
Chapter 1
Introduction

Classification, which is the data mining task of assigning objects to predefined
categories, is widely used in the process of intelligent decision making. Many classi-
fication techniques have been proposed by researchers inmachine learning, statistics,
and pattern recognition. Such techniques can be roughly divided according to the
their level of comprehensibility. For instance, techniques that produce interpretable
classification models are known as white-box approaches, whereas those that do
not are known as black-box approaches. There are several advantages in employing
white-box techniques for classification, such as increasing the user confidence in the
prediction, providing new insight about the classification problem, and allowing the
detection of errors either in the model or in the data [12]. Examples of white-box
classification techniques are classification rules and decision trees. The latter is the
main focus of this book.

A decision tree is a classifier represented by a flowchart-like tree structure that has
been widely used to represent classification models, specially due to its comprehen-
sible nature that resembles the human reasoning. In a recent poll from the kdnuggets
website [13], decision trees figured as the most used data mining/analytic method by
researchers and practitioners, reaffirming its importance in machine learning tasks.
Decision-tree induction algorithms present several advantages over other learning
algorithms, such as robustness to noise, low computational cost for generating the
model, and ability to deal with redundant attributes [22].

Several attempts on optimising decision-tree algorithms have been made by
researchers within the last decades, even though the most successful algorithms
date back to the mid-80s [4] and early 90s [21]. Many strategies were employed
for deriving accurate decision trees, such as bottom-up induction [1, 17], linear pro-
gramming [3], hybrid induction [15], and ensemble of trees [5], just to name a few.
Nevertheless, no strategy has been more successful in generating accurate and com-
prehensible decision trees with low computational effort than the greedy top-down
induction strategy.

A greedy top-down decision-tree induction algorithm recursively analyses if a
sample of data should be partitioned into subsets according to a given rule, or if no
further partitioning is needed.This analysis takes into account a stopping criterion, for

© The Author(s) 2015
R.C. Barros et al., Automatic Design of Decision-Tree Induction Algorithms,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-14231-9_1

1



2 1 Introduction

deciding when tree growth should halt, and a splitting criterion, which is responsible
for choosing the “best” rule for partitioning a subset. Further improvements over
this basic strategy include pruning tree nodes for enhancing the tree’s capability of
dealing with noisy data, and strategies for dealing with missing values, imbalanced
classes, oblique splits, among others.

A very large number of approaches were proposed in the literature for each one
of these design components of decision-tree induction algorithms. For instance, new
measures for node-splitting tailored to a vast number of application domains were
proposed, as well as many different strategies for selecting multiple attributes for
composing the node rule (multivariate split). There are even studies in the literature
that survey the numerous approaches for pruning a decision tree [6, 9]. It is clear
that by improving these design components, more effective decision-tree induction
algorithms can be obtained.

An approach that has been increasingly used in academia is the induction of deci-
sion trees through evolutionary algorithms (EAs). They are essentially algorithms
inspired by the principle of natural selection and genetics. In nature, individuals
are continuously evolving, adapting to their living environment. In EAs, each “indi-
vidual” represents a candidate solution to the target problem. Each individual is
evaluated by a fitness function, which measures the quality of its corresponding
candidate solution. At each generation, the best individuals have a higher probabil-
ity of being selected for reproduction. The selected individuals undergo operations
inspired by genetics, such as crossover andmutation, producing new offspring which
will replace the parents, creating a new generation of individuals. This process is iter-
atively repeated until a stopping criterion is satisfied [8, 11]. Instead of local search,
EAs perform a robust global search in the space of candidate solutions. As a result,
EAs tend to cope better with attribute interactions than greedy methods [10].

The number of EAs for decision-tree induction has grown in the past few years,
mainly because they report good predictive performance whilst keeping the com-
prehensibility of decision trees [2]. In this approach, each individual of the EA is
a decision tree, and the evolutionary process is responsible for searching the solu-
tion space for the “near-optimal” tree regarding a given data set. A disadvantage of
this approach is that it generates a decision tree tailored to a single data set. In other
words, an EA has to be executed every time we want to induce a tree for a giving data
set. Since the computational effort of executing an EA is much higher than executing
the traditional greedy approach, it may not be the best strategy for inducing decision
trees in time-constrained scenarios.

Whether we choose to induce decision trees through the greedy strategy (top-
down, bottom-up, hybrid induction), linear programming, EAs, ensembles, or any
other available method, we are susceptible to the method’s inductive bias. Since we
know that certain inductive biases are more suitable to certain problems, and that no
method is best for every single problem (i.e., the no free lunch theorem [26]), there
is a growing interest in developing automatic methods for deciding which learner to
use in each situation. A whole new research area named meta-learning has emerged
for solving this problem [23]. Meta-learning is an attempt to understand data a priori
of executing a learning algorithm. In a particular branch of meta-learning, algorithm



1 Introduction 3

recommendation, data that describe the characteristics of data sets and learning algo-
rithms (i.e.,meta-data) are collected, and a learning algorithm is employed to interpret
these meta-data and suggest a particular learner (or ranking a few learners) in order
to better solve the problem at hand. Meta-learning has a few limitations, though.
For instance, it provides a limited number of algorithms to be selected from a list.
In addition, it is not an easy task to define the set of meta-data that will hopefully
contain useful information for identifying the best algorithm to be employed.

For avoiding the limitations of traditional meta-learning approaches, a promising
idea is to automatically develop algorithms tailored to a given domain or to a specific
set of data sets. This approach can be seen as a particular type of meta-learning, since
we are learning the “optimal learner” for specific scenarios. One possible technique
for implementing this idea is genetic programming (GP). It is a branch of EAs that
arose as a paradigm for evolving computer programs in the beginning of the 90s [16].
The idea is that each individual in GP is a computer program that evolves during
the evolutionary process of the EA. Hopefully, at the end of evolution, GP will have
found the appropriate algorithm (best individual) for the problem we want to solve.
Pappa and Freitas [20] cite two examples of EA applications in which the evolved
individual outperformed the best human-designed solution for the problem. In the
first application [14], the authors designed a simple satellite dish holder boom (con-
nection between the satellite’s body and the communication dish) using an EA. This
automatically designed dish holder boom, albeit its bizarre appearance, was shown
to be 20,000% better than the human-designed shape. The second application [18]
was concerning the automatic discovery of a new form of boron (chemical element).
There are only four known forms of borons, and the last onewas discovered by anEA.

A recent research area within the combinatorial optimisation field named “hyper-
heuristics” (HHs) has emerged with a similar goal: searching in the heuristics space,
or in other words, heuristics to choose heuristics [7]. HHs are related to metaheuris-
tics, though with the difference that they operate on a search space of heuristics
whereas metaheuristics operate on a search space of solutions to a given problem.
Nevertheless, HHs usually employ metaheuristics (e.g., evolutionary algorithms) as
the search methodology to look for suitable heuristics to a given problem [19]. Con-
sidering that an algorithm or its components can be seen as heuristics, one may
say that HHs are also suitable tools to automatically design custom (tailor-made)
algorithms.

Whether we name it “an EA for automatically designing algorithms” or “hyper-
heuristics”, in both cases there is a set of human designed components or heuristics,
surveyed from the literature, which are chosen to be the starting point for the evolu-
tionary process. The expected result is the automatic generation of new procedural
components and heuristics during evolution, depending of course on which com-
ponents are provided to the EA and the respective “freedom” it has for evolving
the solutions.

The automatic design of complex algorithms is amuch desired task by researchers.
Itwas envisioned in the early days of artificial intelligence research, andmore recently
has been addressed by machine learning and evolutionary computation research
groups [20, 24, 25]. Automatically designing machine learning algorithms can be



4 1 Introduction

seen as the task of teaching the computer how to create programs that learn fromexpe-
rience. By providing an EA with initial human-designed programs, the evolutionary
process will be in charge of generating new (and possibly better) algorithms for the
problem at hand. Having said that, we believe an EA for automatically discovering
new decision-tree induction algorithms may be the solution to avoid the drawbacks
of the current decision-tree approaches, and this is going to be the main topic of
this book.

1.1 Book Outline

This book is structured in 7 chapters, as follows.

Chapter 2 [Decision-Tree Induction]. This chapter presents the origins, basic con-
cepts, detailed components of top-down induction, and also other decision-tree induc-
tion strategies.

Chapter 3 [Evolutionary Algorithms and Hyper-Heuristics]. This chapter covers
the origins, basic concepts, and techniques for both Evolutionary Algorithms and
Hyper-Heuristics.

Chapter 4 [HEAD-DT: Automatic Design of Decision-Tree Induction Algo-
rithms]. This chapter introduces and discusses the hyper-heuristic evolutionary algo-
rithm that is capable of automatically designing decision-tree algorithms. Details
such as the evolutionary scheme, building blocks, fitness evaluation, selection,
genetic operators, and search space are covered in depth.

Chapter 5 [HEAD-DT: Experimental Analysis]. This chapter presents a thorough
empirical analysis on the distinct scenarios in which HEAD-DT may be applied to.
In addition, a discussion on the cost effectiveness of automatic design, as well as
examples of automatically-designed algorithms and a baseline comparison between
genetic and random search are also presented.

Chapter 6 [HEAD-DT: Fitness Function Analysis]. This chapter conducts an
investigation of 15 distinct versions for HEAD-DT by varying its fitness function,
and a new set of experiments with the best-performing strategies in balanced and
imbalanced data sets is described.

Chapter 7 [Conclusions]. We finish this book by presenting the current limitations
of the automatic design, as well as our view of several exciting opportunities for
future work.

http://dx.doi.org/10.1007/978-3-319-14231-9_2
http://dx.doi.org/10.1007/978-3-319-14231-9_3
http://dx.doi.org/10.1007/978-3-319-14231-9_4
http://dx.doi.org/10.1007/978-3-319-14231-9_5
http://dx.doi.org/10.1007/978-3-319-14231-9_6
http://dx.doi.org/10.1007/978-3-319-14231-9_7


References 5

References

1. R.C. Barros et al., A bottom-up oblique decision tree induction algorithm, in 11th International
Conference on Intelligent Systems Design and Applications. pp. 450–456 (2011)

2. R.C. Barros et al., A survey of evolutionary algorithms for decision-tree induction. IEEE Trans.
Syst., Man, Cybern., Part C: Appl. Rev. 42(3), 291–312 (2012)

3. K. Bennett, O. Mangasarian, Multicategory discrimination via linear programming. Optim.
Methods Softw. 2, 29–39 (1994)

4. L. Breiman et al., Classification and Regression Trees (Wadsworth, Belmont, 1984)
5. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)
6. L. Breslow,D. Aha, Simplifying decision trees: a survey. Knowl. Eng. Rev. 12(01), 1–40 (1997)
7. P.Cowling,G.Kendall, E. Soubeiga,AHyperheuristicApproach toScheduling aSales Summit,

in Practice and Theory of Automated Timetabling III, Vol. 2079. Lecture Notes in Computer
Science, ed. by E. Burke, W. Erben (Springer, Berlin, 2001), pp. 176–190

8. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing (Natural Computing Series)
(Springer, Berlin, 2008)

9. F. Esposito, D. Malerba, G. Semeraro, A comparative analysis of methods for pruning decision
trees. IEEE Trans. Pattern Anal. Mach. Intell. 19(5), 476–491 (1997)

10. A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algorithms (Springer,
New York, 2002). ISBN: 3540433317

11. A.A. Freitas, A Review of evolutionary Algorithms for Data Mining, in Soft Computing for
Knowledge Discovery and Data Mining, ed. byO.Maimon, L. Rokach (Springer, Berlin, 2008),
pp. 79–111. ISBN: 978-0-387-69935-6

12. A.A. Freitas, D.C. Wieser, R. Apweiler, On the importance of comprehensible classifica-
tion models for protein function prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 7,
172–182 (2010). ISSN: 1545–5963

13. KDNuggets, Poll: Data mining/analytic methods you used frequently in the past 12 months
(2007)

14. A. Keane, S. Brown, The design of a satellite boomwith enhanced vibration performance using
genetic algorithm techniques, in Conference on Adaptative Computing in Engineering Design
and Control. Plymouth, pp. 107–113 (1996)

15. B.Kim,D. Landgrebe,Hierarchical classifier design in high-dimensional numerous class cases.
IEEE Trans. Geosci. Remote Sens. 29(4), 518–528 (1991)

16. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection (MIT Press, Cambridge, 1992). ISBN: 0-262-11170-5

17. G. Landeweerd et al., Binary tree versus single level tree classification of white blood cells.
Pattern Recognit. 16(6), 571–577 (1983)

18. A.R. Oganov et al., Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009)
19. G.L. Pappa et al., Contrasting meta-learning and hyper-heuristic research: the role of evolu-

tionary algorithms, in Genetic Programming and Evolvable Machines (2013)
20. G.L. Pappa, A.A. Freitas, Automating the Design of Data Mining Algorithms: An Evolutionary

Computation Approach (Springer Publishing Company Incorporated, New York, 2009)
21. J.R.Quinlan,C4.5: Programs for Machine Learning (MorganKaufmann, SanFrancisco, 1993).

ISBN: 1-55860-238-0
22. L. Rokach, O. Maimon, Top-down induction of decision trees classifiers—a survey. IEEE

Trans. Syst. Man, Cybern. Part C: Appl. Rev. 35(4), 476–487 (2005)
23. K.A. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm selection.

ACM Comput. Surv. 41, 6:1–6:25 (2009)
24. K.O. Stanley,R.Miikkulainen, Evolving neural networks through augmenting topologies. Evol.

Comput. 10(2), 99–127 (2002). ISSN: 1063–6560
25. A. Vella, D. Corne, C. Murphy, Hyper-heuristic decision tree induction, in World Congress on

Nature and Biologically Inspired Computing, pp. 409–414 (2010)
26. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.

Comput. 1(1), 67–82 (1997)


	1 Introduction
	1.1 Book Outline
	References


