
Chapter 6
HEAD-DT: Fitness Function Analysis

Abstract In Chap.4, more specifically in Sect. 4.4, we saw that the definition of a fit-
ness function for the scenario in which HEAD-DT evolves a decision-tree algorithm
from multiple data sets is an interesting and relevant problem. In the experiments
presented in Chap.5, Sect. 5.2, we employed a simple average over the F-Measure
obtained in the data sets that belong to the meta-training set. As previously observed,
when evolving an algorithm from multiple data sets, each individual of HEAD-DT
has to be executed over each data set in the meta-training set. Hence, instead of
obtaining a single value of predictive performance, each individual scores a set of
values that have to be eventually combined into a single measure. In this chapter,
we analyse in more detail the impact of different strategies to be used as fitness
function during the evolutionary cycle of HEAD-DT. We divide the experimental
scheme into two distinct scenarios: (i) evolving a decision-tree induction algorithm
from multiple balanced data sets; and (ii) evolving a decision-tree induction algo-
rithm from multiple imbalanced data sets. In each of these scenarios, we analyse the
difference in performance of well-known performance measures such as accuracy,
F-Measure, AUC, recall, and also a lesser-known criterion, namely the relative accu-
racy improvement. In addition, we analyse different schemes of aggregation, such
as simple average, median, and harmonic mean.

Keywords Fitness functions · Performance measures · Evaluation schemes

6.1 Performance Measures

Performance measures are key tools to assess the quality of machine learning
approaches and models. Therefore, several different measures have been proposed
in the specialized literature with the goal of providing better choices in general or
for a specific application domain [2].

In the context of HEAD-DT’s fitness function, and given that it evaluates
algorithms (individuals) over data sets, it is reasonable to assume that different
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classification performance measures could be employed to provide a quantitative
assessment of algorithmic performance. In the next few sections, we present five dif-
ferent performance measures that were selected for further investigation as HEAD-
DT’s fitness function.

6.1.1 Accuracy

Probably the most well-known performance evaluation measure for classification
problems, the accuracy of a model is the rate of correctly classified instances:

accuracy = tp + tn

tp + tn + f p + f n
(6.1)

where tp(tn) stands for the true positives (true negatives)—instances correctly
classified,—and f p( f n) stands for the false positives (false negatives)—instances
incorrectly classified.

Even though most classification algorithms are assessed regarding the accuracy
they obtain in a data set, we must point out that accuracy may be a misleading per-
formance measure. For instance, suppose we have a data set whose class distribution
is very skewed: 90% of the instances belong to class A and 10% to class B. An algo-
rithm that always classifies instances as belonging to class A would achieve 90%
of accuracy, even though it never predicts a class-B instance. In this case, assuming
that class B is equally important (or even more so) than class A, we would prefer an
algorithm with lower accuracy, but which could eventually correctly predict some
instances as belonging to the rare class B.

6.1.2 F-Measure

As it was presented in Sect. 4.4, F-Measure (also F-score or F1 score) is the harmonic
mean of precision and recall:

precision = tp

tp + f p
(6.2)

recall = tp

tp + f n
(6.3)

f 1 = 2× precision × recall

precision + recall
(6.4)

http://dx.doi.org/10.1007/978-3-319-14231-9_4


6.1 Performance Measures 143

Note that though F-Measure is advocated in the machine learning literature as a
single measure capable of capturing the effectiveness of a system, it still completely
ignores the tn, which can vary freely without affecting the statistic [8].

6.1.3 Area Under the ROC Curve

The area under the ROC (receiver operating characteristic) curve (AUC) has been
increasingly used as a performance evaluation measure in classification problems.
The ROC curve graphically displays the trade-off between the true positive rate
(tpr = tp/(tp + f n)) and the false positive rate ( f pr = f p/( f p + tn)) of a
classifier. ROC graphs have properties that make them especially useful for domains
with skewed class distribution and unequal classification error costs [1].

To create the ROC curve, one needs to build a graph in which the tpr is plotted
along the y axis and the f pr is shown on the x axis. Each point along the curve
corresponds to one of the models induced by a given algorithm, and different models
are built by varying a probabilistic threshold that determines whether an instance
should be classified as positive or negative.

AROCcurve is a two-dimensional depiction of a classifier. To compare classifiers,
we may want to reduce ROC performance to a single scalar value representing the
expected performance, which is precisely the AUC. Since the AUC is a portion of the
area of the unit square, its value will always be between 0 and 1. However, because
random guessing produces a diagonal line between (0,0) and (1,1), which has an
area of 0.5, no realistic classifier should have an AUC value of less than 0.5. The
AUC has an important statistical property: it is equivalent to the probability that
the classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative instance, which makes of the AUC equivalent to the Wilcoxon test
of ranks [6].

The machine learning community often uses the AUC statistic for model compar-
ison, even though this practice has recently been questioned based upon new research
that shows that AUC is quite noisy as a performance measure for classification [3]
and has some other significant problems in model comparison [4, 5].

6.1.4 Relative Accuracy Improvement

Originally proposed by Pappa [7], the relative accuracy improvement criterion mea-
sures the normalized improvement in accuracy of a given model over the data set’s
default accuracy (i.e., the accuracy achieved when using the majority class of the
training data to classify the unseen data):
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R AIi =
⎧
⎨

⎩

Acci −DefAcci
1−DefAcci

, if Acci > DefAcci

Acci −DefAcci
De f Acci

, otherwise
(6.5)

In Eq. (6.5), Acci is the accuracy achieved by a given classifier in data set i ,
whereas DefAcci is the default accuracy of data set i . Note that if the improvement in
accuracy is positive, i.e., the classifier accuracy is greater than the default accuracy,
the improvement is normalized by the maximum possible improvement over the
default accuracy (1 − DefAcci ). Otherwise, the drop in the accuracy is normalized
by the maximum possible drop, which is the value of the default accuracy itself.
Hence, the relative accuracy improvement RAIi regarding data set i returns a value
between −1 (when Acci = 0) and 1 (when Acci = 1). Any improvement regarding
the default accuracy results in a positive value, whereas any drop results in a negative
value. In caseAcci = DefAcci (i.e., no improvement or drop in accuracy is achieved),
RAIi = 0, as expected.

The disadvantage of the relative accuracy improvement criterion is that it is not
suitable for very imbalanced problems—data sets in which the default accuracy is
really close to 1,—since high accuracy does not properly translate into high perfor-
mance for these kinds of problems, as we have previously seen.

6.1.5 Recall

Also known as sensitivity (usually in the medical field) or true positive rate, recall
measures the proportion of actual positives that are correctly identified as such. For
instance, it may refer to the percentage of sick patients who are correctly classified
as having the particular disease. In terms of the confusion matrix terms, recall is
computed as follows:

recall = tp

tp + f n
(6.6)

Recall is useful for the case of imbalanced data, in which the positive class is the
rare class. However, note that a classifier that always predicts the positive class will
achieve a perfect recall, since recall does not take into consideration the f p values.
This problem is alleviated in multi-class problems, in which each class is used in
turn as the positive class, and the average of the per-class recall is taken.

6.2 Aggregation Schemes

All classification measures presented in the previous section refer to the predictive
performance of a given classifier in a given data set. When evolving an algorithm
from multiple data sets, HEAD-DT’s fitness function is measured as the aggregated
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performance of the individual in each data set that belongs to the meta-training
set. We propose employing three simple strategies for combining the per-data-set
performance into a single quantitative value: (i) simple average; (ii) median; and (iii)
harmonic mean.

The simple average (or alternatively the arithmetic average) is computed by simply
taking the average of the per-data-set values, i.e., (1/N ) × ∑N

i=1 pi , for a meta-
training set with N data sets and a performance measure p. It gives equal importance
to the performance achieved in each data set. Moreover, it is best used in situations
where there are no extreme outliers and the values are independent of each other.

The median is computed by ordering the performance values from smallest to
greatest, and then taking the middle value of the ordered list. If there is an even
number of data sets, since there is no single middle value, either N/2 or (N/2) + 1
can be used as middle value, or alternatively their average. The median is robust to
outliers in the data (extremely large or extremely low values that may influence the
simple average).

Finally, the harmonic mean is given by
(
(1/N ) × ∑N

i=1 pi

)−1
. Unlike the simple

average, the harmonic mean gives less significance to high-value outliers, providing
sometimes a better picture of the average.

6.3 Experimental Evaluation

In this section, we perform an empirical evaluation of the five classification perfor-
mance measures presented in Sect. 6.1 and the three aggregation schemes presented
in Sect. 6.2 as fitness functions of HEAD-DT. There are a total of 15 distinct fitness
functions resulting from this analysis:

1. Accuracy + Simple Average (ACC-A);
2. Accuracy + Median (ACC-M);
3. Accuracy + Harmonic Mean (ACC-H);
4. AUC + Simple Average (AUC-A);
5. AUC + Median (AUC-M);
6. AUC + Harmonic Mean (AUC-H);
7. F-Measure + Simple Average (FM-A);
8. F-Measure + Median (FM-M);
9. F-Measure + Harmonic Mean (FM-H);
10. Relative Accuracy Improvement + Simple Average (RAI-A);
11. Relative Accuracy Improvement + Median (RAI-M);
12. Relative Accuracy Improvement + Harmonic Mean (RAI-H);
13. Recall + Simple Average (TPR-A);
14. Recall + Median (TPR-M);
15. Recall + Harmonic Mean (TPR-H).
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For this experiment, we employed the 67 UCI data sets described in Table5.14
organized into two scenarios: (i) 5 balanced data sets in the meta-training set; and
(ii) 5 imbalanced data sets in the training set. These scenarios were created to assess
the performance of the 15 distinct fitness functions in balanced and imbalanced
data, considering that some of the performance measures are explicitly designed to
deal with imbalanced data whereas others are not. The term “(im)balanced” was
quantitatively measured according to the imbalance ratio (IR):

IR = F(ADS)

F(BDS)
(6.7)

where F(.) returns the frequency of a given class, ADS is the highest-frequency
class in data set DS and BDS the lowest-frequency class in data set DS.

Given the size and complexity of this experiment, we did not optimise HEAD-
DT’s parameters as in Chap.5, Sect. 5.2. Instead, we employed typical values found
in the literature of evolutionary algorithms for decision-tree induction (the same
parameters as in Chap.5, Sect. 5.1):

• Population size: 100;
• Maximum number of generations: 100;
• Selection: tournament selection with size t = 2;
• Elitism rate: 5 individuals;
• Crossover: uniform crossover with 90% probability;
• Mutation: random uniform gene mutation with 5% probability.
• Reproduction: cloning individuals with 5% probability.

In the next sections, we present the results for both scenarios of meta-training set.
Moreover, in the end of this chapter, we perform a whole new set of experiments
with the best-performing fitness functions.

6.3.1 Results for the Balanced Meta-Training Set

We randomly selected 5 balanced data sets (IR < 1.1) from the 67 UCI data
sets described in Table5.14 to be part of the meta-training set in this experiment:
iris (IR = 1.0), segment (IR = 1.0), vowel (IR = 1.0), mushroom (IR = 1.07), and
kr-vs-kp (IR = 1.09).

Tables6.1 and 6.2 show the results for the 62 data sets in themeta-test set regarding
accuracy and F-Measure, respectively. At the bottomof each table, the average rank is
presented for the 15 versions of HEAD-DT created by varying the fitness functions.
We did not present standard deviation values due to space limitations within the
tables.

By careful inspection of both tables, we can see that their rankings are prac-
tically the same, with the median of the relative accuracy improvement being the

http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
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Table 6.3 Values are the
average performance (rank)
of each version of HEAD-DT
according to either accuracy
or F-Measure

Version Accuracy rank F-Measure rank Average

ACC-A 8.00 7.94 7.97

ACC-M 8.93 9.22 9.08

ACC-H 8.35 8.45 8.40

AUC-A 11.68 11.30 11.49

AUC-M 10.76 10.56 10.66

AUC-H 12.57 12.35 12.46

FM-A 8.25 8.17 8.21

FM-M 4.75 4.61 4.68

FM-H 9.10 9.16 9.13

RAI-A 6.41 6.27 6.34

RAI-M 3.72 3.60 3.66

RAI-H 6.64 6.64 6.64

TPR-A 4.93 5.25 5.09

TPR-M 6.88 7.17 7.03

TPR-H 9.04 9.31 9.18

best-ranked method for either evaluation measure. Only a small position-switching
occurs between the accuracy and F-Measure rankings, with respect to the positions
of ACC-M, TPR-H, and FM-H.

Table6.3 summarizes the average rank values obtained by each version of HEAD-
DTwith respect to accuracy and F-Measure. Values in bold indicate the best perform-
ing version according to the corresponding evaluation measure. It can be seen that
version RAI-M is the best-performing method regardless of the evaluation measure.
The average of the average ranks (average across evaluation measures) indicates
the following final ranking positions (from best to worst): (1) RAI-M; (2) FM-M;
(3) TPR-A; (4) RAI-A; (5) RAI-H; (6) TPR-M; (7) ACC-A; (8) FM-A; (9) ACC-H;
(10) ACC-M; (11) FM-H; (12) TPR-H; (13) AUC-M; (14) AUC-A; (15) AUC-H.

For evaluating whether the differences between versions are statistically signif-
icant, we present the critical diagrams of the accuracy and F-Measure values in
Fig. 6.1. It is possible to observe that there are no significant differences among the
top-4 versions (RAI-M, FM-M, TPR-A, and RAI-A). Nevertheless, RAI-M is the
only version that outperforms TPR-M and RAI-Hwith statistical significance in both
evaluation measures, which is not the case of FM-M, TPR-A, and RAI-A.

Some interesting conclusions can be drawn from this first set of experiments with
a balanced meta-training set:

• The AUC measure was not particularly effective for evolving decision-tree algo-
rithms in this scenario, regardless of the aggregation scheme being used. Note that
versions of HEAD-DT that employ AUC in their fitness function perform quite
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(a)

(b)

Fig. 6.1 Critical diagrams for the balanced meta-training set experiment. a Accuracy rank.
b F-measure rank

poorly when compared to the remaining versions—AUC-M, AUC-A, and AUC-H
are in the bottom of the ranking: 13th, 14th, and 15th position, respectively;

• The use of the harmonic mean as an aggregation scheme was not successful over-
all. The harmonic mean was often worst aggregation scheme for the evaluation
measures, occupying the lower positions of the ranking (except when combined
to RAI).

• The use of the median, on the other hand, was shown to be very effective in most
cases. For 3 evaluation measures the median was the best aggregation scheme
(relative accuracy improvement, F-Measure, and AUC). In addition, the two best-
ranked versions made use of the median as their aggregation scheme;

• The relative accuracy improvement was overall the best evaluation measure, occu-
pying the top part of the ranking (1st, 4th, and 5th best-ranked versions);

• Finally, both F-Measure and recall were consistently among the best versions (2nd,
3rd, 6th, and 8th best-ranked versions), except once again when associated to the
harmonic mean (11th and 12th).

Figure6.2 depicts a picture of the fitness evolution throughout the evolutionary
cycle. It presents both the best fitness from the population at a given generation and
the average fitness from the corresponding generation.

Note that version AUC-M (Fig. 6.2e) achieves the perfect fitness from the very
first generation (AUC = 1). We further analysed this particular case and verified that
the decision-tree algorithm designed in this version does not perform any kind of
pruning. Even though prune-free algorithms usually overfit the training data (if no
pre-pruning is performed as well, they achieve 100% of accuracy in the training data)
and thus underperform in the test data, it seems that this was not the case for the 5
data sets in the meta-training set. In the particular validation sets of the meta-training
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Fig. 6.2 Fitness evolution in HEAD-DT for the balanced meta-training set
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set, a prune-free algorithm with the stop criterion minimum number of 3 instances
was capable of achieving perfect AUC. Nevertheless, this automatically-designed
algorithm certainly suffered from overfitting in the meta-test set, since AUC-M was
only the 13th-best out of 15 versions.

Versions FM-H (Fig. 6.2i) and TPR-H (Fig. 6.2o) also achieved their best fitness
value in the first generation. The harmonic mean, due to its own nature (ignore
higher values), seems to make the search for better individuals harder than the other
aggregation schemes.

6.3.2 Results for the Imbalanced Meta-Training Set

We randomly selected 5 imbalanced data sets (IR > 10) from the 67 UCI data sets
described in Table5.14 to be part of themeta-training set in this experiment: primary-
tumor (IR = 84), anneal (IR = 85.5), arrhythmia (IR = 122.5), winequality-
white (IR = 439.6), and abalone (IR = 689).

Tables6.4 and 6.5 show the results for the 62 data sets in themeta-test set regarding
accuracy and F-Measure, respectively. At the bottomof each table, the average rank is
presented for the 15 versions of HEAD-DT created by varying the fitness functions.
We once again did not present standard deviation values due to space limitations
within the tables.

By careful inspection of both tables, we can see that the rankings in them are
practically the same, with the average F-Measure being the best-ranked method
for either evaluation measure. Only a small position-switching occurs between the
accuracy and F-Measure rankings, with respect to the positions of ACC-H and
RAI-M.

Table6.6 summarizes the average rank values obtained by each version of
HEAD-DT with respect to accuracy and F-Measure. Values in bold indicate the best
performing version according to the corresponding evaluation measure. Note that
version FM-A is the best-performing method regardless of the evaluation measure.
The average of the average ranks (average across evaluation measures) indicates
the following final ranking positions (from best to worst): (1) FM-A; (2) TPR-A;
(3) TPR-H; (4) AUC-A; (5) AUC-H; (6) FM-H; (7) ACC-A; (8) ACC-M; (9) ACC-
H; (10) RAI-M; (11) RAI-H; (12) FM-M; (13) TPR-M; (14) RAI-A; (15) AUC-M.

For evaluating whether the differences among the versions are statistically sig-
nificant, we present the critical diagrams of the accuracy and F-Measure values in
Fig. 6.3. We can see that there are no statistically significant differences among the
7 (5) best-ranked versions regarding accuracy (F-Measure). In addition, note that the
6 best-ranked versions involve performance measures that are suitable for evaluat-
ing imbalanced problems (F-Measure, recall, and AUC), which is actually expected
given the composition of the meta-training set.

The following conclusions can be drawn from this second set of experiments
concerning imbalanced data sets:

http://dx.doi.org/10.1007/978-3-319-14231-9_5
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Table 6.6 Values are the average performance (rank) of each version of HEAD-DT according to
either accuracy or F-Measure

Version Accuracy rank F-Measure rank Average

ACC-A 6.70 6.92 6.81

ACC-M 7.94 8.23 8.09

ACC-H 8.40 8.74 8.57

AUC-A 5.87 5.44 5.66

AUC-M 13.43 13.23 13.33

AUC-H 6.70 6.25 6.48

FM-A 4.02 3.83 3.93

FM-M 9.71 9.97 9.84

FM-H 6.70 6.79 6.75

RAI-A 13.40 12.94 13.17

RAI-M 8.58 8.65 8.62

RAI-H 8.72 8.95 8.84

TPR-A 4.19 4.27 4.23

TPR-M 10.53 10.56 10.55

TPR-H 5.10 5.25 5.18

(a)

(b)

Fig. 6.3 Critical diagrams for the imbalanced meta-training set experiment. a Accuracy rank.
b F-measure rank
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• The relative accuracy improvement is not suitable for dealingwith imbalanced data
sets and hence occupies the bottom positions of the ranking (10th, 11th, and 14th
positions). This behavior is expected given that RAI measures the improvement
over the majority-class accuracy, and such an improvement is often damaging
for imbalanced problems, in which the goal is to improve the accuracy of the
less-frequent class(es);

• The median was the worst aggregation scheme overall, figuring in the bottom
positions of the ranking (8th, 10th, 12th, 13th, and 15th). It is interesting to notice
that the median was very successful in the balanced meta-training experiment, and
quite the opposite in the imbalanced one;

• The simple average, on the other hand, presented itself as the best aggregation
scheme for the imbalanced data, figuring in the top of the ranking (1st, 2nd, 4th,
7th), except when associated to RAI (14th), which was the worst performance
measure overall;

• The 6 best-ranked versions were those employing performance measures known
to be suitable for imbalanced data (F-Measure, recall, and AUC);

• Finally, the harmonic mean had a solid performance throughout this experiment,
differently from its performance in the balanced meta-training experiment.

Figure6.4 depicts a picture of the fitness evolution throughout the evolutionary
cycle. Note that whereas some versions find their best individual at the very end of
evolution (e.g., FM-H, Fig. 6.4i), others converge quite early (e.g., TPR-H, Fig. 6.4o),
though there seems to exist no direct relation between early (or late) convergence
and predictive performance.

6.3.3 Experiments with the Best-Performing Strategy

Considering that the median of the relative accuracy improvement (RAI-M) was the
best-ranked fitness function for the balanced meta-training set, and that the average
F-Measure (FM-A) was the best-ranked fitness function for the imbalanced meta-
training set, we perform a comparison of these HEAD-DT versions with the baseline
decision-tree induction algorithms C4.5, CART, and REPTree.

For version RAI-M, we use the same meta-training set as before: iris (IR = 1),
segment (IR = 1), vowel (IR = 1),mushroom(IR = 1.07), andkr-vs-kp (IR = 1.09).
The resulting algorithm is tested over the 10most-balanced data sets fromTable5.14:

1. meta-data (IR = 1);
2. mfeat (IR = 1);
3. mb-promoters (IR = 1);
4. kdd-synthetic (IR = 1);
5. trains (IR = 1);
6. tae (IR = 1.06);
7. vehicle (IR = 1.10);

http://dx.doi.org/10.1007/978-3-319-14231-9_5
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Fig. 6.4 Fitness evolution in HEAD-DT for the imbalanced meta-training set
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8. sonar (IR = 1.14);
9. heart-c (IR = 1.20);
10. credit-a (IR = 1.25).

For version FM-A, we also use the same meta-training set as before: primary-
tumor (IR = 84), anneal (IR = 85.5), arrhythmia (IR = 122.5), winequality-
white (IR = 439.6), and abalone (IR = 689). The resulting algorithm is tested
over the 10 most-imbalanced data sets from Table5.14:

• flags (IR = 15);
• sick (IR = 15.33);
• car (IR = 18.62);
• autos (IR = 22.33);
• sponge (IR = 23.33);
• postoperative (IR = 32);
• lymph (IR = 40.50);
• audiology (IR = 57);
• winequality-red (IR = 68.10);
• ecoli (IR = 71.50).

In Chap.5, we saw that HEAD-DT is capable of generating effective algorithms
tailored to a particular application domain (gene expression data). Now, with this
new experiment, our goal is to verify whether HEAD-DT is capable of generating
effective algorithms tailored to a particular statistical profile—in this case, tailored
to balanced/imbalanced data.

Table6.7 shows the accuracy and F-Measure values for HEAD-DT, C4.5, CART,
and REPTree, in the 20 UCI data sets (10 most-balanced and 10 most-imbalanced).
The version of HEAD-DT executed over the first 10 data sets is RAI-M, whereas
the version executed over the remaining 10 is FM-A. In both versions, HEAD-DT is
executed 5 times as usual, and the results are averaged.

Observe in Table6.7 that HEAD-DT (RAI-M) outperforms C4.5, CART, and
REPTree in 8 out of 10 data sets (in both accuracy and F-Measure), whereas C4.5
is the best algorithm in the remaining two data sets. The same can be said about
HEAD-DT (FM-A), which also outperforms C4.5, CART, and REPTree in 8 out of
10 data sets, being outperformed once by C4.5 and once by CART.

We proceed by presenting the critical diagrams of accuracy and F-Measure
(Fig. 6.5) in order to evaluate whether the differences among the algorithms are
statistically significant. Note that HEAD-DT is the best-ranked method, often in the
1st position (rank = 1.30). HEAD-DT (versions RAI-M and FM-A) outperforms both
CART and REPTree with statistical significance for α = 0.05. With respect to C4.5,
it is outperformed by HEAD-DT with statistical significance for α = 0.10, though
not for α = 0.05. Nevertheless, we are confident that being the best method in 16
out of 20 data sets is enough to conclude that HEAD-DT automatically generates
decision-tree algorithms tailored to balanced/imbalanced data that are consistently
more effective than C4.5, CART, and REPTree.

http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_5
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(a) (b)

Fig. 6.5 Critical diagrams for accuracy and F-Measure. Values are regarding the 20 UCI data sets
in Table6.7. a Accuracy rank for the balanced data sets. b F-measure rank for the balanced data
sets

Since HEAD-DT is run 5 times for alleviating the randomness effect of evolu-
tionary algorithms, we further analyse the 5 algorithms generated by HEAD-DT for
the balanced meta-training set and the 5 algorithms generated for the imbalanced
meta-training set.

Regarding the balanced meta-training set, we noticed that the favored split crite-
rion was the G statistic (present in 40% of the algorithms). The favored stop criterion
was stopping the tree-splitting process only when there is a single instance in the
node (present in 80% of the algorithms). The homogeneous stop was present in the
remaining 20% of the algorithms, but since a single instance is always homogeneous
(only 1 class represented in the node), we can say that HEAD-DT stop criterion was
actually stop splitting nodes when they are homogeneous. Surprisingly, the favored
pruning strategy was not to use any pruning strategy (80% of the algorithms). It
seems that this particular combination of design components did not lead to over-
fitting, even though the trees were not pruned at any point. Algorithm 1 shows this
custom algorithm designed for balanced data sets.

Algorithm 1 Custom algorithm designed by HEAD-DT (RAI-M) for balanced data
sets.
1: Recursively split nodes using the G statistic;
2: Perform nominal splits in multiple subsets;
3: Perform step 1 until class-homogeneity;
4: Do not perform any pruning strategy;

When dealing with missing values:
5: Calculate the split of missing values by weighting the split criterion value;
6: Distribute missing values by weighting them according to partition probability;
7: For classifying an instance with missing values, halt in the current node.

Regarding the imbalanced meta-training set, we noticed that two split criteria
stand out: DCSM (present in 40% of the algorithms) and Normalized Gain (also
present in 40%of the algorithms). In 100%of the algorithms, the nominal splits were
aggregated into binary splits. The favored stop criterion was either the homogeneous
stop (60% of the algorithms) of the algorithms or tree stop when a maximum depth
of around 10 levels is reached (40% of the algorithms). Finally, the pruning strategy
was also divided between PEP pruning with 1 SE (40% of the algorithms) and
no pruning at all (40% of the algorithms). We noticed that whenever the algorithm
employedDCSM,PEPpruningwas the favored pruning strategy. Similarly,whenever
the Normalized Gain was selected, no pruning was the favored pruning strategy. It
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seems that HEAD-DT was capable of detecting a correlation between different split
criteria and pruning strategies. Algorithm 2 shows the custom algorithm that was
tailored to imbalanced data (we actually present the choices of different components
when it was the case).

Algorithm 2Custom algorithm designed byHEAD-DT (FM-A) for imbalanced data
sets.
1: Recursively split nodes using either DCSM or the Normalized Gain;
2: Aggregate nominal splits into binary subsets;
3: Perform step 1 until class-homogeneity or a maximum depth of 9 (10) levels;
4: Either do not perform pruning and remove nodes that do not reduce training error, or perform PEP pruning with 1 SE;

When dealing with missing values:
5: Ignore missing values or perform unsupervised imputation when calculating the split criterion;
6: Perform unsupervised imputation before distributing missing values;
7: For classifying an instance with missing values, halt in the current node or explore all branches and combine the

classification.

Regarding the missing value strategies, we did not notice any particular pattern in
either the balanced or the imbalanced scenarios. Hence, the missing-value strategies
presented in Algorithms 1 and 2 are only examples of selected components, though
they did not stand out in terms of appearance frequency.

6.4 Chapter Remarks

In this chapter, we performed a series of experiments to analyse in more detail the
impact of different fitness functions during the evolutionary cycle of HEAD-DT.
In the first part of the chapter, we presented 5 classification performance measures
and three aggregation schemes to combine these measures during fitness evaluation
of multiple data sets. The combination of performance measures and aggregation
schemes resulted in 15 different versions of HEAD-DT.

Wedesigned two experimental scenarios to evaluate the 15 versions ofHEAD-DT.
In the first scenario, HEAD-DT is executed on a meta-training set with 5 balanced
data sets, and on a meta-test set with the remaining 62 available UCI data sets. In the
second scenario, HEAD-DT is executed on a meta-training set with 5 imbalanced
data sets, and the meta-test set with the remaining 62 available UCI data sets. For
measuring the level of data set balance, we make use of the imbalance ratio (IR),
which is the ratio between the most-frequent and the less-frequent classes of the data.

Results of the experiments indicated that the median of the relative accuracy
improvement was the most suitable fitness function for the balanced scenario,
whereas the average of the F-Measure was the most suitable fitness function for
the imbalanced scenario. The next step of the empirical analysis was to compare
these versions of HEAD-DT with the baseline decision-tree induction algorithms
C4.5, CART, and REPTree. For such, we employed the same meta-training sets than
before, though the meta-test sets exclusively comprised balanced (imbalanced) data
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sets. The experimental results confirmed that HEAD-DT can generate algorithms
tailored to a particular statistical profile (data set balance) that are more effective
than C4.5, CART, and REPTree, outperforming them in 16 out of 20 data sets.
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