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Abstract. Visual tracking in low frame rate videos has many inher-
ent difficulties for achieving accurate target recovery, such as occlusions,
abrupt motions and rapid pose changes. Thus, conventional tracking
methods cannot be applied reliably. In this paper, we offer a new scheme
for tracking objects in low frame rate videos. We present a method of
integrating multiple metrics for template matching, as an extension for
the particle filter. By inspecting a large data set of videos for tracking,
we show that our method not only outperforms other related bench-
marks in the field, but it also achieves better results both visually and
quantitatively, once compared to actual ground truth data.

1 Introduction

Object tracking is a core component of many applications such as surveillance
and reconnaissance. Low frame rate (LFR) systems are common mainly due
to hardware and processing bandwidth limitations. For these systems, tracking
poses a challenge due to abrupt motion, rapid pose changes and partial or even
absolute occlusions. These problems are encountered frequently and are difficult
to cope with, as demonstrated in Fig. 1.

Although the literature regarding visual tracking is of large extent, most ex-
isting approaches cannot be reliably applied to LFR videos (e.g. [1], [2]), because
of the uncertainties caused by its data (e.g., [3]). One of the main reasons for the
limitation of traditional tracking approaches in effectively handling these situa-
tions lies on the fact that they heavily depend on motion continuity, which not
necessarily hold in LFR videos. For example, particle filters [4] use particles for
guiding the target propagation within a limited sub-space. Other methods such
as the ones by Tomasi and Kanade [5] and Comaniciu et al. [6] are based on an
iterative optimization scheme, which generally require the knowledge of feature
patches in consecutive frames to overlap in a very close vicinity of each other.
However, these presumptions are too expensive for LFR tracking. Therefore, we
propose a new approach which can not only cope with the LFR complexities,
but also presents consistency, and performs well over long term videos.

During the past half decade some methods were proposed for the purpose
of LFR tracking (e.g., [7], [8], [9]). Beside these, may LFR tracking be their
motive or not, Liu et al. [10] and Okuma et al. [11] offered to use a boosted
detector to amend the particle filter distributions for handling the pitfalls of
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Fig. 1. Examples of LFR tracking for 3 frames per second videos with target objects
marked by a dashed line rectangle

visual tracking, which can be quite effective even for LFR videos. Still, these
methods might be limited because they mainly depend upon detection, thus
they do not necessarily provide a sufficient remedy for the complexities that are
often encountered (e.g., two similar proximate objects, object and background
resemblance, partial occlusions etc.). Hence, a different, more robust approach
that can reliably deal with these kind of complexities is of great importance.

The main notion of our method is that matching and tracking can be in-
tegrated in a complementary way in order to overcome the difficulties in LFR
tracking. Regrading the matching, we consider multiple metrics, both statistic
and deterministic, in order to recover the target, while combining both multi-
ple notions of the tracked template, and taking into account its distinct color
properties. Then, by assimilating all the templates matchings from all inspected
metrics into multiple particle filters, the target object can be accurately tracked.

This paper is organized as follows: Section 2 details the proposed object track-
ing algorithm for target recovery in LFR videos. In Section 3 we demonstrate
some visual results of our proposed technique, compared to other renowned meth-
ods. The performance of our suggested approach and other benchmarks in the
field with respect to actual ground truth, given a large data set of object tracking
cases, is provided in Section 4. This paper is concluded in Section 5.

2 LFR Visual Tracking Extensions Algorithm

In this section we first reveal the deficiencies of the particle filter for LFR track-
ing. Then we manifest the matching phase of our method and how it is integrated
into the detection phase for the purpose of target recovery in LFR videos.
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2.1 The Particle Filter Deficiencies in LFR Tracking

The basic idea of the particle filter for visual tracking lies in its ability to provide
an estimate of the state given the observations at each time step. This can be
achieved by estimating the distribution p(x:|z;) of the target state given all
observations up to time t, denoted as z; = (21, 22, ..., 2t), and x; denotes the
object’s state at time ¢t. The particle filter for visual tracking (also known as
Condensation [4]) estimates this distribution in a two-step recursion scheme:

Plailzi 1) = / P(welre—1)P(ae 1|20 1)dzs s (1a)

P(zi|xe)P(xt|zi—1)P(21—1)

P($t|zt) = P(Zt)

x P(zt|xe) P(xe|ze—1), (1b)
where (1a) and (1b) indicate the prediction and the update steps, respectively.

The object tracking algorithm using particle filter is detailed in Algorithm 1,
where in the algorithm S, 7 and C' denote the particles, the probability and the
cumulutive distribution, respectively. This approach is further discussed in [12].

Algorithm 1. Particle Filter for Object Tracking.
1. Input: St(f)l, 2. Output: S, 7{™ €™ with particle number n and time .
2. Predict the particles state by applying: Sf,m = f(St(ﬂ) + W™ where W™ is
distributed normally and f is a known model function.
3. Calculate the particles likelihood: 7/ = P(S{”|z;) and C7Y = 30 _ 7™,
4. Resample the particles St(,n) and obtain S{™:

1. From a random uniform distribution draw r, such that: r € [0, 1].
2. Find smallest j s.t.: Ct(,J) >=r.
3. Set 5™ = 59).

5. Given the new particles, update 7™ = P(5™|z,).
(n)
6. Normalize and re-evaluate 7" and C{™: 7{™ = Zﬂt (n) 3 cM =y alm.
n Tt

For LFR tracking, the particle filter as in Algorithm 1 is not sufficient for
achieving accurate target recovery, since tracking loss may occur due to the
gradual departure of the sample set from the actual target, as illustrated in
Fig. 2. A possible remedy for this pitfall is to increase the number of samples
[13]; however this kind of solution is not stable under LFR conditions. Therefore,
we offer a new integration scheme of two important tools: matching and tracking
based on particle filters, for handling the complex cases of LFR tracking. These
tools phases are detailed in Section 2.2 and Section 2.3.

2.2 The Matching Phase

The first step of the matching phase is to set initial conditions. That is, in the 1st
frame the desired template object to track (defined as Tp) is provided, along with
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Fig. 2. Example of the particle filter for visual tracking in LFR video

the template’s center of mass position in the frame, denoted as - [emg;0, cmy;0]-
Then, in the 2nd frame, we acquire information regarding the tracked object
trajectories, this could be achieved by either having a prior information or by
doing an exhaustive search around the object’s previous location. From now on,
for all the given objects, we assume that in the first two frames the desired
tracked object is clearly visible and no abrupt changes had occurred, that is, the
object’s center of mass location (in both frames) is assumed to be exact.

Since a single-metric based template matching occasionally fails, we propose
to incorporate multiple metrics altogether in order to form a stronger matching.
These metrics consist of statistical measures (i.e., histogram comparisons which
can capture the similarity between two consecutive appearances of the same
object in case of partial occlusions and pose changes) and deterministic measures
(i.e., correlation), which are all defined as follows, with respect to a given ROI:

Yy (T y) = Iz + 2,y +4/))?
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where ¢ is the current time frame, [z 4+ a’,y + y'] € ROI, T denotes the tracked
template and [ is the frame in which the template is tracked. The NRMSE, p
and M AD are the normalized RMSE, correlation coefficient and the maximum
absolute deviation metrics, respectively. In (2b) T, I are the template and ROI
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means, respectively. x2 and py, are the chi-square and correlation histogram met-
rics, where Hr and H; stand for the template and ROI histograms, respectively.
The EM D in (2f) is defined as the earth movers distance metric [14], where d;;
indicates the movement distance and f;; stands for the amount of movement
between bin ¢ and bin j in the inspected histograms. Thus, for each one of the
metrics we derive a scores matrix, for all of the [z,y] locations within the ROL
Regarding (2d), (2e) and (2f) we adopt a multi-color observation model based
on the Hue-Saturation-Value (HSV), since it provides more delicate histogram
information than other color spaces histograms, [15]. By assimilating all these
metrics together, we increase the probability to achieve an accurate matching,
rather than what a single metric could accomplish. It should be noted that there
is no limitation on the metrics that are used, that is, other metrics might be
considered as well in order to increase the matching accuracy.

To further cope with partial occlusions and pose changes, we offer to use
multiple sub-templates of different sizes acquired from the original template (of
size w X h) with respect to the estimated center of mass, as shown in Fig. 3.
In the figure, we demonstrate the derivation of the sub-templates (e.g., of sizes:
w/2x h/2, w/4 x h/4 and w/8 x h/8). Afterwards, a ROI around the center of
mass, from the previous frame, is constructed for each sub-template, in which
each metric is then applied. By doing so we reduce the algorithm computational
effort as well as omitting irrelevant areas from matching,.

Additionally, because the tracked template may have distinct color properties
(e.g., ared vehicle), we offer to utilize its color characteristics, which may increase
the matching accuracy. Hence, a weighting strategy is proposed between the
individual color channels, achieved by first smoothing each one of the template’s
RGB channels, and then taking the mean value of them. Finally, the values
are normalized in order to obtain proper weights. All these steps are combined
together for achieving a reliable matching, as illustrated in Fig. 3.

To detect a possible matching failure (e.g., target is occluded), we define two
thresholds (0, 61), which are adjusted in context of the data. The matching
scores are compared with these thresholds for determining the level of confidence
which the matching achieved. The thresholds are defined as follows:

(0%
0H = N Z beSt]VIet;val ; aL = B . aHa (3)

™ Met

where Met indicates each metric with total of IV, metrics and 0 < o, < 1,
a > . The best metric values (denoted as bestasetvai), Were initialized with
respect to the first two frames, since a reliable prior information was available.

Also, we define a ”fallback template” to be used in case of a matching failure
(i.e., the thresholds in (3) were not satisfied) by: Trp = Ty, where Ty is the
initial template and is updated in each frame according to the achieved matching
scores. The algorithm for the matching phase between two sequential frames (i.e.,
between frames ¢ — 1 and ¢) is detailed in Algorithm 2.
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Fig. 3. An illustration of the matching phase. 1st column (from left to right): the
original frame along with the marked template to track indicated by a dashed rectangle
and the inspected ROI given by a dashed-dotted rectangle. The two dots indicate the
desired center of mass and the estimated center of mass. 2nd column: The obtained
sub-templates (from the original template - top left) of different sizes. 3rd column -
the Hue and Saturation histograms of the original template. 4th column: the matching
result for the original template with respect to the ROI, given the p(z,y) metric, (2b).

Algorithm 2. The Matching Algorithm.

1. Input: The tracked object’s center of mass [cma;:, cmy;:] at ¢ and the original
template T;—1 of size w¢—1 X hi—1. Output: The scores matrices for each metric
Ryset, each metric’s best score, location, and std: bestaret;vat, b€Staret;Loc, Trret-

2. From T:_1 obtain a total of N; sub-templates.

3. Define the ROI with respect to each sub template’s width and height centered
around [cmg;t, CMy;t].

4. Apply a smoothing kernel on each sub-template.

5. Obtain each sub-template’s normalized weights {w;}.\*,.

6. Apply each metric in (2) on each sub-template’s color channel with respect to its
ROI. The vector of the matrices scores is denoted as {@Met;i}f\;‘l.

7. calculate each metric’s matrix result: Ruser = (1/N¢) D, | Winsi - PrngisMet-

8. Calculate each metric’s standard deviation: opet = std(RMet).

9. Obtain best value (bestarer;var) and location (bestiret;Loc) from each Raset.

10. if (1/Nm) > pos b€StAret;vat > 01 then
11, if (1/Nm) D e beStametval > 0 then

12. Update the fallback template: Trp = T} and 0, 01 as in (3).
13. end if

14. return success.

15. else

16. if Tt—l ;é TFB then

17. Set T:—1 = Trp and go to step (2).

18. else

19. return failure.

20. end if

21. end if
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2.3 The Tracking Phase

For the tracking phase we adopt and extend the particle filter algorithm (as
detailed in Algorithm 1) so it can be reliably applied for LFR tracking. From
now on the particles will be regarded as S, of size 4 x N,, with N,, particles for
time step ¢, where each row in S; stands for each particle’s: Zpos:t, Yposit; Tmovet
and  Ymove;t, respectively. The particles are initialized given the exact state of
the template in frameg i: S1 = [cmg;1-1; emyn - 15 Tmovest  1; Ymoves1 - 1], with
the unity vector 1 of size 1 x N,. The particles distribution at each time step ¢
is updated given the template’s width and height at ¢ — 1 (i.e., wi—1 X hy—1) ,
according to a normal distribution, in the following manner:

St =DS;—1+ [\/wt*1/2 c Mgy \/ht71/2 TMys Szt My yones Sy ° ny'rnu'ue] > (4)

where each element in n is a random Gaussian variable, i.e. n; ~ N(0,1), and
Sz, Sy are predefined constants. The matrix D is the transition matrix which is
used for the prediction of the particles position in the current frame.

Given the observations metric results (Rps.;) along with the best location
(bestaretiioc) and best value (bestasetvar) from Algorithm 2, we define the like-
lihood of the predicted particles at frame ¢, that is:

Rpfet(Tn,yn)—bestpretyal )2

7Tt(n) _ P(St(n)‘RE\Z)et) — Ce_( T Met R (5)

where x, and y, indicate the z,y location of the nth updated particle. By
applying this distribution on each inspected metric (total of N,,) we have N, -
N, probabilities with respect to all particles. The next step is to acquire the
most dominant N, particles (highest probabilities). Then, the probabilities are
normalized so the particles can be resampled.

Algorithm 3. The Tracking Algorithm

1. Input: Particles positions and states at frame t — 1 (St—1), each inspected metric
results at frame ¢t (Raret). Output: Estimated center of mass, width and height.

2. Predict the particles position using (4) to obtain Sy.

3. Calculate each nth predicted particle’s likelihood given the observations (Raset),

ie.: wt(ff) = P(St(ff)\Rg\Zit) by using oares relevant to each metric.

if Algorithm 2 returned Success then
Consider the N, most dominant particles, denoted as S/, with probabilities 7.

o

Normalize 7, and obtain the commutative distribution: Cy =" _, Trt(fn)

6.

7. Resample the particles S/ as in step (4) of Algorithm 1 to yield S;.

8 Calculate the resampled particles likelihood 7r; given the observations.

9.  Evaluate the center of mass (em:) given S; and 7 by: cmazy = >, ﬂt(n)ng;t.
10.  Attain the new template’s width and height by applying a detection scheme.
11. else
12.  Set S¢ = Sy and evaluate cm; from step (9) given 7y~ from step (3).

13. end if
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Finally, in order to attain the most plausible position and state of the desired
tracked object, the new particles positions and their probabilities are utilized.
Also, if satisfactory scores were achieved, a detection scheme may be applied
around the estimated center of mass with respect to the template’s current
height and width (e.g., Active Contours based algorithm as discussed in [16]).
This procedure allows to derive an updated template for the frames to come.
The algorithm for the tracking phase is detailed in Algorithm 3.

From step (12) in Algorithm 3, one can see that in cases when the matching
did not provide satisfactory results , the algorithm estimates the object’s position
only by the particles prediction as in step (2). This course is very beneficial in:
full occlusions, unpredictable change of scenery, extreme pose changes and more.

3 Results

We have tested our tracking algorithm on LFR videos with 3 to 5 FPS rate,
and compared our results to the implementations of Matlab’s KLT tracker from
the CV Toolbox and a Condensation based visual tracking algorithm, as well
as comparison to ground truth data. In Fig. 4 we present selected snapshots for
tracking various kind of targets. The first four examples demonstrate the results
of tracking under pose changes, abrupt motion and partial occlusions. The last
example demonstrates our method’s results of a vehicle that undergoes a long
full occlusion (17 frames) along with the typical LFR tracking complexities.

In all frames shown in Fig. 4 the improvement of the proposed method with
respect to the examined benchmarks is distinct while comparing to the ground
truth. In order to further investigate our method’s performance, we examined
the recovery of each target in large scale of frames, as elaborated in Section 4.

4 Performance Evaluation

In order to quantify the performance of our algorithm, we used two data sets
of LFR videos: the first is our own diverse set, manually annotated, including
vehicles and humans in various scenarios and different resolutions; the latter is
the PETS2009 data set. The videos were dilated to a 3 to 5 frames per second
rate, varying from 50 - 200 frames, with total of 500 different objects.

To compare the results of our method and the other algorithms with the
ground truth, we suggest three measures that capture the similarity of the re-
covered objects to the annotated templates, which are defined as follows:

CMpuse(t) = (e — emgq)? + (cPny;e — Cmy;t)2); (6a)
p(t) _ Zx,y(T(xa Y; t) - /Ljﬂ’t)(T(x, Y; t) — /LT;t)
(Coy (T, t) = pra)? Xy, (D@, 43 t) — ppy)?)2

Hro(I) — Hy (1))
ey (;T;tm’( ” 0

I

(6b)
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where the CMgarsE is the center of mass (position) RMSE, p is the correlation,
and 2 is the chi-square measure. ., and pr indicate the mean of the estimate

T, and the ground truth Ti, respectively. Hr; and Hgp., stand for the HSV

histograms of the ground truth 7; and the estimation Tt, respectively. The index
t refers to the frame number and z, y indicate pixel location.

Frame by frame performance evaluations for the first four examples that were
presented in Fig. 4 are illustrated in Fig. 5, where in the figure each method
performance was assessed using (6). The mean scores of all 500 objects in total,
for all frames, from both data sets are summarized in Table 1.

Given the results in Table 1 and Fig. 5, we have further manifested the con-
sistency, accuracy and effectiveness of the proposed method for LFR tracking.

Fig. 4. Visual examples of LFR tracking for 3 and 5 frames per second videos with
target objects marked by: ground truth - dashed line ; The proposed method - regular
line ; KLT - dotted line ; particle filter - dashed-dotted line. The first four examples
compare all the methods in different time frames. In the last example we compared
our method to the ground truth.
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Fig. 5. Frame by frame performance evaluations of all methods, considering the Cor-
relation coefficient (left), the x* (middle) and RMSE (right) measures with respect to
ground truth. The rows correspond to the first four objects from Fig. 4, respectively.
The proposed method is depicted by a regular line ; the KLT - dotted line ; and the
particle filter - dashed line.

Table 1. Performance evaluation

Method Center Mass RMSE Correlation (p) Chi Square (x?)
Proposed Method 4.86 0.964 0.072
KLT 12.25 0.838 0.158
Particle Filter 13.97 0.843 0.201

5 Conclusions

This paper explores the concept of low frame rate tracking for the purpose of ac-
curate target recovery by proposing a new scheme which in-cooperates matching
and tracking in a complementary way. Regarding the matching, both statistical
and deterministic comparison measures are considered, which are then integrated
into an extended tracking methodology based on particle filtering.
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The performance of the proposed method has been assessed by comparing its
abilities for recovering a large data set of objects, to other benchmarks, KLT and
particle filtering for visual tracking, with respect to ground truth annotated data,
while inspecting different measures for comparison. Because object tracking in
LFR is subject to many uncertainties, standard tracking methods make it hard
to cope with, thus providing rather poor performance compared to the proposed
tracking method, as shown in Table 1.

Regarding the particle filter performance with respect to that of the KLT,
while a slight improvement was achieved in the correlation measure, the KLT
accomplished better scores in terms of CMgyse and x2. Still, the suggested
technique outperformed them, almost uniformly, while showing a clear improve-
ment in all measures. The ability of the method to perform well even in extreme
cases, in which the target object was completely occluded (for a long period, in
a 3 FPS video) was also illustrated in Fig. 4, where the recovery was compared
with that of the ground truth.

The method proposed in this paper is computationally fast, mainly due to the
fact that the ROI used for the matching was generically limited, by taking into
account the sizes of each template (and sub-templates) to be tracked.

Although the thresholds for verifying the matching confidence are derived in
context of the data, they imply a large impact on the overall performance, thus
presenting a possible limitation for tracking under different settings. In addition,
since a well defined prior information is available, it can be used in order to set
a better probability distribution for the particles, than the normal distribution.

In the future, improvement of the method and further robustness will surely
be the focus, by possibly extending the detection mechanism for the template
updating under LFR conditions, and considering other color and feature spaces.

Even though the proposed approach in this paper was used for the application
of accurate recovery of target objects in LFR videos, it may also be used in other
object tracking or video processing applications as well.
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