
Chapter 4
HEAD-DT: Automatic Design
of Decision-Tree Algorithms

Abstract As presented in Chap.2, for the past 40 years researchers have attempted
to improve decision-tree induction algorithms, either by proposing new splitting cri-
teria for internal nodes, by investigating pruning strategies for avoiding overfitting,
by testing new approaches for dealing with missing values, or even by searching
for alternatives to the top-down greedy induction. Each new decision-tree induction
algorithm presents some (or many) of these strategies, which are chosen in order to
maximize performance in empirical analyses. Nevertheless, the number of different
strategies for the several components of a decision-tree algorithm is so vast after
these 40 years of research that it would be impracticable for a human being to test all
possibilities with the purpose of achieving the best performance in a given data set
(or in a set of data sets). Hence, we pose two questions for researchers in the area:
“is it possible to automate the design of decision-tree induction algorithms?”, and, if
so, “how can we automate the design of a decision-tree induction algorithm?” The
answer for these questions arose with the pioneering work of Pappa and Freitas [30],
which proposed the automatic design of rule induction algorithms through an evolu-
tionary algorithm.The authors proposed the use of a grammar-basedGPalgorithm for
building and evolving individuals which are, in fact, rule induction algorithms. That
approach successfully employs EAs to evolve a generic rule induction algorithm,
which can then be applied to solve many different classification problems, instead of
evolving a specific set of rules tailored to a particular data set. As presented inChap. 3,
in the area of optimisation this type of approach is named hyper-heuristics (HHs)
[5, 6]. HHs are search methods for automatically selecting and combining simpler
heuristics, resulting in a generic heuristic that is used to solve any instance of a given
optimisation problem. For instance, a HH can generate a generic heuristic for solving
any instance of the timetabling problem (i.e., allocation of any number of resources
subject to any set of constraints in any schedule configuration) whilst a conventional
EAwould just evolve a solution to one particular instance of the timetabling problem
(i.e., a predefined set of resources and constraints in a given schedule configuration).
In this chapter, we present a hyper-heuristic strategy for automatically designing
decision-tree induction algorithms, namely HEAD-DT (Hyper-Heuristic Evolution-
ary Algorithm for Automatically Designing Decision-Tree Algorithms). Section4.1
introduces HEAD-DT and its evolutionary scheme. Section4.2 presents the indi-
vidual representation adopted by HEAD-DT to evolve decision-tree algorithms, as
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well as information regarding each individual’s gene. Section4.3 shows the evolu-
tionary cycle of HEAD-DT, detailing its genetic operators. Section4.4 depicts the
fitness evaluation process in HEAD-DT, and introduces two possible frameworks
for executing HEAD-DT. Section4.5 computes the total size of the search space that
HEAD-DT is capable of traversing, whereas Sect. 4.6 discusses related work.

Keywords Automatic design ·Hyper-heuristic decision-tree induction ·HEAD-DT

4.1 Introduction

According to the definition by Burke et al. [7], “a hyper-heuristic is an automated
methodology for selecting or generating heuristics to solve hard computational
search problems”. Hyper-heuristics can automatically generate new heuristics suited
to a given problem or class of problems. This is carried out by combining com-
ponents or building-blocks of human-designed heuristics. The motivation behind
hyper-heuristics is to raise the level of generality at which search methodologies can
operate. In the context of decision trees, instead of searching through an EA for the
best decision tree to a given problem (regularmetaheuristic approach, e.g., [1, 2]), the
generality level is raised by searching for the best decision-tree induction algorithm
that may be applied to several different problems (hyper-heuristic approach).

HEAD-DT (Hyper-Heuristic Evolutionary Algorithm for Automatically Design-
ing Decision-Tree Algorithms) can be seen as a regular generational EA in which
individuals are collections of building blocks of top-down decision-tree induction
algorithms. Typical operators from EAs are employed, such as tournament selection,
mutually-exclusive genetic operators (reproduction, crossover, and mutation) and a
typical stopping criterion that halts evolution after a predefined number of genera-
tions. The evolution of individuals in HEAD-DT follows the scheme presented in
Fig. 4.1.

Fig. 4.1 HEAD-DT’s evolutionary scheme
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4.2 Individual Representation

Each individual in HEAD-DT is encoded as an integer vector, as depicted in Fig. 4.2,
and each gene has a different range of supported values. We divided the genes into
four categories, representing the major building blocks (design components) of a
decision-tree induction algorithm:

• split genes;
• stopping criteria genes;
• missing values genes;
• pruning genes.

4.2.1 Split Genes

The linear genome that encodes individuals in HEAD-DT holds two genes for the
split component of decision trees. These genes represent the design component that
is responsible for selecting the attribute to split the data in the current node of the
decision tree. Based on the selected attribute, a decision rule is generated for filtering
the input data in subsets, and the process continues recursively.

To model this design component, we make use of two different genes. The first
one, criterion, is an integer that indexes one of the 15 splitting criteria that are
implemented in HEAD-DT (see Table4.1). The most successful criteria are based
on Shannon’s entropy [36], a concept well-known in information theory. Entropy is a
unique function that satisfies the four axioms of uncertainty. It represents the average
amount of information when coding each class into a codeword with ideal length
according to its probability. Examples of splitting criteria based on entropy are global
mutual information (GMI) [18] and information gain [31]. The latter is employed by
Quinlan in his ID3 system [31]. However, Quinlan points out that information gain

Fig. 4.2 Linear-genome for
evolving decision-tree
algorithms
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Table 4.1 Split criteria
implemented in HEAD-DT

Criterion References

Information gain [31]

Gini index [4]

Global mutual information [18]

G statistic [26]

Mantáras criterion [24]

Hypergeometric distribution [25]

Chandra-Varghese criterion [9]

DCSM [10]

χ2 [27]

Mean posterior improvement [37]

Normalized gain [21]

Orthogonal criterion [15]

Twoing [4]

CAIR [11]

Gain ratio [35]

is biased towards attributes with many values, and thus proposes a solution named
gain ratio [35]. Gain ratio normalizes the information gain by the entropy of the
attribute being tested. Several variations of the gain ratio have been proposed, such
as the normalized gain [21].

Alternatives to entropy-based criteria are the class of distance-based measures.
These criteria evaluate separability, divergency, or discrimination between classes.
Examples are the Gini index [4], the twoing criterion [4], the orthogonality criterion
[15], among several others. We also implemented as options for HEAD-DT lesser-
known criteria such as CAIR [11] and mean posterior improvement [37], as well as
the more recent Chandra-Varghese [9] and DCSM [10], to enhance the diversity of
options for generating splits in a decision tree.

The second gene that controls the split component of a decision-tree algorithm
is binary split. It is a binary gene that indicates whether the splits of a decision
tree are going to be binary or multi-way. In a binary tree, every split has only two
outcomes, which means that nominal attributes with many categories are aggregated
into two subsets. In amulti-way tree, nominal attributes are divided according to their
number of categories—one edge (outcome) for each category. In both cases, numeric
attributes always partition the tree in two subsets, represented by tests att ≤ Δ and
att > Δ.



4.2 Individual Representation 63

4.2.2 Stopping Criteria Genes

The top-down induction of decision trees is recursive and it continues until a stopping
criterion (also known as pre-pruning) is satisfied. The linear genome in HEAD-DT
holds two genes for representing this design component: criterion and parameter.

The first gene, criterion, selects among the following five different strategies for
stopping the tree growth:

1. Reaching class homogeneity: when every instance that reaches a given node
belong to the same class, there is no reason to split this node any further. This
strategy can be the only single stopping criterion, or it can be combined with the
next four strategies;

2. Reaching the maximum tree depth: a parameter tree depth can be specified to
avoid deep trees. Range: [2, 10] levels;

3. Reaching the minimum number of instances for a non-terminal node: a parame-
ter minimum number of instances for a non-terminal node can be specified to
avoid/alleviate the data fragmentation problem in decision trees. Range: [1, 20]
instances;

4. Reaching the minimum percentage of instances for a non-terminal node: same as
above, but instead of the actual number of instances, a percentage of instances
is defined. The parameter is thus relative to the total number of instances in the
training set. Range: [1%, 10%] the total number of instances;

5. Reaching an accuracy threshold within a node: a parameter accuracy reached can
be specified for halting the growth of the tree when the accuracy within a node
(majority of instances) has reached a given threshold. Range: {70%, 75%, 80%,

85%, 90%, 95%, 99%} accuracy.
Gene parameter dynamically adjusts a value in the range [0, 100] to the corre-

sponding strategy. For example, if the strategy selected by gene criterion is reaching
the maximum tree depth, the following mapping function is executed:

param = (valuemod 9) + 2 (4.1)

This function maps from [0, 100] (variable value) to [2, 10] (variable param),
which is the desired range of values for the parameter of strategy reaching the max-
imum tree depth. Similar mapping functions are executed dynamically to adjust the
ranges of gene parameter.

4.2.3 Missing Values Genes

The next design component of decision trees that is represented in the linear genome
of HEAD-DT is the missing value treatment. Missing values may be an issue dur-
ing tree induction and also during classification. We make use of three genes to
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represent missing values strategies in different moments of the induction/deduction
process. During tree induction, there are two moments in which we need to deal with
missing values: splitting criterion evaluation (split gene), and instances distribution
(distribution gene). During tree deduction (classification), we may also have to deal
with missing values in the test set (classification gene).

During the split criterion evaluation in node t based on attribute ai , we imple-
mented the following strategies:

• Ignore all instances whose value of ai is missing [4, 17];
• Imputation of missing values with either the mode (nominal attributes) or the
mean/median (numeric attributes) of all instances in t [12];

• Weight the splitting criterion value (calculated in node t with regard to ai ) by the
proportion of missing values [34];

• Imputation of missing values with either the mode (nominal attributes) or the
mean/median (numeric attributes) of all instances in t whose class attribute is the
same of the instance whose ai value is being imputed.

For deciding which child node training instance x j should go to, considering a
split in node t over ai , we adopted the options:

• Ignore instance x j [31];
• Treat instance x j as if it has the most common value of ai (mode or mean),
regardless of the class [34];

• Treat instance x j as if it has the most common value of ai (mode or mean) con-
sidering the instances that belong to the same class than x j ;

• Assign instance x j to all partitions [17];
• Assign instance x j to the partition with largest number of instances [34];
• Weight instance x j according to the partition probability [22, 35];
• Assign instance x j to the most probable partition, considering the class of x j [23].

Finally, for classifying an unseen test instance x j , considering a split in node t
over ai , we used the strategies:

• Explore all branches of t combining the results [32];
• Take the route to the most probable partition (largest subset);
• Halt the classification process and assign instance x j to the majority class of node

t [34].

4.2.4 Pruning Genes

Pruning was originally conceived as a strategy for tolerating noisy data, though it
was found to improve decision tree accuracy in many noisy data sets [4, 31, 33].
It has now become an important part of greedy top-down decision-tree induction
algorithms. HEAD-DT holds two genes for this design component. The first gene,
method, indexes one of the five well-known approaches for pruning a decision tree
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Table 4.2 Pruning methods
implemented in HEAD-DT

Method References

Reduced-error pruning [33]

Pessimistic error pruning [33]

Minimum error pruning [8, 28]

Cost-complexity pruning [4]

Error-based pruning [35]

presented in Table4.2, and also the option of not pruning at all. The second gene,
parameter, is in the range [0, 100] and its value is again dynamically mapped by a
function according to the selected pruning method.

(1) Reduced-error pruning (REP) is a conceptually simple strategy proposed by
Quinlan [33]. It uses a pruning set (a part of the training set) to evaluate the goodness
of a given subtree from T . The idea is to evaluate each non-terminal node t with
regard to the classification error in the pruning set. If such an error decreases when
we replace the subtree T (t) rooted on t by a leaf node, then T (t) must be pruned.
Quinlan imposes a constraint: a node t cannot be pruned if it contains a subtree that
yields a lower classification error in the pruning set. The practical consequence of this
constraint is that REP should be performed in a bottom-up fashion. The REP pruned
tree T ′ presents an interesting optimality property: it is the smallest most accurate
tree resulting from pruning original tree T [33]. Besides this optimality property,
another advantage of REP is its linear complexity, since each node is visited only
once in T . A clear disadvantage is the need of using a pruning set, which means one
has to divide the original training set, resulting in less instances to grow the tree. This
disadvantage is particularly serious for small data sets. For REP, the parameter gene
is regarding the percentage of training data to be used in the pruning set (varying
within the interval [10%, 50%]).

(2) Also proposed by Quinlan [33], the pessimistic error pruning (PEP) uses the
training set for both growing and pruning the tree. The apparent error rate, i.e., the
error rate calculated over the training set, is optimistically biased and cannot be
used to decide whether pruning should be performed or not. Quinlan thus proposes
adjusting the apparent error according to the continuity correction for the binomial
distribution in order to provide a more realistic error rate. PEP is computed in a
top-down fashion, and if a given node t is pruned, its descendants are not examined,
which makes this pruning strategy quite efficient in terms of computational effort.
Esposito et al. [14] point out that the introduction of the continuity correction in the
estimation of the error rate has no theoretical justification, since it was never applied
to correct over-optimistic estimates of error rates in statistics. For PEP, the parameter
gene is the number of standard errors (SEs) to adjust the apparent error, in the set
{0.5, 1, 1.5, 2}.

(3) Originally proposed by Niblett and Bratko [28] and further extended in [8],
minimum error pruning (MEP) is a bottom-up approach that seeks to minimize the
expected error rate for unseen cases. It uses an ad-hoc parameter m for controlling
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the level of pruning. Usually, the higher the value of m, the more severe the pruning.
Cestnik and Bratko [8] suggest that a domain expert should set m according to the
level of noise in the data. Alternatively, a set of trees pruned with different values of
m could be offered to the domain expert, so he/she can choose the best one according
to his/her experience. ForMEP, the parameter gene comprises variablem, whichmay
range within [0, 100].

(4) Cost-complexity pruning (CCP) is the post-pruning strategy adopted by the
CART system [4]. It consists of two steps: (i) generate a sequence of increasingly
smaller trees, beginning with T and ending with the root node of T , by successively
pruning the subtree yielding the lowest cost complexity, in a bottom-up fashion; (ii)
choose the best tree among the sequence based on its relative size and accuracy
(either on a pruning set, or provided by a cross-validation procedure in the training
set). The idea within step 1 is that pruned tree Ti+1 is obtained by pruning the
subtrees that show the lowest increase in the apparent error (error in the training set)
per pruned leaf. Regarding step 2, CCP chooses the smallest tree whose error (either
on the pruning set or on cross-validation) is not more than one standard error (SE)
greater than the lowest error observed in the sequence of trees. For CCP, there are
two parameters that need to be set: the number of SEs (in the same range than PEP)
and the pruning set size (in the same range than REP).

(5) Error-based pruning (EBP) was proposed by Quinlan and it is implemented as
the default pruning strategy ofC4.5 [35]. It is an improvement over PEP, based on a far
more pessimistic estimate of the expected error. Unlike PEP, EBP performs a bottom-
up search, and it carries out not only the replacement of non-terminal nodes by leaves
but also grafting of subtree T (t) onto the place of parent t . For deciding whether to
replace a non-terminal node by a leaf (subtree replacement), to graft a subtree onto
the place of its parent (subtree raising) or not to prune at all, a pessimistic estimate of
the expected error is calculated by using an upper confidence bound. An advantage
of EBP is the new grafting operation that allows pruning useless branches without
ignoring interesting lower branches. A drawback of the method is the presence of
an ad-hoc parameter, CF. Smaller values of CF result in more pruning. For EBP, the
parameter gene comprises variable CF, which may vary within [1%, 50%].

4.2.5 Example of Algorithm Evolved by HEAD-DT

The linear genome of an individual in HEAD-DT is formed by the building blocks
described in the earlier sections: (split criterion, split type, stopping criterion,
stopping parameter, pruning strategy, pruning parameter, mv split, mv distribu-
tion, mv classification.) One possible individual encoded by that linear string is
[4, 1, 2, 77, 3, 91, 2, 5, 1], which accounts for Algorithm 1.
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Algorithm 1 Example of a decision-tree algorithm automatically designed by
HEAD-DT.
1: Recursively split nodes with the G statistics criterion;
2: Create one edge for each category in a nominal split;
3: Perform step 1 until class-homogeneity or the maximum tree depth of 7 levels ((77mod 9) + 2) is reached;
4: Perform MEP pruning with m = 91;

When dealing with missing values:
5: Distribute missing-valued instances to the partition with the largest number of instances;
6: Distribute missing values by assigning the instance to all partitions;
7: For classifying an instance with missing values, explore all branches and combine the results.

4.3 Evolution

The first step of HEAD-DT is the generation of the initial population, in which a
population of 100 individuals (default value) is randomly generated (generation of
random numbers within the genes’ acceptable range of values). Next, the popula-
tion’s fitness is evaluated based on the data sets that belong to the meta-training set.
The individuals then participate of a pairwise tournament selection procedure (t = 2
is the default parameter) for defining those that will undergo the genetic operators.
Individuals may participate in either uniform crossover, random uniform gene muta-
tion, or reproduction, the three mutually-exclusive genetic operators employed in
HEAD-DT (see Fig. 4.3).

Fig. 4.3 HEAD-DT’s genetic operators
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The uniform crossover is guided by a swap probability ps (default value = 0.5)
that ultimately indicates whether a child’s gene should come from parent A or from
parent B. Algorithm 2 depicts the pseudocode of the uniform crossover operator
implemented in HEAD-DT.

Algorithm 2 Uniform crossover employed by HEAD-DT.
1: Let A and B be two parents chosen by tournament selection;
2: Let C and D be the two resulting offspring;
3: for each gene g in genome do
4: Choose a uniform random real number u from [0,1];
5: if u ≤ ps then
6: //swap genes
7: C[g] = B[g];
8: D[g] = A[g];
9: else
10: //do not swap
11: C[g] = A[g];
12: D[g] = B[g];
13: end if
14: end for

The mutation operator implemented in HEAD-DT is the random uniform gene
mutation. It is guided by a replacement probability prep (default value= 0.5), which
dictates whether or not a gene’s value should be replaced by a randomly generated
value within the accepted range of the respective gene. Algorithm 3 depicts the
pseudocode of the random uniform gene mutation operator implemented in HEAD-
DT.

Algorithm 3 Random uniform gene mutation employed by HEAD-DT.
1: Let A be a single individual chosen by tournament selection;
2: Let B be the individual resulting from mutating A;
3: for each gene g in genome do
4: Choose a uniform random real number u from [0,1];
5: if u ≤ prep then
6: //mutate gene
7: Randomly generate a value v within the range accepted by g;
8: B[g] = v;
9: else
10: //do not mutate gene
11: B[g] = A[g]
12: end if
13: end for

Finally, reproduction is the operation that copies (clones) a given individual to
be part of the EA’s next generation in a straightforward fashion. A single parameter
p controls the mutually-exclusive genetic operators: crossover probability is given
by p, whereas mutation probability is given by (1 − p) − 0.05, and reproduction
probability is fixed in 0.05. For instance, if p = 0.9, then HEAD-DT is executed
with a crossover probability of 90%, mutation probability of 5% and reproduction
probability of 5%. HEAD-DT employs an elitist strategy, in which the best e%
individuals are kept from one generation to the next (e = 5% of the population is
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1. Recursively split nodes with the G statistics criterion;
2. Create one edge for each category in a nominal split;
3. Perform step 1 until class-homogeneity or the maximum
tree depth of 7 levels ((77 mod 9) + 2) is reached;
4. Perform MEP pruning with m = 91;
5. When dealing with missing values:

5.1. Impute missing values with mode/mean during split
calculation;

5.2. Distribute missing-valued instances to the partition
with the largest number of instances;

5.3. For classifying an instance, explore all branches and
combine the results;

Fig. 4.4 Evolution of individuals encoded as integer vectors

the default parameter). Evolution ends after a predefined number of generations is
achieved (100 generations is the default value), and the best individual returned by
HEAD-DT is then executed over the meta-test set, so its performance in unseen data
can be properly assessed.

Figure4.4 presents an example of how linear genomes are decoded into algo-
rithms, and how they participate of the evolutionary cycle. For decoding the individ-
uals, the building blocks (indexed components and their respective parameters) are
identified, and this information is passed to a skeleton decision-tree induction class,
filling the gaps with the selected building blocks.

4.4 Fitness Evaluation

During the fitness evaluation, HEAD-DT employs a meta-training set for assessing
the quality of each individual throughout evolution. Ameta-test set is used for assess-
ing the quality of the evolved decision-tree induction algorithm (the best individual
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in Fig. 4.1). There are two distinct frameworks for dealing with the meta-training and
test sets:

1. Evolving a decision-tree induction algorithm tailored to one specific data set.
2. Evolving a decision-tree induction algorithm from multiple data sets.

In the first case, named the specific framework, we have a specific data set for
which we want to design a decision-tree algorithm. The meta-training set comprises
the available training data from the data set at hand. The meta-test set comprises test
data (belonging to the samedata set)we have available for evaluating the performance
of the algorithm (see Fig. 4.5a). For example, suppose HEAD-DT is employed to
evolve the near-optimal decision-tree induction algorithm for the iris data set. In
such a scenario, both meta-training and meta-test sets comprise distinct data folds
from the iris data set.

In the second case, named the general framework, there are multiple data sets
composing the meta-training set, and possibly multiple (albeit different) data sets
comprising the meta-test set (see Fig. 4.5b). For example, suppose HEAD-DT is
employed to evolve the near-optimal algorithm for the problem of credit risk assess-
ment. In this scenario, the meta-training set may comprise public UCI data sets [16]
such as german credit and credit approval, whereas the meta-test set may comprise
particular credit risk assessment data sets the user desires to classify.

The general framework can be employed with two different objectives, broadly
speaking:

1. Designing a decision-tree algorithmwhose predictive performance is consistently
good in a wide variety of data sets. For such, the evolved algorithm is applied to
data sets with very different structural characteristics and/or from very distinct
application domains. In this scenario, the user chooses distinct data sets to be part
of the meta-training set, in the hope that evolution will be capable of generating
an algorithm that performs well in a wide range of data sets. Pappa [29] calls this
strategy “evolving robust algorithms”;

2. Designing a decision-tree algorithm that is tailored to a particular application
domain or to a specific statistical profile. In this scenario, the meta-training set
comprises data sets that share similarities, and so the evolved decision-tree algo-
rithm is specialized in solving a specific type of problem. Unlike the previous

(a) (b)

Fig. 4.5 Fitness evaluation schemes. a Fitness evaluation from one data set in the meta-training
set. b Fitness evaluation from multiple data sets in the meta-training set
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strategy, in this case we have to define a similarity criterion for creating spe-
cialized algorithms. We highlight the following similarity criteria: (i) choosing
data sets that share the same application domain (e.g., gene expression data); (ii)
choosing data sets with provenance resemblance (e.g., data sets generated from
data collected by a specific sensor); and (iii) choosing data sets with structural
resemblance (e.g., data sets with statistically-similar features and/or with similar
geometrical complexity [19, 20]).

In Fig. 4.5b, we can observe how the fitness evaluation of a decision-tree induction
algorithm evolved frommultiple data sets occurs. First, a given individual is mapped
into its corresponding decision-tree algorithm. Afterwards, each data set that belongs
to the meta-training set is divided into training and validation—typical values are
70% for training and 30% for validation [39]. The term “validation set” is used in
here instead of “test set” to avoid confusion with the meta-test set, and also due to the
fact that we are using the “knowledge” within these sets to reach for a better solution
(the same cannot be done with test sets, which are exclusively used for assessing the
performance of an algorithm).

After dividing each data set from the meta-training set into “training” and “vali-
dation”, a decision tree is induced for each training set available. For evaluating the
performance of these decision trees, we use the corresponding validation sets. Sta-
tistics regarding the performance of each decision tree are recorded (e.g., accuracy,
F-Measure, precision, recall, total number of nodes/leaves, etc.), and can be used
individually or combined as the fitness function of HEAD-DT. The simple average is
probably the most intuitive way of combining the values per data set, but other pos-
sible solutions are the median of the values, or their harmonic mean. Depending on
the data sets used in the meta-training set, the user may decide to give greater weight
of importance to a more difficult-to-solve data set than to an easier one, and hence a
weighted scheme may be a good solution when combining the data set values. Some
of these possibilities are discussed in Chap. 6.

A typical fitness function would be the average F-Measure of the decision trees
generated by a given individual for each data set from the meta-training set. F-
Measure (also known as F-score or F1 score) is the harmonic mean of precision and
recall:

precision = tp

tp + fp
(4.2)

recall = tp

tp + fn
(4.3)

fmeasure = 2 × precision × recall

precision + recall
(4.4)

Fitness = 1

n

n∑

i=1

fmeasurei (4.5)

http://dx.doi.org/10.1007/978-3-319-14231-9_6
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where tp (tn) is the number of true positives (negatives), fp (fn) is the number of false
positives (negatives), fmeasurei is the F-Measure obtained in data set i and n is the
total number of data sets in the meta-training set.

This formulation assumes that the classification problem at hand is binary,
i.e., composed by two classes: positive and negative. Nevertheless, it can be triv-
ially extended to multi-class problems. For instance, we can compute the mea-
sure for each class—assuming each class to be the “positive” class in turn—and
(weight-)average the per-class measures. Having in mind that we would like HEAD-
DT to perform well in both balanced and imbalanced data sets, we believe that the
average F-Measure is a more suitable fitness function than the average accuracy.

4.5 Search Space

To compute the search space reached by HEAD-DT, consider the linear genome pre-
sented in Sect. 4.2: (split criterion, split type, stopping criterion, stopping parameter,
pruning strategy, pruning parameter, mv split, mv distribution, mv classification).
There are 15 types of split criteria, 2 possible split types, 4 types of missing-value
strategies during split computation, 7 types of missing-value strategies during train-
ing data distribution, and 3 types of missing-value strategies during classification.
Hence, there are 15 × 2 × 4 × 7 × 3 = 2,520 possible different algorithms.

Now, let us analyse the combination of stopping criteria and their parameters.
There is the possibility of splitting until class homogeneity is achieved, and no para-
meter is needed (thus, 1 possible algorithm). There are 9 possible parameters when
the tree is grown until a maximum depth, and 20 when reaching a minimum number
of instances. Furthermore, there are 10 possible parameter values when reaching a
minimumpercentage of instances and 7when reaching an accuracy threshold. Hence,
there are 1+ 9+ 20+ 10+ 7 = 47 possible algorithms just by varying the stopping
criteria component.

Next, let us analyse the combination of pruning methods and their parameters.
REP pruning parameter may take up to 5 different values, whereas PEP pruning may
take up to 4. MEP can take up to 101 values, and EBP up to 50. Finally, CCP takes
up to 4 values for its first parameter and up to 5 values for its second. Therefore,
there are 5+ 4+ 101+ (4× 5) + 50 = 180 possible algorithms by just varying the
pruning component.

If we combine all the previously mentioned values, HEAD-DT currently searches
in the space of 2,520 × 47 × 180 = 21,319,200 algorithms. Now, just for the
sake of argument, suppose a single decision-tree induction algorithm takes about
10 s to produce a decision tree for a given (small) data set for which we want the
best possible algorithm. If we were to try all possible algorithms in a brute-force
approach, we would take 59,220h to find out the best possible configuration for that
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data set. That means ≈2,467 days or 6.75 years just to find out the best decision-tree
algorithm for a single (small) data set. HEAD-DT would take, in the worst case,
100,000s—10,000 individuals (100 individuals per generation, 100 generations)
times 10s. Thus HEAD-DT would take about 1,666min (27.7h) to compute the
(near-)optimal algorithm for that same data set, i.e., it is≈2,138 times faster than the
brute-force approach. In practice, this number is much smaller considering that indi-
viduals are not re-evaluated if not changed, and HEAD-DT implements reproduction
and elitism.

Of course there are no theoretic guarantees that the (near-)optimal algorithm found
by HEAD-DT within these 27.7h is going to be the same global optimal algorithm
provided by the brute-force approach after practically 7 years of computation, but
its use is justified by the time saved during the process.

4.6 Related Work

The literature in EAs for decision-tree induction is very rich (see, for instance, [3]).
However, the research community is still concerned with the evolution of deci-
sion trees for particular data sets instead of evolving full decision-tree induction
algorithms.

To the best of our knowledge, nowork to date attempts to automatically design full
decision-tree induction algorithms. The most related approach to the one presented
in this book is HHDT (Hyper-Heuristic Decision Tree) [38]. It proposes an EA for
evolving heuristic rules in order to determine the best splitting criterion to be used
in non-terminal nodes. It is based on the degree of entropy of the data set attributes.
For instance, it evolves rules such as IF (x % ≥ high) and (y % < low) THEN use
heuristic A, where x and y are percentages ranging within [0, 100], and high and
low are threshold entropy values. This rule has the following interpretation: if x %
of the attributes have entropy values greater or equal than threshold high, and if y %
of the attributes have entropy values below threshold low, then make use of heuristic
A for choosing the attribute that splits the current node. Whilst HHDT is a first
step to automate the design of decision-tree induction algorithms, it evolves a single
component of the algorithm (the choice of splitting criterion), and thus should be
further extended for being able to generate full decision-tree induction algorithms,
which is the case of HEAD-DT.

Another slightly related approach is the one presented by Delibasic et al. [13].
The authors propose a framework for combining decision-tree components, and test
80 different combination of design components on 15 benchmark data sets. This
approach is not a hyper-heuristic, since it does not present an heuristic to choose
among different heuristics. It simply selects a fixed number of component combina-
tions and test them all against traditional decision-tree algorithms (C4.5, CART, ID3
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and CHAID). We believe that employing EAs to evolve decision-tree algorithms is a
more robust strategy, since we can search for solutions in a much larger search space
(21 million possible algorithms in HEAD-DT, against 80 different algorithms in the
work of Delibasic et al. [13]).

Finally, the work of Pappa and Freitas [30] proposes a grammar-based genetic
programming approach (GGP) for evolving full rule induction algorithms. The results
showed that GGP could generate rule induction algorithms different from those
already proposed in the literature, and with competitive predictive performance.

4.7 Chapter Remarks

In this chapter, we presented HEAD-DT, a hyper-heuristic evolutionary algorithm
that automatically designs top-down decision-tree induction algorithms. The latter
have been manually improved for the last 40 years, resulting in a large number of
approaches for each of their design components. Since the human manual approach
for testing all possible modifications in the design components of decision-tree algo-
rithms would be unfeasible, we believe the evolutionary search of HEAD-DT con-
stitutes a robust and efficient solution for the problem.

HEAD-DT evolves individuals encoded as integer vectors (linear genome). Each
gene in the vector is an index to a design component or the value of its corresponding
parameter. Individuals are decoded by associating each integer to a design compo-
nent, and by mapping values ranging within [0, 100] to values in the correct range
according to the specified component. The initial populationof 100 individuals evolve
for 100 generations, in which individuals are chosen by a pairwise tournament selec-
tion strategy to participate of mutually-exclusive genetic operators such as uniform
crossover, random uniform gene mutation, and reproduction.

HEAD-DT may operate under two distinct frameworks: (i) evolving a decision-
tree induction algorithm tailored to one specific data set; and (ii) evolving a decision-
tree induction algorithm frommultiple data sets. In the first framework, the goal is to
generate a decision-tree algorithm that excels at a single data set (both meta-training
and meta-test sets comprise data from the same data set). In the second framework,
there are several distinct objectives that can be achieved, like generating a decision-
tree algorithm tailored to a particular application domain (say gene expression data
sets or financial data sets), or generating a decision-tree algorithm that is robust
across several different data sets (a good “all-around” algorithm).

Regardless of the framework being employed, HEAD-DT is capable of searching
in a space of more than 21 million algorithms. In the next chapter, we present sev-
eral experiments for evaluating HEAD-DT’s performance under the two proposed
frameworks. Moreover, we comment on the cost-effectiveness of automated algo-
rithm design in contrast to the manual design, and we show that the genetic search
performed by HEAD-DT is significantly better than a random search in the space of
21 million decision-tree induction algorithms.
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