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Abstract. We introduce a simple yet effective 3D human pose tracking
from a single depth sensor by using the Sum of Gaussians (SoG) mod-
els. Both the human body model and the point cloud converted from a
depth map are represented by two different SoG models, which allow us
to compute and optimize their similarity analytically. We have two main
contributions in this work. The first is we extend the SoG-based similar-
ity by integrating two additional terms to enhance the robustness and
accuracy of 3D pose tracking. One is a visibility term to handel the in-
complete data problem and the other is a continuity term to smooth the
motion estimation. Second, we develop a validation and re-initialization
strategy to detect and recover tracking failures. Our algorithm is practi-
cally promising that neither involves training data nor a detailed mesh
or complicated 3D model. The experimental results are impressing and
competitive when compared with state-of-the-art algorithms on a bench-
mark dataset considering the efficiency and simplicity of our method.

1 Introduction

Human pose estimation from images is a highly active research topic in the field
of computer vision, due to its wide applications. Recently, the popularity of low-
cost RGB-D sensors (Kinect) have further triggered a large body of research due
to their cost-effectiveness and great performance. The existing approaches can be
roughly categorized into three groups, i.e., discriminative, generative and hybrid
ones. Discriminative approaches extract features in a depth map and detect the
best pose by either searching in a database or directly predicting the location
of body parts according to training data, e.g. [1]. This kind of methods rely on
a large training dataset. Generative methods aim to estimate the parameters
of a human model that best explains the observation. Most generative methods
involve correspondence estimation between the model and the observation, and
then iteratively update the pose and correspondence [2, 3]. One exception is [4],
where a Gaussian Mixture Model based energy function along with an articulated
structure was developed. While most of the generative approaches are capable
of achieving high accuracy, they normally require a good initialization and the
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Fig. 1. The framework of our tracking system

computational complexity is usually high. The hybrid approaches combines both
discriminative and generative approaches due to their complementary benefits
[5, 6], however, the systems are usually complex. For fast pose estimation, a sum
of Gaussians (SoG) model was developed in [7, 8] where both the human body
model and the image are represented by two different SoG models. Similarly,
this strategy was applied in [9] for a hand motion tracking. The SoG-based
method is succinct and efficient with a gradient-based optimization. However,
it has never been evaluated on any benchmark depth dataset for human pose
estimation. Also, due to the incomplete data problem and multiple local minima
of the objective function, pose tracking is not reliable, which inspires this work.

In this paper, we propose a novel SoG-based 3D pose tracking framework,
which has several advantages over those in [7, 8]. First, we directly partition
the point cloud date using Octree (instead of quad-tree) for SoG representation.
Secondly, we incorporate a visibility term to handle the incomplete data prob-
lem and a continuity term to penalize large motion variation during tracking.
Third, we develop a validation and re-initialization strategy to detect and recover
tracking failures. Fourth, to speed up the convergence, we use the Quasi-Newton
optimization over the joint angles represented by quaternion. Compared with
the algorithms using database or a detailed mesh model, our method is simple
yet effective and efficient. We evaluate our proposed algorithm on a public depth
dataset [10] and compare it with state-of-the-art methods. The experimental re-
sults are competitive and promising considering the efficiency and simplicity of
our method. Our system is shown in Fig. 1. After simply segmenting the target,
we represent the noisy point cloud as a SoG model using Octree. Then, the SoG-
based body model is fitted into the SoG-represented observation for tracking the
articulated motion by minimizing an energy function. In the following sections,
we will introduce each step in detail.

2 SoG Representation of Human Body and Point Cloud

2.1 Sum of Gaussians Preliminaries

A single un-normalized 3D Gaussian G has the form:

G(x) = exp

(
−||x− μ||2

2σ2

)
, (1)
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where x is a vector in the 3D space R
3, σ2 and μ ∈ R

3 are the variance and the
mean respectively. Several spatial Gaussians are combined as a Sum of Gaussians
K in [7] to describe a volumetric model:

K (x) =

n∑
i=1

Gi(x), (2)

Given two SoG representations Ka and Kb, a similarity of the two models is
defined as the integral of the product of Ka and Kb over the 3D space Ω:

E(Ka,Kb) =

∫
Ω

∑
i∈Ka

∑
j∈Kb

Gi(x)Gj(x)dx

=
∑
i∈Ka

∑
j∈Kb

Eij , (3)

where Eij is the similarity measurement of two Gaussian components:

Eij =

(
2π

σ2
i σ

2
j

σ2
i + σ2

j

) 3
2

exp

(
−||μi − μj ||2
2(σ2

i + σ2
j )

)
, (4)

where μi and μj are the centers of Gaussians Gi and Gj , σ
2
i and σ2

j are the
corresponding variances. The Equ. (3) and (4) explain that the more similarity
of two SoG models over 3D space means larger value E, resulting in an energy
function. We notice that Equ. (4) is a continuous and differentiable function,
which allows an analytical derivative computation for fast optimization.

2.2 Quaternion-Based Articulated Human Model

Our human body model comprises a skeleton and a SoG model KM attached on
it. Similar to [7, 8], we simplify the body model using 57 3D isotropic Gaussian
components which is much less than the number of vertices in a mesh model, as
shown in the middle part of Fig. 1 (Articulated SoG-based body model). The
skeleton is constructed by a tree structure, where each rigid segment is defined
in its local coordinate system and can be transformed to the world coordinate
system via a 4× 4 matrix Tl:

Tl = Tpar(l)Rl, (5)

where Rl denotes a relative transformation from segment l to its parent, par(l)
indicates the parent of segment l. If l is the root joint, Troot is the global trans-
formation. In fact, the rotation in each Rl constructs the pose parameters.

We use quaternion to represent the 3D rotation considering its benefit on the
gradient-based optimization due to its continuousness and less constraints. We
have L joints (L = 10 marked as red stars in Fig. 1), each of which allows a 3
DoF rotation represented by a four elements quaternion vector. Integrating one
global translation at the hip (root) joint, we totally have 43 elements in the pose
parameters Θ. Because the estimation of subject-specific skeleton is beyond the
scope of this work, we use a standard adult skeleton and roughly scale it to the
size of observations in a pre-processing step.
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2.3 SoG Representation of Point Cloud with Octree

We approximate the raw point cloud with a SoG representation. In [7, 8], a
quad-tree is used to cluster the image pixels with similar depth into a larger
square, and then each of them is approximated by a 2D Gaussian. To measure
the similarity between the SoG body model KM and the SoG depth image KI ,
KM has to be projected into 2D image or KI has to be converted into 3D space,
complicating the system in pre-processing step. In this paper, we employ the
Octree to directly partition the point cloud in 3D space .

Octree is a useful shape representation tool to partition a 3D space by recur-
sively subdividing it into eight octants. We further develop our own partition
criterion in the Octree to adapt our algorithm. If the standard deviation in depth
direction of the points in a Octree node is larger than a threshold ηdepth, we sub-
divide the node into eight sub-nodes, up to a maximum Octree level of typically
nlevel. Then, each cube (leaf note of Octree) is represented by an isotropic Gaus-
sian Gi, where μi is the mean of all the points in one cube and σ2 is set to be
the square of half-length of a side of the cube. Consequently, we have the SoG
representation KP of point cloud. Adjusting the maximum level of the Octree
nlevel and depth threshold ηdepth can control the number of leaf notes. The SoG
representation of point cloud after Octree partitioning is shown in Fig. 2, where
we can observe that large number of points are clustered into small number of
isotropic Gaussians and the noise are restrained, which promote the efficiency
and robustness of our system.

Fig. 2. An illustration of a SoG representation of point cloud. (a) point cloud; (b) the
partitioning results (points in one color have similar depth); (c) a SoG representation.

3 Proposed Tracking Algorithm

Our tracking algorithm is to estimate the pose parameters Θ from a set of con-
secutive point cloud by minimizing an energy function, which is mainly based
on the SoG similarity with a visibility and a continuity terms. We employ a
gradient-based optimization over parameters Θ for fast pose estimation. To re-
cover tracking failures, we develop a validation and re-initialization procedure.
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3.1 Objective Function

Similarity Term. The main part of our energy function is measuring the sim-
ilarity Esim(Θ) between the body model in pose Θ denoted as KM (Θ) and
the SoG-based point cloud KP . Given two SoG models, it is straightforward to
calculate Esim(Θ) with Equ. (3) and (4). One possible situation is two or more
body segments overlap on the same part of the observation and thereby some
Gaussians in the observation could contribute several times to the energy func-
tion, resulting a wrong similarity. To avoid this, we modify Equ. (3) to clamp
the energy of each Gaussian in observation:

Esim(Θ) =
∑
i∈KP

min

⎛
⎝
⎛
⎝ ∑

j∈KM

Eij(Θ)

⎞
⎠ , ωEii

⎞
⎠ , (6)

where Eii is the maximum energy of a Gaussian in observation, ω is a constant
(≥ 1) to scale Eii. It is worth mentioning that the modified function Esim(Θ) is
still continuous, but not differentiable everywhere, i.e. the derivative at exactly
the point where

∑
j∈KM

Eij(Θ) = ωEii does not exist. However, the chance of
evaluating the derivative at exactly that point is nearly zero so that the modified
Esim(Θ) can still be regarded as derivable in practice.

Visibility Term. To handel incomplete data like Fig. 3 (a), we develop a
visibility term to identify which Gaussian components in body model are invisible
so that they will not be involved in the similarity computation. We develop a
visibility detector based on the projection overlap area using previous estimated
pose. We first orthographically projected Gaussian components of the body into
a 2D image along depth direction. As shown in Fig. 3 (b), we obtain a set of
circles whose radii are the standard deviation of the Gaussians. Then we compute
the overlap area of each circle pair. If the overlap area of any two circles is larger
than a percentage (e.g. 1

3 ) of the area of the smaller circle, we regard it as a
occlusion. The Gaussian component which is closer to the camera is remained,
thereby the occluded ones are excluded during the calculation of similarity.

Fig. 3. (a) An example of incomplete observation. (b) Two body models and their 2D
projections, where the red circles on torso and right arm denote the occluded body
components; the left arm in yellow and part of right arm in green are remained.
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Continuity Term. To penalize large motion change, we augment the energy
function with a continuity term for smoothing the parameters estimation:

Econ(Θt) =

Nl∑
l=1

[(
Θ

(l)
t −Θ

(l)
t−1

)
−
(
Θ

(l)
t−1 −Θ

(l)
t−2

)]2
, (7)

where Θt is the pose in current frame and Θt−1,Θt−2 are previous last two
poses; Nl is the number of elements in vector Θ.

Full Objective Function. Maximizing the similarity is equivalent to minimiz-
ing its negative. The continuity term should be minimized to penalize the large
motion change. Consequently, we have a full objective function as:

Θ̂ = argmin
Θ

{ ∑
i∈KM

−E
(i)
sim(Θ) · V isibility(i) + λconEcon(Θ)

}
, (8)

where i represents the index of body Gaussian components, λcon is a weight to
balance the terms and the V isibility is defined by:

V isibility(i) =

{
0 if ith Gaussian is invisible,
1 otherwise.

(9)

3.2 Gradient-Based Optimization

Due to our derivable SoG-based energy function and the beneficial features of
quaternion-based rotation, we can analytically derive the derivatives and em-
ploy a gradient-based optimizer. Different with a variant of steepest descent in
[7][8], we employ a Quasi-Newton optimization (L-BFGS) because of its faster
convergence. Below, we provide the derivative of E with respect to parameters
Θ in details. For simplicity, we ignore the visibility term and have,

∂E(Θ)

∂Θ
= −∂Esim(Θ)

∂Θ
+ λcon

∂Econ(Θ)

∂Θ

= −
∑
i∈Ka

∑
j∈Kb

∂Eij(Θ)

∂Θ
+ λcon

∂Econ(Θ)

∂Θ
, (10)

We denote an un-normalized quaternion r = (r1, r2, r3, r4)
T , which is normal-

ized to a unit quaternion p = (x, y, z, w)T according to p = r
‖r‖ . We explicitly

represent the pose Θ as {t, r(1), ..., r(L)}, where t ∈ R
3 defines a global trans-

lation and each normalized quaternion p(l) ∈ R
4 defines the relative rotation of

joint l. We can explicitly expand Equ. (4) and derive
∂Eij

∂t and
∂Eij

∂r(l)
=

∂Eij

∂p(l)

∂p(l)

∂r(l)
.

Since Econ(Θt) in Equ. (7) is a standard quadratic form, we have its gradient
expression directly:

∂Econ(Θt)

∂Θ
(l)
t

= 2
[(

Θ
(l)
t −Θ

(l)
t−1

)
−
(
Θ

(l)
t−1 −Θ

(l)
t−2

)]
, (11)

The initialization of Θt is the estimated pose in previous frame and we assume
the pose in the first frame is close to a pre-defined pose as many systems use.
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3.3 Validation and Re-initialization

One limitation of the local optimizer is the tracking could get stuck in a local
minimum and cannot recover automatically. This motivates us to develop a
validation process to supplement our tracking with a re-initialization. The key
issue is how to detect the tracking fails. To this end, we propose a method to
measure how well the reconstructed pose match the observation by evaluating the
similarity defined in Equ. (4). Specifically, when a certain percentage of adjacent
Gaussians in observation are not overlapped by any part of the body model, it
indicates that the tracking is trapped into a local minimum. The procedure is
shown in Fig. 4. We first compute the energy of each Gaussian in observation with
all the body model Gaussians with Equ. (4). Then, we collect those Gaussians
whose energy are smaller than a threshold γ, which means they may not be
overlapped. If the number of these Gaussians is larger than a percentage η of
the total number of Gaussians in observation, a re-initialization will be triggered.
Many re-initialization strategies could be used. In this work, we simply use the
mean value of previous last two poses, which has been proved to be valid in
our experiments. Another solution is using a linear auto regression to predict a
re-initialization pose from previous estimation.

Fig. 4. We mark the Gaussians which are not overlapped by any body parts in green.
Once there are certain number of these green points, a re-initialization will be triggered.

4 Experimental Results

4.1 Experiment Setup

Test Database. We use a benchmark dataset SMMC-10 [10] to evaluate our
algorithm and compare with other state-of-the-art methods. SMMC-10 dataset
captures 28 motion sequences, including various motion types. The ground truth
is the marker positions which are recorded by an optical tracker.

Error Metrics. One error metrics is to directly measure the average Euclidean
distance error, which is calculated per marker per frame:

ē =
1

Nf

1

Nm

Nf∑
k=1

Nm∑
i=1

‖pi − v
(i)
disp − p̂i‖, (12)
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where Nf and Nm are the number of frames and markers; pi and p̂i are ith

marker location of ground truth and the estimation, respectively; v
(i)
disp is ith

marker displacement vector. Because the definitions of marker location across
different body model are diverse, a inherent displacement vdisp should be sub-
tracted from the error. To obtain the displacement, similar to many papers,
we manually define our marker locations in 30 frames from Sequence #6 and
compute the average differences between our marker system and ground truth
marker definition. Another error metrics is the percentage of correctly estimated
joints whose Euclidean distance errors are less than 0.1m.

Parameters. Some empirical parameters we used throughout our experiments
is listed. In Octree partitioning, the threshold ηdepth and maximum Octree level
nlevel are set to 20mm and 6, respectively. The weight λcon in Equ. (8) is set to
0.2. In validation and re-initialization, the energy threshold γ and the percentage
η are 0.2 and 5%, respectively.

4.2 Quantitative Results

The Effect of Different Terms. To exhibit the effect of each term developed in
our tracking algorithm, we prepare four sets of experiment, where the continuity
term, validation and re-initialization and the visibility term are incorporated
into the similarity energy function successively. Their distance errors are shown
in Fig. 5 (a), where we find that the tracking accuracy gradually promote with
the extra terms. Especially, in Sequence 24-27, where the motions are more
complex, these terms make a lot contribution for the accuracy improvement.
Fig.5 (b) and (c) illustrate the error of left elbow in Sequence 24 and the error
of right shoulder in Sequence 27 respectively. It is clear to observe that using
extra terms (in red) achieves smaller error than without them (in blue), which
demonstrates the effectiveness of our extra terms.

Fig. 5. The effect of different terms in distance error (cm). “Sim”, “Con”, “Val” and
“Vis” denote similarity, continuity, validation and visibility terms, respectively.

The Accuracy Comparison with State-of-the-Art Methods. In Fig. 6,
we exhibit the accuracy comparison by average distance error metric and cor-
rect percentage metric within several state-of-the-art algorithms. Our approach
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achieves the accuracy of 5.4 centimeter testing on SMMC-10 dataset and it even
outperforms [11] where extra inertial sensors were used. While our method is not
the most accurate one, it is much simpler and lower computational complexity
than other methods, where a detailed mesh model and a large scale dataset are
necessary. Also, in Sequences 24-27 where the motions are more complicated,
our tracker can still achieve comparable accuracy. In Fig. 6 (b), the accuracy of
our algorithm is relatively low at the left elbow and two wrist joints. The main
reason is our simple and rigid SoG body model is less representative to handle
very complex and detailed motion in Sequence 27.

Fig. 6. (a) The accuracy comparison with state-of-the-art methods [5, 6, 10–12] in
distance error (cm). Except [10] and ours, all the others use a database and a mesh
model. (b) The correct percentage comparison with state-of-the-art methods [1, 4, 10].

Efficiency Analysis. In generative methods, the computational complexity is
expressed as O(MN), where M is the number of vertices in a mesh model and
N is the number of points in observation. Due to the SoG representation, the
M and N in our approach is much less than them in other methods, leading
to a lower computational complexity. Currently, the efficiency is evaluated on
the Matlab platform using a standard desktop computer. We allow a maximum
50 iterations in the first frame and then 20 iterations in the following frames,
which has been proved sufficient in all the experimental dataset. The average
processing rate is 5 fps in Matlab without code optimization.

Fig. 7. (a) Estimation results. (b) The effect of additional terms.
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4.3 Qualitative Results

We first show some pose estimation results to illustrate the performance of our
method using the stick man in Fig. 7 (a) and visually compare the effect of extra
terms in Fig. 7 (b). We can observe that the developed terms can help to solve
the incomplete data problem and recover tracking failures.

5 Conclusion

We have introduced an efficient, accurate and robust human pose tracking algo-
rithm based on a simple yet effective Sum of Gaussians model. To enhance our
tracking algorithm, we build up a visibility term to handel the incomplete data
problem. Also, a validation and re-initialization has been developed to recover
tracking failures. We evaluate our proposed tracker on a public dataset. The
experimental results are impressing considering neither a database nor a mesh
model is involved. Our method well balances the accuracy and the systematic
complexity for a fast motion capture system and has potentials in mobile devices.
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