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Abstract. We present the framework for a novel structure from motion
(SFM) pipeline to generate 3D reconstructions of low-resolution hyper-
spectral imagery (HSI). Generating 3D models from a sequence of raw
HSI datacubes, where each image pixel retains its spectral content of the
scene, significantly expands the analysis currently possible with HSI. In
addition to traditional HSI anomaly detection and spectral matching, a
3D spatial model of the scene allows for additional viewing from pre-
viously undefined viewpoints, digital elevation map generation, and en-
hanced object classification capabilities. State-of-the-art SFM techniques
are utilized and enhanced by leveraging the spectral content recorded at
each image pixel. We explore the potential of this HSI SFM pipeline us-
ing an experimental aerial data set collected using a stabilized, 160-band
hyperspectral sensor on an aerial platform.

1 Introduction

Advancements in hyperspectral imaging (HSI) sensor technology has allowed
for the integration of HSI sensors into small, lightweight gimballed payloads
suitable for off-nadir aerial data collection [1]. With more and more HSI data
being utilized for motion-based applications including medical-based imaging [2],
geological surveying [3], and surveillance/reconnissance [4], the desire to process
this spectral content in an intuitive 3D environment has clear advantages. Several
researchers have previously integrated spectral analysis into 3D reconstructions.
Nieto et al. fuse hyperspectral classifications with laser-based range data to
classify 3D geological maps [5]. Similarly, Kim et al. integrate a hyperspectral
data with a 3D scanner to study the spectral reflectance of objects [6]. Liang et
al. take this a step further and utilize hyperspectral data to accurately segment
plants from their background in order to accurately construct 3D models from
individual spectral bands [7].

The method presented here seeks to leverage spectral content directly for
building a 3D reconstruction of spectral scene content collected on a gimbal-
stabilized aerial platform. Feature points are first extracted frommultiple subsets
of the HSI spectrum, and then correlated between views using a combination of
traditional structure from motion (SFM) techniques and spectral matching. One
issue that can lead to the weakening of pose estimation algorithms is incorrect
feature matching. The integration of a spectral match verification step helps to
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eliminate mismatched feature points. Verified matches from each spectral subset
are combined and used to compute the overall camera motion between views. A
3D model is constructed from these camera motions, where the spectral content
of each 3D point is stored for any form of post-processing analysis typically
performed on HSI data, including anomaly detection and spectral match filter
generation. Preliminary results are promising, and show that the spectral content
can be utilized to improve feature detection and feature matching steps in a
SFM pipeline. The rest of paper is organised as follows. Sect. 2 describes the
hyperspectral imaging system. Sect. 3 introduces the proposed 3D modelling
method. Sect. 4 presents the experimental results, with conclusions and future
work given in Sect. 5.

2 Hyperspectral Imaging

Hyperspectral imaging is a technique which collects densely sampled spectral
information for each pixel in the image of a scene. Each data collect generates
a three-dimensional (x, y, λ) dataset, called a hyperspectral datacube. Rather
than the three-band (red, green, blue) collection of standard visible cameras,
the increased spectral sample density of an HSI cube allows for the enhanced
identification of in-scene objects using their full-spectral signature.

There are various techniques used to create HSI data cubes, including both
spatial and spectral scanning, the choice of which depends on the specific ap-
plication. We limit our discussion here to data cubes generated by the spa-
tial scanning technique. In this approach, the two-dimensional focal-plane array
(FPA) is representative of a full slit spectrum (x, λ), with the third dimension
(y) being generated through a line-scanning motion. The hardware used in our
experiments is a NRL developed gimbal-stabilized short-wave infrared (SWIR)
airborne hyperspectral imaging system, with a focal plane array of 1280× 1024
pixels, binning SWIR wavelengths into 190 individual spectral bands. The sensor
spectrometer, detector array, and optics are integrated into a Wescam MX-20
gimbal system highly stabilized for cued operations at long standoff distances,
and can image objects on line of sight at any relative bearing from the platform.

High-fidelity stabilization is a key factor in the application of our technique
without in-scene calibration objects. Without this level of stabilization, the ir-
regular movement of the line-scanning platform introduces instabilities in the in-
trinsic camera parameters within each collected image. These instabilities make
standard SFM techniques inadequate for extracting camera pose information,
and therefore a consistent 3D reconstruction of the scene. Various laboratory
techniques have been developed in an attempt to calibrate line-scanning cam-
eras, however assumptions are made about the stability of the line-scanning that
typically do not extend to aerial HSI imagery, such as a constant scan speed [8].
In the absence of these assumptions, the imaging in-scene of specially fabricated
calibration objects is often required.
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3 Structure from Motion Pipeline

A typical SFM pipeline consists of five main steps; feature extraction, feature
matching, baseline triangulation, adding remaining views, and bundle adjust-
ment [9]. In our proposed pipeline, the first two steps reduce the 3D datacubes
into a series of matched feature point correspondences between images. These
feature matches can then be used to generate a 3D model using state-of-the-art
SFM techniques.

3.1 Spectral Feature Extraction

A variety of 2D images can be generated from each HSI datacube through the
combination of spectral bands. The most straightforward way to do this is to av-
erage over all available wavelengths (λ), reducing each 3D HSI datacube (x, y, λ)
to a panchromatic two-dimensional (x, y) data set, similar to a standard pho-
tograph. This spectrally-averaged image provides a basis for feature extraction.
Using any combination of feature detectors/descriptors, feature points are iden-
tified and then quantified. These feature points and their descriptors can then
be fed into feature matching routines.

To explore the spectral variation of in-scene objects, we also divide each HSI
datacube into several spectral subsets, essentially binning the spectrum into
multi-band mini datacubes. These datacube subsets are each averaged across λ
as previously described, resulting in several individual images that are spectrally
disjoint. For example, if the user wishes to break a 100-band HSI datacube into
four equal subsets, then bands 1-25, 26-50, 51-75, and 76-100 would each be
averaged into individual images and used for feature extraction. The user can
define how exactly to split the datacube, taking advantage of any expectations
they have about the spectral response of the scene. Feature points are extracted
from each of these images as well. As feature point descriptors will vary amongst
the different spectral representations of the scene, they are kept independent of
each other until they are fully matched.

3.2 Spectral Feature Matching

As previously described, we make no assumptions about the camera’s intrinsic
parameters being known (focal length (fx, fy), principal point (px, py), and skew
coefficient γ), and therefore can only relate image points up to a projective
transformation via the fundamental matrix F constraint

xvFv,wx
w = 0, (1)

for pixel x and a pair of cameras v, w ∈ 1, . . . , N out of N total cameras. In
order to calculate the F matrix, we need a set of matched image points between
views. If a specific image point is correctly tracked from one image to the next,
the spectral content of that pixel in the HSI datacube will match in both views
up to changes in angular reflection. To this end, we have integrated a spectral
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matching step into our HSI SFM pipeline. The goal of this spectral matching is
to eliminate outliers based on their differing spectral signature from one camera
to the next.

To do this, we first apply a brute-force (BF) feature matcher to the set of feature
points for a pair of cameras, considering each spectral subset individually. The BF
matcher computes distances between feature points in their descriptor-space, and
returns the closest corresponding feature point as a match. The output of this
BF matching is a set of correlated image points. We then combine results from
the multiple spectral subsets (if any), since the feature descriptors are no longer
needed. Together, this provides a baseline set of feature point matches. We then
compare the spectral signatures of these matches. The full spectrum is extracted
for both pixels in a match, and we compute the modified spectral angle similarity
(MSAS) between the two spectral vectors. The MSASi between spectrums Sv
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where MSAS values range from 0 to 1, with a value of 0 indicating independence.
We set an initial MSAS threshold of 0.990 and remove any outlier matches
whose MSAS value falls below it. This removes matches that are spectrally
differing from future consideration. We then compute the fundamental matrix
via RANSAC for the remaining matches, with an inlier threshold set to 3 pixels
(measured from the epipolar line in each image). Next we re-evaluate the MSAS
values for the remaining matches, raising the MSAS inlier threshold to 0.997.
This time, however, we expand our area of consideration to the neighborhood
of pixels immediately surrounding each matching point. If a spectral match is
found above this threshold within this search area, then we mark it as an inlier;
if the strongest spectral match differs in location from the original pixel (i.e. one
of its neighbors has a higher MSAS value), the point is updated to the stronger
spectral match location. This allows for corrections to be made to the existing
matches based on their spectral content. This serves as a much more strict
spectral comparison than the first iteration, returning a set of spectrally-verified
feature matches that are used to compute the fundamental matrix.

3.3 3D Modeling

Wethen transform the computed fundamentalmatrix to an essentialmatrix,which
is a metric relation between scenes, by providing a baseline estimate for the cam-
era’s intrinsic parameters. It is important to note here that our estimates for fx,
fy, px, py, and γ are not the true camera parameters, and thus do not result in truly
undistorted images. These values will be updated throughout the 3D reconstruc-
tion process via the weight function that is optimized in the subsequent bundle
adjustment step, so our initial baseline values only need to be sufficiently accu-
rate to extract a baseline camera pose. These intrinsic parameters are represented
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by a camera calibration matrix (K) which relates the fundamental matrix to the
calibrated essential matrix by

Ev,w = KtFv,wK, (3)

where t indicates matrix transpose. We can then extract estimated rotation (R)
and translation (T ) extrinsic camera parameters from our estimated essential ma-
trix. We take the SVD of E and extract R and T by defining matrix W such that

E = USV t

T = VWSV t

R = UW−1V t,

(4)

where the subscripts v, w are withheld for simplicity. The extrinsic rotation and
translation camera parameters allow us to triangulate the raw image feature
points into 3D world coordinates, establishing a baseline for our reconstruc-
tion. The image point xj

i , which is the ith point when viewed from camera
j ∈ 1, . . . , N , can be related to its 3D world coordinate point Xi according to

xj
i ∝ Kj [Rj |Tj ]Xi. (5)

Each point in the baseline image pair is triangulated [10], and a bundle ad-
justment (BA) routine is applied to the triangulated points [11]. The BA process
optimizes the camera positions and 3D point cloud structure through a sparse
Levenberg-Marquardt optimization procedure. Additional views are then added
iteratively by determining the matching-potential of each possible view based
on the number of inliers, selecting the best match, re-triangulating the potential
pairwise matches between the new image and the established 3D data points,
and using an iterative 3D-2D perspective-n-point (PnP) RANSAC routine based
on Levenberg-Marquardt optimization to extract the new extrinsic camera mo-
tion. The BA routine is applied after each added camera. This SFM pipeline
generates a sparse 3D point cloud, representative of the scene captured in the
camera views of the available data set. Since our SFM pipeline assumes the in-
trinsic camera parameters are never exactly known, a true metric reconstruction
cannot be achieved. By allowing these intrinsic parameters to be optimized at
each step in the reconstruction however, the resulting 3D structure is often ac-
curately rectified. Projective ambiguities in the x-y plane are mostly corrected
through the correlation between views of a 360◦ orbit, as is often the case when
working with aerial imagery.

4 Experimental Results

We explore the applicability of our SFM pipeline on a data set generated from
the stabilized HSI sensor in an attempt to not only generate 3D reconstructions
of objects in-scene, but to leverage the additional information inherent to having
access to additional spectral content. We look to explore the effect that the in-
flight line-scanning has on the ability to extract an accurate camera pose, as well



418 C.A. Miller and T.J. Walls

as introduce spectrally unique features into the SFM pipeline to aid in 3D model-
ing. Our test data set consists ofN = 52 images, each 1280× 966 pixels, covering
a full 360◦ view centered on an industrial complex. Since we have no intrinsic in-
formation about this system, we estimate baseline values for the focal length and
principal point of the camera. For the focal length, a common baseline estimation
is 1.2 ∗ max(img height, img width); our images are 1280 × 966 pixels, giving us
a baseline focal length of Fx = fy = 1536 pixels. With modern cameras, the prin-
cipal point is often assumed to be the center of the focal plane, so px = 640 and
py = 483. If the stabilization of the line-scanning platform is sufficient, the large
standoff distance should minimize the shift in camera center that occurs during
a scan and the resulting images should reduce approximately to a similar image
captured by a framing camera.

4.1 Spectral Subset Analysis

We try to leverage the HSI data cubes by dividing the full HSI spectrum into
equally-sized, multi-band subsets that are averaged into individual images for
processing, highlighting the spectral variation of objects in the scene. We average
over the multi-band subsets in order to reduce noise and bad pixel irregularities
found in single-band images. A visual example of the difference in spectral sub-
sets for a given camera can be seen in Fig. 1. We first compare the number of
additional, unique feature points each subset provides. Table 1 shows an exam-
ple using four different feature point detectors (SURF, BRISK, FAST, and ORB
[12,13,14,15]), comparing the full-spectrum images to those generated when the
full spectrum is split into three subsets. We can see that there is a minimal ad-
vantage to using multiple spectral subsets compared to the full spectrum image
when considering the unique location of feature points.

(a) Spectral subset 1 (b) Spectral subset 2 (c) Spectral subset 3

Fig. 1. Three spectral subsets from a single HSI data cube. The difference in spectral
content is seen here as differing shades of gray; the roof of the building and the grass
differ significantly between spectral band subsets (a)-(c).

Simply comparing the number of feature points, however, doesn’t take into
account the variation within feature point descriptors. For example, while the
same scene point may be detected in the full spectrum image as well as several
of the spectral subset images, the feature point descriptor at that scene point
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Table 1. The average number of additional, unique feature points compared between
the full-spectrum image and the images created when the HSI data cube was split into
three spectral subsets. Only a handful of uniquely located feature points are added as
a result of splitting the spectrum into subsets, regardless of the feature detector used.

Feature Detector SURF BRISK FAST ORB

Avg Full Spectrum 6243 2829 3852 1000

Avg Subset 1 21 13 62 15
Avg Subset 2 0 5 31 16
Avg Subset 3 0 0 0 11

Avg total 23 24 105 35

can vary greatly, making it more-or-less favorable for feature point matching. To
this end, we compute feature point matches between subsequent images using
a brute-force feature matching with crosscheck verification. The matches from
each spectrum subset are combined into a master list which covers the entire
spectrum, and is used to compute the fundamental matrix F for overall scene
motion. Since we use a RANSAC algorithm, errant matches that don’t fit the
overall motion are removed. The total number of inlier feature matches is then
used as a metric for comparison. Table 2 shows a comparison between the number
of inlier feature matches for the full spectrum image, a division of the HSI data
cube into three spectral subsets, and a division of the data cube into six spectral
subsets. Results are shown for an individual feature point descriptor (SURF), as
well as a combination of several feature point descriptors.

Table 2. The number of inlier feature matches compared between the full spectrum
image, a division of the HSI data cube into three spectral subsets, and a division of
the data cube into six spectral subsets. The number of matches increases significantly
with the additional spectral subsets.

Full spectrum 3 Spectral subsets 6 Spectral subsets

SURF Only 1375 5279 8996
SURF, BRISK,FAST, ORB 2767 10248 18043

There is a significant increase in the number of accurate feature matches be-
tween scenes when considering multiple subsets of the spectrum in combination.
This results from the feature descriptors being improved in at least one of the
spectral subsets, resulting in more feature matches. A single feature point de-
scriptor (SURF) with all threshold parameters held constant saw a 380% increase
in the number of matches between subsequent scenes when comparing the full-
spectrum image to three spectral subsets; there was an increase in performance
of 650% when combining six spectral subsets. This performance boost was seen
across all feature detector/descriptors.
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4.2 Spectral Matching

The results of the spectral verification step to the feature matching for our test
data set are presented here. On average, the straightforward brute-force feature
matching returned 20298 matches between subsequent image pairs. Of these, an
average of 1887 (9.3%) were removed in the first round of spectral matching.
The resulting 90.7% were used to generate the fundamental matrix relating each
image pair, which in turn reduced the 18402 (average) input matches to 13257,
a 27.9% reduction. These were then fed into the more strict spectral matcher,
which output an average of 8889 matches between views. Of these, there were
an average of 320 feature matches (3.6%) which had a point in either image
corrected due to a stronger spectral signature match.

4.3 Full-Spectrum SFM

Overall, the 52 input HSI datacubes were fed into our SFM pipeline generated
a 3D model consisting of 139,480 points, with 458,627 2D-3D image correspon-
dences and a mean reprojection error of 1.29 pixels. The reconstruction of this
data set successfully shows the closed-loop sequence of camera movements as well
as the scene structure. A top-view screen shot of the 3D point cloud as well as the
extracted camera positions can be seen in Fig. 2. It should be noted again that no
a-priori information about the camera’s intrinsic parameters (fx, fy, px, py, andγ)
or any of the extrinsic camera motions (rotation and translation between views)
were used in generating this 3D reconstruction; nothing but the raw, spectrally-
flattened 2D images were used as input. When we compare the camera positions
to the ground-truth GPS data collected during the data collection orbit, the
SFM-generated camera poses are seen to be extremely accurate (Fig 2(b)).

(a) (b)

Fig. 2. (a) A close-up, top-down view of the reconstructed scene; the sparse point
cloud is an accurate reconstruction of the original scene structure. (b) The extracted
(triangle) and ground-truth GPS (circle) camera positions (enlarged for viewing) can
be seen to match well in a circular orbit around the scene.
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A second verification of the 3D model’s accuracy can be found in the bundle-
adjusted intrinsic camera parameters. Since we made no assumptions about the
camera’s intrinsic values in our reconstruction, we had to estimate values for
focal length and principal point. As a result, these are also corrected as part
of the optimization step. The 3D reconstruction’s final, optimized focal length
was within 0.1% from the true focal length that was calculated using the actual
lens parameters of the system. The optimized principal point location varied by
less than a pixel in both the x- and y-dimensions, confirming the location in
the center of the FPA. It’s clear that this gimbal-stabilized hyperspectral sensor
produces imagery that accurately approximates a framing camera, sufficient to
create 3D models using standard SFM techniques in long standoff scenarios in an
intelligently constructed pipeline, even though it uses a line-scanning technique
to generate one of the physical scene dimensions.

5 Conclusions and Future Work

We have shown the initial development of a 3D reconstruction SFM pipeline
for processing HSI data cubes. We have shown that with the appropriate stabi-
lization, hyperspectral line-scanning sensors can be used to generate 3D models
of a scene using SFM techniques developed for traditional framing cameras. A
full 3D reconstruction was generated using 52 HSI data cubes as input, tri-
angulating over 100,000 3D points into an accurate model of the scene. The
resulting camera positions were accurately compared to the ground-truth val-
ues, demonstrating the abilities of the SFM pipeline. Additional processing that
is unique to HSI data cubes was also explored. We demonstrated the potential
that splitting the data cube into smaller, multi-band subsets has on generat-
ing useful feature points and feature matches between scenes when compared to
the spectrally-flattened data. We also demonstrated the integration of spectral
similarity matching for the removal of outlier feature point matches.

Future work includes the development and integration of anomaly detection
matching routines. We are currently exploring the usefulness of identifying spec-
trally unique pixels via anomaly detection that can be used as reliably-tracked
feature points for baseline motion estimation. Additionally, we are developing a
tool to enable user interaction with the 3D model that allows highlighting spec-
trally unique areas (via anomaly detection) in the 3D space, along with other
post-processing analysis techniques.

Acknowledgements. We would like to acknowledge the contribution from Dr.
Eric Allman for his insight into the HSI data structure and processing techniques,
as well as Dr. Jonathan Neumann for leading the development of the system
sensor used to collect our testing data set.



422 C.A. Miller and T.J. Walls

References

1. Neumann, J., Allman, E.C., Downes, T., Howard, J., Kruer, M., Lee, J., Linne von
Berg, D., Leathers, R., Murray-Krezan, J., Nezis, N.: Demonstration of the MX-
20SW standoff SWIR hyperspectral imaging ball gimbal system. MSS, Passive
Sensors (2008)

2. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. Journal of Biomedical
Optics 19, 010901 (2014)

3. Van der Meer, F.D., van der Werff, H., van Ruitenbeek, F.J., Hecker, C.A., Bakker,
W.H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., Smeth, J., Woldai, T.:
Multi-and hyperspectral geologic remote sensing: A review. International Journal
of Applied Earth Observation and Geoinformation 14, 112–128 (2012)

4. Yuen, P.W., Richardson, M.: An introduction to hyperspectral imaging and its
application for security, surveillance and target acquisition. The Imaging Science
Journal 58, 241–253 (2010)

5. Nieto, J.I., Monteiro, S.T., Viejo, D.: 3D geological modelling using laser and hy-
perspectral data. In: 2010 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pp. 4568–4571. IEEE (2010)

6. Kim, M.H., Harvey, T.A., Kittle, D.S., Rushmeier, H., Dorsey, J., Prum, R.O.,
Brady, D.J.: 3D imaging spectroscopy for measuring hyperspectral patterns on
solid objects. ACM Transactions on Graphics (TOG) 31, 38 (2012)

7. Liang, J., Zia, A., Zhou, J., Sirault, X.: 3d plant modelling via hyperspectral
imaging. In: 2013 IEEE International Conference on Computer Vision Workshops
(ICCVW), pp. 172–177. IEEE (2013)

8. Spinnler, Y.C.K., Wolfsmantel, A.: Calibration of 1d cameras. In: Proceedings of
the Vision, Modeling, and Visualization 2004, November 16-18, p. 55. IOS Press,
Standford (2004)

9. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge
University Press (2003)

10. Hartley, R.I., Sturm, P.: Triangulation. Computer vision and image understanding
68, 146–157 (1997)

11. Zach, C.: Simple Sparse Bundle Adjustment, SSBA (2011),
http://www.inf.ethz.ch/personal/chzach/opensource.html (accessed October
2013)

12. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 404–417. Springer, Heidelberg (2006)

13. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable
keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV),
pp. 2548–2555. IEEE (2011)

14. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection.
In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 430–443. Springer, Heidelberg (2006)

15. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative
to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision
(ICCV), pp. 2564–2571. IEEE (2011)

http://www.inf.ethz.ch/personal/chzach/opensource.html

	Passive 3D Scene Reconstruction via Hyperspectral Imagery
	1Introduction
	2Hyperspectral Imaging
	3Structure from Motion Pipeline
	3.1Spectral Feature Extraction
	3.2Spectral Feature Matching
	3.33D Modeling

	4Experimental Results
	4.1Spectral Subset Analysis
	4.2Spectral Matching
	4.3Full-Spectrum SFM

	5Conclusions and Future Work
	References




