-
tributed memory system. This will be used by the remote memory function-
ality and to create and manage replicas of memory locations.

Event Notification as very lightweight mechanism to notify hardware threads
of consistency related events like invalidations. Also preemptive notifications
are needed to interrupt applications when necessary.

Thread Groups are a basic feature to group the propagation of events. They
reflect the overall system topology and are used to bootstrap efficient repli-
cation across consistency islands. Groups are dynamic and identify partakers
in sharing that need to be involved in consistency related action.

Collective Events mustbeprovidedthatefficientlydisseminateevents inagroup.
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3.2 Memory Management, Replication, and Remote Access

With the global coordination in place, shared memory can be managed. There is
no strong requirement on the user-visible interface to this memory, but the run-
time is expected to provide some notion of a global address space. The common
memory management mechanisms are:

Allocators for globally coordinated memory. They provide the mapping mech-
anism for named entities of shared memory from which all shared memory
operation needs to be bootstrapped. Through this call, a sharing participant
is registered and its address space has to be adapted accordingly.

Annotation mechanism to configure the semantics of a shared memory range
at runtime. This can be used to provide features like the current ownership
declaration from MYO. Many shared-memory systems do not employ this
feature since they pertain to exactly one set of semantics.

Replica management is the key aspect of performance improvements in a
distributed memory system. Each replica is a locally cached version of the
shared-memory location. Caching is the single most important feature in re-
ducing access times to shared memory. Giving guarantees on the actuality
of cached data is the concern of consistency model semantics. Operations
provided in replica management include creation, update, and invalidation
of single replicas and groups. An acknowledgement mechanism must be pro-
vided to check for the successful invalidation or update of replicas. Replica
management is a background task based on asynchronous messages.

Remote Memory Access used for direct access and modification of a re-
motely available memory location where replication is not beneficial. Remote
memory can be implemented through address space manipulation, mapping
areas of remote physical memory on the PCIe bus, or hardware provided
RDMA in InfiniBand networks. Whenever such hardware support is not
available, the remote memory operations must resort to explicit message
passing. Also the GASPI abstraction can be employed as an implementation
technique here. However, remote memory operations and their interleaving
with local operations on the same memory may have semantics that are hard
to describe. Coherence may not be available on some hardware architectures
when memory is accessed locally through the processor and concurrently
through e.g. an InfiniBand controller. These memory semantics will require
additional fences for correct operation. Alternatively, implementations can
tunnel local access through the remote access channel, thereby forcing a
serialization point with the remote events.

Atomic Operations provide write atomicity enforcement, a guarantee that
the write operation can be seen either by all other threads, or none. They
are a special case of remote memory operations. As far as atomic update
operations are concerned, LL/SC should be provided because it can be im-
plemented on asynchronous messages (and is allowed to fail), yet it enables
implementation of all other atomic operations (FAI, TAS, CAS, DCAS).



Shared Memory in the Many-Core Age 359

3.3 Access Tracking

Consistency protocols share a couple of additional requirements. These can also
be provided as basic mechanisms to ease implementation of new protocols. They
concern the connection of application behavior and consistency related events.
The proposed mechanisms are:

Access Tracking provides a mechanism to track read and write access to repli-
cas. Depending on the shared memory API and desired memory model
semantics this can possibly be made explicit, e.g. using object-oriented pro-
gramming. In the worst case it must be possible to track every single memory
access. Ususally only the first write to a valid replica or read access to an
invalid replica needs to be detected. Obvious implementation choices include
traps through virtual memory mapping protection mechanisms (i.e. Segmen-
tation Fault handlers), low level virtualization, or compiler instrumentation.

Diff/Merge for memory locations is used in order to weaken exclusive write
access, and implement multiple writer protocols. This has been implemented
in a variety of distributed shared memory systems to avoid overhead through
false sharing. It can also be used to offer lightweight updates of larger sharing
units in order to decrease communication bandwidth. The mechanism must
offer shadows or transparent copies of affected memory locations (e.g. pages)
and an efficient coding for generating, storing and applying a difference mask.
This is a prime example for work that should be delegated to helper threads
on many-core architectures.

(Versioned) Modification Tracking per replica is needed in a basic form to
trigger consistency related actions without explicit calls from the API (see
access tracking above). Through additional versioning an implementation
of restricted transactional memory can enable lock elision techniques like
provided in current off-the-shelf multi-core processors.

The described mechanisms are employed to build the semantics of the desired
memory consistency model. Depending on the placement of threads that take
part in the sharing of a memory location, the implementation details of the
single mechanisms can or rather must vary. If sharing is restricted to a single
consistency island, e.g. only among threads of a single accelerator card, some
consistency requirements may be provided by hardware directly. As soon as
sharing stretches across more than one island, implementations must be adapted
to the new situation. Strategic placement of tasks will therefore stay a significant
tool for optimized performance in a shared memory system, just like it is with
today’s ccNUMA architectures.

4 Conclusions and Future Directions

In this paper, the benefits and challenges of distributed shared memory systems
were examined with respect to networks of many-core processors. The many-
core age provides good opportunities to improve upon past DSM research. For
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instance, the underlying hardware evolved much from the loose networks of fast
single-threaded nodes to the tightly coupled networks of consistency islands with
many relatively slow threads. Likewise, the application domains evolved far be-
yond the first numerical simulation codes. The need for increasingly complex
data structures and parallel algorithms pushes toward new parallel languages,
programming models, and memory models.

However, implementing efficient DSMs became more challenging. Exploiting
effectively, for example, consistency islands and their internal parallelism, raises
the effort for basic DSM infrastructure. Fortunately, the memory models and
their consistency protocols share many common mechanisms. The paper derived
an architecture of elementary operations as building blocks for future DSMs.
These help mapping the application’s memory model to efficient consistency
protocols while reusing common infrastructure.

The Consistency Kernel (CoKe) project evaluates the presented elementary
operations in detail. This includes efficient hardware abstractions even on hard-
ware without cache coherence like the experimental Intel SCC many-core proces-
sor and clusters of Intel Xeon Phi processors. A part of the OctoPOS project [23]
at the collaborative research center for invasive computing explores memory
models for invasive computing. This effort targets processors with multiple con-
sistency islands and reuses the elementary operations. Finally, the Many Threads
Operating System (MyThOS) project researches minimal operating system com-
ponents for many-core accelerators. While focusing on lightweight thread man-
agement for HPC applications, generic system services can be shared with CoKe.
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The PerSyst Monitoring Tool

A Transport System for Performance Data
Using Quantiles
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Abstract. This paper presents a systemwide monitoring and analysis
tool for high performance computers with several features aimed at min-
imizing the transport of performance data along a network of agents.
The aim of the tool is to do a preliminary detection of performance bot-
tlenecks on user applications running in HPC systems with a negligible
impact on production runs. Continuous systemwide monitoring can lead
to large volumes of data, if the data is required to be stored permanently
to be available for queries. For system monitoring level we require to store
the monitoring data synchronously. We retain the descriptive qualities
by using quantiles; an aggregation with respect to the number of cores
used by the application at every measuring interval. The optimization
of the transport route for the performance data enables us to precisely
calculate quantiles as opposed to quantile estimation.

1 Introduction

In order to have a running machine used as efficiently as possible we identified
the need to do systemwide monitoring at application level. Inefficient applica-
tions prevent a petaflop system from producing more scientific results compared
to an efficient used supercomputer. The preliminary detection of inefficient appli-
cations running in a petaflop system enables us to select the applications which
need to be optimized. Thus, acquiring performance data of a supercomputer is
necessary. Nevertheless, not all the performance data is necessary for analyz-
ing performance; it is sufficient to retain a descriptive measure per application.
The PerSyst Monitoring tool uses a fixed number of quantiles for performance
monitoring. Quantiles have proven to be sufficient to retain the quality of the
performance data for bottleneck detection [7]. The tool also features system level
measurements. Thus, the synchronization of the measurements throughout the
entire machine was required. The tool copes with a systemwide synchronization
and extraction of data from a petaflop system. This is achieved with two main
ideas: firstly, by using a tree agent hierarchy which extracts data with optimized
routes; and secondly, by using statistical aggregation of data. Performance data
is correlated with the job1 information provided by the resource manager. The

� This work has been funded by the BMBF, grant 01IH13009A (the FEPA project).
1 A job is a scheduled application that runs in a supercomputer.
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job information and topology determines how data will be optimally extracted
from the transport system. The reduction of the amount of data is done by ag-
gregating at the application level using a fixed number of quantiles. We retain
the descriptive qualities by calculating the quantiles with respect to the number
of cores used by the application. Given that the number of quantiles is fixed, it
is not necessary to store data ranges or histogram bins. By doing this we have
a data agnostic database as we do not require previous knowledge of the ranges
where the data lies. The percentiles adjust to the range of data available at a
given monitoring interval.

Depending on the job size, we may use the tree topology partially and in the
most efficient way. System level monitoring is possible by having the distribu-
tion of all the jobs together with the monitoring data from unused cores. The
aggregations can then be performed for a monitoring interval at system level.

Jobs are assigned to agents that gather the performance data such that the
distribution among these agents is as balanced as possible and take into consid-
eration the topological closest distance to the entire job. If job information is
collected centrally, calculating the accumulated frequency can be done without
estimations.

Jobs that can’t be handled at one collector are distributed to the nearest
collectors in the tree of agents. These jobs will require an estimation of quantiles
based on quantile data obtained at each collecting agent. The calculated quantile
subsets are pushed upwards in the topology network using, only in this case, the
already existing solutions of a reduction network. The monitoring system has
already been deployed in an Itanium IA2 architecture based SGI supercomputer
system with 9728 cores, in a BladeCenter HX5 supercomputer based on Intel
Xeon architecture with 8200 cores, and has been adapted at a IBM System x
iDataPlex Sandy Bridge-EP Supercomputer with 147,456 Cores.

In Section 2 related work is described. Section 3 deals the details of the Per-
Syst Monitoring tool’s transport system. Estimation of quantiles is explained in
Section 4. The approach for collecting performance data of jobs is explained in
Section 5. Results of the Sandy Bridge-EP system are described in Section 6.
We finally conclude in Section 7 and give a brief outlook of the tool.

2 Related Work

There are other tools which have a tree hierarchy architecture for extracting
and/or storing data. The Multicast Reduction Network tool (MRNet) is a tool for
parallel applications enabling high-throughput communications [10]. Although
MRNet is not, per se, a performance measuring tool it can be used for these
purposes [2]. MRNet uses the principle of a hierarchy of software in a tree topol-
ogy, also referred to as a tree-based overlay network, for scaling to hundreds of
thousands of cores. Multicast is done from the frontend downwards through the
tree, until the command reaches the leaves of the tree-topology. Transport of
data is done with a bottom-up logic, i.e. from the leaves of the tree to the fron-
tend. Aggregation can be implemented via customisable filters to aggregate data
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packets. The filters, however, can aggregate data only from piece-wise continu-
ous aggregation functions. The NWPerf tool [9] uses a hierarchical structure to
extract performance data without statistical aggregation. This tool provides sys-
temwide monitoring of performance counters for high performance computers.
Periscope [5] is a scalable tool for analyzing the performance of a single appli-
cation. It enables a distributed on-line search for performance metrics based on
hardware counters as well as metrics for MPI and OpenMP [6]. Periscope uses a
hierarchy of agents to extract information and to send commands to the leaves
of the tree hierarchy. Distributed hierarchical storage also use the idea of a tree
structure to query performance data [3].

The PerSyst Monitoring tool has been developed as an overlay of distributed
software with a tree agent hierarchy. Using a tree structure we overcome many
scalability problems, just like other existing tools. However, data collection and
extraction is done differently, making it a distinct tool from other tree over-
lay network tools. We exploit the topology of the running jobs to optimize the
extraction of performance data on a large cluster. The storage of the perfor-
mance data is done as close as possible to the measurement source, instead of
sending the information through the entire tree of agents. A difference to other
hierarchical tools is that the collecting agents of a job will have a common and
smaller subtree whose root node will finally process the job instead of the fron-
tend thereby avoiding the usage of the entire tree topology.

3 The Transport System

The PerSyst Monitoring tool has three types of agents. These are the synchro-
nization agent, or SyncAgent ; the Collector Agent ; and the PerSyst Agent, as
shown in Figure 1. The main functionality of the SyncAgent is to synchro-
nize measurement, the Collector Agent collects the performance data, and the
PerSyst Agent performs the measurements. Every type of agent has a core frame-
work that implements the communication and the basic functionality. The frame-
work provides interfaces which allow the use of ad-hoc delegates. The delegates
interact with batch schedulers and system measuring interfaces. This ensures
the portability of the tool.

The PerSyst Agents measure at the synchronized command of the frontend.
The frontend is the SyncAgent at the root node and orchestrates the rest of the
tree. The communication protocol used is TCP/IP, a reliable communication
protocol compared to the UDP protocol. While the SyncAgents can only perform
estimation of quantiles, the layer of Collector agents performs exact calculations
of quantiles. If the collection of performance data is needed at a SyncAgent,
the Collector and SyncAgents involved respect the parent-child relation of the
original tree configuration. The PerSyst Agents, conversely, send the performance
data to an optimized route in the agent tree.

The aggregation of subsets of percentiles is not possible using the defini-
tion and can only be done using estimations, thus two types of aggregations are



366 C. Guillen, W. Hesse, and M. Brehm

Fig. 1. Agent hierarchy

necessary at different levels of the hierarchy tree. Brim et al. [2] use the same
aggregations function (or filters according to their terminology) among the soft-
ware components which we changed to avoid estimations as much as possible.
The top-down control of agents was kept, by sending the command through the
tree structure of the agents, just like other hierarchical tools. However, the re-
sponse of the PerSyst Agents is not necessarily directed to their Collector parent.

4 Estimation of Quantiles

For practical purposes, the definition and implications of using percentiles will
be used hereafter. Other quantiles (for example quintiles, quartiles, or deciles)
can be adapted to the definitions and usage.

The standard definition [4,8] is the kth percentile Pk is a value within the
range of x, say xk, which divides the data set into two groups. The fraction of the
observation specified by the percentile falls below and its complement falls above.
Thus, it is necessary to obtain the empirial cumulative distribution function,
hereafter cdf, of the variate x to calculate any given percentile. To calculate the
kth percentile of a distribution, Pk, the value of xk which corresponds to the
element position Nk

100 in the cdf is taken, where N is the sample size. When Nk
100

is not an integral value the linear interpolation of the cdf between the value
corresponding to �Nk

100� in the cdf and the next value corresponding to the cdf

(i.e. (�Nk
100�+ 1)) is calculated.

A feature of monitoring systems with tree topologies is that they can be con-
figured to perform meta-aggregations2. If percentiles are used, estimations are
required when an application requires the use of the entire tree topology, i.e.
to apply meta-aggregation of percentiles. The percentiles per job are collected

2 The term meta-aggregation refers to performing aggregations of aggregated sets. For
example, calculating averages from the averages of multiple sets.
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within an agent that aggregates subsets of percentiles. These percentiles are col-
lected and estimated at each common parent of the Collectors. At each common
parent the estimates are done by inferring the population of each Collector per
job. For example, take

P1 =
{
p10, p

1
1, ..., p

1
100

}
(1)

as the percentiles from Collector 1, C1 and

P2 =
{
p20, p

2
1, ..., p

2
100

}
(2)

as the percentiles from Collector 2, C2. Both P1 and P2 belong to the same job
such that the new percentiles need to be estimated from both of them. Given
that a distribution is not known a priori, the entire set of observations from
P1 and from P2 is estimated assuming a uniform random distribution between
each percentile Pk and Pk+1. As seen in Figure 2, uniform random distribution
assumes that the data between two deciles is uniformly increasing and curves
in the cdf are replaced with a line joining two deciles. The percentile values
themselves do not need to be changed; they are part of the newly recreated set.
For example:

S1 =
{
p10, r

1
1, r

1
2 , ..., p

1
1, r

1
n..., p

1
100

}
(3)

and

S2 =
{
p20, r

2
1, r

2
2 , ..., p

2
1, r

2
n..., p

2
100

}
(4)

where r are the random values, and S1 and S2 are the recreated sets. The new
estimated set is then S = S1∪S2. The random values are produced in such a way
that they lie within the range of two neighboring percentiles, thus the value ri
lies between pk ≤ ri ≤ pk+1. The number of random values R(k, k+ 1) between
two neighbouring percentiles, k and k + 1, where k ≥ 1 is

R(k, k + 1) =
No

np
− 1 (5)

where No is the total number of observations and np is the number of percentiles
(example: np = 100 when all percentiles are used, and np = 10 when only
deciles are used). This formula applies except for the first interval, given that

Fig. 2. Example of approximating a population with uniform distribution. Graph a)
represents the real distribution. Graph b) represents an estimation using uniform dis-
tribution.
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the minimum (considered to be the percentile zero) is in this range, there is one
less random value to produce:

R(0, 1) = No/np − 2 (6)

Both sets S1 and S2 are grouped together and they form the estimated obser-
vations of the collectors C1 ∪ C2. The cdf is calculated from S, the estimated
population. The percentiles are then determined from the estimated population.
Analogously, this method can be applied to more than two sets, i.e. percentiles
coming from more than two Collectors. Once all the estimated sets are joined
together an estimated but complete population is obtained whose cdf can be
determined as well as its global percentiles.

5 Collection of Jobs

The decision as to where and at what point the information will be processed is
calculated by a job balancer which is integrated in the frontend of the collection
system. For every measuring interval, the job balancer will assign the jobs to a
collection route (in a large cluster new jobs may appear, while other jobs are
terminated and removed). This also ensures that a same job which is reassigned
to other nodes will also be reassigned to a new collection route3.

The PerSyst Agents do not have knowledge of all of the available collectors
only of their parent Collector. When the measuring command arrives they also
receive information of the route in the tree where they should send the data. The
route specifies either the Collector to whom they should send the performance
data or if the agent itself can aggregate the performance data and perform
the output. After the measurement cycle is completed this information is then
lost. The only information kept is the communication address of the parent.
Algorithm 1 is the main algorithm which performs this balancing.

When the job size fits exactly in one compute node4, the job is processed
locally. Requests that exceed the capacity of a database, or file system, or any
other storage method, will create a bottleneck. Thus, if these requests are ex-
ceeding the limits imposed by the storage medium, the jobs are sent through the
network tree. lj and lmax are called loads, and the terms represent the amount
of performance data of a job lj or the maximum amount of performance data a
Collector can take lmax. For jobs where lj ≤ lmax, it is only necessary to use one
Collector and not the entire tree structure for extracting and collecting data.
Using the entire tree rather than a part of it implies using more communication.
lmax depends on the HPC System and the amount of performance data collected.
These jobs are defined as medium sized jobs (i.e, jobs whose load lj ≤ lmax and

3 The tool would, therefore, redistribute the job collection even with migration of
computations to another hardware architecture, if the new job placement information
is made available by the batch scheduler.

4 A compute node refers to an operating system instance which runs on one or more
cores with shared memory.



The PerSyst Monitoring Tool 369

Algorithm 1. Algorithm to distribute jobs to collectors.

Require: ⌈∑
J lj

lmax

⌉
≤ C (7)

Where C is the set of collectors and lj is the amount of performance data, or load,
from job j and J is the set of all jobs at a measuring interval. lmax is the maximum
performance data amount a Collector can take.

1: Sort jobs J in descending order of load lj {A job j is running on different compute
nodes monitored by agents Aj .}

2: Initialize all collectors in C:
3: for all load lc of c ∈ C do
4: lc ← 0
5: end for
6: Set loads from jobs to collectors:
7: for all j ∈ J do
8: if lj = 1 then
9: Mark j to be processed directly at Aj

10: Continue to next j in the for-loop
11: end if
12: c ← FindBestCollector(C, Aj)
13: ltemp ← lj + lc.
14: if ltemp > lmax then
15: DistributeLoadOnCollectors(C, lj , Aj)
16: else
17: Assign lc ← ltemp

18: end if
19: end for

which run in more than one compute node). Medium sized jobs are collected
at one Collector and the aggregation is done with a precise calculation of the
percentiles. In this case applying Algorithm 1 with the FindBestCollector al-
gorithm (Algorithm 3) will be sufficient to determine where the job should be
sent to.

The FindBestCollectorAlgorithm finds the Collector with the minimum as-
signed performance data load (lc in Algorithm 1). When minima are found the
algorithm considers also the topological distance of a Collector and a PerSyst
agent so jobs will be sent to their closest Collector. The topological distance, td,
of two tree nodes (leaves or nodes) has been defined to be the longest distance
between each node and their common collection node, i.e. the longest distance
that the data has to travel such that it is collected centrally at the root of
the smallest sub-tree. As described in Algorithm 2, the jobs are distributed to
their closest Collector or Collectors. The closest Collector to a job is defined as
the Collector with the minimum total td of itself with respect to all the Per-
Syst Agent nodes were the job is running. By calculating the td, the algorithm
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Algorithm 2. Algorithm to find Collector with minimum load and minimum
topological distance.

1: Algorithm FindBestCollector(C, A)
2: C′ ← all ci with minimum load.
3: if |C′| > 1 then
4: for all c′ ∈ C′ do
5: Set d ← 0 where d is the topological distance from c to a.
6: for all a ∈ A do
7: d ← d+ TopologicalDistance(c, a)
8: end for
9: Insert c′ and d in Collector-Distance ordered map. {c′ ∈ C′ is mapped to the

total distance dc′ ∈ D with f(c′) → dc′ with a surjective mapping f : C
′ → D

}
10: end for
11: return c′′ {where c′′ = f−1(min(D)), i.e. the collector with minimum distance.

If |f−1(min(D))| > 1, ie more than one collector, only the first one is returned.}
12: else
13: return c′ {where c′ ∈ C′ with minimum load.}
14: end if

guarantees that the normal parent-child relations are used as much as possible.
This avoids sending additional Collector information to the PerSyst Agents more
than necessary.

When lj > lmax the job size is handled with percentile estimation and use
the tree partially to fit the collection in the lowest possible number of collectors
to extract the information; these jobs are called for convenience big jobs. Algo-
rithm 3 shows how this distribution is done. The idea is to use the tree structure
only when it is necessary, otherwise aggregate with exact calculations and store
information as quickly and as closest to the source as possible.

The DistributeLoadOnCollectors algorithm is similar to the previous algo-
rithm FindBestCollector. The main difference is that the number of collectors
nc where the job will be collected is determined. Once the algorithm determines
which Collectors will be used, the remaining load is distributed among them.
The last remaining task is to calculate the common collection node among the
SyncAgents of an entire job. With tree operations the agent responsible for big
jobs can be determined. Medium sized jobs finish their collection at one Col-
lector. One-node jobs finish their collection at the PerSyst agent in charge of
monitoring it’s node. Figure 3 shows the different possibilities of retrieving a
job.

The algorithm that calculates the topological distance is not shown but has a
time complexity of O (log(n)) as it reduces to a tree search. The complexity of
the calling algorithm, including all the calls, is therefore O

(
n2log(n)

)
, where n

is the number of the measuring agents.
Even though the measurements are done synchronously, the collection is done

asynchronously, i.e. which ever process finishes collecting a job’s data will start
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Algorithm 3. Algorithm to distribute performance data load in several collec-
tors.
1: Algorithm DistributeLoadOnCollectors(C,lj , Aj)
2:

nc ← ceiling(
lj

ldist
) (8)

{where nc is the number of Collectors that will receive the job performance data,
also referred to as load, from all agents Aj . ldist refers to a defined distribution
load the Collectors will take, thus ldist < lmax}

3: iter ← 0
4: A′

j ← Aj where A
′
j is a temporary variable for agents of a job.

5: while iter < nc do
6: c ← FindBestCollector(C, A′

j)
7: insert c in C′ set.
8: Child agents of c allocate their load in c
9: Remove all agents a which are children of c from A′

j

10: iter ← iter + 1
11: end while
12: Place the rest of the load on the first nc Collectors found:
13: for all a ∈ A′

j do
14: c ← FindBestCollector(C′ , Aj)
15: place load of a in c:
16: lc ← la
17: end for

performing the output. The measurements are associated to the synchronized
measuring interval. The collection of the performance data asynchronously alle-
viates the amount of synchronized communication of extracted data on a large
cluster.

Extremely big jobs, like those which take up an entire petaflop system, are
also handled. The solution is to collect them like the typical procedure other
hierarchical tools would do, having aggregation at the middleware of the tree
topology that provide’s quantile estimations.

6 Results

The PerSyst Monitoring Tool runs currently in production mode in an IBM
X Series Cluster system, hereafter SuperMUC, which is based on Intel Sandy
Bridge-EP processors and Mellanox FDR-10 Infiniband technology. SuperMUC
comprises 18 thin node islands, among other systems. Each thin island has 516
nodes each having two Sandy Bridge-EP Intel Xeon E5-2680 processors with a
total of 16 cores per node (a Sandy Bridge-EP processor has 8 cores). A thin
island consists of 512 nodes (8256 cores). All individual islands are connected
internally via a fully non-blocking infiniband network. SuperMUC has, thus,
9,216 nodes with a total of 148,608 cores in the thin islands. Faster interconnects
are available at the level of the island. The batch scheduler does not allow users
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Fig. 3. Example of retrieval of performance data

to share a compute node, thus, a compute node is taken exclusively for a job.
There are four job classes; each allows submissions with a different range of job
sizes.

The PerSyst Monitoring tool was configured to run as one instance (one tree
of agents with one frontend) on SuperMUC. The fanout of the tree hierarchy
consisted on one SyncAgent as a frontend, 12 SyncAgents as a middle layer, 216
Collectors, and 9288 PerSyst Agents at every compute node. The 13 SyncAgents
were placed at an external node which is used for administrative tasks. Six
Collectors per island were placed having each 43 PerSyst Agents (child agents).
Parent-child relations among Collectors and PerSyst Agents were placed in the
same island. Thus, the tree agent topology exploited the faster interconnects with
these placements. The tool was configured to run and aggregate using deciles (10
percentiles). Table 1 shows the collection of jobs at the different levels and the
average values from 10 measurements of the job sizes running at the same time.
The collection per job at a single point for percentile aggregation is done only
at the Collector Agent level and at the PerSyst Agent level. The estimation of
percentiles is on average 91% circumvented.

The topology network can be used fully when all the jobs travel to the frontend
and are processed at each tree node. The alternative is to try to collect at selected

Table 1. Distribution of jobs in agent tree. Taken from 10 measurements in 10 days.

Tree level Average number of Jobs Percentage

Frontend 4.8 2.59%
SyncAgents 11.8 6.37%
Collector Agents 157.5 85%
PerSyst Agents 11.2 6.04%
Total number of jobs 185.3 100%
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Table 2. Usage of the topology network for 58 measurements taken during a week

Job retrieving method Average number of nodes used

Jobs travel through 905.81
established topology
connections until frontend

Jobs travel to selected 217.59
nodes with job load
balancing algorithm

Table 3. Collection time from PerSyst Agents to Collectors at a measuring interval

Performance data Performance data
one Collector of SuperMUC

Bytes 204,426 44,156,016
Average time [s] 0.85 0.85
Used bandwidth [MiB/s] 0.22 49.54

nodes with the job load balancing algorithm (described in Section 5) and perform
the output when the job has been collected. Table 2 shows the topology network
usage with these two different methods.

The results show that the usage of the topology nodes is more than a factor
of four with the traditional bottom-up retrieval of job information. To obtain
the time it took to transmit the performance data, nine islands were measured
and the average per Collector Agent was taken. Note that the transmission
through the network interconnect between nodes includes measurement times
and processing times within the PerSyst Agents. As soon as a performance datum
is available, depending on the available data, it is sent in groups to the Collectors.
This is done in order to not congest the network with performance data and
explains the low bandwidths obtained.

By using deciles, we are able to reduce the amount of data more than 91%
of the total amount of performance data in a week. No matter how big the job
is, its information is compressed to 13 data points per monitoring interval: the
deciles, the minimum (considered decile zero), the number of observations, and
the average.

7 Conclusions

Percentiles have proven to be effective in data reduction. Due to the use of
percentiles, two different kinds of aggregations are needed that produce exact
calculations at certain nodes and other type of aggregations that estimate the
new set of percentiles from meta-aggregation. In order to avoid meta-aggregation
of percentiles, the transport systems adapts to the jobs’ topological placement
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in the supercomputer. Not only the estimations are avoided, but the extraction
of data is optimized compared to the traditional extraction that uses the entire
tree topology.

Future work includes using a PerSyst Agent also as a Collector for doing
collecting tasks in order to further optimize the amount of resources deployed in
the supercomputer. Furthermore, optimizations in the algorithms presented will
be carried out in order to reduce the time complexity of the job balancer.
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Abstract. Many scientific areas make extensive use of computer simu-
lations to study complex real-world processes. These computations are
typically very resource-intensive and present scalability issues as experi-
ments get larger, even in dedicated clusters since they are limited by their
own hardware resources. Cloud computing raises as an option to move
forward into the ideal unlimited scalability by providing virtually infi-
nite resources, yet applications must be adapted to this new paradigm.
We propose a generalist cloudification method based in the MapReduce
paradigm to migrate numerical simulations into the cloud to provide
greater scalability. We analysed its viability by applying it to a real-
world simulation and running the resulting implementation on Hadoop
YARN over Amazons EC2. Our tests show that the cloudified applica-
tion is highly scalable and there is still a large margin to improve the
theoretical model and its implementations, and also to extend it to a
wider range of simulations.

1 Introduction

Scientific simulations constitute a major set of applications that attempt to
reproduce real-world phenomena in a wide range of areas such as engineering,
physics, mathematics and biology. Their complexity usually yields a significant
resource usage regarding CPU, memory, I/O or a combination of them.

In order to properly scale the application it can be distributed to a clus-
ter or grid. While these approaches have proved successful, they often rely on
heavy hardware investment and they are tightly conditioned by its capabilities,
which de facto limits actual scalability and the addressable simulation size. Since
sharing resources across multiple clusters implies several limitations, cluster ap-
plications cannot be considered sustainable, because their scalability is strongly
dependant on the cluster size.

Despite scientific simulations will likely benefit from the upcoming exascale
infrastructures [1], the challenges that must be overcome –power consumption,
processing speed and data locality, for instance [2]– will probably rise again in
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the future as applications become more complex; therefore, the ideal situation
of unlimited scalability seems difficult to reach with this approach.

Moreover, recent advances in cloud interoperability and cloud federations can
contribute to separate application scalability from datacenter size [7, 12]. From
that point of view, applications would become more sustainable, i.e. they can be
operated in a more flexible way through heterogeneous hardware, cross-domain
interactions and shared infrastructures.

Another recent option is cloud computing, which has been increasingly stud-
ied as an alternative to traditional grid and high-performance distributed envi-
ronments for resource-demanding and data-intensive scientific simulations [15].
Cloud computing emerged with the idea of virtual unlimited resources obtain-
able on-demand with minimal management effort [11]. It would enable the
execution of large simulations with virtual hardware properly tailored to fit spe-
cific use cases like memory-bound simulations, CPU-dependant computations or
data-intensive analysis. It holds further advantages, such as elasticity, automatic
scalability and instance resource selectivity which, along with its so-called pay-
as-you-go model, allow to adjust the required instances to the particular test
case size while cutting-down the resulting costs.

There are several issues that can be tackled in order to develop a sustainable
application, such as:

– Virtual unlimited scalability can be achieved by eliminating architectural
bottlenecks such as network communications or master node dependences.
This minimises the added overhead of working with more nodes, making a
better use of the available resources.

– By making the application platform independent, we can aggregate compu-
tational resources possibly located in different places, hence local data center
size would not be a limitation. Moreover, we can exploit cluster and cloud
resources simultaneously following an hybrid scheme.

– A flexible application could scale up or down easily according to instanta-
neous user needs, thus adapting computing resources to specific simulation
sizes and deadlines.

– If the application already exists and has to be adapted, it is desirable to
minimize the impact on the original code, thus performing the minimal mod-
ifications needed to achieve the aforementioned objectives.

Given the former, we suggest a paradigm shift from multi-thread computa-
tions to a data-centric model that would distribute the simulation load across a
set of virtual instances. This paper focuses on resource-intensive numerical sim-
ulations which hold potential scalability issues on large cases, since standalone
and cluster hardware may not satisfy simulation requirements under such stress
circumstances, and it proposes a generic methodology to transform numerical
simulations into a cloud-suitable data-centric scheme via the MapReduce frame-
work.

This process is illustrated by means of a real production application, a simula-
tor which calculates power consumption on railway installations. This simulator,
starting from the train movements (train position and consumption), calculates
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the instantaneous power demand (taking into account all railway elements such
as tracks, overhead lines, and external consumers) indicating whether the power
provisioned by power stations is enough or not. Simulator internals consist on
composing the electric circuit on each instant, and solving that circuit using
modified nodal analysis. The starting version of the simulator, based on multi-
threading, is memory bounded, strongly limited by the number of instants to
be simulated simultaneously (and therefore by the number of threads). The re-
sulting performance is evaluated on Amazon Elastic Compute Cloud running
Hadoop YARN MapReduce.

The rest of this paper is organized as follows: Section 2 discusses related works,
Section 3 describes our proposed methodology, Section 4 illustrates the cloudifi-
cation transformation method on a particular use case, Section 5 evaluates how
the resulting design implementation on Hadoop MapReduce 1.1.2 (MRv1) and
Hadoop YARN Mapreduce 2.2.0 (MRv2) behaves on both a cluster and Ama-
zon Elastic Compute Cloud (EC2) and, finally, Section 6 provides key ideas as
conclusions and some insight in future work.

2 Related Work

Scientific applications and their adaptability to new computing paradigms have
been dragging increasing attention from the scientific community in the last few
years. The applicability of the MapReduce scheme for scientific analysis has been
notably studied, specially for data-intensive applications, resulting in an overall
increased scalability for large data sets, even for tightly coupled applications [6].

The possibility to run such simulations in the cloud in terms of cost and
performance was studied in [10], concluding that performance in the Abe HPC
cluster and Amazon EC2 is similar –besides the virtualization overhead and high-
speed connectivity loss in the cloud– and that clouds are a viable alternative for
scientific applications. Hill [9] investigated the trade-off between the resulting
performance and achieved scalability on the cloud versus commodity clusters;
despite at the time of this work the cloud could not properly compete against
HPC clusters, its low maintenance and cost made it a viable option for small
scale clusters with a minimum performance loss.

The relationship between Apache Hadoop MapReduce and the cloud for scien-
tific applications has also been tackled in [8], which establishes that performance
and scalability tests results are similar between traditional clusters and virtual-
ized infrastructures.

In this context, trends are naturally evolving to migrate applications to the
cloud by means of several techniques, and this includes scientific simulations as
well. D’Angelo [4] describes a Simulation-as-a-Service schema in which paral-
lel and distributed simulations could be executed transparently, which requires
dealing with model partitioning, data distribution and synchronization. He con-
cludes that the potential challenges concerning hardware, performance, usabil-
ity and cost that could arise could be overcome and optimized with the proper
simulation model partitioning.
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In [13], Srirama, Jakovits and Vainikko study how some scientific algorithms
could be adapted to the cloud by means of the Hadoop MapReduce framework.
They establish a classification of algorithms according to the structure of the
MapReduce schema these would be transformed to and suggest that not all of
them would be optimally adapted by their selected MapReduce implementa-
tion, yet they would suit other similar platforms such as Twister or Spark. They
focus on the transformation of particular algorithms to MapReduce by redesign-
ing the algorithms themselves, and not by wrapping them into a cloudification
framework as we propose.

Finally, in [14] we find interesting efforts to move desktop simulation appli-
cations to the cloud via virtualized bundled images that run in a transparent
multi-tenant fashion from the end user’s point of view, while minimizing costs.
As previously discussed, we believe the virtualization middleware might affect
performance since it does not take into account any structural characteristics of
the model, which could be exploited to minimize cloudification effects or drasti-
cally affect execution times or resource consumption.

Our work focuses in providing a general methodology to transform numeri-
cal simulations into a cloud-suitable execution framework with minimal impact
to the original code, while exploiting simulation model features that inherently
aid with partitioning and performance optimization. A related approach is the
so-called parameter sweep [3], in which the same simulation kernel is executed
multiple times with different input parameters, thus providing task indepen-
dence. However, in our approach we transform a single simulation into several
autonomous tasks through any independent variable that belongs to the simula-
tion domain, not only input parameters. Domain decompositions and transfor-
mations can be used in applications where task independence is not so evident;
therefore, task independence is a result of our methodology, not a means.

3 Methodology Description

The MapReduce paradigm consists of two user-defined operations: map and re-
duce. The former takes the input and produces a set of intermediate (key, value)
pairs that will be organized by key by the framework so that every reducer gets
a set of values that correspond to a particular key [5].

As a data-centric paradigm, in which large amounts of information can be
potentially processed, these operations run independently and only rely upon
the input data they are fed with. Thus, several instances can run simultaneously
with no further interdependence. Moreover, data can be spread across as many
nodes as needed to deal with scalability issues.

Simulations, however, are usually resource-intensive in terms of CPU or mem-
ory usage, so their scalability is limited to hardware restrictions, even in large
clusters. Our goal is to exploit the data-centric paradigm to achieve a virtually
infinite scalability so that large numeric simulations can be executed indepen-
dently of the underlying hardware resources, with minimal effects to the original
simulation code. From this point of view, numeric simulations would become



A Cloudification Methodology for Numerical Simulations 379

Fig. 1. Methodology overview

more sustainable, allowing us to spread simulation scenarios of different sizes
in a more flexible way, using heterogeneous hardware, and taking advantage of
shared inter-domain infrastructures.

To achieve this, we will take advantage of MapReduce’s lack of task interde-
pendence and data-centric design, this will allow to disseminate the simulation’s
original input to distribute its load among the available nodes, which will yield
the scalability we aim for. The steps involved in our proposed methodology are
described in the following sections.

3.1 Application Analysis

Our purpose is to divide the application into smaller simulations that can run
with the same simulation kernel but on a fragment of the full partitioned data set,
so that we can parallelise the executions and lower the hardware requirements
for each.

Hence, we must analyse the original simulation domain in order to find an
independent variable –Tx in Fig. 1– that can act as index for the partitioned
input data and the following procedures. This independent variable would be
present either in the input data or the simulation parameters and it could rep-
resent, for example, independent time-domain steps, spatial divisions or a range
of simulation parameters.

3.2 Cloudification Process Design

Once the application is shown suitable for the process, it can be transformed by
matching the input data and independent variables with the elements in Fig. 1,
thus resulting in the two MapReduce jobs described below:

– Adaptation stage: reads the input files in themap phase and indexes all the
necessary parameters by Tx for every execution as intermediate output. The
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Table 1. Test cases definition

Experiment Simulated Input

time (hours) size (MB)

I 1 1.7

II 33 170

III 177 1228.8

IV 224 5324.8

Table 2. Execution environments

Configuration Platform Underlying

infrastructure

1 Multi-thread Cluster node

2 MRv1 Cluster node

3 MRv2 Cluster node

4 MRv2 EC2

original data must be partitioned so that subsequent simulations can run au-
tonomously with all the necessary data centralized in a unique (Tx,
parameters) entry.

– Simulation stage: runs the simulation kernel for each value of the indepen-
dent variable along with the necessary data that was mapped to them in the
previous stage, plus the required simulation parameters that are common for
every partition. Since simulations might generate several output files, map-
pers would organize the output by means of file identifier numbers as keys,
so as reducers could be able to gather all the output and provide final results
as the original application.

4 Case Study

To illustrate how this methodology works on a real-world use case, we applied it
to transform a memory-bound railway electric power consumption simulation.

Four test cases were considered with variations on the simulation’s initial
and final time and, consequently, input data volume and memory consumption.
A description of these simulations is provided in Table 1. Cases I and II should
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Fig. 3. Case study original simulation structure

not yield any significant load, yet simulation III is expected to show some differ-
ences, while the biggest experiment, case IV, should reveal the platforms’ actual
behaviour and limitations as simulations become larger, if any. These tests are
meant to indicate the performance of the cloudified adaptation versus the origi-
nal application under an increasing amount of input data and simulation time.

As seen in Fig. 2, this application does not scale well for large test cases
in terms of memory usage in a standalone environment (Configuration 1, see
Sec. 5.1 for further details). We believe we can achieve greater scalability by
cloudifying the application, since we can distribute the simulation load across
several nodes. It would also disperse memory usage so that we could always add
a new node in case we need to tackle a larger case. To show its feasibility, next
we will apply the method described in Section 3.

4.1 Analysis

The structure of the selected application is shown in Fig. 3. It consists of a
preparation phase in which all the required input data is read and fragmented
to be executed in a predefined number of threads. Each of the resulting threads
then perform the actual simulation by means of an electric iterative algorithm,
storing in shared memory the results that will be merged in the main thread to
constitute the final output files.

This simulator, starting from the train movements –that describe train posi-
tion and power consumption– and infrastructure design –tracks, power stations,
among others– calculates the instantaneous power demand taking into account
all railway elements such as tracks, overhead lines, and external consumers, in-
dicating whether the power provisioned by power stations is sufficient or not.
Simulator internals consist on composing the electric circuit on each instant,
and solving that circuit using modified nodal analysis. The initial version of the
simulator, based on multi-threading, is memory bounded, strongly limited by the
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number of instants to be simulated simultaneously, and therefore by the number
of threads.

The key to adapt such algorithm to a cloud environment resides its input files,
for they hold an indexed structure that stores in each line an (instant, parameters)
pair. Therefore, we can consider the temporal key as the independent variable re-
quired for the theoretical model.

4.2 Cloudification

Following the cloudification schema, the application was transformed into two
independent MapReduce jobs executed sequentially.

In the first job, which matches the first MapReduce in Fig. 1, the movement
input files, Ik, are divided into input splits by the framework according to its
configuration. Each split is then assigned to a mapper, which reads each line
and emits (key, value) pairs where the key is the instant ti and the value is
the corresponding set of parameters for such instant; the intention is to provide
reducers with a list of movement parameters per instant In, . . . , Im –each element
representing the movement of one of the trains involved in the overall system
for a particular ti– to concatenate and write to the output files, so that the
simulation kernel can be executed once per instant with all the required data.

As described in Fig. 1, the output of the previous job is used as input to
the mapper tasks by parsing each line in order to get the data corresponding
to the instant being processed, which is passed to the electric algorithm itself
along with the scenario information obtained from the infrastructure file that is
also read by the mapper. The mappers’ output is compounded by an output file
identifier Fj as key and the actual content as value.

Reducers simply act as mergers gathering and concatenating mappers’ output
organized by file identifier and instant as a secondary key injected in the value
content; this arranges the algorithm’s output so that the full simulation results
are shown as in the original application, in which each output file contains the
results for the whole temporal interval of the simulation.

5 Evaluation

In order to asses the application’s performance we compared its execution times
on both a cluster and the cloud. The following sections describe the utilized
resources and a discussion on the obtained outcome.

5.1 Execution Environments

Table 2 summarizes the infrastructures and software platforms on which the
tests were conducted.

In a first place, we tested the original multi-thread application’s memory
consumption and performance on a cluster node consisting of a 24 Xeon E7
cores and 110GB of RAM (Configuration 1).
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This node was also used to test the resulting cloudfied application to avoid
variations that may arise from heterogeneous configuration, resource differences,
or network latency in case of the MapReduce application [10]. This isolation
favours the multi-thread application, which is especially designed to perform in
standalone environments, yet it allows to focus on the actual limiting factors
that may affect scalability in large test cases like I/O, memory consumption
and CPU usage. Both Hadoop versions –MRv1 and MRv2– were installed and
configured on the single-node cluster to benchmark their performance against
the original application (Configurations 2 and 3, respectively).

MRv2 was chosen to be deployed on EC2 given its improved resource man-
agement options and better overall performance (Configuration 4). The cloud
infrastructure consisted of a general purpose m1.medium node as dedicated mas-
ter and several memory optimized m2.xlarge machines as slaves, with 2 CPUs
and 17.1GB of RAM each. Tests on EC2 have been conducted using a variable
number of slaves in order to check if scalability issues arise as the number of
nodes increases.

5.2 Results Discussion

As we already discussed in Section 4, the original multi-thread application’s
memory usage suggests a lack of scalability in a cluster environment. We will
now analyse whether the cloudified simulation behaves as expected in relation
to performance and scalability by examining its execution times on several ex-
ecution environments, which are shown in Fig. 4. This figure shows the time
measurements obtained on the configurations in Tab. 2, in which the EC2 clus-
ter is constituted by five slaves –graphs (a), (b) and (c)–. The EC2 values also
served as baseline for the scalability study shown in (d).

(a) Cloudification phase

The data adaptation phase –graph (b)– is 65% slower on EC2 compared
to the same MapReduce version in the local cluster, for the largest ex-
periment. This is a result of the selected EC2 instances’ characteristics,
since memory optimised machines are meant to favour the memory-bound
kernel execution phase. This stage would benefit from compute optimised
instances, since a large number of cores would allow the execution of more
mappers simultaneously.

(b) Kernel execution

The algorithm execution stage, (c), is the most determinant phase in the
whole process, ranging from the 48% of the whole execution time, in case
I on EC2, to an 89%, in case II in the same environment. The total re-
sources held by the physical cluster in terms of memory make a substantial
difference in this stage, resulting in simulation times 2.1 times lower than
EC2, in average. Cloud’s virtualization and communication overhead could
also affect the simulation execution and the shuffle of the mapper’s output,
respectively, degrading performance against the single-node environment.



384 S. Cáıno-Lores et al.

0

20

40

60

80

100

120

I II III IV

T
im
e
(m
)

Experiment

(a) Cloudification phase

0
100
200
300
400
500
600
700
800

I II III IV

T
im
e
(m
)

Experiment

(b) Kernel execution

0
200
400
600
800
1000
1200
1400
1600
1800

I II III IV

T
im
e
(m
)

Experiment

(c) Aggregated time

2
4
6
8
10
12
14
16

16 32 64 128

S
p
ee
d
-u
p
ov
er
5
sl
av
es

Number of nodes

(d) MRv2 on EC2 scalability

MRv1
MRv2

MRv2/EC2

MRv1
MRv2

MRv2/EC2

MRv1
MRv2

MRv2/EC2
Multithread

Fig. 4. Evaluation results

(c) Aggregated time
In (c) we observe the overall execution time for the application including
both MapReduce jobs and input data upload, which must be considered
given that replication and balance must be achieved by the platform to
distribute load evenly. The graph indicates that the obtained performance
with MapReduce on Yarn in both the single-node cluster and the elastic
cloud is remarkably better than the original multi-thread application –68%
and 25% less total simulation time for the largest experiment, respectively–
. The shared memory simulator’s results might be caused by the bottleneck
constituted by the physical memory and the disk; the latter is particularly
critical, as all threads write their results to disk while they perform their
computations in the original simulator.
The smallest experiment is an interesting exception, with execution times
ten times greater than the original application in all the platforms. This
reflects how the MapReduce framework’s overhead significantly affects the
time taken to complete such a small simulation compared to the original
application benchmark.

(d) Scalability study
Finally, in (d) we observe the speed-up obtained on EC2 running YARN
when the number of slaves is increased. The speed-up shown in the figure
is related to the execution times commented in the previous paragraphs,
which were obtained in a five-slave cluster. As the figure indicates, increas-
ing the number of slaves decreases the total simulation time. However, the
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performance does not scale up linearly with the number of nodes: while
with 16 nodes the speed-up is 3.3, with 64 nodes it is only 7.6. The reason
behind this result is that the problem size becomes small for the cluster
size as more nodes are added, hence less data is assigned to each slave
and some resources become underutilised. Moreover, as we mentioned in
the previous paragraph, in very small experiments the measured execution
time is mostly spent in the platform’s task preparation and scheduling,
and not in the actual simulation, resulting in degraded performance due to
platform overhead. Therefore, it is necessary to increase the problem size
as well as the number of slave nodes in order to achieve linear scalability.

6 Conclusions

As the cloud is increasingly shown as a viable alternative to traditional com-
puting paradigms for high-performance applications and resource-intensive sim-
ulations, we propose a general methodology to transform numeric simulations
into a highly scalable MapReduce application that re-uses the same simulation
kernel while distributing the simulation load across as many nodes are desired
in a virtual cluster running on the cloud.

The procedure requires an application analysis phase in which at least one
independent variable must be found, since this element will act as index for
the cloudification phase. The cloud adaptation stage transforms the original
input into a set of partitions indexed by the the previous variable by means
of a MapReduce job; these partitions are fed to a second MapReduce job that
executes the simulation kernel independently for each, merging the final results
as well.

This methodology performs a paradigm shift from resource-bound applica-
tions to a data-centric model; such cloudification mechanism provides effective
cloud migration of simulation kernels with minimal impact on the original code
and achieves great scalability since limiting factors are scattered. Therefore, it
provides a way to increase application’s sustainability, breaking the dependence
on local infrastructure, and allowing to spread simulation scenarios of different
sizes in a more flexible way, using heterogeneous hardware, and taking advantage
of shared inter-domain infrastructures.

Future works are strongly focused on extending the current methodology to a
generalized framework which would allow to cloudify any scientific application.
With this aim, several issues have to be solved:

– The behaviour of the methodology should be analysed when other different
kinds of applications (CPU or network intensive) are cloudified. Currently
we are cloudifying a classic MPI application such as the n−bodies problem,
in order to assure performance even in cluster-oriented applications.

– Parameter extraction and application analysis is currently performed man-
ually by the user, who is accountable for selecting an independent variable
Tx. Current development is also oriented to ease this tasks through creating
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data definitions which would allow the adaptation phase to select and split
the input data automatically.
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Abstract. The popularity of the handheld systems (smartphones, ta-
blets, ...) and their great computational capability open a new era in par-
allel computing terms. The efficient use of such devices is still a challenge.
The heterogeneity of the SoCs and MPSocs is demanding very specific
knowledge of the devices, what represents a very high learning curve for
general purpose programmers. To ease the development task we present
Paralldroid, a development framework oriented to general purpose pro-
grammers for mobile devices. Paralldroid presents a programming model
that unifies the different programming models of Android and allows for
the automatic generation of parallel code. The developer just implements
an object oriented Java application and introduces a set of Paralldroid
annotations in the sections of code to be optimized. The annotations used
are based on the OpenMP 4.0 specification. The Paralldroid system then
automatically generates the native C or Renderscript code required to
take advantage of the underlying platform. The Renderscript generated
code allows the execution in the GPU. The computational experience
proves that the results are quite promising. The code generated by Par-
alldroid takes advantage of the GPU and offers good performances with
a very low cost of development, so it contributes to increase the produc-
tivity when developing efficient code.

1 Introduction

The evolution of many of today’s ubiquitous technologies, such as Internet, mo-
bile wireless technology, and high definition television have been possible due
to the Systems on Chip (SOCs) technology. The information technology age, in
turn, has fuelled a global communications revolution. As a result of this rev-
olution, the computing power of the mobile devices has been increased. The
technologies available in desktop computers are now implemented in embedded
and mobile devices. In this scenario, we can find that new processors integrating
multicore architectures GPUs and DSPs are being developed for this market.
The Nvidia Tegra, the Qualcomm snapdragon and the Samsung Exynos are
platforms that go in this direction.

Regarding to the software development, many frameworks have been devel-
oped to support the building of software for such devices. The main companies in
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this software market have their own platforms: Windows phone from Microsoft,
iOS from Apple and Android from Google are contenders in the smartphone
market. Developing of applications for such devices is now easier. Besides to the
problem of creating energy-efficient hardware, we stumbled on the difficult task
of creating efficient, maintainable programs to run on them [1].

Conceptually, the architectural model can be viewed as a traditional hetero-
geneous CPU/GPU system where memory is shared between the CPU and GPU
and acts as a high bandwidth communication channel. In the non-unified mem-
ory architectures, it was common to have only a subset of the actual memory
addressable by the GPU. Technologies like Algorithmic Memory, GPUDirect and
UVA from Nvidia and HSA from AMD are going in the direction of an unified
memory system for CPUs and GPUs in the traditional memory architectures.
Memory performance continues to be outpaced by the ever increasing demand
of faster processors, multiprocessor cores and parallel architectures.

Given the high heterogeneity level of these devices is mandatory the develop-
ment of tools to keep the mobile device sustainability in terms of programma-
bility. Under this scenario, we find a strong divorce among traditional mobile
software developers and parallel programmers, the first tend to use high level
frameworks like Eclipse or Android Studio for the development of Java programs,
without any knowledge of parallel programming (Android: Eclipse + Java, Win-
dows: Visual Studio + C#, IOS: XCode + Objective C), and the latter that
use to work on Linux, doing their programs directly in OpenCL closer to the
metal. The first take the advantage of the high level expressiveness while the
latter assume the challenge of the high performance programming. Paralldroid
tries to help bring these to worlds.

We propose Paralldroid, a development framework that allows the automatic
development of Native, Renderscript applications for mobile devices (Smart-
phones, Tablets, ...). The developer fills and annotates, using the sequential
high level language, the sections on a template that will be executed in native
and Renderscript language. Paralldroid uses the information provided by the
annotations to generate a new program that incorporates the code sections to
run over the CPU or GPU. In [2] a comparative between the different Android
programming models was presented. The authors show the advantages of each
programming model and highlight the importance of creating an unified model.
Paralldroid unifies the different programming models of Android.

In this paper we present a performance analysis executions of code generated
by a new implementation of Paralldroid over the GPU of the mobile device.
Paralldroid can be seen as a proof of concept where we show the benefits of using
generation patterns to abstract the developers from the complexity inherent to
parallel programs.

Several are the main contributions of the paper are:

– A new implementation of the Paralldroid framework is presented. It extends
the OpenJDK compiler to generate new ASTs (Abstract Syntax Trees). Un-
der the Android Development Model, the Renderscript and Native codes are
not executed in standalone mode, they must be harnessed to a sequential
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Java code to be launched. The technique we use not only allows to generate
the new Renderscript and Native ASTs but also modifies the original one,
to allow the harnessing, in a process that is hidden to the end user.

– To extend the set of annotations to be used under the object oriented
paradigm. Most of the Android developers are Java programmers that ap-
ply the object oriented paradigm. Classical OpenMP annotations for C++,
for example, handle the directives in an imperative mode to the methods of
classes. The object oriented paradigm is not really supported. Paralldroid
introduces the annotations to classes and methods trying to be closer to the
developers object oriented mode programming style.

– The Paralldroid framework and the target architecture chosen are contribu-
tions by themselves. The heterogeneity of the Android programming mod-
els allows the programmer to obtain the best performance, implementing
each section of the application using the programming model that better fits
to his/her code. Paralldroid allows to generate code for each programming
model, facilitating the development of efficient heterogeneous applications.

– We analyse the performance over different configurations of CPUs and GPU+
CPU to prove the benefits of our tool. The results obtained show that the
Paralldroid framework is a useful tool to increase the programmability and
exploits the compute-power available on Android devices.

Some tools that generate parallel code form an extension of Java code were
presented in [3,4]. In these cases the Java syntax is modified to introduce new
syntactic elements into the language. The main disadvantage of these proposals
is that the new elements are not compatible with the Java definition, so the
standard Java compiler does not compile the source code with these extensions.
The Paralldroid definition does not modify the Java syntax definitions, it just
introduces a set of annotations. The standard Java compiler can compile the
Java code and ignore the Paralldroid annotations. In [5] the authors present
a Domain-Specic Language (DSL) to generate Renderscript code. This DSL is
specific for image processing algorithms therefore, the users have to learn a new
language. Our framework is based on the main language of Android and our
target users know this language.

The paper is structured as follows, in section 2 we introduce the development
models in Android and the different alternatives to exploit the devices, some of
the difficulties associated to the development models are shown. In section 3 we
present the Paralldroid Framework, the performance of Paralldroid is validated
in section 4 using five different applications, transform a image to grayscale,
convolve 3x3 and 5x5, levels and a general convolve implementation. We execute
each application in multiple configurations of CPUs+GPU. The results obtained
are compared. The computational results prove the increase of performance pro-
vided by Paralldroid at a low cost of development. We finish the paper with
some conclusions and future lines of research.
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2 The Development Model in Android

Android is a Linux based operating system mainly designed for mobile devices
such as smartphones and tablet devices. Android applications are written in
Java, and the Android Software Development Kit (SDK) provides the API li-
braries and developer tools necessary to build, test, and debug applications. The
central section of Figure 1(a) shows the compilation and execution model of
a Java Android application. The compilation model converts the Java .java

files to Dalvik-compatible .dex (Dalvik Executable) files. The application runs
in a Dalvik virtual machine (Dalvik VM) that manages the system resources
allocated to this application (through the Linux kernel).

(a) Compilation and execution model of
an application in Android

(b) The development model in Paralldroid

Fig. 1. Compilation and execution model of an application in Android and Paralldroid

Besides the development of Java applications, Android provides packages of
development tools and libraries to develop Native applications, the Native De-
velopment Kit (NDK). The NDK enables to implement parts of the application
running in the Dalvik VM using native-code languages such as C and C++.
This native code is executed using the Java Native Interface (JNI) provided by
Java. The right-hand section of Figure 1(a) shows the compilation and execu-
tion model of an application where part of the code has been written using the
NDK. The Native .c is compiled using the GNU compiler (GCC). Note that
using native code does not result in an automatic performance increase, but al-
ways increases application complexity, its use is recommended in CPU-intensive
operations that don’t allocate much memory, such as signal processing, physics
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simulation, and so on. Native code is useful to port an existing native code to
Android, not for speeding up parts of an Android application.

To exploit the high computational capabilities on current devices, Android
provides Renderscript, it is a high performance computation API at the native
level and a programming C language (C99 standard). Renderscript allows the
execution of parallel applications under several types of processors such as the
CPU, GPU or DSP, performing an automatic distribution of the workload across
the available processing cores on the device. The left-hand section of Figure 1(a)
shows the compilation and execution model used by Renderscript. Renderscript
(.rs files) codes are compiled using a LLVM compiler based on Clang, more-
over, it generates a set of Java classes wrapper around the Renderscript code.
Again, the use of Renderscript code does not result in an automatic performance
increasing. It is useful for applications that do image processing, mathematical
modelling, or any operations that require lots of mathematical computation.

3 Paralldroid

Paralldroid is designed to ease the development of parallel applications on An-
droid platforms. We assume that the mobile platforms will be provided with a
classical CPU and other kind of co-processor like a GPU that can be exploited
thorough Renderscript. First implementations of Paralldroid were presented in
[6,7]. In the proposed translation model, the developers define their problem as
Java code in the Android SDK and add a set of directives. These directives are
an extension of OpenMP 4.0 [8] that includes directives for accelerators.

The Object Oriented Programming (OOP) is a programming paradigm that
represents concepts as objects that include data fields and methods [9] together.
Java is a object oriented language and their programmers are familiarized with
this paradigm. The first implementation of Paralldroid defines their annotations
as Java comments, following the idea of the compiler directives in the C OpenMP
definition. It does not take into account the object oriented paradigm and can
be difficult to use by the standard Java programmers. For this reason we devel-
oped a new implementation of Paralldroid where the programmers use the Java
annotations system [10] to define the Paralldroid directives.

OpenMP can be used in object oriented languages, like C++. But the di-
rectives used are not a well integrated in the Object Oriented paradigm. The
directives are just used in an imperative mode into methods of classes. They only
work with object types but do not have the possibility to define this directives
directly in the object. In the new implementation of Paralldroid, we present
a new methodology that intends to adapt some of the OpenMP directives to
the object oriented paradigm. This new definition of directives is based on the
OpenMP 4.0 specification but we apply it to the object elements (class, field
and method). Paralldroid supports polymorfism and dynamic binding but, at
this moment, it doesn’t support inheritance of an annotated class. We only used
a reduced set of directives, but the same idea can be extended to many others.

A diagram representing the new implementation can be seen in Figure 2. In
the first step, we use the OpenJDK parser to create a Java Abstract Syntax
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Tree (Java AST) from the Java Code. With this new parser we do not depend
of the Java Development Tool library (JDT) used on the previous version. And
so the translator is independent from the eclipse libraries. The Java AST is
analysed looking for directives (Annotations detector). These directives are de-
fined using the Java annotations specification. The generation process is based
on AST transformations. The NativeTreeTranslator and RSTreeTranslator

transform the Java AST to a new AST that represents the Native and Render-
script code respectively. The JavaAST Translator modifies the Java AST to
access to the code generated by the Native and Renderscript translators. The
CreateNativeCode, CreateRenderscriptCode and CreateJavaCode modules
transform the AST representations to the corresponding code.

Fig. 2. AST Paralldroid transformation process

In Figure 1(b) you can see as the process of generation is integrated in the
Android execution model (Figure 1(a)). The Paralldroid generation process is in
the top level and analyzes the Java code looking for directives. The files that do
not contain directives are compiled directly (central section). If Paralldroid finds
a directive for Native code generation, this code is generated and the Java code is
modified to access to generated Native code (right section). The same process is
used to generate Renderscript code (left section). The increment of productivity
under this approach is clear, moreover when considering that Paralldroid not
only generates the Renderscript code but the Native C JNI implementation.

The set of directives supported by Paralldroid are:

@Target creates a device data environment. This directive is responsible for
mapping the data to the context of the device. This directive is applied to the
class definitions. In this case the elements inside the class (fields and methods)
are created into the context of the device. The fields are mapped to the device
following the idea of the OpenMP target data directive. The methods are
executed into the device context and their parameters are mapped, like in the
OpenMP target directive. To indicate the target language (Renderscript or
Native) this directive has the parameter lang. The constructor of the class is
modified to create the target context, allocate the memory and initialize the
field values into the device context. Paralldroid generates a finalized method.
This method is a special method in Java and is called when the Java garbage
collector destroy the instance of this class. This method frees the memory of the
device context and destroy the target context created in the constructor.
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@Map is responsible for map a variable from the current Java environment to
the target data environment. It is applied to definitions of fields and method pa-
rameters. The directive has a parameter to indicate the type of mapping (Alloc,
To, From, ToFrom). In field definitions, Paralldroid generates a set of the Setter
and Getter methods according to the type of mapping.

@Declare specifies that the element has to be declared in the device context. It
is applied to the definition of fields and methods. These fields and methods only
are defined into the device context. If the field is initialized, the corresponding
variable in the device context is initialized with the same value.

@Parallel specifies a method to be executed in parallel. It is applied to the
definition of methods. Currently, it is only supported by the Renderscript target.

@Input and @Output are an extension to the OpenMP standard and specify
the input and output vectors in the Renderscript parallel execution. They are
applied to definitions of method parameters.

@Index is an extension to the OpenMP standard and specifies the variable
used as index in the Renderscript parallel execution. The value of this variable
is assigned in runtime. It is applied to definitions of method parameters.

Note that, directives @Map, @Declare and @Parallel should be used in
the context of a @Target directive. Similarity, directives @Input, @Output
and @Index should be used in the context of a @Parallel directive

Listing 1.1. GrayScale implementation using Paralldroid and Object Oriented Pro-
gramming

1 @ T a r g e t ( R E N D E R S C R I P T )
2 public c lass G r a y S c a l e R S {
3 @ D e c l a r e

4 private f l oat g M o n o M u l t [ ] = {0.299 f , 0 . 587 f , 0 . 114 f } ;
5 @ M a p ( T O )
6 private int w i d t h ;
7 @ M a p ( T O )
8 private int h e i g h t ;
9

10 public G r a y S c a l e R S ( A c t i v i t y a c t , int w i d t h , int h e i g h t ) {
11 th is . w i d t h = w i d t h ;
12 th is . h e i g h t = h e i g h t ;
13 }
14 @ P a r a l l e l

15 public void t e s t ( @ I n p u t int s c r [ ] , @ O u t p u t int o u t [ ] , @ I n d e x int x ){
16 int a c c ;
17 a c c = ( int ) ( ( ( s c r [ x ] ) & 0 x f f ) ∗ g M o n o M u l t [ 0 ] ) ;
18 a c c += ( int ) ( ( ( s c r [ x ] >> 8 ) & 0 x f f ) ∗ g M o n o M u l t [ 1 ] ) ;
19 a c c += ( int ) ( ( ( s c r [ x ] >> 16) & 0 x f f ) ∗ g M o n o M u l t [ 2 ] ) ;
20 o u t [ x ] = ( a c c ) + ( a c c << 8) + ( a c c << 16) + ( s c r [ x ] << 24 ) ;
21 }
22 }

Listing 1.1 shows a Java class implementation for the grayScale problem with
the Paralldroid directives. The Target directive (line 1) specifies that the class
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has to create a Renderscript context definition and the elements of the class
have to be defined in this Renderscript context. Lines 3 to 8 define the fields.
The Declare directive specifies that the gMonoMult field has to be defined into
the Renderscript context. In this case the field is initialized, so it has to be
initialized in the Renderscript context too. The Map(To) directive is similar to the
Declare directive but in this case Paralldroid generates the corresponding setter
methods. These methods allow the programmers to modify the values of these
fields. The constructor method is defined in lines 10-13. The parameter Activity
act is necessary to create the Renderscript context. It is a obligatory parameter
when the Target is Renderscript. The method test (lines 15-21) defines the
algorithm to transform an image to grayscale. The Parallel directive specifies
that this method will be executed in parallel. The Input and Output directives
indicate input and output vectors used by Renderscript in the parallel executions.
In this case, these vectors contain the input and output images. The Index

directive specifies the index used in the parallel execution and it is used to
access to the elements of the input vector. The value of this variable is assigned
by Renderscript in runtime. Note that, the annotations used are perfectly suited
to the object programming definition. The programmer does not need a deep
knowledge of the OpenMP standard. It just have to know the meaning of the
annotations and where must be applied the annotations into the class definition.

Listing 1.2. Generated Java code by Paralldroid and Object Oriented Programming

1 public c lass G r a y S c a l e R S {
2 private S c r i p t C _ G r a y S c a l e R S s c r i p t ;
3 private R e n d e r S c r i p t m R S ;
4 private A l l o c a t i o n g M o n o M u l t A l l o c a t i o n ;
5 private f l oat [ ] g M o n o M u l t = {0.299 F , 0 . 587 F , 0 . 114 F } ;
6 private int w i d t h ;
7 private int h e i g h t ;
8
9 public G r a y S c a l e R S ( A c t i v i t y a c t , int w i d t h , int h e i g h t ) {

10 th is . w i d t h = w i d t h ;
11 th is . h e i g h t = h e i g h t ;
12 // C r e a t e R e n d e r s c r i p t C o n t e x t
13 // A l l o c a t e R e n d e r s c r i p t memory f o rm f i e l d
14 // Copy f i e l d t o R e n d e r s c r i p t
15 }
16 public void t e s t ( int [ ] s c r , int [ ] o u t , int x ) {
17 // A l l o c a t e R e n d e r s c r i p t memory f o rm p a r am e t e r
18 // Copy p a r am e t e r t o R e n d e r s c r i p t
19 // C a l l R e n d e r s c r i p t f u n c t i o n
20 // Copy p a r am e t e r f r om R e n d e r s c r i p t
21 // F r e e R e n d e r s c r i p t memory f r om p a r am e t e r
22 }
23 public void s e t W i d t h ( int w i d t h ) {
24 // S e t v a l u e t o R e n d e r s c r i p t
25 }
26 . . .
27 protected void f i n a l i z e ( ) {
28 // F r e e R e n d e r s c r i p t memory f o rm f i e l d
29 // D e s t r o y R e n d e r s c r i p t c o n t e x t
30 }
31 }

Listing 1.2 shows the Java class generated by Paralldroid. This class is based
on the Java class defined in Listing 1.1. In line 2-3 a set of fields were added.
These fields are used to create the Renderscript context and allocate the memory.
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This process is done in the constructor method (lines 12-14). The test method
is modified (lines 17-21). The function allocates the memory of the parameters
and calls to the Renderscript function. This function transforms the image to
grayscale. In lines 23-26 the setter methods are generated. The finalizemethod
frees the Renderscript memory used and destroys the context created.

Listing 1.3. Generated Renderscript version of GrayScale problem.

1 #p r a g m a v e r s i o n (1)
2 #p r a g m a r s j a v a _ p a c k a g e _ n a m e ( . . . )
3 r s _ a l l o c a t i o n g M o n o M u l t ;
4 int w i d t h ;
5 int h e i g h t ;
6 r s _ a l l o c a t i o n s c r P x s T e s t ;
7 r s _ a l l o c a t i o n o u t P x s T e s t ;
8
9 void r o o t ( const int ∗ v _ i n , int ∗ v _ o u t , u i n t 3 2 _ t x ) {

10 // Code e x e c u t e d i n p a r a l l e l
11 }

Listing 1.3 shows the Renderscript code generated by Paralldroid. The fields
and parameters mapped by the target class are defined in the Renderscript
context (lines 3-7). The function test is replaced by a root function that will be
executed in parallel, the input/output vector and index are used as parameters.

4 Computational Results

Leaving aside to future researches some peculiarities associated to the real time
requirements of the smartphones and tables (e.g., power management, network
management), we validate the performance of the code generated by Paralldroid
using five different applications. Four of these applications are based on the Ren-
derscript image-Processing benchmark [11] (transforming a image to grayscale,
to levels and convolve with convolve window of sizes 3x3 and 5x5) and the other
one is an additional general convolve implementation developed by ourselves.
In all cases, we implemented five versions of code, the ad-hoc version from a
Java developer, an ad-hoc Native C implementation, and ad-hoc Renderscript
implementations, and the Renderscript version automatically generated by Par-
alldroid. We executed these codes over a Nexus 7 2013. This device is composed
of a Qualcomm Snapdragon S4 Pro holding a Quad-core ARM Cortex-A15 pro-
cessor (15000MHz), 2GB of RAM memory and a GPU Adreno 320. The Nexus
7 device runs the Android system version 4.4. This device supports GPU Ren-
derscript and the GPU is used as accelerator. For the image processing problems
we used a image of size 1600× 1067.

To prove the performance obtained with the generated code, we analysed the
execution time of each problem. The results obtained by the generated code are
compared to the ad-hoc versions. Furthermore, we studied the impact in terms
of performance of varying the number of CPUs and also the effect of enabling the
GPU. These experiments allow to analyse the differences between the generated
code and the ad-hoc code.
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4.1 Performance Analysis in the Android Programming Models

To analyse the performance obtained with the different Android programming
models, we compare the execution times obtained with each problem proposed.
The different characteristics of each problem allow us to analyse the behaviour
of the programming models in different situations.

Table 1. Execution times for the Renderscript benchmark problems (AOSP) and gen-
eral convolve implementation

Implementation
Execution times (ms)

GrayScale Levels
Convolve General Convolve
3x3 5x5 3x3 5x5 7x7 9x9

Java 269 585 2157 4928 2167 4942 9166 15890

Native 104 238 696 1756 679 1352 2491 4013

Renderscript 62 65 91 188 132 195 316 447

Table 1 shows the execution times in milliseconds for the Renderscript bench-
mark problems (AOSP) and for the General Convolve implementations. The
Ad-hoc Java implementation provides an overview of each problem’s granular-
ity. We use the term granularity as the execution time spend by each problem to
compute an image of a particular size. We can see how the GrayScale problem
has the finest granularity. For the convolve problems the granularity increases
when the convolve window size is higher. The Renderscript implementation gets
the best results for all problems.

(a) Speedup for AOSP problems (b) Speedup for General Convolve problem

Fig. 3. Speedup obtained with different Android programming models

Figure 3 shows clearly the differences among the various Android program-
ming models. The speedup showed is relative to the ad-hoc Java versions. The
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Ad-hoc Native implementations improve the Ad-hoc Java versions in all cases,
showing and speedup that is constant for all problems. In the Renderscript ex-
ecutions, the computational load of the instances solved involves an important
impact in the performance, problems with more computational load get a bet-
ter speedup. When the granularity of the problems increases, the Renderscript
implementations obtain better results.

4.2 Performance Analysis on CPU and CPU+GPU Executions

To show the performance obtained with the generated code in different situa-
tions. We executed the proposed testing problems under different CPU and GPU
configurations. The efficiency of the generated code is analysed.

(a) CPU analysis for AOSP problems (b) CPU+GPU analysis for AOSP prob-
lems

Fig. 4. Speedup for the Renderscript codes varying number of CPUs and CPUs+GPU

Figure 4(a) shows the speedup obtained by the ad-hoc and generated Ren-
derscript implementations. Again, the speedup showed is relative to the ad-hoc
Java version. We compared the performance according to the number of CPUs
used. It can be observed that, for coarse granularity problems the speedup in-
creases when the number of CPUs increases. When the granularity is smaller
(Grayscale and levels), the results obtained with 4 CPUs do not improve results
with 2 CPUs. For the general convolve implementations similar results were
obtained. Regarding to the comparative between ad-hoc and generated Render-
script implementations, as expected, the ad-hoc versions obtain the best results
in all cases. These are optimized versions that use vector operations. Currently,
Paralldroid does not obtain this level of optimization but it provides a positive
speedup at a low development effort.

The speedup obtained with the GPU executions are showed in Figure 4(b),
these speedups are also relative to the ad-hoc Java versions. We analysed the
results obtained for the different CPU configurations when the GPU execution
is enabled. In this case we do not found differences when we vary the number
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of CPUs. That makes us to think that the problems are executed only in the
GPU. Again, the ad-hoc implementations get the best speedups. Comparing the
results obtained with (Figure 4(a)) and without GPU (Figure 4(b)). The ad-hoc
implementations get better results using the GPU when the problems have a
fine granularity. When the granularity increases the best option is to use the 4
CPUs disabling the GPU. For generated implementations the best results are
obtained using the GPU in all case.

(a) Comparative of Efficiency (b) Efficiency of computational load

Fig. 5. Efficiency of generated code over ad-hoc code

Ad-hoc and generated Renderscript implementations have a high performance
difference, an analysis on the involved overheads of the generated versions is done
in Figure 5. It shows the efficiency obtained by the generated codes relative to
the ad-hoc Renderscript corresponding versions. The generated versions show
an important loss of performance compared with the ad-hoc implementations
(Figure 5(a)) due to the following reasons:

– The optimizations of the generated code: The ad-hoc codes are optimized
and use vector operations. Currently the generated codes do not use any
vector operations. This mainly affect to the coarse granularity problems.

– The overhead on transformed types: For the set of problems considered, the
ad-hoc versions used a bitmap object that represents the image. Currently,
the generated versions do not manage object types and this bitmap object
must be transformed into an array of pixels. This mainly affects to the finest
granularity problems.

According to it. Figure 5(b) shows the efficiency obtained if we do not consider
the time spent transforming types. As expected, the problems with less compu-
tational load improve their efficiency. When the computational load increase,
the optimization of the code has a higher impact in the performance.

5 Conclusion

Paralldroid is a framework that simplifies the automatic generation of Native
C or Renderscript on Android devices. The user annotates the sequential Java
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classes definition and Paralldroid automatically transforms these definitions in
a Native C or Renderscript implementation. The new Paralldroid specification
simplifies the definition of annotations and is more easy to understand for the
Java programmers. The validation tests performed on five different problems
prove that the results are quite promising. The code generated by Paralldroid
can be executed over the CPU or GPU and the implementation details are
hidden to the developer. The results show that the GPU executions equal and in
some case improve the results obtained by the parallel CPU executions. In the
Ad-hoc versions the parallel CPU executions improve in some case the results
achieved with the GPU. However, the ad-hoc implementations achieved better
results that the generated implementations in all cases. Nevertheless, there is
still opportunity for future optimization in terms of the memory transfer among
the different devices in the use of vector operations.
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Abstract. The ability to predict the energy consumption of an HPC
task, varying the number of assigned nodes, can lead to the ability to
assign the correct number of nodes to tasks, saving large amount of
energy.

In this paper we present LBM, a model capable of predicting the
resource usage (applicable to different resources, such as completion time
and energy consumption) of programs, following a black box approach,
where only passive measures of the running program are used to build
the prediction model, without requiring its source code, or static analysis
of the binary. LBM builds the predicting model using other programs
as benchmarks. We tested LBM predicting the energy consumption of
pitzDaily, a case of the OpenFOAM CFD suite, using a very low number
of benchmarks (3), obtaining extremely precise predictions.

1 Introduction

The efficiency of the HPC scheduler can benefit in many ways from the ability to
predict the amount of resources a job will require to complete. In HPC comple-
tion time has traditionally been the most important resource to save, but in the
last years we are witnessing a rising interest in reducing energy consumption.

Because of communication time, the number of nodes that will minimize the
completion time is not necessarily the highest, i.e. we will have a minimum. When
we try to minimize energy consumption we could have a different minimum than
the one found when minimizing completion time. A scheduler should be able to
predict the correct number of nodes that will minimize the consumption of the
resource of interest, usually it will have a limited number of measures at its
disposal (as the number of compute nodes varies).

We propose a linear model that leverages on measures taken on a few bench-
marks running on a variable number of nodes to predict the resource consump-
tion of a target program, as the number of compute nodes changes.

As shown in [7,11,15,14] a resource can be used to predict other resources (i.e.
performance counters can be used to predict energy consumption). Our effort is
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to unify existing approaches dedicated to different resources (in particular, but
not limiting to, completion time and energy), creating a more abstract model
that can to characterize programs behavior in a more general sense, predicting
different resources from the ones used to build a prediction model. Energy char-
acterization and prediction could then take advantage of the vast literature in
performance prediction of software.

Prediction models usually require instrumentation of the system, and involve
simulation and other complex computationally intensive tasks [4,8]. Resource us-
age prediction should be performed without knowledge of the program’s source
code, as in most of the real world scenarios source code is not known. The re-
source usage prediction model should be able to rely only on data that can be
measured running the programs, implementing a blind approach. Characteriza-
tion and prediction should be performed relying only on the informations about
running programs that are usually available to the operative system, without
the need of additional hardware or manipulations of the binary. For this rea-
son we decided to test our linear prediction model only using information easily
available in an HPC cluster (completion time and instant power through the
PDU).

The resource prediction model should also be as abstract as possible, avoiding
relying on a specific micro architecture or resource kind (as in [10]), as the model
would become obsolete before it could become widely used. For a program’s
descriptive and predictive model to be useful, it should be portable on different
hardware from the one where the model was built.

The models that achieve a low prediction error are very narrow, focusing on a
particular micro architecture [18,6,17,13], resource (i.e. completion time, energy
consumption), even programming language [18,5], they also usually model exe-
cution down to the single instruction level of detail [16,13], hiding the interaction
between instructions that changes from architecture to architecture, making it
difficult to abstract the results to a different architecture.

We developed a simple linear model that leverages on resource usage measures
to predict the usage of other resources, the model was designed to be as simple
as possible, capable of predicting and describing resource consumption of both
hardware and software, not focusing on particular architectures or resources.
The model is black-box, it does not require the source code of the program being
measured. Because it relies on measures of benchmarks (non linear regressors)
it can capture non linear phenomena even if based on linear regression.

We validated our model predicting the energy consumed by a cases of the
OpenFOAM suite, using a very limited set of measures of other 3 cases used as
benchmarks, running on 1, 2 or 3 compute nodes (24, 48 or 72 processors).

2 The LBM Model

Benchmarking is currently more an art than a science where the performance
of a system S is measured against a particular test T in order to characterize
the performance of S with respect to T . If T captures a particular feature of a
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program P we may infer that if T performs well on S then P will follow the same
pattern. Moreover, by varying either S or T it is possible to compare different
systems against a benchmark or different benchmark against a given system.
The quality of a benchmark T is given by the implicit power of capturing a
predictive aspect, though what prediction means is often hinted without formal
specification.

As witnessed by [12], benchmarking is largely driven by industry and practi-
tioners rather than a well defined theory, this is due to the fact that it is difficult
to relate a particular program P with a particular test T .

We propose LBM (Linear Benchmarking Model), a model designed to describe
the relation between a set of benchmarks and a program.

LBM is a generalization of [18,7,17,15], designed to be resource agnostic, it
can be used to characterize both hardware and software as shown in [9], and
can predict the completion time as well as the energy consumption, the allo-
cated memory, the number of cache misses, etc. The contribution of LBM lies in
its capability of dealing with measures of different resources, without requiring
access to source code or binary instrumentation nor simulation. LBM is also a
simple and straightforward model, that allows intuitive interpretations of the
surrogate built with it, using linear combinations of predictors.

Resource consumption of programs is known to be a non linear phenomenon,
therefore using linear regression could seem a wrong approach. LBM uses other
programs as regressors (non linear), hence combining them linearly we still will
be able to describe the non linear behavior of the target program.

2.1 Definitions

In this section we provide the definition for terms used in the rest of the paper
for presenting the case study.

Definition 1 (program). A program is a particular and defined sequence of
instructions.

The same program can be run on different micro architectures, even if will gen-
erate different low level sequence of processor instructions, it will still be con-
sidered the same program. When called to process different input sizes, because
the sequence of high level instructions will considerably change, it will be con-
sidered a different program. The target program is the program whose resource
consumption we are interested in predicting.

Definition 2 (computational environment). A computational environment
is any computational system that can execute programs.

Examples of computational environments are embedded computers, smart
phones, PCs with different micro-architectures, clusters. We consider part of
the computational environment the hardware as well as the operative system
and all the software running on the machine at the same time as the program
being measured.
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Definition 3 (resource). A resource is a finite asset of the computational en-
vironment that is used by programs to run.

The energy used by a computer, or the time used to complete a program are
examples of resources. The same resource on different computational environ-
ments are considered different resources : e.g. completion time on computer A
and completion time on computer B are different resources.

Not every resource can be used in our model, it needs to provide measures
that have the following properties: non negativity (∀x μ(x) ≥ 0), null empty set
(μ(∅) = 0) and countable additivity (μ(∪xi) =

∑
μ(xi)).

Examples of valid resources are processor time, completion time, memory
allocations, energy. Examples of invalid resources are % processor time (it may
decrease), active memory (memory could be deallocated), power (instant power
could decrease). Usually invalid resources can be made valid combining them
with time.

An interesting example is power that is not a valid resource. Let’s consider
a program X that is composed of 2 programs A and B executed sequentially:
X = {A;B}

if Pa the average power during the execution of A is higher than Pb the
average power during the execution of B, then Px the average power during
the execution of X will be Pb ≤ Px ≤ Pa. This violates the required countable
additivity property (the power used by a part of a program is higher than the
power used by the whole program). On the other hand, because both average
power and completion time are always positive quantities, countable additivity
holds for energy: Ex = Ea + Eb = PaTa + PbTb, Ex ≥ Ea, Ex ≥ Eb (where Ta

and Tb are completion times for A and B).

Definition 4 (target resource). The target resource is the resource that we
want to predict for the target program.

Definition 5 (target program). The target program is the program that we
want to model in terms of the benchmarks, whose target resource we are interested
in predicting.

Definition 6 (measure). A measure is a positive real number that describes the
quantity of resource used by a certain program to run on a certain computational
environment.

A measure always refers to both a program and a resource (therefore a compu-
tational environment), i.e. a measure quantifies the usage of a particular resource
on a particular computational environment by a program.

Definition 7 (target measure). The target measure is the measure of the
target resource and the target program that we want to predict.

Definition 8 (computational pattern). A computational pattern is an ideal
program the exhibits a peculiar resource consumption.
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Examples of computational patterns are: a program made in its entirety by float-
ing point operations; or a program that triggers a cache miss at every instruc-
tion. Computational patterns are orthogonal to each other. Computational pat-
terns are usually ideal programs, real programs can not consist only of a single
computational pattern. At most synthetic benchmarks can approximate particu-
lar computational patterns. Some computational pattern could be reasonably be
guessed (in some case even designed), but in general they are unknown, and may
arise when new micro-architectures are created: a novel micro-architecture could
expose a peculiar resource usage when used by a certain sequence of instructions.

The model assumes that all programs can ideally be decomposed in sequences
of computational patterns. The computational patterns form a basis of the re-
source consumption space (because they are orthogonal with respect to resource
consumption). Any program, including both the benchmark and the target pro-
gram, can be written as a linear combination of the computational patterns. If
every computational pattern used by the target program is contained at least in
one of the benchmarks, and if the benchmarks are not linearly dependent, we can
operate a change of basis and express the target program as a linear combination
of the benchmarks. If the target program contains computational patterns that are
not contained in any benchmark, then the change of basis will lose information.

Definition 9 (benchmark). A benchmark is a program used to predict the
measure of the target resource and the target program.

Definition 10 (surrogate). A surrogate is a linear combination of benchmarks
used as a model to predict the resource consumption of the target program.

The surrogate does not depend on the target resource or computational envi-
ronment.

Definition 11 (solver). A solver is an algorithm that, given a set of measures
of the benchmarks and the target program, creates a surrogate for it.

In this work we use linear regression as the solver.

2.2 Model Definition

Given a set of benchmarks and resources A, LBM defines the relation between a
program pt and A. Every benchmark is characterized by a set of measurements,
each relating with one of the model’s resources. A combination of benchmarks
and resources defines an LBM model.

More precisely measures, resources, benchmarks, target program, target re-
source and target measure are organized as follows:

– A is a matrix that contains the measures of the resources used by the bench-
marks, this matrix does not contain the target resource. Each row of A con-
tains the measures relative to a resource, each column contains the measures
relative to a benchmark.
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– b is a vector that contains the measures of the resources used by the target
program. This vector contains measures relative to the same resources used
to buildA: bi is the measure of the target program usage of the same resource
measured by the values contained in the ith row A.

– c is the vector that contains measures of the resource that we want to predict
used by the benchmarks. This vector contains measures relative to the same
benchmarks used to build A: ci is the measure of the target resource used
by the benchmark whose values are contained in the ith column of A.

– x is the surrogate of the target program with respect to the benchmarks.
– μt is the target measure.

A, b, c, x and μt are linked by the following equations:

Ax = b (1)

cx = μt (2)

LBM models can be used to predict target resources: given a set of measures
of resources for a set of benchmarks and a target program pt, we can express pt
as a linear combination of the benchmarks: using equation 1 we can find x. We
can add a resource (called target resource) for which we have measures for the
benchmarks but not for the target program, LBM can predict the measure of the
target resource for the target program (called target measure), using equation
2.

Consider the following example: we have 3 different subset of nodes of a uni-
form cluster S1, S2 and S3, we have measured the energy consumption of a CPU
bound program b1 and a communication bound program b2 on all the subsets,
we have also measured a program pt on S1 and S2, and we want to predict the
energy consumption of pt on S3. Energy consumption on S1, S2 and S3 are re-
sources, with S3 being the target resource; pt is the target program, the measure
of the energy consumption of pt on S3 is the target measure. The measures (μ)
of b1 and b2 on S1 and S2 will form A:

A =

(
μ(b1, S1) μ(b2, S1)
μ(b1, S2) μ(b2, S2)

)

The measures we have for the target program pt will form vector b, with the
same resources and in the same order as in A:

b =
(
μ(p, S1) μ(p, S2)

)
The measures for the target resource for the benchmarks (b1 and b2) will form

vector c, with the same programs and in the same order as in A:

c =
(
μ(b1, S3) μ(b2, S3)

)
μt is the target measure: the energy consumption of the target program pt on

S3.
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The surrogate x not only is a tool to predict the target measure μt, also
provides information about the target program, with respect of the benchmarks.
In this example it will estimate the composition of the target program pt in
terms of CPU bound vs communication bound.

2.3 Limits of LBM

LBM is an extremely generic model that can be applied to different hardware
architectures and different types of programs, without instrumentation or source
code access.

We believe that LBM can handle measures coming from heterogeneous micro-
architectures, actually a desirable scenario because the same program running
on different architectures will contain different CPU level instructions, but it will
still be composed of the same computational patterns (therefore the surrogate
does not change when we change computational environment), and the different
low level behavior will allow a more precise characterization of the surrogate.
However the experimental setting presented in this paper is limited to a single
architecture (all the compute nodes are uniform), therefore we can not claim yet
that the model can successfully operate with heterogeneous architectures.

LBM treats the same program running on different input sizes as different
programs. This assumption simplifies the formulation of the model. We have an
extension of the model that handles multiple input sizes for the same program as
the same program, but for sake of brevity we do not introduce it in this paper.

The benchmarks constitute the knowledge base that the solver has when it
creates the surrogate, if the benchmarks do not contain most of the computa-
tional patterns contained in the target program, the surrogate will not be able to
capture the important factors that model the behavior of the target program, e.g.
if our target program is memory bound, and no benchmark makes large use of
memory, it’s very unlikely that linear regression will be able to create a good fit,
and the predictions made with LBM will have a large error. To be able to suc-
cessfully express the target program as a linear combination of the benchmarks,
b needs to be in the column span of A. To avoid numeric errors in the linear
regression, or even A not being full rank, the benchmarks should not have a
similar behavior, i.e. columns of A should have low correlation. The benchmarks
set should therefore be variegate, containing several different algorithms, that
exhibit very different behavior.

3 Predicting OpenFOAM Energy Consumption and
Completion Time

OpenFOAM is an open source Computational Fluid Dynamics (CFD) and struc-
tural analysis tool, widely used in HPC clusters.

To demonstrate the potential of our approach we limited the resources to
completion time and energy (we could have used performance resources) and a
limited number of benchmarks as predictors.
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We tested our model measuring the completion time and energy consumption
of 4 cases of the tutorials included in the OpenFOAM CFD suite, running on an
enclosure in the IT Center data center at the University of Pisa, with 4 compute
nodes, each node equipped with 12 Intel(R) Xeon(R) X5670 CPUs (2.93GHz),
hyper threading enabled. We prepared a simple ammeter using a cheap Phidgets
[3] component, one compute node was running Windows HPC server 2008 with
the measurement framework we wrote [1] to control the experiment and measure
the energy consumed by the enclosure. The remaining 3 compute nodes were
installed with CentOS, Kernel 2.6.32, we installed OpenFOAM from the RHEL
RPM package available on [2]. We modified 4 of the tutorials as follows:

1. case cavity with the icoFoam solver, augmenting the mesh density 900 times,
100 iterations

2. case pitzDaily with the adjointShapeOptimizationFoam solver, augmenting
the mesh density 400 times, 10 iterations

3. case squareBump with the shallowWaterFoam solver, augmenting the mesh
density 6400 times, 90 iterations

4. case mixerVesselAMI2D with the pimpleDyMFoam solver, augmenting the
mesh density 1000 times, 10 iterations

We measured the completion time (elapsed time from the start of the job to
its completion on all nodes) and energy consumed (as the product of average
instant power, as measured by the ammeter at PDU level, and completion time)
by the 4 cases running on 1 (24 cores), 2 (48 cores) and 3 nodes (72 cores).

To test the prediction accuracy of LBM we measured cavity, mixerVesse-
lAMI2D, squareBump on 1, 2 and 3 nodes; then we measured pitzDaily on run-
ning on 1 and on 3 nodes and tried to predict its energy consumption running
on 2 nodes. We did the following test:

1. matrix A is made by the measures of the completion time and energy con-
sumption of programs cavity, mixerVesselAMI2D, and squareBump running
on 24 and 72 cores

2. vector c is made by the measures of the energy consumption of programs
cavity, mixerVesselAMI2D, and squareBump running on 48 cores

3. vector b is made by the measures of the completion time and the energy
consumption of pitzDaily running on 24 and 72 cores

4. our target measure is the energy consumption of pitzDaily on 48 cores

The motivation to try to predict the energetic performance of a case with
an intermediate number of cores is that the number of cores that will minimize
the energy consumption is not likely to be an extreme value, as can be seen in
table 1: cavity and squareBump have a minimum for the intermediate number
of cores, pitzDaily has the minimum for the lower number of cores.

3.1 Prediction Results

The measures taken to prepare the prediction are reported in table 1, we mea-
sured the cases used as benchmarks running on 24, 48 and 72 cores, and measured
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the target program on 24 and 72 cores (and tried to predict the performance for
48 cores). We also measured each case running in serial.

Table 1. Measures taken to prepare the prediction

Case Cores Energy consumed Completion time Average Power

cavity 24 269919.72J 706.42s 382.09W
cavity 48 251975.76J 418.78s 601.68W
cavity 72 660199.18J 773.38s 853.64W
mixerVesselAMI2D 24 157951.17J 525.41s 300.61W
mixerVesselAMI2D 48 238653.37J 530.57s 449.80W
mixerVesselAMI2D 72 520949.26J 695.95s 748.54W
squareBump 24 214286.62J 614.60s 348.65W
squareBump 48 190538.20J 375.23s 507.78W
squareBump 72 203057.01J 308.66s 657.86W

pitzDaily 24 201251.53J 661.82s 304.08W
pitzDaily 72 530366.40J 818.13s 648.25W

To prepare the prediction we build A, b, c and c using completion time and
energy consumption (power is not a valid resource):

A =

⎛
⎜⎜⎝
269919.72 157951.17 214286.62
660199.18 520949.26 203057.01
706.42 525.41 614.60
773.38 695.95 308.66

⎞
⎟⎟⎠

c =
(
251975.76 238653.37 190538.20

)

b =

⎛
⎜⎜⎝
201251.53
530366.40
661.82
818.13

⎞
⎟⎟⎠

LBM finds the following surrogate for pitzDaily:

x =

⎛
⎝−0.40

1.35
0.45

⎞
⎠

The surrogate x tells us that, given the information we had when the model
was built, pitzDaily can be expressed as linear combination of cavity, mixerVes-
selAMI2D and squareBump, where mixerVesselAMI2D is dominant with respect
to the other programs.

The prediction of the energy consumption of pitzDaily on 48 cores is calculated
multiplying c by x which gives 307586.91J. The measured energy consumption
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of pitzDaily on 48 cores is actually 308195.18J, LBM predicted the energy con-
sumption of the target program running on 48 cores with a -0.19% error.

Similarly we predicted the completion time (setting completion time as our
target resource when creating c): LBM predicted 719.73s, the actual value is
675.70s, with a -6.51% prediction error.

The prediction provided by LBM is more accurate than the obvious inter-
polation that can be calculated by the energy consumption on 24 and 72 nodes
(365808J); similarly, the prediction regarding completion time provided by LBM
is better than the simple interpolation (739,5s), proving that LBM was able to
extract useful information from the benchmarks.
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Fig. 1. Resource consumption of programs, changing degree of parallelism

Figure 1 shows the measures of all the experiments used in this paper. We
can see how different programs (with certain input) exhibit different behav-
ior as the degree of parallelism grows, now always the degree of parallelism
that optimizes the completion time also optimizes the energy consumption, i.e.
squareBump consumes the less energy with 48 cores, but the completion time is
the lowest with 72 cores. Also a small increase in completion time can lead to a
considerable increase in energy consumption, i.e. cavity, pitzDaily and mixerVes-
selAMI2D. LBM can be useful to estimate the optimal degree of parallelism that
will minimize the usage of the resource we want to save.

4 Conclusions

This paper presents LBM, a model that can predict resources (the resource
consumption of programs) using a black box approach, using a different set of
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resources (not necessarily of the same kind of the one being predicted) and a set
of benchmarks (programs) used to build a surrogate of the target program as a
linear combination of benchmarks. This model can be applied to different kind
of resources, including energy consumption, completion time, memory, etc.

To the best of our knowledge there is no other black box predictive model
achieves the same precision, allowing the usage of measures of different resources.

We tested the model using 4 cases from the OpenFOAM suite, predicting the
completion time and energy consumption of one program, using the other 3 as
predictors, with a low error. LBM can also be used to characterize the behavior
of a program, only using measures of the resources, and it is computationally
inexpensive (once the surrogate has been built).

LBM could be used in an HPC scheduler (where the source code of the tasks
is seldom available) to minimize the completion time or energy consumption
allocating the proper amount of nodes for the task. It would be sufficient to
measure the benchmarks on different possible sets of compute nodes (that are
usually allocated to jobs in predefined sets to avoid cluster fragmentation) during
the cluster setup, this measure has to be taken only once, and can be used for
all the prediction models. Once the target program will have been measured
on some configurations, LBM will be able to predict the completion time and
energy consumption on the other configurations. The scheduler will then be able
to minimize the resource consumption for subsequent run of the same algorithm
(running on similar inputs).
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Abstract. There has been a significant research in collective communi-
cation operations, in particular in MPI broadcast, on distributed memory
platforms. Most of the research works are done to optimize the collec-
tive operations for particular architectures by taking into account either
their topology or platform parameters. In this work we propose a very
simple and at the same time general approach to optimize legacy MPI
broadcast algorithms, which are widely used in MPICH and OpenMPI.
Theoretical analysis and experimental results on IBM BlueGene/P and
a cluster of Grid’5000 platform are presented.

Keywords: MPI, Broadcast, BlueGene, Grid’5000, Extreme-Scale,
Communication, Hierarchy.

1 Introduction

Collective communication operations in the Message Passing Interface (MPI) [1]
are very important building blocks for many scientific applications. In particular,
MPI broadcast is used in a variety of algorithms and applications such as parallel
matrix-matrix multiplication, LU factorization and so on. During a broadcast
the root process sends a message to all other processes in the specified group of
processes. The implementations of the broadcast operation in MPICH [2] and
OpenMPI [3] are typically based on linear, binary, binomial and pipelined algo-
rithms [5]. The linear algorithms are not good for a large number of processes,
the binary and binomial algorithms are not efficient for large data sizes. On the
other hand, pipelined algorithms try to be efficient for large numbers of processes
and data sizes. Other widely used broadcast algorithms are scatter-ring-allgather
and scatter-recursive-doubling-allgather [6], which have been implemented in
MPICH.

In addition, there has been a significant research in optimizing MPI broadcast
for some specific platforms. The research work in [9] present efficient implementa-
tions of MPI broadcast with native Infiniband multicast. The Cheetah framework
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c© Springer International Publishing Switzerland 2014
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offers a hierarchical collective communication framework that takes advantage
of hardware-specific data-access mechanisms [10]. IBM BlueGene comes with its
own platform specific optimizations of MPI collectives [12]. The research work
in [11] gives a comprehensive overview of optimization techniques for collectives
on heterogeneous HPC platforms using broadcast as a use case.

Theoretically optimal MPI broadcast algorithms have been an active research
subject as well. One of the early results in this area is the spanning binomial
tree algorithm proposed by Jonson and Ho [7]. Later, the research work in [8]
introduced another theoretically optimal broadcast algorithm based on fractional
trees. The work in [13] is similar to the algorithm of Jonson and Ho when the
number of processes is a power of two and extends it to an arbitrary number of
processes.

The number of processors in HPC systems has increased by three orders of
magnitude over the past two decades. This in turn raises the cost of coordina-
tion and interaction of processes, namely, the communication cost in traditional
message-passing data-parallel applications. Meanwhile, a lot of research in opti-
mization of the communication cost of scientific algorithms and applications is
going on. Very often such research works focus on specific platforms and pro-
pose a redesign of the existing scientific algorithms suitable for these platforms.
In contrast to this approach, the goal of our work, which is inspired by our
previous study of parallel matrix multiplication on large-scale distributed mem-
ory platforms [14], is to provide a simple and general technique to optimize the
legacy scientific applications without redesigning them. In this paper, this idea
is applied to the MPI broadcast operation as an initial step to achieve this goal.

The contributions of this work are as follows:

– A simple and general hierarchical technique to optimize the MPI broad-
cast operation, which can be applied to any legacy applications using MPI
broadcast with a marginal code modification.

– Theoretical and experimental study of the hierarchical modifications of eight
existing broadcast algorithms in MPICH and OpenMPI.

2 Preliminaries and Previous Work

In the rest of this paper the amount of data to be broadcast and the number
of MPI processes will be denoted by m and p respectively. It is assumed that
the network is fully connected, bidirectional and homogeneous. A process can
simultaneously send and receive a message in α + m×β time. Here α is the
startup cost or latency, while β is the reciprocal bandwidth.

2.1 Previous Work

This section briefly summarizes the theoretical analysis of the performance of
all the general-purpose MPI broadcast algorithms implemented in MPICH and
OpenMPI. Namely, we recall the theoretical costs of linear, chain, pipelined,
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binary, split-binary, scatter-ring-allgather, scatter-recursive-doubling-allgather
and binomial tree broadcast algorithms. The first five and the binomial tree
algorithm are implemented in OpenMPI and the last three algorithms are im-
plemented in MPICH. Because of space limitation derivations of these algorithms
are not provided in this work but can be found in [15].

– Flat tree broadcast algorithm.
This is the simplest MPI broadcast algorithm, in which the root node sends
the same message to all the nodes participating in the broadcast operation.
This algorithm does not scale well for large communicators. By using the
simple linear communication model its cost can be derived as follows:

(p− 1)× (α+m×β) . (1)

– Linear tree broadcast algorithm.
In this algorithm each node sends or receives at most one message. Since
the root does not receive the message it is called chain algorithm sometimes.
Theoretically its cost is the same as the flat tree algorithm:

(p− 1)× (α+m×β) . (2)

– Pipelined linear tree broadcast algorithm.
By splitting and pipelining the message in the linear tree algorithm its per-
formance can be improved. In this case each process can start sending a part
of the message after it received the first part of the message.

(X + p− 2)×
(
α+

m

X
×β

)
. (3)

Here it is assumed that a broadcast message of sizem is split intoX segments
and in one step of the algorithm a segment of size m

X is broadcast among p
processes.

– Binary and binomial tree broadcast algorithms.

log2 (p)× (α+m×β) . (4)

Binary and binomial tree broadcast algorithms theoretically have the same
cost. However, in practice, the binomial tree algorithm is more balanced than
a binary tree broadcast.

– Scatter-ring-allgather broadcast algorithm.

(log2 (p) + p− 1)×α+ 2
p− 1

p
×m×β . (5)

This algorithm has two main phases: scatter and allgather. The message is
scattered by a binomial tree algorithm in the first phase, and in the next
phase a ring algorithm for allgather is used to collect all segments from all
processes. It is used in MPICH for large message sizes.
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– Scatter-recursive-doubling-allgather broadcast algorithm.

2× log2 (p)×α+ 2
p− 1

p
×m×β . (6)

This algorithm is very similar to the previous one except the allgather uses a
recursive doubling algorithm. It is used in MPICH for medium-size messages.
However, the ring algorithm is more efficient than this for large message sizes
because of its nearest-neighbor communication pattern [4].

– Split-binary tree broadcast algorithm [15].
The split-binary tree algorithm splits the original message into two segments
and the segments are broadcast separately in two different binary trees. Fi-
nally, each process in both trees exchanges its message with the correspond-
ing pair process from the other tree.

2× (log2 (p+ 1)− 2)× (α+m×β) + α+
m

2
×β . (7)

3 Hierarchical Optimization of MPI Broadcast
Algorithms

This section introduces a simple but at the same time general optimization of
the MPI broadcast algorithms. The idea was inspired by our previous study on
the optimization of the communication cost of parallel matrix multiplication on
large-scale distributed memory platforms [14].

The proposed optimization technique is based on the arrangement of the p
processes participating in the broadcast into logical groups. For simplicity it
is assumed that the number of groups divides the number of MPI processes
and can change between one and p. Let G be the number of groups. Then
there will be p

G MPI processes per group. Figure 2 shows an arrangement of 12
processes in the original linear way and their hierarchical grouping into 3 groups
of 4 processes. The hierarchical optimization has two steps: in the first step a
group leader is selected for each group and the broadcast is performed between
the group leaders (see Figure 1 in red), and in the next step the leaders start
broadcasting inside their own group (in this example among 4 processes). The
grouping can be done by taking the topology into account as well. However, in
this work the grouping is topology-oblivious and the first process in each group
is selected as the group leader. The broadcasts inside different groups happen
in parallel. In general different algorithms can be used for broadcast operations
between group leaders and within each group. This work focuses on the case
where the same algorithm is employed for all broadcast operations. Algorithm 1
shows the pseudocode of the hierarchically modified broadcast algorithm. Line 4
calculates the root for the broadcast inside the groups. Then line 5 creates a
sub-communicator of G processes among the groups and line 6 creates a sub-
communicator of p

G processes inside the groups. Our implementation uses the
MPI Comm split MPI routine to create new sub-communicators.
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Fig. 1. Arrangement of processes in broadcast
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Fig. 2. Arrangement of processes in hierarchical broadcast. Processes in the ellipses are
the group leaders. The rectangles show the processes inside groups. In the first step the
broadcast is performed among the group leaders and in the next step it is performed
among the processes inside each group.

Algorithm 1. Hierarchical modification of an MPI broadcast algorithm

Data: p - Number of processes
Data: G - Number of groups
Data: buf - Message buffer
Data: count - Number of entries in buffer (integer)
Data: datatype - Data type of buffer
Data: root - Rank of broadcast root
Data: comm - MPI Communicator
Result: All the processes have the message of size m
begin

1 MPI Comm comm outer /* communicator among the groups */

2 MPI Comm comm inner /* communicator inside the groups */

3 int root inner /* root of broadcast inside the groups */

4 root inner = Calculate Root Inner(G, p, root, comm)

5 comm outer = Create Comm Between Groups(G, p, root, comm)

6 comm inner = Create Comm Inside Groups(G, p, root inner, comm)

7 MPI Bcast(buf, count, datatype, root outer, comm outer)
8 MPI Bcast(buf, count, datatype, root inner, comm inner)

3.1 Hierarchical Flat and Linear Tree Broadcast

If we group the processes in the hierarchical way and apply the flat or linear tree
broadcast algorithm among G groups and inside the groups among p

G processes
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then the overall broadcast cost will be equal to their sum:

F (G) = (G−1)×(α+m×β)+(
p

G
−1)×(α+m×β) = (G+

p

G
−2)×(α+m×β) .

(8)
Formula 8 is a function of G for a fixed p. Its derivative will be as follows:

F ′(G) =
(
1− p

G2

)
× (α+m×β) . (9)

We can see that G =
√
p is the minimum of the function F (G) as in the interval

(1,
√
p) the function decreases, and in the interval (

√
p, p) it increases. If we

consider G =
√
p in formula 8 the optimal value of the broadcast will be as

follows:
F (

√
p) = (2

√
p− 2)× (α+m×β) . (10)

3.2 Hierarchical Pipelined Linear Tree Broadcast

In the same way, if we add two pipelined linear tree broadcast costs among G
groups and inside the groups among p

G processes then the overall communication
cost for the hierarchical pipelined linear tree will be as follows:

F (G) =
(
2X +G+

p

G
− 4

)
×
(
α+

m

X
×β

)
(11)

It can be shown that G =
√
p is the minimum point again.

3.3 Hierarchical Binary and Binomial Tree Broadcast

Let us apply formula 4 among G groups and inside the groups among p
G pro-

cesses. The cost of either the binary or the binomial broadcast algorithm among
G groups and inside the groups will be log2(G)×(α+m×β) and log2(

p
G )×(α+

m×β) respectively. If we add these two costs together and consider that log2
(
p
G

)
= log2 (p) − log2 (G) then the cost of the hierarchical binary/binomial broad-
cast algorithm will be the same as that of the corresponding non-hierarchical
broadcast algorithm.

3.4 Hierarchical Scatter-Ring-Allgather Broadcast

If we apply formula 5 in the same way we can get the following formula:

F (G) =
(
log2 (p) +G+

p

G
− 2

)
×α+ 2×m×

(
2− 1

G
− G

p

)
×β . (12)
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Let us find the optimal value of the F (G) function.

F ′ (G) =
g2 − p

G2
×
(
α− 2mβ

p

)
. (13)

Formula 13 shows that if
α

β
>

2m

p
(14)

then G =
√
p is the minimum point of the F (G) function in the interval (1, p).

The value of the function at this point will be as follows:

F (
√
p) = (log2(p) + 2

√
p− 2)×α+ 2×m×(2− 2

√
p
)×β . (15)

3.5 Hierarchical Scatter-Recursive-Doubling-Allgather Broadcast

F (G) = 2×log2(p)×α+ 2×m×(2− 1

G
− G

p
)×β . (16)

The hierarchical modification of this algorithm has higher theoretical cost com-
pared to the cost of the original algorithm (formula 6): the latency term is
increased two times and the bandwidth term is increased as well.

3.6 Hierarchical Split-Binary Tree Broadcast

We take p+1≈p in formula 7 to derive the cost of its hierarchical transformation.
It can be shown that the overall cost will be slightly worse than that of the
original algorithm itself (see formula 7):

2×(log2(p) +X − 4)×(α+ β×m

X
) + 2×(α + β×m

2
) . (17)

3.7 Summary of Theoretical Analysis

This section can be summarized as follows: the hierarchical transformations of
the flat, chain, pipeline and scatter-ring-allgather algorithms theoretically reduce
the communication cost of the corresponding original algorithms. The commu-
nication costs of the binary, binomial, scatter-recursive-doubling-allgather and
split-binary tree algorithms either do not change or slightly increase by a con-
stant factor after the hierarchical transformation.

4 Experiments

4.1 Experiments on BlueGene/P

Some of our experiments were carried out on the Shaheen BlueGene/P at the Su-
percomputing Laboratory at King Abdullah University of Science&Technology
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(KAUST) in Thuwal, Saudi Arabia. Shaheen has 16 racks with a total of 16384
nodes. Each node is equipped with four 32-bit, 850 Mhz PowerPC 450 cores and
4GB DDR memory. The BlueGene/P (BG/P) architecture provides a three-
dimensional point-to-point BlueGene/P torus network which interconnects all
compute nodes and global networks for collective and interrupt operations. Use
of this network is integrated into the BG/P MPI implementation. BlueGene/P
MPI implementation is based on MPICH. It is known that MPI broadcast op-
eration in MPICH uses three different broadcast algorithms depending on the
message size and the number of processes in a broadcast operation [4]:

– binomial tree algorithm - when the message size is less than 12kB or when
the number of processes is less than eight.

– scatter-recursive-doubling-allgather algortihm - when the message size is less
than 512kB and the number of processes is a power-of-two.

– scatter-ring-allgather algorithm (we will call it SRGA)- in all other cases,
for long messages greater than or equal to 512kB or with non power-of-two
number of processes.

Despite the referenced paper was published more than a decade ago it still
reflects the current version of MPI broadcast operation implemented in MPICH
according to its source code.

In this work we only present experiments with the corresponding hierarchi-
cal modifications of the scatter-ring-allgather algorithm. Experiments with the
binomial and scatter-recursive-doubling-allgather algorithms showed only slight
fluctuations which are expected theoretically. In addition to the algorithms in
MPICH, the broadcast operation on BG/P uses different communication pro-
tocols and broadcast algorithms: if the communicator is MPI COMM WORLD
then it uses the BG/P collective tree network and otherwise depending on the
communicator shape either a rectangular broadcast algorithm or MPICH are
used [12]. However, MPI COMM WORLD is not used in computational libraries.
On the other hand the rectangular broadcast is used only for rectangular shaped
sub-communicators. Depending on the allocated BG/P partition and the map-
ping of the processes into the physical topology, sub-communicators can be ar-
bitrary shaped. On the other hand, the proposed optimization in this work is
more general and topology-oblivious.

Performance modeling and analysis of the BG/P specific broadcast algorithms
and optimizations are beyond the scope of this paper. However, we also present
experiments with the default BG/P broadcast operation as an initial research
in that direction. The experiments have been done with different configura-
tions, message sizes from 1kB up to 16MB and the number of MPI processes
from 8 up to 5000. Here we used less number of MPI processes than the al-
located BG/P nodes as we created sub-communicators to avoid the case with
MPI COMM WORLD. Because of space restrictions we provide the results only
for 2048 and 5000 processes and message sizes 512kB and 2MB. It is worth men-
tioning that BG/P is quite stable in terms of reproducibility if the configuration
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Fig. 3. Hierarchical SRGA bcast
on BG/P. m=512kB and p=2048.
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Fig. 4. Hierarchical SRGA bcast
on BG/P. m=2MB and p=2048.
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Fig. 5. Hierarchical SRGA bcast
on BG/P. m=512kB and p=5000.
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Fig. 6. Hierarchical SRGA bcast
on BG/P. m=2MB and p=5000.

is kept the same. The allocated BG/P shapes were 2x1x2 and 2x3x2 in the the
experiments with 2048 and 5000 processes respectively. Figure 3 and Figure 4
show experiments with the scatter-ring-allgather broadcast with message sizes
of 512kB and 2MB respectively. The improvement with 512kB on 2048 nodes is
1.87 times, however with a message size of 2MB there is a performance drop. On
the other hand, according to formula 14 (i.e. α

β > 2m
p ) if we fix the message size,

for a larger number of nodes the hierarchical transformation should improve the
performance. This is validated with the experiments: Figure 5 shows that the
performance with the message size 512kB increases up to 3.67 times on 5000
nodes. Moreover, Figure 6 shows that on 5000 nodes the hierarchical algorithm
is better even with the message size of 2MB. In addition, if we put the platform
and algorithm parameters in formula 12 the plots of the hierarchical algorithm
will be parabola-like as well (Figure 7 and Figure 8). Figure 9 and Figure 10
show the experiments with the default BG/P MPI broadcast.
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Fig. 7. Theoretical plot of SRGA bcast.
m=512kB and p=5000.
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Fig. 8. Theoretical plot of SRGA
bcast. m=2MB and p=5000.
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Fig. 9. Hierarchical bcast on BG/P.
m=512kB and p=5000.
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Fig. 10. Hierarchical bcast on BG/P.
m=2MB and p=5000.

4.2 Experiments on Grid’5000

The next part of the experiments was carried out on the Graphene cluster of
Nancy site of the Grid’5000 infrastructure in France. The platform consists of 20
clusters distributed over 9 sites in France and one in Luxembourg. The Grid’5000
web site (http://www.grid5000.fr) provides more comprehensive information
about the platform.

The experiments on Grid’5000 have been done with OpenMPI 1.4.5 which
provides a few broadcast implementations. Among those implementations there
are several general broadcast algorithms such as flat, chain(linear), pipelined,
binary, binomial, split-binary tree and platform/architecture specific algorithms
some of which are broadcast algorithms for Infiniband networks, and the Chee-
tah framework for multicore architectures. In this work we do not consider the
broadcast algorithms for the specific platforms. Furthermore, experiments with
the binary and binomial tree broadcasts are not presented here because of space
restrictions. Because of the same reason we present experiments only with 128
nodes (one process per node). We have used the same approach as presented in
MPIBlib [16] to benchmark the performance.

http://www.grid5000.fr
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Fig. 11. Hierarchical chain broadcast
on Grid’5000. m=16kB and p=128.
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Fig. 12. Hierarchical chain broadcast
on Grid’5000. m=16MB and p=128.
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Fig. 13. Hierarchical pipeline broadcast
on Grid’5000. m=16kB and p=128.
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Fig. 14. Hierarchical pipeline broadcast
on Grid’5000. m=16MB and p=128

Figure 11 and Figure 12 represent experiments with the chain broadcast al-
gorithm and its hierarchical transformation with message sizes 16kB and 16MB
respectively. The speedup with the message size 16MB is three times and with
16kB is 1.5 times. During the experiments with smaller message sizes up to
1kB the overhead from the two MPI Comm split operations were higher than
the chain broadcasts itself. Still, an implementation of the algorithm could check
the message size beforehand and fall back to use the regular MPI Bcast for short
messages to reduce the overhead even further. Figure 14 and Figure 13 show
experiments with the pipeline broadcast algorithm and its hierarchical transfor-
mation. The trend is similar to the chain algorithm. This time the improvement
is even higher, 5.5 times with the message size 16MB and 3.69 times with the
message size 16kB.

5 Conclusion

Our hierarchical approach to optimize MPI broadcast algorithms is more gen-
eral and simpler than many existing broadcast optimizations. The idea itself
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does not break up any existing broadcast algorithms, is not limited to some
specific platforms and can be used as a standalone library on top of any MPI
implementations. Some broadcast algorithms have been improved more than five
times even on a relatively small number of processors.

This work presents the application of the proposed technique to general MPI
broadcast algorithms implemented in MPICH and OpenMPI. Among these al-
gorithms there are the two most used algorithms: scatter-ring-allgather and
pipelined algorithms. Our initial observation showed that BlueGene/P default
broadcast operation can be optimized by the hierarchical transformation as well.
Therefore, one of our future plans is to study the hierarchical modifications of
the broadcast algorithms optimized for IBM BlueGene/P and Infiniband net-
works. A similar kind of approach can also be applied to other MPI collective
operations.

We are working on a software library/tool which can be incorporated into
any application which uses MPI broadcast. The software will let users easily
transform any broadcast algorithm into a two-level hierarchy and predict their
performance.
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Abstract. Processing-in-Memory (PIM) is the concept of moving com-
putation as close as possible to memory. This decreases the need for the
movement of data between central processor and memory system, hence
improves energy efficiency from the reduced memory traffic. In this paper
we present our approach on how to embed processing cores in 3D-stacked
memories, and evaluate the use of such a system for Big Data analytics.
We present a simple server architecture, which employs several energy
efficient PIM cores in multiple 3D-DRAM units where the server acts
as a node of a cluster for Big Data analyses utilizing MapReduce pro-
gramming framework. Our preliminary analyses show that on a single
node up to 23% energy savings on the processing units can be achieved
while reducing execution time by up to 8.8%. Additional energy savings
can result from simplifying the system memory buses. We believe such
energy efficient systems with PIM capability will become viable in the
near future because of the potential to scale the memory wall.

Keywords: Processing-in-Memory, 3D-DRAM, Big Data, MapReduce.

1 Introduction

While the idea of moving processing to memory (i.e., Processing-in-Memory,
PIM) is not new [13,19,6,10] the advent of 3D-stacked DRAMs [2,4,9] which
include dedicated logic dies within a DRAM package, have generated renewed
interest in PIMs [19,20,12,15]. Current research shows that enough free silicon
area is available within the logic layer to permit the inclusion of computational
units. PIM architectures are particularly beneficial for data intensive and mem-
ory bounded applications that do not necessarily benefit from the conventional
cache hierarchy [26]. PIM cores can access memory using faster, high bandwidth
TSVs (Through Silicon Via) [15,20,24] instead of conventional or specialized high
bandwidth memory buses that consume significant energy for transferring data
between DRAM and off-chip processing cores [4]. Because of this observation
we favor PIMs over a heterogeneous multicore system where a number of small
cores (or GPUs) are integrated with powerful main CPUs since they require ex-
cessive amounts of data transferred from/to off-chip DRAM units. Nonetheless,
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several challenges remain. Among the key issues to investigate include the types
of computing cores and how many of them to include in the logic layer to fully
utilize available (3D) DRAM bandwidth while not exceeding power budgets.

In this paper, we propose a new server architecture with a number of simple
in-order single-issue cores as PIM cores. We describe the roles and responsibilities
of the main processor and PIM cores and our assumptions about the memory.
We also propose modifications to MapReduce framework in order to optimize
this unconventional architecture specifically for Big Data processing. In Big Data
analysis, generally clusters of large number of commodity machines are used in
conjunction with a standard MapReduce framework [5,1]. A cluster of small
number of our proposed servers and the modified MapReduce framework will be
able to provide better performance with lower energy consumption than existing
large commodity cluster systems.

Phoenix++ [18] is a highly optimized MapReduce framework for large-scale
shared memory CMP (Chip Multiprocessor)/SMP (Symmetric Multiprocessing)
systems. We find that single node performance of Phoenix++ is better than that
of Hadoop. This is also true for similar shared memory MapReduce library [11].
We propose a two level MapReduce framework: inter-node and intra-node level.
The inter-node level execution flow will be similar to a standard MapReduce
framework (e.g., Hadoop). In this paper we focus on intra-node level MapReduce
execution flow. We start with Phoenix++ and optimize it for our PIM architec-
ture. The intra-node level reduce phase performs local (node-level) optimization
before sending the results for inter-node level reduce phase i.e. global reduc-
tion. Our preliminary analyses show that a single node with proposed model can
obtain up to 23% energy savings on the processing units and 8.8% reduced exe-
cution time as compared to Phoenix++ running on an SMP system for several
Big Data workloads.

The rest of the paper is organized as follows. Section 2 includes the back-
ground and related work. Section 3 describes the new PIM architecture and
system organization. Section 4 describes MapReduce as a use case for the PIM
architecture and shows the modifications in the MapReduce workflow. In Sect. 5
we discuss experimental results. Section 6 concludes and discusses future steps.

2 Background and Related Work

3D-stacked DRAM is an emerging memory organization providing larger ca-
pacity with lower latency, higher bandwidth and lower energy than existing
2D-DRAM technologies [2,23]. 3D-DRAM package is composed of several layers
of DRAM cells stacked on top of a logic layer containing the necessary periph-
eral circuitry for the DRAM. There are several prototypes, including the Hybrid
Memory Cube (HMC) [4] and the High Bandwidth Memory (HBM) DRAM [9].
The logic layer can accommodate additional processing capabilities [19,20,12,15].
Processing-in-Memory is the concept of moving computation closer to memory
that was investigated a decade ago [13,19,6,10]. Researchers explored how to
integrate logic with memory for various applications.
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MapReduce framework for large-scale data processing on clusters of commod-
ity machines was first developed by Google [5]. It involves three major phases:
map, reduce and merge. The user supplies the map() and reduce() functions
and the MapReduce runtime manages parallelization. Several different types
of frameworks are available for MapReduce, including Google MapReduce [5],
Apache Hadoop [1], MRMPI [14] for commodity clusters, Phoenix++ [18], Metis
[11], Ostrich [3] for shared memory systems, Mars [8], GPMR [17] for systems
using GPUs. We model our PIM architecture as a shared memory system, albeit
with Non-Uniform Memory Access (NUMA). Thus we rely on shared memory
MapReduce frameworks.

The Phoenix system [18,16] and others [11,3] provide MapReduce framework
for conventional large-scale shared memory CMP and SMP systems. We use
Phoenix++ [18], the most recent and highly optimized MapReduce framework
with NUMA-awareness for our study and propose changes to adapt it to our
PIM architecture. The architecture and MapReduce framework we propose dif-
fer from the Phoenix++ system presented by Talbot et al. [18]. We also diverge
from Google MapReduce [5] and Hadoop [1] in node-level task execution.

Recently proposed Near Data Computing (NDC) architecture [15] provides a
similar idea to our study and assumes 3D-DRAMs embedded with processing
cores. However the NDC study works with in-memory MapReduce workloads
where the entire input for computation is assumed to reside in the system mem-
ory. We do not make such assumptions but consider conventional storage systems
(e.g. Hard Disk Drive-HDD, Solid State Drive-SSD) as the source of input. This
difference significantly changes how we approach the Map and Reduce functions
using PIM cores.

3 Proposed PIM Architecture

PIM architectures could prove beneficial for data intensive and memory bounded
applications that may not necessarily benefit from a cache hierarchy [26]. PIM
cores can access memory using faster, high bandwidth, lower power TSVs
[15,20,24]. Therefore moving the computation from the main processor closer
to the memory is a better choice for such applications. We base our server archi-
tecture on the model proposed by Zhang et al. [20]. The server consists of a host
multi-core processor. The host is connected to four 3D-stacked DRAM Memory
Units (3DMUs). The host views the entire memory as a single physical memory
distributed among the 3DMUs. Figure 1 depicts the proposed PIM architecture.

Each 3DMU has several dedicated Processing-in-Memory cores (PIM cores)
embedded in its logic layer. Each PIM core is a simple in-order, single-issue,
energy efficient processing unit operating at a lower clock frequency than that
of the host cores. The system memory for the host and PIM cores is comprised
of the DRAM layers in the 3DMUs. We also assume that each PIM core has
its own small instruction and data caches. The execution of the threads running
on PIM cores is controlled by a manager process running on a host core. The
threads can access any physical address residing in any 3DMUs which are part
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Fig. 1. Proposed Hardware Architecture Fig. 2. Proposed Programming Model

of its manager process address space. However, accesses to data in other 3DMUs
should be limited to avoid performance losses due to NUMA.

For our initial analyses we assume 8GB memory and 16 PIM cores in each
of the four 3DMUs. In section 5 we justify the number of PIM cores per 3DMU
and argue about a good number depending on the system usage. Note that the
number of PIM cores in the logic layer should be small enough not to exceed the
10W TDP of the logic layer [24]. Different architectural choices for the PIM cores
also play a big role, in terms of both performance and energy consumption. At
this time we assume ARM-like processing cores [21] as PIM cores. The proposed
server architecture can be used as a node in a cluster configuration for dealing
with very large amounts of data.

4 MapReduce Using PIM

MapReduce workloads are memory intensive and do not benefit much from con-
ventional deep cache hierarchies [26]. Our goal is to optimize node level per-
formance of a MapReduce cluster by parallelizing the different phases with the
help of PIM cores. Our proposed MapReduce framework consists of two levels,
one is inter-node level (using processing nodes of a cluster) and the other is
intra-node level. The inter-node level execution flow can be similar to a stan-
dard MapReduce framework like Hadoop [1]. The intra-node level reduce phase
performs local (node-level) optimization before sending the results for inter-node
level reduce phase i.e. global reduction.

Since the server architecture proposed here is a special case of hierarchical
multi-core system with NUMA shared-memory (from the PIM cores point of
view), we have used Phoenix++ [18], a MapReduce framework designed for
large-scale SMP systems that exhibit NUMA behavior, as our base. We pay
particular interest to the structures for the intermediate <key, value> stores.
Because of these structures we can use PIM cores to efficiently parallelize map,
reduce as well as part of the merge phase. Additionally, we propose changes in the
actual Phoenix++ MapReduce flow, where we overlap the reading of the input
from storage with the actual map phase. The key issues related to MapReduce
applications, when executed on shared memory systems, are to ensure the locality
of map phase, selection of efficient intermediate data structures, decrease remote
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memory access during the reduce phase and to use an efficient memory allocator
[18,11].

4.1 Intra-node MapReduce Using PIM

Execution Flow of the Intra-node MapReduce Framework. We assume
that any process running on a host core can request the runtime system to
allocate physical memory in any specific 3DMU, and thus aware of the location
of the data for the purpose of spawning PIM tasks on that memory unit. This is a
valid assumption because HSA (Heterogeneous System Architecture) Foundation
[7] is advocating such an organization. We next describe the MapReduce runtime
on a node level with respect to the architecture shown in Fig. 1. There is one
master process, which creates 4 manager processes (corresponding to 4 3DMUs)
and each manager process creates 16 worker threads on the 16 PIM cores of a
certain 3DMU. Inter-process communication is achieved through shared memory.
We label the 3DMUs and the manager processes from 0-3 so that each manager
corresponds to a 3DMU respectively. Figure 2 depicts the model.

Map and Combine Phase. In Phoenix++, the library reads the input data from
disk and keeps it in a single memory buffer prior to starting the map phase. How-
ever, in order to obtain maximum parallelism we will overlap these two phases.
We next describe the overlapping process using the aforementioned numbered la-
bels for better understanding. The master process reads 16 input splits at a time
from the disk and places them in a shared memory buffer residing in 3DMU-0.
The master process then starts reading the next 16 input splits into 3DMU-1.
In parallel, the manager process-0, which manages the 16 PIM core threads of
3DMU-0, allocates necessary memory in 3DMU-0 for the PIM threads to gen-
erate the intermediate output and then hands the execution over to them. Each
thread will start processing one input split with the provided map function. This
process is repeated until all of the input is processed.

Reduce and Merge Phase. The reduce phase across the 3DMUs is assumed to
be completed by the manger processes running on the host processor either
independently or with the help of PIM threads. The reduce phase can potentially
benefit from the parallel reduction on sets of unique keys. Initial stages of the
merge phase can be performed by the PIM cores in parallel as well.

5 Experiments and Results

5.1 Experiments

In order to evaluate the proposed architecture, we use a conventional server
as our baseline system. The configuration is provided in Table 1. This baseline
system runs Phoenix++ library [16] with its standard setup. In Table 1, we
summarize the new system configuration we envision, which will be running the
modified MapReduce framework described here.
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Table 1. Baseline and New System Configuration

Baseline System New System Configuration
Configuration Host Processor PIM Cores

Processing 2× Xeon E5-2640 1× Xeon E5-2640 64 (4× 16)
Units 6 cores/processor, 2 HT/core 6 cores, 2 HT/core ARM Cortex-A5

Out-of-order Out-of-order In-order
4-wide issue 4-wide issue Single-issue

Clock Speed 2.5 GHz 2.5 GHz 1 GHz

LL Cache 15 MB/processor 15 MB 32 KB I, D/core

Memory BW 42.6 GB/s per processor 42.6 GB/s 1.33 GB/s per core

Power TDP = 95 W/processor TDP = 95 W 80 mW/core
Low-power = 15 W/processor (5.12 W for 64)

Memory 32 GB (8× 4GBDIMMDDR3) 32 GB (4× 8GB 3DMU)
Storage 1 TB HDD, SATA3, PERC H710 1 TB HDD, SATA3, PERC H710

MapReduce Phoenix++ Framework Proposed Framework (Sect. 4)

Table 2. MapReduce workload execution time (in seconds) for baseline system

Workload IP Size tbaseline (s) tread (s) tmap (s) treduce (s) tmerge (s)

word count 16 GB 176.67 162 14.6 0.05 0.02

histogram 1.3 GB 13.254 12.9 0.35 0.002 0.002

string match 16 GB 186.61 181 5.6 0.01 0.0

linear regression 16 GB 185.61 181 4.6 0.01 0.0

Table 3. ttransfer unit

Storage ttransfer unit

Technology

HDD 10.42 ms

SSD 2.17 ms

Table 4. tmap unit host

Workload tmap unit host

word count 25 ms

histogram 7 ms

string match 12 ms

linear regression 7 ms

We use Phoenix++ to obtain the execution times for the baseline system and
to estimate the execution times for the proposed MapReduce framework running
on the PIM architecture. The total execution time of a MapReduce workload on
the baseline system can be expressed as:

tbaseline = tread + tmap + treduce + tmerge . (1)

In the baseline configuration there are 24 threads and 16 map tasks per thread
(total 384 map tasks). We ran different workloads on the baseline system for
different input sizes from 100MB up to 16GB and Table 2 shows execution times
for a specific input size. From the collected statistics we compute the following
two parameters: ttransfer unit, time to read one input split (1MB) from storage
into memory (Table 3) and tmap unit host, time to process an input split (1MB)
by one map task running on the host (Table 4). In the baseline system we also
have used Samsung PM830 SSD as storage and run the benchmarks. In this case
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we observed around 4.8 times speedup in reading the input as compared to HDD
storage as implied by Table 3 data. We also run them with input sizes larger
than the physical memory (32GB), the results are discussed in Sect. 5.4.

5.2 Performance Analysis

The execution time benefit of the proposed MapReduce model lies in the over-
lapping of map tasks with the reading of input from storage to memory. As long
as the PIM cores do not sit idle waiting for input buffers to get filled, we believe
that this approach delivers performance improvements over a serialized process
where all of the input is first read before starting map tasks.

For the baseline system, from (1) the total execution time is tbaseline = tread+
tmap + treduce + tmerge. For different workloads we find that when the input size
is smaller than that of available physical memory then, tread > tmap + treduce +
tmerge. We discuss the case when the input is larger than available physical
memory in Sect 5.4. To reduce the total execution time we overlap the read and
map phases in our MapReduce framework. Hence the total execution time for
the proposed PIM based system is:

tnew = tread + treduce + tmerge . (2)

In order to achieve (2), we must ensure:

tmap ≤ tread . (3)

thereby tmap is completely overlapped with tread.
Another important fact is that the processing speed of PIM cores will be slower

than the host processor since PIM cores operate at lower clock rate and use in-
order single-issue execution. On the other hand, PIM cores are sitting closer to
memory so memory accesses are faster for them. We performed a simulation
using gem5 [25], and compared the execution time of a map function running on
an OoO X86 and an In-Order ARMv7 CPU model. The simulation parameters
were picked to mimic the actual CPU specifications in Table 1. We find that the
PIM cores would run approximately 4 times slower (i.e., slowdown factor, s =
4) than the host cores.

Initially we proposed a server with four 3DMUs each with 16 PIM cores.
The following analysis will explain why we choose 16 PIM cores per 3DMU.
We wanted to know the minimum number of PIM cores needed on each of the
3DMUs in order to satisfy (3). Each PIM core runs one thread and processes
one input split at a time. In our case, following must hold for (3) to be true,

s× tmap unit host ≤ 4× n× ttransfer unit . (4)

In (4), s is the slowdown factor ≥ 1, tmap unit host is the time to process an
input split (1MB) by one map task running on the host core, 4 is the number
of 3DMUs in the server, n is the number of PIM cores in each 3DMU and
ttransfer unit is the time to read one input split (1 MB) from storage into memory.
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Here we want the time taken by a group of PIM cores to process the input splits
to be smaller than, or equal, to the time taken by the host to fill in the buffers
in each of the 3DMUs.

We observe two cases, depending on how fast the PIM cores can process the
input in Fig. 3 (a) and (b). The host keeps reading input splits from storage as
long as there is more input. As soon as the input is available in a 3DMU, the
PIM cores in that 3DMU start the map tasks. In Fig. 3(a) the PIM cores are
processing the input at a much higher rate than the host can fill in the buffers.
In Fig. 3(b) the PIM cores in each 3DMU are busy processing the input almost
up to the point of time when the next set of input splits becomes available.

To achieve full utilization of the PIM cores following must hold,

s× tmap unit host = 4× n× ttransfer unit . (5)

We solve (5) to find the minimum n (number of PIM cores per 3DMU) for each
of the workload independently. We use data from Table 3 and 4, and compute n
for a range of slowdown factors s. Figure 4 shows the required number of PIM
cores per 3DMU for different slowdown factors for different workloads.

Analyzing the graphs in Fig. 4 for two different storage technologies and four
different workloads one can conservatively estimate (choosing the closest greater
or equal integer which is a power of two) the number of PIM cores needed per
3DMU as 16 when estimated 4 times slower execution (s=4) of the map tasks
on a PIM core. Our study allows one to decide on the minimum number of PIM
cores per 3DMU needed so that tmap is completely overlapped with tread. One
can use more PIM cores than the minimum, but their utilization will drop.

Fig. 3. (a) PIM core utilization is low (b) PIM core utilization is high
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different slowdown factors (X axis) for 2 different storage technologies, HDD and SSD
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We also analyze the area and power overhead of placing 16 PIM cores in the
logic layer of each 3DMU with ARM Cortex-A5 core as PIM core. Each such
core, with 32KB data and 32KB instruction cache, has an area of 0.80mm2 in
40nm technology [21]. So 16 PIM cores in the logic layer have an area overhead
of 11.9% [15] when HMC [4] is used as 3DMU. Furthermore, accumulated power
consumption of the 16 PIM cores will be 1.28W [21] which is only 12.8% of allow-
able 10W TDP of logic layer per stack [24]. Therefore we claim that integrating
16 PIM cores in the logic layer of each 3DMU is feasible.

We conclude that the total execution time in the proposed model, tnew is faster
than total execution time in the baseline system, tbaseline by tmap. Figure 5 shows
tnew normalized to tbaseline for different workloads. We use data from Table 2
for tbaseline, for tnew we have used (2), and we take the estimated slowdown
factor of 4. We observe that the overall execution time for the proposed model is
reduced by 2.5% to 8.8% when compared to the baseline system for different Big
Data workloads. This evaluation includes only the performance gain for the map
phase; additional speedup may be achieved by parallelizing reduce and merge
(partially) phases on the PIM cores.

5.3 Energy Consumption

The total energy consumption of running a Big Data workload in the proposed
system is reduced by using lower power cores as well as decreasing the overall
execution time. We define Ebaseline and Enew as the total energy consumed by
the processing elements of the baseline and the new system respectively. The
baseline system consists of two Xeon processors (Table 1). To make our analyses
fair, and even favor the baseline, while computing Ebaseline, we assume that only
one of the processors in the baseline is active while reading the input i.e. during
the time tread the second processor will be placed in low power state consuming
15W. For the other phases both processors are fully active. While computing
Enew, we assume that the host processor and all the 64 PIM cores (Table 1) are
active during the entire processing. We calculate the energy consumption of the
processing units for the baseline and the new system as follows.

Ebaseline = [(TDP + Plow power state)× tread]

+[2× TDP × (tmap + treduce + tmerge)] . (6)

Enew = [TDP + (64× PPIM core)]× (tread + treduce + tmerge) . (7)

The power specifications for baseline and new system are listed in Table 1 and
the execution times of the different phases are given in Table 2. Figure 6 shows
that, for processing part, relative energy savings of one node range from 12%
to 23% as compared to the baseline system. The absolute energy savings range
from 80J to 2045J, depending on the workload.
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5.4 Input Exceeding Physical Memory Capacity

If the input is larger than the available physical memory, we observe a non-
linear increase in map phase execution time (tmap) for our baseline. This happens
because by the time map phase starts, all the starting pages containing the input
are swapped out and there will be a large number of page faults. In some cases
we even have tmap > tread (e.g. word count in Table 5). This would not happen
if the input splits, on which the map tasks will work, were in the memory. In
our proposed model we handle such cases by bringing input splits into memory
and performing map tasks on them in an incremental fashion.

Table 5 shows the execution times for workloads in the baseline system (Table
1) for input size larger than the physical memory. In such cases, with our pro-
posed model, one can achieve up to 56% reduction in execution time and up to
71% energy savings on the processing units compared to the baseline system, as
calculated by (2) and (7) respectively. Note that here we get these numbers for
stand alone server performance. But in such cases, where the input is larger than
physical memory, one may choose to use a cluster of such nodes and for each
node we may get statistics as Table 2 and obtain gains as presented in Sects. 5.2
and 5.3.
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Table 5. Execution time for baseline system when input is larger than physical memory

Workload IP Size tbaseline (s) tread (s) tmap (s) treduce (s) tmerge (s)

word count 32.5 GB 801.358 349.981 449.731 1.605 0.041

string match 32.4 GB 538.346 348.127 190.198 0.021 0.0

linear regression 32.5 GB 466.538 365.959 100.559 0.02 0.0

5.5 Bandwidth Utilization and Link Power

Figure 7 shows the actual bandwidth consumption of word count for different
MapReduce phases when running on different systems. Interestingly, the band-
width consumed by the baseline system does not exceed 15GB/s. PIM cores
show higher bandwidth utilization at lower power consumption. For our pro-
posed PIM server we can have low bandwidth links between the host processor
and the 3DMUs and thereby reduce power consumption. Note that during the
map phase the peak bandwidth required will depend on whether or not the in-
termediate data structures fit in the PIM core caches. 3DMUs provide memory
bandwidth of up to 320GB/s within the memory stack [4,23]. The same band-
width is available to the host processor via 8 high speed SerDes links [4], each
of which provides bandwidth of 40GB/s with average power consumption of
5W [23]. We believe that PIM architectures are more energy efficient than tra-
ditional heterogeneous multi/many core architectures because they utilize the
bandwidth available within the memory stack and do not need the power hun-
gry SerDes links. The bandwidth consumed by the 16 PIM cores in one 3DMU
will not exceed 22GB/s [22] which is well below the 320GB/s available in the
unit. However, 64 PIM cores in four 3DMUs will have an effective peak band-
width consumption of 88GB/s. In order to support the same bandwidth for the
system with off the 3D-DRAM chip heterogeneous cores, we would need at least
3 SerDes links, consuming three times more energy on the links.

The bandwidth utilized within each 3DMU can be further increased by in-
creasing the number of PIM cores per 3DMU, however at the expense of higher
power consumption and possibly lower utilization. To fully utilize the 320GB/s
bandwidth, more than 200 PIM cores are needed, but then the power consump-
tion will exceed the constraint of 10W TDP for the logic layer of a 3DMU [24].

6 Conclusion and Future Work

In this paper we outlined our ideas about using simple cores embedded within
the logic layer of 3D-DRAMs for running MapReduce applications. We overlap
input reading and map phases. We also propose to utilize locality of data for
assigning tasks to PIM cores. Our preliminary results show gains in terms of
reduced execution time and energy savings for several MapReduce applications.

We intend to extend our preliminary work in several directions. First we
want to explore other possible architectures for PIM cores, including GPGPUs,
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simple RISC cores, FPGA and Dataflow. Second, we want to characterize which
emerging workloads, and particularly which functionalities, benefit from a PIM
architecture and how to exploit the possible benefits. This includes extensive
simulation of memory intensive workloads in a PIM augmented system in order
to show the benefits in terms of energy savings as well as performance gains.
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3 Dip. di Fisica e Scienze della Terra, Università di Ferrara and INFN, Ferrara, Italy

Abstract. High performance computing increasingly relies on hetero-
geneous systems, based on multi-core CPUs, tightly coupled to accelera-
tors: GPUs or many core systems. Programming heterogeneous systems
raises new issues: reaching high sustained performances means that one
must exploit parallelism at several levels; at the same time the lack of a
standard programming environment has an impact on code portability.
This paper presents a performance assessment of a massively parallel and
portable Lattice Boltzmann code, based on the Open Computing Lan-
guage (OpenCL) and the Message Passing Interface (MPI). Exactly the
same code runs on standard clusters of multi-core CPUs, as well as on hy-
brid clusters including accelerators. We consider a state-of-the-art Lattice
Boltzmann model that accurately reproduces the thermo-hydrodynamics
of a fluid in 2 dimensions. This algorithm has a regular structure suitable
for accelerator architectures with a large degree of parallelism, but it is
not straightforward to obtain a large fraction of the theoretically avail-
able performance. In this work we focus on portability of code across
several heterogeneous architectures preserving performances and also on
techniques to move data between accelerators minimizing overheads of
communication latencies. We describe the organization of the code and
present and analyze performance and scalability results on a cluster of
nodes based on NVIDIA K20 GPUs and Intel Xeon-Phi accelerators.

1 Introduction

High performance computer architectures are becoming more and more heteroge-
neous, heavily relying on accelerators, which commonly deliver a major fraction
(e.g., � 70%) of the full system computing power. Virtually all currently avail-
able accelerators (GPUs, many-core CPUs, FPGAs) are independent processing
units, connected to commodity CPUs via standard busses, such as PCI-Express.
The CPU orchestrates the coarse-grained harness of a complex computation,
while accelerators handle compute intensive kernels. In order to use accelerators
efficiently, one must partition an algorithm on many processing cores, each core
in turn heavily using SIMD features: one is then forced to concurrently exploit
several levels of parallelism. Furthermore, accelerators use their own memory
hierarchy, so data transfers between host and accelerators have to be carefully
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scheduled. This is an important issue for code performances as also highlighted
in [1].

Fortunately enough, several large scale computer codes in the scientific and
engineering domain have sufficiently large available parallelism and an algorith-
mic structure that allows to split the code on the compute elements available on
accelerators and to schedule the full computation in a way that tames the prob-
lems highlighted above: some handcrafted codes have delivered unexpectedly
high performance figures.

An obvious and relevant question is whether a similar level of performance
can be obtained using the same programming environment and the same code
for different accelerator architectures and if this approach is also viable when
large scale parallelism (involving many nodes with many accelerators) is needed.

In this paper we address this problem, using OpenCL, a software framework
able to provide a common abstraction over the underlying computing resources,
and MPI, a de-facto standard for multi-node parallel processing. We consider
a fluid-dynamics code based on a state-of-the-art massively parallel Lattice-
Boltzmann method that we have re-written using OpenCL and MPI. We describe
the structure and implementation of the code and present our performance and
scaling results on several state-of-the-art heterogeneous architectures, comparing
with handcrafted versions of the code for the same algorithm.

We find that the performance of our OpenCL implementation is comparable
with that of architecture-specific optimizations, granting, on the other hand,
code portability. Moreover, we eventually study the bottlenecks limiting the
extent of the scaling window for massively parallel implementations.

Our paper is structured in this way: we first introduce the OpenCL framework
and in section 3 we give a short introduction to Lattice Boltzmann methods;
section 4 follows, giving details of our implementation and of our optimization
results. Section 5 contains an analysis of our performance results, followed by
our conclusions and outlook.

2 OpenCL

OpenCL (Open Computing Language) [2] aims to provide a single framework to
develop portable code executable across heterogeneous platforms; it is a hard-
ware oblivious open standard, maintained by the non-profit Kronos Group and
supported by a large set of vendors. OpenCL offers a standard API, providing an
extension of the C99 language to write functions that run on heterogeneous plat-
forms (CPUs, GPUs or other accelerators) exploiting a task-based or data-based
parallel approach. Manufacturer are responsible for providing an OpenCL API
implementation for their devices, following the OpenCL open standard speci-
fication. OpenCL codes run on commodity computers, which may or may not
host accelerators as GPUs, DSPs (Digital Signal processors), FPGAs (Field-
Programmable Gate Arrays), or other processors, in addition to ordinary CPUs.
In order to generalize across different architectures, OpenCL provides an ab-
straction of the actual hardware defining a platform, a memory and an execution
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__kernel void saxpy ( __global double ∗A , __global double ∗B ,
__global double ∗C , const double s ) {

int id = get_global_id ( 0 ) ; // get g l oba l thread ID
C [ id ] = s ∗ A [ id ] + B [ id ] ; // compute the id−th element

}

Fig. 1. Sample OpenCL code, computing a saxpy kernel on two vectors

model. How the models map onto the actual hardware is device dependent and
is defined by the corresponding implementation; these aspects can be neglected
by programmers from the point of view of ensuring program correctness, but
they are relevant for performance tuning.

In the OpenCL Platform model, all OpenCL enabled devices in the host are
seen as containers of Compute Units (CU); in turn, each CU is made up of differ-
ent Processing Elements (PE). On the other side, the OpenCL Execution model
is made up of two main components: a host program and one or more kernel
functions which run on devices. Where each kernel runs depends on the so called
OpenCL context, which is defined by the host program as consisting of one or
more devices and one or more command queues associated to them. Commands
(such as kernel launches or memory transfers) submitted to a command queue
may be executed in-order or, optionally, out-of-order; it is possible to define
multiple queues for the same device to issue not synchronized commands, which
may execute concurrently, if the device is able to do so. The main idea behind
OpenCL is the possibility to define an n-dimensional problem domain and then
to run a kernel function for each point of it. Each instance, running on each do-
main point, in the OpenCL taxonomy, is called a work-item and can be thought
as a single thread, executing on a processing element within a device. Multiple
work-items are commonly grouped in what is called a work-group, which runs
on a CU. Each work-item has a global ID and a local ID. The global ID is unique
among all work-items of a Kernel. The local ID identifies a work-item within a
work-group.

Concerning the OpenCL Memory model, a first distinction is made between
the host memory (commonly the host RAM memory) and the device memory
(e.g. a GPU memory bank); the device memory in its turn is divided into four
address spaces which commonly differ for size and access time. Global memory is
commonly the largest area; it is visible by all work-items running on the device,
but it has the highest access latency. Constant memory stores read-only data
and is commonly a relatively small cached part of the Global memory. Local
memory is meant for data sharing by work-items within the same work-group;
it is usually faster than Global memory, but smaller and not globally accessible.
Private memory is accessible only by individual work-items; it is the fastest, but
also smallest available storage (e.g. the registers of a CPU).
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Fig. 2. Left: Velocity vectors for the LB populations in the D2Q37 model. Right:
populations labels identify the lattice hop that they perform in the propagate phase.

Let us assume that a code is broken down into Nwg work-groups and each
work-group has Nwi work-items. When this code executes on a device with
Ncu compute units, each able to compute on Nd data items, at any given time
Ncu×Nd work-items will execute; iterations will be needed to perform all globally
requiredNwg×Nwi work-items. For example, the Xeon-Phi has 60 physical cores,
each supporting up to 4 threads, for a total of 240 virtual cores; it supports AVX
256-bit operations that process 8 double-precision or 16 single-precision floating-
point data. In this case, up to 240 work-groups execute on all cores, each core in
turn processing up to 8 (or 16) work-items in parallel. Similar mappings of the
available parallelism on the computing resources can be worked out for other
architectures.

In Fig.1 we show an OpenCL implementation of the saxpy operation of the
Basic Linear Algebra Subprogram (BLAS) set. The parameters of the kernel are
three arrays, A, B and C and one double precision number. Pointers to the arrays
are marked as global because they are allocated on the global memory of the
device. Each work-item executes the saxpy kernel computing just one data-item
of the output array: first it computes its unique global identifier id and then
uses it to address the idth data-item of arrays A, B and C.

3 Lattice Boltzmann Methods

Lattice Boltzmann methods (LB) are widely used in computational fluid dynam-
ics, to describe flows in two and three dimensions. LB methods (see, e.g. [3] for
an introduction) are discrete in position and momentum spaces; they are based
on the synthetic dynamics of populations sitting at the sites of a discrete lattice.
At each time step, populations hop from lattice-site to lattice-site and then in-
coming populations collide among one another, that is, they mix and their values
change accordingly.

LB models in x dimensions with y populations are labeled as DxQy; we
consider a state-of-the-art D2Q37 model that correctly reproduces the thermo-
hydrodynamical equations of motions of a fluid in two dimensions, automatically
enforcing the equation of state of a perfect gas (p = ρT ) [4,5]; this model has
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been extensively used for large scale simulations of convective turbulence (see
e.g., [6,7]).

In the algorithm, a set of populations (fl(x, t) l = 1 · · · 37), defined at the
points of a discrete and regular lattice and each having a given lattice velocity
cl, evolve in (discrete) time according to the following equation:

fl(y, t+Δt) = fl(y − clΔt, t)− Δt

τ

(
fl(y − clΔt, t)− f

(eq)
l

)
(1)

The macroscopic variables, density ρ, velocity u and temperature T are defined
in terms of the fl(x, t) and of the cls (D is the number of space dimensions):

ρ =
∑
l

fl, ρu =
∑
l

clfl, DρT =
∑
l

|cl − u|2 fl, (2)

and the equilibrium distributions (f
(eq)
l ) are themselves function of these macro-

scopic quantities [3]. In words, populations drift from different lattice sites (prop-
agation), according to the value of their velocities and, on arrival at point y,
they change their values according to Eq. 1 (collision). One can show that,
in suitable limiting cases, the evolution of the macroscopic variables obey the
thermo-hydrodynamical equations of motion of the fluid.

An LB code starts with an initial assignment of the populations, in accordance
with a given initial condition at t = 0 on some spatial domain, and iterates Eq. 1
for each point in the domain and for as many time-steps as needed; boundary-
conditions at the edges of the integration domain are enforced at each time-step
by appropriately modifying the population values at and close to the boundaries.

The LB approach offers a huge degree of easily identified parallelism. Indeed,
Eq. 1 shows that the propagation step amounts to gathering the values of the
fields fl from neighboring sites, corresponding to populations drifting towards
y with velocity cl; the following step (collision) then performs all mathematical
processing needed to compute the quantities appearing in the r.h.s. of Eq. 1,
for each point in the grid. Referring again to Eq. (1), one sees immediately that
both steps above are completely uncorrelated for different points of the grid, so
they can be computed in parallel according to any convenient schedule, if one
ensures that for all grid points step 1 is performed before step 2.

In practice, an LB code executes the following three main steps at each iter-
ation of the loop over time:

– propagate moves populations across lattice sites according to the pattern
of Fig.2 left, collecting at each site all populations that will interact at the
next phase (collide). Consequently, propagate moves blocks of memory loca-
tions allocated at sparse addresses, corresponding to populations of neighbor
cells. propagate can either use a pull scheme or a push scheme; in the first case
populations are gathered at one site as shown in Fig.2; while in the latter
case populations are pushed from one lattice-site towards a set of neigh-
bors. Which of the two is best to use depends on the capability of processor
memory-controller.
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– bc (Boundary Conditions) adjusts the populations at the top and bottom
edges of the lattice to enforce appropriate boundary conditions (e.g., a con-
stant given temperature and zero velocity). This is done after propagation,
since the latter changes the value of the populations close to the boundary
points and hence the macroscopic quantities that must be kept constant. At
the right and left boundaries, we apply periodic boundary conditions. This is
conveniently done by adding halo columns at the edges of the lattice, where
we copy the 3 (in our case) rightmost and leftmost columns of the lattice be-
fore performing the propagate step. Points close to the right/left boundaries
can then be processed as those in the bulk. If needed, boundary conditions
could be enforced in the same way as done for the top and bottom edges.

– collide performs all the mathematical steps associated to equation 1 and
needed to compute the population values at each lattice site at the new time
step. Input data for this phase are the populations gathered by the previous
propagate phase. This step is the floating point intensive step of the code.

4 Code Implementation

At top level, our code is based on MPI processes, each managing one OpenCL
(OpenCL) device. Actual devices are attached to the host nodes of the cluster,
so MPI communications are either fully within the host or across a commodity
network, such as Infiniband. This is managed transparently and in a uniform
way by the MPI run-time support, so our code runs both on single-host and
multi-host multi-device systems.

We split a lattice of size Lx × Ly on N devices along the X dimension; each
device allocates a sub-lattice of size Lx/N × Ly. On each device the lattice is
stored using the SoA (Structure of Arrays) scheme, where arrays of populations
are stored in memory one after the other. This allows to exploit data-parallelism
and enable data-coalescing in accessing data when executing several work items
in parallel. Each array of population is stored in columns-major order, and we
keep in memory two copies of it, prv and nxt. Each kernel reads from prv and
update results on the nxt copy; nxt and prv swap their roles at each iteration.
This solution needs more memory, but it allows to map one work-item per lattice
site, and then to process many sites in parallel. The lattice splitting implies a
virtual ordering of the MPI-processes along a ring, so each process exchanges
its borders of its own sub-lattice with its adjacent processes. One could consider
a different decomposition (e.g. Ly/N × Lx, reducing communication overheads
if Ly ≥ Lx); however, since we plan to use our code for physics simulations
in a wide range of aspect-ratios (both Lx > Ly and Lx < Ly), we arbitrarily
select only one of the two possibilities. Moreover, since our lattice is stored in
column-major order, splitting along X means that lattice columns are allocated
sequentially in memory, improving memory access time when copying halos.

Each device allocates a sub-lattice of NX ×NY lattice points, NX = Hx +
Lx + Hx, and NY = Hy + Ly + Hy, including vertical and horizontal halos
of size Hx and Hy. Left and right halos keep copies of the three rightmost and
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Fig. 3. Bandwidth vs. buffer size for h2d (left) and d2h (right) transfers between host
and an NVIDIA K20 GPU device.

leftmost columns of the sub-lattices allocated on the neighbor nodes. This makes
the computation uniform for all lattice sites, avoiding divergences of work-items
which lead to performance degradation. Bottom and top halos are adjusted to
keep memory accesses by work-items aligned, enabling memory coalescing.

Each MPI process runs a loop over time; at each iteration it executes four
main-steps: first pbc (Periodic Boundary Conditions) updates the left and right
halo columns, and then three kernels – propagate, bc and collide – run on the
device to perform the required computational tasks.

Based on previous results in coding with CUDA [8], a language for GPUs not
widely different from OpenCL, we configure the OpenCL kernels for propagate,
bc and collide as a grid of (Ly × Lx) work-items; each work-group is a uni-
dimensional array of Nwi work-items, processing data at successive locations in
memory. In this way memory coalescing can be easily exploited.

In the following we describe in details the combination of pbc and propagate,
which is critical to scalability when running on multi-device multi-host systems
configuration. The key point to consider is that the propagate step for the bulk
of the lattice (all lattice points except for three columns at right and left) has
no data dependency with pbc (while propagate on the edges depend on fresh
data moved to the halos by pbc). Our strategy therefore leverages on i) speeding
up data transfers and ii) overlapping as much as possible data transfers with
propagate (on the bulk). Let us consider these two points in order. pbc copies
the three leftmost and rightmost columns of the lattice respectively into the right
and left halos of the neighbor sub-lattices. In a multi-device implementation this
implies moving data between OpenCL devices. This task implies the following
steps:

1. copy data corresponding to the left and right borders from the device to two
host buffers;

2. send data to the previous and the next node in the ring;
3. receive data from neighbors and store them into two host buffers;
4. copy the just received data from host buffers into the halo columns of the

device.

All these steps are performance critical, as they use data paths with limited
bandwidth and large latency (see later for accurate figures). MPI communi-
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Fig. 4. Concurrent scheduling of the various steps of the propagate and pbc kernels

cations are handled by the MPI run-time support, so there is not much the
programmer can do there. On the other hand, OpenCL has several options to
allocate memory and to perform device-to-host (d2h) and host-to-device (h2d)
copies.

OpenCL has routines to allocate memory in pageable or pinned mode; the
former option is a standard allocation in virtual space that can be swapped out of
physical memory by the operating system, while the latter mode forces memory
to be always resident in real memory; the OpenCL function clCreateBuffer()

function with the CL MEM ALLOC HOST PTR flag performs this operation. Memory
access can be mapped or direct. In mapped mode, buffers on the device are
mapped onto the address space of the host node, while in direct mode, data is
moved by specific OpenCL routines such as clEnqueueReadBuffer() to read
from the device and clEnqueueWriteBuffer() to write data into it.

We have tested all four combination of allocation and access modes; Fig. 3
shows the bandwidth as a function of the buffer size for h2d and d2h transfers
between a host and an NVIDIA GPU K20 device. Perhaps not unexpectedly,
one obtains the best performance using pinned memory allocation and direct
memory access. In this case, the transfer time (μsec) as a function of the data
block size s (bytes) is well fitted by the following expressions:

Th2d(s) = 14.16 + 0.00017× s, Td2h(s) = 14.21 + 0.00015× s

corresponding to a latency of ≈ 14 μsec (in both directions), and an asymp-
totic bandwidth of ≈ 6 GB/s for h2d and ≈ 6.6 GB/s for d2h. The asymptotic
bandwidth is ≈ 75% of the aggregate raw bandwidth of a 16 lanes (16X) GEN2
PCi-Express bus (8 GB/s). The large value for the latency means that it is useful
to gather all data into one block before starting the d2h operation (and scatter
back at destination), rather than paying the latency overhead 37 times.

We now consider how to schedule operations in order to overlap (bulk) prop-
agate and pbc. We define two OpenCL queues Q1 and Q2: the first schedules
the execution of (bulk) propagate, while Q2 schedules the sequence of operations
corresponding to pbc. There is no data dependency between Q1 and Q2, so both
queues can in principle fully overlap in time. In practice, we have seen that this
option cannot be fully exploited because the execution over the bulk uses all
resources of the device; the best it can do is to overlap host-device transfers and
computations on the device. According to our measurements the best scheduling
is indeed that shown in Fig. 4:
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1. the host starts the gather kernel; this operation collects the 37 left and right
borders into two contiguous buffers allocated on the device (Q2 queue).

2. the host starts propagate on the bulk of the lattice (Q1 queue)
3. as soon as gather completes, the host starts the D2H L and D2H R operations

in asynchronous mode to copy the two buffers on the host side memory;
these operations do not fully overlap because they use the same channel bus,
but the host is not blocked (Q2 queue);

4. as each of the two D2H transfers finishes the host starts the corresponding
MPI communication – first MPI L and then MPI R – to send and receive
border data to/from the left and right neighbours;

5. as each MPI communication completes, the host starts the corresponding
H2D L or H2D R steps and moves back the buffers onto its device (Q2 queue);

6. the scatter kernel moves the content of the buffers onto the left and right
halos (Q2 queue).

7. propagate executes on the lattice columns not handled by Q1, using fresh
halo data (Prop’, in Fig. 4). This is a Q2 step, but in practice it does not
start before propagate on Q1 finishes.

Inspection of Fig. 4 shows that all data transfer overheads can be hidden
behind the execution of (bulk) propagate. The effective time for the combined
pbc and propagate steps on the whole lattice is given by max{Tα, Tβ}, where

Tα = TGath + TProp + TScat + TProp′

Tβ = TGath + TD2h(L) + TMPI(L) + TMPI(R) + TH2d(R) + TScat + TProp′

As we split the lattice on more and more devices, propagate becomes faster and
faster, while data transfers are approximately constant in time, so hiding will be
partial. We assess this quantitatively in the next section.

5 Results

We have tested our OpenCL code on the Eurora cluster, installed at CINECA
(Italy). Eurora is a cluster of nodes interconnected through a standard Infiniband
network. Each node has two Intel processors of the Xeon-E5 family, based on the
Sandybridge micro-architecture, and two accelerators, either two Kepler K20s
NVIDIA GPUs or two Intel Xeon-Phi 5100 devices. The double-precision peak

Table 1. Performance comparison of the main critical kernels of the code, using a
common OpenCL (OCL) code or architecture-specific CUDA and C versions; execution
times are in μsec.

OCL - GPU CUDA - GPU OCL - PHI C - PHI

TPbc+Prop 17.64 15.40 39.40 37.70

TCollide 104.65 83.33 81.12 79.14



On Portability, Performance and Scalability 447

Table 2. Time break-down of all steps of our OpenCL code running on two K20s GPUs
for lattice sizes of Lx × 2048. All times are milli-seconds and the lattice is sliced along
X-dimension. Values in bold identify the performance limiting factor for scalability.

Lx 3840 1920 960 480 240 120 64 32 16

TPbc+Prop 17.64 8.93 4.56 2.39 2.07 2.10 2.11 2.03 2.06

TBc 7.91 3.98 2.02 1.04 0.56 0.30 0.20 0.11 0.11
TCollide 104.65 52.35 26.61 13.15 6.64 3.35 1.82 0.94 0.49
Ttot 130.21 65.25 33.19 16.58 9.27 5.74 4.13 3.08 2.66

TGath 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
TD2h(L) 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

TD2h(R) 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

TMPI(L) 0.70 0.67 0.61 0.60 0.60 0.62 0.64 0.61 0.63

TH2d(L) 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

TMPI(R) 0.57 0.58 0.58 0.58 0.58 0.58 0.58 0.59 0.59

TH2d(R) 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.32

TScat 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
TProp′ 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

TProp 17.38 8.65 4.31 2.13 1.04 0.50 0.25 0.11 0.04

Tα 17.60 8.86 4.53 2.35 1.25 0.71 0.46 0.32 0.25
Tβ 2.10 2.06 2.01 2.00 2.00 2.02 2.03 2.04 2.04

performance of both accelerators is ≈ 1 Tflops. We first assess the performance
penalty, if any, of an OpenCL code w.r.t. architecture-optimized codes written
using programming languages closer to the specific architecture (i.e. CUDA for
GPUs, C and intrinsics for commodity CPUs and Xeon-Phi).

In Table 1 we compare the execution times of the two most critical kernels,
propagate and collide, for our OpenCL code and for highly optimized codes writ-
ten in CUDA for GPUs [10] and C for Xeon-Phis [9]. The GPU CUDA code
was compiled using the same configuration options supported by the current
NVIDIA OpenCL library. We remark that other options (not supported by the
current version of the OpenCL library) allows significantly better performances
for the collide kernel [10]. Data is for a lattice large enough (1920 × 2048 per
device) that communications are well overlapped with computation. We see that
the performances of the same OpenCL code are only slightly worse than those
of codes specifically optimized for each device. We also notice that the two ac-
celerators have roughly the same performance in the computing intensive kernel
(collide), while the PHI processor is slower in the propagate step; this will have
an impact on scalability, that we discuss next.
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Fig. 5. Weak and strong scalability of our OpenCL code on the EURORA cluster for
GPUs and MICs. In the strong regime, the code runs on a lattice of 1024× 8192 cells;
in the weak regime each device handles a sub-lattice of constant size (256×8192 cells).

Table 2 contains the time break-down of all operations of our OpenCL code on
a dual-K20s system (results are qualitatively similar for the Intel Xeon-Phi) as
we reduce the value of Lx. The first part shows the execution time of the main
steps of our code. TPbc+Prop refers to the execution of pbc and propagate

scheduled as discussed in the previous section; while Ttot is the total execution
time of the code. The following section of the table shows the full break down
of all steps associated to pbc and propagate, while the last section shows the
values of Tα and Tβ appearing in the time model of the previous section. Note
that our time model describes very well the behavior of TPbc+Prop in terms

of the contributions of all steps involved. As expected, as we vary the sub-
lattice size all operations belonging to Q2 take approximately the same time, as
they handle the same amount of data. However, as the sub-lattice size becomes
smaller and smaller (Lx ≤ 480), TProp for the bulk is too short to successfully

hide communication latencies, so violations to scaling start to appear.
Fig. 5 shows scalability results obtained for both GPUs and PHIs. We have

measured strong scalability on a lattice of 1024×8192 points. On this purposely
small lattice, we see that communications quickly become the major bottlenecks,
so there is no real advantage in using more than 32 GPU devices. For PHIs the
situation is even worse and we have a performance improvement only up to 16
devices. Here the major bottleneck comes from data transfers between host and
PHIs that are slower than for GPUs. For weak scaling we have allocated a lattice
of 256× 8192 on each device, a typical size for physics simulations. In this case
communication overheads are fully overlapped with computation of propagate,
and the code enjoys perfect scalability both for GPUs and PHIs in the whole
range considered, up to 32 devices.
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6 Conclusions and Outlook

An important result of this work is that the same OpenCL code runs on different
accelerators, either based on GPUs or MICs, with single-node performance sim-
ilar to that obtained with programming languages closer to each architecture.
This provides an higher portability w.r.t. architecture specific implementations.
However, in today heterogeneous cluster architectures, performance scalability
of codes is seriously limited by the poor integration at hardware level between
accelerators, the host node and the network; this translates to high latencies
to move data between accelerators. In our implementation we have shown how
computation and commnication can be efficiently overlapped in order to mini-
mize impact of transfer latencies. In a future work we plan to use these results to
design and optimize a portable 3D Lattice Boltzmann code using the OpenCL
framework, or higher level languages such as OpenACC.
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Abstract. In this paper, methods for efficient utilization of modern
accelerator-based hardware for performing high-order finite-element com-
putations are studied. We have implemented several versions of a matrix-
free finite-element stiffness operator targeting graphics processors. Two
different techniques for handling the issue of conflicting updates are
investigated; one approach based on CUDA atomics, and a more ad-
vanced approach using mesh coloring. These are contrasted to a number
of matrix-free CPU-based implementations. A comparison to standard
matrix-based implementations for CPU and GPU is also made. The per-
formance of the different approaches are evaluated through a series of
benchmarks corresponding to a Poisson model problem. Depending on
dimensionality and polynomial order, the best GPU-based implemen-
tations performed between four and ten times faster than the fastest
CPU-based implementation.

1 Introduction

For applications where the geometry can be expected to be very complicated,
methods based on completely unstructured grids, such as finite-element methods,
are popular because of their ability to fully capture the geometry. On the other
hand, in application fields where solutions also posses a high level of smoothness,
such as in micro-scale simulation of viscous fluid, or linear wave propagation in
an elastic medium, using a high-order numerical method can give high accuracy
and efficiency. However, computational challenges limit the numerical order of a
conventional matrix-based finite element-method.

Traditionally, the finite element method, FEM, has been seen as consisting of
two distinct parts; an assembly of a linear system of equations, and a solution
of this system. The system of equations is then typically represented as a sparse
matrix, and the solution is found using an iterative Krylov subspace method.
However, if high-order basis functions are used, in particular in 3D, the system
matrix becomes increasingly less sparse. In order to accurately simulate realistic
problems in three dimensions, millions or even billions of degrees of freedom can
be required. In such cases, the system matrix can simply be too large to store
explicitly in memory, even if a sparse representation is used.

In addition to the problem of storage, an equally important problem is that
of memory bandwidth. In most iterative methods, most time is typically spent
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performing sparse matrix-vector products, SpMV, with the system matrix [1].
The sparse matrix-vector product has a relatively poor ratio of computations
per memory access. On modern computer systems, even the most optimized
implementations of this operation will not utilize the computation resources
fully and is effectively bound by the memory bandwidth [2].

Matrix-free finite-element methods avoid these issues by merging the assem-
bly and SpMV phases into a single operator application step, thereby removing
the need for storing the system matrix explicitly. Since the large system ma-
trix no longer has to be read, the bandwidth footprint is reduced radically. On
the other hand, this is traded for additional computations, since the assem-
bly needs to be recomputed at each operator application. For non-linear and
time-dependent problems, this is not an issue since reassembly is necessary any-
way. In [3], Cantwell et al. perform a comparison of different matrix-based and
matrix-free approaches to high-order FEM, concluding that for order one el-
ements, sparse matrices are most efficient, while for orders two and higher, a
matrix-free approach yields the best performance. In [4], Kronbichler and Kor-
mann propose a general framework for matrix-free finite element methods.

Due to the increased computational intensity of the matrix-free approach [4],
it makes a good candidate for execution on throughput-oriented hardware such
as graphics processors. Work on porting high-order FEM code to GPUs include
the work by Cecka et al. [5], which compares different methods for performing the
assembly of an explicit FEM matrix on GPUs. In [6], Klöckner et al. proposed a
GPU implementation of a Discontinuous Galerkin method, which in many ways
is similar to finite-element methods. However, there hyperbolic conservation laws
were studied, which allows for an explicit time stepping without the need to solve
a linear system. In [7], Komatitsch et al. port an earthquake code based on the
related spectral element method to GPUs. Also here, the seismic wave equation
being studied is hyperbolic and can be integrated explicitly in time.

In this paper, we propose a matrix-free GPU implementation of a finite-
element stiffness operator based on CUDA, for future use in a solver for possibly
non-linear elliptic and parabolic PDEs. An issue in performing the operator
application is how to avoid race conditions when writing partial results to the
output. We present two different techniques to handle this; one which uses the in-
trinsic atomic instruction of CUDA to protect the writes, and a more advanced
technique based on mesh coloring to avoid the conflicts. We evaluate the two
techniques in benchmarks based on a simple model problem, namely Poisson’s
equation on a Cartesian mesh in 2D and 3D, for polynomial degrees one to four.

2 A Matrix-Free Finite-Element Method

In the following discussion, the Poisson equation with homogeneous boundary
conditions,

∇2u = f on Ω, (1)
u = 0 on ∂Ω, (2)
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in two dimensions is studied. This is a simple model problem, however it is still
representative of more complex problems as it shares most of their properties.
If the equation involves other differential operators than ∇2, they are typically
treated in a similar way. It is readily extensible to three or higher dimensions. If
there is a time dependency, a similar time-independent equation is solved at each
time step. If the equation is non-linear, it is linearized and a similar linear prob-
lem is solved, e.g. throughout a Newton iteration procedure. Non-homogeneous
Dirichlet boundary conditions can easily be transformed to homogeneous ones,
and the treatment of Neumann conditions or more general Robin conditions
leads to similar end results.

By multiplying (1) by a test function v and integrating by parts, the weak
form ∫

Ω

∇v · ∇u dV =

∫
Ω

vf dV (3)

is obtained, where v belongs to the function space V which is chosen to satisfy
the boundary conditions (2).

Now, let K be a quadrilateralization of Ω, i.e. a partitioning of Ω into a set of
non-overlapping quadrilaterals Ωk. Also, let Vh be the finite-dimensional space
of all functions v, bi-polynomial of degree p within each element Ωk, continuous
between neighboring elements, and, once again, fulfilling the boundary condition.
To find a basis for Vh, we begin by noting that in order to span the space of all
p’th order bi-polynomials of an element, (p+ 1)2 basis functions are needed for
that element. To uniquely determine the coefficients of these (p + 1)2 element-
local basis functions, (p+ 1)2 degrees of freedom, (DoFs) are needed, which are
introduced as the function values at (p+1)2 node points on each element. Note
that node points on edges and corners will be shared between several elements.
The basis is then comprised of the p’th-degree bi-polynomials {ψi}Np

i=1, where
basis function ψi is equal to unity at precisely node j = i, and zero at all other
nodes j �= i.

Expanding the solution in this space, u =
∑N

i=1 uiψi, and substituting ψj as
the test functions v, we get

N∑
i=1

Ai,jui = bj , for j = 1, . . . , N , (4)

where

Ai,j =

∫
Ω

∇ψi · ∇ψjdV (5)

bj =

∫
Ω

fψjdV . (6)

This is a linear system in the DoFs ui, which needs to be solved in order to
obtain the approximate solution u to the original problem (1).
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Noting that (5) can be writen as a sum over the elements in the mesh K,

Ai,j =
∑
k∈K

∫
Ωk

∇ψi · ∇ψjdV , (7)

we observe that each sub-integral will only be non-zero for very few combinations
of basis functions, namely the ones that have a non-zero overlap on element k.
If we introduce a local numbering of the DoFs within an element, there will
be an element-dependent mapping Ik translating local index j to global index
Ik(j), and an associated permutation matrix P k

i,j = δi,Ik(j). Using this, and
introducing ψk

l as the l’th basis function on element k, we can write (7) on
matrix form as

A =
∑
k∈K

P kAkP kT , (8)

where the local stiffness matrix Ak is defined as

Ak
l,m =

∫
Ωk

∇ψk
l · ∇ψk

mdV . (9)

2.1 Computation of the Local Matrix

The integral in (9) is usually computed by transforming Ωk to a reference ele-
ment, and using numerical quadrature. Typically, Gaussian quadrature is used
since polynomials can be integrated exactly.

Ak
i,j =

∑
q

[
J−1
k (x̂q)∇̂ψ̂i(x̂q)

]
·
[
J−1
k (x̂q)∇̂ψ̂j(x̂q)

]
| detJk(x̂q)|wq ,

where Jk is the Jacobian matrix of the transformation from reference element
to the k’th real element, x̂q are the quadrature points of the reference element,
and wq are the quadrature weights.

Now, if the mesh is uniform, i.e. all elements have the same shape and size,
Jk will be the same for all k. In this case, also Ak will be independent of k, and
a single Â can be precomputed and stored in memory. For a non-uniform mesh,
however, all the Ak will be distinct and a precomputation is unfeasible due to
the extensive storage requirement. In such a case, a tensor based approach can
be used, as described by Kronbichler and Kormann [4].

2.2 Matrix Free Operator Application

In the case of standard finite-element methods where an explicit matrix is used,
(8) is computed once and the resulting matrix is stored, to be used in the sub-
sequent multiplications. To obtain the matrix-free case, we multiply (8) by the
vector u and simply rewrite it the following way,

Au =

(∑
k∈K

P kAkP kT

)
u ⇔ Au =

∑
k∈K

(
P kAkP kTu

)
. (10)



454 K. Ljungkvist

Since the permutation matrices merely selects and reorders rows, we have
essentially disassembled the operator application from a sparse matrix-vector
multiplication into a sum of many, small and dense matrix-vector multiplications,
where each such multiplication involves a computation of the local matrix Ak.

2.3 Parallelization

Being made up of many small, independent matrix-vector products and the
associated local-matrix computations, the matrix-free operator application in
(10) is almost trivially parallelized – the list of elements is simply split into
chunks of appropriate size and then all the chunks are processed in parallel.
However, a problem arises when assembling the results into the single output
vector.

For a given row i of the result, most of the terms in the sum in the right-hand
side of (10) will be zero, however, the terms corresponding to all elements to
which the i’th DoF belongs will be non-zero. All of these contributions will need
to be added to the single memory location at row i of the result. Since these are
computed in parallel, care must be taken to avoid race conditions while updating
the shared memory location.

Mesh Coloring. As previously stated, only the elements to which a given node
i belongs will give a contribution to the i’th row of the result. Conversely, this
means that any two elements which do not share a DoF will be free of any
conflicting updates, and may thus be processed concurrently.

One way of achieving this, is to use graph coloring. Denote two elements in
a mesh as neighbors if they do not share any node points, which will hold if
they do not share any vertices (see Fig. 1). Then, if all elements in the mesh are
colored such that within each color, no two elements are neighbors, then all the
elements within a single color can safely be executed in parallel.

A
B C

D

Fig. 1. Elements A and B are neighbors, as are elements A and C, and are thus given
different colors. Elements A and D are not neighbors and can be given the same color.

Since not all elements are processed in parallel, there is a reduction of paral-
lelism of 1

Nc
, where Nc is the number of colors needed. For a logically Cartesian

mesh, Nc = 2d, where d is the dimensionality of the problem, whereas for an
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unstructured FEM mesh, Nc > 2d in general (see Fig. 1). In both cases, how-
ever, Nc will be independent of the number of elements of the mesh. Thus, for
sufficiently large problems, the overhead will be small enough. For the uniform
meshes considered in this paper, the coloring is trivial. For the case of a general
mesh, a more advanced graph coloring algorithm must be used, such as the ones
of Berger et al. [8], Farhat and Crivelli [9], or Komatitsch et al. [7].

3 Graphics Processors

Recently, graphics processing units (GPUs) have seen an increasing use as general-
purpose processors for high-performance computations within science and tech-
nology. Computer graphics consists of processing a large number of independent
polygon vertices. Tailored for this very parallel and compute-intensive task, the ar-
chitecture ofGPUs is optimized for high throughput rather than low latency, which
is the case for CPUs. Because of this, a much larger area of the GPU chip is dedi-
cated to computations compared to a CPU. Also, memory bandwidth is typically
considerably higher than on a CPU, whereas the caching system of a CPU aims at
achieving low latency. As a consequence of the higher computing power per tran-
sistor, GPUs achieve a much higher efficiency, both economically (i.e. Gflops/$)
and power-wise (i.e. Gflops/W).

Being comprised of many small similar tasks with a high computational inten-
sity, scientific applications, such as e.g. stencil operations or linear algebra, have
in many cases been well suited for the throughput-optimized GPU hardware.
However, few applications fit the graphics-tailored GPU architecture perfectly
and in practice, issues like the limited support for double precision or the neces-
sity for very high parallelism may limit the utilization of a GPU system.

The first attempts at utilizing commodity graphics hardware for general com-
putations were based on exploiting the programmable vertex and pixel shaders
of the graphics pipeline. For a summary of the early endeavors in GPGPU, see
the excellent survey by Owens et al. [10]. However, programming the graphics
pipeline was difficult, and the real revolution came at the end of 2006, when
Nvidia released CUDA, Compute Unified Device Architecture. The CUDA plat-
form provides a unified model of the underlying hardware together with a C-
based programming environment. The CUDA GPU, or device, comprises a num-
ber of Streaming Multiprocessors (SMs) which in turn are highly parallel multi-
core processors. The threads of the application are then grouped into thread
blocks which are executed independently on a single SM. Within a thread block
or an SM, there is a piece of shared memory, and a small cache. Finally, syn-
chronization is limited and only possible between threads within a block, except
for global barriers. For further details on the CUDA platform, see the CUDA C
Programming Guide [11]. Examples of studies based on CUDA include molecular
dynamics simulations [12], fluid dynamics [13] and wave propagation [14].

Although CUDA is vendor specific and GPUs have a very specialized ar-
chitecture, they are both part of a larger movement – that of heterogeneity
and increasing use of specialized hardware and accelerators. Thus, developing
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algorithms and techniques for dedicated accelerators, such as GPUs, is relevant
also for the technology of the future.

4 Experiment Code

As part of this research, a small framework for high-order finite-element appli-
cation in efficient, heavily templated C++/CUDA has been developed. Because
of the high accuracy which is needed when solving scientific problems, double
precision is used throughout the code. The mesh is stored in an array of points
and an array of elements. For the elements, an element struct is used comprising
a list of DoF indices. This array-of-structure format was found to perform better
than a structure-of-array approach, both for the CPU and the GPU.

We have implemented several different versions of the stiffness-matrix oper-
ator. Apart from the matrix-free GPU implementations, we include serial and
parallel matrix-free implementations for the CPU, as well as matrix-based im-
plementations for both CPU and GPU, for comparison.

4.1 Matrix-Based Implementations

The matrix-based reference implementation for the CPU, SpM, uses a Compressed
Sparse Row (CSR) matrix format, since this performs well during matrix-vector
multiplication. For the assembly, a list-of-lists (LIL) format is used, since this has
superior performance during incremental construction. After the construction,
the LIL matrix is converted to the CSR format, without much overhead. Still,
the matrix construction amounts to a significant part of the total execution time
(see results under Sect. 5.1). The sparse matrix-vector product is parallelized in
OpenMP, by dividing the rows in chunks evenly over the processors. We used
four threads, since this gave the best performance.

The corresponding implementation for the GPU, GPU_SpM, uses the efficient
SpMV kernel of CUSPARSE, a sparse matrix library released by Nvidia as part
of CUDA. The matrix assembly is performed on the CPU identically to the SpM
implementation, and then copied to the GPU.

4.2 Matrix-Free Implementations

Our matrix-free implementations follows the idea described in Sect. 2.2. Since
a uniform mesh is assumed, the local matrix is the same for all elements and a
single copy is precomputed and stored. The serial version is called Mfree.

There are two versions parallelized using OpenMP, both based on computing
the contribution from multiple elements in parallel. The main difference between
the versions is the technique used to solve the conflict issue described in Sect. 2.3.
In the PrivateBuffers implementation, each OpenMP thread writes its result
to its own version of the output vector. After all threads have finished comput-
ing, a parallel reduction phase sums up the buffers into a single vector, trading
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off the conflicts for the extra storage and computations. Finally, there is an im-
plementation Color which uses the mesh coloring method described in Sect. 2.3
to avoid the conflicts. Once again, four threads are used since this gave the best
speedup relative to the serial version.

Much like the matrix-free implementations for the CPU, the ones for the
GPU mainly differ in the treatment of conflicts. In all implementations, each
thread handles a single element. A block size of 256 threads was chosen since
this performed best in the experiments. There is one version, GPU_Atomic, which
uses the built-in atomic operations of CUDA to protect the conflicting writes.
There is also an implementation GPU_Color using the more advanced coloring-
based treatment of conflicts described in Sect. 2.3. Finally, a version without any
protection, GPU_Max, is also included to get an upper bound on the performance
for an element-wise parallelization of the matrix-free operator application.

5 Numerical Experiments

The performance of the different implementations described above are evaluated
through a series of benchmark experiments. These are based on the Poisson
problem studied in Sect. 2. The unit square domain is discretized by a Cartesian
mesh of quadrilateral elements of order p. A similar problem in 3D is consid-
ered, i.e. a unit cube discretized by a Cartesian mesh of p’th-order hexahedral
elements. In detail, the experiment consists of the following parts:

1. Setup of data structures for the mesh, the vectors, and the operator.
2. Transfer of data to the appropriate memory location (i.e. device memory for

GPU-based implementations).
3. 20 successive applications of the operator.
4. Transfer of data back to main memory.

To evaluate the execution time for the operator application, the time for steps
2–4 is measured, and the time for a single application is calculated by dividing
by the number of iterations, i.e. 20. Furthermore, to get more stable results, 20
repetitions of steps 2–4 are performed, and the minimum time is recorded. The
experiment is run for all the operator implementations described in Sect. 4, with
polynomial degrees of one to four.

All experiments are performed on a server with an Intel Xeon E5-2680 eight-
core processor @ 2.70GHz, 64 GB DRAM and an Nvidia Tesla K20c GPU with
2496 cores and 5 GB of ECC-enabled memory. The test system runs Linux 2.6.32,
with a GCC compiler of version 4.4, and a CUDA platform of version 5.5.

5.1 Results

Figures 2 and 3 depict the performance of the most important implementations
as a function of the number of degrees of freedom, in 2D and 3D respectively.

Firstly, we see that performance increases with the problem size as the paral-
lelism of the hardware is saturated, in particular for the versions for the GPU,
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Fig. 2. Scaling of the performance with the problem size (NDoF ), for the 2D experi-
ments

due to its much higher parallelism. Also, it is evident that the GPU versions
performed significantly faster than the ones for the CPU. Furthermore, we see
that, as the complexity of the elements increases, i.e. as polynomial degree and
dimensionality grow, so does the benefit of using a matrix-free approach. Al-
though the matrix-based implementations for CPU and GPU performed on par
with the matrix-free ones for element order one, they are outperformed already
for second order elements. Moreover, in many cases, as expected, it was simply
impossible to use the matrix-based version, since the storage requirement for the
matrix exceeded the system memory (indicated by the truncated curves for SpM
and GPU_SpM). Finally, as predicted, the setup times were reduced considerably.
For the example of fourth-order polynomials in 2D, SpM required 14 seconds for
the setup, whereas Color required only 0.2 seconds, a difference that was even
larger in 3D. Similar times were recorded for the matrix-based and matrix-free
GPU implementations. The performance for the largest problems is presented
in more condensed form in Fig. 4 (a) and (b), which display the performance
of all implementations at the largest problem size as p varies, for 2D and 3D,
respectively.

For the results in 2D (Fig. 4(a)), we begin by noting that the matrix-free GPU
versions gave very good speedups over the reference versions (between 5.4 and 10
times versus the fastest CPU version). In fact, the amount of work performed per
time by the matrix-free GPU versions grew steadily with the polynomial order,
whereas for both the matrix-based GPU implementation and all the CPU imple-
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Fig. 3. Scaling of the performance with the problem size (NDoF ), for the 3D experi-
ments

mentations, this stayed roughly constant. Comparing the results of GPU_Color
and GPU_Atomic with the result of version without any protection, GPU_Max, we
see that there is an overhead of dealing with conflicting updates, but that using
a coloring approach was more efficient than using atomic intrinsics.

From the results of the CPU-based matrix-free versions, it is clear that the
straightforward implementation using private buffers gave a very poor speedup,
due to the overhead of performing the buffer reduction. On the other hand, just
as in the case of the GPU implementations, the parallelization based on coloring
achieved a good speedup of about 3.5.

Looking at the results for the 3D experiment (see Fig. 4(b)), we see that,
once again, using a matrix-free method on the GPU can give large speedups
(4.5 – 10×). However, although we still see a speedup over the CPU, there is
a significant drop in performance when going to order 3 and 4. An explanation
for this can be found by looking at the size of the local matrix, (p+ 1)(2d) · 8B,
which for d = 3 and p = 3 exactly matches the size of the L1 cache available
per SM, namely 32kB. Thus, the threads within a block can no longer fetch the
local matrix collectively by sharing reads.

Finally, we note that the Gflops numbers in Fig. 2 - 4 are fairly low, and quite
far from the theoretical 1.17 double precision Tflops of the K20. However, this is
no surprise since the SpMV operation is bandwidth-bound, which is also the case
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Fig. 4. Performance for the largest problems solved (with 26.2M, 26.2M, 14.8M, and
26.2M DoFs (2D) ; and 33.1M, 33.1M, 14.0M and 33.1M DoFs (3D), respectively). The
missing bars for SpM and GPU_SpM indicate a fail, i.e. the matrix did not fit in main
memory.

for a matrix-free version using a precomputed local matrix. This is confirmed
by the numbers for global memory bandwidth utilization reported by nvprof,
which lie around 110 GB/s, compared to the official peak 208GB/s (reported for
ECC off), indicating a fairly well utilized bandwidth.

6 Conclusions

Our GPU implementations of the matrix-free stiffness operator achieved speedups
of 4.5 and 10 times relative to the fastest CPU-based implementation. The re-
sults indicate that as element complexity grows, i.e. if the dimensionality and el-
ement degree increases, so does the performance benefit of using the GPU, which
is promising for future use in a high-order finite-element method solver of ellip-
tic and parabolic PDEs. Finally, as indicated by our results for the setup times,
applications where frequent reassembly is necessary, such as time-dependent or
non-linear problems, can benefit substantially from using a matrix-free approach.
In addition, with the matrix-free method, we were able to solve problems an order
of magnitude larger than with the matrix-based methods.

We saw that for a too large local matrix, performance drops significantly.
However, as was pointed out in Sect. 2.1, the strategy based on a local matrix
is limited to uniform meshes, meaning that for more realistic problems, other
approaches, such as the tensor based technique of Kronbichler and Kormann [4],
are necessary anyway. Considering this, the present result suggests that such
methods can be favorable also for uniform meshes due to the lower memory
footprint, for which the already good speedups can be expected to improve
further.

Topics of ongoing research include development of a tensor-based operator
implementation, as well as techniques for reduction of the high bandwidth usage,
and solution of realistic problems within the field of two-phase flow simulation.
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Abstract. We present a new load balancing algorithm inspired byMolec-
ular Dynamics Simulations. Our main motivation is to anticipate the
rising costs of tasks-scheduling caused by the growth of the number of
available cores on chips. This algorithm is based on a virtual decom-
position of workload in Vorono cells centered around computing units.
The method used in this paper allows cores to virtually move in or-
der to change their computing load. Cores displacements are result of
forces computation (with pair potential): attractive or repulsive forces
between cores are balanced by the cores computing load (total cost of
Vorono cell). Over-charged cores are more attractive than under-charged
cores (which are then more repulsive). In this paper, we demonstrate the
relevance of our approach by experimenting our algorithm with a high
number of automatically-generated test cases, ranging from almost stable
to quickly-evolving scenarii. In all cases, our algorithm is able to quickly
converge to a distribution which maintains good locality properties.

Keywords: Simulation, dynamic load-balancing, tasks, many-core, pair
potential.

1 Introduction

In order to reach exascale, current trends in super-computing are on low-energy
consumption systems [1], with systems containing an increasing number of energy-
aware processors and accelerators [2] [3]. These processors and accelerators offer
more computing cores with reduced frequencies, making task optimization very
demanding. A common way to extract parallelism from applications is to dis-
tribute the main computing flow into a large number of tasks [4]. Numerous run-
times [5] [6] [7] actually work this way. In addition, since its third version,OpenMP
offers task support in it specification [8].

Accurate task scheduling must provide numerous tasks for one thread, leading
to an important scheduler overhead when hundred of cores are considered, mainly
due to finding the best queue and inserting the new task. Algorithm to find the
best queue is critical (a bad task distribution drives to poor performances) and
depends on tasks properties, e.g., average task duration, data amount, etc. Usu-
ally, those kinds of difficulties are solved by introducing work-stealing strategies,
but finding a victim among thousands of threads is very expensive. Advanced

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 462–473, 2014.
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schedulers take care about data dependencies and data locality [9]. Tasks with
strong data affinity should be scheduled to the same computing unit to prevent
from data migrations and improve cache usage. NUMA-aware allocations. One
other important aspect of tasks scheduling is the ability to take into account the
possible evolution of task load during simulations.

Aiming to propose an efficient task scheduler with NUMA-aware allocations,
we use a partition of the simulation domain into boxes of fixed size. Each box
is associated to one elementary task and contains a few numbers of elemen-
tary calculation element, typically 10 to 100 atoms, finite elements, or finite
difference cells. We then gather the boxes around a virtual center by using a
Vorono tessellation, and associated each Vorono zone to a thread. In doing so,
we ensure that threads are always dealing with a compact set of boxes, which
maximize caches usage. Since the CPU cost of a task may vary due to inter-
nal evolution of the elementary calculation element, the amount of calculation
of a thread could strongly vary during a simulation. Noting that the density
of Vorono centers is related to the number of elementary tasks in the Vorono
zones (the higher the density the lower the tasks number), we chose to move the
Vorono centers to adapt the CPU charge of the threads. In opposition to a ”task
by task” scheduling, the proposed approach induces a limited fraction of tasks
to be re-scheduled during charge adaptation (typically, tasks at thread domain
boundary). The method to adapt the thread charge ”on the fly” uses an analogy
with the dynamic of electrically charged particles.

We will first define the “virtual core” as the center of the Vorono tessellation
method, then recall the pair potential theory, and put forward the advantage of
this method in tasks scheduling. We then discuss our choice of pair forces and
their relevance for load balancing. A large set of test-cases, which present dif-
ferent charge variations (smooth/aggressive), are then proposed to demonstrate
the advantages of a dynamic load balancing based on pair potentials. We will
then conclude by the evaluation of our scheduler in a real parallel application.

2 Tasks Scheduling with Pair Potentials

We use a 2D grid (see fig. 1) in which every cell represents a task. Each task
has a computing load of its own, which can evolve over time. We gather tasks
around a virtual core (termed in the following a vCores, a virtual representation
of the physical computing units) by using a Vorono tessellation[10]. By this
way, we maximise per-core data locality. In a shared-memory environment, this
guarantees NUMA-aware allocations and better caches usage. In a distributed-
memory environment, this reduces inter-node data displacements. The load of a
vCore is the sum of the computing load of each tasks in its Vorono cell. Thus,
real-time tasks cost variations have a direct influence on the vCores load.

We then associate to each vCores a force and make them virtually move over
the task domain in response to this force. By moving, a core will change its
computing load, which gives the opportunity to re-equilibrates the computing
load between vCore.
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Fig. 1. By introducing pair potentials in task scheduling, a core can move over the tasks
domain (red arrow). Q is the local computing load of the core and Fij the applied forces
on i. This local computing load modulate the intensity of attractive/repulsive forces
between cores. In this case, all tasks have the same computing cost.

Figure (1) gives a representation of the elementary tasks (or cells) the vCores
and the associated Vorono cells, as colored domains.

In the next section we define a pair potential between vCores that would lead
to a good load balancing, for any variations of the underlying elementary tasks
load.

3 Evolution of a Set Charged Particles

Let us consider the Coulomb force between of two particles i, j separated by a
vector rij = xi − xj with charge Qi, Qj :

Fij = QiQj
rij

|rij |3
. (1)

Different charge signs lead to attractive forces whereas charges with same sign
produce repulsive ones. Pairs interactions of this N-Body system are calculated
by exploiting the symmetry of interactions, i.e., Fij = −Fji. In order to get
the relaxed state only, we minimize the potential by using a steepest descent
algorithm: dx/dt = −αFij (with α a positive scalar), and by lumping α and
time increment into a simple scalar k:

x(t) = x(t− 1)− k
∑
j

Fij (2)

We rescale k so that the distance x(t)−x(t− 1) is a fraction of the verlet box
dimension (a task), which ensure convergence to stable or metastable states.

Going on this analogy between charged particles and computing loads, we set
the charge of a vCore to be the sum of the computing load of each tasks in the
Vorono cell qk:

Qi =
∑

k∈V orono(i)

qk. (3)
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Preliminary results using this force are discussed in the following section.
Enhanced forces expressions are then proposed to improve the load balance, and
discussed.

4 Potential Test Cases

Despite its apparent simplicity, minimizing a set of particles interacting by an
electric potential could lead to complex behaviors. For example, when homoge-
neous repulsive charges are considered, the minimization leads to a cubic close-
packed lattice with a minimal number of neighboring cells (i.e. 12). Dealing with
non-constant loads requires to slightly modify the pair potential, as proposed
below, but also to test it on standardized tests cases.

We have developed a C++ simulator which helps us to select an efficient
potential. This simulator generates a grid of tasks (of different charges), and
randomly inserts a bunch of vCores (see fig. 2). Thanks to this simulator, we
have a real-time feedback on the actual load balancing and Vorono cells con-
figuration. Various charge evolutions are supported by our simulator. We can
generate a whole new map that leads to strong tasks charge variations, or we
can translate the map (smooth tasks charge transitions). The map is based on a
Perlin noise [11] generated with the LibNoise [12] library. A stable configuration
is reached when the vCores are stable (i.e. velocity is null).

Fig. 2. Simulator used to find an efficient potential for tasks scheduling. From left
to right: tasks grid with different loads, vCores are positioned on the grid, associated
Vorono cell.

4.1 Three Potentials

Our original idea was to use a slightly modified Coulomb potential so that over-
loaded vCores allows their neighboring vCores to get closer, whereas under-
loaded vCores are strongly repulsive. Two possible choices are presented.
Decreasing repulsive force for increasing load Q can be obtained by consider-
ing the force:
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Fij = λ
rij

|rij |3
with λ =

1

Qi
+

1

Qj
. (4)

This modified potential is repulsive-only. Preliminary tests show that minimiza-
tion leads to cubic closed-packed lattice for homogeneous task load, but fails
to obtain a reasonably well balanced load for inhomogeneous task repartition.
With the objective to define a potential that produce null forces when vCores
are optimally charged, we note that ideal load partitions are obtained when all
the charges Qi are equal to the mean charge m

m =
1

N

∑
i=1,N

Qi with N , the number of VCores. (5)

We then propose to use a potential that leads to null forces when Qi = m:

Fij = λ
rij

|rij |3
with λ = 1− Qi +Qj

2m
. (6)

In this case, when a pair of vCores is globally under-loaded (the λ term is
positive), the two vCores repulse each other. By this way, its Vorono surface and
local load will grow. The reverse behavior occurs when the vCore is over-loaded
(the λ term is negative): the Vorono surface and the local load decrease thanks
to the attractive forces. Even if we have noted good load partitioning (6% to
the optimal load distribution), our preliminary simulations show the formation
of dipoles (two very close vCores). This leads to bad Vorono partitioning (see
fig. 3): some vCores are no longer in the center of their Voronoi cell, but close
to one of the frontier.

Fig. 3. Dipole formation: in this case (potential (6)) produces a bad Vorono cell split-
ting. Some vCores are too close to each other. The short repulsive term introduced in
(7) solves this issue.

To tackle to this problem, we have added a short-distance repulsion to our
potential (7). This term ensures that two vCores can not be too close to each
other.
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Fij = λ
rij

|rij |3
+

rij
|rij |5

with λ = 1− Qi +Qj

2m
. (7)

5 Experiments

In order to evaluate our task scheduling method, we have developed four kinds
of test cases (see fig. 4). The simulated domain is a 50 × 50 grid of tasks, and
we arbitrary place 10 vCores on the domain (the random position is the same
for each test case). A stable configuration is accepted when the variance to the
optimal task distribution is below 2. The tests runs on an Intel R© Xeon E5-2650.

Fig. 4. From left to right: (1) the load is uniform over the domain, (2) the load is
distributed over a line, (3) the load is concentrated in a disc, (4) the load is randomly
distributed. From top to bottom: the first line presents the load distribution, the second
line shows the final vCores configuration, and the last line represents the domain of
each vCores.

5.1 Experimental Results

Static Scheduling. Here, we evaluate the number of computing steps needed
to reach a stable vCore configuration. Figure 5 shows the convergence curves
for our test-cases. The two curves represent the distance to the optimal load per
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vCore. The upper curves (in blue) show the convergence of the most over-loaded
vCore, and lower curves (in yellow), the convergence of the least under-charged
vCore. We can observe that tests-cases (2) and (3) are complex to schedule. With
the loaded-line, we never reach a good tasks scheduling: we are nearly 25% to the
optimal. A solution that may solve this issue is presented in 5.2. In case of the
loaded-disc, we reach a good tasks distribution, but with an important number of
steps. Cases (1) and (4) reach a good tasks distribution in a reasonable number
of steps.
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Fig. 5. Convergence of different test-cases. The red horizontal curve represents the
optimal per-core load of the domain. The blue and yellow curves show the distance to
optimal load (DOL) of vCores. This expresses the tasks distribution efficiency (tasks
distribution is better when DOL is close to 0). The blue one is for the most overloaded
vCores and the yellow one for less underloaded vCores. (1): the load is uniform over
the domain. (2) the load is distributed in a line, (3): the load is concentrated in a disc.
(4): the load is randomly distributed.

Dynamic Scheduling. For dynamic scheduling, we use two kinds of charge
variations. The first one is the LibNoise [12] ability to change the frequency of
the generated noise. By this way, we translate the load map over the task domain.
The second type of load variation is done by generating a completely new map.
We call rough load variation the generation of a new map, and smooth load
variation a simple change in frequency of the actual noise. Table 1 summarize
the efficiency of our tasks scheduling method. This shows us that reaching a
tasks distribution in case of smooth task load variation is nearly 90 times faster
than in case of rough load transition.
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Table 1. Average number of steps for rough and smooth charge variation over 1000
tests

Transition type Number of steps Time (ms)
Average Min Max Average Min Max

Rough 432.700 27 5115 32.674 3.888 755.744
Smooth 5.238 2 312 0.151 0.144 70.847
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Fig. 6. Left: number of steps needed to converge after a rough (top) or a smooth
(bottom) load variation of tasks for the most/least loaded vCores. Right: variance
variations of the global system (convergence criteria).

Large Number of Cores. Here, we evaluate the ability to find a stable vCores
configuration for a large number of vCores. We use different configurations (i.e.
number of tasks, number of vCores) to stress our simulations. Tables 2 and 3
compare the number of steps and the time needed to distribute tasks over vCores.
As expected, the number of vCores and tasks impact the number of steps needed
to reach an equilibrium. In every cases, reaching a new task distribution after a
smooth load variation of tasks is almost-instantaneous.

With an higher number of cores (table 3), the number of compute steps needed
is reasonably proportional to the number of vCores. Nevertheless, the associated
time explodes, due to our Vorono tessellation algorithm. Our implementation
has a complexity in O(n ×m), with n the number of vCores, and m the num-
ber of tasks in the domain. We are currently looking for graph partitioning
optimisation[13] in aim of reducing this computing cost.
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Table 2. Dynamic load distribution for a large number of vCores

Number Domain Transition Number of steps Time (ms)
of vCores dimensions type Average Min Max Average Min Max

13 50x50 Rough 578.810 96 1939 138.871 29.005 599.621
50x50 Smooth 16.229 2 1188 0.624 0.304 374.893
100x100 Rough 997.230 238 2544 113.442 268.578 2271.620
100x100 Smooth 26.983 2 1331 10.587 1.306 339.403
150x150 Rough 1146.040 237 1977 279.070 582.276 4582.276
150x150 Smooth 101.386 2 1578 68.887 2.866 1073.940

Table 3. Dynamic load distribution for a large number of vCores

Number Domain Transition Number of steps Time (ms)
of vCores dimensions type Average Min Max Average Min Max

72 50x50 Rough 763.321 5 7784 612.415 130.010 1097.750
50x50 Smooth 62.366 2 4942 2.174 2.068 990.199
100x100 Rough 2310.150 477 4915 1447.130 301.027 3245.290
100x100 Smooth 319.010 2 1988 161.877 6.289 125.502
150x150 Rough 3152.600 803 4968 4138.220 1086.650 6760.730
150x150 Smooth 414.260 4 1990 173.868 40.390 269.675
250x250 Smooth - - -

5.2 Complex Cases

We have seen in the second case in fig. 5 that reaching a good task distribution
can be difficult. The problem is that some vCores are heavily over-loaded while
others are strongly under-loaded and are caught by surrounding vCores. We are
currently working on a complementary potential that produces only attractive
forces between tasks and vCores. By this way, vCores will be attracted by the
most costly tasks. Preliminary results show promising configurations (see fig.7).
Nevertheless, with this new interaction, computing time increases dramatically.
We need to compute interaction between vCores and tasks. Initial complexity
of the algorithm is in O(N2), but with this potential, it increases in O(mN2),
with m, the number of tasks.

Fig. 7. With the attraction of tasks, the final distribution is better
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6 Case Study: Coddex

In order to experiment our scheduler in a real-world application, we have ex-
tended the StarPU [5] runtime, which is used by Coddex, a CEA software.
Coddex is a Finite Element code dedicated to the modeling of plasticity and
phase transition on solid materials. This software is based on the MPI library
for inter-node communications and on StarPU for a threads/tasks parallelism
inside a computing node. The experimental platform used for our experiments
is a double-sockets node (Intel Xeon E5-2650). By using a multi-sockets node,
we want to evaluate the ability for our scheduler to minimize the tasks data
displacements over the different NUMA nodes. Our scheduler is compiled as

Table 4. Comparison of cache misses (L2 DCM)

Values (%)
Average Max Min

Scheduler
Eager 5.0184 16.9964 0.0
PBS 0.6830 3.6833 0.0

Gain (%) 86.4 78.3 0.0

Fig. 8. Average number of L2 data cache misses for a typical Coddex execution (1
MPI node, 32 threads). The left side figures show the results with the default StarPU
scheduler (eager), and the right side figures, the results with our scheduler (PBS). On
the top of the figure, each color represent a thread (one per thread), while on the
bottom on the figure, a color represent a cache miss rate.
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a separate library (Potential Based Scheduler, PBS) and can then be used by
several applications. In order to integrate our scheduler inside StarPU, we’ve add
a ”meta-scheduler” that calls the PBS library to retrieves the tasks distribution
over threads.

In the following, we compare two schedulers : eager [14], the default StarPU
scheduler (a simple FIFO list of tasks) and PBS, our scheduler. We measure
the average number of data cache misses 1 of each task for each simulation time
step. Figure 8 presents the percent of L2 data cache misses for a typical Coddex
execution (50K points, 2D domain), and the table 4 shows the cache misses
rate reduction. Each square of the figure represents a task (Verlet box), and we
can see that the task distributions (top of the figure) over threads (one color
per thread). We can notice that the PBS scheduler provides a better memory
accesses between our tasks; this is mainly due to a better cache usage, and a
better NUMA accesses.

7 Conclusions and Future Work

The Pair-potential approach for task scheduling over a large number of cores
produces efficient task distribution, especially in case of dynamic load. Our pre-
liminary experiments show a rapid convergence of task distribution in a close
to optimal per-core load. Nevertheless, this distribution can be sometime dif-
ficult to reach: cases like the disc of load, have a complex load distribution to
be balanced over vCores. In other more realistic cases (with a diffused load), a
stable configuration of vCores is easy and relatively fast to compute. Best results
are obtained for smooth load variations. In this case, task scheduling is nearly
instantaneous. This is particularly interesting in simulations where the load is
moving through the simulated domain (eg. shock waves). Our experimentation
on a real simulation application shows an real improvement of the cache misses
rates in comparison with the default StarPU scheduler.

Our next works will focus on improving the number of steps and the time
needed to reach a stable configuration, and thus, by adjusting our potential and
by implementing an efficient Vorono algorithm. Some work needs to be done
on the removal of some centralized aspects of the current algorithm: our actual
potential needs to know the total charge of the simulated domain. This implies
communications/synchronizations steps.

Acknowledgements. We wish to thank Julien Roussel for his participa-
tion to the forces equation 4, which have strongly accelerated our work.
Experiments presented in this paper were carried out using the PLAFRIM
experimental testbed, being developed under the Inria PlaFRIM develop-
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seil Rgional d’Aquitaine, FeDER, Universit de Bordeaux and CNRS (see
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Abstract. In this paper, we propose a holistic approach for the analy-
sis of parallel applications on a high performance–low energy computer
(called the HAEC platform). The HAEC platform is currently under
design and refers to an architecture in which multiple 3-D stacked mas-
sively parallel processor chips are optically interconnected on a single
board and multiple parallel boards are interconnected using short-range
high-speed wireless links. Although not exclusively targeting high per-
formance computing (HPC), the HAEC platform aims to deliver high
performance at low energy costs, which are essential features for future
HPC platforms. At the core of the proposed approach is a trace-driven
simulator called haec sim which we developed to simulate the behavior
of parallel applications running on this hardware. We investigate sev-
eral mapping layouts to assign the parallel applications to the HAEC
platform. We concentrate on analyzing the communication performance
of the HAEC platform running parallel applications. The simulator can
employ two communication models: dimension order routing (DOR) and
practical network coding (PNC). As a first example of the usefulness of
the proposed holistic analysis approach, we present simulation results
using these communication models on a communication-intensive par-
allel benchmark. These results highlight the potential of the mapping
strategies and communication models for analyzing the performance of
various types of parallel applications on the HAEC platform. This work
constitutes the first step towards more complex simulations and analyses
of performance and energy scenarios than those presented herein.

Keywords: performance, HAEC, simulation, network coding, routing.
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1 Introduction

Energy efficiency is one of the greatest challenges in information and commu-
nication technology. A large part of the energy costs can be attributed to the
transfer of information. Progress in energy efficient interconnections is necessary
to allow high performance computing (HPC) and data centers to manage their
energy costs while performing powerful applications. Future computing systems
will largely consist of chips with energy efficient interconnects, such as IBM’s
Holey Optochip [7] or HP’s Corona architecture [20].

The highly adaptive energy efficient computing (HAEC) platform [9] is a fu-
ture computing system design aimed at dynamically adjusting the energy usage
according to the workload without compromising on performance. It uses opti-
cal on-board [16] and wireless board-to-board [10] connections to mitigate the
bandwidth and latency bottlenecks inherent in existing multiprocessor systems.
Optical and wireless interconnects provide a wider opportunity for selecting dif-
ferent operation modes such that the energy consumption of individual links
can be adjusted according to their load. We use an integrated approach of a
highly scalable end-to-end simulation framework combining sufficient details of
the application, processor, and network.

Our goal is to analyze the performance of applications executed on a high
performance–low energy computer. We are concerned with questions regarding:
(i) Modeling of the behavior of the various independent software and hardware
components of such a system, (ii) Their integration into a holistic system model,
and (iii) The prediction of the performance and energy costs of running applica-
tions on the HAEC platform. A more specific challenge on which we concentrate
in this work is to predict the performance of the HAEC platform running (com-
munication intensive) parallel applications.

Our approach is holistic and comprises multiple models. The application
model is based on event traces obtained from running the parallel applications
on existing platforms. This model is mapped onto the HAEC platform model
using several mapping strategies. Our simulations employ two communication
models to predict the behavior of parallel applications on the HAEC platform.
The resulting simulated application traces form the basis for our analysis using
state-of-the-art performance measurement and visualization tools.

The main contribution of this work is a holistic approach for analyzing the
performance of parallel applications on the HAEC platform. We developed a
trace-driven simulation framework (haec sim) that employs three strategies for
mapping applications to the target platform. Another major contribution is a
novel communication model for the HAEC platform developed using network
coding (NC) technology. This model has been implemented in the simulator in
addition to standard routing. Even though these communication models do not
account for transmission errors, they can easily be extended to address errors.
Then, NC will outperform standard routing [1]. Given that the design of the
HAEC platform is ongoing, the simulator will account for new aspects of the
hardware that may otherwise be hard to capture by existing simulators.
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2 Related Work

Topology aware mapping of parallel applications with regular and irregular com-
munication patterns onto supercomputers has been studied in [4]. Mapping is
also a very important area of research in network on chip (NoC) systems, where a
major challenge in overall system design is to associate the intellectual property
(IP) cores implementing tasks of an application with the NoC routers [17].

Many communication models in HPC belong to the LogP model family or
the BSP model family [11]. Even though the parameters of these models cap-
ture significant characteristics of the underlying hardware, they do not explicitly
account for the network topology. Routing [6] and network coding [1] are at a
lower abstraction level than the LogP and BSP models and account for the net-
work topology. For multiple concurrent flows, network coding can achieve higher
throughput, lower latency, and better energy efficiency than standard routing.

BigSim [19] is a parallel trace-based simulator for predicting the performance
of MPI applications on future large scale systems larger than those available
today. COTSon [2] is a parallel simulation infrastructure for modeling clusters
of multicore CPU nodes, networking, and I/O. It combines functional simulation
for the behavior of devices and software, and timing simulators for the timing of
all components. Apart from the compute performance, it also enables to simulate
the power consumption. Dimemas [14] is a sequential trace-based simulator for
predicting the performance of parallel MPI or multithreaded applications. The
simulation model uses parameters such as relative processor speeds, network
bandwidth and latency within and across nodes, the number of input and output
links, and the processor scheduling policy. The network model assumes two-level
buses. Existing trace-driven simulation approaches combine only a subset of all
the aspects considered in this work, such as performance or energy efficiency,
and application or system modeling.

3 Aspects of Application Analysis on Future Computing
Systems

3.1 Simulation and Analysis Workflow

We employ trace-driven simulation to simulate future computing systems, such
as the HAEC platform (cf. §3.3), using traces generated with the scalable per-
formance measurement infrastructure for parallel codes Score-P (cf. §3.2). We
developed a parallel trace-based simulation framework (haec sim) for predict-
ing the behavior of applications running on a future computing system (de-
scribed via hardware and system software abstraction models). The simulation
concentrates on maximizing performance, minimizing energy consumption, and
optimizing communication. The simulated HAEC platform (cf. §3.3) employs
a heterogeneous and adaptive communication model (cf. §4.2) to combine high
application performance with high energy efficiency.

The proposed simulation and analysis workflow is illustrated in Fig. 1. The
source code of a parallel application of interest represents the first step in the
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Fig. 1. Proposed trace-driven simulation and analysis workflow

proposed workflow. This is followed by specification of performance and energy
features desired to be collected using Score-P [13]. The instrumented application
is executed either on an energy measurement test system or on high performance
computing production systems. The resulting execution trace forms the input
to the simulation. This trace can be visualized and analyzed using Vampir [12].
In addition to the input trace, the simulator (haec sim) contains and employs
various software and architecture abstraction models. The software abstraction
models include the mapping of the processes in the input trace to the HAEC
platform topology (cf. §4.1), the operating system, and energy-aware software.
The architecture abstraction models include the topology of the HAEC plat-
form (cf. §3.3), a model for predicting the energy consumption of running the
desired application on the HAEC platform, and a communication model that
describes how will communication be carried out over the wireless and optical
links of the HAEC platform (cf. §4.2). The HAEC platform parameters refer to
latency, bandwidth, and error rates. The desired simulation goals also form an
input to the simulator and may include the optimization criteria (or metrics)
such as performance (time) or cost (energy). The output of the simulation is an
event trace describing the predicted behavior of the initial application if it were
executed on the HAEC platform. Similar to the input trace, the output trace can
also be visualized and analyzed with Vampir. Simulation-based analysis results
in valuable feedback that can be provided to the abstraction models, to tune the
target system parameters, and to adjust the desired simulation parameters to
gain more insight towards the goals of the analysis.

3.2 Modeling Applications

Modeling and simulation of the performance and energy consumption of paral-
lel applications require a detailed description of their characteristics and their
behavior on various computing platforms. This can be provided in several ways,
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such as via: (i) Expert application knowledge, (ii) Conceptual application mod-
els, (iii) Distribution parametrized (or stochastic) models (e.g., profiles), and
(iv) Recording of application event traces on existing computing systems.

The first two approaches are not easily amenable to a broad range of parallel
applications and require a significant modeling effort. The third one may not
provide the fine-grained level of detail that is necessary to capture correlations
and interference effects in the application. The last approach is more generic
and can be employed to derive application descriptions even for highly complex
applications [18].

Discrete event traces capture the runtime behavior of parallel applications on
existing systems and form the application model for simulating their performance
on target or future computing platforms. Traces preserve the dynamic applica-
tion behavior and can yield meaningful results even for small changes in the
model [18]. An application trace consists of a time-ordered sequence of discrete
events including functions execution, communication operations, and manage-
ment of parallelism [12]. In addition, runtime hardware performance character-
istics, including energy measurements, can be recorded. We use Score-P [13] to
record the execution of parallel applications in the OTF2 [8] file format.

3.3 Modeling a High Performance–Low Energy Computer

The HAEC platform refers to a new high performance–low energy parallel com-
puter architecture [9]. In this architecture, the compute nodes consist of 3-D
stacked processor chips with thousands of ‘thin’ cores [15] offering massive intra-
node parallelism. This parallelism is not modeled explicitly in haec sim and is
abstracted. Thus, a collection of many lightweight application threads are rep-
resented as a single coarse-grain application process. Several such processes can
run concurrently on a single compute node or across multiple compute nodes
and we assume that the ‘thin’ cores are not oversubscribed.

Multiple compute nodes on a single board are interconnected using optical
waveguides [16] and multiple such boards are interconnected using board-to-
board high-speed wireless links [10]. The on-board optical links have high data
transmission rates, low transmission errors, and their topology is 2-D mesh [16].
The board-to-board wireless links are arranged around a compute node using
very large Butler matrices (antenna arrays of 8x8 or 16x16) which correspond
to narrow beams. When this is considered for both for transmitter and receiver
nodes, the interference decreases significantly and can be neglected [10]. The
wireless antennas use a beamforming architecture with phase shifters which en-
ables suppression of signals from directions that are not desired. The placement
of the wireless antennas around the compute nodes yields a 1-D mesh topology
between neighboring boards. The 3×3×3 HAEC platform topology is schemati-
cally illustrated in Fig. 2a.
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(a) 3×3×3 HAEC platform topology. Cir-
cles indicate compute nodes, blue/green
lines indicate optical/wireless links, re-
spectively.

(b) lu.C.81 mapped onto the 3×3×3
HAEC platform using block xyz mapping.
Color lines denote inter-process logical
communications (red: ∼80k, turquoise:
∼160k, green: ∼240k).

Fig. 2. The HAEC platform (a) without and (b) with an assigned application

4 Modeling and Simulation Results

4.1 Mapping Applications to Systems

Simulating the behavior of any parallel application on the HAEC platform re-
quires that the application processes be mapped to the nodes of the HAEC
platform topology illustrated in Fig. 2a. High quality mappings increase the
likelihood of achieving high performance and low energy consumption. The ob-
jectives of mapping application processes to compute nodes are reducing the
overall communication cost and maximizing parallelism.

The process-to-node mapping is fixed for the duration of the simulation, i.e.,
no process is migrated. We compare three single-pass mapping strategies: xyz,
block xyz, and random. These strategies are oblivious of the application commu-
nication requirements. The xyz mapping identifies the compute node to assign
to an application process by first increasing the x coordinate of the last assigned
node until every node along the x dimension is assigned, then by increasing the y
coordinate and, finally, the z coordinate in the same manner. When the number
of application processes is larger than the number of nodes in the system, the
strategy proceeds in a round-robin fashion. Otherwise, xyz is the default map-
ping strategy. Block xyz mapping is similar to xyz and maps �N/(dx · dy · dz)�
application processes to a single compute node, where dx, dy , and dz are the
number of nodes in the x, y, and z dimensions, respectively. Random mapping
assigns application processes to compute nodes in a random fashion, and may
result in unassigned system nodes when N > (dx · dy · dz). The three strategies
result in different distributions of the application processes to the HAEC plat-
form nodes, which in turn yield different numbers of intra-node and inter-node
logical communications.
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Table 1. Comparison of three process-to-node mappings for lu.C.81

Mapping IePLC IaNLC IeNLC AVG IeNLC MIN IeNLC MAX IeNLC

xyz
11,639,408

0 11,639,408 228,223 161,658 242,490
block xyz 4,364,778 7,274,630 173,205 80,829 242,488
random 646,633 10,992,775 99,934 80,829 242,488

To evaluate our approach we use the lu benchmark from the NPB 3.3 suite [3].
We chose lu because it performs a high number of point-to-point (unicast) mes-
sages and a small number of collective (multicast) messages. We use problem
class C and execute it with 81 MPI processes (denoted lu.C.81 ) on 6 compute
nodes of our current HPC production system1.

In preparation for the simulations described in §4.2, we used the above strate-
gies to map lu.C.81 to the 27 nodes of the HAEC platform. The number of inter-
process logical unicast communications (IePLC) of the benchmark is 11,639,408.
These communications are illustrated in Fig. 2b where lu.C.81 is mapped to
the HAEC platform using block xyz. As comparison metrics (cf. Table 1), we
use the number of intra-node logical communications (IaNLC), number of inter-
node logical communications (IeNLC), and the average, minimum, and maxi-
mum number of IeNLC between any node pair. The block xyz strategy yields
the smallest IeNLC value, which results in the largest IaNLC value. Thus, it is
expected that block xyz results in the best overall simulated performance.

In reality, a single MPI process of lu represents more than single ‘thin’ core
parallelism (e.g., as it is the case in the multi-zone version of this benchmark).
In our approach, we abstract this parallelism and consider that a single MPI
process partially or entirely exploits the available intra-node parallelism. When
multiple MPI processes are mapped to the same compute node, we assume that
they equally share the ‘thin’ cores of the node. In this work we concentrate on the
inter-node communication requirements of applications mapped to the HAEC
platform, and model them explicitly.

4.2 Application Performance for Different Communication Models

It is possible that the HAEC platform topology dynamically changes at runtime
given the presence of wireless links. To accurately model the communication be-
havior of applications running on the HAEC platform, the communication mod-
els must account for the shape and characteristics of the interconnection network
topology. Hence, we consider routing and network coding as alternative commu-
nication models. For the scope of this work the topology is assumed to be fixed (a
3-D mesh illustrated in Fig. 2a).

In standard routing, data packets are forwarded by intermediate nodes in
a first come first serve manner. Network Coding (NC) [1] allows to increase
throughput, energy efficiency, and robustness of data transmission in compari-
son to standard routing. These benefits result from the basic concept of NC to
compute linear combinations of data packets instead of simply forwarding them.

1 https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus

https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
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The min-cut max-flow (the number of packets that can simultaneously be trans-
mitted by a sender) of a network can be achieved using NC in unicast scenarios
(a single sender transmits data to a single receiver) as well as in multicast sce-
narios (one or more senders transmit data to multiple receivers). NC can also be
beneficial due to enhanced transmission robustness against node/link failures.
Receivers require sufficient linear independent data packets to be able to decode
by solving a system of linear equations, hence, the loss of single data packets
can be mitigated.

To study the benefits of network coding versus routing in the context of the
HAEC platform, we implemented both models in the simulator. The routing
model is based on dimension order routing (DOR) [6]. Using DOR in a 3-D
mesh (such as the one in Fig. 2b), packets are first routed in the x dimension,
then in the y dimension, and lastly in the z dimension. The network coding
approach is based on practical network coding (PNC, [5]), a practical implemen-
tation of random linear network coding. Random refers to the selection of the
coefficients needed for computing the linear combinations of the data packets.
In view of sending, the data packets are organized into matrices of sw rows ×
(sw + ns) columns, called generations (or windows), where sw is the number of
data packets per generation, and ns is the number of data symbols per packet.
The data packets are augmented by a global encoding vector that reflects all lin-
ear combinations applied to the data packets. Hence, the receiver does not need
to know the randomly selected coefficients for decoding the combinations. For
each packet, the first sw columns contain the global encoding vector. In PNC,
only data packets from one generation can be combined. PNC employs the same
path selection between (sender,receiver) pairs as DOR.

At the moment, both communication models address only unicast communica-
tion. In unicast communication, NC is beneficial in case of packet loss caused by
errors or attacks. In the simulations reported below, communication is assumed
to be error-free. Thus NC will not outperform routing. However, integrating NC
as a communication model in the simulator enables future evaluations in which
certain packet loss rates will be considered.

Using NC for communication requires accounting for additional associated
costs. In our case, the forwarding nodes are not burdened with additional com-
putational effort for receiving the linear combinations of packets and for forward-
ing them. However, both sender and receiver nodes must perform additional
operations, such as computing linear combinations or solving a system of lin-
ear equations. We assume that the nodes of the HAEC platform have sufficient
computational resources; thus the additional operations will not significantly
decrease efficiency. Analysis of the energy consumption of these operation will
be conducted in future work. Regarding communication overhead, the fact that
some additional information is transmitted (e.g., global encoding vector and gen-
eration identifier) needs to be considered. In comparison to the payload, which
in our context refers to the amount of data symbols per packet, the cost of
transmitting this additional information is also negligible.
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Table 2. Parameters used in the simulation

Parameter Notation DOR PNC

latency l 1μs
bandwidth b 250Gbit/s
packet size sp 288 bytes
sending delay dout 100 ns
receiving delay din 100 ns
delay per hop dh dout + sp/b+ l + din
acknowledgment processing delay da dout/2
delay intermediate node di da
packet processing delay dp 0.625 ns
finite field size sff 8 bits
window ID swid 4 bytes
delay sender node ds 2·dout 2·dout + sw · dp
delay recv. node dr 2·dout 2·dout + s2w · dp
payload/packet Lp sp − swid sp − sw · sff − swid

Within our evaluations, we focus on comparing the transfer times of messages
of applications running on the HAEC platform. To enable comparison between
DOR and PNC, we assume that data packets are organized in windows of the
same size as the generations. After sending one window (or generation) of data
packets, the sender waits for the acknowledgment of receipt from the receiver
before sending the next window of data packets. Given a payload Lp per data
packet, sending a message of size m requires sending np = �m/Lp� data packets
and, hence, sending nw = �np/sw� full windows (or generations) containing sw
data packets and a non-full window containing the remaining nr = np − sw · nw

data packets (if any). For the tests reported in the following, we set sw to 5.
Other parameters and their notation and values are given in Table 2.

Assuming the delay caused by sending a message over one hop (dh) exceeds
both the delay associated with preparing the data to be sent by the sender (ds)
and the associated delay at the receiver (dr), the time to transfer x data packets
over h hops between sender s and receiver r in the absence of errors is given by:

tt(x) = ds + (h+ x− 1) · dh + (h− 1) · di + dr, (1)

where di denotes the delay associated with processing data packets at the in-
termediate nodes. When s and r are mapped to the same node, we assume
tt(x) = (ds + dr)/2. The time needed for transmitting all data packets of mes-
sage m is given by:

T (np) = tt(sw) · nw + tt(nr) + h · (nw + 1) · (dh + da), (2)

where da refers to the delay associated with processing of an acknowledgment
and tt(sw) is given by Eq. (1). Both DOR and PNC employ Eq. (1) and (2)
with different payloads Lp and delays ds and dr (cf. Table 2). This holds for
the error-free case.

The instrumented lu.C.81 benchmark (cf. Sec. 4.1) ran in 41.8 s and resulted
in a trace of 1.4GiB. This trace was given as input to haec sim. We conducted six
simulations: one for each of the three mapping strategies, and for each mapping
we employed DOR and PNC as communication models. Each simulation was
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(a) xyz, DOR (b) block xyz, DOR (c) random, DOR (d) input trace

(e) xyz, PNC (f) block xyz, PNC (g) random, PNC (h) input trace

Fig. 3. Function and message statistics of the simulated lu.C.81 running on the 3×3×3
HAEC platform. (d) shows function and message statistics of the input trace while (h)
shows function groups statistics and message counts per message size of the input trace.
Visualization with Vampir [12].

conducted in parallel on 6 compute nodes using 81 simulation processes, and
completed in 675 seconds. The duration of the simulated lu.C.81 benchmark on
the HAEC platform was between 23.7 s to 24.1 s for the different mappings using
DOR and PNC (Fig. 3). Two types of statistics are shown for each simulated
trace: (1) the accumulated exclusive time spent in MPI functions and (2) the
average transfer times for the different message sizes. The following statistics
are shown additionally for the input trace: (3) accumulated exclusive time spent
in functions of group Application (green bar) and MPI (red bar) and (4) the
number of messages grouped by message size. The original trace is shown only
for illustration and not for comparison against the simulated traces.

The choice of mapping or communication model has no impact on the duration
of the simulated benchmark, even though most of the time is spent in MPI
functions in the input trace (cf. Fig. 3d). Note that the communication models
only alter the duration of the following MPI functions: Send, Recv, Wait, and
Irecv. Time spent in all other functions is the same in both input and simulated
traces. There are differences in the times spent in these four MPI functions and
in the transfer times per message sizes among the three mappings and the two
communication models.

From a mapping strategy perspective, less time is spent in send, recv, and
wait for block xyz mapping using DOR and PNC, than in any other case. From
a communication model perspective, more time is spent in send and wait using
PNC than DOR for all mappings. This confirms our expectation, given that the
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simulation assumed an error-free HAEC platform and knowing that use of NC
for unicast communication is only beneficial in the presence of errors or attacks.
However, less time is spent in recv using PNC than DOR. This may be due to
indirect balancing effects, such as faster transmissions leading to longer waiting
times on subsequent messages. Also, the effect of mapping and communication
model on message transmission time depends on the message size.

5 Conclusion and Future Work

This paper presents a holistic approach that uses a trace-driven workflow to
simulate and analyze the performance of parallel applications running on a high
performance–low energy computer (the HAEC platform). We have presented an
application model based on event traces, an abstract model for the HAEC plat-
form, as well as three strategies for mapping parallel applications to the HAEC
platform. We have developed a trace-driven simulator (haec sim) which employs
two communication models: dimension order routing and practical network cod-
ing. The simulation results conducted on a well known parallel benchmark show
the potential of the mapping strategies and the communication models for ana-
lyzing the performance of various parallel applications on the HAEC platform.

There are multiple future work directions. Immediate directions include: simu-
lation experiments on various parallel applications from the scientific community;
development of energy consumption models for computation and communication
operations; development of mapping strategies that take into account the com-
munication patterns of the application; modeling of unicast communication in
the presence of errors/attacks; and modeling of HAEC platform (compute and
communication) resources management in order to address, e.g., congestion over
communication links. Longer-term work directions include: modeling of multicast
communications; development of support for migration of tasks across compute
nodes to increase performance or decrease energy costs; development of a hybrid
communication model that supports dynamic latency, bandwidth, and topology.
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Trace Format 2: The next generation of scalable trace formats and support libraries.
In: Applications, Tools and Techniques on the Road to Exascale Computing. Ad-
vances in Par. Co, vol. 22, pp. 481–490 (2012)

9. Fettweis, G., Nagel, W.E., Lehner, W.: Pathways to servers of the future. In: De-
sign, Automation, Test in Europe, pp. 1161–1166 (2012)

10. Israel, J., Martinovic, J., Fischer, A., Jenning, M., Landau, L.: Optimal antenna
positioning for wireless board-to-board communication using a butler matrix beam-
forming network. In: 17th Int’l ITG Workshop on Smart Antennas, pp. 1–7. VDE
(2013)

11. Kielmann, T., Gorlatch, S.: Bandwidth-latency models (BSP, LogP). In: Padua,
D. (ed.) Encycl. of Par. Co., pp. 107–112. Springer, US (2011)
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Abstract. Process migration is an important feature in modern com-
puting centers as it allows for a more efficient use and maintenance of
hardware. Especially in virtualized infrastructures it is successfully ex-
ploited by schemes for load balancing and energy efficiency. One can
divide the tools and techniques into three groups: Process-level migra-
tion, virtual machine migration, and container-based migration.

This paper presents a qualitative and quantitative investigation of
the different migration types for their application in High-Performance
Computing (HPC). In addition to an overhead analysis of the various
migration frameworks, our performance indicators include the migration
time. The overall analysis suggests that VM migration has the most
advantages and can even compete performance-wise.

The results are applied in the research project FaST addressing the
problem of process scheduling in exascale environments. It is assumed
that a shift in hardware architectures will result in a growing gap be-
tween the performance of CPUs and that of other resources like I/O. To
avoid that these resources become bottlenecks, we suggest to monitor
key performance indicators and, if conducive, trigger local amendments
to the schedule requiring the efficient migration of jobs so that the down-
time is reduced to a minimum.

1 Introduction

The fastest computers listed in the Top 500 are able to execute 1016 FLOPS.
The next generation of computer clusters will move into new dimensions and be
a hundred times faster. Such exascale computers will not have significantly more
nodes, but considerably more cores per node. It is predicted that this increase
of CPU performance will not be matched by other resources resulting in an
imbalance between CPU performance on the one hand and I/O performance on
the other hand [1].
� Supported by the Federal Ministry of Education and Research (BMBF) under Grant
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The FaST1 project develops dynamic scheduling strategies balancing the sys-
tem’s load such that resource bottlenecks are avoided. It is assumed that the
exclusive assignment of jobs to nodes or vice versa will be inefficient, if not im-
possible, for computing centers of the exascale area. In fact, it will be necessary
to schedule (sub-)jobs subject to their resource requirements. The approach in
FaST is twofold: (1) an initial placement of the jobs provided by a global sched-
uler, (2) local adjustments by the migration of jobs to other nodes during the
applications’ runtime.

In this paper we present an investigation of migration techniques that can
be part of the solution to the second problem. We discuss their qualitative and
quantitative properties and determine virtualization as the solution most suitable
for FaST. Generally, there are three types of migration, namely process-level,
virtual machine, and container-based migration. The first is supposed to have
the least overhead, as it restricts the migrating only to the process and its con-
text. Yet, the gathering of the context can be a problem and is certainly easier
when most of it is already wrapped into a VM or container. Other advantages
of Virtual Machines (VMs) and containers are the support of live migration and
the ability to run on basically any system, while existing tools for process-level
migration do not offer live migration and usually require a homogenous cluster.
Finally, the decisive factors pro virtualization are (1) that in contrast to con-
tainers a more flexible range of application is provided, e. g., guest and host do
not necessarily have to use equivalent operating systems, and (2) that the exper-
iments conducted reveal a competitive performance of virtualization including
the migration itself compared to the other approaches.

The rest of the paper is structured as follows: First we explain the different
types of migration in Section 2, display their pros and cons, and give a detailed
survey of the related work. In Section 3 we describe the experiments and analyze
their results. Section 4 concludes the paper with a summary and future work.

2 Process Migration in HPC Environments

In this section we discuss three different approaches for the realization of pro-
cess migration. The first, process-level migration, achieves minimal overhead by
restricting the transferred data to the process and its context. Virtual machine
migration provides more flexibility and a migration framework that can be in-
tegrated more easily. Finally, container-based migration is discussed depicting a
compromise between these two approaches.

2.1 Process-Level Migration

Migration on the process-level is the operation of moving a process, i. e., the
execution context of a running program including registers and physical memory
addresses, from one node to another. Process-level migration can be regarded as a
1 Find a Suitable Topology for Exascale Applications (FaST) is a project funded by

Germany’s Federal Ministry of Education and Research (BMBF).
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special kind of Checkpoint/Restart (C/R) operation where a checkpoint is copied
to another node before it is restarted [2]. While C/R mechanisms are intended
to recover long-running applications in case of node failures, process migration
techniques may have other motivations. Besides the prevention of application
interruptions due to node failures [3], they can also be used for the conductance
of readjustments to the cluster’s workload to improve energy efficiency or balance
the load more evenly, like in FaST.

There are several C/R implementations available such as Condor’s checkpoint
library, the libckpt library, and Berkley Lab Checkpoint/Restart (BLCR) [4–6].
We use BLCR for the evaluation of process-level migration because the open
source tool was specifically designed for HPC applications. It targets at CPU and
memory intensive batch-scheduled parallel jobs and consists of two components:
a kernel module performing the C/R operations inside the Linux kernel and a
shared library enabling the access to user-space data [7]. This library needs to be
loaded with the application to activate the support for checkpointing. Applica-
tions using sockets, block devices, or SystemV IPC mechanisms are not natively
supported by BLCR. However, Sankaran et al. developed in [8] an extension to
LAM/MPI with a callback interface enabling any library or application code to
cooperate in the C/R procedure. This allows for closing communication chan-
nels prior to the migration and restoring them afterwards [7]. Meanwhile, the
callback interface is availabe for LAM/MPI 7.x, MPICH, and Open MPI [8, 9].

For the evaluation of process-level migration, we chose Open MPI 1.7 and its
BLCR plug-in. Migrations are initiated by the ompi-checkpoint command cre-
ating a checkpoint of the running MPI job on the source nodes. After killing
the job and all its processes, the checkpoint file containing their states is copied
to the destination nodes, and the job is restarted by calling ompi-restart. The
successful restoration of the job demands all libraries and files required for its
execution to be present in exactly the same version on all nodes participating in
the migration and prelinking of shared libraries has to be disabled. Prelinking is
a feature which is used by some Linux distributions to perform a relocation of
library code in advance of its execution. This technique accelerates the startup
of applications by the assignment of fixed addresses to shared libraries. Further-
more, the source and destination nodes should have the same kernel version and
hardware architecture. A successful migration of a process to a remote node is
only possible if all resources that were allocated at the origin, i. e., the residual
dependencies, are provided by the migration target as well [10]. With resources
like communication channels, open files, or subprocesses this is not possible, as
the respective file descriptors would not be valid on the target host and had
to be closed in advance of the migration. This restriction could require a non-
transparent migration from the application’s point of view.

2.2 Virtual Machine Migration

As an alternative to process-level migration we investigate the deployment of
VMs which reduce the aforementioned problem of residual dependencies [11].
Open files and virtual I/O devices do not cause any problems as the according
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descriptors are still valid within the resumed VM on the target node. The only
residual dependencies that remain are the Instruction Set Architecture (ISA) as
well as the hardware state of the virtualized devices. Since most hardware can
be virtualized efficiently, these dependencies generally do not cause any issues. If
the origin and target Virtual Machine Monitor (VMM) have the same hardware
configuration, the latter only needs to receive the guest memory state and the
guest device model state in order to start the VM on the new host. Thus, a
migration transparent to the application can be realized.

I/O Virtualization. In contrast to CPUs and memory components of VMs, the
virtualization of I/O devices may result in an unacceptable performance degra-
dation. The emulation of high-performance networks like InfiniBand with native
performance is still not possible. For this reason virtualization has mostly been
disregarded in the area of HPC in the last years [12]. However, progress in this
field of research accompanied by new hardware technologies changed this sit-
uation [13]. Driven by industry, a shift to cloud computing approaches can be
observed in the area of HPC [14].

With Intel VT-d extensions it is possible to perform a physical device pass-
through to a VM while providing DMA and interrupt isolation [15]. This tech-
nology gives I/O devices direct access to the memory space of a VM. The VM,
in turn, is able to control the device by accessing the according hardware reg-
isters without intervention by the host system. However, this solution suffers
from scalability issues as one physical device can only be assigned to exactly one
VM at a time. Hence, if a single VM was used per high-performance process,
one physical Host Channel Adapter (HCA) would be required per process. Such
a setup would dramatically reduce the maximal amount of processes per node
within a cluster.

A solution to this issue is addressed by the Peripheral Component Intercon-
nect Special Interest Group (PCI-SIG) with the Single Root I/O Virtualiza-
tion (SR-IOV) specification. This technology enables the native sharing of I/O
devices by a replication of all necessary resources for each VM [16]. For this
purpose, two new PCIe function types are introduced, namely Physical Func-
tions (PFs) and Virtual Functions (VFs). An I/O device supporting SR-IOV
may be configured to appear in the PCI configuration as multiple functions in-
cluding one and only one PF. This function covers all PCIe capabilities including
SR-IOV. Furthermore, there may be several VFs covering the necessary capa-
bilities for data movement. Each of these VFs may then be assigned to one VM
with the mechanisms described above. Although the VMs get the impression of
possessing the I/O device exclusively, they share the same physical device with
nearly native performance.

Hypervisor. There is a variety of virtualization techniques and tools today in-
cluding Xen and KVM [17,18]. Although the former has been the tool of choice
in the open source world in the past, KVM is taking over this status more and
more [14]. While Xen is a bare-metal hypervisor, KVM is integrated into Linux
as kernel-module, and hence benefits from existing resources like the scheduler,
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the memory management, etc. The tight integration into the upstream Linux
kernel with version 2.6.20 in 2007 allows KVM to take advantage of the kernels
evolution [19]. Bugfixes and improvements within the kernel code will automati-
cally apply to KVM-based systems using the current kernel version. In contrast,
Xen is still not part of the Linux kernel and patches have to be applied explicitly.
These facts led to the decision to focus on KVM as basis for the virtualization
approach. It was further supported by performance evaluations showing that
KVM is at least as good as other hypervisors [14].

KVM is providing full virtualization on x86 hardware depending on the VT-x
or AMD-V hardware extensions [20, 21]. A VM is started as an ordinary Linux
process that can be scheduled by the host system. If the VM is configured with
more than one virtual CPU, one thread is created for each of them so that they
can be scheduled individually. Furthermore, a migration framework supporting
cold as well as live migration is already provided. Hence, KVM would allow for
the realization of a first prototype of the migration framework within a narrow
time frame.

2.3 Container-Based Migration

Traditional virtualiziation solutions like KVM result in multiple kernel instances
running on one node. A light-weight alternative is Container-based Virtualiza-
tion (or Operating System Virtualization) using the host-sytem kernel for the
managment of so-called virtual containers as well. This concept aims at the
provision of an isolation similar to full virtualization, but promises a better uti-
lization and less overhead. An application running within a container can use
standard system calls to interact with the server system but does not have to
use hypercalls, e. g., when accessing virtualized I/O devices. However, this vir-
tualization approach comes along with a certain inflexibility. It is not possible to
run different operating systems on the same hardware and a crash of the kernel
would halt the complete system, since it is shared among all instances.

OpenVZ2 and LinuX Containers (LXC)3 are typical representatives of this
virtualization technique. In contrast to LXC, OpenVZ is not part of the vanilla
Linux kernel, although efforts have been made to add their container function-
ality to LXC. Regola and Ducom conducted an analysis of OpenVZ with respect
to its application in HPC and could show that some container-based virtual-
ization solutions offer near native CPU and I/O performance [22]. Yet, since
OpenVZ comes with its own kernel, which does not support our new InfiniBand
adapters from Mellanox, we did not analyze OpenVZ more deeply. It would
complicate the integration of new hardware. Figure 1 vizualizes the difference
between container-based and full virtualization in the case of LXC and KVM,
respectively. Both examples present a setup with two VMs und two contain-
ers, respectively. It is visible that container-based virtualization provides lower
overhead as only one kernel instance is required for the host and all containers.

2 https://openvz.org
3 http://www.linuxcontainers.org

https://openvz.org
http://www.linuxcontainers.org
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Fig. 1. Comparison of KVM- and LXC-based Virtualization

With Checkpoint/Restore In Userspace (CRIU)4, there exists a mechanism
similar to BLCR for LXC and OpenVZ. Yet, in contrast to BLCR, CRIU allows
live migration5 which can be valuable for many applications. Currently, CRIU
offers no support for checkpointing of applications using file locks, block devices,
or System V IPC mechanisms.

Our test system is based on Centos 6.5 constituting an extremely stable sys-
tem. Yet, the LXC part of CentOS is not up to date and it is not possible
to pass through general character devices from the host to the guest. Without
this feature, which is supported by newer versions of LXC, it is not possible to
use InfiniBand in LXC guests. The situation is similar concerning CRIU, which
requires Linux kernel version 3.11 or newer. For these reasons, the quantative
evaluation of LXC and CRIU was postponed.

3 Evaluation

The focus of this paper is a comprehensive evaluation of process-level and VM
migration. Besides a qualitative comparison of these two approaches, a quanti-
tative evaluation is indispensable to make an informed decision. Here, two key
figures are important, namely the general overhead imposed by the respective
migration technique on the application’s performance and the characteristics of
the migration itself in terms of the time needed to transfer a process from one
node to the other.

All benchmarks were performed on an InfiniBand-based cluster comprising
four NUMA nodes exposing 32 virtual cores, each on two sockets with 8 physical
cores. While the hardware assembly is generally equal to all of the systems, two
nodes are equipped with Intel SandyBridge CPUs (E5-2650) clocked at 2GHz.
The other two host systems are supplied with newer generation Intel IvyBridge

4 http://criu.org/Main_Page
5 http://criu.org/Live_migration

http://criu.org/Main_Page
http://criu.org/Live_migration
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CPUs (E5-2650 v2) clocked at 2.6GHz. The InfiniBand fabric is built by using
Mellanox hardware. Therefore, each host system is equipped with a ConnectX-
3 VPI two-port HCA implementing the PCIe 3.0 standard. The theoretical peak
throughput for point-to-point connections is at 56Gbit/s in accordance with the
FDR signaling rate and the HCAs implement the SR-IOV technology which can
be enabled and disabled by flashing the adapter’s firmware.

To allow for a comparison of the results, we applied the same optimization
techniques in the test scenarios. On the one hand, low-level benchmarks were
used that came as binary with the Mellanox OFED stack in version 2.1-1.0.6. On
the other hand, applications and benchmarks that are avaiable as source code
were compiled with the same level of optimization.

3.1 Overhead

In order to see the impact of either migration technique on the runtime of our test
application, we started with a general analysis of the overhead caused by them
without actually performing a migration. In case of process-level migration with
BLCR, the requirement of disabling the prelinking feature might have a negative
impact on the application’s performance. In contrast, the VM approach does not
demand any modifications of the executed code. However, the additional software
layer may introduce a certain overhead even if full virtualization is applied. The
VM runs in guest-mode on x86 hardware with virtualization support. On the
execution of a privileged instruction, i. e., an instruction that traps if the CPU
is in user-mode while it does not trap in kernel-mode, the CPU switches to
host-mode returning control back to the hypervisor. Moreover, an additional
overhead might be introduced by the SR-IOV technology. Despite its realization
on the hardware layer, the logic for the multiplexing of the VFs to the hardware
consumes time that might result in performance penalties.

Microbenchmarks. For the investigation of the influence of the respective mi-
gration technique on the communication performance, a microbenchmark analy-
sis was performed in terms of throughput and latency measurements. Therefore,
we compared the results when using one of the two approaches with those ob-
tained by native execution on the host systems. This was done on the MPI layer
by using a self-written PingPong application and Open MPI 1.7 with BLCR
support. For the measurement of the throughput and latency on the InfiniBand
layer the ib_write_bw and ib_write_lat tools were used that come with the
OFED stack.

The latencies on the InfiniBand layer in Table 1 reveal a slight impact of the
SR-IOV technology. Although increased by roughly 27% compared to native
host execution, the communication latency between two guests equipped with
passed-through VFs is only at 1.16μs. As the pure pass-through of the InfiniBand
hardware does not have any influence on the latencies, this difference must be
caused by the SR-IOV technology itself. The additional software layer in terms
of the Open MPI results in a further increase of the latency. With 1.48μs the
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Table 1. Latencies in μs (RTT/2)

Layer Native Pass-Through SR-IOV BLCR

InfiniBand 0.91 0.90 1.16 –
Open MPI 1.19 1.21 1.48 1.61
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Fig. 2. Throughput Results

VM approach still performs slightly better than the native host execution while
having the BLCR feature enabled.

The throughput results (see Fig. 2) show a similar trend. For small message
sizes the SR-IOV technology as well as the BLCR framework have a marginal
influence on the achievable performance. Larger messages instead can be trans-
ferred at nearly native performance. However, the results of the microbenchmark
analysis are so close in all cases that they do not allow to make a decision for
either of the frameworks.

Application Benchmarks. One reference application in the FaST project is
mpiBLAST [23]. This is a parallelization of the BLAST algorithm applied in
biological research that searches in a short query sequence of DNA or amino
acids for similarities within a database of longer sequences.

Like in the previous section, an overhead analysis was conducted comparing
the application runtime with the different frameworks. The left part of Figure 3
summarizes the results of different runs with 8 to 32 processes. A comparison be-
tween the native environment and execution with enabled BLCR yields a slight
increase of the runtime in the order of 1%. This increase is rather negligible and
affiliates BLCR good performance characteristics in this application scenario. In
contrast, the execution of the same scenario within a virtualized environment
decelerates the runtime by 7% to 8%. This certainly constitutes an important
performance degradation compared to BLCR and native execution, however it
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Fig. 3. Application Benchmarks

should be kept in mind that there has only been put little effort in the optimiza-
tion of the KVM environment.

A second test was performed with the NAS Parallel Benchmarks (NPBs).
This benchmark suite targets at the emulation of large-scale fluid dynamics
applications [24]. We used the FT kernel calculating a discrete 3D Fast Fourier
Transformation as well as the two pseudo applications, BT and LU, which are
solvers for linear equation systems. The results were obtained by starting the
benchmarks with 16 processes on two hosts, i. e., NUMA effects do not have to
be considered as all processes on one host could be pinned to the same socket.
Here, the results are quite different from the mpiBLAST evaluation. In fact, the
virtualization layer reduces the performance by only 1% outperforming BLCR
which, in turn, generates an overhead of 6% to 14%. We think that this overhead
is not caused by the BLCR but rather by the implementation of the callback
interface inside Open MPI in order to support checkpointing with BLCR.

These results lead to the conclusion that the actual overhead generated by the
particular approach is highly application dependent. Both solutions exhibit fairly
good performance results compared to native execution. While BLCR shows
better results for mpiBLAST, though with decreasing advance for higher process
counts, the virtualization approach has the edge over process-level migration for
the NPBs while offering more flexibility as discussed before.

3.2 Migration Time

Finally, an investigation of the migration time was performed. This is a key value
particular important for the evaluation of the differen migration techniques. In
this timeframe the nodes participating in the migration are not responsive and
these phases depict an overhead that has to be compensated by sophisticated
scheduling strategies to improve the overall utilization of the cluster. To perform
this evaluation, the following scenario was conducted.
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An mpiBLAST job with three processes on two different nodes was started,
i. e., on one node a single process was launched while the other holded two pro-
cesses. The single process was then migrated to a third node not yet participating
in the execution. For the evaluation of the virtualization approach with KVM,
two VMs were launched on the origin nodes. Instead of moving the mpiBLAST
process to a remote node, the VM holding this process was then transferred to
the same remote node.

We started with an evaluation of the overall migration time from initiating
the migration command until its successful return. With the BLCR framework
we were able to migrate the MPI process within 0.51 s averaged over multiple
runs. In contrast, the VM migration required 2.87 s constituting an important
overhead. The VMs were configured with 256MiB of RAM. Although a light-
weight CentOS 6.5 installation was used for the guest systems, the migration time
might be reduced by the usage of a minimal kernel only providing the necessary
environment for executing MPI jobs (e. g. a system configured with Buildroot).
We could observe a dependency between the migration time and the assigned
memory when migrating a KVM guest. Hence, a kernel optimized to memory
utlization might improve the results presented above. However, this dependency
has to be further investigated in this context. As we used the libvirt tool set to
access the KVM hypervisor, time is not only consumed by the migration itself
but also by preparatory tasks like establishing connections to the daemons on
the respective host systems. Moreover, the process representing the VM on the
source host has to be properly removed subsequent to the successful migration.

To get an impression of the real downtime of the VM, we wrote a socket-based
PingPong application using the UDP protocol. The server was started on the
VM being migrated. It listens for incoming UDP packets on a dedicated port
and directly responds to the sender. The client was started on one of the cluster
nodes not participating in the migration. This runs two threads, a sender and
a receiver thread. The first posts with a fixed interval of 500μs UDP packets
containing a sequence number while the receiver thread constantly listens for
the responses from the server running in the VM. This benchmarks allows for
the determination of packet losses due to unresponsiveness of the VM during
migration. The actual downtime may then be determined by multiplying the
amount of packets that were not answered with the time interval the packets
have been transmitted.

For the mpiBLAST scenario described above we captured a downtime of
about 1.2 s reducing the previously measured advantage of process-level migra-
tion. With KVM it would even be possible to perform a live-migration, i. e., not
stopping the VM during migration. Hu et al. could show that this technique
allows for a considerable decrease of the downtime to the order of 0.2 s in the
best case [25]. Furthermore, it should be noted that the current implementation
of BLCR requires all process to be halted in advance of the migration. Within
the VM approach applications may benefit from the fact that only those process
have to be freezed at some point in time that are situated within the migrated
VM.
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4 Conclusion

In this paper two migration techniques have been examined, namely process-level
migration using BLCR and virtual machine migration on top of KVM. We have
conducted a qualitative and a quantitative comparison of these two techniques.
In particular, we have studied the overhead on the application’s performance
imposed by each solution and the characteristics of the migration itself in terms
of the time needed to transfer a process from one node to the other. In accordance
with the presented results, we favor virtual machine migration over process-level
migration for the FaST project. The overhead imposed by the virtualization
layer is acceptable and offers more flexibility in terms of a greater application
range.

In the near future, we will further investigate LXC as a complement to our
migration framework. Although it imposes some restrictions compared to full
virtualization (e. g., host and guest cannot use different kernels), it might have a
better performance which may be more important than flexibility in some cases.
Should it be possible to support both virtualization techniques in FaST, we
will offer them and let end-users choose the one more suitable for their domain.
Besides the implementation of the migration framework, future tasks in FaST
include the development of an agent-based monitoring system and a scheduler
on top of it, which triggers process migrations based on the resource utilization.
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Abstract. In a virtualized data center, server maintenance is a common
but still critical operation. A prerequisite is indeed to relocate elsewhere
the Virtual Machines (VMs) running on the production servers to prepare
them for the maintenance. When the maintenance focuses several servers,
this may lead to a costly relocation of several VMs so the migration plan
must be chose wisely. This however implies to master numerous human,
technical, and economical aspects that play a role in the design of a
quality migration plan.

In this paper, we study migration plans that can be decided by an
operator to prepare for an hardware upgrade or a server refresh on mul-
tiple servers. We exhibit performance bottleneck and pitfalls that reduce
the plan efficiency. We then discuss and validate possible improvements
deduced from the knowledge of the environment peculiarities.

1 Introduction

In data centres, virtualization has become a cornerstone. On one side, it raised
the hosting capabilities thanks to performance isolation [2] and consolidation
techniques [19,12]. On the other side, live migration [5] permitted the operators
to perform server maintenance more easily. Indeed, maintenance operations such
as server updating, hardware or software upgrade are critical tasks to perform on
production servers. It is then recommended to operate on idle or offline servers to
prevent any failure or mis-configuration to alter client virtual machines (VMs).
Thanks to live migration, it is now possible to prepare the servers by migrating
their VMs elsewhere in prior, with a negligible downtime for the VMs.

Maintenance tasks can occur at the level of a single server as well at the scale
of an entire blade-center or rack. With the ever increasing number of servers and
VMs per server in a data center, planning efficiently numerous migrations over
multiple servers becomes problematic [17]. Indeed the notion of efficiency has
many facets: an operator may expect short completion times, small migration
durations or low energy usage for example. However, many technical, environ-
mental or even human aspects dictate these optimisation criteria and today, all
these parameters but also their interactions must be mastered to design migra-
tion plans of quality.
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In this paper we analyze different realistic migration plans to exhibit common
pitfalls and discuss some levers to improve their quality. Our results are derived
from experiments on a real testbed involving up to 45 servers connected through
a hierarchical network. In both scenarios we compare two migration strategies
that consist to execute all the tasks in parallel or sequentially. We analyze the
pros and cons of both approaches with regards to performance, energy efficiency
and duration optimization criteria. Finally, we discuss and validate possible im-
provements that consider the infrastructure and the workload properties.

The rest of this paper is organized as follows. Section 2 presents related works.
Section 3 presents our experimental analysis of migrations plans. Section 4 dis-
cusses possible solutions to improve the plan efficiency. Finally, Section 5 presents
our conclusions and future research directions.

2 Related Works

Live Migrations Efficiency. Many efforts have been made to improve the live
migration efficiency and many research papers proved that the network speed
and the VM’s dirty page rate are the main factors affecting the live migrations
behavior in pre-copy migration architecture. Based on these findings, Sherif et
al. [1] offer good predictions of the duration and the workload service interrup-
tions arising from live migrations. Also, to help administrators at making optimal
migrations decisions, Liu et al. [14] define a performance model to predict the
energy consumed by a live migration at different transmission rates. Although
being linked to our work, these work study the migration of a single VM while
we focus on issues related to the concurrent migration of multiple VMs.

Accordingly, several works have been conducted to improve the performance
of multiple live migrations. Among the studies that most closely match our work,
Kejiang et al. [20] consider the live migration efficiency of multiple VMs with
different strategies (sequential / parallel migrations) by investigating resources
reservation methods on target servers. Nevertheless their study does not include
network management or information about the topology which are the preemi-
nent aspects that we consider in this paper. Sarker et al. [16] propose an algo-
rithm to schedule the migrations of a given set of VMs by minimizing the total
migration time and the VMs downtime. The novelty of their approach is to take
into account the network topology and the inter-VM data dependencies. In this
paper we also focus on the need to reduce individual migration durations and
energy consumption. Furthermore, despite all their experiments were performed
in a simulated environment, we focus exclusively on a real testbed. Deshpande et
al. [7] introduce Live gang migration of VMs to speed up the parallel migration of
co-located VMs to the same destination server thanks to memory deduplication.
Nevertheless the proposed technique requires a deep modification of the under-
lying hypervisor and does not address the migration of VMs over a complex net-
work topology. Zheng et al. [22] propose a centralized architecture to coordinate
the migration of multi-tiers applications between distant sites inter-connected
through a slow network path. The objectives are to ensure the convergence of
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all migrations and to minimize the impact of inter-VMs communications on mi-
grations duration. In contrast, in this paper we consider an isolated network
dedicated to migrations within the same data-centre, which greatly reduces the
impact of inter-VMs communications on the migrations performance.

Maintenance operations in virtualized data centers: The new consid-
erations related to the virtualization for management operations in data centers
have been introduced in [17]. The authors explain that the management opera-
tions constitute themselves a workload over the applications running in VMs and
becomes more and more critical with increasing multi-core architectures. They
analyze 5 common management tasks in virtualized data centres, although they
do not investigate the blade-center maintenance or server upgrading scenarios
which are the main interests of this paper.

In the best of our knowledge, our work is the first study to tackle multiple
migrations plans in the context of critical maintenance operations such as re-
placing a whole blade-center in a real infrastructure, and to propose solutions to
automate these operations with the aim to facilitate the work of administrators.

3 Analysis of Migrations Plans

In this section, we experiment on a testbed the effects of 2 intuitive migration
plans in the case of a blade-center maintenance or a server upgrading. In prac-
tice, we evaluate the impact of the migration plans on the completion time, the
individual migration duration, the instantaneous power and the energy consump-
tion.

3.1 Environment

The experimental testbed is composed of three Bullx B500 blade-centers. Each
blade-center consists of 15 servers with 2 Intel quad-core Xeon E5520 2.27 GHz
processors and 24 GB RAM each. All servers run Debian Wheezy with a Linux
3.2.0-4 amd64 kernel and the KVM/Qemu hypervisor 1.7.50. The testbed hosts
60 VMs. Every single VM uses 2 VCPUs, 2 GB RAM and runs a Ubuntu 13.10
desktop distribution. Each VCPU is mapped to a dedicated physical core.

Figure 1 depicts a testbed fragment. In a single blade-center, each server is
connected to a switch through a Gigabit Ethernet interface. The bandwidth
between the blade-centers is however limited to 3 Gb/s by an aggregation of 3
Gigabit links. All the servers are also connected to a 10 Gb/s Infiniband network
that share the VM disk images exported by a dedicated NFS server. To only
analyze the migration related traffic, only the live migrations operate over the
Ethernet network.

The VM workload is generated by the Web server benchmark tool httperf
[15]. Inside each VM, the benchmark repeatedly retrieves a static Web page from
a local Apache Web server. Two workloads, equally distributed between the VMs,
retrieve the Web page at a rate of 100 or 200 requests per second.

During experiments, the power consumption of each server is retrieved every
second from a remote dedicated server through its management board.
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Fig. 1. Testbed design

3.2 Experiments

We consider two maintenance scenarios that reflect common situations:
Scenario 1 - Blade-Center Maintenance. This scenario simulates the prepa-
ration of a maintenance on a whole blade-center that need to be powered down.
The 60 VMs are relocated to a spare blade-center having the same hardware
specification. The spare servers are initially offline to save power. Each server to
put into maintenance hosts 4 VMs. All the VMs of a source server are migrated
to a specific destination server (see Figure 2a).

Scenario 2 - Server Upgrading. This scenario simulates the replacement of
two out-dated blade-centers by a single one that is more powerful. Each depre-
cated server has 4 cores while each new server has 8. Initially, each deprecated
server hosted 2 VMs while each new server will host 4 VMs (see Figure 2b).
Initially the servers in the new blade-center are offline. Once the migration ter-
minated, the old blade-center is shut down. To simulate the low performance of
the out-dated servers, half the cores are disabled using linux procfs.

migrations

VM
s

production blade center

Se
rv

er
s

spare blade center 

(a) Scenario 1 - Blade-center maintenance
new blade centerout-dated blade centers

(b) Scenario 2 - Server upgrading

Fig. 2. Experimental scenarios

In both scenarios, we evaluated 2 migration strategies that can be inferred nat-
urally by an operator. The first strategy launches all the migrations sequentially.
This has the benefits of being safe and easily trackable. The second strategy
launches all the migrations in parallel to reduce the completion time, a common
objective of reconfiguration algorithms to increase their reactivity [12,22,19]. Ta-
ble 1 shows the experimental results.

We observe that with parallel strategies, the average VM migration duration
is about 15 times longer, but also less stable, than with the sequential strategies.
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Table 1. Scenarios comparison
Scenario 1 Scenario 2

Metrics Sequential Parallel Sequential Parallel
Time to completion (sec.) 2871 446 3467 384

Mean migration duration (sec.) 12.2 192.9 11.2 158.0
standard deviation 5.41 45.12 4.81 52.97

Server boot time (sec.) 113.1 116.5 114.9 115.0
Server shutdown duration (sec.) 29.5 28.8 32.2 32.1

Energy consumption (kWh) 2098.4 366.4 3317.5 548.1
Max. peak power (kW) 2.70 4.47 4.24 6.05

This difference is explained by the network interlink that restricts the throughput
between the blade-centers to 3 Gb/s when the maximum rate could be up to
15 Gb/s. In contrast, the interlink bandwidth is under-utilized in sequential
strategies as the maximum throughput between the two blade-centers equals
1 Gb/s. In practice, long migration durations are not desirable as they lead
to performance issues. Indeed, a migration consumes resources on the involved
servers and this additional load reduce the VM performance. Furthermore, the
links aggregation that composes the interlink does not balance the traffic fairly.
Indeed, the negotiation protocol distributes the traffic with a XOR hash-based
on the source and the destination MAC addresses. As a consequence in parallel
strategies, multiples migrations can share a single 1 Gb link while others will
have a dedicated one. Therefore the main issue of parallel strategies is related
to the network overload but also the network topologies. Both must be carefully
investigated to use them to their best.

Another limitation of parallel strategies occurs when a software license is
needed for each running server [4]. Indeed, parallel strategies bring online 15
additional servers simultaneously, which means that 15 additional licenses must
be acquired for a short utilisation period. On the other side, only 1 spare license
is required when the migration plan is performed server by server. It might
therefore be important to adapt the level of parallelism, so the number of servers
simultaneously online, to the number of server licenses [6].

We observe that with sequential strategies, booting a server (respectively shut-
ting down) is about 10 times longer (resp. 3 times) than the average migration
duration. As each action is executed sequentially, the time spent to boot and
shutdown the servers is not used to migrate VMs. In the scenario 1, 2139 sec.
or 74.5 % of the completion time is then wasted waiting for power switching
actions (boot and shutdown of 15 servers). It is usually not desirable to have
long standing critical operations as the operator in charge must be continuously
available to fix potential failures. It is then important to parallelize as much as
possible the power-switching actions to reduce the waiting time to a minimum.
Likewise, the longest completion times in scenario 2 are essentially due to the
time spent to shutdown the 15 additional servers.

We finally observe a higher energy consumption in the scenario 2 due to
the higher number of servers. More important, we observe significant power
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consumption peaks in the parallel strategies. These peaks occur at the begin-
ning of each experiment during the simultaneous boot of all the destination
servers. This situation is problematic when the energy is a scarce or expensive
resource. For example, when the energy price market is volatile [18] or when the
data center is partially powered by renewable energies [13,9]. In these cases, a
solution is to delay some boot actions to more energy-friendly periods. Such a
delay must however be considered carefully with regards to the priority of the
maintenance operation. These results demonstrate the need to control the energy
consumption during the maintenance task to be adaptive to external energy con-
straints. One of the consequences will be to choose the best sequence of power
switching actions.

4 Toward Smarter Migration Plans

Experiments exhibited that pure parallel and pure sequential strategies have
their own benefits and drawbacks. Pure parallel strategies provide short com-
pletion time but long migrations while pure sequential strategies provide the
opposite. In practice, the efficiency of each approach is strongly related to the
environment and the workload peculiarities. This advocates for a smart com-
position of both approaches to provide finer migration plans. In this section,
we explore hybrid strategies to prepare servers for a blade-center maintenance
according to the network and the workload peculiarities and verify their effec-
tiveness.

Table 2. Optimisations according to the network interlink peculiarities

Metrics Scenario A1 Scenario A2 Scenario A3
Mean migration duration (sec.) 284.2 63.66 50.62

standard deviation 251.78 33.15 23.17
Time spent to migrate (sec.) 604 213 148
Energy consumption (kWh) 286.27 156.35 132.52

The first experiment considers the network interlink in a testbed reduced to
6 servers per blade-center. We chose this smaller and more manageable set of
servers to easily analyze the behavior of the 3 links aggregation. In all subsequent
experiments, httperf is configured at a rate of 200 requests per second for
all VMs. Table 2 shows the results. In Scenario A1, all the VMs are migrated
in parallel. Similarly to previous experiments, we observe long and unstable
migration due to the interlink saturation. Furthermore, some migrations did not
complete in live. This happens when the dirty page rate of a VM is greater than
the bandwidth available for the migration. In this case, KVM cannot guarantee
a VM downtime lesser than 30 ms, the maximum allowed by default. It then
suspends the VM after 10 minutes for a possible long period to terminate the
migration. We note that this behavior does not occur in the previous scenarios
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involving a whole blade-center, this is mainly explained by the less intensive
workloads on VMs. In Scenario A2, the source servers are freed 3 by 3. We then
observe the migration time is 4 time faster and the completion time is 3 times
shorter. This is explained by the interlink that is no longer saturated as each
server has in theory a 1Gbit/s bandwidth to migrate its VMs. Dirty-pages are
then send faster and the number of rounds to synchronize the memory is reduced.
We however reported in Section 3 that the link aggregation protocol is not fair.
In Scenario A3, we then decided to probe the interlink topology using iperf to
choose for each source server, a destination server reachable through a dedicated
Gigabit link. This micro-optimisation reduced again the total migration time by
65 sec. and the average migration duration by 13 sec. This experiments reveals
that a fine grain optimisation of the level of parallelism between the migration of
different servers allows to reduce by up to 4 the time spent to migrate but also by
5 the average migration duration. We also observe that the energy consumption
is lower in connection with the reduced completion time.
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Fig. 3. Dirty pages generated by httperf in 30 ms (95% confidence interval)

Wefinally refines themigrationplan according to theworkloadpeculiarity.With
regard to results in Section 3, we observe the average migration duration is 7 times
longer and less stable than when migrations are performed sequentially. This re-
veals despite the network interlink is not saturated, the parallelmigration of 4 VMs
on a single Gigabit link still saturates the network. According to the pre-copy algo-
rithm used in Qemu, a bandwidth below a certain threshold causes the
re-transmissionof the set of dirty pages that are quickly updated, named Writable
Working Set (WWS) [5]. The minimum bandwidth that guarantee the termination
of a migration depends therefore of the WWS size and the memory dirtying rate.
Figure 3 shows the number of pages that are made dirty by httperf in 30 ms de-
pending on the request rate. This indicates thatwith a 200 requests per second rate,
at most 2 VMs should be migrated simultaneously on a Gigabit link to ensure their
termination. We verified this assumption in an experiment that varies the number
ofVMsmigrated simultaneously on aGigabit link. It consists tomigrate theVMsof
3 servers from a server to another. The servers were selected to ensure an equitable
sharing of the 3 Gb/s interlink between them.
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Table 3. Optimisations according to the workload peculiarities

Metrics Scenario B1 Scenario B2 Scenario B3
Mean migration duration (sec.) 49.51 15.41 7.66

standard deviation 34.51 0.47 0.45
Time spent to migrate (sec.) 94 31 31
Energy consumption (kWh) 46.36 33.49 33.28

Table 3 shows the results. In Scenario B1, the 4 VMs on each server are mi-
grated in parallel. In Scenario B2, the VMs are migrated 2 by 2. With regard to
Scenario B1, the migration duration is 3 times shorter and stable. This indicates
the network is no longer saturated and the bandwidth available for the migration
is sufficient to prevent a repetitive copy of the dirty pages. In Scenario B3, the
VMs are migrated one at a time. With regard to Scenario B2, the migration du-
ration has been only divided by 2 while the completion time remains unchanged.
The last two scenarios ensure then a fully effective migration management by
dealing with workloads and network specificities. We were able to reduce by up
to 7 the average migration duration and by up to 3 the time spent to migrate.
However, it may be judicious to prefer Scenario B3 over Scenario B2 depending
on the VMs peculiarities. For example, when a group of VMs communicates
extensively, it is preferable to migrate the VMs in parallel and synchronize the
migration terminations to restrict the amount of data exchanged over a high-
latency interlink [22]. In contrast, when the VMs are independent, it is wise to
migrate the VMs one by one to reduce the average migration duration so the
impact on the workload.

5 Conclusion and Future Work

Server maintenance is a common but still critical operation that must be pre-
pared by operators. It requires to plan the migration of numerous VMs but
also the management of the server state. With the ever increasing complexity of
the datacenter infrastructure, it becomes difficult to define plans that are fast,
reliable or simply fitting the environment peculiarities.

In this paper, we experimented migration plans involving up to 45 servers.
This exhibited performance bottlenecks but also evaluation metrics to qualify the
quality of a migration plan. We then show how the knowledge of the environment
peculiarities can improve the migration plan quality. In practice, we adapted the
number of migrations to perform in parallel between the servers, but also inside
each server. These decisions were applied manually from the knowledge of the
network topologies, and the workload particularities.

As future work, we then want to automatize the creation of efficient plans.
We first need to model the aspects that qualify a migration plan. Based on the
experiments, we conclude our model must consider the workload characteristics
such as the dirty page rate and the estimated migration durations, the network
topology but also external and possible evolving side constraints such as a possi-
ble power budget, a completion deadline or a server licensing policy. We already
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patched Qemu to retrieve the VM dirty page rate but we also planned to use
an approach similar to Pacer [21] to predict the duration of a live migration.
With regards to the network, it is possible to extract the network topology using
standard monitoring tools. In addition, dynamic aspects such as the practical
decomposition of the traffic made by an aggregation protocol can be observed
from benchmarks. We plan to implement this model over the VM manager Btr-
Place [10,11]. BtrPlace is an extensible VM manager that can be customized
to augment its inferring capabilities. It provides a composable VM placement
algorithm that has already been used to address energy-efficiency [8], or schedul-
ing concerns such as the continuous respect of server licensing policies [6]. The
use of BtrPlace might also be beneficial to support side constraints that have
to be expressed by the operators. It already provides a support for configura-
tion scripts to state easily constraints over servers and VMs. Furthermore, the
implementation of the constraints is usually short.

We also want to investigate on another common maintenance operation that
is the usage of anti-virus over VM disk images, a very storage intensive operation
that must be planned carefully to maintain the performance of the storage layer.
More generally, we think that while advanced algorithms have been proposed
to optimize the datacenter usage, there is a large pace for innovation to assist
operators at doing their job. Typically, how to automatically improve the prepa-
ration of maintenance operations from high-level expectations while hiding the
complex technical peculiarities that are today required to be mastered.
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were carried out using the Grid’5000 experimental testbed [3]1, being developed
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as other funding bodies.
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Abstract. Efficient management of virtual machine (VM) images is
important for the HPC Cloud where many VMs are provisioned and re-
leased by individual users who run parallel applications. Although exist-
ing VM deployment methods achieve high efficiency by thin-provisioning
on the shared storage with caching on the VM hosting nodes, unexpected
interruption and unstable performance of the shared storage are still of
concern for HPC applications. This paper presents a novel method to re-
solve these concerns by detaching the remote shared storage dynamically
after a base image of the virtual disk is transferred from the shared stor-
age to a local disk of the VM hosting nodes. The dynamic detachment
achieves both a fast boot and isolation from the shared storage, and the
delayed image transfer by multicast, at a low, controlled speed, success-
fully minimizes negative performance impact on the running VMs.

Keywords: virtual machine deployment, storage management, offline
caching, high performance computing, cloud computing.

1 Introduction

A virtualized HPC environment on the cloud is increasingly being adopted due to
users’ demands for more flexible usability [9,1]. Unlike traditional non-virtualized
systems, the users can build their own application development and execution
environment without compromising with others for software versions, dependen-
cies, configurations, etc. These environments can be instantly scaled, shrunk, or
moved through system-wide resource coordination. However, for such an ‘HPC
Cloud,’ one of the remaining issues is efficient management of users’ virtual ma-
chines (VMs) and their virtual disk images. As many HPC applications run in
parallel over multiple servers, numerous VMs must be provisioned or released
in a short time period without keeping the users waiting for interaction. Then,
once the users start their applications on the VMs, fast access to the virtual disk
should be available for the applications. Hence, the virtual disk images should
be efficiently and scalably stored and provided to the VM instances.

At present, the above demand for VM image management is mainly responded
by two techniques, thin-provisioning on remote shared storage and taking an
advantage of local disks attached to host nodes, as shown in Figure 1. The
former technique achieves fast bootup of VMs because only necessary data for
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Fig. 1. Techniques for hosting VM disk images

the boot, which are mostly small, are transferred to the VMs. Storage space is
saved by eliminating duplicate stores of the image data as a capability of the
shared storage. However, I/O performance might be influenced by other VMs,
in particular when too many VMs concurrently access the shared storage, due to
I/O contention on the storage and on the network between the host nodes and
the storage. For the latter technique, the local disks on the host nodes are used
as a staging area for the VM image but the boot after copy from the shared
storage takes a significantly longer time than the remote boot, and the same
issue exists for stage-out. A combined method using the local disks as a cache
for the shared storage is sometimes used for reducing I/O requests to the shared
storage, which would cover the shortcomings of both techniques. However, the
problem of using the shared storage is still a concern involving the HPC cluster
use case. The reason is that HPC applications usually run in parallel, demand a
much higher performance requirement than other applications, and take a longer
time for execution. Therefore, any interruption and/or performance decrease of
the remotely shared storage service could possibly cause a serious problem.

This paper proposes a novel method to resolve the above concern by detach-
ing the remote shared storage dynamically after the boot of the virtual cluster
(i.e., a set of VMs). In this method, the same benefit mentioned for the com-
bined method is provided and furthermore, an ability to be independent from the
shared storage is available. When a user considers if it is beneficial and makes
a request, the whole VM image is gradually transferred without much effect
on performance of the running VMs, and eventually staged onto the local disk
which may be either devoted to the VM or less competitive with other VMs.
The detachment would be more valuable when the cluster runs for longer time,
like the HPC use case. Our proposed method is implemented for the cloud in-
frastructure built with QEMU/KVM [6], RADOS [12] and RBD (RADOS Block
Device) [8], and evaluated to examine I/O performance of the VM instance before
and after the detachment, and performance of the cluster deployment, including
interference effects between I/O access and the delayed but controlled image
transfer.
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2 Related Work

Nicolae, et al. propose a lazy VM deployment scheme that fetches VM image con-
tent as needed by the application executing on the VM [5]. They use cloning and
shadowing of their scalable storage system, BlobSeer [4], for thin-provisioning.
The image is then efficiently mirrored from the BlobSeer to the local disk on an
on-demand basis, which is implemented with Fuse [2]. Schmidt, et al. study a
similar approach with a stacked file-system [10]. In our study, we have setup a
copy-on-write mode of QEMU/KVM with RBD/RADOS as a backend storage.
Since RBD provides an equal ability for thin-provisioning, when the RBD cache
is enabled, the image hosting manner is close to their approaches. In a later
section, a comparison of the results of I/O performance measured on the VM
instance between this similar method and our proposed method is shown.

Razavi, et al. study VM image caching in front of a remote network-attached
storage system like NFS for fast bootup of multiple VMs [7]. Since the boot
data is cached on a local disk or in main memory on host machines, VMs can
boot quickly without performing the bulk image transfer. Their approach can
be applied to a heterogeneous environment where each VM image is largely
different. Zhao, et al. also use a caching technique for VM image deployment on
a WAN-based, grid computing infrastructure [13].

Our proposed method is different from the above work, in the point of dy-
namically and completely switching use of remote storage to use of local storage
devices, after the VMs start. Our goal is to eliminate any interruption and shared
use concerns during execution of HPC applications on the deployed virtual clus-
ter, while maximally keeping fast VMs deployment by using the remote storage.

3 Our Proposed Method

Our proposed method is designed taking into account two observations. The first
observation is that each VM needs a small fraction of its total disk image at the
boot time. The amount of read data in our traced boot of CentOS 6.3 was about
86MB. According to a similar experiment shown in the paper [7] mentioned
above, the required size would be at most 200MB. In addition, I/O time during
the boot is short enough measured against the total boot time. These indicate
that booting from remote storage is clearly superior to booting after the VM
image is staged onto a host node. The second observation is that most VM
images forming the same HPC cluster are similar because parallel applications
(e.g., MPI programs) mostly assume a homogeneous environment. As long as
all VMs in the cluster use the same software versions and do not store so much
unique data on their virtual disks, the difference among the images would be
kept to a minimum. This characteristic is useful not only for saving the storage
space on the shared storage, but also for reducing the total data transfer size
between host nodes and the shared storage.

We now present an outline of our method as follows, with illustrations in Fig-
ure 2. At the initial deployment of a), a set of VM disk images for the virtual
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Fig. 2. Outline of our proposed method

cluster is created from the same template by using the clone and snapshot func-
tions of shared storage. Subsequently, a copy-on-write (CoW) image is created
for each node and every VM boots with the CoW mode. The CoW mode uses
the shared storage for remotely reading a base image and a local disk on a host
node for writing any updates (diff.), during the boot process. After the entire
cluster has booted, users can start to use the cluster with this CoW mode. Upon
the users’ request after the boot, the base image transfer to the local disk of
all of the host nodes is launched in the background. The transfer is performed
by using multicast with a controlled bandwidth so that any impact on the per-
formance of the running VMs can be managed to be smaller. Then, each VM
switches the base image on the remote storage to its own just copied one on the
local disk, which is the final deployment shown in b). At the shutdown of the
cluster, each difference image (diff.), in which all updates on the VM are written,
is committed to the remote storage, as shown in c).

The procedure on and after the second time boot is almost the same as the
first one, except that a unique part of the base image for each VM is separately
read by each host node. The read operations are performed in parallel after the
common part is transferred by multicast. Then, the unique part and the common
part are merged to form the base image on each host node, before switching the
base image. At the shutdown, for every VM, any new diff. from the last commit
is committed to the corresponding base image on the remote storage.

4 Implementation

We have implemented our proposed method as Skilfish, which provides a de-
ployment service for a virtual cluster. Skilfish uses RADOS [12] as a backend
storage system through the RBD [8] interface, and deploys the QEMU/KVM [6]
based VMs by efficiently using the remote shared storage and local disks on host
nodes. In order to clarify a distinctive feature of Skilfish, we first introduce how
the existing CoW method, which also uses both remote and local storage, can
be implemented with RBD and QEMU/KVM, and then explain Skilfish.
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4.1 Use of Remote Shared Storage with Local Caching

Hosting a disk image by using remote shared storage with caching on a local
disk is a well-known method. This can be implemented with the qcow2 image
format of QEMU. We call it CoW-LR in our explanations in this paper. The
qcow2 format supports copy-on-write, where each incremental difference is stored
separately from the base image. Therefore, the base image is placed on the RBD
while the difference is kept in a local cache during the VM execution. The RBD
provides thin-provisioning, which allows users to quickly create a base image
from a template image by clone and snapshot operations. A qcow2 image is
created on a local disk for storing the difference, associating this with the base
image on the RBD as a backing file. Thus, write operations from the guest OS
do not require transferring data to the RBD and the performance would be close
to that of the local disk. In addition, read operations can benefit from the cache
function of the RBD. When the VM is shut down and it will not be booted on
the same host again, the difference is committed to the base image. Since the
qemu-img command does not support direct commit to an image on the RBD,
the commit operation is executed through rbd-fuse, which exposes RBD images
as files by Fuse. When the VM is booted again but on another host node, a new
qcow2 file is created from the last updated base image, and subsequently the
VM is booted in the same manner.

Although Nicolae, et al. [5] mentioned several drawbacks of using qcow2, such
as complexity of managing multiple image snapshots, image portability, and
performance. We assume that the complexity will be reduced by committing
updated data to the base image on the RBD after every shutdown of the VM.
Moreover, at least in our operation case, conversion of the VM image format of
the virtual cluster would not be a strong requirement. One remaining issue for
the performance is discussed with our experiment results in Section 5.

4.2 Skilfish: Providing Delayed Transfer and Dynamic Switching
of the Base Image

Skilfish extends the above CoW-LR method, as Figure 3 illustrates the imple-
mentation. In Skilfish, a base image, which is a backing file of a qcow2 image, is
always accessed through the Fuse [2] module. The module confirms completion
of reception of the entire base image from the RBD, so that the image can be
safely switched and the VM can be disconnected from the RBD. Due to the Fuse
function, it is not necessary to modify the qcow2 implementation at all.

A common part of the base image is transferred by a set of one UDPcast [11]
sender and its multiple receivers. The sender is normally launched on one of the
host nodes, and one receiver is launched on each host node. They synchronize
after launched, and then the sender carries out a read of the common part from
the RBD and sends it to the receivers by multicast. This image transmission is
triggered by a user’s request after the entire cluster boots, and the transfer speed
is controlled by the MAX bit rate parameter of the UDPcast. If a unique part
for each VM exists, it will be read by each host via the RBD, and merged into
the common part to reconstruct the base image before the final deployment.
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Fig. 3. Implementation of Skilfish

Skilfish supports ‘sparse’ file. The sparse nature of the imported image is
preserved in the RBD/RADOS. When the image is distributed to the host nodes,
Skilfish uses the pipe option of UDPcast to compress/decompress data by lzop [3]
on the fly. Thus the amount of transferred data can be kept smaller. The copied
base image files are also stored in sparse form on the host nodes.

For the virtual cluster users and the upper cloud management software, Skil-
fish implements a set of operations to manage the cluster deployment, in the
command line interface shown on the right of Figure 3. Development of a more
sophisticated interface, for example, like that of the RESTful API, which can be
easily integrated into the cloud management software, is one of our future tasks.

5 Evaluation

We have evaluated Skilfish, in terms of the I/O performance of the VM instance
deployed by Skilfish and the performance of the virtual cluster deployment with
using the distinctive features of Skilfish.

5.1 Experiment Setup

The experiment was conducted with the machines shown in Table 1. There were
two types of hosting nodes; one used SSD and the other used HDD. All the
host nodes were connected to a 10GbE switch and all RADOS OSD servers were
connected to another 10GbE switch. Both of the switches were connected by a
single 10GbE cable. QEMU/KVM v1.6.2 was used for virtualization, and each
VM instance used 256MB memory and Virtio to access its virtual disk with the
‘cache=writethrough’ option. We disabled the cache on the disks and the RAID



514 Y. Tanimura and T. Hamanishi

Table 1. Experiment environment

Host nodes Intel Xeon E5540 (2.54GHz, 4 cores) CPU×2, 48GB memory, CentOS 6.3.
/w SSD Intel 520 SSD (240GB) connected to the PERC H700 RAID controller was used

for hosting VM images.
Host nodes Intel Xeon E5540 (2.53GHz, 4 cores) CPU×2, 48GB memory, CentOS 6.3.
/w HDD 2×Seagate Savvio 10K (SAS-HDD, 300GB), which were configured to be RAID-1

by the PERC H700 RAID controller, were used for hosting VM images.
OSD servers Intel Xeon E3-1230 (3.2GHz, 4 cores) CPU, 8GB memory, CentOS 6.2.
of RADOS OCZ Vertex3 (240GB) via SATA 2.0 was used for storing data.

Each OSD used XFS as its underlying file system.

Fig. 4. I/O performance of the VM instance

controllers and flushed the cache of the file system on the host OS, guest OS
and OSD servers before every benchmark execution, in order to minimize cache
effects. Ceph v0.72.2 was used for the RBD/RADOS system and configured with
default parameters, in which 2 replicas were created for each object.

5.2 I/O Performance of the VM Instance

Figure 4-a) and -b) show I/O performance on a deployed VM by Skilfish (SF)
and other VMs whose disk images were provided in 4 different ways. Cow-lr in
the figure is the CoW-LR type mentioned in Section 4.1. In the read test with
the qcow2 modes (Lo-cow, Cow-lr and SF), data was read from a backing file.
The experiment was performed using the host node with SSD in Table 1.

In the results, the write performance of SF is almost equal to Lo-cow, which
indicates the difference between SF and Lo-raw mostly comes from the qcow2
overhead. Since SF and Cow-lr write data on a fast local disk, the performance
is clearly higher than Re-rbd. On the other hand, SF neither provides enough
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sequential read throughput compared with RBD (See Re-rbd and Cow-lr.) nor
IOPS for random read compared with a local disk (See Lo-raw and Lo-cow.).
In our investigation, the overhead would be caused mainly by the Fuse layer
and it would appear significantly in the fast storage backends such as SSD and
RADOS. However, since read cache is available in multiple layers: page cache on
both guest and host OS, OSD servers, etc., read performance would certainly
be improved. In additional tests, when data were on cache, the measured read
performance was comparable among Lo-raw, Lo-cow and SF, and higher than
others. In a comparison of the two deployment states of Skilfish, SF-fin achieves
equal or higher performance than SF-init in both sequential and random accesses.

Figure 4-c) shows the boot and shutdown time of a single VM by using Skil-
fish and the other four methods of providing the disk image. The boot with
Skilfish took just a few seconds longer than the boot from a local image, and the
shutdown with Skilfish was comparable with the other methods.

5.3 Performance of the Virtual Cluster Deployment

Performance of the virtual cluster deployment by using Skilfish has been evalu-
ated in terms of the cluster size, the advantages of the controlled image transfer,
and the image size of the virtual disk. All the experiments were performed on
up to 16 host nodes with HDD, and only one VM was allocated to one host
node so that the VM could occupy a local disk. In the experiment of the I/O
interference, the results of HDD and SSD are compared.

Scalability of Cluster Size. Figure 5-a) shows execution time of the Skilfish
operations for deployment, against the number of VMs. Each VM was simply
booted, switched to the final deployment state and then shut down without run-
ning any user applications. The operation time was measured from command
execution until the operation was completed for the entire cluster. The actual
size of the template disk image was 2.06GB though the virtual image size seen by
the VM instance was 4GB. In this experiment, the base image was transferred
without the LZO compression. In Figure 5-a), Skilfish provides acceptable scala-
bility such that a user can start to use a 16-node cluster within 24 seconds after
executing the Boot operation, and can shut down the cluster within 6 seconds.
The FetchBase and Commit operations have been investigated further next.

Effect of Controlled Image Transfer. When a virtual disk image is trans-
ferred at a low bit rate, the transfer time takes longer, but the I/O performance
of the VM instance is less affected by the background transfer workload. Figure
5-b) shows such interference effects in cases where the bit rate was limited to less
than 40MB/s, which is approximately 30% of the sustained write performance
for the HDD we used, and 16% for the SSD. In this experiment, only one VM
was booted and switched, and its actual size of the base image was 3.06GB.
The LZO compression was enabled in the image transfer. On the left in Fig-
ure 5-b), the increase ratio of the image transfer (FetchBase) time during I/O
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Fig. 5. Performance of the virtual cluster deployment by using Skilfish

benchmarks is shown. The result indicates that the transfer time is not affected
much by the I/O benchmark execution. On the right, the decrease ratio of the
I/O performance during the image transfer is shown. For read access, the per-
formance dropped at most 7.6%, which was caused by the interference between
the RBD access and the image transfer. For write access, a significant decrease
was seen for the HDD access and random I/O to the SSD. However, when the
transfer speed is limited to 10MB/s, the decrease stayed at 27.5% for the HDD
and 12.5% for the SSD. This implies that the speed control capability of Skilfish
is useful for not affecting much on the I/O performance of the running VM.

Image Size Sensitivity. Figure 5-c) shows the performance of the FetchBase
and Commit operations against the image size. In this experiment, first, we
booted a VM, wrote some data on that VM, shut it down and committed the
update to the image on the RBD. Then we booted the VM again and executed
the FetchBase, in which the last update must be transferred to a local disk
separately from the multicast transfer of the common part. The LZO compression
was disabled in the image transfer. In the measurement of the operation time, we
tried three patterns, 0, 512 or 1024MB, for the amount of write data at the first
run. In each case, the commit size was 80, 614 or 1126MB respectively. We also
compared the operation time among another three patterns for the number of
VMs. The results show that the Commit operation time increases linearly as the
amount of update, which is multiplied by the size and the number of VMs, scales
up. For the FetchBase operation at the second boot, the time increase is smaller
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than the Commit. This implies that improvement of the Commit operation speed
would be a primary task to support larger-scale cluster deployment.

6 Conclusion

This paper presents a virtual cluster deployment method, which boots a set of
VMs from a remote shared storage system and later switches the base of the
virtual disk images to the copies on an ephemeral local disk attached to the
host nodes, upon the user’s request. The method eliminates risks of outage,
faults, and interference issues of the remote shared storage so that users can run
HPC applications just by using allocated hosting nodes from that time forth,
while the method still provides a quick boot of the virtual cluster. Through
our experiments with Skilfish, it has been confirmed that the base images can
be transferred at a controlled, low speed, in the background, so that the I/O
performance of the running VMs will not be affected much. Write performance
on the VM instance deployed by Skilfish is comparable to the instance which
directly accesses the local disk, but sequential read performance from the remote
storage should be improved by reducing the overhead in the switching layer.

In the future, we would like to investigate further about the I/O performance
of the deployed VM instance and the deployment scalability in a larger envi-
ronment, including comparison with the use of other cluster storage systems,
and improve the implementation (e.g., in consideration of direct access without
Fuse). We also plan to integrate Skilfish into a cloud management platform.
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4. Nicolae, B., Antoniu, G., Bogué, L., Moise, D., Carpen-Amarie, A.: BlobSeer: Next
Generation Data Management for Large Scale Infrastructures. Journal of Parallel
and Distributed Computing 71(2), 169–184 (2011)

5. Nicolae, B., Bresnahan, J., Keahey, K.: Going Back and Forth: Efficient Multi-
deployment and Multisnapshotting on Clouds. In: Proceedings of the 20th Inter-
national Symposium on High Performance Distributed Computing (HPDC 2011),
pp. 147–158 (2011)

6. QEMU/KVM, http://wiki.qemu.org/KVM

7. Razavi, K., Kielmann, T.: Scalable Virtual Machine Deployment Using VM Im-
age Caches. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2013), vol. 12, pp. 65:1–65:12
(2013)

8. RADOS Block Devices, http://ceph.com/docs/master/rbd/rbd/

9. Rehr, J.J., Vila, F.D., Gardner, J.P., Svec, L., Prange, M.: Scientific Computing
in the Cloud. Computing in Science and Engineering 12(3), 34–43 (2010)

http://fuse.sourceforge.net/
http://www.lzop.org/
http://wiki.qemu.org/KVM
http://ceph.com/docs/master/rbd/rbd/


518 Y. Tanimura and T. Hamanishi

10. Schmidt, M., Fallenbeck, N., Smith, M., Freisleben, B.: Efficient Distribution of
Virtual Machines for Cloud Computing. In: Proceedings of the 18th Euromicro
Conference on Parallel, Distributed and Network-based Processing (PDP 2010),
pp. 567–574 (2010)

11. UDPcast, http://www.udpcast.linux.lu/
12. Weil, S.A., Leung, A.W., Brandt, S.A., Maltzahn, C.: RADOS: A Scalable, Reliable

Storage Service for Petabyte-scale Storage Clusters. In: Proceedings of the 2nd
International Workshop on Petascale Data Storage, pp. 35–44 (2007)

13. Zhao, M., Zhang, J., Figueiredo, R.: Distributed File System Support for Virtual
Machines in Grid Computing. In: Proceedings of the 13th International Symposium
on High Performance Distributed Computing (HPDC 2004), pp. 202–211 (2004)

http://www.udpcast.linux.lu/


Hecatonchire: Towards Multi-host

Virtual Machines by Server Disaggregation
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Abstract. Horizontal elasticity through scale-out is the current dogma
for scaling cloud applications but requires a particular application ar-
chitecture. Vertical elasticity is transparent to applications but less used
as scale-up is limited by the size of a single physical server. In this pa-
per, we propose a novel approach, server disaggregation, that aggregates
memory, compute and I/O resources from multiple physical machines in
resource pools. From these pools, virtual machines can be seamlessly pro-
visioned with the right amount of resources for each application and more
resources can be added to vertically scale a virtual machine as needed,
regardless of the bound of any single physical machine. We present our
proposed architecture and implement key functionality such as transpar-
ent memory scale-out and cloud management integration. Our approach
is validated by a demonstration using benchmarks and a real-world big-
data application and results indicate a low overhead in using memory
scale-out in both test cases.

1 Introduction

Large peta-byte, and soon exa-byte, data collections are becoming more com-
mon [17], with data emanating from transactional enterprise applications, energy
grids, social web services, weather sensors or mobile devices. To work upon these
large data sets, large amounts of scalable computing resources are required. To-
day’s cloud is designed to provide scalability via the main two scaling methods:
horizontal and vertical elasticity. Horizontal elasticity involves allocating more
Virtual Machines, VMs, to run an application while vertical on the other hand
means adding more resources like CPU and memory to an existing VM.

Vertical elasticity is well suited to scale resource demanding business-critical
applications such as large databases, ERP systems and big data analytics. It
should therefore be a part of cloud platforms in order to enable applications and
infrastructure to work together to provide the scalability they need. However,
current virtualization technologies are ill-equipped to deliver vertical elasticity
as they were primarily built for sharing of individual servers.

In this contribution we introduce the concept of Server Disaggregation to ad-
dress these shortcomings by enabling cloud infrastructure to lift the physical
limitations traditionally associated with memory, compute and I/O resources.
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Server Disaggregation allows cloud platforms to aggregate and manipulate re-
sources more freely, for example scaling up by adding more hardware resources
to a VM, regardless of the limitations of the server where it is deployed. As
computer prices drop and performance continues to increase, low cost commod-
ity systems are the perfect fit for the Server Disaggregation approach as they
be configured in large clusters to aggregate computing power. In the paper we
present the Hecatonchire, or Heca for short, approach to Server Disaggregation
and a part-implementation of the concept, namely scale-out of memory and a
proof-of-concept integration of memory scale-out into OpenStack. We validate
our findings by means of a performance study of memory scale-out for a bench-
mark appliction and the SAP HANA in-memory database.

2 Vision and General Approach

The goal of the Heca project is to provide a true utility service by disassoci-
ating servers from their core resources and relaxing the coupling between VMs
and their physical hosts, thereby creating a radically new delivery model for
IaaS platforms. Today, CPU development no longer follows Moores law [7] and
instead, the industry has moved towards parallelism with processors featuring
more cores. The same applies to RAM and disk where, relative to CPU perfor-
mance, disk performance has actually become slower over the past 30 years [15].
In contrast, network bandwidth continues to increase rapidly. Interfaces such
as Infiniband provide interconnect speeds that are approaching internal bus
speeds [15] and techniques like Remote Direct Memory Access, RDMA, enable
fast access to remote memory. This means that the performance overhead for
using resources on remote servers is decreasing.

In a Heca-enabled datacenter, a VM can use resources from multiple servers.
Aggregated Memory, compute, and I/O resources are made available in sepa-
rate pools from which a VM can dynamically consume the aggregated resources
to meet changes in application requirements at runtime. This effectively frees
the cloud system from some of the constraints of the underlying physical infras-
tructure and also means that larger VMs than can fit on a single server can be
provisioned.

2.1 Server Disaggregation

Server Disaggregation constitutes a major shift in the evolution of data centers
and serves as a key enabler for providing a complete scaling solution for platforms
on the cloud. Compared to traditional IaaS platforms, the technique has several
potential benefits, which we enumerate in this section.

Superior Scalability. For large memory workloads, vertical elasticity is often
the most suitable scaling approach. However, there are limits on maximum mem-
ory size for commodity hardware and typically a large memory size has to be
traded for reduced memory bandwidth, e.g., lower frequency DIMMs. Very of-
ten, an additional storage hierarchy that relies on SSDs or disks as a temporary
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data store is introduced, with severe impact on performance. In contrast, dis-
tributed memory aggregation over high-speed interconnects across servers pro-
vides a cost-effective, high-performance, alternative as it enables applications to
leverage the memory of multiple systems. Server Disaggregation thus combines a
cost-effective virtual x86 platform running on commodity hardware with a large
shared memory thereby enabling provisioning of resource-intensive VMs.

Improved Resource Utilization. Scheduling of VMs to achieve maximum
hardware utilization is known to be an NP-hard problem [18], e.g., provision-
ing a lot of memory-bound VMs can lead to underutilized CPUs, etc. Using
resource aggregation technology, VMs can be deployed independent of single
server boundaries, to simplify scheduling and improve resource utilization. Also,
fewer but larger nodes mean reduced cluster complexity and reduced fragmenta-
tion of the resources. For example, financial organizations run up to thousands
of simulations at once, and a common deployment involves hundreds of servers,
where each node is running a simulation application at 80% utilization. By using
resource aggregation to create fewer larger nodes, every four aggregated systems
can run another copy of the application, in theory approaching 100% utilization.

Better Performance. When I/O, computing and memory resources are sepa-
rated into purpose-built nodes, servers can be better optimized to the require-
ments of the hosted applications. For compute-intense workloads, proprietary
shared-memory systems have traditionally been used. Systems such as the SGI
Ultraviolet [14] or the Cray XMT [5] come with significantly larger memory sizes
but they are comparatively expensive. Aggregation technology benefits from the
local memory bandwidth across servers, as opposed to traditional SMP [16] or, to
a lesser extent, NUMA architecture, where memory bandwidth decreases as the
machine scales out. Solutions based on resource aggregation can thus show close-
to-linear memory bandwidth scaling, thereby delivering excellent performance in
particular for many-threaded applications, e.g., graph analysis, or memory band-
width bound ones, such as computational fluid dynamics simulations.

Easier Use and Administration. Traditionally, using distributed memory
across several servers requires that the application is developed for an explicit
memory distribution model which require highly skilled, domain-aware software
developers using custom software libraries [11]. Having a single virtual system
to manage is also simpler compared to the complexities involved in managing a
cluster with respect to software installation and synchronization. Furthermore,
aggregation technology also simplifies the I/O architecture by consolidating each
individual server’s network and storage interfaces. The administrator gets fewer
I/O devices to manage leading to increased availability, higher utilization, better
resiliency, and runtime scalability of I/O resources.

Improved Economics. Thanks to improved scalability, hardware utilization
and performance and simplified administration, aggregation technologies show
great potential for cost savings in data center operations. Server Disaggregation
also provides a cost-effective x86 alternative to expensive and proprietary shared
memory systems.
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3 Heca Architecture and Implementation

The Heca architecture, outlined in Figure 1, decouples virtual resource manage-
ment from physical resources by providing the capability to mediate between
applications and servers in real-time. This decoupling is achieved by aggregating
and managing server resources in a datacenter. Each resource type is exposed
to the overall cloud platform via an independent mediation layer that arbitrates
the allocation of resources between multiple applications, creating a distributed
and shared physical resources layer. The architecture is composed of three layers,

Hypervisor

Cloud Infrastructure Orchestration

Memory 
Cloud

VM VM VM VM VM

Compute 
Cloud

I/O Cloud

Memory 
Aggregation

Compute 
Aggregation

I/O 
Aggregation

Cloud Operation Orchestration

VM VM VM VM VM
1

2

3

Hypervisor Hypervisor

Fig. 1. Traditional (left) vs Heca (right) Virtualization

the Cloud Resource Aggregation layer, marked as 1 in Figure 1, provides access
to and management for the aggregated resources, i.e. Memory Cloud, Compute
Cloud and I/O Cloud. The Cloud Infrastructure Orchestration layer, marked as
2, provides the ability to compose logical virtual servers with a level of service
assurance that guarantees resources and performance provided by the resource
aggregation layer. It also exposes extended features enabled by the decoupled
resource layers. The Cloud Operation Orchestration layer, marked as 3, provides
service life cycle management. It enables provisioning of self-configuring, self-
healing, self-optimizing services that can be composed to create self-managed
business workflows that are independent of the physical infrastructure.

3.1 Transparent Memory Scale-out

To enable transparent memory scale-out, Heca makes it possible for a VM to allo-
cate memory on multiple servers. The server that hosts the VM to be scaled-up
is termed a memory demander. The application is transparently scaled verti-
cally by using memory provided by other hosts in the cluster, denoted memory
sponsors. Figure 2 depicts memory scale-out, with a memory demander running
an application, and several memory sponsors. The memory sponsors are VMs
whose sole purpose is to provide memory to its demanders. Note that a server
can host both memory sponsors and demanders at the same time.

All hosts run a modified Linux kernel, including a Heca kernel module, and
also include a modified version of the QEMU hypervisor. On a higher level the
kernel module fits in Layer 1 in Figure 1, while the modified hypervisor belongs
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to Layer 2 in the same figure. The kernel module handles the operations during
scale-out and the transfer of memory content to and from remote hosts. The
hypervisor enables full transparency as it communicates cluster setup to the
kernel module, and applications run unchanged on top of it. It also generates
specialized system calls, ioctls, to the kernel module, passing relevant parameters
needed to set up the memory scale-out. The behavior of the kernel module differs
between memory sponsors and demanders. On the memory demander, the VM’s
RAM is partitioned into address ranges. Each address range is registered as
sponsored by a memory sponsor. Appropriate page table entries, PTEs, are put
in place. Each memory sponsor allocates enough memory in its VM to sponsor
one address range on the memory demander. Besides that, memory sponsors can
continue to operate as usual.

Demander VM

Qemu

Remote Memory

Kernel
Heca 

Module

Sponsor VM

Qemu

Remote Memory

Kernel
Heca 

Module

RDMA

Sponsor VM

Qemu

Remote Memory

Kernel
Heca 

Module

Fig. 2. High-level architecture of a memory scale-out

The partitioning of memory into address spaces is determined by the pa-
rameters passed to the VMs during provisioning. Therefore, when setting-up
the memory scale-out each address range is created in accordance with a cor-
responding amount of physical memory provided by a memory sponsor. When
the VM faults on an address, the kernel identifies the modified PTE and passes
execution to the kernel module. The module requests the memory page from
the memory sponsor, and the page fault is resolved. If the kernel later decides
to swap out the page, its contents are re-sent to the memory sponsor, and the
PTE is updated. Our solution achieves transparency as the application runs in a
VM, unaware of the scale-out operation. Also, application performance is good
as most memory operations are carried out in kernel space, beneath the I/O
layer. Use of a virtual stack also enables integration with cloud platforms such
as OpenStack [12], managing a cluster of VMs. This simple approach reflects a
trade-off however, and on the downside, it binds the approach to a virtualization
stack, in our case KVM.

Resilience and Fault-Tolerance. The Heca approach can provide resilience
by preparing memory sponsors with twice the available memory, compared to
the requirements of the memory demander. Arguments are passed to the VMs
reflecting that each address space is sponsored by two memory sponsors. The
hypervisors pass that information on to the kernel module. When the kernel
module faults on an address, it sends the request to both memory sponsors,
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sponsoring its address space. The first arriving response is used. When the kernel
module swaps a page out, it sends it to both memory sponsors, and waits for
validation that both of them stored the content, before discarding the page.
The biggest advantage of this approach is zero-downtime failover of memory
sponsors. If one sponsor fails, the other sponsor continues responding to the
memory demander’s requests for memory content. Furthermore, the memory
demander can identify the fault (trusting the remote kernel module, and the
underlying networking fabric), and disconnect from the sponsor. Another host
can later join the system, taking up the role of the failed sponsor.

However, there are a few disadvantages with this approach. First of all, it con-
sumes twice the amount of memory, compared to a non-resilient scheme. Our
mirroring approach also doubles the required bandwidth, an increase that pre-
vious generations of networking fabrics could not support [8]. However, today’s
fabrics can handle much higher loads. With bandwidths exceeding 100 Gb/s this
would require the application to be very memory intensive, swapping more than
50 Gb/s, yet it is theoretically possible. In this context we highlight that even
the most memory-intensive applications are practically bound by memory bus
capacities. Infiniband capacities have rapidly multiplied in the last decade, while
the maximum memory bandwidth for Intel Xeon server series chipsets have only
increased by a factor of 8 over this period, from 6.4 Gbps to 51.2 Gbps [4]. If
this trend persists, the potential bottleneck might be further mitigated and even
eliminated in most practical scenarios.

Other resiliency approaches, such as RAID-5, are more conservative in mem-
ory and bandwidth requirements. Yet such approaches require a lengthy compu-
tation process to recover from a fault, in which lost data is re-built. This prevents
them from ensuring zero-downtime failover. Additionally, such approaches may
incur a performance penalty on the scale-out operation, as computation of parity
bits is required when swapping pages out.

We highlight that this discussion does not deal with fault tolerance for the
main host running the application, the memory demander. This issue is beyond
the scope of this paper, as it is not a scale-out challenge, but rather a generic
challenge of fault tolerance for VMs.

3.2 Cloud Management Integration

To simplify the use of memory scale-out we have integrated resource disaggre-
gation of VMs into OpenStack. If the VM is too large to fit on any host, our
modified OpenStack scheduler splits the VM into sponsors and a demander. The
feature is enabled by setting a flag in an OpenStack VM flavor.

The launch of a VM instance in OpenStack starts with the cloud controller
receiving a request to deploy an instance via the Compute API (Step 1 in Fig-
ure 3). The instance is given an instance ID and the message is forwarded to
the scheduler which selects a suitable worker to run the instance (Steps 2 and
3) and passes the message to it (Step 4). The compute worker sends a message
to the network controller to get an IP for the instance (Steps 5-8) and continues
provisioning of the instance.
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To provision the VMs correctly as demander and sponsors, extra information
must be passed to the hypervisor. These parameters include a heca mode, sponsor
or demander, two heca process identifiers, TCP ports for control and memory
transfer, and RDMA IP addresses for both demander and sponsors. The start
address and size of the shared memory region is also needed and is given by how
much more memory the VM requests than maximum free on any host. Figure 3
illustrates how OpenStack allocates the instance before it is sent to the scheduler,
which also performs the actual deployment in an asynchronous manner. This
creates an issue as the sponsor and demander both need each others RDMA IP
addresses at the time of creation. Our pragmatic solution is to perform a ”pre-
scheduling” round to determine the placement of the VMs without actually
provisioning them. The instances are then sent to the scheduler again, using
scheduler hints to achieve the desired placement. To pass these parameters to
qemu-kvm our modified OpenStack constructs a <qemu:commandline> block
that is added to the instance.xml file. On instance creation, instance.xml is fed
to the libvirt API that passes the Heca parameters to the qemu-kvm hypervisor.

4 Experimental Demonstration of Heca functionality

To verify the memory scale-out functionality we deploy an 8 GB VM to an
OpenStack cloud with a controller node and three compute nodes, see Table 1.
We present performance results for two deployments, with and without memory
scale-out enabled. The outcome of the two deployments are shown in Figure 4.

Table 1. Testbed Description.

Node CPU RAM Free RAM Network Kernel
Controller i5@3 GHz 4 GB N/A Gb Ethernet Linux Heca 3.6
Compute A,B,C i5@3 GHz 8 GB 4,3,5 GB iWARP Linux Heca 3.6

In the first deployment, the VM is provisioned on the host with the most amount
of RAM available. As overbooking of resources is enabled in OpenStack, virtual
memory is used to account for the overbooked RAM. In the second deployment,
the modified OpenStack avoids using virtual memory by memory scale-out and
provisions the memory demander on Node B and a memory sponsor on Node A.

Fig. 3. OpenStack deployment Fig. 4. Deployment outcome
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Remote Memory Performance. To evaluate the relative performance of us-
ing remote memory we made four comparisons using the Linux MBW [9] tool
that allocates two arrays and copies the first to the second using memcopy. We
ran MBW with an array size of 3 GB which means it allocated 6 GB of RAM.
In Figure 5, for the baseline case, marked as bare-metal, MBW was run non-
virtualized with more than 6 GB of free RAM. In the second case, virtualized in
Figure 5, MBW was run in an 8 GB VM, with more than 6 GB of free RAM.
For the third experiment, overcommitted in the same figure, the second exper-
iment was repeated but the amount of free memory on the host was restricted
to 4 GB meaning that the host is overcommitted. In the fourth experiment,
marked as memory scale-out, MBW was run on a demander-sponsor VM pair
with 2 GB scaled out to the sponsor. All other conditions were identical to the
overcommitted case. An overall observation is that virtualized is 6% slower than
bare-metal and memory scale-out is 6% slower than virtualized. The results of
the overcommitted case vary greatly between iterations due to swapping.

To further evaluate the memory scale-out functionality we performed an ex-
periment with a real-world, big data application, SAP HANA [13], which is an
in-memory database. The application was run on a 40 vCPU VM on a 4 socket,
10 core Intel Xeon West Mere cluster with 1 TB RAM, connected by a 40 Gbps
Infiniband network. The experiment was performed with a set of 18 different
queries against a 2.5 TB OLAP dataset. Between tests, we varied the number
of simultaneous users running the query sets. The complete test was performed
twice, the second time 512 GB of the VMs RAM was scaled out to a memory
sponsor. The results are shown in Figure 6. In all runs, the overhead in query
response time with 50% remote memory was around 3% compared to running
virtualized with no remote memory.

Fig. 5. Memcopy speed test results Fig. 6. Overhead per query set

Table 2. Overhead per query set with 80 HANA users

Demander : Sponsor A : Sponsor B Overhead
1 GB : 2 GB : - 4%
1 GB : 3 GB : - 5.6%
2 GB : 1 GB : 1 GB 0.9%
1 GB : 1 GB : 1 GB 2%
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To investigate the overhead when using remote memory in more detail, we
present the result from a test running HANA on a smaller VM, this time with 80
users but varying the amount of remote memory. We ran the experiment with one
and two sponsors, varying the distribution of memory between the demander and
sponsors as shown in Table 2. The table also shows that the overhead increases
with the amount of remote memory and that distributing the remote memory
over several sponsors improves performance, due to the increased bandwidth.

5 Related Work

Han et al. advocate a datacenter architecture in which the resources within
a server are disaggregated and the datacenter is architected as a collection of
standalone resources [3]. However, they do not implement anything but rather
investigate the feasibility of such an approach.

The Oracle Transcendent Memory project makes unused memory on a node
available to other nodes through the use of an API [6]. The main difference from
Heca is that guest OS changes are explicitly required in order to use the shared
memory using the Oracle approach. Also, there is no guarantee that memory that
is currently idle will not eventually be needed as the future working set size of a
VM cannot be accurately predicted. Another similar approach is VMware DRS
which enables managing a cluster containing many potentially-heterogeneous
hosts as if it were a single pool of resources [2]. The main difference between
the DRS and the Heca approaches is that the DRS approach splits a cluster
into smaller groups. A number of VMs attached to a group can then share the
CPU and Memory resources in the group among them. Dragojevic et al. propose
their Fast Remote Memory, FaRM, approach which exposes remote memory over
RDMA as a shared address space [1], consisting of 2 GB memory regions. In
contrast to Heca, the FaRM approach does not use a virtualization stack, but
the shared memory is made available trough a programming model.

Sharing of resources is also provided by XtreemOS, which is a distributed
Linux distribution that aggregates resources from compute resources in a clus-
ter [10]. However, as the system is perceived as one single computer this approach
can be cumbersome when running many applications in parallel. This means that
XtreemOS is more suited for the Grid use-case.

6 Conclusion

We propose a solution to enable vertical elasticity, beyond the capacity limita-
tions of individual servers, by aggregating CPU, memory, and I/O resources into
reusable pools that can be used to provision VMs independent of limitations of
the underlying hardware. The core concepts of our outlined architecture is im-
plemented as a kernel module and a modified Qemu-KVM hypervisor integrated
into OpenStack. Our approach is validated by provisioning multi-host VMs and
a performing an evaluation of memory scale-out. The results indicate that our
server disaggregation concept is feasible, with as little as 6% overhead compared
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to single-host virtualization as well as simplified administration, thus enabling a
broader range of applications to take advantage of the cloud.
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Abstract. In the EXA-DUNE project we strive to (i) develop and im-
plement numerical algorithms for solving PDE problems efficiently on
heterogeneous architectures, (ii) provide corresponding domain-specific
abstractions that allow application scientists to effectively use these meth-
ods, and (iii) demonstrate performance on porous media flow problems.
In this paper, we present first results on the hybrid parallelisation of
sparse linear algebra, system and RHS assembly, the implementation of
multiscale finite element methods and the SIMD performance of high-
order discontinuous Galerkin methods within an application scenario.

1 The EXA-DUNE Project

Many processes from science and engineering can be modelled with stochastic
or parameterised partial differential equations (PDEs). Despite increasing com-
putational capacities, many of these problems are still only solvable with severe
simplifications. This is particularly true if not only single forward problems are
considered, but rather uncertainty quantification, parameter estimation or opti-
misation in engineering applications are investigated.

Within the EXA-DUNE1 project we pursue three different routes to make
progress towards exascale: (i) we develop new computational algorithms and im-
plementations for solving PDEs that are highly suitable to better exploit the
performance offered by prospective exascale hardware, (ii) we provide domain-
specific abstractions that allow mathematicians and application scientists to ex-
ploit (exascale) hardware with reasonable effort in terms of programmers’ time
(a metric that we consider highly important) and (iii) we showcase our method-
ology to solve complex application problems of flow in porous media.

1 http://www.sppexa.de/general-information/projects.html#EXADUNE
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Software development, in the scope of our work for the numerical solution
of a wide range of PDE problems, faces contradictory challenges. On the one
hand, users and developers prefer flexibility and generality, on the other hand,
the continously changing hardware landscape requires algorithmic adaptation
and specialisation to be able to exploit a large fraction of peak performance.

A framework approach for entire application domains rather than distinct
problem instances facilitates code reuse and thus substantially reduces develop-
ment time. In contrast to the more conventional approach of developing in a
‘bottom-up’ fashion starting with only a limited set of problems and solution
methods (likely a single problem/method), frameworks are designed from the
beginning with flexibility and general applicability in mind so that new physics
and new mathematical methods can be incorporated more easily. In a software
framework the generic code of the framework is extended by the user to pro-
vide application specific code instead of just calling functions from a library.
Template meta-programming in C++ supports this extension step in a very ef-
ficient way, performing the fusion of framework and user code at compile time
which reduces granularity effects and enables a much wider range of optimisa-
tions by the compiler. In this project we strive to redesign components of the
DUNE framework [3,2] in such a way that hardware-specific adaptations based
on the experience acquired within the FEAST project [15] can be exploited in a
transparent way without affecting user code.

Future exascale systems are characterised by a massive increase in node-level
parallelism, heterogeneity and non-uniform access to memory. Current exam-
ples include nodes with multiple conventional CPU cores arranged in different
sockets. GPUs require much more fine-grained parallelism, and Intel’s Xeon Phi
design shares similarities with both these extremes. One important common fea-
ture of all these architectures is that reasonable performance can only be achieved
by explicitly using their (wide-) SIMD capabilities. The situation becomes more
complicated as different programming models, APIs and language extensions are
needed, which lack performance portability. Instead, different data structures
and memory layouts are often required for different architectures. In addition,
it is no longer possible to view the available off-chip DRAM memory within
one node as globally shared in terms of performance. Accelerators are typically
equipped with dedicated memory, which improves accelerator-local latency and
bandwidth substantially, but at the same time suffers from a (relatively) slow
connection to the host. Due to NUMA (non-uniform memory access) effects,
a similar (albeit less dramatic in absolute numbers) imbalance can already be
observed on multi-socket multi-core CPU systems. There is common agreement
in the community that the existing MPI-only programming model has reached
its limits. The most prominent successor will likely be ‘MPI+X’, so that MPI
can still be used for coarse-grained communication, while some kind of shared
memory abstraction is used within MPI processes at the UMA level.

Our work within the EXA-DUNE project currently targets pilot applications
in the field of porous media flow. These problems are characterised by coupled
elliptic/parabolic-hyperbolic PDEs with strongly varying coefficients and highly
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anisotropic meshes. The elliptic part mandates robust solvers and thus does not
lend itself to the current trend in HPC towards matrix-free methods with their
beneficial properties in terms of memory bandwidth and/or FLOPs/DOF ra-
tio; typical matrix-free techniques like stencil-based geometric multigrid are not
suited to those types of problems. For that reason, we aim at algebraic multigrid
(AMG) preconditioners known to work well in this context, and work towards
further improving their scalability and (hardware) performance. Discontinuous
Galerkin (DG) methods are employed to increase data locality and arithmetic
intensity. Matrix-free techniques are investigated for the hyperbolic/parabolic
parts.

In this paper we report on the current state of the EXA-DUNE project. As
message passing parallelism is well established in DUNE (as documented by
the inclusion of DUNE’s solver library in the High-Q-Club2), we concentrate on
core/node level performance. Regarding the three ‘exa-avenues’ identified in the
project, implementations of multiscale reduced basis and high-order spectral DG
methods are treated in Sections 3 and 4, hybrid parallelisation of finite element
assembly and sparse linear algebra is covered in Section 2 and preliminary results
for density-driven flow in porous media are shown in Section 4.

2 Hybrid Parallelism in DUNE

In the following, we introduce the ‘virtual UMA node’ concept at the heart of
our hybrid parallelisation strategy, and ongoing current steps to incorporate this
concept into the assembly and solver stages of our framework.

2.1 UMA Concept

Current and upcoming HPC systems are characterised by two trends which
greatly increase the complexity of efficient node-level programming: (i) A mas-
sive increase in the degree of parallelism restricts the amount of memory and
bandwidth available to each compute unit, and (ii) the node architecture be-
comes increasingly heterogeneous. Consequently, on modern multi-socket nodes
the memory performance depends on the location of the memory in relation to
the compute core (NUMA). The problem becomes even more pronounced in the
presence of accelerators like MICs or GPUs, for which memory accesses might
have to traverse the PCIe bus, severely limiting bandwidth and latency. To il-
lustrate this issue, we consider the relative runtime of an iterative linear solver
(Krylov-DG), as shown in Table 1: An identical problem is solved with different
mappings to MPI processes and threads, on a representative 4-socket server with
AMD Opteron 6172 12-core processors and 128GB RAM. On this architecture,
a UMA domain comprises half a socket (6 cores), and thus, (explicit or implicit)
multi-threading beyond 6 cores actually yields slowdowns. This experiment vali-
dates our design decision to regard heterogeneous nodes as a collection of ‘virtual

2 http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/ node.html
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Table 1. Poisson on the unit cube, discretised by the DG-SIPG method, timings for
100 Krylov iterations. Comparison of different MPI / shared memory mappings for
varying polynomial degree p of the DG discretisation and mesh width h. Timings tM/T

and speedups for varying numbers of MPI processes M and threads per process T .

p h−1 t48/1[s] t8/6[s]
t48/1
t8/6

t4/12[s]
t48/1
t4/12

t1/48[s]
t48/1
t1/48

1 256 645.1 600.2 1.07 1483.3 0.43 2491.7 0.26
2 128 999.5 785.7 1.27 1320.7 0.76 2619.0 0.38
3 64 709.6 502.9 1.41 1237.2 0.57 1958.2 0.36

UMA nodes’ on the MPI level: Internal uniform memory access characteristics
are exploited by shared-memory parallelism, while off-node communication is
handled via (classical/existing) message passing.

2.2 Finite Element Assembly

Assembling the finite element operator or the residual vector typically involves
two user-level inputs: The assembler iterates through the grid cells of a given
mesh, and for each grid cell a local operator is evaluated, which computes the
local contributions to the global stiffness matrix or the residual vector. Following
DUNE’s general approach, we implement threading and vectorisation on top of
the existing grid abstraction.

Globally the grid is partitioned using the existing MPI layer. Within each
UMA node system threads are used to share the workload among all cores. For
a user-defined number of concurrent threads the grid is locally partitioned such
that each thread handles the same amount of work. On the finest level vectorisa-
tion (SIMD, ILP) is required to fully exploit the hardware. SIMD has the largest
impact in the local operator which also poses the biggest challenge, as this is user
code. The resulting requirement of fully exploiting SIMD in that setting with-
out exposing users to the details of vectorisation presents an additional problem
compared to the linear algebra, where the number of kernels is much smaller.

Multi-threading support is implemented on top of the existing grid interface,
thus we can easily compare different strategies for the local partitioning of a
mesh T (Ω). Experiments are carried out on an Intel Xeon E7-4850 with 10
cores (20 hyperthreads), 2GHz and 12GB RAM and on an Intel Xeon Phi 5110P,
with 60 cores (240 hyperthreads), 1GHz and 8GB RAM. Many bottlenecks for
multi-threading only become visible on many-core systems like the Xeon Phi.
SIMD experiments are carried out on an Intel Core i5-3340M with 2 cores (4
hyperthreads), 2.7GHz and 8GB RAM and a 256-bit SIMD unit (AVX). See
[5] for more details. Our experiments indicate that the additional complexity of
partitioning the node-local mesh into per-thread blocks that optimise properties
like surface-to-volume ratio, e.g. using graph partitioning libraries like METIS
or SCOTCH, does not pay off; those approaches impose prohibitive setup and
memory penalties. Instead, a ranged partitioning strategy showed the best overall
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Table 2. Comparison of different polynomial degrees k, number of threads P , and
hardware X. Time per DOF tXP [μs] and efficiency EX

P of the Jacobian assembly using
ranged partitioning and entity-wise locking. We see a clear benefit from higher order
discretisations, due to the increased algorithmic intensity.

k t
CPU

1 t
CPU

10 t
CPU

20 E
CPU

10 E
CPU

20 t
PHI

1 t
PHI

60 t
PHI

120 t
PHI

240 E
PHI

60 E
PHI

120 E
PHI

240

0 4.59 0.74 0.54 62% 42% 59.57 1.33 1.17 1.20 75% 43% 21%
1 1.38 0.22 0.17 62% 42% 18.92 0.37 0.27 0.26 84% 57% 30%
2 1.10 0.15 0.12 72% 46% 17.12 0.32 0.21 0.19 90% 69% 38%
3 1.29 0.16 0.13 79% 50% 19.84 0.36 0.23 0.20 92% 72% 41%
4 1.52 0.18 0.15 87% 49%
5 1.81 0.21 0.18 88% 51%

performance. We define consecutive iterator ranges of the size |T |/P . This is
efficiently implemented using entry points in the form of begin and end iterators.
The memory requirement is O(P ) and thus will not strain the bandwidth.

Data access is critical during the assembly, as different local vectors and local
matrices contribute to the same global entries. Two approaches are possible
to avoid race conditions: locking and colouring. Entity-wise locks are expected
to give very good performance, as they correspond to the granularity of the
critical sections. The downside is the additional memory requirement of O(|T |).
With a ranged partitioning and entity-wise locking, or with colouring, we obtain
good performance on multi-core CPUs and on many-core systems alike. The
performance gain from colouring is negligible, but increases code complexity, so
that this approach is less favourable.

Timings for ranged partitioning and entity-wise locking are presented in Ta-
ble 2. As a benchmark we consider the assembly of the Jacobian and measure
strong scalability. Discretisations using different polynomial orders are evaluated
and the problem sizes are chosen such that the global number of unknowns is
roughly the same. The results indicate the benefit of higher order trial and test
functions, due to the increased arithmetic intensity in the local operator. The
absolute timings show a significant issue for the Xeon Phi, which can only exhibit
its full performance if the code is able to use the 512-bit wide SIMD instructions.

Vectorising computations in the local operator requires pursuing different av-
enues depending on the number of local DOFs / quadrature points: For high-
order discretisations, good performance can be achieved by simply unrolling /
vectorising the existing loops (cf. results in Sec. 4). For low-order methods this
approach is only feasible if the number of DOFs / quadrature points is a multiple
of the SIMD width, limiting the applicability of this technique. We thus follow
a different approach to transparently add SIMD parallelism at the level of the
local operator and vectorise over N elements, operating on the same local func-
tion space, and encapsulate data in a packed C++ data type. This approach is
inspired by [7]; their Vc library is also used for the presented preliminary results.
The packed data consists of a vector of N doubles. Using operator overloading
an arithmetic operation a�b is mapped to the component-wise evaluation ai�bi.
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All interfaces providing local information of the N cells are now vectorised as
well as the residual vector and the local matrix. In particular, information like
the Jacobian of the geometric mapping and the determinant of the Jacobian are
now provided for all N elements.

We investigate a 3DQ2 discretisation of the Poisson problem with 262 144 cells
and benchmark the assembly of the residual and the Jacobian on a structured
grid on a single core. First results show a speedup of 1.8 (SSE, 2 lanes) and 2.6
(AVX, 4 lanes) for the Jacobian and 1.7 (SSE) and 2.3 (AVX) for the residual.
This is measured without the scatter operation into the global matrix as this is
not yet optimised — if we include scattering in the timing the speedup is, e.g.,
1.7 for the Jacobian and AVX. Even without scattering some operations are not
vectorised yet, so we do not obtain the full speedup, but we can show that it
is possible to add SIMD parallelism to the local operator with only minimal
restrictions for the user.

2.3 Sparse Linear Algebra and Solvers

Designing effcient implementations and realisations of solvers effectively boils
down to (i) a suitable choice of data structures for sparse matrix-vector multiply,
and (ii) numerical components of the solver, i.e., preconditioners.

DUNE’s current matrix format, (block) compressed row storage, is ill-suited
for modern hardware and SIMD, as there is no way to efficiently and generally
expose a block structure that fits the size of the SIMD units. We have thus
extended the SELL-C-σ matrix format introduced in [8] which is a tuned variant
of the sorted ELL format known from GPUs, to be able to efficiently handle block
structures [11].

As we mostly focus on solvers for DG discretisations, which lend themselves to
block-structured matrices, this is a valid and generalisable decision. The standard
approach of requiring matrix block sizes that are multiples of the SIMD size is not
applicable in our case because the matrix block size is a direct consequence of the
chosen discretisation. In order to support arbitrary block sizes, we interleave the
data from N matrix blocks given a vector unit of size N , an approach introduced
in [4]. This allows us to easily vectorise existing scalar algorithms by having
them operate on multiple blocks in parallel, an approach that works as long as
there are no data-dependent branches in the original algorithm. Sparse linear
algebra is typically memory bandwidth bound, and thus, the main advantage
of the block format is the reduced number of column block indices that need
to be stored (as only a single index is required per block). With growing block
size, this bandwidth advantage quickly approaches 50% of the overall required
bandwidth.

So far, we have implemented the SELL-C-σ building blocks (vectors, matri-
ces), and a (block) Jacobi preconditioner which fully inverts the corresponding
subsystem; for all target architectures (CPU, MIC, CUDA). Moreover, there is
an implementation of the blocked version for multi-threaded CPUs and MICs.
While the GPU version is implemented as a set of CUDA kernels, we have not
used any intrinsics for the standard CPU and the MIC – instead we rely on the



536 P. Bastian et al.

 0

 100

 200

 300

 400

 500

 600

 0  1  2  3  4  5  6  7  8

T
im

e 
pe

r 
D

O
F

 a
nd

 C
G

 it
er

at
io

n 
(n

s)

# DOFs / 1e6

MPI
MT

MT blocked
Tesla

MIC blocked

 0

 500

 1000

 1500

 2000

 2500

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

T
im

e 
pe

r 
D

O
F

 a
nd

 C
G

 it
er

at
io

n 
(n

s)

# DOFs / 1e6

MPI
MT

MT blocked
Tesla

MIC blocked

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

T
im

e 
pe

r 
D

O
F

 a
nd

 C
G

 it
er

at
io

n 
(n

s)

# DOFs / 1e6

MPI
MT

MT blocked
Tesla

MIC blocked

Fig. 1. Normalised execution time of the (block) Jacobi preconditioned CG solver for
polynomial degrees p = 1, 2, 3 (left to right) of the DG discretisation. The multithreaded
(MT) and MIC versions use a SIMD block size of 8. Missing data points indicate
insufficient memory.

auto-vectorisation features of modern compilers without performance penalty
[11]. Due to the abstract interfaces in our solver packages, all other compo-
nents like the iterative solvers can work with the new data format without any
changes. Finally, a new backend for our high-level PDE discretisation package
enables a direct assembly into the new containers, avoiding the overhead of a
separate conversion step. Consequently, users can transparently benefit from our
improvements through a simple C++ typedef.

We demonstrate the benefits of our approach for a linear system generated
by a 3D stationary diffusion problem on the unit cube with unit permeability,
discretised using a weighted SIPG DG scheme [6]. Timings of 100 iterations of a
CG solver using a (block) Jacobi preconditioner on a single-socket Intel Sandy
Bridge machine (8GB DDR3-1333 RAM, 2GHz 4-core Intel Core i7-2635QM,
no hyper-threading) which supports 256-bit wide SIMD using AVX instructions,
on a NVIDIA Tesla C2070 for the GPU measurements and on a Intel Xeon Phi
7120P, are presented in Figure 1, normalised per iteration and DOF.

As can be seen, switching from MPI to threading affords moderate improve-
ments due to the better surface-to-volume ratio of the threading approach, but
we cannot expect very large gains because the required memory bandwidth is
essentially identical. Accordingly, switching to the blocked SELL-C-σ format
consistently yields good improvements due to the lower number of column in-
dices that need to be loaded, an effect that becomes more pronounced as the
polynomial degree grows due to larger matrix block sizes. Finally, the GPU and
the MIC provide a further speedup of 2.5–5 as is to be expected given the relative
peak memory bandwidth figures of the respective architectures, demonstrating
that our code manages to attain a constant fraction of the theoretically available
memory bandwidth across all target architectures.

3 Multiscale Methods

Our software concept for numerical multi-scale methods in a parameterised set-
ting is based on the general model reduction framework for multi-scale problems



EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications 537

presented in [12]. The framework covers a large class of numerical multi-scale ap-
proaches based on an additive splitting of function spaces into macroscopic and
fine scale contributions combined with a tensor decomposition of function spaces
in the context of multi query applications. Numerical multi-scale methods make
use of a possible separation of scales in the underlying problem. The approxima-
tion spaces for the macroscopic and the fine scale are usually defined a priori.
Typically, piecewise polynomial functions are chosen on a relatively coarse and
on a fine partition of the computational domain. Based on such discrete func-
tion spaces, an additive decomposition of the fine scale space into coarse parts
and fine scale corrections is the basis for the derivation of large classes of nu-
merical multi-scale methods. A variety of numerical multi-scale methods can be
recovered by appropriate selection of decomposed trial and test functions, the
specific localisations of the function space for the fine scale correctors, and the
corresponding localised corrector operators.

To efficiently cope with multi-scale problems in multi-query scenarios, we add
a further tensor type decomposition of function spaces that can be derived as a
generalisation of the classical projection based reduced basis approach. Suppose
that in a first step a small number of snapshots have been computed with some
numerical multi-scale method for suitable parameters, e.g., chosen by a greedy al-
gorithm based on efficient a posteriori error estimates. As a generalisation of the
classical reduced basis approach, we then define a reduced approximation space
as a non-linear combination of the computed snaphots. As a particular example
we focus on tensor product type approximation spaces spanned by products of
coarse scale functions and precomputed snapshots. A reduced multi-scale scheme
is then obtained by suitable projection of the original problem onto such function
spaces. A particular realisation of this approach is, e.g., the localised reduced
basis multi-scale method [1].

Within EXA-DUNE we develop a unified interface-based software framework
that mimics the mathematical concept for numerical multiscale methods in
multi-query scenarios. Particular implementations of this framework are pursued
for the multiscale finite element method as a representative of classical numerical
multiscale methods and for the localised reduced basis multiscale method as a
representative of the generalised model reduction approach.

Concerning the structure of the solution spaces and the resulting discrete
approximation schemes, in all the above mentioned methods the global solu-
tion is decomposed into dense local solutions on coarse grid blocks, and block-
wise sparse global solutions. Therefore, the general structure of approximation
spaces, discrete operators and solvers is similar as for DG schemes with locally
high polynomial degrees. Thus, for an efficient implementation in heterogeneous
parallel environments, we can directly build upon concepts developed, e.g., for
DG schemes. The realisation of the parallel multiscale methods is based on the
DUNE-Multiscale module3 and on the DUNE-gdt module4 and builds upon the
hybrid parallelism in DUNE as discussed in Section 2.

3 http://users.dune-project.org/projects/dune-multiscale
4 http://users.dune-project.org/projects/dune-gdt
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16-32 16-64 16-128 16-256 16-512 16-1024

Overall 1.92 3.84 7.46 14.57 28.50 54.05

Coarse Matrix Assembly 2.00 4.01 7.92 15.86 31.60 63.47

Coarse RHS Assembly 1.71 3.41 6.80 13.35 25.73 50.35

Local Problem Assembly 
and Solve

2.00 3.98 7.85 15.64 30.55 60.35

Coarse Problem Solve 0.41 0.80 0.77 1.01 1.96 2.16

9 %

58 %

18 %

15 %
Coarse Matrix Assembly
Coarse RHS Assembly
Local Problem Assembly and Solve
Coarse Problem Solve

Fig. 2. Left: Strong scaling factors for different parts of the multiscale finite element
(msfem) method from 16 toN cores. Right: Distribution of wall time amongst 4 heaviest
callers (accounting for 99% of overall runtime) during msfem method on 1024 Cores.

In the hybrid setting, the computational grid associated with the coarse solu-
tion space is decomposed into patches (of varying size) that are then distributed
to the processes using the MPI-based parallel communication interface of DUNE.
On each coarse patch, a virtual local grid refinement is constructed. This locally
structured grid then serves as computational mesh for the derivation of the fine
scale corrections. Using the virtual grid refinement allows for fully unstructured
meshes on the coarse scale while avoiding memory and bandwidth limitations
on the fine scale. The fine-scale correction assembly and solve phases can then
be further distributed via shared-memory parallelisation within one UMA-node
using the techniques from Section 2.

In Figure 2 we demonstrate the scaling capabilities of the multiscale finite
element method using an artificial 3D benchmark problem on 32768 coarse cubes,
each subdivided into 4096 fine cubes. We test strong scaling on 16 to 1024 cores
of our local PALMA cluster at the University of Münster. Most parts of our
code show promising scaling, except for the coarse scale system solve which
necessitates MPI-communication in each step of the iterative solver and therefore
is inefficient for the relatively small coarse problem. Bigger meshes stemming
from real-world applications will show better scaling on this part, too.

4 A First Porous Medium Flow Application

As a prototypical example for flows in porous media we consider density driven
flow in a three-dimensional domain Ω = (0, 1)3 given by an elliptic equation for
pressure p(x, y, z, t) coupled to a parabolic equation for concentration c(x, y, z, t):

−∇ · (∇p− c1z) = 0, (1)

∂tc−∇ ·
(
(∇p− c1z)c+

1

Ra
∇c

)
= 0. (2)

Boundary conditions for the pressure equation are p = 0 at z = 0 and ‘no flow’
at all other boundaries. Boundary conditions for the concentration equation are
c = 1 for z = 1, ‘no flow’ at lateral boundaries and ‘inflow/outflow’ at z = 0.
Initial condition is c = 0. This system serves as a model for the dissolution
of a CO2 phase in brine, where the unstable flow behaviour leads to enhanced
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Fig. 3. Density driven flow in a porous medium in three space dimensions for Ra =
8000. Left: concentration at t = 2.25 after the onset of instability, right: concentration
at t = 4.8 in the nonlinear regime where persistent fingers have developed.

dissolution. The system is formulated in non-dimensional form with the Raleigh
number Ra as the only governing parameter. For details we refer to [13].

The system (1), (2) is solved in a decoupled fashion resulting, after discreti-
sation in space and time, in a large and sparse linear system which is solved by
algebraic multigrid and a system of ordinary differential equations. The pressure
equation (1) is discretised using the cell centered finite volume (CCFV) method
with two-point flux approximation on a structured, equidistant mesh. The veloc-
ity field v = −(∇p−c1z) required in the transport equation is then reconstructed
from the finite volume fluxes with lowest order Raviart-Thomas (RT0) elements.
The transport equation (2) is discretised in space with the symmetric weighted
interior penalty DG finite element method [6]. For the Raleigh number and mesh
sizes utilised below the grid Peclet number is of order 1 and explicit time stepping
schemes for the transport equation are efficient. Using strong stability preserv-
ing explicit Runge-Kutta methods [14] we can exploit the increased arithmetic
intensity of a matrix-free implementation. Figure 3 shows results of a 3D simu-
lation on 8 Xeon E5-2680v2 10-core processors, mesh size 2403, Q2 DG elements
(373 · 106 DOF) and 16000 time steps. One time step takes 14s.

DG methods are popular in the porous media flow community due to their
local mass conservation properties, the ability to handle full diffusion tensors
and unstructured, nonconforming meshes as well as the simple way to imple-
ment upwinding for convection dominated flows. The efficient implementation
of high order ‘spectral’ DG methods relies on a tensor product structure of
the polynomial basis functions and the quadrature rules on cuboid elements.
At each element the following three steps are performed: (i) evaluate the finite
element function and gradient at quadrature points, (ii) evaluate PDE coeffi-
cients and geometric transformation at quadrature points, and (iii) evaluate the
bilinear form for all test functions. The computational complexity of steps (i)
and (iii) is reduced from O(p2d), p − 1 being the polynomial degree and d the
space dimension, to O(dpd+1) with the sum factorisation technique, see [9,10].
This can be implemented with matrix-matrix products, albeit with small matrix
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Fig. 4. Single core performance for various components of the DG method

dimensions. For the face terms, the complexity is reduced from O(p2d−1) to
O(3dpd). For practical polynomial degrees, p ≤ 10, the face terms dominate the
overall computation time, resulting in the time per degree of freedom (DOF) to
be independent of the polynomial degree. This is illustrated by the finely dotted
curve in Figure 4. We employ a nodal basis on Gauß-Lobatto points with under-
integration on the Gauß-Lobatto points for the temporal bilinear form leading
to a diagonal mass matrix. Gauß-Legendre quadrature is used for the spatial
bilinear form.

Figure 4 presents performance results of the sum factorisation based 3D DG
code on a single core of a Xeon E5-2680v2 for varying polynomial degree. The
stand-alone sum factorisation kernel (solid line) achieves up to 8 GFLOP/s cor-
responding to 40% peak performance. The performance peaks at Q7/Q11 with
8/12 basis functions per direction show that vectorisation is effective. The per-
formance for the complete spatial residual evaluation and a complete time step
peak at 4 GFLOP/s. These results clearly illustrate that high order methods can
take advantage of modern multicore architectures and their SIMD capabilities.

5 Conclusion

This paper reports first results on introducing hybrid parallelisation and
hardware-orientation into the DUNE framework. In the finite element assem-
bly process we obtain promising results for low order methods by vectorising
over several elements while for high polynomial degree good performance can
also be achieved by loop auto-vectorisation. In ongoing work both approaches
will be combined. On the sparse linear algebra level shared memory parallelisa-
tion and vectorisation is based on the SELL-C-σ matrix format and additionally
exploits the matrix block structure. These components have already been used
to speed up a multiscale finite element and a density driven flow solver.

Acknowledgements. This research was funded by the DFG SPP 1648 ‘Soft-
ware for Exascale Computing’.
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Sander, O.: A generic grid interface for parallel and adaptive scientific comput-
ing. part I: Abstract framework. Computing 82(2-3), 103–119 (2008)

4. Choi, J., Singh, A., Vuduc, R.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: Principles and Practice of Parallel Programming,
pp. 115–126 (2010)

5. Engwer, C., Fahlke, J.: Scalable hybrid parallelization strategies for the DUNE
grid interface. In: Proceedings of ENUMATH 2013 (2014)

6. Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin method with
weighted averages for advection-diffusion equations with locally small and
anisotropic diffusivity. IMA Journal of Numerical Analysis 29(2), 235–256 (2009)

7. Kretz, M., Lindenstruth, V.: Vc: A C++ library for explicit vectorization. Software:
Practice and Experience 42(11), 1409–1430 (2012)

8. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse
matrix data format for modern processors with wide SIMD units. SIAM Journal
on Scientific Computing 36(5), C401–C423 (2014)

9. Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite
element operator application. Computers & Fluids 63, 135–147 (2012)

10. Melenk, J., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: fast quadra-
ture. Computer Methods in Applied Mechanics and Engineering 190(32-33),
4339–4364 (2001)
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Abstract. DASH is a realization of the PGAS (partitioned global ad-
dress space) model in the form of a C++ template library. Operator
overloading is used to provide global-view PGAS semantics without the
need for a custom PGAS (pre-)compiler. The DASH library is imple-
mented on top of our runtime system DART, which provides an abstrac-
tion layer on top of existing one-sided communication substrates. DART
contains methods to allocate memory in the global address space as well
as collective and one-sided communication primitives. To support the de-
velopment of applications that exploit a hierarchical organization, either
on the algorithmic or on the hardware level, DASH features the notion
of teams that are arranged in a hierarchy. Based on a team hierarchy, the
DASH data structures support locality iterators as a generalization of the
conventional local/global distinction found in many PGAS approaches.

1 Introduction

High performance computing systems are getting bigger and bigger in terms of
the number of cores they are composed of and the degree of parallelism that
needs to be exploited to successfully use them is becoming higher and higher.
Billion-way parallelism is envisioned for Exascale-class machines [22] and one
of the consequences of this trend is that data movement is becoming a more
significant contributor to computing cost (in terms of time and energy) than the
arithmetic operations performed on the data [8].

At the same time, while data comes to the fore in many areas of science,
technology, and industry in the form of data-intensive science and big data, the
programming models in use today are still largely compute-centric and do not
support a data-centric viewpoint well. Consequently, programming parallel sys-
tems is difficult and will only get more complex as the Exascale era approaches.
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PGAS (partitioned global address space) languages have long been proposed as
a solution to simplifying the process of developing parallel software, but tradi-
tional PGAS solutions are ill equipped to address the two trends outlined above.
First, most PGAS approaches offer only the differentiation between local and
global data, a more fine-grained differentiation that corresponds to hierarchical
machine models often envisioned for Exascale computing is not straightforward.
Second, many existing PGAS solutions only offer basic data structures of built-
in data types such as one-dimensional arrays and users have to develop more
complex abstractions from scratch.

To address some of these issues, we are developing DASH, a PGAS approach
that comes in the form of a C++ template library, supports hierarchical locality,
and focuses on data structures and programmer productivity. The rest of this
paper gives an overview of the project and its current status and is organized as
follows: In Sect. 2 we start with the discussion of the high-level layered structure
of our project. Sect. 3 describes the foundation of the project, the DART runtime
layer and its interface to the C++ template library, in some detail. In Sect. 4 we
describe how the abstractions of DASH can be used by an application developer.
In Sect. 5 we discuss research projects that are related to DASH and in Sect. 6 we
summarize the current status and discuss the further direction for our project.

2 An Overview of DASH

DASH [9] is a data-structure oriented C++ template library under development
in the context of SPPEXA [23], the priority program for software for Exas-
cale computing funded by the German research foundation (DFG). The DASH
project consortium consists of the authors’ four German partner institutions and
the Center for Earth Observation and Digital Earth (CEODE) in Beijing, China.
The layered structure of the project is shown in Fig. 1; each project partner is
leading the efforts for one of the layers.

A DASH-enabled application makes use of the data structures, algorithms,
and additional abstractions (such as the hierarchical team construct) that are
provided in the form of a C++ template library. DASH relies on a one-sided
communication mechanism to exchange data, residing in the memory of multi-
ple separate nodes, in the background, while providing the programmer with a
convenient, local view.

As an example, Fig. 2 shows a simple stand-alone hello world DASH pro-
gramme that allocates a small 1D array of integer keys and stores them over
all available nodes. DASH follows the SPMD (single program, multiple data)
model and the execution environment is initialized by the dash::init() call
in line 3. Subsequently, size gives the number of participants in the program
(denoted units) and myid identifies an individual unit. As an extra benefit of
using DASH, rather than a local container such as an STL vector or array, the
storage space is not limited by the locally available memory, but is extensible
by adding more resources in a distributed memory setting. In the example code
(Fig. 2), the DASH array allocated in line 8 is used to communicate a single in-
teger key from unit 0 to every other unit in the application. The communication
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DASH Run me

DASH  C++ Template Library

DASH Applica on Tools and Interfaces

Hardware: Network, Processor,
Memory, Storage

One-sided Communica on
Substrate

MPI GASnet GASPIARMCI

DASH  C++ Template Library

DASH Applica on Tools and Interfaces--

Component of DASH

Fig. 1. The layered structure of the DASH project

is accomplished by overloading the subscript ([]) operator of the dash::array

container and in lines 11–13 unit 0 stores the key at every (distributed) memory
location of the array. The default layout for DASH one-dimensional arrays is
blocks of elements over the available units. In our example this mapping implies
that key[i] is stored on unit i and hence the access in line 18 (key[myid]) does
not generate a communication event, since every unit reads its own local data
item.

DASH builds upon existing one-sided communication substrates. A variety of
one-sided communication solutions such as GASNet [4], ARMCI [18], OpenSH-
MEM [21], GASPI [12], and MPI exist, each with various features, restrictions
and levels of maturity. DART (the DASH runtime), aims at abstracting away
the specifics of a given substrate and provides services to the upper levels of
the DASH stack. Most importantly, global memory allocation and referencing,
as well as one-sided puts and gets, are provided by DART. In principle, any
communication substrate can form the basis for DASH. However, since inter-
operability with existing MPI applications is among our design considerations,
we chose MPI-3 one-sided (RMA, remote memory access) operations as the foun-
dation for our scalable runtime implementation.

A DASH-enabled application can use the data structures and programming
mechanisms provided by DASH. An application can be written from scratch
using DASH, but we envision that more commonly existing applications will be
ported to DASH, one data-structure at a time. In our project, two application
case studies guide the development of the features of DASH. One application is
a remote sensing Geoscience application from CEODE (China), the other is a
molecular applications code contributed by HLRS Stuttgart. Finally, the tools
and interfaces layer in Fig. 1 encompasses the integration of parallel I/O directly
to and from the data structures as well as the inclusion of a tools interface to
facilitate debugging and performance analysis of DASH programs.
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1#include <libdash.h>

2
3int main(int argc , char * argv []) {

4dash ::init (&argc , &argv);

5
6int myid = dash :: myid ();

7int size = dash :: size ();

8
9dash ::array <int > key(size);

10
11if(myid ==0) {

12for(i=0; i<size; i++) key[i]= compute_key (...);

13}

14
15dash :: barrier ();

16
17cout <<"Hello�from�unit�"<<myid <<"�of�"

18<<size <<"�my�key�is"<<key[myid]<<endl;

19
20dash :: finalize ();

21}

Fig. 2. A hello world stand-alone DASH program that makes use of a small, shared
1D array for passing an integer key from unit 0 to all units in the program.

3 DART: The DASH Runtime Layer

DART is a plain-C based runtime that defines and implements central abstrac-
tions governing the development and usage of the DASH library and DASH
applications. This section describes some of the key concepts that have been in-
cluded in the first realization (v1.0) of the DART interface. In this first iteration
of the interface we have been intentionally conservative and have limited our-
selves to the necessities required to implement a functional version of the DASH
library. A future iteration of the DART interface is likely to relax some of the
restrictions and allow for a more expressive execution model. Specifically, DART
v1.0 does not contain a tasking or explicit code execution model. Instead, data
can be transparently accessed and computed on by regular operating system
threads. Work is currently in progress to identify the requirements for extending
DART to GPUs and in the context of this work a DART task execution model
will be developed.

In the DART execution model, the individual participants of a DASH/DART
program are called units. The generic name unit was chosen because other related
terms such as process or thread already have a specific meaning in a variety of
contexts and with DART we would like to have the conceptual freedom to map a
unit onto any operating or runtime system concept that fits our requirements. A
DASH application follows the SPMD programming model and the total number
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of units that exist is fixed at program start and does not change in the course of
the program execution. Units are organized into teams and one team is referred
to as DART TEAM ALL, comprising all existing units. Every unit in a team has an
integer identifier (ID) which remains unchanged throughout the lifetime of the
team; a unit’s ID with respect to DART TEAM ALL is referred to as the unit’s global
ID. Like units, teams are identified by integer IDs, but teams can be created and
destroyed dynamically. A unit’s ID with in a team other than DART TEAM ALL is
referred to as a local id.

A new team in DART is formed by specifying a subset of an existing parent
team. The team creation routine dart team create() is a collective operation
on the parent team and returns an integer identifier for the new team. Since we
want to support large hierarchical machines and a localized sub-team creation
that requires the involvement of the whole application would be prohibitively
expensive, the new team ID does not have to be globally unique. However, the
following localized uniqueness guarantees are provided:

– The same team ID is returned to all units that are members of the new team.
– The team ID is unique with respect to the parent team.
– If a unit is participating in two teams, t1 and t2, then it is guaranteed that

t1 and t2 will receive different identifiers.

Teams are a mechanism for representing the hierarchical structure of algo-
rithms and machines in a program [16]. An example for a team hierarchy repre-
senting the machine hierarchy of a system like SuperMUC (which has the notion
of interconnected islands [24]) is shown in Fig. 3. Clearly it is not desirable for
every team creation operation to require global synchronization – creating the
sub-teams of team t1 (island 1) should only involve team t1 and not require any
involvement from the rest of the machine. A straightforward algorithm that we
use in our implementation to guarantee the above requirements, while avoid-
ing global communication, keeps a unit-local next team id counter and performs
a maximum reduction among all members of the parent team. After creating
the new team, the next team id counter on all units of the new team is set to
max+ 1.

An important abstraction provided by DART is the virtual global memory
space and a mechanism to refer to data items residing in it (i.e., a global pointer).
A DART global pointer is a structure of 128 bits which has a 32 bit field for
identifying the unit providing the memory, a 64 bit offset or local address field
and 32 bits for flags and a segment identifier. Importantly, the global pointer
on the DART level has no phase information associated with it. However, a
similar construct is provided on the C++ (DASH) level, which then does contain
appropriate phase information needed to decide when to switch between units.

The DART virtual global memory space is composed of the memory segments
contributed by the units of an application on demand. Visibility of and acces-
sibility to memory is based on the team concept. The team-collective operation
dart team memalloc aligned(t, nbytes) allocates nbytes in the memory of ev-
ery unit in team t. This memory is accessible only by the members of team t and
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{unit44, unit45, unit46}

t0 (DART_TEAM_ALL)

t1 (island 1) t2 (island n)

split()

......

...

{unit2}{unit0, unit1}

split() split()

... ...t5 (node 1) t6 (node 2)

Fig. 3. An example team hierarchy for an execution of an application on a machine
like SuperMUC, with a hierarchical interconnect architecture

is said to be team-aligned and symmetric. Symmetric refers to the property that
all units allocate the same amount of memory, while team-aligned denotes that
every unit can compute the global pointer to any location in the global memory
by simple arithmetic. A second memory allocation function supported in DART
is dart memalloc, which allocates a “local global” memory that is accessible by
any unit (the memory has implicit associativity with DART TEAM ALL), but the
call is local. The two memory allocation functions are depicted in Fig. 4.

Unit 0 Unit 1 Unit 2 Unit n-1-1

Team 1

Private
Memory

Global
Memory

Global
Pointer

Local-Global 

Symmetric and
Team-aligned 

Fig. 4. The two types of memory allocation functions supported by DART

4 Using DASH in Applications

The overall goal of DASH is to provide a programmer with data structures that
can be used productively on large, parallel machines. C++ was chosen as a
host language for our project, because it is used in an increasingly large number
of HPC and data-science applications [27] and it has powerful features that
allow us to realize PGAS semantics efficiently. Specifically, we use templates
to provide efficient implementations of containers for user defined types and
operator overloading, thus achieving a PGAS abstraction without relying on a
custom compiler.
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Applications can be written from scratch using DASH and existing applica-
tions can furthermore be adapted to use DASH data structures. A stand-alone
application is shown in Fig. 2.

PGAS approaches are often classified into local-view and global-view solu-
tions, where global-view describes a situation in which the programming entities
are global objects and it is not syntactically obvious, whether accessed data
is local or remote. In local-view approaches, this syntactic visibility is always
guaranteed, often in the form of an explicit co-index that explicitly states the
location of data. Since this distinction is important for performance and energy
efficiency, there is always some way of telling whether data is remote or local
(say, by computing an affinity expression), but global-view does not force this
differentiation to be syntactic.

With DASH we largely follow the global-view approach. The constructors of
our data containers are collective operations on a team and every participat-
ing unit receives an object representing the entire data structure. In several
cases, this global-view approach allows us to use a DASH container (instead of
a standard STL container) in a straightforward manner. An example is shown
in Fig. 5. A 1D array, stored over several units, is used in combination with the
standard library’s sort algorithm in line 11. Naturally, this approach has several
drawbacks: std::sort() is a sequential sorting procedure that only engages one
unit at a time, resulting in fine-grained communication, as the sorting algorithm
fetches data items to compare with. However, despite these drawbacks, we en-
vision that the ability to seamlessly replace STL with DASH containers can be
useful in some situations for prototyping and removing memory limitations.

1// split the units into 8 teams (e.g., one per node )

2dash :: team nodeteam = dash :: TeamAll.split(8);

3
4// allocate an array over the node team

5dash ::array <double > b(100000 , nodeteam );

6
7// use the DASH container in place of an STL container

8// note sequential sort and perf. implications

9int myid=nodeteam .myID ();

10if(myid ==0) {

11std:: sort(b.begin(), b.end());

12}

13
14// to use containers with standard algorithms in parallel

,

15// local iterators lbegin(), lend () are provided

16// this fills the array in parallel (aka. ‘owner computes

’)

17std:: fill(b.lbegin(), b.lend (), 23+ myid);

Fig. 5. A small example that shows teams and DASH containers used with global-view
and local-view semantics
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Accompanying theDASH data structures, we are investigating algorithms anal-
ogous to those found in the STL to take into account data distribution and paral-
lelism (i.e., a parallel dash::sort()).Additionally, the standard owner-computes
paradigm is supported byDASH in the form of local iterators (lbegin(),lend()),
as shown in line 17 of Fig. 5. These local iterators allow each unit to access its lo-
cal portion of the data and they correspond to the classic two-level affinity model
(local/remote) of PGAS. As a generalization of this concept we are investigating
hierarchical locality iterators by leveraging the hierarchical team concept in the
DASH data containers.

5 Related Work

A number of realizations of the PGAS concept exist. UPC [26] is an ANSI C
dialect that extends C with the ability to declare shared pointers and data items.
The portable Berkeley UPC implementation relies on GASNet [4] for communi-
cation, while some vendors directly target their own low-level interconnect API.
Co-array Fortran [20,17] extends the notion of standard Fortran arrays with a
co-index to specify the process holding the array. The molecular dynamics ap-
plication has already been ported to UPC which can be used for performance
comparison with DASH porting in future [14]. The DARPA sponsored HPCS
(High Productivity Computing Systems) languages X10 [7], Fortress [1], and
Chapel [6] followed the PGAS model, of which Chapel remains the most ac-
tively developed and used.

PGAS has been realized in the form of a library in the past. Global Arrays [19]
is an early example of an API for shared memory programming on distributed
memory machines, primarily used in the context of quantum chemistry appli-
cations. GASPI [12] is an effort to standardize an API for PGAS programming
developed by Fraunhofer, it features support for fault tolerance, by supporting
timeouts for all non-local operations. OpenSHMEM [21] is a community effort
to standardize the various dialects of SHMEM, which provides a strongly typed
API for shared memory programming on distributed memory machines.

Recently, C++ has been used as a vehicle for realizing a PGAS approach in the
UPC++ [29] and Co-array C++ [15] projects. While the DASH runtime is based
on MPI, UPC++ is based on GASNet. Porting an existing MPI application will
therefore be more straightforward using DASH. Co-array C++ follows a strict
local-view programming approach and is somewhat more restricted than DASH
and UPC++ in the sense that it has no concept of teams.

STAPL [5,13,25] is a C++ template library for distributed data structures
supporting a “shared view” programming model that shares several goals with
DASH. The library provides a local view on data, while it can be physically
spread over several nodes. The authors of STAPL mention PGAS as related
work, but don’t seem to consider their own work a PGAS solution. STAPL does
provide a large set of data containers and places a lot of emphasis on extensibility
and configurability – it does however not seem to be intended for classic HPC
applications.
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Hierarchical computation and data structure layout have been explored in
several approaches before. Sequoia [10,2] is a programming approach (language,
compiler, and runtime system) for exploiting the memory hierarchy of modern
machines in a portable way. Sequoia provides tasks that are restricted to access
only local memory and the only supported way of communication between tasks
is through parameters passed to tasks and the return values. Thus, a program-
mer expresses an application as a hierarchy of tasks, and this abstract hierarchy
is later mapped to a concrete machine hierarchy. In Sequoia this mapping is
done by the compiler, in Hierarchical Place Trees (HPT) [28] the mapping is
done by the runtime. HPT are an extension to the flat place concept of X10.
Hierarchically Tiled Arrays (HTA) [3,11] are data structures that enable local-
ity and parallelism of array intensive computations, by using a block-recursive
storage scheme. Several implementations of HTA exist, including one for C++.
Finally, the work of Kamil et al. [16] explores additions and modifications to
the SPDM programming model to support a hierarchical concept of teams. The
DASH concept for hierarchical teams is inspired by his work.

6 Conclusion and Future Work

We have presented an overview of the DASH project. One goal of DASH is to
make the PGAS (partitioned global address space) concept available to a wider
range of application developers. PGAS languages often suffer from limited ac-
ceptance, because existing applications have to be ported to the new language as
a whole. With DASH we offer a way to port C++ MPI applications incremen-
tally (one data structure at a time). DASH has the advantage that it is not a
new language to learn and does not require a custom compiler or pre-processor.
Instead, DASH is realized as a C++ template library and operator overloading
is used to provide the PGAS semantics on the data containers.

As high performance computing machines are getting bigger and more hier-
archical on the way to Exascale, we plan to exploit the flexibility of the library-
based approach DASH to address this trend and include support for hierarchical
locality in our data structures. To this end, we are supporting the concept of hi-
erarchical teams. Teams determine visibility and accessibility of the DASH data
structures and allow for the realization of hierarchical locality iterators.

We are presently in the process of putting together a first public release of
our DASH software stack. This first release will contain a generic 1D distributed
array as the basic data structure, and it will be based on the first realization
of our MPI-based DART runtime. The next steps for the projects will be to
include additional data structures, such as multi-dimensional arrays, and dis-
tributed lists. We will continue our work on flexible data layout mappings and
explore concepts to support hierarchical locality. With these data structures and
concepts in place, work on the DASH-enabled molecular dynamics and remote
sensing applications can proceed and thereby guide the next iteration of DASH
features.
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Abstract. Project ExaStencils pursues a radically new approach to
stencil-code engineering. Present-day stencil codes are implemented in
general-purpose programming languages, such as Fortran, C, or Java,
or derivates thereof, and harnesses for parallelism, such as OpenMP,
OpenCL or MPI. ExaStencils favors a much more domain-specific ap-
proach with languages at several layers of abstraction, the most abstract
being the mathematical formulation, the most concrete the optimized
target code. At every layer, the corresponding language expresses not
only computational directives but also domain knowledge of the problem
and platform to be leveraged for optimization. This approach will enable
a highly automated code generation at all layers and has been demon-
strated successfully before in the U.S. projects FFTW and SPIRAL for
certain linear transforms.

1 The Challenges of Exascale Computing

The performance of supercomputers is on the way from petascale to exascale.
Software technology for high-performance computing has been struggling to keep
up with the advances in computing power, from terascale in 1997 to petascale in
2008 on to exascale, now being only a factor of 30 away and predicted for the end
of the present decade.1 So far, traditional host languages, such as Fortran and
C, being equipped with harnesses for parallelism, such as MPI and OpenMP,
have taken most of the burden, and they are being developed further with some
new abstractions, notably the partitioned global address space (PGAS) memory
model [1] in the languages Coarray Fortran [30], Chapel [9], Fortress [38], Unified
Parallel C [8] or X10 [10]. Yet, the sequential host languages remain general-
purpose: Fortran or C or, if object orientation is desired, C++ or Java.

The step from petascale to exascale performance challenges present-day soft-
ware technology much more than the advances from gigascale to terascale and
terascale to petascale have. The reason is the explicit treatment of the massive

1 http://www.top500.org

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 553–564, 2014.
c© Springer International Publishing Switzerland 2014



554 C. Lengauer et al.

parallelism inside one node of a high-performance cluster cannot be avoided any
longer. That is, the cluster nodes must be manycores with high numbers of cores.
The reorientation of the computer market from single cores to multicores and
manycores has been observed with concern [29]. In the high-performance market,
the situation is somewhat alleviated by the fact that the additional cycles that
large numbers of cores provide are actually being yearned for. But, the question
of how to exploit them with efficient and robust software remains.

While the potential for massive parallelism on and off the chip is the single
most serious challenge to exascale software technology, other challenges take on
a high priority and are frequently being mentioned, such as power consumption,
fault tolerance and heterogeneity of the execution platform [2]. At best, one
would strive for performance portability, i.e., the ability to switch the software
with ease from one platform, when it is being decommissioned, to the next, while
maintaining highest performance.

2 ExaStencils Application Domain: Stencil Codes

Stencil codes have extremely high value for a significant community of scientific-
computing experts in academia and industry. They see wide-spread use in solving
the systems arising form a discretization of partial differential equations (PDE)
and systems composed of such equations. For the implementation of scalable
stencil codes, the foremost requirement is the use of efficient solution algorithms,
i.e., iterative solvers that rely on the application of a stencil and that provide
good convergence properties. Major application areas are the natural sciences
and engineering.

Stencil codes are algorithms with a pleasantly high regularity: the data struc-
tures are higher-dimensional grids, and the computations follow a static, locally
contained dependence pattern and are typically arranged in nested loops with
linearly affine bounds. This invites massive parallelism and raises the hope for
easily achieved high performance. However, serious challenges remain:
– Because of the large numbers and varieties of stencil code implementations,

deriving each of them individually—even if by code modification from one
another—is not practical. Not even the use of program libraries is practi-
cal because they do not cover unforeseen variants that may be required by
future technology; instead, a domain-specific metaprogramming approach is
needed.

– High parallel efficiency is impaired by the low computational intensity, i.e.,
the low ratio of computation steps to data transfers of stencil codes.

– An unsuitable use of the execution platform may act as a performance brake.

3 ExaStencils Approach: Domain-Specific Optimization

With project ExaStencils, we propose a radical departure from the traditional
way of developing stencil codes. To this end, we make two major decisions.
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3.1 Domain-Specific Source Languages

The first decision is to liberate ourselves from the traditional, general-purpose
source languages that have historically been dominating high-performance soft-
ware development, and to move to much easier languages that cater to a specific
application domain. This has a serious consequence. The language technology
that ensues has great power but for a, in current thinking, shockingly small
domain of programs. The most striking example is FFTW (the Fastest Fourier
Transform in the West) [17], which is a highly powerful optimizing compiler for
essentially one problem: the fast Fourier transform. An optimizing compiler with
a somewhat larger domain has been SPIRAL [34], which addresses also a number
of (but not all) other linear transforms.

Domain-specific programming has become quite popular recently, and many
languages (DSLs), and their compilers, have been proposed and used for specific
domains [40,27]. Alone for the domain of stencil computations, there are, e.g., Liszt
[13] (or the newer DeLite), Pochoir [39], and PATUS [11]. Each one of these is
pursuing specific goals: Liszt adds abstractions to Java to make stencils program-
ming easier, also for unstructuredproblems;Pochoir employs adivide-and-conquer
skeleton on top of the parallel C extensionCilk tomake stencil computations cache-
oblivious; PATUS achieves performance by auto-tuning. ExaStencils seeks highest
performance via a second radical decision, which we describe next.

3.2 Domain-Specific Optimization at Every Refinement Step

None of the approaches just mentioned has the explicit goal of reaching exascale
performance. This is our goal for the domain of stencil codes (thus, the name of
our project: ExaStencils). In order to reach it, we insist not only on the freedom
to choose or craft the DSL. Rather, we demand also the freedom to choose one
dedicated language at every one of a small number of refinement steps, from the
first, abstract, executable formulation of the stencil computation down to the
target code actually running on the platform of our choice. With every refinement
step also comes its own, dedicated, highly automated optimization technology,
which exploits the domain-specific knowledge available and useful at this step.

Roughly, the ExaStencils project follows Wirth’s notion of stepwise refinement
[42] and Parnas’ approach of program design, which has later been condensed
in the paradigm of model-driven software development [35], and Parnas’ notion
of program families [33]. The idea is to traverse a path of refinement steps from
the mathematical statement of the stencil computation to the target code to
be executed on the platform at hand. In every step, choices are made that spe-
cialize the solution. These choices are governed by the implementation goals to
be reached – different implementation goals, different choices. The overall goal
will be the same: exascale performance! But, for different stencil computations
and different execution platforms, it may be reached by different choices. By
developing a variability model, we hope to achieve performance portability.

The novel contribution of ExaStencils, beyond the notions of stepwise refine-
ment, model-driven software development, and program families, is the repre-
sentation, aggregation, and employment of a knowledge base of conditions and
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rules concerning stencil codes and the platforms on which they run. ExaStencils
makes choices at different layers of abstraction, which form work areas in the
project. Let us discuss them in turn.

4 ExaStencils Workflow

The workflow of a stencil-code generation à la ExaStencils is illustrated in Fig. 1.
In a first step, a stencil algorithm is engineered by a mathematician. The solution
is put into a first executable form via a cooperation of the mathematician with a
software engineer. In the ExaStencils approach, the software description names a
set of algorithmic and platform choices, each made from a number of options and
alternatives. Then, an implementation is “woven” automatically. The weaving
algorithm is capable of applying optimizations customized for the specific choices
made. One powerful model exploited in ExaStencils is the polyhedron model for
automatic loop parallelization. In a final step, some low-level fine-tuning for
the platform at hand takes place. The target code can be in any language—or,
indeed, mix of languages—that is suitable. In a preliminary code generator, this
is C++ (see Subsect. 4.5). In the following subsections, we expand further on
these development steps.

� � � � �

End-

user

Domain

expert
Mathematician

Software

specialist

Hardware

expert

DSL program
Discretization and
algorithm selection

Selection of algorithmic
components & parameter settings

Polyhedral
optimization

Code
generation

Tuning towards
target hardwareExascale C++

ExaStencils
Compiler

Fig. 1. The workflow of the ExaStencils programming paradigm: the ExaSencils com-
piler builds on the combined knowledge of domain experts, mathematicians, and soft-
ware and hardware specialists to generate high-performance target code.

4.1 Algorithmic Engineering

The domain of ExaStencils is multigrid stencil codes on (semi-)structured grids.
In many applications, a large, structured, linear system consisting of hundreds
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of millions of unknowns or more must be solved, whose system matrix can be de-
scribed compactly, memory-efficiently by one or more stencils. Multigrid meth-
ods are asymptotically optimal solvers for elliptic PDEs, i.e., they belong to
the few algorithms that qualify as starting point to implement scalable parallel
solvers. Thus, multigrid methods are widely used on massively parallel comput-
ers, and different parallel implementations are available that scale on current
supercomputer architectures [3,4,5,14,15,21]. Multigrid methods involve stencil
computations on a hierarchy of very fine to successively coarser grids. On the
coarser grids, less processing power is required and communication dominates.
A multigrid method is characterized by two strategies: (1) a smoothing strat-
egy, which is used to smooth the sampling error of the grid at hand, and (2) a
coarsening strategy, which transfers data from one grid to the next coarser grid.
Once one arrives at the coarsest level, one refines the grid again via some form of
interpolation. This cycle of coarsening and refining is called a V-cycle. Various
cycling strategies are commonly used. For instance, an F-cycle multigrid method
consists of a sequence of progressively deeper V-cycles (Fig. 2). The technology
for the efficient implementation and a systematic performance engineering of
parallel multigrid methods is a major current research topic [18].

Fig. 2. An F-cycle as a succession of V-
cycles

Most of the computational effort
in multigrid methods is spent in the
smoother, which in simple cases can
be a point relaxation, such as Gauss-
Seidel or Jacobi. This results in a
low ratio of computation to memory
load and store operations, limiting the
performance that can be achieved on
modern architectures, as is typical for
applications limited by memory band-
width [24]. Furthermore, scaling to
very high numbers of processors can suffer from a higher number of levels. For
the latter, aggressive coarsening can be a viable option, while the number of com-
putation steps that are necessary can be raised by pipelining of multiple steps
of the iterative smoothing procedure, by using polynomial smoothers or by the
use of block smoothers. These techniques typically result in a better smoothing
factor yielding an overall improved convergence rate.

The performance of multigrid methods depends on the choice of algorithmic
components for discretization, grid transfer, cycling strategy, and smoothing.
They do influence the total run time, on the one hand, by their influence on the
convergence rate, that is the reduction of the error per iteration, and, on the other
hand, by the execution time of the individual components on a given architecture.
While the former is independent of the target architecture, the latter is influenced
strongly by specific hardware properties such as the cache size, the size of the
vector units, if present, etc. The convergence rate can be predicted by Local
Fourier Analysis (LFA), a mathematical tool that analyzes a given iterative
method by freezing coefficients and neglecting boundary conditions. The LFA is



558 C. Lengauer et al.

used widely in the multigrid community [28,41]. We have begun to extend the
technique to deal with block-smoothers and aggressive coarsening in addition to
the standard LFA techniques [6]. The LFA tool developed will then be used to
determine the convergence rate of a multigrid method in terms of the expected
convergence rate a priori, i.e., without building and running the actual multigrid
method. The combination with a performance model for stencil computations, in
general, and the specific requirements of multigrid methods, in particular, enable
a prediction of the overall run time of the method without actually running it on
the target architecture. This will massively speed up the optimization process
used later in the code-generation workflow.

4.2 Domain-Specific Representation and Modelling

Multigrid solvers come in thousands of variants, which differ in the shape of
the stencil and the grid, the coarsening and smoothing strategy, the bound-
ary conditions, the communication patterns, and many other conceptual and
implementation-level aspects. For example, there are the special strategies nec-
essary to exploit the resources of the execution platform at hand, e.g., caching
and load balancing.

One of the radical departures from tradition in our approach happens at the
layer of the most abstract executable representation of our problem solution,
i.e., our stencil code: Rather than as an individual, we will consider the code
as a member of a family of codes. Our domain-specific program pinpoints the
commonalities that the code shares with the other codes of the family, and the
variabilities in which it departs from the other codes. Each point of variability
comes with a number of options or alternatives.

Domain-specific language elements will be our devices for specifying the choices
of individual configuration options and their combinations. A review of different
technologies for the implementation of DSLs [36] led us to choose Scala [31] as
the host language. We favored its modern features, such as object-oriented and
functional programming, an expressive static type system, parser combinators,
and pattern matching. Actually, we will use four DSLs at decreasingly abstract
layers of abstraction (Fig. 3), all hosted by a common parsing and transforma-
tion framework. Layers 1–2 address the concerns of application scientists, Layers
2–3 those of mathematicians, and Layers 3–4 those of computer scientists. The
workflow depicted in Fig. 1 represents the ideal situation in which only the
application scientists interact with the system and code at the lower levels is
generated automatically. This is the vision of project ExaStencils.

At present, we are finalizing a prototype generator that will handle input code
written in our DSLs.

4.3 Domain-Specific Optimization and Generation

Which configuration options (i.e., which choices of algorithmic components, al-
ternatives of data structures, and parameter values) contribute to maximal per-
formance is obvious in some cases and very surprising in others. To make matters
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Fig. 3. The DSL hierarchy of ExaStencils

worse, certain combinations of options can interfere with each other with respect
to performance in subtle ways (which is an instance of the feature-interaction
problem [7,37]). To make this problem tractable, ExaStencils will provide a capa-
bility of recommending suitable combinations of configuration option, based on
a machine-learning approach. The objective is to make sufficiently accurate per-
formance predictions on the basis of performance measurements of only a small
number of concrete stencil-code variants. The latest innovation here emerged
from recent work on automated software configuration [37]: The key idea is to
detect and handle explicitly interactions among configurations options—even
among numeric parameters, rather than simply using black-box auto-tuning [12]
or machine-learning approach [22].

We started experiments with the Highly Scalable Multigrid Solver [26]. This
solver tolerates a limited lack of structure in the grid by considering so-called
hierarchical hybrid grids, as depicted in Fig. 4. At the coarsest level, on the left,
the grid is unstructured, but refinements of each segment (middle and right)
must be homogeneous, though each segment may exhibit a different structure.

Fig. 4. Successive refinement of a hierarchical hybrid grid

Commonalities and variabilities are usually specified in terms of a variability
model. The variability model for the Highly Scalable Multigrid Solver is illus-
trated in Fig. 5. Each node denotes a configuration option—in our case, the
choice of a coarse grid solver, a smoother, and pre- and post-smoothing param-
eter values which must satisfy the condition that their sum is greater than zero.
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A selection of configuration options gives rise to an executable variant of the
stencil code.

sum (pre-smoothing, post-smoothing) > 0

Legend:
IP_CG = In-Place Conjugate Gradient Jac = Jacobi 
IP_AMG = In-Place Algebraic multigrid GS = Gauss-Seidel
RED_AMG = Algebraic multigrid with data reduction RBGS = Red-Black Gauss-Seidel
GSAC = Gauss-Seidel with additional communication BS = Block-Smoother
RBGSAC = Red-Black Gauss-Seidel with additional communication

HSMGS

post-smoothing
[0..6]

3

pre-smoothing
[0..6]

3

coarse grid solver

IP_CG IP_AMGRED_AMG

smoother

GSACGSJac BSRBGS RBGSAC

Fig. 5. Concrete variability model for the Highly Scalable Multigrid Solver (HSMGS).

First experiments have demonstrated already that a machine-learning ap-
proach based on the explicit detection and treatment of configuration-option
interactions can predict the performance of individual stencil-code variants with
a high accuracy [19]. We are only just beginning to exploit domain knowledge but
obtained promising results in a first pass even without it. With domain know-
ledge, notably about already-know configuration-option interactions, we will be
able to reduce the number of measurements needed for the prediction further.

In the treatment of values of numerical parameters, we employ a function-
learning approach: We deduce one polynomial function for each pair or binary
option and numerical parameter. Again, so far, we did not exploit domain know-
ledge, such as the degree of the function that describes the contribution of the
parameter values best. Measurements of 10.2% of all stencil-code variants re-
sulted in performance predictions of an accuracy of 89%, on average.

4.4 Loop Parallelization

j

i

Fig. 6. Triangular grid

Stencil codes are highly iterative. Since nested itera-
tions exhibit a high potential of a speed gain, loop
parallelization is a promising technique for the opti-
mization of stencil codes. This issue is address at DSL
Layer 4.

The polyhedron model for automatic loop paral-
lelization [16] is a powerful platform for static, i.e.,
compile-time program optimization. However, it comes
with some restrictions that are easily violated by sten-
cil codes. Most importantly, it requires the linear affin-
ity of the loop bounds and the array index expressions.
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For example, consider the following code for an update of a linearized triangular
grid, as depicted in Figure 6:

for (int i = 0; i < n; ++i)

for (int j = 1; j < i; ++j)

A[(i*i+i)/2+j] = 0.5 * (B[(i*i-i)/2+j] + B[(i*i+i)/2+j-1]);

The linearization avoids memory waste that would occur with the use of a two-
dimensional, rectangular array. However, this is relevant only in the final target
code. During the optimization, one can work with the domain-specific knowledge
of the triangularity of the two-dimensional grid and let the polyhedron model
loose on the corresponding code, whose two-dimensional accesses are affine:

for (int i = 0; i < n; ++i)

for (int j = 1; j < i; ++j)

A[i][j] = 0.5 * (B[i-1][j] + B[i][j-1]);

Another concern is to optimize reductions in stencil codes effectively. An iter-
ative reduction via a scalar accumulator leads to flow dependences which prevent
a direct parallelization. But, with the domain-specific knowledge that the reduc-
tion operator is associative and commutative, a corresponding extension to the
polyhedron model makes a multitude of optimizations available, such as loop
splitting, fusing, or blocking.

The restriction to the domain of stencil codes allows us to perform suitable
optimizations, such as temporal or spatial blocking or a combination of both,
according to the target architecture [25]. Here, the use of the polyhedron model
also ensures a correct boundary handling, regardless of its complexity caused by
the combination of different transformations.

Table 1. A variability model for the preliminary Scala prototype. Variabilities in italics
must be specified by the application expert, all others can be derived from them.

Variability Layer Options

Computational domain DSL 1 UnitSquare, UnitCube
Operator DSL 1 Laplacian, ComplexDiffusion
Boundary conditions DSL 1 Dirichlet, Neumann
Location of grid points DSL 2 node-based, cell-centered
Discretization DSL 2 finite differences, finite volumes
Data type DSL 2 single/double accuracy, complex numbers
Multigrid smoother DSL 3 ω-Jacobi, ω-Gauss-Seidel, red-black
Multigrid inter-grid transfer DSL 3 constant + linear interpolation + restriction
Multigrid coarsening DSL 3 direct (re-discretization)
Multigrid parameters DSL 3 various
Platform Hardware CPU, GPU
Parallelization Hardware serial, OpenMP
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4.5 Preliminary Code Generator

The ExaStencils vision that a wide range of stencil codes can be engineered with
the same automatic tool –even only that target code for them can be generated
with the same code generator– has been met with disbelief. Thus, we decided
to give an immediate proof of concept with a preliminary prototypical code
generator written in Scala [23]. It lacks many features expected of a mature
code generator, and it is completely unoptimized. However, it is already able to
generate code for a non-trivial configuration space, as summarized in Table 1.

The first three DSL layers offer variabilities and appear in the table. The idea
is that application scientists, and the ExaStencils compiler and run-time system,
choose suitable options from these variabilities – and no more has to be specified
to obtain a custom-optimized implementation.

The preliminary code generator produces code in C++ with OpenMP and
CUDA. We are presently working on a more serious version of the code generator
that produces C++ code with MPI and OpenMP. Our experiments on large-scale
supercomputers like the Blue Gene/Q in Jülich [26] yielded feasible results for
this scenario. ExaStencils aims at generating stand-alone code only. That is, it
does not come with a dedicated library but may make use of standard libraries.
The code generated is for a specific grid size. The grid size is a variability in the
performance model and, thus, influences the choice of the different algorithmic
components.

5 Conclusions

The overall goal of project ExaStencils is to provide proof of the application
relevance of the ExaStencils paradigm of domain-specific stencil code engineering
and to encourage experts of other suitable domains to take a similar approach.

Acknowledgements. Funded by the DFG in programme Software for Exascale
Computing (SPPEXA).
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Abstract. High-dimensional problems pose a challenge for tomorrow’s
supercomputing. Problems that require the joint discretization of more
dimensions than space and time are among the most compute-hungry
ones and thus standard candidates for exascale computing and even be-
yond. This project tackles such problems by a hierarchical extrapolation
approach, the sparse grid combination technique. The method not only
enables their treatment in the first place. The hierarchical approach also
provides novel ways to deal with central problems in high-performance
computing such as scalability and resilience: Global communication can
be avoided and reduced to a small subset, and faults can be compen-
sated for without the need for recomputations or checkpoint-restart. As
an exemplary prototype for high-dimensional problems, turbulence sim-
ulations in plasma physics are studied.

1 Introduction

The emergence of future exascale systems requires the development of new algo-
rithms and software to harness the computational power that will be available
in the near future. Classical parallelizations that scale even up to petaflop sys-
tems will encounter limits on these “mega-node kilo-core giga-Hertz” architec-
tures [15], and the rise of accelerator cards in HPC further increases the hardware
complexity. On these future systems, three main challenges will be scalability,
resilience, and load balancing, which are addressed in this project.

High-dimensional mesh-based problems require the joint discretization of more
than the classical four dimensions, space and time. Straightforward approaches
fully suffer the so-called curse of dimensionality: requiring M degrees of freedom
in each dimension, Md unknowns are required in d dimensions. The effort grows
exponentially in the dimensionality, and the need for at least exascale computing
becomes obvious even for moderate d > 3.
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This project exemplarily considers turbulence simulations of hot fusion plas-
mas, where in the gyrokinetic formulation five dimensions plus time have to be
dealt with. Fusion energy is one of the most attractive options to meet the grow-
ing global electricity demands in a sustainable and carbon-free way. To achieve
this in a controlled way, 100 million degree hot plasma has to be kept away
from the reactor walls by means of a strong magnetic field. On the way to the
international ITER project, one of the most challenging scientific endeavors ever
undertaken in an international joint effort, plasma turbulence simulations play a
key role. In our project, time-dependent problems and eigenvalue problems are
studied based on the gyrokinetic simulation code GENE.

For high-dimensional problems, a hierarchical approach comes to the rescue,
the sparse grid combination technique [6]. It mitigates the curse of dimensional-
ity on the one hand and reduces the number of unknowns in the discretization
significantly. On the other hand, it allows one to deal with the exascale challenges
mentioned above in a novel, compelling way. It decouples the overal problem into
multiple problems of reduced size and breaks the demand for global communi-
cation, reducing the synchronization bottleneck significantly. A second level of
parallelism is introduced, which offers new approaches to load balancing, and a
hierarchical superposition can be exploited to deal with faults.

To achieve the goals of this project, new algorithmic and numerical approaches
have to be developed. First, we give a short overview on the problem and the
numerical method in Sect. 2. In Sect. 3, which is the core of this work, we
describe the state of the art and current developments in our project, followed
by an outlook on next steps in Sect. 4.

2 Plasma Physics and the Combination Technique

Besides a description by means of magnetohydrodynamics, plasmas can also be
modelled kinetically by the six-dimensional Vlasov equation

∂g

∂t
+ v · ∂g

∂x
+

q

m
(E + v ×B) · ∂g

∂v
= C(g). (1)

Due to the restricted movement of the plasma particles of charge q and mass m
around the magnetic field-lines (gyration), these equations can be reduced to the
five-dimensional set of gyrokinetic equations with g representing the distribution
in 5D phase-space consisting of three spatial coordinates (x, y and z) and two
velocity coordinates v‖ (velocity parallel to the magnetic field line) and μ (the
magnetic moment). The collisions operator C governs the interaction of particles
by collision, which is usually weak compared to the forces induced by the electric
and magnetic fields E and B and will thus be neglected.

The gyrokinetic simulation code GENE discretizes the gyrokinetic equations
by an Eulerian approach. A five-dimensional Cartesian grid is spanned through-
out the domain, where the x and y coordinates are transformed to Fourier space.
After discretization and other approximations, the equations implemented in
GENE roughly have the structure ∂g

∂t = L(g) +N (g) , with g representing the
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Fig. 1. The combination technique for a two-dimensional problem with n = [3, 3]T and
lmin = [1, 1]

T

distribution function discretized on the Cartesian grid. The operators L and N
act on this vector and comprise all linear and non-linear terms, respectively. For
an extensive description of the equations implemented in GENE, we refer to [3].
The linear operator L already describes the basic behavior of the plasma and
allows studies of instabilities and estimates of turbulent transport. It will be
used for the tests of the combination technique in this paper.

The combination technique [6] computes a sparse grid approximation of a
function fn defined on a regular Cartesian grid Ωn. In general, an anisotropic
grid Ωl can be defined by a level-vector l that determines the uniform mesh-
width 2−lk in dimension k = 1, . . . , d. The combination technique approximation

f
(c)
n ≈ fn can then be written as a sum of m full anisotropic Cartesian grids of
smaller size, where each grid is weighted with its combination coefficient cl,

f (c)
n (x) =

∑
l∈I

clfl(x) , (2)

with I being the set of level-vectors of the grids used for the combination, see
Fig. 1 for an illustration. Here, we consider the space of piecewise d-linear func-
tions and thus interpolate d-linear between the grid points. Different approaches
to determine the appropriate combination coefficients c and index set I exist [12],
with

f (c)
n (x) =

d−1∑
q=0

(−1)q
(
d− 1
q

) ∑
l∈In,q

fl(x) (3)

being the classical combination technique with the index set [6]

In,q = {l ∈ Nd : |l|1 = |lmin|1 + c− q : n ≥ l ≥ lmin} , (4)

where lmin = n− c · 1, c ∈ N0 s.th. lmin ≥ 1, specifies a minimal resolution level
in each direction. The hierarchical sparse grid approach thus decomposes a single
problem (discretized on a full grid with a high resolution) into multiple smaller,
anisotropic problems that can be computed independently and in parallel, and
standard solvers working on anisotropic grids can be employed.

Bringing the combination technique and GENE together required only minor
modifications of GENE, specifically, slightly shifting and stretching the original
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Fig. 2. Left: the error of the combined solution f
(c)
n compared to the reference solution

fn (black) and the GENE results fl computed on Ωl with l ∈ In (gray). The error is the
norm of the L1 error normalized by the number of unknowns. Right: the computation
time of the combined solution (black), of each partial solution (gray) and of the full
grid solution (dashed). Obtaining the combined solution only requires half of the time
compared to the full grid solution.

GENE grid in each dimension. We apply the combination technique separately
for the real part and the imaginary part of GENE’s complex-valued output.

GENE provides test cases of typical application scenarios, the simplest being
the linear simulation of an unstable ion-temperature-gradient (ITG) mode [18].
To demonstrate the feasibility, we use for each Ωl the same physical parameters
and time-steps and combine the result once in the end, and refer to [16] for other
scenarios that we have studied. In order to test the combination technique for
different resolutions, we varied lmin and n according to

n = lmin,s + [2, 2, 2]T lmin,s = [2, 3, 2]T + s · [1, 1, 1]T s ∈ {0, 1, 2, 3} ,

with l being the level vector for dimensions (μ, v‖, z). The resolution of x and
y was fixed to 1. In Fig. 2 one can see that the combined solution is actually
close to the solution on the reference grid Ωn, and that each of the partial
solutions has a much higher error than the combined solution. Already for this
rather small setup on a desktop system, the combination technique retrieves
an approximation of the reference solution with a diminished runtime. Larger
GENE runs are addressed in Sec. 3.1.

3 Exa-Challenges and -Solutions

In the following, we address the challenges that we face towards exascale simu-
lations which will be required for full-scale simulations of the numerical ITER
fusion experiment. As the project studies all aspects that are required, this
reaches from load balancing, scalability, and resilience via the usage of hybrid
parallelizations up to novel numerical schemes.
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3.1 Load Balancing

Achieving full scalability with the combination technique on an exascale system
requires effective load balancing. The anisotropy in the discretization of the par-
tial solutions influences the convergence rate and stability of the underlying nu-
merical solvers. This results in larger numbers of iterations and enforces smaller
time-step sizes for very anisotropic discretizations compared to more isotropic
ones. For our application code GENE, the anisotropy additionally influences the
efficiency of the parallelization. We measured a difference in execution time of
more than a factor of three for partial solutions computed with GENE with
roughly the same number of unknowns.

The combination technique enables two levels of parallelization: on the coarse
level, the individual partial solutions can be computed independently of each
other in parallel. On the fine level, each partial solution can be solved in parallel
using the parallelization concept of the application, see Sect. 3.4 for the latter
one. In order to exploit the two-level parallelization, we use a manager-worker
concept to distribute the partial solutions onto the available number of nodes
of an HPC system. This concept has already successfully been used for the
combination technique in [5]. A manager process distributes the partial solutions
to a number of process groups using MPI.

In order to minimize the total runtime by optimally distributing the partial
solutions onto the process groups, we have developed a load model [9] which
predicts the execution time of a partial solution. The two parameters used for
the model are the number of unknowns of the partial solution,N := 2|l|1 , and the
anisotropy sl, with sl,i =

li
|l|1 , of the corresponding grid Ωl. It holds |sl|1 = 1.

Thus, a high value in one dimension will result in a low value in at least one of
the other dimensions. For a perfectly isotropic grid it holds sl,i =

1
d . With this

notation we can express the anisotropy of the grid completely decoupled from
the number of grid points. Our load model then has the form

t(l) = t(N, sl) = r(N)h(sl). (5)

The function r(N) models the dependence of the execution time of a partial
solution on the number of unknowns. The value provided by r(N) is scaled by
the function h(sl), which solely depends on the anisotropy of the discretization.
The parameters of r(N) and h(sl) are determined by fitting the functions to
measurement data in the least squares sense.

Figure 3 shows, for different numbers of process groups, the predicted parallel
efficiency Ep for the anisotropy model (AM ) in comparison to a simple linear
model (LM ) that depends only on the number of unknowns. The predictions are
based on measured execution times of other partial solutions. In this experiment,
a process group that computes one partial solution at a time, corresponds to
one node of Hermit (HLRS). We used the ITG test case described in Sec. 2
with n = [17, 17, 17, 17]T and lmin = [3, 3, 3, 3]T for (μ, v‖, z, x). The resolution
of y was fixed to 1. Thus, the test case consisted of 425 partial solutions in
essentially four dimensions. For LM, we have t(l) = 2|l|1 and only consider
the number of unknowns, but not the anisotropy. Furthermore, Fig. 3 includes
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Fig. 4. Communication time for a 5-
dimensional SG on 456 nodes of Hermit [13]

actual measurements using the AM in our manager-worker concept. The parallel
efficiency Ep = T1/(pTp) is predicted to decrease significantly above p = 50 using
the LM, which is confirmed in practice. The anisotropic model, in contrast,
predicts more than 97% until p = 113 solutions are computed in parallel. While
the measurements fit well to the predictions for p = 50 and are a bit optimistic
for p = 100 and p = 113, the model is slightly too pessimistic for a large degree
of parallelism and works much better than it’s own prediction. Eventually, Ep

has to decrease, of course, as not more process groups can be spent than partial
solutions exist.

3.2 Global Communication

The hierarchical approach allows one to decouple a single problem with global
dependencies into independent partial problems. For initial value computations
with the combination technique, it is furthermore necessary to combine the par-
tial solutions every several time steps and to distribute the combination solution
back to avoid divergence. This gather-scatter step is the remaining synchroniza-
tion bottleneck. Therefore, we have developed global communication schemes for
the combination technique, which minimize the communication time by exploit-
ing the hierarchical structure of the combination solution [13].

The combination is assembled in the hierarchical sparse grid function space,
not in the full grid nodal basis, see [14] for details. The idea of the communica-
tion scheme Sparse Grid Reduce (SGR) is to transform each partial solution to
the sparse grid space and to sum them up according to the combination coeffi-
cients. This is the straightforward approach and will serve as the baseline. The
summation can be expressed as a standard reduce operation like MPI Allreduce
on a set of vectors containing the sparse grids’ coefficients. Note that each par-
tial solution includes only a subset of the hierarchical subspaces of the sparse
grid solution. Thus, the transformation has to interpolate the others in the hi-
erarchical basis, which corresponds to a fill-in with zeros. This results in a high
overhead of communicated data not containing any information.
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A new Subspace Reduce (SubR) scheme avoids this overhead and communi-
cates only the minimum necessary amount of data. The idea of this method is
to reduce the hierarchical subspaces individually by using an efficient standard
implementation likeMPI Allreduce. When reducing a particular hierarchical sub-
space, only the nodes actually containing this subspace contribute to the reduce
operation. Thus, we do not need to communicate any data that contains no in-
formation, but the number of messages sent increases significantly compared to
SGR, which only requires one reduce operation. If the sets of nodes contributing
to the reduce operation of two particular subspaces are disjoint, the subspaces
can be reduced in parallel. Parallel Subspace Reduce (ParSubR) further improves
the run time by reducing the hierarchical subspaces in an order that enables a
higher degree of parallelism than SubR.

We were able to significantly speed up SubR on Hermit by using the non-
blocking MPI Iallreduce of the MPI 3.0 standard (Non-blocking Subspace Reduce
(NB-SubR)). This enables the MPI system to rearrange the substeps of the
reduction operations on a fine granular level. This resulted in significantly lower
run times than we were able to achieve by just rearranging the order of the library
calls in ParSubR. Using the non-blocking operations for ParSubR resulted in a
similar, though not systematically better, performance.

Figure 4 shows the run time of the communication step for dimension d = 5
and different discretization levels n. The experiments were done on 456 nodes of
the supercomputer Hermit (HLRS). SGR is only faster than SubR for low n since
the overhead is small. However, with increasing n the total communicated volume
becomes the dominating factor and SubR is faster. Reordering the reduction
operations with ParSubR significantly improved the performance of SubR. For
n = 13, ParSubR was 8.5 times faster than SGR. An even larger speed up was
achieved using non-blocking collective operations. For n = 13, NB-SubR was 72
times faster than SGR.

3.3 Fault Tolerance

Large scale simulations require large computation times. If we assume one hard-
ware failure each week on current HPC systems, we will be down to failure rates
in the range of minutes on future exascale systems. And this does not even
take into account that smaller hardware integration will lead to higher failure
rates. Thus it will be a necessity to deal with faults. In the context of the com-
bination technique, this means that some of the component grids will not be
computed successfully, and one cannot carry out the combination step properly.
Recalculating the solutions on those grids in case of failures would require the
rescheduling of tasks, which can increase the overall computation time and fool
the load balancing schemes.

We therefore opt for an algorithm-based fault tolerant (ABFT) approach to
overcome this problem. Several methods have been developed that attempt to
recover the combined sparse grid solution in the case of processor failure [17,7,8]
without checkpoint-restart. One of the most promising modifies the set of suc-
cessfully calculated partial solutions and combines them with new coefficients,
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Fig. 5. Left: The error of the usual combination solution (solid, circles, no faults), the
error with one grid missing on the highest level (dashed, circles), and the error after
the recovery scheme has been applied (dashed, squares). Middle: the same as Left,
but with two missing grids: one on the highest level, and one on the level below. Right:
we added one more fault on the second level (3 faults in total).

following existing ideas from adaptive sparse grids [10]. More sophisticated ap-
proaches involve inter- and extrapolation, and some error bounds for the different
approaches are detailed in [8].

We carried out several tests on GENE with simulated faults. Our recovery
strategy approximates the lost partial solutions by a linear combination of avail-
able ones. This simple approach already reveals promising features, as illustrated
in Fig. 5, where we repeated the simulations from Sec. 2, now including faults.
All combination schemes involve 10 grids, and we simulated one, two, and three
faults on different levels. Note that in the last scenario 30% of all computations
fail, but these can be compensated incredibly well and without the need for fur-
ther (re)computations. We expect that more sophisticated approaches further
reduce the recombination error.

3.4 GPU Computing

Many of the actual supercomputers are of heterogeneous type. Usually they are
large Linux-based compute clusters where some or all nodes are equipped with
an additional accelerator card, mainly of the GPU or Intel Xeon Phi type. To
fully use the amazing performance of these accelerated cluster systems, a first
attempt to port GENE to GPUs was carried out. We focused on the computation
of the non-linear part N in (2) in a global (full-torus) simulation [2], since this
part takes around half of the total runtime of the time loop. Therefore, it is a
promising candidate for acceleration. The non-linear part consists of the follow-
ing steps: Transposition to exchange the x and ky directions, extension of the ky
direction for dealiasing, Fourier transform in the ky direction, and multiplication
of two extended, transposed, and transformed arrays to get the nonlinear term.
The latter is then processed the same way backwards. For the Fourier transform,
we used the cuFFT library which is part of CUDA, while all other operations had
to be written as CUDA-C kernels, nearly doubling the number of code lines.

First performance comparisons of older Nehalem CPU cores with older Nvidia
Fermi cards were promising, as they showed a speedup (always defined as the
reduction of runtime of the optimized code on a whole CPU socket with GPU to
the runtime on a whole CPU socket without GPU) of 4–5 for the nonlinearity.
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Fig. 6. Left: part of the roofline model of a Kepler GPU with respect to floating point
performance and transfer bandwidth for low arithmetic intensity. Right: performance
of the nonlinearity with GPU acceleration.

Figure 6 (right) shows a more recent comparison of new architectures. On the
CPU side, an 8-core SandyBridge socket and on the GPU side, a Kepler K20X
card, did not hold these nice performance results. In the end, we found that the
8-core CPU alone performs as powerful as the CPU-GPU combination.

Investigating this result with the help of the “roofline model” [19], we could
identify the slow PCIexpress 2.0 bus in combination with the relatively low arith-
metic intensity (defined as the number of floating point operations per amount of
data transferred via PCIexpress bus to the GPU), which is only 0.38 flops/byte
for the nonlinearity, as the key to understanding the low performance. Since the
transfer is slow, the computing power of the GPU cannot be fully exploited while
waiting for the transferred data. As a remedy, one could increase the amount of
computation per data transfer by porting the whole right-hand side computation
to the GPU. From the roofline model, for the whole right-hand side we expect
then again a factor 4–5 of performance gain, depending on the problem size and
the quality of the kernel implementations.

A second possibility to speed up the CPU-GPU performance is to use a faster
bus between host and device. This can be achieved in the simplest case by
using the PCIexpress gen. 3 bus, which nominally doubles the bandwidth. A
computationally similar (around 8% faster) K40m Nvidia GPU has been used,
which has more memory and can use the faster bus in combination with an
Ivybridge CPU. We measured 4.4s on the CPU and 3.1s with the Kepler K40m.

Figure 6 (left) shows a roofline plot including the results. The two bandwidth
ceilings for pure PCI-2 and PCI-3 are shown as black and blue lines, together
with the achieved performance for the nonlinearity (black and blue data points)
if overlapping of computation and transfer is switched off. If two streams are
used and the work is distributed over these streams, one can overlap part of the
transfer by computation on the GPU. This can be taken as a kind of increased
bandwidth as the idle time where only transfer occurs decreases. The red ceiling
represents the improved bandwidth when the overlapping is switched on. Hence,
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Fig. 7. Left: initial value runs of the (1+1)D simplified Vlasov-model with the modified
electron field g at t = 8.0.Right: the electrostatic potential φ over time are small model
problems for full 5D Vlasov simulations.

we see a significant improvement with a faster transfer, but still the gain of
roughly 30% compared to a pure-CPU implementation is not worth the effort.

3.5 Numerics

In addition to the standard sparse grid combination technique, an iterated ver-
sion of the classical and optimized combination technique [11] is under investi-
gation for Vlasov initial value and eigenvalue problems. It will guarantee conver-
gence of the standard combination technique to the corresponding sparse grid
solution for complex PDEs. The iterated combination technique applies a resid-
ual correction method [4]. It is a second way to deal with errors at almost no
additional cost.

To examine our method, we introduced a set of small-scale model problems
that run independently of the large-scale simulation code GENE, including the
Poisson problem and the Poisson eigenvalue problem. As a small-scale version of
the full Vlasov equations, a driftkinetic version of the Vlasov-Maxwell equations
in (1+1)D phase space is considered, see [1]. It can be used both as an initial
value problem and an eigenvalue problem if the spatial operator is analysed for
its spectral structure. An efficient GPU implementation is available. Simulation
runs, see Fig. 7, were validated against results from the literature.

The classical combination technique was applied both to the Poisson problem
and the small-scale Vlasov initial value problem leading to numerical reference
solutions. Next, the iterated combination technique was analysed for the Poisson
problem. The resulting numerical scheme converges to a fixpoint, cf. Fig. 8. We
are currently assessing the quality of this solution and developing a new sparse
grid residual evaluation scheme constructed by subspace problems.

In addition to the initial value problem, iterative correction methods for eigen-
value problems are under investigation. As a simplified model, the Poisson eigen-
value problem was first considered. An operator-based sparse grid combination
technique is proposed, which avoids the evaluation of the Rayleigh quotient and
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Fig. 8. Left: the iterated sparse grid combination technique converges to a fixpoint,
Middle, Right: with some structure in the iterates of the residual

the eigenvalue identification problem available in previous approaches. This is
done by applying the combination technique to the discrete operator instead
of the generated eigenvalue/eigenvector pairs. First tests comparing numerical
results of the Poisson eingenvalue problem with the numerically known eigen-
values of the Poisson operator are very promising. They suggest that the new
scheme converges for a subset of the full-grid Poisson eigenvalue problem. Re-
placing interpolation in the operator-based sparse grid combination technique
by a discrete l2-projection allows to further improve convergence.

4 Conclusions and Future Work

To successfully solve high-dimensional problems on future exascale systems,
novel algorithms, implementations, and numerical schemes have been developed.
The hierarchical discretization scheme, which reduces the number of unknowns
and will make full-scale high-resolution simulations possible on tomorrow’s HPC
systems, provides new methods to deal with the exa-challenges of scalability
(breaking the need for global communication), resilience (without checkpoint-
restart) and load balancing (due to a second, coarse-grain level of parallelism).
We have shown the feasibility of our approach for turbulence simulations in
plasma physics, presented new load models, communication schemes, first ap-
proaches to fault tolerance, and results on a hybrid implementation, as well as
sketches of new iterative numerical schemes.

The next steps include a load model generated at runtime and refined as soon
as new runtime data is available, also extendable to non-linear and eigenvalue
runs. For our communication schemes, the transformation of the partial solutions
into the hierarchical basis (required for the gather-scatter step) has to be done in
a distributed way, at latest if the size of the overall solution exceeds the memory
available on a single node. To deal with faults, we will examine whether it pays off
to precompute partial solutions from additional, coarser discretization levels to
speed up the recovery algorithms. Considering numerics, the iterated operator-
based sparse grid eigenvalue problem will be considered and extended to full
GENE runs. We will develop new numerical schemes in a simplified test-bed by
extracting and analyzing the linear operator of GENE as a matrix.
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3 Bergische Universität Wuppertal, Wuppertal, Germany
4 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Abstract. The ESSEX project investigates computational issues arising at exa-
scale for large-scale sparse eigenvalue problems and develops programming con-
cepts and numerical methods for their solution. The project pursues a coherent
co-design of all software layers where a holistic performance engineering process
guides code development across the classic boundaries of application, numerical
method, and basic kernel library. Within ESSEX the numerical methods cover
widely applicable solvers such as classic Krylov, Jacobi-Davidson, or the recent
FEAST methods, as well as domain-specific iterative schemes relevant for the
ESSEX quantum physics application. This report introduces the project structure
and presents selected results which demonstrate the potential impact of ESSEX
for efficient sparse solvers on highly scalable heterogeneous supercomputers.

1 Sparse Solvers for Exascale Computing

Energy-efficient execution, fault tolerance (FT), and exploiting extreme levels of paral-
lelism of hierarchical and heterogeneous hardware structures are widely considered to
be the basic requirements for application software to run on future exascale systems.
Specific hardware structures and best programming models for the exascale systems
are, however, not yet accessible, let alone settled. Thus, development of exascale appli-
cations can be considered as a research project on its own. Existing software structures,
numerical methods, and conventional programming and optimization approaches need
to be reconsidered. New techniques such as FT or parallel execution on heterogeneous
hardware have to be developed.

A wide range of sparse linear algebra applications from quantum physics to fluid dy-
namics have already identified urgent problems which can only be solved with exascale
computers. The relevant sparse linear solvers are typically based on iterative subspace
methods, including advanced preconditioners. At the lowest level, large sparse matrix-
vector multiplications (spMVM) and vector-vector operations are frequently the most
time-consuming building blocks. Most of the available sparse linear (solver) packages
were designed in the early 1990s for moderately parallel, homogeneous, and reliable
computers (e.g., PETSc [1] or (P)ARPACK [2]) or with a strong focus on object orienta-
tion and abstraction (e.g., Anasazi [3]). Numerically intensive kernels are still encapsu-
lated in independently developed libraries (see LAMA [4,5] for a recent project), which
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rules out the opportunity for coherent performance-aware and fault-tolerant co-design
throughout all software layers up to and including the application. For the same reason
this approach makes it difficult to accommodate new hardware architectures (see, e.g.,
the status of GPGPU support in PETSc [1]) and programming models, which is criti-
cal in view of the unknown shape of hardware and software environments for exascale
systems. Autotuning approaches such as, e.g., pOSKI [6], try to relieve the developer
from the tedious task of finding the problem- and hardware-specific optimization op-
portunities. While this may seem attractive, it does not generate true insight into the real
performance issues, and shares the main problems of all encapsulated libraries.

These observations raise doubts about the fitness of existing sparse matrix applica-
tions for future exascale environments: (i) The problem of optimal performance and
energy efficiency on highly parallel, heterogeneous node architectures is far from being
solved. When the ESSEX project started, sparse data formats were strongly hardware-
dependent, which was a major obstacle for software development and code efficiency
on strongly heterogeneous systems. (ii) Existing sparse linear algebra frameworks use
a strictly data-parallel approach, ignoring the need for additional levels of parallelism.
These would allow for the concurrent execution of, e.g., several independent building
blocks, asynchronous communication, or FT schemes. (iii) The standard solution for FT
is classic synchronous file-based checkpoint/restart, which will lead to severe problems
on exascale. Multi-level checkpointing [7] has recently been proposed as an alternative
but it is not clear if those hierarchical disk systems will be affordable in terms of energy
consumption at exascale. There is very little work on automatic FT approaches with
minimal or no file system involvement beyond long-known “RAID-like” ideas [8].

The need for a complete re-design of existing large-scale application software with
these exascale challenges in mind has been recognized by research activities in dense
linear algebra [9]. The sparse linear algebra community still lacks such an initiative, in
particular with respect to the co-design of all software layers, including basic building
blocks, numerical methods, and application layers. Focusing on sparse linear eigen-
problems from quantum physics, the ESSEX project is an attempt to close this gap. It
will deliver methods and programming techniques that can serve as blueprints for other
exascale initiatives in the sparse linear algebra community.

2 ESSEX Project Overview

The ESSEX project addresses the three fundamental software layers of computational
science and engineering: basic building blocks, algorithms, and applications. The need
for coherent FT approaches and energy efficiency are strongly integrating components
which drive the tight exchange between the classic layers (see Fig. 1). Both vertical
pillars share the important constraint of minimal time to solution. For a more detailed
analysis of the relevance of code optimization for energy efficiency see [10]. Thus, the
complete project is embedded in a structured holistic performance engineering process,
which detects and guides performance potentials across the classic layers. This process
is driven by the activities at the building blocks and successively integrates topics above
them.
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At the application layer, the ESSEX project is motivated by large-scale eigen-
value problems from quantum physics, including highly relevant application fields such
as graphene and topological insulators. Determining the relevant static and dynamic
physical properties requires addressing various aspects of an eigenvalue problem that
involves extremely sparse matrices with dimensions between 109 and 1014: The com-
putation of (i) the minimal and the maximal eigenvalue, (ii) a block of eigenpairs at
the lower end or at the middle of the spectrum, and (iii) high quality approximations
to the complete eigenvalue spectrum. All these aspects are of general interest, and not
restricted to the applications considered in this project.

The algorithms layer has identified appropriate numerical schemes to determine
blocks of eigenpairs including both classic schemes (Lanczos and Jacobi-Davidson
[JADA]) with relevant preconditioners and the recently introduced FEAST [11] algo-
rithm. The kernel polynomial method (KPM) [12] and related polynomial expansion
schemes (ChebTP [13,14],CFET [15]) are employed to compute the density of states,
excitation spectra, and dynamical properties.

Figure 2 demonstrates how the numerical methods in ESSEX map to the physical
properties to be computed. Enabling these popular algorithms for exascale is of broad
interest. Even the KPM, which has been application-specific for quantum physics and
chemistry for a long time, has recently gained wider attention [16,17].

The basic building block layer provides a collection of all relevant basic operations
(such as parallel spMVM, vector-vector operations, and global reductions) and efficient
FT strategies, all tailored to the needs of the other two layers. The major design goals
for these building blocks are: (i) “Optimal” performance, in the sense that a suitable per-
formance model is available that describes the relevant execution bottlenecks, and that
the implementation operates at these bottlenecks. (ii) Minimum impact of FT overhead
on time to solution.

Although there is a huge variety of potential programming models to choose from,
the project consistently follows an “MPI+X” approach, where “X” addresses paral-
lelism on the compute node level, be it multiple cores or accelerators. CUDA, OpenMP,
and POSIX threads are typical choices for “X” in our project.

The major challenges addressed at this layer are, e.g., developing optimized data
structures for all available hardware architectures, obtaining high parallel performance
when executing on heterogeneous compute nodes (using standard CPUs, GPGPUs, and
Intel Xeon Phi concurrently), or hiding the costs of FT schemes based on checkpoint-
restart strategies. Performance engineering, used as a well-defined process targeting
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Fig. 2. The ESSEX research addresses the eigenproblem
with classic and new eigensolvers (Krylov, JADA, FEAST)
and preconditioners, established Chebyshev techniques
(KPM, ChebTP) and novel implementations (CFET). The
implemented methods will be part of the Exascale Sparse
Solver Repository (ESSR).
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“optimal” performance, starts at the basic blocks and is instrumental for developing
insights into the relevant performance-limiting bottlenecks. Since it extends into the
algorithms and application layers, it breaks up abstraction boundaries and enables op-
timizations that would be impossible in a pure library-based approach, where building
blocks and algorithms are abstracted and inaccessibly wrapped in libraries.

The developments of all layers will eventually contribute to the Exascale Sparse
Solver Repository (ESSR), which will become publicly available.

3 Results and Work in Progress

This section presents selected results and current work in progress. The topics have
been chosen so as to demonstrate the broad range of activities and the potential general
impact of the ESSEX project.

3.1 Applications

Quantum physics and quantum chemistry applications rely on a variety of numerical
linear algebra techniques. Coming from the application side we can broadly classify the
possible algorithmic choices by whether only a few eigenvalues are needed—such as for
the computation of low-energy properties or ground states—, or whether all eigenvalues
contribute—such as for the computation of spectral functions or dynamical properties
(see Fig. 2).

To illustrate this concept we briefly develop the central computational ideas underly-
ing one particular application scenario, the computation of the electronic properties of
graphene samples [18,19]. At the core of the computation are energy-resolved functions

X(ω) =
1
N

tr[δ (ω −H)X ] =
1
N

N

∑
n=1

δ (ω −En)〈ψn,Xψn〉 (1)

of an observable X . Here, H is the matrix representation of the physical Hamilton opera-
tor, with N eigenvalues En and eigenstates ψn. In this particular expression, all matrices
are symmetric (or Hermitian). Physical quantities such as the electric conductivity are
now obtained as a weighted mean of the form

∫
X(ω) f (ω)dω , where f (ω) is a pre-

scribed scalar function such as the Boltzmann or Fermi-Dirac weight. In the special
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Fig. 3. Density of states (DOS) of
a graphene nano-ribbon [20], com-
puted with the KPM-DOS method (see
Alg. 1)

case X = I and f (ω) ≡ 1, the above function gives the density of states (DOS), which
counts the number of eigenvalues in a given interval (see Fig. 3).

3.2 Algorithms

In (1) all eigenpairs of H contribute, but explicit computation of a substantial fraction
or even of all eigenpairs is not feasible. It is now the application that further dictates the
algorithmic choice.

FEAST algorithm For very narrow f (ω), which occurs for instance at low temper-
atures, we can compute the eigenpairs selected by f (ω) with the FEAST algorithm.
Typically about 200 to 400 eigenpairs are requested. FEAST has not yet reached the al-
gorithmic maturity of JADA and other well-established iterative eigensolvers (cf., e.g.,
[21]). Therefore, performance optimization for FEAST must be accompanied, and pre-
ceded, by enhancements of the basic scheme in order to improve its robustness and
numerical efficiency. Recent methodological progress and first numerical results for
graphene nano-ribbon models are reported in [20,22].

Chebyshev polynomial expansion schemes If more eigenvalues contribute in the
sum (1) for broader f (ω) we compute a polynomial approximation to the entire function
X(ω) with the KPM. In this way, explicit computation of eigenpairs can be avoided. The
KPM is based on the recurrence relation

|v0〉= |v〉 , |v1〉= H̃|v0〉 , |vm+1〉= 2H̃|vm〉− |vm−1〉 (2)

for vectors |vm〉 = Tm[H̃]|v〉, where the Tm(x) are the Chebyshev polynomials of the
first kind. Note that the original matrix has been rescaled to H̃ = a(H − b) such that all
eigenvalues lie in the definition range [−1,1] of the Tm(x). To this end, an approximation
to the minimum and maximum eigenvalues is computed initially, for which the Lanczos
algorithm can be used. The corresponding Chebyshev moments μm =

∫
X(ω)Tm(ω)dω

of X(ω) are obtained from the scalar products

μm = 〈v|Tm(H̃)X |v〉= 〈vm|X |v0〉. (3)

From these moments, the function X(ω) is reconstructed as a Fourier transform. The
full trace tr[. . .] in (1) is replaced by a stochastic sum over several random starting
vectors |v〉. For more details see our KPM review [12].

Several computational steps can now be identified in the above scheme: spMVM,
vector-vector operations, scalar products, and an outer loop over random vectors.
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Fig. 4. Performance of block spMVM for
various numbers of vectors (nb) involved
in the vector block. Measurements have
been performed on a single Intel Xeon E5-
2660 v2 processor (fixed clock speed of 2.2
GHz). The matrix has approximately 107

rows and an average number of non-zero
entries per row of Nnzr = 14.

A straightforward implementation of these steps leads to the KPM-DOS algorithm dis-
cussed below (Alg. 1). Performance engineering, which exploits the specific combina-
tion in which the individual computational steps occur together with the different levels
of parallelism, results in a highly efficient algorithm (cf. Sect. 3.4) that is tailored to
achieve best performance for the KPM-DOS application class represented by Fig. 3.

In this way application-specific information enters at all stages of the development
cycle, which is characteristic for the strong vertical integration that we pursue in the ES-
SEX project. It applies equally to the other applications and algorithms addressed. For
instance in the graphene application, specifically in the computation of time-resolved
electron dynamics, the above FEAST/KPM steps are complemented by computations
of the matrix exponential e−iHt , for which we use again Chebyshev techniques.

Parallel block JADA Many quantum physics applications, such as strongly corre-
lated systems, require the computation of a few extremal eigenvalues of a symmetric
matrix, for which we use the classic JADA algorithm. The implementation of iterative
JADA solvers relies on spMVM and (block) vector-vector operations. Hence, a func-
tional interface to the basic building blocks library GHOST (see Sect. 3.3) has been
developed. In order to increase the impact of our new JADA implementation, we also
implement this interface for other linear algebra packages such as the Trilinos1 project.
On the other hand, the abstraction introduced here allows us to exploit the work of others
and makes GHOST compatible with, e.g., the “tall skinny QR” factorization (TSQR),
block Krylov-Schur and communication-avoiding GMRES in Trilinos.

Two JADA variants have been implemented: A single-vector method as a reference
solver and an experimental pipelined block method that performs as key operations
a block spMVM (spMVM applied to multiple vectors) and a block orthogonalization
step [23]. Block spMVM reduces overall main memory data traffic as compared to
an equivalent series of standard spMVMs. Using an highly optimized block spMVM
routine (from the GHOST library) based on a row-wise storage scheme for the vector
block, a performance gain of almost four can be typically achieved on a full socket
basis (cf. Fig. 4). In a set of representative experiments this advantage outweighed the
increase in floating point operations due to the blocked JADA algorithm in almost all
cases so that an overall speed-up of blocked JADA of around 50% is achieved on the
socket level for recent Intel processors. The performance advantage continues into the
parallel region as demonstrated by first measurements using a moderately sized test

1 http://trilinos.sandia.gov

http://trilinos.sandia.gov
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matrix (see Fig. 5). Note that in the block variant the average message size increases (at
constant overall communication volume) and we have furthermore eliminated global
synchronization points wherever possible.

In the current package, JADA uses a pipelined block GMRES method without fur-
ther preconditioning for the solution of the correction equation. In the future we will
integrate advanced preconditioning techniques to accelerate convergence. Furthermore,
algorithmic overlapping of communication and computation will be made possible
by exploiting the GHOST task queueing system, which will enable, e.g., overlapping
spMVM communication with numerical operations in other JADA or GMRES loops.
Another focus of future work will be to include GPGPUs in all JADA operations, which
is already possible with GHOST, but not fully implemented in our interface.

3.3 Basic Building Blocks

As a first step towards a flexible repository of basic building blocks, multi-threaded
low-level routines for basic operations such as spMVM, vector-vector operations, etc.,
were developed. Naturally, the spMVM has received special attention since it is the
hot spot in most of the algorithms employed in the project. OpenMP and CUDA were
chosen as the “X” programming model in order to address the most popular computing
devices in modern, heterogeneous clusters. On the distributed-memory level, the MPI
implementation allows for a simple MPI-only model as well as for hybrid approaches
where each process owns multiple threads, possibly dedicated to the separate tasks of
communication and computation. This makes it possible to achieve an explicit overlap
between computation and communication, even if the underlying MPI implementation
does not support truly asynchronous point-to-point transfers for large messages.

The FT aspect of the building blocks layer was initially addressed by an implemen-
tation of checkpointing for a lattice-Boltzmann flow solver using dedicated checkpoint
threads [24], by which we could demonstrate the feasibility of asynchronous check-
pointing and its low overhead on modern commodity systems. In order to get a more
complete view of available checkpointing techniques, several existing solutions were
investigated and compared [25,26]. However, checkpoint/restart is only the most ba-
sic FT technique. Future systems will not be able to sustain the continuous I/O load
caused by checkpoint/restart when the job-level mean time between failure is of the
order of minutes. Hence, research is going on in many directions in search for fault-
tolerant programming models which enable applications to continue running even if a



584 A. Alvermann et al.

Listing 1.1. Spawning a multi-threaded computation and a single-threaded checkpointing task
using GHOST.

// define task: checkpointing with 1 thread

ghost_task_create (& chkpTask , 1, curTask ->LD, &chkp_func , \

(void *)& chkp_func_args , GHOST_TASK_DEFAULT , NULL , 0);

// define task: compute with N-1 threads

ghost_task_create (& compTask , curTask->nThreads-1, \

curTask ->LD, &comp_func , (void *)& comp_func_args , \

GHOST_TASK_DEFAULT , NULL , 0);

// initiate tasks

ghost_task_enqueue (chkpTask ); ghost_task_enqueue (compTask );

// wait for completion

ghost_task_wait (chkpTask ); ghost_task_wait (compTask );

node fails. Since the MPI standard does not yet contain any such features today, we
have first ported a distributed-memory spMVM operation to GPI [27]. GPI2 is an open
source implementation of the GASPI PGAS standard, and explicitly supports continu-
ous execution after hardware failures. Work is ongoing to test these facilities using the
KPM-DOS application.

Taking as much complexity as possible out of the developer’s hands without sacri-
ficing full control over performance and execution modes (such as affinity, threading,
functional parallelism) were conflicting goals in the development of the basic blocks
layer. We have addressed this challenge by developing GHOST (General Hybrid Opti-
mized Sparse Toolkit). GHOST is a library that can be used from C/C++ and Fortran
programs. It implements a flexible thread-tasking model on the process level, provid-
ing the required affinity and resource management functions to support functional par-
allelism as needed by all project layers. For instance, a background task for parallel
checkpointing can be initiated with a single function call, while another task is execut-
ing a sparse MVM (see Listing 1.1).

Addressing heterogeneity, especially when dealing with sparse matrices, requires
more than a proper choice of programming model. The optimal format for storing sparse
matrices was, up until recently, highly hardware-dependent: On standard cache-based
processors the compressed row storage (CRS) format usually leads to best performance,
while GPGPUs require the fundamentally different ELLPACK or one of its deriva-
tives [28]. On vector computers, the jagged diagonals storage (JDS) is most suitable
since it leads to long, easily vectorizable inner loops, while the optimal format for the
new Intel Xeon Phi architecture was yet to be found. In the basic building blocks layer
we have developed SELL-C-σ , a sparse matrix storage format that yields best or com-
petitive performance on all modern computer architectures (see Fig. 6), with the added
benefit of saving memory compared to the popular ELLPACK-based variants on GPG-
PUs [29]. This format facilitates the programming of heterogeneous hardware, since

2 http://www.gpi-site.com

http://www.gpi-site.com
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Fig. 6. Relative performance benefit of the unified SELL-32-σ format over the vendor-supplied li-
brary spMVM performance for twelve “non-pathological” test cases in the UoF matrix collection
(see [29] for details) on Intel Sandy Bridge (“SNB”), Intel Xeon Phi, and Nvidia K20. A format
similar to SELL-C-σ will be supported in a future release of the Intel Math Kernel Library [32].

load balancing and FT features do not have to take format conversions into account.
Furthermore it will greatly ease the development of efficient code on upcoming unified
memory architectures, where the host CPU and the accelerator hardware share mem-
ory. SELL-C-σ has immediately been taken up and adapted to special needs by several
research groups [30,31].

3.4 Holistic Performance Engineering

The performance optimization process applied to the computation of the DOS with the
KPM (KPM-DOS, for X = I in (1)) is a simple but very instructive example for the
advantages of a holistic view on the complete software stack.

A standard scheme for computing the Chebyshev moments {μm;m = 0, . . . ,M} for a
given M is shown in Alg. 1 (middle loop over m). In terms of computational complexity
the relevant step is the construction of the vectors |vm〉 = Tm[H̃]|v〉 through the recur-
rence (2). Note that, using the relation Tm+n(x) = 2Tm(x)Tn(x)−Tm−n(x), the algorithm
can be formulated as presented, delivering two moments (μ2m = 2η2m − μ0,μ2m+1 =
2η2m+1 − μ1) per spMVM operation.

The Chebyshev scheme requires a spMVM routine involving the original matrix H
and various vector-vector operations including a scalar product as basic building blocks.
Typically, highly optimized subroutines are provided by an external low-level library
and are called in the order shown. As a consequence, besides the spMVM, eight vectors
of matrix dimension have to be loaded and four stored from/to main memory, generating
data traffic which can be as high as in the spMVM alone. Extending the optimization
scope to the algorithmic layer allows to define a tailored spMVM routine that eliminates
all data transfers for the vector-vector operations. Those operations are performed in the
spMVM step when the relevant data is available in registers or in the L1 cache. Thus,
the overall data traffic is reduced to a single basic spMVM step (see Alg. 2). Further
performance potential becomes accessible if the optimization scope also includes the
application problem, which is the KPM-DOS computation. Here, the outer loop runs
over a set of random vectors for which the Chebyshev moments are computed inde-
pendently, loading the full matrix in each iteration. Applying the tailored spMVM to
a block of random vectors can add the substantial performance gains demonstrated in
Fig. 4 to our application scenario. The optimal number of vectors in the block is set by
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for r = 0 to R−1 do
|v〉= |rand()〉 ;
Initialization steps and computation of μ0,μ1
for m = 1 to M/2 do

swap(|w〉, |v〉);
|u〉 = H|v〉 ;
|u〉 = |u〉−b|v〉 ;
|w〉 = −|w〉 ;
|w〉 = |w〉+2a|u〉 ;
η2m = 〈v|v〉 ;
η2m+1 = 〈w|v〉 ;

end
end

Algorithm 1: Basic scheme to compute the Chebyshev moments (KPM-DOS) for a
set of R random vectors {|rand()〉} using the standard spMVM operation

a subtle interplay of matrix dimension, matrix bandwidth, and cache size, and is subject
to current research in ESSEX. For the benchmarks presented below, eight vectors per
block are chosen, which reduces the overall data traffic for loading matrix information
accordingly. Note that the use of block vectors is only possible if KPM is applied to
compute the density of states. If a static excitation spectrum is determined there is no
outer loop in the scheme.

For the test matrix and a single socket of the compute node used in Fig. 4, the two
successive optimizations have improved the performance from 5.5 GF/s (basic version)
to 8.3 GF/s (tailored spMVM) to finally 21.6 GF/s (blocked tailored spMVM). Though
the matrix is rather small, the KPM scheme is still completely memory bound. Hence,
considering all software layers in the optimization process results in an almost 4×
speed-up. Note that in the basic version each of the different subroutines had been
individually well optimized: The basic spMVM step runs at a performance of 6.5 GF/s,
indicating a very good utilization of the memory bandwidth bottleneck (45 GB/s read-
only bandwidth for the test system) according to the spMVM performance model pre-
sented in [29].

for r = 0 to R−1 do
|v〉 = |rand()〉;
|w〉 = a(H −b)|v〉 & μ0 = 〈v|v〉 & μ1 = 〈w|v〉 ;
for m = 1 to M/2 do

swap(|w〉, |v〉);
|w〉 = 2a(H −b)|v〉 −|w〉 & η2m = 〈v|v〉 & η2m+1 = 〈w|v〉 ;

end
end

Algorithm 2: Improved computation of Chebyshev moments (KPM-DOS) with a
tailored spMVM operation. Operations chained by “&” in a single line do not cause
main memory traffic as they are performed in the spMVM operation.
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4 Conclusions

In the first 18 months the ESSEX project has made substantial contributions to the
sparse linear algebra community reaching far beyond its application area. Other groups
have already picked up several results, and new collaborations with projects both within
SPPEXA and beyond have been established. A preliminary version of the Exascale
Sparse Solver Repository (ESSR) will be released by the end of 2014.
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21. Krämer, L., Di Napoli, E., Galgon, M., Lang, B., Bientinesi, P.: Dissecting the FEAST algo-
rithm for generalized eigenproblems. J. Comput. Appl. Math. 244, 1–9 (2013)
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Abstract. Many parallel applications suffer from latent performance
limitations that may prevent them from scaling to larger machine sizes.
Often, such scalability bugs manifest themselves only when an attempt
to scale the code is actually being made—a point where remediation can
be difficult. However, creating analytical performance models that would
allow such issues to be pinpointed earlier is so laborious that application
developers attempt it at most for a few selected kernels, running the risk
of missing harmful bottlenecks. The objective of the Catwalk project,
which is carried out as part of the DFG Priority Programme 1648 Soft-
ware for Exascale Computing (SPPEXA), is to automate key activities
of the performance modeling process, making this powerful methodology
easier to use and expanding its coverage. This article gives an overview of
the project objectives, describes the results achieved so far, and outlines
future work.

1 Introduction

When scaling their codes to larger numbers of processors, many HPC applica-
tion developers face the situation that all of a sudden a part of the program
starts consuming an excessive amount of time. Unfortunately, discovering latent
scalability bottlenecks through experience is painful and expensive. Removing
them requires not only potentially numerous large-scale experiments to track
them down, prolonged by the scalability issue at hand, but often also major
code surgery in the aftermath. All too often, this happens at a moment when
the manpower is needed elsewhere. This is especially true for applications on
the path to exascale, which have to address numerous technical challenges si-
multaneously, ranging from heterogeneous computing to resilience. Since such
problems usually emerge at a later stage of the development process, dependen-
cies between their source and the rest of the code that have grown over time can
make remediation even harder. One way of finding scalability bottlenecks ear-
lier is through analytical performance modeling. An analytical scalability model
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expresses the execution time or other resources needed to complete the program
as a function of the number of processors. Unfortunately, the laws according
to which the resources needed by the code change as the number of processors
increases are often laborious to infer and may also vary significantly across indi-
vidual parts of complex modular programs. This is why analytical performance
modeling—in spite of its potential—is rarely used to predict the scaling behavior
before problems manifest themselves. As a consequence, this technique is still
confined to a small community of experts.

If today developers decide to model the scalability of their code, and many
shy away from the effort, they first apply both intuition and tests at smaller
scales to identify so-called kernels, which are those parts of the program that
are expected to dominate its performance at larger scales. This step is essential
because modeling a full application with hundreds of modules manually is not
feasible. Then they apply reasoning in a time-consuming process to create ana-
lytical models that describe the scaling behavior of their kernels more precisely.
In a way, they have to solve a chicken-and-egg problem: to find the right kernels,
they require a pre-existing notion of which parts of the program will dominate its
behavior at scale—basically a model of their performance. However, they do not
have enough time to develop models for more than a few pre-selected candidate
kernels, inevitably exposing themselves to the danger of overlooking unscalable
code.

In the Catwalk project, which is part of the DFG Priority Programme 1648
Software for Exascale Computing (SPPEXA), we are developing a novel tool
that eliminates this dilemma. Instead of modeling only a small subset of the
program manually, we generate an empirical performance model for each part of
the target program automatically, significantly increasing not only the coverage
of the scalability check but also its speed.

The remainder of the paper is structured as follows. Section 2 describes the
empirical performance modeling tool and its applications. Section 3 explains the
automatic workflow manager used to run the experiments needed as input for
the tool. Section 4 outlines ongoing work of extending the current MPI-centric
approach towards OpenMP and hybrid applications. One of the target codes for
performance modeling, the library UG4, is discussed in Section 5. Finally, we
summarize our results and outline future work in Section 6.

2 Automated Performance Modeling

The primary objective of our approach is the identification of scalability bugs. A
scalability bug is a part of the program whose scaling behavior is unintention-
ally poor, that is, much worse than expected. As computing hardware moves
towards exascale, developers need early feedback on the scalability of their soft-
ware design so that they can adapt it to the requirements of larger problem
and machine sizes. Our method can be applied to both strong scaling and weak
scaling applications. In addition to searching for performance bugs, the models
our tool produces also support projections that can be helpful when applying
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mations, and banners their inputs and outputs. Dashed arrows indicate optional paths
taken after user decisions.

for the compute time needed to solve the next larger class of problems. Finally,
because we model both execution time and requirements alongside each other,
our results can also assist in software-hardware co-design or help uncover grow-
ing wait states. Note that although our approach can be easily generalized to
cover many programming models, we focus on message passing programs. For a
detailed description including modeling results, the reader may refer to [3].

The input of our tool is a set of performance measurements on different pro-
cessor counts {p1, . . . , pmax} in the form of parallel profiles. The execution of
these experiments is supported by a workflow manager, which is described in
Section 3. The output of our tool is a list of program regions, ranked by their
predicted execution time at a target scale of pt > pmax processors. We call these
regions kernels because they define the code granularity at which we generate
our models.

Figure 1 gives an overview of the different steps necessary to find scalability
bugs, whose details we explain further below. To ensure a statistically relevant
set of performance data, profile measurements may have to be repeated sev-
eral times—at least on systems subject to jitter. This is done in the optional
statistical quality control step. Once this is accomplished, we apply regression
to obtain a coarse performance model for every possible program region. These
models then undergo an iterative refinement process until the model quality has
reached a saturation point. To arrange the program regions in a ranked list, we
extrapolate the performance either to a specific target scale pt or to infinity,
which means we use the asymptotic behavior as the basis of our comparison. A
scalability bug can be any region with a model worse than a given threshold, such
as anything scaling worse than linearly. Alternatively, a user can compare the
model of a kernel with his own expectations to determine if the performance is
worse than expected. Finally, if the granularity of our program regions is not suf-
ficient to arrive at an actionable recommendation, performance measurements,
and thus the kernels under investigation, can be further refined via more detailed
instrumentation.
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2.1 Related Work

Analytical performance modeling has a long history. Early manual models showed
to be very effective in describing many qualities and characteristics of applica-
tions, systems, and even entire tool chains [2, 9, 13, 16, 18]. Hoefler et al. es-
tablished a simple six-step process to guide manual performance modeling [6],
which served as a blueprint for our automated workflow. Assertions and source-
code annotations support developers in the creation of analytical performance
models [20–22].

Various automated modeling methods exist. Many of these tools focus on
learning the performance characteristics automatically using various machine-
learning approaches [8, 12]. Zhai, Chen, and Zheng extrapolate single-node
performance to complex parallel machines using a trace-driven network simula-
tor [25]. Wu and Müller extrapolate traces to predict communications at larger
scale [24]. Carrington et al. choose a model from a set of canonical functions to
extrapolate traces of applications at scale [4].

2.2 Model Generation

Model generation forms the core of our method. When generating performance
models, we exploit the observation that they are usually composed of a finite
number n of predefined terms, involving powers and logarithms of p (or some
other parameter):

f(p) =
n∑

k=1

ck · pik · logjk2 (p) (1)

This representation is, of course, not exhaustive, but works in most practical sce-
narios since it is a consequence of how most computer algorithms are designed.
We call it the performance model normal form (PMNF). Moreover, our experi-
ence suggests that neither the sets I, J ⊂ Q from which the exponents ik and
jk are chosen nor the number of terms n have to be arbitrarily large or random
to achieve a good fit. Thus, instead of deriving the models through reasoning,
we only need to make reasonable choices for n, I, and J and then simply try
all assignment options one by one. A possible assignment of all ik and jk in a
PMNF expression is called a model hypothesis. Trying all hypotheses one by one
means that for each of them we find coefficients ck with optimal fit. Then we
apply cross-validation [17] to select the hypothesis with the best fit across all
candidates. In our experiments we use I = {0, 0.5, 1, 1.5, 2, 2.5, 3}, J = {0, 1, 2}
and n = 5, and we have observed that it is more than sufficient to accurately
represent behaviors found in real world applications.

2.3 Evaluation Summary

We analyzed real-world applications such as climate codes, quantum chromody-
namics, fluid dynamics and more. We were able to identify a scalability issue in
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Fig. 2. Measured vs. predicted execution time of the two receive operations involved
in the wavefront process of Sweep3D on Juqueen

codes that are known to have such issues (Sweep3D, XNS) and not identify any
scalability issue in codes that are known to have none (MILC, UG4). Moreover,
we were able to identify two scalability issues in a code that was thought to have
only one (HOMME).

2.4 Case Study

In this example, we show how our tool helps identify and explain a scalabil-
ity problem, providing a first impression of the user experience. The Sweep3D
benchmark [10] is a compact application that solves a 1-group time-independent
discrete ordinates neutron transport problem. It was extracted from a real ASCI
code. The literature mentions accurate models [7, 23] that describe the perfor-
mance behavior of wavefront processes as they occur in Sweep3D on various
architectures. The LogGP model reported in [7] characterizes the communica-
tion time as follows:

tcomm = [2(px + py − 2) + 4(nsweep − 1)] · tmsg (2)

px and py denote the lengths of the process-grid edges, nsweep the number of wave-
fronts to be computed, and tmsg the time needed for a one-way nearest-neighbor
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communication. Given that both nsweep and tmsg are largely independent of the
number of processes p and that in our experiments px = py and p = px · py, we
can rewrite Equation (2) as:

tcomm = c · √p (3)

The (combined) model generated by our tool for the two receive operations in-
volved in the wavefront process (sweep → MPI Recv) is 3.99 · √p and, thus,
consistent with Equation (3). As Figure 2 illustrates, it also matches our mea-
surements on Juqueen quite accurately.

In contrast to the growing execution time, the models for both the number of
bytes and the number of messages received predict constant values independent
of the number of processes. This suggests that any increase in communication
time is caused by wait states. Because the wavefront travels along the diagonal
of the process grid, waiting times proportional to the square root of the number
of processes can actually be expected. Having waiting time grow with

√
p means

that every quadrupling of p will double its amount, which can hardly be classified
as scalable.

2.5 Compiler-Driven Performance Modeling

In a similar but orthogonal subproject, we develop techniques for compiler-
guided automated performance modeling. We use a mix of static analysis to
count loop iterations and assess the theoretical scaling and parallelizability of
practical codes [5] with dynamic multi-parameter performance model generation
during runtime [1]. The static analysis instantiates work-depth models of par-
allel applications. It supports the large class of practically relevant loops with
affine update functions and generates additional parameters for other expres-
sions. The method can be used to determine whether the theoretically maxi-
mum parallelism is exposed in a practical implementation of a problem. The
scheme over-approximates the performance of programs if loops are not affine
or guards cannot be determined automatically. The dynamic approach under-
approximates the program’s behavior by analyzing particular executions. PE-
MOGEN, our compilation and modeling framework, automatically instruments
applications to generate performance models during program execution. We used
PEMOGEN to automatically detect 3,370 kernels from fifteen NAS and Mantevo
applications and model their execution times. Both schemes were implemented
in the Low Level Virtual Machine (LLVM) compiler framework [11].

This work is a first step towards full automation of the model generation.
Open problems include non-linear combinations of different parameters as well
as improved statistical techniques for model generation.

3 Workflow Manager

As illustrated in Figure 1, the identification of scalability bugs demands multiple
executions of performance measurements, both with different and with identical
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Fig. 3. JuBE workflow

input parameters, the latter to minimize the impact of jitter on shared machines.
To automate this process, we use the Jülich Benchmarking Environment (JuBE)
developed by Forschungszentrum Jülich. The steps carried out by JuBE are
shown in Figure 3. The stacked boxes for preparation, compilation, execution,
and analysis mean that these steps of the workflow might exist multiple times.

When running JuBE, it will perform the aforementioned steps in sequence.
It is important to note that JuBE is able to easily create combinatorial runs
of multiple parameters. For example, in a scaling experiment, one can simply
specify multiple numbers of processes, and/or multiple threads per process, and
JuBE will create one experiment for each possible combination, submit all of
them to the resource manager, collect all results, and display them together.

4 Modeling OpenMP Performance

While scalability bugs are known issues for MPI applications and an MPI per-
formance modeling methodology exists, it has not been applied to OpenMP and
the interactions with MPI. As OpenMP represents the de-facto standard for
exploiting manycore architectures, it will become of higher importance to exas-
cale systems. Historically, multithreading and hence OpenMP usually did not
require modeling, as it was easily possible to experimentally tests applications
due to the limited amount of parallelism. With the ongoing trend of integrating
more cores into CPUs, the level of parallelism rises and will most likely continue
to rise well into the exascale era. Therefore, modeling OpenMP performance
and detecting scalability bugs becomes important. Also understanding OpenMP
modeling will enable to address hybrid applications, i.e., application using both
MPI and OpenMP, which have to strike a careful balance distributing available
compute resources between MPI processes and per-process OpenMP threads.
Performance modeling could provide an answer to this question, indicating the
sweet spot—without the need to experimentally test all possible thread and
process combinations.



596 F. Wolf et al.

16

32

64

128

256

512

1,024

2,048

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

Number of Threads

R
u
n
ti
m
e

S
p
e
e
d
u
p

Predicted Runtime

Measured Runtime

Predicted Speedup

Measured Speedup

Fig. 4. OpenMP CG solver: comparison of measurements with the model

First OpenMP Modeling Experience

To determine possible model parameters and to ascertain precision, we analyzed
a best effort implementation of a conjugate-gradient (CG) solver implementation
from a recent OpenMP tuning study. In contrast to pure MPI applications,
the regions required to sufficiently model the core are much smaller - typically
comprising only the extent of single OpenMP constructs. On the other hand,
the impact of resource limitations, such as memory bandwidth, and the impact
of additional parallelism on the available resources is much more difficult to
account for.

For our test code, we were able to manually create a fairly accurate model of
the runtime using existing standard benchmarks. For this we measured memory
bandwidth using the STREAM TRIAD benchmark and the runtime overhead of
OpenMP constructs for each possible thread count on our test system, the BCS
System of the RWTH Aachen University. We then combined these measurement
results with an analytical model of the remaining computational parts to obtain
the times shown in Figure 4 [19]. Our measurement results of an optimized kernel
implementation were relatively close to the predicted runtimes, with some leeway
owed to peculiarities of the STREAM memory benchmark. As this benchmark
does not exhibit exactly the same memory access pattern as the CG solver,
its measurements can only approximate the bandwidth used by the CG solver.
As a result, especially for the first eight threads of the deployed eight-socket
system and for the close to saturation levels at the peak capacity of the system
(128 threads), the memory bandwidth available to each thread deviates more
substantially, causing a higher deviation of the model from the predicted runtime.
A better memory model would most certainly have reduced these effects. Overall,
however, our experience shows that by combining per-thread measurements of
memory bandwidth and OpenMP construct overhead with partial analytical
modeling of the application a model of OpenMP performance can be constructed.
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5 Scalability of the Multigrid Solver in UG4

A real-world application code for the performance analysis within the project
is the UG4 software library. It is a general-purpose simulation framework for
the grid-based solution of partial differential equations using finite element or
finite volume methods and actively developed at the Goethe Center for Scientific
Computing of University of Frankfurt. It is used to address a broad variety of
problems arising in natural sciences such as biology, neuroscience, physics and
engineering, including drug diffusion through human skin, signal transport in
neurons, and several kinds of flow problems like Navier-Stokes flow or subsurface
flow in porous media.

Because it is a relevant application from computational biology, we are focus-
ing in this project on the drug transport through the human skin. The medicine
diffusion is modeled in a 3d tetrakaidekahedra-based grid, resolving lipid bilay-
ers and corneocyte cell components of the stratum corneum in detail [14, 15].
To get an idea, consider the simplified 2d brick-and-mortar model shown in Fig-
ure 5. While the transport is faster within the lipid bilayers, also the transport
through the corneocytes is analyzed. To resolve the biological setting in detail,
a 3d tetrakaidekahedral grid must be used. These delicate geometries need high
resolutions and therefore require massively parallel computation.

1 m

0,1 m

30 m

Fig. 5. Illustration of skin permeation. Left: The stratum corneum is build up by
corneocyte cells (yellow) and lipid bilayers (channels). Right: medicine concentration
diffusing from top to bottom.

Within a simulation, large sparse matrix systems arise that must be inverted.
This part is not only one of the most time-consuming kernels of the application
but also an algorithm that is hard to parallelize. We chose a geometric multigrid
algorithm, since these are known to be of optimal complexity, i.e., its compu-
tational effort only increases linearly with the problem size, which makes it a
promising candidate to achieve good weak-scaling results.

To generate performance models of the solver implementation, we performed
weak-scaling runs for a diffusion problem on the Juqueen supercomputer us-
ing five identical runs for each process number to account for run-to-run varia-
tion. The analysis showed that no kernel in the application exhibited more than
O(log(p)) growths in runtime. Hence, no scalability bugs were detected. This is
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also in agreement with weak scaling studies performed on process configurations
larger than the ones used to generate the models. This is a good starting point
for a more complex and in-depth analysis in the future where we plan to an-
alyze different matrix solver types and setups. In addition we want to analyze
other metrics such as floating-point rates or message sizes, and apply the model
generator to different physical settings.

6 Conclusion

In the Catwalk project, we have already made significant progress towards our
original goal of automating key activities of the performance modeling process.
Now, a lightweight tool exists that can be used to generate useful scalability
models for arbitrarily complex MPI codes. Tests on a range of applications con-
firmed models reported in the literature in cases where such models existed, and
also helped uncover a previously unknown scalability issue in another case.

In the future, we want to apply our approach to the co-design of exascale soft-
ware and hardware. Co-designing applications with systems is a powerful tech-
nique to ensure early and sustained productivity as well as good system design.
We want to assist this process by automating many of the back-of-the-envelope
calculations involved in co-design with a lightweight requirements analysis for
scalable parallel applications. We want to generate empirical models that allow
projections not only for different numbers of processes but also for different prob-
lem sizes. System designers then can use the process-scaling models in tandem
with the problem-scaling models and the specification of a candidate system to
determine the resource usage of an application execution with a certain problem
size.
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Alejandro Fernández1, Vicenç Beltran1, Xavier Martorell1,3, Rosa M. Badia1,2,
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Abstract. OmpSs is a task-based programming model that aims to pro-
vide portability and flexibility for sequential codes while the performance
is achieved by the dynamic exploitation of the parallelism at task level.
OmpSs targets the programming of heterogeneous and multi-core archi-
tectures and offers asynchronous parallelism in the execution of the tasks.
The main extension of OmpSs, now incorporated in the recent OpenMP
4.0 standard, is the concept of data dependences between tasks.
Tasks in OmpSs are annotated with data directionality clauses that

specify the data used by it, and how it will be used (read, write or
read&write). This information is used during the execution by the un-
derlying OmpSs runtime to control the synchronization of the different
instances of tasks by creating a dependence graph that guarantees the
proper order of execution. This mechanism provides a simple way to ex-
press the order in which tasks must be executed, without the need of
adding explicit synchronization.
Additionally, OmpSs syntax offers the flexibility to express that given

tasks can be executed on heterogeneous target architectures (i.e., regu-
lar processors, GPUs, or FPGAs). The runtime is able to schedule and
run these tasks, taking care of the required data transfers and synchro-
nizations. OmpSs is a promising programming model for future exascale
systems, with the potential to exploit unprecedented amounts of par-
allelism while coping with memory latency, network latency and load
imbalance.
The paper covers the basics of OmpSs and some recent new devel-

opments to support a family of embedded DSLs (eDSLs) on top of the
compiler and runtime, including an prototype implementation of a Par-
tial Differential Equations DSL.

1 Introduction

During the last decades, the number of available transistors inside a chip has
continuously increased as predicted by the well known Moore’s law [12]. The
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extra transistors provided by each successive processor generation have been
traditionally used to increase the complexity of the processors and the size of
the cache memories. However, due to the memory and power walls, this trend
has halted and replaced by the multi-core and heterogeneous era.

Multi-core processors and heterogeneous architectures are still quite complex,
with several functional units in them, including floating point units and vector
units. Also, the ability to place other accelerators in the same chip or connected
through the PCI express bus resulted in heterogeneous computing nodes. Exam-
ples of these architectures are the Xeon Phi processor or general purpose pro-
cessors with GPU cards. While this trend has been observed for about a decade
now, the difficulty to program such architectures still represents a challenge.

Additionally, the interface to program a processor has increasingly been com-
plicated with specific instructions for vector units, specific languages for accel-
erators which include calls to APIs for data allocation and management (i.e.
CUDA or OpenCL), APIs for offloading computation, etc.

All this specific code requirements have made the life of programmers in-
creasingly more difficult, forcing them to mix application logic with specialized
instructions. Such code complexity is inversely proportional to code readability
and maintainability, thus resulting in an undesired trade-off between productiv-
ity and performance. Moreover, these programs are hardly portable: every time a
new architecture appears, a new version of the code is necessary. For example, a
large number of applications has recently been adapted to enable their execution
in nodes with GPUs.

Applications 

Power to the runtime 

PM: High-level, clean, abstract interface 

DSL1 DSL2 DSL3 

ISA / API 

Fig. 1. Software stack in the BSC vision
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In this situation, strategies to offer higher levels of abstraction to application
developers are necessary. The specifics of the different architectures and hard-
ware organization (architecture-dependent instructions, APIs, separate memory
spaces, etc.) should be hidden from the application developers, enabling them
to focus on the logic of the application rather than on the low-level performance
aspects.

Figure 1 illustrates this idea where a higher level interface in the form of a pro-
gramming model is offered to the applications. With this layer, a cleaner, more
abstract interface results in clean programs without hardware-specific details.
Such abstraction is possible thanks to an underlying compiler and/or runtime
infrastructure which is the responsible for dealing with the APIs and specific
features of the hardware.

In the case of the Barcelona Supercomputing Center (BSC), the programming
model considered is StarSs1, a task-based programming model with tasks’ data
dependencies taken into account at execution time, building a task dependence
graph which defines a partial execution order of the tasks. While the sequential
programming paradigm with information about the tasks and the directionality
of its parameters is the user interface2, applications are executed in parallel
thanks to the information about the potential parallelism that is derived from
the task graph. Another feature of the StarSs programming model is that it
enables the application to be unaware of the underlying computing platform. For
example, in StarSs instances tailored for distributed computing, the runtime will
be responsible for the corresponding data transfers required between computing
nodes, performing these activities in a way transparent to the application.

Additionally, in order to offer an even higher level of abstraction, the construc-
tion of a high performance framework for a family of Domain-Specific Languages
(DSLs) on top of the programming model is currently being considered. DSLs
are a promising approach to hide the complexity of hardware systems and boost
programmers’ productivity. However, the huge cost and complexity of imple-
menting efficient and scalable DSLs, specially for complex platforms such as
HPC systems, is hindering their adoption for most domains. For this reason, the
strategy adopted at BSC has been to divide the complexity of building such a
programming interface by building a DSL development infrastructure on top of
one of the implementations of the StarSs programming model. Each instance of
this DSL family can focus on a different domain and can be of a different level
of complexity (different sizes of DSLs boxes in Figure 1 represent this hetero-
geneity).

This paper will review the current status of one of the StarSs implementations,
the OmpSs project, as well as present an overview of the recent developments to-
wards DSLs for HPC environments. The rest of the paper is structured as follows:

1 StarSs stands for Star superscalar, since most of the ideas behind this programming
model are inspired by the field of computer architecture and superscalar processors.

2 By directionality we mean, input when the parameter is read, or output when
the parameter is written. This information is used at runtime to derive the data-
dependences between tasks.
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First, Section 2 presents the StarSs programming model and its instance, OmpSs.
Then, Section 3 presents the OmpSs programmingmodel. Next, Section 4 presents
the DSL family developed on top of the OmpSs infrastructure and Section 5 con-
cludes the paper.

2 StarSs Overview

StarSs is a family of programming models recently developed at BSC. The main
characteristics of these programming models are: task–based programming with
indication of data directionality, flat single logical address space, and a dynamic
behaviour addressed by a runtime that takes care of functions such as generation
of a task-dependence graph, task scheduling driven by the partial order defined
by this graph, resource selection, automatic data transfers, etc.

Several prototype implementations of these programming models have been
developed to test main ideas in different computing platforms and to make
progress in research topics, the more relevant being: GRIDSs [3] for grid comput-
ing, CellSs [14] for the Cell processor, SMPSs [13] for shared memory systems,
and GPUSs [2] for heterogeneous nodes with GPUs.

BSC efforts currently focus in two implementations: OmpSs [7], for HPC (mul-
ticore and heterogeneous computing), and COMPSs [19] for distributed comput-
ing and cloud computing.

This paper focuses in the OmpSs implementation, which merges the OpenMP
standard [1] with the StarSs extensions. OmpSs has been used to promote the
StarSs ideas (tasking, dependences, support to heterogeneity) into the OpenMP
standard. Achievements of the BSC team in this aspect have been the inclusion of
the tasking model (version 3.0) and dependences in tasks (version 4.0). However,
OmpSs does not intend to be a reference implementation of OpenMP, but a long
term research project where new ideas can be evaluated.

Currently OmpSs features which do not have a match in the OpenMP stan-
dard include the support of non-contiguous/strided regions in their dependence
detection and data-management mechanisms. The OpenMP dependence mecha-
nism uses the initial address of a region to detect dependences between tasks and
therefore dependences between partially overlapping regions or strided regions
cannot be detected [6].

Support of heterogeneity in OpenMP 4.0 and in OmpSs is significantly dif-
ferent and complementary. While OmpSs extensions to support heterogeneous
environments are designed to simplify the synchronization and data transfers
required between host and accelerator codes, OpenMP tries to generate paral-
lel kernels from annotated sequential code that can efficiently run on accelera-
tors. While both OpenMP and OmpSs specifications include a target device

clause, this clause has a different semantics in OpenMP and OmpSs. In OmpSs,
the options of clause target device are, for example, cuda or opencl, while
in OpenMP the clause takes a numeric parameter, e.g., target device (3),
which represents a device. In OmpSs, the programmer needs to provide the code
of the kernel in CUDA or OpenCL, but this code can be part of a task, and
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therefore it will be independently scheduled and executed asynchronously on a
device [7], [9]. The support provided by OmpSs includes the ability to schedule
tasks in multiple GPUs independently of the code and automatic data transfers
(including awareness of the data locality to reduce the number of transfers). In
OpenMP, the compiler translates the C code to the language required by the
device (i.e. CUDA), but the code is bound to a given device specified statically
in the clause, and the programmer is responsible for finding the identifier of the
device. In terms of scheduling, the code embedded in a target device clause in
OpenMP is executed synchronously, and in case it is embedded in a task which
will enable the asynchronous execution, the programmer needs to guarantee the
exclusive access to the device at every moment since no support is provided by
the OpenMP scheduling.

Another support of scheduling in OmpSs is the possibility of providing more
than one implementation (version) of a given task through the implements

clause. The versions can target one or more devices. At runtime, the scheduler
will decide which version should be scheduled taking into account parameters
such as execution time or locality of the data. Even more, if slower devices are
idling, a few tasks can be scheduled there [15].

The OmpSs runtime is able to target heterogeneous devices not only of a single
node, but also of several nodes in a cluster [5]. In this case, the OmpSs scheduler
distributes the tasks to the different nodes. As in the case of the GPUs, the
required data transfers are performed transparently by the runtime. The run-
time keeps a directory with information of the locations of the data regions in
the cluster. This directory comes with a software cache policy implemented in
each memory space (both memory nodes and GPU memory spaces). Concerning
programming methodology, while there are no specific requirements for these
architectures, organizing the applications in nested tasks improves the perfor-
mance. With nested tasks, first level tasks are generated by the main program
and scheduled in nodes of the cluster. The node responsible for executing this
task will generate the children tasks which are naturally scheduled on the node,
including both CPU and GPU tasks.

With regard to the hybrid version of OmpSs with MPI, the strategy goes
beyond the traditional parallelization at the node level with OmpSs using MPI
for the communication between nodes: with MPI/OmpSs, MPI communications
are wrapped into OmpSs tasks which are then automatically included in the
task dependence graph. With this approach, overlapping of communication and
computation is naturally achieved, since computations that do not hold any
dependence with the communication tasks may be executed earlier or together
with the communication tasks. Additionally, this implementation presents better
sensibility to OS noise and jitter [20].

To further improve the behaviour of MPI/OmpSs applications, DLB is a dy-
namic library designed to speed up hybrid applications with nested parallelism
by improving the load balance each computational node [10]. In general, DLB
will redistribute the computational resources of the second level of parallelism
(OmpSs) to improve the load balance of the outer level of parallelism (MPI).
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This is achieved by dynamically and automatically lending threads between MPI
processes sharing the same node.

3 OmpSs Development Environment

OmpSs infrastructure is composed of two main components: Mercurium, the
compiler, and Nanos++, the runtime. Mercurium is a source to source compiler
that supports C99, C++ 2003 and Fortran 95 and also (an increasing) set of
features of C 2011, C++ 2011 and Fortran 2003/2008 and extensions of GNU
C/C++/Fortran (see Figure 2). The goal of Mercurium is to provide a sufficiently
powerful framework for high-level transformations and analyses in source code in
order to support research in parallel and high performance programming models.

In order to support heterogeneous computing, Mercurium supports multi-file
processing, that is, from a single source file Mercurium can generate several
source files which can be combined at the link step. Compiler phases can rein-
troduce new files into the compilation pipeline and new files may use a different
compilation pipeline.

Mercurium processes the OmpSs pragmas and inserts the corresponding calls
to the Nanos++ interface. Mercurium also parses CUDA and OpenCL and emits
this code unchanged.

After the compiler phase, the corresponding back-end compiler is invoked.
This can be configured to use different compilers (i.e., gcc or icc for C code).
For the case of CUDA, the NVIDIA compiler is later invoked. For OpenCL, the

C/C++/Fortran 

Fig. 2. Mercurium compiler structure
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code is processed at execution time by the selected OpenCL runtime. Finally,
all objects are linked and embedded into a single binary.

Nanos++ is the OmpSs runtime (see Figure 3). This piece of software is or-
ganized in components, each of them responsible for a given behaviour: thread
management, task management, dependence checking, cache management, etc.
Several of these components are configurable, such as the scheduling policy, the
throttle policy or the dependence checker. The runtime also has specific compo-
nents for the supported devices: SMP, GPU, Cluster, Tasksim (an architecture
simulator [16]), etc.

Fig. 3. Nanos++ runtime structure

The runtime can be compiled in different flavours: performance, debug, and
instrumentation. While the performance flavour would be the default version to
use, the debug version can be used for debugging purposes. The instrumented
version is used for several purposes: trace file generation, task graph generation,
and debug with Temanejo [18].

The trace file generation emits a time stamped event list ordered by time
with information about what happened at execution time. The format of this
trace file conforms to the Paraver format (in fact, the Extrae instrumentation
library, provided to generate Paraver trace files is called by Nanos++) [11].
Paraver is a very powerful performance visualization and analysis tool based
on traces that can be used to analyse any information that is expressed on its
input trace format. Its analysis power is based on two main pillars. First, its
trace format has no semantics; extending the tool to support new performance
data or new programming models requires no changes to the visualizer, just to
capture such data in a Paraver trace. The second pillar is that the metrics are



608 A. Fernández et al.

not hard-wired in the tool but programmed. To compute them, the tool offers
a large set of time functions, a filter module, and a mechanism to combine two
time lines. This approach allows displaying a huge number of metrics with the
available data. To be able to analyse OmpSs programs, a set of configuration
files is provided with the OmpSs distribution that enable to visualize meaningful
views (i.e., view of tasks executed in each thread, communications between host
and GPU when running on a GPU node, etc), while each programmer/developer
can build up her own configuration files with specific purposes.

Another alternative when running with the instrumentation library is to gen-
erate an image of the task dependency graph, which can be later visualized with
a PDF viewer. This option is very useful for a quick check by the application
programmer about the actual task graph generated.

Both these views will only work if the application is not faulty. In case of
a faulty application, the environment provided by the Ayudame and Temanejo
libraries can be used [4]. Ayudame is a library which is used to receive informa-
tion (events) from the Nanos++ runtime system and to exert control over it by
issuing requests to it. Temanejo is the graphical front end. It enables to display
the task dependency graph of OmpSs applications, and to allow simple inter-
action with the Nanos++ runtime system in order to control some aspects of
the parallel execution of a given application. For example, it enables to execute
tasks one at a time or group of tasks, define breakpoints, connect to the GNU
debugger to perform a more detailed debug, etc.

4 DSLs on Top of OmpSs

Domain Specific Languages (DSLs) boost programmer productivity by offer-
ing experts high level abstractions focused on their domain. With this type of
languages, mapping and solving a domain problem becomes extremely easy. Ad-
ditionally, due to the clarity of the code, applications are easily maintained and
extended.

However, developing a DSL is expensive and complex, and therefore it would
be only justified when a large community is behind. With this idea in mind,
the strategy of the BSC Computer Science department has been to develop a
framework that can be shared by several DSLs.

This framework is composed of a HPC compiler framework and a runtime sys-
tem. The compiler framework is based on LightweightModular Staging (LMS) [17]
(see Figure 4), a Scala library for embedding DSL compilers together with DSL
applications, thus reusing the Scala features to define new languages. LMS is a
technique for embedding DSLs as libraries into Scala as a host language, while
enabling domain specific optimizations and code generation.

As an intermediate language between the actual DSL and the OmpSs com-
piler, the Data Flow Language (DFL) [8] has been defined. DFL provides a
data-flow model based on four concepts: buffers, tasks, kernels and high-level
operations. Buffers abstract the concept of data, while tasks and kernels repre-
sent computations written in C++ and OpenCL on a multi-core or accelerator,
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Fig. 4. LMS library design idea

respectively. With these features DFL provides a powerful abstraction to imple-
ment HPC DSLs that run on machines composed of CPUs and accelerators.

With the collaboration of the BSC CASE department, Saiph, a DSL for solv-
ing Convection-Diffusion-Reaction (CDR) equations has been defined. In this
DSL, the programmer first specifies a physical geometry and a set of boundary
conditions on that geometry. Then, the initial state of the system is specified by
means of functions. Afterwards, the equation to simulate is specified, and the
DSL generates DFL and OpenCL code to automatically run the simulation on
a multi-GPU architecture.

In addition, some data post process can be specified in order to visualize
the output or convert it to a scientific format for analysis tools. An example
application of the DSL for CDR equations is shown in Listing 5.

1 // Defining preprocess

2 val pre = PreProcess(waveSource1, waveSource2, waveSource3)

3

4 // Defining equation

5 val wavePropagation = c*c * lapla(pressure) - dt2(pressure)

6

7 // Defining postprocess

8 val post = PostProcess(snapshoot each 10 steps)(VTK)

9

10 solve(pre)(post) equation wavePropagation to "wave"

Fig. 5. Sample DSL code for a CDR equation

From this input code, the environment generates (see Figure 6) a set of
OpenCL kernels that solve the equations and a DFL application that calls the
kernels. The DFL application is finally translated to an OmpSs application.
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Fig. 6. DSL framework structure

A prototype implementation of this entire framework has been implemented at
BSC.

5 Conclusions

This paper has reviewed the current state of the OmpSs programming model,
including new developments in the design and implementation of a family of
DSLs. While OmpSs offers a reasonable programming interface to average to
advanced programmers, more specialized languages will increase the productivity
of computational scientists in general. The goal is to achieve high programming
productivity with efficient execution in an HPC system.
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Casado, Leocadio G. I-60
Casas, Marc II-218
Castillo, Juan Carlos I-83
Castro, Fernando II-326
Celesti, Antonio II-97
Chaver, Daniel II-326
Chouhan, Pushpinder Kaur I-335
Čiegis, Raimondas I-1
Cieren, Emmanuel II-121
Cioffi-Revilla, Claudio I-440
Ciorba, Florina M. II-474
Cisternino, Antonio II-400
Clark, Mike I-251
Coelho, João I-36
Collier, Nicholson I-418
Colombet, Laurent II-121, II-462
Cong, Guojing I-153
Conti, Marco I-287, I-311
Corcho, Oscar I-452
Cordasco, Gennaro I-407
Corporaal, Henk II-146
Correia, Ivo II-182
Cushing, Reginald I-93

Dagdelen, Özgür I-48
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Pflüger, Dirk II-565
Philippe, Laurent I-371
Pickartz, Simon II-486
Pieper, Andreas II-577
Pitoiset, Samuel II-121
Pousa, Adrian II-326
Pradelle, Benôıt I-487
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Żilinskas, Julius I-71
Zsolt, Nemeth II-109


	Workshop Editors
	Preface
	Organization
	Table of Contents
	Second Workshop on Dependability andInteroperability in Heterogeneous Clouds(DIHC 2014)
	On the Role of Ontologies in the Design of Service Based Cloud Applications
	1 Introduction
	2 Clustering of Cloud Platforms
	3 Related Work
	4 Ontology Driven Framework
	4.1 Benefits of Using Ontologies
	4.2 Architecture of the Ontology Driven Framework

	5 Conclusions
	References

	Sharing Files Using Cloud Storage Services
	1Introduction
	2Access Control on Storage Clouds
	3Permissions
	4Access-granting Techniques
	4.1Per Group Predefined Permissions
	4.2Temporary Constraints
	4.3Access Control Lists – ACLs

	5Setting Per User Permissions
	5.1Sharing with Amazon S3 and Google Storage
	5.2Sharing with HP Public Cloud and RackSpace Cloud Files
	5.3Sharing with Windows Azure
	Suggestions for Improvements

	6Conclusion
	References

	Next Generation HPC Clouds: A View for Large-Scale Scientific and Data-Intensive Applications
	1Introduction
	2High Priority Areas of Improvement
	2.1Virtualization and Storage
	2.2Provider Heterogeneity
	2.3Automation
	2.4Ubiquitous Access

	3Case Study: Multi-biomarker Profile Imaging
	4Towards an Integrated Framework
	4.1High Performance Heterogeneous Cloud Infrastructure
	4.2Programming Model Runtime
	4.3Ubiquitous Access
	How the Proposed Framework Enhances the Multi-biomarker Use Case

	5Conclusions
	References

	One Click Cloud Orchestrator: Bringing Complex Applications Effortlessly to the Clouds
	1Introduction
	2Related Works
	3Architecture
	3.1The View of an Infrastructure Maintainer
	3.2The View of a Virtual Infrastructure User

	4Evaluation
	5Conclusions and Future Work
	References

	Towards Autonomous Data Sharing  Across Personal Clouds
	1Introduction
	2Related Works
	3An Approach for Autonomous Data Management among Personal Clouds
	4The Proposed Solution
	4.1The MeasureTool Component
	4.2The DistributeTool Component
	4.3The CollectTool Component

	5Evaluation
	5.1MeasureTool Evaluation
	5.2Data Distribution Evaluation

	6 Conclusion
	References

	Privacy-Preserving Search in Data Clouds Using Normalized Homomorphic Encryption
	1Introduction
	2Problem Statement
	2.1Zero’s Attack
	2.2Relations between Documents
	2.3Retrieval Efficiency

	3Suggested Technique
	4Simulations and Results
	5Analysis
	5.1The Effects of the Used Normalization on Privacy
	5.2The Effects of the Normalization on Retrieval Efficiency
	5.3The Effects of this Technique on the Time and Memory Costs

	6Conclusion
	References


	Second Workshop on Federative and Interoperable Cloud Infrastructures (FedICI 2014)
	Integrated Management of IaaS Resources
	1Introduction
	2IaaS Platforms
	3Abstraction Solutions
	4Interoperable Service Proposal and Development
	5Tests and Results
	6Conclusions
	References

	Performance Investigation and Tuningin the Interoperable Cloud4E Platform
	1Introduction
	2Related Work
	3Overview of the Cloud4E Platform
	4The rOCCI Server in Cloud4E
	5Performance Investigations and Tuning
	6Conclusion
	References

	Cloud Federation to Elastically Increase MapReduce Processing Resources
	1Introduction
	2Related Works
	3Distributed Processing Service in Cloud Federation
	4Reference Scenario
	4.1Hadoop Overview
	4.2CLEVER Overview
	4.3Integration of Hadoop in CLEVER
	4.4Amazon S3

	5Experiments
	6Conclusion
	References

	A Novel Approach for Performance Characterization of IaaS Clouds
	1Introduction
	2Related Work
	3A Novel Approach to Cloud Performance Characterization
	3.1Principles
	3.2Framework Design
	3.3Details of Valuator
	3.4Implementation

	4 Proof of Concept
	5Conclusion and Future Work
	References


	7th International Workshop on Multi-/Many-core Computing Systems (MuCoCoS 2014)
	ExaStamp: A Parallel Framework for Molecular Dynamics on Heterogeneous Clusters
	1Introduction
	2Molecular Dynamics
	3A Framework for Molecular Dynamics Simulations
	3.1Overall Parallelization Strategy
	3.2Code Specialization

	4 Performance Evaluation
	4.1Vectorization
	4.2Multithreading
	4.3Scalability
	4.4Performances on Accelerators

	5Related Work
	6Conclusion and Future Work
	References

	Optimized Selection of Runtime Mode  for the Reconfigurable PRAM-NUMA Architecture REPLICA Using Machine-Learning
	1Introduction
	2REPLICA Architecture
	2.1PRAM Mode
	2.2NUMA Mode

	3Parameterized Benchmark
	4Machine-Learning Models
	4.1Eureqa Pro
	4.2C5.0 Decision Trees
	4.3Evaluation and Comparison of Eureqa Pro and C5.0 Models

	5Related Work
	6Conclusion and Future Work
	References

	A Study of the Potential of Locality-Aware Thread Scheduling for GPUs
	1Introduction
	2Background
	3Related Work
	4Experimental Setup
	4.1Implementation in GPGPU-Sim
	4.2Benchmark Selection

	5Quantifying the Potential
	5.1Candidate Thread Schedules
	5.2Experimental Results

	6Two Case Studies
	6.1Matrix-Multiplication
	6.2Per-column Matrix Copy

	7Summary and Future Work
	References

	OpenCL Performance Portability for Xeon Phi Coprocessor and NVIDIA GPUs: A Case Study of Finite Element Numerical Integration
	1Introduction
	1.1New Processor Architectures
	1.2Finite Element Software
	1.3Current Contribution

	2OpenCL Programming Model
	3Finite Element Numerical Integration
	4Computational Aspects of Numerical Integration Algorithm
	4.1Parallelization
	4.2Arithmetic Operations and Register Accesses
	4.3Memory Accesses
	4.4Arithmetic Intensity

	5Numerical Experiments
	5.1Parametrized Implementation of Numerical Integration Algorithm
	5.2Hardware Used for Testing
	5.3Results

	6Conclusions
	References

	Eve: A Parallel Event-Driven  Programming Language
	1Introduction
	2Approach
	3Implementation
	4Evaluation
	4.1Echo Server
	4.2Atomic Counter

	5Related Work
	6Conclusions and Future Work
	References

	Dependency-Based Automatic Parallelization  of Java Applications
	1Introduction
	2Related Work
	3Methodology
	3.1Signature Extraction
	3.2Dependency Processing
	3.3Optimization
	3.4Code Generation

	4Evaluation
	5Conclusion and Future Work
	References

	A Scalable Parallel Approach  for Subgraph Census Computation
	1Introduction
	2The Subgraph Census Problem
	2.1Related Work

	3Sequential FaSE Algorithm
	3.1Enumeration
	3.2Using a Tree to Encapsulate Isomorphism Information

	4Parallel FaSE Algorithm
	4.1Overall View
	4.2Parallel Subgraph Frequency Counting
	4.3Work Request
	4.4Work Sharing
	4.5Work Resuming

	5Experimental Results
	6 Conclusion
	References

	Lace: Non-blocking Split Deque for Work-stealing
	1Introduction
	1.1Task-Based Parallelism
	1.2 Work-Stealing
	1.3 Work-Stealing Deques
	1.4Contributions

	2Preliminaries
	3Algorithm
	3.1Design Considerations
	3.2Algorithms
	3.3Extensions

	4Evaluation
	4.1Benchmarks
	4.2Results
	4.3Extending Leapfrogging

	5 Conclusion
	References

	Evaluating Execution Time Predictability of Task-Based Programs on Multi-Core Processors
	1Introduction
	2Related Work
	3Execution Time Predictability of Task-Based Programs
	4Experimental Setup
	5Evaluation
	5.1Per-Task-Instance Performance Analysis
	5.2Predictability of Irregular Behavior

	6Conclusions and Future Work
	References

	SchedMon: A Performance and Energy Monitoring Tool for Modern Multi-cores
	1Introduction
	2Related Work
	3Scheduler-Based Monitoring Tool: SchedMon
	3.1SchedMon's Linux Driver
	3.2Smon: User-Space Tool

	4Evaluation Results
	4.1Performance Analysis: Application Interference
	4.2Scheduling Information for Highly Parallel Applications
	4.3Application Profiling at the Level of Function Calls
	4.4CARM and Power Evaluation
	4.5Overhead Discussion

	5Conclusion
	References

	Exploiting Hidden Non-uniformity of Uniform Memory Access on Manycore CPUs
	1Introduction
	2Background and Motivation
	3The A* Algorithm
	4Memory Block Latency-Aware Memory Allocator
	5Evaluation
	5.1Experimental Setup
	5.2Results

	6 Discussion
	7Related Work
	8Conclusion and Future Work
	References


	Third Workshop on On-chip Memory Hierarchies and Interconnects (OMHI 2014)
	Characterization of a List-Based Directory Cache Coherence Protocol for Manycore CMPs
	1Introduction
	2A Coherence Protocol Based on Simply-Linked Lists
	2.1How Read Misses Are Managed
	2.2How Write Misses Are Managed
	2.3How Replacements Are Managed

	3Directory Memory Overhead Analysis
	4Evaluation Environment
	5Evaluation Results
	5.1L1 Miss Latency
	5.2Network Traffic
	5.3Execution Time

	6Conclusions
	References

	Coarse/Fine-grained Approaches for Pipelining Computing Stages in FPGA-Based Multicore Architectures
	1Introduction
	2Fine-grained Approaches (FG)
	2.1FG Scheme Using Standard FIFO
	2.2FG Scheme with ISB (Inter-Stage Buffer)
	2.3FG Scheme with ISB in Consumer

	3Coarse-grained Approaches (CG)
	3.1CG Scheme with One FIFO
	3.2CG Scheme with Two FIFOs

	4Experimental Results
	4.1Fine-grained Results
	4.2Coarse-grained Results

	5Related Work
	6Conclusions
	References

	Improving Energy and Performance with Spintronics Caches in Multicore Systems
	1Introduction
	2Experimental Methodology
	3Converting First Level from CMOS to STT-MRAM
	3.1Performance Impact With L1 STT-MRAM
	3.2Energy Consumption With L1 STT-MRAM

	4Addition of Fully-Associative Level-0 Cache
	4.1Energy Consumption With Level-0 Cache

	5Related Work
	6Conclusions
	References


	7th Workshop on Productivity and Performance Tools for HPC Application Development (PROPER 2014)
	Performance Measurement for the OpenMP 4.0 Offloading Model 
	1Introduction
	2Related Work
	3OpenMP Instrumentation
	3.1OMPT
	3.2OPARI2

	4Measuring the OpenMP 4.0 Offloading Model
	4.1OpenMP 4.0 Target Directives
	4.2Measurement Approach
	4.3Extending OMPT with Support for Target Directives

	5Integration into Score-P and OPARI2
	5.1Measurement Control Flow
	5.2Extensions to the POMP2 Interface
	5.3MIC Performance Tools Interface
	5.4Visualization

	6Experiments on Intel Xeon Phi
	7Conclusion and Future Work
	References

	Bypassing the Conventional Software Stack Using Adaptable Runtime Systems
	1Introduction
	2Related Work
	3The Approach
	3.1Runtime System
	3.2Proxy Manager

	4Evaluation
	4.1Proxy Overhead
	4.2Latency Sensitivity
	4.3Bandwidth Sensitivity

	5Future Work
	6Conclusions
	References


	Second Workshop on Runtime and Operating Systems for the Many-Core Era (ROME 2014)
	Comparison of Three Popular Parallel Programming Models on the Intel Xeon Phi
	1Introduction
	1.1Intel Xeon Phi
	1.2Parallel Programming Models

	2Experimental Setup
	3Single-Programming Benchmarks
	3.1Fibonacci
	3.2MergeSort
	3.3MatMul

	4Discussion
	5Multiprogramming
	5.1Related Work

	6Conclusion
	References

	Exploring the Throughput-Fairness Trade-off on Asymmetric Multicore Systems
	1Introduction
	2Motivation
	3The Prop-SP Scheduler
	3.1The Algorithm
	3.2Determining the Speedup

	4Experimental Evaluation
	5Related Work
	6Conclusions
	References

	Assembly Operations for Multicore Architectures Using Task-Based Runtime Systems
	1Introduction
	2Related Work
	3Background
	3.1Assembly Operations on Multicore Systems
	3.2The StarPU Runtime System
	3.3The PaRSEC Runtime System

	4Taskified Assembly Operation
	4.1Scheduling Strategies for Taskified Assembly Operations

	5Experimental Results
	6Conclusion
	References

	Shared Memory in the Many-Core Age
	1Introduction
	2Software DSMs in the Many-Core Age
	2.1Common Software DSM Mechanisms
	2.2From Single-Core to Many Cores
	2.3Memory Models and Consistency Protocols

	3Elementary Operations for Many-Core DSMs
	3.1Communication Mechanisms
	3.2Memory Management, Replication, and Remote Access
	3.3Access Tracking

	4Conclusions and Future Directions
	References


	First Workshop on Techniques and Applications for Sustainable Ultrascale Computing Systems(TASUS 2014)
	The PerSyst Monitoring Tool
	1Introduction
	2Related Work
	3The Transport System
	4Estimation of Quantiles
	5Collection of Jobs
	6Results
	7Conclusions
	References

	A Cloudification Methodology for Numerical Simulations
	1Introduction
	2Related Work 
	3Methodology Description 
	3.1Application Analysis
	3.2Cloudification Process Design

	4Case Study 
	4.1Analysis
	4.2Cloudification

	5 Evaluation 
	5.1Execution Environments 
	5.2Results Discussion

	6Conclusions 
	References

	Paralldroid: Performance Analysis of GPU Executions
	1Introduction
	2The Development Model in Android
	3Paralldroid
	4Computational Results
	4.1Performance Analysis in the Android Programming Models
	4.2Performance Analysis on CPU and CPU+GPU Executions

	5Conclusion
	References

	Accurate Blind Predictions of OpenFOAM Energy Consumption Using the LBM Prediction Model
	1Introduction
	2The LBM Model
	2.1Definitions
	2.2Model Definition
	2.3Limits of LBM

	3Predicting OpenFOAM Energy Consumption and Completion Time
	3.1Prediction Results

	4Conclusions
	References

	High-Level Topology-Oblivious Optimization  of MPI Broadcast Algorithms on Extreme-Scale Platforms
	1Introduction
	2Preliminaries and Previous Work
	2.1Previous Work

	3 Hierarchical Optimization of MPI Broadcast Algorithms
	3.1Hierarchical Flat and Linear Tree Broadcast
	3.2Hierarchical Pipelined Linear Tree Broadcast
	3.3Hierarchical Binary and Binomial Tree Broadcast
	3.4Hierarchical Scatter-Ring-Allgather Broadcast
	3.5Hierarchical Scatter-Recursive-Doubling-Allgather Broadcast
	3.6Hierarchical Split-Binary Tree Broadcast
	3.7Summary of Theoretical Analysis

	4Experiments
	4.1Experiments on BlueGene/P
	4.2Experiments on Grid'5000

	5 Conclusion
	References


	7th Workshop on Un Conventional High-PerformanceComputing (UCHPC 2014)
	Improving Node-Level MapReduce Performance Using Processing-in-Memory Technologies
	1Introduction
	2Background and Related Work
	3Proposed PIM Architecture
	4MapReduce Using PIM
	4.1Intra-node MapReduce Using PIM

	5Experiments and Results
	5.1Experiments
	5.2Performance Analysis
	5.3Energy Consumption
	5.4Input Exceeding Physical Memory Capacity
	5.5Bandwidth Utilization and Link Power

	6Conclusion and Future Work
	References

	On Portability, Performance and Scalability of an MPI OpenCL Lattice Boltzmann Code
	1Introduction
	2OpenCL
	3Lattice Boltzmann Methods
	4Code Implementation
	5Results
	6Conclusions and Outlook
	References

	Matrix-Free Finite-Element Operator Application on Graphics Processing Units
	1Introduction
	2A Matrix-Free Finite-Element Method
	2.1Computation of the Local Matrix
	2.2Matrix Free Operator Application
	2.3Parallelization

	3 Graphics Processors
	4Experiment Code
	4.1Matrix-Based Implementations
	4.2Matrix-Free Implementations

	5 Numerical Experiments
	5.1Results

	6Conclusions
	References

	Dynamic Load Balancing with Pair Potentials
	1Introduction
	2Tasks Scheduling with Pair Potentials
	3Evolution of a Set Charged Particles
	4Potential Test Cases
	4.1Three Potentials

	5 Experiments
	5.1Experimental Results
	5.2Complex Cases

	6Case Study: Coddex
	7Conclusions and Future Work
	References

	Analysis of Parallel Applications on a High Performance–Low Energy Computer
	1Introduction
	2Related Work
	3Aspects of Application Analysis on Future Computing Systems
	3.1Simulation and Analysis Workflow
	3.2Modeling Applications
	3.3Modeling a High Performance–Low Energy Computer

	4Modeling and Simulation Results
	4.1Mapping Applications to Systems
	4.2Application Performance for Different Communication Models

	5 Conclusion and Future Work
	References


	9th Workshop on Virtualization in High-Performance Cloud Computing (VHPC 2014)
	Migration Techniques in HPC Environments
	1 Introduction
	2 Process Migration in HPC Environments
	2.1 Process-Level Migration
	2.2 Virtual Machine Migration
	2.3 Container-Based Migration

	3 Evaluation
	3.1 Overhead
	3.2 Migration Time

	4 Conclusion
	References

	Planning Live-Migrations to Prepare Servers for Maintenance
	1Introduction
	2Related Works
	3Analysis of Migrations Plans
	3.1Environment
	3.2Experiments

	4Toward Smarter Migration Plans
	5Conclusion and Future Work
	References

	Virtual Cluster Deployment with Dynamically Detachable Remote Shared Storage
	1Introduction
	2Related Work
	3Our Proposed Method
	4Implementation
	4.1Use of Remote Shared Storage with Local Caching
	4.2Skilfish: Providing Delayed Transfer and Dynamic Switchingof the Base Image

	5Evaluation
	5.1Experiment Setup
	5.2I/O Performance of the VM Instance
	5.3Performance of the Virtual Cluster Deployment

	6Conclusion
	References

	Hecatonchire: Towards Multi-hostVirtual Machines by Server Disaggregation
	1Introduction
	2Vision and General Approach
	2.1Server Disaggregation

	3Heca Architecture and Implementation
	3.1Transparent Memory Scale-out
	3.2Cloud Management Integration

	4Experimental Demonstration of Heca functionality
	5Related Work
	6Conclusion
	References


	Workshop on Software for Exascale Computing (SPPEXA 2014)
	EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications
	1The EXA-DUNE Project
	2Hybrid Parallelism in DUNE
	2.1UMA Concept
	2.2Finite Element Assembly
	2.3Sparse Linear Algebra and Solvers

	3Multiscale Methods
	4A First Porous Medium Flow Application
	5Conclusion
	References

	DASH: Data Structures and Algorithms with Support for Hierarchical Locality
	1Introduction
	2An Overview of DASH
	3DART: The DASH Runtime Layer
	4Using DASH in Applications
	5Related Work
	6Conclusion and Future Work
	References

	ExaStencils: Advanced Stencil-Code Engineering
	1The Challenges of Exascale Computing
	2ExaStencils Application Domain: Stencil Codes
	3ExaStencils Approach: Domain-Specific Optimization
	3.1Domain-Specific Source Languages
	3.2Domain-Specific Optimization at Every Refinement Step

	4ExaStencils Workflow
	4.1Algorithmic Engineering
	4.2Domain-Specific Representation and Modelling
	4.3Domain-Specific Optimization and Generation
	4.4Loop Parallelization
	4.5Preliminary Code Generator

	5Conclusions
	References

	EXAHD: An Exa-scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond
	1Introduction
	2Plasma Physics and the Combination Technique
	3Exa-Challenges and -Solutions
	3.1Load Balancing
	3.2Global Communication
	3.3Fault Tolerance
	3.4GPU Computing
	3.5Numerics

	4Conclusions and Future Work
	References

	ESSEX: Equipping Sparse Solvers for Exascale
	1Sparse Solvers for Exascale Computing
	2ESSEX Project Overview
	3Results and Work in Progress
	3.1Applications
	3.2Algorithms
	3.3Basic Building Blocks
	3.4Holistic Performance Engineering 

	4Conclusions
	References

	Catwalk: A Quick Development Path  for Performance Models 
	1Introduction
	2Automated Performance Modeling
	2.1Related Work
	2.2 Model Generation
	2.3 Evaluation Summary
	2.4Case Study
	2.5Compiler-Driven Performance Modeling

	3 Workflow Manager
	4Modeling OpenMP Performance
	5Scalability of the Multigrid Solver in UG4
	6Conclusion
	References

	Task-Based Programming with OmpSs and Its Application
	1Introduction
	2StarSs Overview
	3OmpSs Development Environment
	4DSLs on Top of OmpSs
	5Conclusions
	References


	Author Index



