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Abstract Bioassessment can be broadly defined as the use of biota to assess the

nature and magnitude of anthropogenic impacts to natural systems. We focus on an

important and specific type of bioassessment: the use of ecological assemblages,

primarily fish, macroinvertebrates, and algae, as indicators of anthropogenic

impairment in aquatic systems. Investigators have long known that biota provide

spatially and temporally integrative indicators of impairment. This chapter provides

an introduction to the process of developing assemblage-level indices that provide
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quantitative estimates of the ecological integrity of freshwater ecosystems.

We discuss important developments made in the latter half of the twentieth century

which are still relevant and useful for bioassessment, as well as more recent

developments that have improved the effectiveness of bioassessment strategies.

Throughout the chapter, we focus on analytical approaches for improving the

effectiveness of bioassessment indices for detecting anthropogenic impairment. In

the concluding section of the chapter, we widen our perspective and include

excerpts from discussions with three expert practitioners on topics that are more

broadly applicable to the assessment of the ecological integrity of aquatic systems.

The major challenge for all bioassessment programs is to separate the effects of

anthropogenic impairment on biota from the effects of natural environmental

variability unrelated to impairment. Analytical developments, such as advanced

predictive modeling techniques, coupled with emerging technologies and the

development of large-scale bioassessment programs will continue to increase our

ability to meet this challenge and to improve our understanding of how aquatic

assemblages are affected by anthropogenic impairment.

Keywords Aquatic ecosystems • Bioassessment • Biomonitoring • Biotic assem-

blages • Predictive modeling

1 Introduction

The US Environmental Protection Agency (USEPA) defines biological assessment

as the “. . .evaluation of the condition of a waterbody using biological surveys and

other direct measurements of the resident biota in surface waters” [1]. Investigations

that fall under this broad definition may be focused on any level of biological

organization, from studies of subcellular effects of toxic compounds [2] to

ecosystem-scale assessments using multiple taxonomic assemblages [3]. The

terms biological assessment, bioassessment, biological monitoring, and

biomonitoring are often used interchangeably. For clarity, we restrict our discussion

to the term bioassessment.

The value of aquatic organisms as pollution indicators has been recognized by

scientists for over 100 years. The Saprobiensystem of Kolkwitz and Marsson [4],

most probably the first bioassessment index, was a system for quantitatively rating

the tolerance of aquatic organisms to sewage pollution, much akin to modern

pollution tolerance values. This concept has been adapted and modified many

times, and both the concept and use of the word “saprobity” persist in contemporary

literature [5, 6]. The practice of bioassessment invokes the concept of biological

integrity, defined as “the capability of supporting and maintaining a balanced,

integrated, adaptive community of organisms having a species composition, diver-

sity, and functional organization comparable to that of natural habitat of the region”

[7, 8]. Practitioners conducting bioassessments assume that biotic integrity reflects
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overall ecological integrity, which describes the state of an ecosystem with respect

to biology as well as physical and chemical factors [8]. Therefore, the purpose of

using biota to assess environmental conditions is that they integrate the effects of all

environmental factors to which they are exposed over their entire life-spans and

habitat ranges [8, 9]. However, because biota are responsive to such a multitude of

environmental factors acting over multiple temporal and spatial scales, determining

clear and unambiguous relationships between biota and anthropogenic impairment

remains a challenging and active area of research.

This chapter addresses the development of numerical indices, based on biolog-

ical assemblage-level data, to make inferences regarding anthropogenic stress to

freshwater ecosystems. We follow the framework of Fauth et al. [10] in defining the

terms community and assemblage. Communities refer to all organisms within the

spatial boundaries of the system of interest. For bioassessment, the spatial bound-

aries of communities are generally artificial constructs, rather than distinct, natural

boundaries, and are chosen based on some combination of scientific, logistical, and

political criteria. The term assemblage refers to a taxonomically defined subset of a

given community, for example, the benthic macroinvertebrate assemblage of a

stream system.

The general objective of all bioassessments is to separate the signal of anthro-

pogenic impairment effects from the noise of effects related to natural variations in

space and time that are not related to anthropogenic impairment. Evaluation of the

relative importance of these two effects requires measurement or estimation of

variables related to anthropogenic impairment, which we refer to hereafter as

stressors, as well as those related to natural variation, which we refer to as natural

environmental variables.

The assemblages chosen for bioassessments depend on the expertise and

resources available to investigators, public interest, and on those that are most

expected to respond to anthropogenic stress. Algae, fish, and macroinvertebrates are

the most commonly used assemblages, and numerous examples of useful

bioassessment indices exist for each. Investigations comparing these assemblages

commonly show that they respond differently to anthropogenic stress, and each

represents a unique aspect of ecological integrity [11–13]. Therefore, we focus on

describing the analytical methods used for the development of contemporary

indices, not on comparing the usefulness of different assemblages. We do not

address descriptions of field and laboratory methods, but do note that sampling

methodology [14, 15], sampling effort [16, 17], and taxonomic resolution [18, 19]

have important and well-documented effects on bioassessments. Our focus is on

perennial streams and rivers, as these systems dominate the literature and are the

focus of most bioassessment programs. We also provide examples from lakes,

impoundments, and wetlands when they enhance our discussion. The analytical

methods presented here are also applicable to other aquatic systems and assemblage

types.

Biological integrity is defined by one or a series of bioassessment metrics, which

are quantitatively defined aspects of assemblages that are expected to vary in

response to impairment. Some investigators favor the use of multiple metrics,
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Table 1 Selected fish, macroinvertebrate, and algae metrics used as indicators of anthropogenic

impairment

Metric

category Assemblage Metric

Impairment

response Description

Composition

and diversity

Fish Percent of

nonnative

species [20]

Increase Percent of species that

are nonnative

Macroinvertebrates EPT richness

[21]

Decrease Number of taxa (genera

or species) in the orders

Ephemeroptera,

Plecoptera, and

Trichoptera

Algae Similarity to

reference [22]

Decrease Bray–Curtis similarity

index of test site com-

pared to reference sites

Trait based Fish Percent

lithophilic

spawners [17]

Decrease Percent of individuals

that spawn on coarse

gravel substrate

Macroinvertebrates Percent

collector–

gatherer taxa

[23]

Increase Percent of taxa in the

collector–gatherer

functional feeding group

Algae N-heterotro-

phic taxa [24]

Increase Number of taxa that

derive nitrogen from the

uptake of amino acids

Pollution

tolerance

Fish Tolerance

value [25]

Increase Weighted average toler-

ance value based on an

impairment gradient

derived by principal

components analysis

(PCA)

Macroinvertebrates Percent toler-

ant taxa [23]

Increase Percent of individuals

with tolerance value >6

(10-point scale, increas-

ing with tolerance).

Tolerance values derived

based on best profes-

sional judgment and

literature review

Algae Alkaliphilous

taxa richness

[26]

Increase Number of taxa (genera

or species) primarily

occurring at pH> 7

Individual

condition

Fish Percent of

individuals

with anoma-

lies [27]

Increase Percent of individuals

with deformities, ero-

sion, lesions, or tumors

Macroinvertebrates Toxic score

index [28]

Increase Index of effluent toxicity

based on mentum defor-

mities of Chironomus
spp.

Algae Percent

deformed

cells [29]

Increase Percent of diatom frus-

tules with deformities
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which are aggregated within a multimetric index (MMI). MMIs provide a checks-

and-balances system to account for variable responses of metrics to multiple

stressors. Others prefer single-metric indices, most notably the observed-to-

expected (O/E) index, which we introduce in Sect. 3.1. Developers of MMIs

commonly group metrics based on the general type of ecological information

they express. Metrics from different ecological categories are included in MMIs

in order to reduce the redundancy of information and increase the explanatory

power of indices. In practice, a vast array of assemblage-level metrics has been used

for aquatic bioassessments.

To provide relevant examples, we have assembled a short list of fish,

macroinvertebrate, and algae metrics, which we group into four broad categories

(Table 1). Diversity and composition metrics are taxonomy-based metrics associ-

ated with assemblage characteristics such as richness, evenness, diversity, and

dominance. Trait-based metrics incorporate information on ecological habits, hab-

itats, morphology, life history, and life cycle characteristics of populations in the

assemblage of interest. Pollution tolerance metrics are numerical ratings of the

degree to which individuals in the assemblage are tolerant to stressors. Individual

condition metrics are associated with visually apparent morphological anomalies of

individual specimens. In addition to these general metric types, the absolute

abundance of fish and biomass of algae are also sometimes used, although the

absolute abundance of macroinvertebrates is rarely used.

In Sect. 2, we introduce the most widely used method for bioassessment, the

Reference Condition Approach (RCA) [30–32]. In Sect. 3, we discuss predictive

modeling of aquatic assemblages, which is conducted to control for the effects of

natural environmental variation in order to obtain an unambiguous determination of

anthropogenic effects. Once selected and properly calibrated for natural environ-

mental variation, metrics are used individually, or are aggregated within anMMI, to

provide a scoring system that reflects the assemblage-inferred level of anthropo-

genic impairment at a given study site. This process, as well as methods for

evaluating the performance of metrics and indices, is reviewed in Sect. 4. In

Sect. 5, we take a broader perspective and present interviews with three experts

who provide valuable insights into some of the most important emerging issues and

challenges in the field of bioassessment.

2 The Reference Condition Approach

Reference conditions serve as surrogates for negative controls, representing the

assemblage characteristics at test sites that would occur in the absence of impair-

ment. Following the RCA, reference conditions are derived from assemblage data

at least-disturbed reference sites (sensu Stoddard et al. [32]). In comparison to

experimental studies, where variation among replicates is carefully controlled and

expected to be minimal, variation among reference site assemblages is high and

difficult to predict. Replicate samples from the same site are generally insufficient
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to account for this variation. Therefore, the RCA calls for the use of multiple

reference sites in order to adequately account for the effects of natural environ-

mental variation on assemblages [30–32].

We use the term reference to broadly encompass streams considered to be in

least-impaired conditions, though as discussed in Sect. 2.2, the actual level of

impairment at reference sites is highly variable among studies [32]. We use the

term impaired to refer, in general, to sites that are subject to the deleterious effects

of stressors and the term test sites to refer to those of unknown impairment status

(i.e., those for which bioassessments are needed). This chapter focuses on the RCA,

although alternative approaches for estimating reference conditions may be used

when system conditions and data availability warrant (Sect. 2.1). Application of the

RCA proceeds by first screening multiple potential reference sites to determine if

they reflect appropriate least-impaired conditions (Sect. 2.2), then classifying the

screened reference sites as to expected or quantified patterns of variability among

their biotic assemblages (Sect. 2.3).

2.1 Alternatives to the Reference Condition Approach

Though not often available, data describing past assemblages may provide valuable

information for inferring reference conditions. Investigations of sediment records,

historical accounts of landscape conditions, and museum records have been used to

infer past environmental conditions and assemblage composition in aquatic systems

[33–36]. Historical approaches, while important, lack broad applicability for

bioassessment. In lotic ecosystems, sediment deposition is generally insufficient

to provide a historical record. Moreover, data that describe assemblage composition

before anthropogenic development occurred may reflect conditions that are no

longer attainable given the effects of factors acting at large spatial and temporal

scales such as atmospheric deposition of pollutants and global climate change.

When anthropogenic impacts are spatially discernable, a paired-site approach

may be useful. For example, lotic sites impacted by point source pollution such as

mine effluent [37, 38] or municipal wastewater [39] may be paired with upstream

sites above the source of stressors. Plafkin et al. [40] referred to paired upstream

sites as controls, though this implies that confounding natural environmental factors

on the upstream–downstream comparison are being actively controlled, which is

generally not feasible. For bioassessments conducted over large spatial scales (e.g.,

ecoregions), the paired-site approach is problematic because much assemblage

variation is driven by local-scale differences in natural environmental variables

[41, 42]. Assemblage variation among reference sites, that is, variation that is not

likely caused by impairment, is typically much larger than variation among repli-

cate samples collected at a single site. Therefore, comparisons of replicate samples

from a single reference and test site pair often do not provide a realistic represen-

tation of the effects of impairment on assemblage characteristics [43].
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2.2 Reference Site Screening

Reference site screening is the process of estimating the degree of anthropogenic

impairment at study sites, such that those with acceptably low stress levels may be

designated as reference sites. Screening criteria vary among studies based on both

data availability and on the opinions of investigators as to which criteria are most

appropriate. Some have advocated for the use of professional judgment regarding

whether observed assemblages represent reference conditions [44, 45]. Professional

judgment may also be applied to the environmental conditions at the sites, provid-

ing a more independent, and potentially less biased, means of estimating impair-

ment status [46]. Advocates of professional judgment often favor consensus

opinions among groups of experts [45, 47]. Potential criticisms of such approaches

include a lack of empirical support for decisions regarding reference designations

and circular logic when sites are designated as reference based on the assemblage

that is also used for bioassessment. However, Davies and Jackson [45] recently

showed that the opinions of trained experts were highly consistent when rating

ecological integrity based on assemblage data, leading the authors to assert that

well-informed professional opinions provide reliable, ecologically relevant bench-

marks for bioassessment.

Independent stressor variables (i.e., those not related to the assemblage used for

bioassessment) are often used to estimate impairment status. Screening approaches

that employ both professional judgment and independent stressor variables produce

reference sites that are of higher ecological integrity than those selected using either

approach alone [48]. Variables used to estimate anthropogenic stress include

physicochemical water quality parameters, land-cover features derived using a

geographic information system (GIS) that indicate development, and physical

habitat quality assessments based on site observations. Studies often employ a

filtering approach, whereby threshold levels for each measured stressor variable

are set to designate sites as reference or impaired [21, 49]. The filtering criteria used

to select reference sites are generally evaluated with an all approach for reference

sites and any approach for non-reference sites. For example, Blocksom et al. [49]

required that sites meet all of the reference criteria listed in Table 2 to be designated

as reference, but considered sites impaired if any one of the impaired criteria was

met.

The level of anthropogenic impairment considered acceptable varies greatly

among studies, and many authors fail to provide clear descriptions of how reference

conditions are defined. Recognizing this problem, Stoddard et al. [32] advocated for

the use of the terms minimally disturbed condition (MDC) to describe expected

conditions in the absence of substantive anthropogenic disturbance, least-disturbed

condition (LDC) to describe the best available conditions present under current

disturbance regimes, and best attainable conditions (BAC) to describe the expected

conditions when all avoidable sources of anthropogenic influence are removed

(BAC is generally intermediate between LDC and MDC). MDC sites, within

virtually unimpacted, near pristine watersheds, are rarely available, and most
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often reference sites are chosen based on the best available conditions (LDC sites;

e.g., [50, 51]).

The reliability of bioassessments depends largely on the existence of a sufficient

number of reference sites to encompass the range of natural variability in the study

region. Given the pervasiveness of human impacts on aquatic ecosystems, achiev-

ing a sufficient number of reference sites is often difficult, and may be impossible

if standards regarding the acceptable level of impairment are unrealistically high

[50, 51]. Impairment is highly variable among geographic regions because devel-

opment pressure is nonuniform. Recognizing this, Yates and Bailey [50] developed

a novel strategy for selecting reference sites that allowed for flexibility in the

standards used for screening to select LDC sites within study regions exposed to

different impairment regimes. This is a pragmatic strategy, as flexibility in the level

of impairment allowed is unavoidable in areas where impairment is pervasive;

however, clear comparisons of bioassessment results among studies are hindered

when the standards used to select reference sites vary.

2.3 Reference Site Classification

Reference sites that successfully pass the screening process are used to predict

assemblage conditions under minimal impairment. Classification of reference sites

is intended to increase the precision and accuracy of these predictions by grouping

sites inhabited by similar ecological assemblages. Broadly, there are two major

types of classification systems: (1) typologies, wherein sites are grouped based on

spatial proximity and/or similarity in their natural environmental variation, and

(2) biotic classifications, which employ statistical analyses on assemblage data to

group sites. We begin by discussing the two as distinct approaches, although

bioassessment programs often use elements of both to develop the best site classi-

fications. Throughout this section, we discuss analytical techniques that are

Table 2 Filtering criteria

used by Blocksom et al. [49]

to differentiate between

reference and impaired

streams in the Mid-Atlantic

Highlands (USA)

Criterion Reference Impaired

pH NA <5

Sulfate <400 μeq/l >1,000 μeq/l
Acid neutralizing capacity >50 μeq/l NA

Chloride <1,000 μeq/l >1,000 μeq/l
Total phosphorus <20 μeq/l >100 μeq/l
Total nitrogen <750 μeq/l >5,000 μeq/l
Mean RBP score >15 <10

RBP refers to the rapid bioassessment habitat protocol of Barbour

et al. [1], where scores range from 0 to 20

It is possible for sites to have intermediate characteristics and

therefore fall between the two classes

NA no filter specified
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specialized for the analysis of assemblage data. McCune and Grace [52] and

Legendre and Legendre [53] present additional details on most of the analytical

methods presented here. Software for conducting most of the techniques is avail-

able free of cost in the R statistical programming language [54].

The objective of classification is to maximize assemblage similarity within clas-

ses, while maintaining sufficient replication to allow for statistical comparisons of

test sites with the reference classes. Many measures of assemblage similarity exist

[52, 53]. The Bray–Curtis coefficient [55] for abundance data and the Sorenson

coefficient [56, 57], the equivalent of Bray–Curtis for presence-or-absence data, are

most commonly used. Both are well suited to the numerical structures of assemblage

datasets. Similarity may also be calculated using bioassessment metric values in place

of taxonomic data (a sound but under-used technique, [58]).

Similarity is summarized as the mean within-class similarity (W, the mean of all

pairwise similarities of sites within classes) and the mean between-class similarity (B,

the mean of all pairwise similarities of sites not in the same class). The precision of a

classification is described by the relationship of W to B, referred to as the classifica-

tion strength [58]. High classification strength is indicated by a large positive

difference or large ratio of within- to among-class similarity (i.e., high W–B or

W/B). Predictions regarding assemblage conditions are most reliable when classifi-

cation strength is high. Multivariate techniques such as MEANSIM [58], analysis of

similarity [59], multiresponse permutation procedure [60], and nonparametric, mul-

tivariate analysis of variance [61] are used to test the hypothesis that classification

strength is higher than expected by chance, providing an indication of whether the

classification improves the reliability of predictions regarding reference conditions.

2.3.1 Typological Site Classification

Typological site classifications are based on a priori judgments regarding the

site conditions that best group reference sites with similar assemblages. Early

typological approaches focused on coarse-scale, map-based classifications (e.g.,

ecoregions) [62, 63]; however, typological classifications that do not account for

the effects of local-scale variables typically exhibit much lower classification

strength than biotic classifications [43, 64, 65]. Typological classifications are a

convenient and useful tool that should be at least considered as an initial step

toward site classification [65, 66]. Like all classifications, the effectiveness of a

priori-defined typologies should be assessed by a posteriori, quantitative evalua-

tions of the assemblages of interest [66]. For example, investigators in Virginia

(USA) observed a striking difference in stream macroinvertebrate assemblage

structure between low-gradient coastal plain sites and upland piedmont and moun-

tain sites, requiring the use of separate bioassessment indices for coastal and

non-coastal sites (Fig. 1) [67, 68]. Because assemblages are affected by both

regional- and local-scale environmental factors, typological classifications that

consider smaller spatial-scale variables as well as large-scale zones may provide

comparable, or greater, classification strength than biotic classifications [64, 69].
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2.3.2 Biotic Site Classification

Biotic classification of reference sites came to prominence with the introduction of

the River Invertebrate Prediction and Classification System (RIVPACS, [70, 71]).

Agglomerative cluster analysis is used in many variations of the RIVPACS

approach, including those developed for the USA [72] and the Australian River

Assessment Scheme (AUSRIVAS, [73]), both of which employ presence/absence

data for clustering, and the Benthic Assessment of Sediment (BEAST) method of

Canada [74] which clusters based on abundance data. Agglomerative clustering

proceeds from the bottom up, progressively grouping sites of increasingly dissim-

ilar taxonomic composition. Most investigators cluster sites based on Bray–Curtis

or Sorenson dissimilarity [72–76], although other measures such as Euclidean

distance can be employed [77]. Figure 2 shows a cluster analysis of 46 Kentucky

(USA) stream reference sites where genus-level macroinvertebrate data were col-

lected by the USEPA.

The standard RIVPACS approach classifies sites using two-way indicator spe-

cies analysis (TWINSPAN, [79]). In contrast to agglomerative cluster analysis,

TWINSPAN is a divisive technique, whereby sites are progressively divided based

on taxa (indicator species) that best differentiate them. Also unlike agglomerative

clustering, the user cannot choose a dissimilarity measure [80]. TWINSPAN has

Fig. 1 Nonmetric multidimensional scaling ordination of macroinvertebrate assemblages, iden-

tified at the family level, from 269 least-impaired, reference Virginia stream sites. Symbols: (open
triangles) coastal plain sites; ( filled circle) non-coastal sites. Distances between sites correspond

to their proximity in Bray–Curtis distance space. Percentages indicate the percent of variance in

the Bray–Curtis coefficients explained by the axis coordinates. Adapted from Dail et al. [67] with

permission
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received criticism for poor performance and seemingly arbitrary methodology

[52, 81]. However, based on comparisons with other techniques, the developers

of RIVPACS concluded that TWINSPAN performed well, and the method is still

used within the current RIVPACS framework [80].

Relationships among sites can be visualized using a variety of ordination

techniques, which reduce the n-dimensional hyperspaces created by ecological

distance matrices to fewer (usually 2 or 3) dimensions that best explain the overall

pattern of variability (Fig. 1) [52, 53]. When assemblage–environment responses

are assumed to be linear, principal components analysis (PCA) is commonly used,

whereas when responses are assumed to be unimodal, reciprocal averaging-based

techniques such as correspondence analysis (CA) and detrended correspondence

analysis (DCA) are often used. We agree with others [52, 82] in preferring

nonmetric multidimensional scaling (NMS) to these techniques because NMS

includes no assumptions regarding the underlying data distribution and is highly

effective at explaining assemblage structure while reducing dimensionality. Ordi-

nations are often used for exploratory purposes, for example, to confirm classifica-

tions made using other analyses [76], but also may be used directly for site

classification [67, 83].

Fig. 2 Agglomerative cluster dendrogram generated using the flexible-beta method (β¼�0.30)

on a Bray–Curtis dissimilarity matrix of genus-level macroinvertebrate data at 46 least-impaired

Kentucky stream sites. Branch lengths correspond to dissimilarities between sites and clusters.

Bioregions are regional classifications as described by Pond et al. [78]: (open triangle)—Moun-

tain; ( filled circle)—Miss. Valley-Interior River; (open square)—Pennyroyal; (open circle)—
Bluegrass. The Mountain and Bluegrass regions separate perfectly. Some overlap occurs for other

bioregions because Julian day and latitude (not included in the analysis) were also important

variables related to assemblage structure in these bioregions. Data courtesy of Gregory Pond,

USEPA
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Multivariate analyses on assemblage data aid in showing the user where distinc-

tions between classes may occur. However, subjectivity in drawing distinctions

among classes is unavoidable, as investigators must decide on the appropriate level

of similarity at which to consider sites within the same class [84]. The final decision

is made as a compromise between including as many reference classes as possible,

while still including enough replicate sites within classes to adequately represent

within-class assemblage variability among sites. Bowman and Somers [85] recom-

mend “a minimum of 20, but preferably 30–50 reference sites per group,” though

this may be overly optimistic given the data constraints experienced in many

studies.

2.3.3 Conclusions Regarding Site Classification

Hawkins et al. [43] and Melles et al. [86] draw distinctions between geography-

based methods in which reference classes can be clearly delineated within discrete

spatial units and geography-independent methods driven by patterns in assemblage

variation regardless of physical location. Typological classifications which include

map-based delineations of classes are geography dependent, whereas biotic classi-

fications, focused on patterns of assemblage variation, are geography-independent.

However, the most effective classifications consider both geography-dependent and

geography-independent factors, for example, limitations on the spatial scale over

which biotic classifications are developed can increase their classification strength

[87]. While biotic classifications provide precise descriptions of the patterns of

variability with respect to the assemblage of interest, the resulting classifications

may not be applicable to other assemblages. Inclusion of geography-dependent

variables that implicitly encompass a wide range of environmental factors provides

a more comprehensive classification of sites [88]. A priori typological classification

based on large-scale variables (e.g., ecoregions) provides useful, convenient, and

easily communicated initial classifications of sites, though classifications are often

improved when supplemented by smaller-scale variables that are not spatially

discrete (e.g., flow regime; [89]) or not associated with geography (e.g., sampling

date; [75]). Good scientific practice requires that the effectiveness of a priori

approaches be evaluated with a posteriori evaluations of relationships between

classes and biota [64–67, 88].

3 Predictive Modeling of Aquatic Assemblages

The objective of predictive modeling for bioassessment is to control for the

confounding effects of natural environmental variables so that the effects of

stressors on metrics can be clearly evaluated. The methods used to meet this

objective are as diverse and varied as the assemblages themselves. As an introduc-

tion to the core concepts in predictive modeling, we outline the basic steps of the
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RIVPACS framework and present an example of its use in Table 3 and Fig. 3.

Although now 30 years old, the framework remains relevant and is still used

with little modification of the original methodology [70, 75, 80]. The conceptual

basis and technical details of RIVPACS have been described thoroughly by others

[71, 72, 90]. Following our introduction to RIVPACS, we present several promising

recent advancements in predictive modeling.

Table 3 Example calculation of O/E based on biotic classes and distances in environmental space

shown in Fig. 2

Reference class

Distance from test site

in discriminant space

Class probability

of test site

Probabilities of capture

at reference sites

Taxon A Taxon B Taxon C

1 4.4 0.47 0.70 0.20 0.10

2 5.2 0.31 0.70 0.25 0.05

3 5.9 0.20 0.20 0.50 0.10

Probability of capture at test site: 0.59 0.29 0.09

Expected richness at test site (E): 0.97

Data were simulated for example purposes only

Distances were converted to class probabilities following equations 2 and 3 in Clarke et al. [90]

(distances are D2 values as described in [90])

All classes contain 20 sites

The probability of capturing a taxon at the test site is given by multiplying the class probabilities of

the test site for each reference class by the corresponding probabilities of capture of the taxon at

sites within each reference class

For example, the probability of capturing Taxon A at the test site is 0.47� 0.70 + 0.31�0.70

+ 0.20� 0.20¼ 0.59
The probabilities of capture for each taxon are summed to give the expected richness (E) at the test site

Fig. 3 Reference and test

sites displayed in

environmental distance

space as defined by two

discriminant function axes.

Discriminant function

scores were simulated from

normal distributions with

variance¼ 1. Symbols:
( filled circle) reference
class centroids, (open
circle) test site, (1, 2, 3)
reference sites, (d1, d2, d3)

distances in discriminant

function space between test

sites and reference class

centroids
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3.1 The Observed-to-Expected (O/E) Index

The standard metric derived from RIVPACS-type predictive modeling

approaches is the observed-to-expected ratio (O/E), a single-metric index that

compares the observed taxonomic richness at a study site to the expected richness

under minimally impaired conditions. The O/E ratio indicates the degree of

“taxonomic completeness” (sensu Hawkins [91]) of the test site. O/E values

less than one indicate that taxa expected to be present if the sites were unimpaired

are absent.

Following biotic classification of reference sites, RIVPACS employs Multiple

Discriminant Analysis (MDA) to develop linear functions that best describe the

relationships of natural environmental variables to the biotic classes. The discrim-

inant functions are used to determine the distance, in environmental variable space,

of the test site to the biotic reference classes, which in turn are used to estimate the

probabilities that the test site belongs in each reference class (referred to here as

class probabilities). For all native taxa in the study region, the proportion of

reference sites within a given biotic class where a taxon is present represents the

probability of observing that taxon at a site in that class (referred to as the

probabilities of capture). The probabilities of capture of a given taxon within

each reference class, and the class probabilities of the test site for each reference

site, are used to estimate the probability of capturing the taxon at the test

site assuming unimpaired conditions. The expected richness at the test site

(the E in O/E) is given by summing probabilities of capture at the test site for all

taxa (see Fig. 3 and Table 3 for additional details).

O/E values greater or less than one indicate departures from what is predicted

under unimpaired conditions. Simpson and Norris [92] recommended that O/E
values below the tenth percentile of the reference site distribution indicate impair-

ment, with the extent of impairment increasing as the ratio decreases. They also

postulated thatO/E values greater than one may indicate areas of exceptionally high

natural biodiversity or those subject to mild impairment that artificially increases

richness.

A common modification to the basic framework is to exclude rare taxa from the

analysis, as their inclusion can result in a site receiving an O/E score near one when

the assemblage observed deviates considerably from statistical expectations.

Several authors have indicated that excluding taxa with probabilities of capture

less than 0.5 (producing the O/E0.5 index) improves accuracy and precision [72, 93,

94]. As an alternative, Van Sickle [93] adapted the Bray–Curtis dissimilarity

measure to compare observed and expected assemblages (referred to as BC) and

showed that BC was generally more accurate than O/E for identifying impairment

across a wide range of assemblages and study systems. O/E0.5 and BC indices

developed for Appalachian stream macroinvertebrate assemblages exhibited simi-

lar accuracy and precision [75].
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3.2 Advances in Predictive Modeling

The widespread application of RIVPACS-type models has inspired many alterna-

tive approaches. Recognizing that assemblages occur along continuous environ-

mental gradients, investigators have developed nearest neighbor methods that

compare the environmental similarity of test sites to each individual reference

site, rather than to the average assemblage of each class as is done using RIVPACS

[83, 95]. Modeling approaches often skip the biotic classification step and predict

assemblage characteristics at reference sites directly using natural environmental

variables [96–98]. Direct prediction approaches may allow for different sets of

environmental variables to be used as predictors for each taxon. Though appealing

in this respect, the development of separate models for each taxon may be overly

complex for taxon-rich systems.

In contrast to the long history of predictive modeling for O/E indices [70], until

recently, developers of MMIs rarely employed predictive modeling to account for

natural environmental variability. McCormick et al. [99] used linear regression to

control for the effects of watershed size on a fish MMI. Equations derived from the

regression of metric values on watershed size at reference sites were applied to test

sites, and the residuals from the regression were used to indicate deviations from the

expected metric values in the absence of impairment. Oberdorff et al. [100]

expanded this approach, modeling metrics based on a suite of natural environmental

variables using logistic regression (for presence/absence metrics) and multiple

linear regression (for abundance-based metrics). Variations on this residualization

technique have been developed for more advanced modeling strategies such as

prediction tree approaches (discussed below), improving both the accuracy and

precision of MMIs by removing the confounding effects of natural environmental

variables [21, 101, 102].

Although conventional techniques such as MDA and linear and logistic regres-

sion have provided utility for predictive modeling, several newer methods better

account for the variable, often nonlinear and interactive effects of environmental

predictors on biota. The generalized additive modeling approach of Yuan [103]

shows the flexibility of this nonparametric regression technique for predicting

variable responses among different taxa to a suite of environmental factors. Bayes-

ian frameworks provide a comprehensive evaluation of uncertainty in predictive

models [104–106] and have been used for this purpose in MMI development.

Machine learning techniques, including artificial neural networks (ANNs) and

ensemble prediction trees, where models are iteratively trained at prediction to

minimize error, have received much recent attention for predictive modeling in

ecology [107–110]. Though the method is not yet widely used, support vector

machines have performed favorably compared with other machine learning tech-

niques for predicting the occurrence of macroinvertebrate taxa [111, 112].

ANNs structure predictor–response relationships in a manner similar to verte-

brate neurological systems. Variables are represented as neurons connected by a

multitude of axons representing the possible interrelationships among variables
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[113]. ANNs have shown substantial improvement over traditional RIVPACS-type

models for predicting the richness of macroinvertebrate and fish assemblages

[97, 114].

Prediction tree approaches such as classification and regression trees account for

the complex effects of both continuous and categorical predictors by recursively

bisecting the dataset into groups that are increasingly similar with respect to the

response variable after each division [52, 53, 115]. Ensemble prediction tree

approaches such as random forests and boosted regression trees combine the results

of hundreds to thousands of trees to reduce prediction error. Random forests have

been used to model assemblage metrics directly [21, 101, 116] and to define

relationships between environmental variables and predefined biotic classes, effec-

tively replacing MDA as used in RIVPACS [12, 101]. Comparisons of random

forests to boosted regression trees, a related ensemble tree method, indicate that the

latter may provide superior performance [108, 117].

In the absence of suitable reference sites, investigators have used whole-set

approaches that employ all sites in the dataset, rather than only reference sites, to

control for the effects of natural environmental variables. Most whole-set

approaches involve the use of regression techniques to model the responses of

metrics to stressors and then to estimate metric values at the point where the model

estimates that no impairment occurs [118, 119]. Because few to no minimally

impaired sites are included in these analyses, they are effectively estimates by

extrapolation of a stressor–response gradient and therefore may be subject to

greater prediction errors than models for which reference sites are available. Such

errors, however, may be unavoidable when test sites cannot be matched with

comparable reference sites. As an alternative whole-set approach, Chessman and

Royal [120] estimated the tolerance limits and preferences of macroinvertebrates to

substrate, temperature, and flow conditions across an extensive dataset of

Australian rivers. These limits were then used to predict the presence of taxa and

derive O/E values at test sites, which exhibited stronger correlations with stressor

gradients than O/E values derived using the AUSRIVAS method.

A case for using the whole-set approach as a replacement for the RCA was

recently presented [121]. Data simulations were conducted to model scenarios in

which natural environmental variables and stressors affected biotic metrics inde-

pendently and also interactively. Metrics that were model-adjusted using the whole-

set approach exhibited more accurate and precise relationships with the simulated

stressor gradient than metrics adjusted using the RCA. The difference in perfor-

mance was greatest when stressors and natural environmental variables interacted,

as the RCA cannot account for such interactions. While the authors present a

compelling case, additional field-based empirical comparisons of the whole-set

approach to the RCA are needed.
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4 Index Development and Performance Evaluation

We begin this section by discussing methods for evaluating the performance of

metrics and indices (Sects. 4.1–4.4). For MMIs, these characteristics should be

evaluated in order to include the best-performing metrics in the final index. Final

metric selection, scoring, and aggregation are discussed in Sect. 4.5. After scoring

and aggregation of metrics within an MMI or alternatively the development of an

O/E index, performance should be re-evaluated using the finished index scores,

ideally using independent data not used for index construction (Sect. 4.5). Further

information on MMI development has been presented by others [1, 32, 122]. For

clarity, these works present index development in a stepwise manner; however, it is

important to note that index development is an iterative, rather than a linear process.

Metrics that are acceptable based on one criterion (e.g., numerical range, Sect. 4.1)

may subsequently be considered unacceptable based on another criterion

(e.g., accuracy, Sect. 4.2), requiring the evaluation of new metrics.

4.1 Numerical Range

Assemblage data are often plagued with abundant zeros due to the patchy distribu-

tion of biota among habitats, and metrics related to rare taxa typically have narrow

numerical ranges. Metrics with limited ranges, and those for which many sites in

the dataset exhibit the same value, are unlikely to exhibit clear numerical responses

to stressors [123]. Others have presented guidelines for acceptable numerical ranges

for metrics, though these vary among studies [123–125]. Simple distribution plots

of metric values often provide clear indications of highly limited metrics (e.g., see

Fig. 2 in [122]).

4.2 Accuracy and Precision

We broadly define accuracy as the degree to which a given metric or index is

quantitatively related to variations in anthropogenic stress. Accurate metrics and

indices exhibit low Type II error rates by correctly identifying impairment and low

Type I error rates by correctly identifying reference conditions. As others have

indicated [126], the precise impairment state of a system, and therefore the absolute

accuracy of metrics, can never be truly known. We therefore use the term accuracy

to refer to estimated accuracy for identifying impairment, as indicated by relation-

ships of metrics with a priori-selected stressor variables.

Relationships between metrics with continuously varying stressor variables

may be expressed using correlation analysis. The objective is often to assess the

responsiveness of metrics to overall stressor gradients. PCA is commonly used
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to aggregate individual stressor variables into a comprehensive index of impair-

ment. Metrics and indices can then be evaluated as to the strength of their

correlation with this aggregate stressor index [124, 127, 128]. Tests of whether

metrics differ significantly from reference conditions provide binary results

regarding whether a metric classifies sites correctly. Standard approaches such

as ANOVA, however, may indicate statistically significant differences that are

not biologically meaningful [123, 129]; therefore, specialized techniques have

been developed that are more practical for determining whether metrics differ

from reference conditions [129–131]. The magnitude of the departure from

reference conditions is most important, regardless of statistical significance.

To this end, test statistics such as ANOVA F-statistics or t-scores, rather than

p-values, are used to determine the degree to which metrics differentiate

between reference and stressed sites [116, 123, 125]. Estimates of Type II

error rates are given by choosing a threshold value in the reference site

distribution that indicates impairment (e.g., 5th or 25th percentile for metrics

that decrease with stress and the 95th or 75th percentile for those that increase

with stress) and determining the proportion of impaired sites where metric

scores exceed this threshold (for metrics that increase with stress), indicating

that impairment has not been correctly identified [132]. Barbour et al. [133]

developed a similar, graphical approach for evaluating the degree to which

metrics and indices discriminate between reference and impaired conditions

(Fig. 4). Distribution-based methods such as these are especially susceptible to

the confounding effects of outliers, which should be carefully scrutinized to

determine whether they are caused by imprecise metrics or site misclassification.

Measures of precision describe the reliability of metrics and indices for consis-

tently indicating site conditions. Those that exhibit high variability that is not

attributable to environmental predictors are not useful for bioassessment. Precision

is expressed by measures of variability in metric or index values among samples,

most commonly as the standard deviation (SD) or coefficient of variation (CV).

Variance partitioning is conducted to determine the relative importance of the three

primary sources of variation: among-site spatial variation, within-site spatial vari-

ation, and temporal variation [29, 134].

Temporal precision is often evaluated using the signal-to-noise ratio (S/N ) [135],

which is the ratio of metric variance among sites to variance among multiple visits

at the same site. When evaluated using both stressed and reference sites, S/N reflects

both accuracy and temporal precision. Stevenson et al. [125] set S/N> 2 as the

acceptable ratio for diatom metrics. Stoddard et al. [123] indicated that acceptable

S/N values should vary, based on organisms’ generation times, from>1 for algae to

>4 for fish (though these preliminary guidelines require further evaluation).

Within-site spatial precision is reflected by metric variability in samples collected

at the same site and time, which may be affected by sampling error among spatially

or temporally replicated samples [134, 136] or by variation among bioassessments

employing different protocols [134, 137].
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The among-site precision of metrics and indices may be assessed among sites

within the same reference class, thus limiting the confounding effects of environ-

mental variability on the evaluation. For both O/E indices and MMIs, the ratio of

observed-to-expected metric values at reference sites should differ negligibly from

one, and thus the standard deviation (SD) for this ratio should be nearly equal to its

coefficient of variation (CV). The distribution of observed-to-expected metric or

index values provides a graphical illustration of both accuracy and precision

(Fig. 5) [72].

Fig. 4 Box plots of simulated data illustrating the method of Barbour et al. [133] for evaluating

the discriminatory power of metrics and indices. Boxes represent 25th and 75th percentiles;

whiskers represent non-outlier maximum and minimum values. The metric is expected to decrease

with impairment. Top left: discriminatory power¼ 0 (lowest), as the reference and impaired site

interquartile ranges (IQRs) overlap and include both medians. Top right: discriminatory power¼ 1

because the IQR overlap includes only one median value. Bottom left: discriminatory power¼ 2

because the overlap does not involve either median. Bottom right: discriminatory power¼ 3

(highest) because the IQRs do not overlap
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4.3 Metric Redundancy

Redundant metrics may respond in the same manner to stress and if used together

result in overly complex indices that include metrics that do little to increase (and

may decrease) accuracy. The problem of redundancy has long been recognized,

although the best approach for minimizing it remains unclear. Some investigators

prefer to focus on ecological redundancy by including metrics from different

ecological categories [122, 128], while others focus on reducing statistical redun-

dancy by evaluating pairwise correlations among metrics and choosing only one

metric within each pair that is correlated [124]. Combinations of these approaches

may be employed, which consider both ecological and statistical redundancy [138].

Correlations among metrics generally reduce MMI precision and accuracy, but

these characteristics appear to be most related to the mean pairwise correlation

rather than the maximum correlation among metrics in an index [139]. To best

Fig. 5 A graphical comparison of the accuracy and precision of two O/E indices (after methods in

[72]). Figure panels depict frequency distributions of O/E values for two indices at reference sites.

The data were simulated for example purposes only. The O/E index in the top panel is relatively
accurate (mean¼ 1.01) and precise (SD¼ 0.08). In contrast, the index depicted in the bottom panel
is less accurate (mean¼ 0.70) and less precise (SD¼ 0.16, also note the greater spread of the

distribution). This approach can be modified to assess the value distribution of any metric or index

at reference sites (e.g., [125])
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reduce the mean correlation among a group of potential metrics, multivariate

analyses such as PCA and cluster analysis can be used to aggregate correlated

metrics [21, 101, 102]. The correlation of metric errors (e.g., residuals of stressor–

metric regressions) rather than the correlation of metric values may be more

appropriate for judging redundancy, a concept whose applicability should be

further evaluated [140].

4.4 Metric Aggregation and Scoring

MMI development is completed by aggregating the best-performing metrics to

derive an index score. The number of metrics used in the index varies among

studies, and the choice is rarely supported by clear empirical justification [139].

Professional judgment is often used to select metrics based on best overall perfor-

mance, although ordered stepwise processes have been recommended and present

more comprehensive and objective options [139, 140]. To express metrics on an

equivalent numerical scale, raw values are commonly rescaled to reflect percent or

proportional comparability to values in the reference site distribution or to the

distribution of all sites producing metric scores on continuous 0–100 or 0–1 point

scales that increase with impairment. Blocksom [49] reviewed the details of these

and other common scoring methods. After scoring, metrics are nearly always

aggregated into an index by simple averaging, although other methods, such as

differential weighting based on relative importance [131, 141] or to account for

variations in metric precision [131], have been used. Alternative aggregation

strategies for MMIs represent yet another area where additional research is needed.

4.5 Index Validation

Validation of the index with independent data provides the most comprehensive

evaluation of performance. Validation typically proceeds by randomly selecting

subsets of impaired and reference sites, which are excluded from the dataset used

for index development and used for a posteriori evaluation of the performance

characteristics described above. The feasibility of index validation depends on the

amount of data available, as statistical power is compromised by dividing datasets

for this purpose. Categorical approaches for validating index accuracy are data

expensive, as the validation set must be divided according to impairment status.

When only a few sites are available, index accuracy may be validated by analyzing

for correlations of index scores with stressor gradients, which requires fewer

validation sites. This approach is especially useful in highly developed landscapes

where there are few reference sites [127, 142]. Index accuracy is often prioritized

over other performance characteristics, although more thorough validation strate-

gies also evaluate precision [21, 106, 143]. Evaluation of index bias, as indicated by
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relationships between indices and natural environmental variables, provides further

information on index performance [21, 101, 106, 116].

The effectiveness of predictive models used for reference site classification is

often evaluated using cross-validation by constructing models using only subsets of

the available data. Leave-one-out cross-validation is a data-efficient method in

which reference sites are excluded from the dataset one at a time. After each

exclusion, the classification and modeling process is repeated. Each left-out site

is then classified using the model constructed without that site. The proportion of

agreements between original and cross-validated classifications, relative to the total

number of reference sites, is a measure of the effectiveness of the model. This

technique can be used with any site classification approach [114, 134, 144]. Null

models, which are constructed by predicting metric values across all reference sites,

with no classification, are useful for evaluating all types of classifications. If

classification strength does not exceed that of the null model, then the classification

provides no advantage [145].

5 Expert Interviews: Challenges and Important

Considerations in Bioassessment

To provide a broader and more comprehensive perspective, we conducted inter-

views with three expert practitioners and developers of bioassessment programs.

Their responses to our questions, provided here in a question-and-answer format,

have been summarized with a focus on emerging issues relevant to bioassessment in

aquatic systems.

Expert 1 Michael Barbour, Ph.D.—Adjunct Senior Scientist, Mote Marine Labo-

ratory, Sarasota, FL, USA, and retired Director, Center for Ecological Sciences,

Tetra Tech, Inc., Owings Mills, MD, USA

Q: What factors limit the potential for increased use of genetic information in

bioassessment surveys? Is it likely that molecular genetic analysis will replace

traditional taxonomic approaches, or will these processes be used in conjunction

with each other?

A: A major challenge in the use of genetic data for bioassessment will be in

determining how reference conditions are expressed and how to account for the

effects of natural environmental variability on reference populations. It is unlikely

that genetic analysis will replace traditional taxonomic approaches in the near

future. Evolving DNA methods, however, should help to decrease taxonomic

uncertainty and improve our evaluations of aquatic assemblages.

Q: What are the most important factors to consider in developing a

bioassessment program?

A: Adherence to the Critical Elements Process in the design and implementation

of bioassessment protocols should provide an objective means of evaluating the

rigor of regulatory assessment programs and a basis for comparing data quality
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among programs [146]. This process is used to evaluate programs with respect to

13 critical elements within three general categories: study design, methods imple-

mentation, and data interpretation. The process considers logistic feasibility and

cost-effectiveness, calling for the highest methodological and data-quality stan-

dards that are reasonably attainable given existing technological and monetary

constraints. When high-quality methods exist, new bioassessment programs should

employ methods consistent to these to maximize efficiency (i.e., use of preexisting

datasets) and historical significance.

Q: What are the most important recent developments that have improved

comparability among assessment programs?

A: In addition to the critical elements process, the Biological Condition Gradient

approach (BCG, [45]) provides a framework for developing consistent, meaningful,

and understandable aquatic life use standards and is applicable to a wide variety

of monitoring strategies and assemblages. The BCG establishes a baseline by

employing best professional judgment within an organized framework whereby

experts assign bioassessment samples to ecological condition tiers. Biologists

trained to use the BCG produce highly consistent evaluations of site conditions.

The use of the BCG should greatly facilitate the comparability of bioassessments

conducted by different agencies and using different protocols.

Large-scale monitoring programs, such as the USEPA National Aquatic

Resource Survey, are of great importance. This nationwide assessment program

includes standardized sampling protocols and a probabilistic study design for the

assessment of US streams, rivers, lakes, wetlands, and coastal waters. The ongoing

intercalibration exercise, a key component of the European Union (EU) Water

Framework Directive (EC 2000/60/EC; [147]), and resulting multi-country aquatic

ecosystem surveys are other important examples. The major advantage of these

programs is the development of consistent and rigorous protocols that allow for

large-scale biological assessments of aquatic ecosystems.

Expert 2 Simone D. Langhans, Ph.D.—Humboldt Research Fellow, Leibniz Insti-

tute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

Q: What factors are most important in limiting comparability among

bioassessment schemes?

A: Variability in the definition of reference conditions (i.e., the allowable amount

of impairment within the reference dataset) can hinder the comparison of index

scores from different assessment programs. Index scores are typically an expression

of how similar a site is from the reference state; therefore, the use of similar

reference criteria facilitates comparability among assessment indices.

The expression of index scores in a continuous manner, rather than as categorical

ratings, is helpful when aggregating scores derived from different assessment

schemes. Due to their discrete nature, categorical ratings may differ for scores

that are actually quite similar; therefore, the most reliable aggregated indices are

based on continuous scoring systems. For management purposes, categorical

ratings can be applied after aggregation. Langhans et al. [141] present a method

for standardizing metric scores or attribute measures among indices to a continuous
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0–1 scale. The method can be applied to both categorical and continuous scales and

preserves the best professional judgment of developers regarding the interpretation

of score or measurement values.

Q: What aspects of the relationships of anthropogenic activities and ecological

integrity are most misunderstood by nonscientists?

A: The watershed (or catchment) concept is of great importance, though often

not understood by the layperson. Following from the simple concept that water

flows downhill, water bodies integrate the effects of human activities everywhere

within their watersheds. Responsible management of aquatic ecosystems must

consider not only in-stream and local effects but also effects at much larger spatial

scales. The range of relevant spatial scales that should be considered increases with

the size of the water body, with the largest river systems integrating the effects of

anthropogenic activities over thousands of square kilometers.

Q: In considering streams in different natural settings and at different positions

along the general gradient of impairment, which are the most important candidates

for preservation or restoration?

A: How best to prioritize conservation and restoration efforts for aquatic eco-

systems is currently a popular and important topic in the EU. A strategy that

considers the conservation of existing ecological integrity and the restoration of

impaired systems simultaneously is best. When biological assemblage objectives

are given high priority, the most effective areas for restoration are those in close

proximity to high-quality conservation areas because the conservation areas pro-

vide sources for recolonization. For example, Tonkin et al. [148] evaluated

the likelihood of recolonization by invertebrates at 21 river restoration sites in

Germany. They determined that the density of occurrence of a taxon at surrounding

sites (proportion of sites with the taxon present) and the distance to the nearest

potential source site were important factors for predicting recolonization.

Expert 3 Gregory J. Pond, M.S.—Aquatic Biologist, USA Environmental Protec-

tion Agency, Region III, Wheeling, WV, USA

Q: Given the myriad protocols currently employed to conduct assemblage-level

assessments, what considerations should be made by investigators and managers to

select the most accurate, precise, and cost-effective strategies?

A: Protocols should be flexible, thoroughly documented in standard operating

procedures, and based on the varying assessment goals, characteristics of the

system being studied and available funding. For example, species-level

macroinvertebrate data may in some cases produce the most effective assessment

results. In other situations, temporal variation among samples may produce confu-

sion at high levels of taxonomic resolution, for example, if errors in identification

increase at times of the year when early instars predominate in the samples. In such

cases, coarser taxonomic resolution at the genus or family level may be necessary to

avoid inconsistency among samples.

If assessment on a large spatial scale is a priority, investigators may use less

time-intensive methods to assess a greater number of sites within the time and

monetary constraints of the project. In an attempt to provide a spatially
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comprehensive assessment of Pennsylvania (USA) waters, the state’s Department

of Environmental Protection (DEP) conducted rapid surveys focused on

macroinvertebrate assemblage characteristics that could be evaluated in the field

by trained biologists without the need of extensive sampling and laboratory

processing. This protocol allowed DEP to conduct an initial screening of several

thousand stream sites over a 2-year period within budgetary constraints. However,

the accuracy and precision of field-based rapid surveys such as this are likely far

lower than would be expected from more intensive sampling and processing pro-

tocols that produce quantitative, genus- or species-level datasets.

Data consistency and comparability are also of great concern. When USEPA

conducts bioassessments, the protocols developed by the state are typically

followed. This insures that the data collected are comparable with those produced

by state biologists and that the methods have been calibrated for the region of

interest. Natural variability of system-specific characteristics should also be con-

sidered. For example, Virginia (USA) is currently developing a new protocol for

swamp streams, which have not been previously assessed for regulatory purposes.

Q: What are your thoughts regarding the use of continuous environmental vari-

ables within a predictive modeling framework versus typological approaches for

reference site classification?

A: Large-scale typological approaches have generally been insufficient in

accounting for the variation in natural environmental factors that affect biota

among aquatic systems. Typological approaches, however, are convenient, easy

to use and understand, and can be effective within relatively small and homogenous

geographic regions. Natural environmental gradients often persist within typolog-

ical categories, and care should be taken to ensure that typological approaches do

not oversimplify these gradients. Predictive modeling is more analytically intensive

and requires more precise data, but generally provides more reliable results in

highly heterogeneous regions. In the development of an O/E model for Central

Appalachian streams, Pond and North [75] determined that subecoregion [149],

Julian day and latitude were the most important natural predictors of reference

macroinvertebrate assemblages. For that study region, a predictive modeling

approach was chosen as the best strategy, given the importance of the continuous

variables Julian day and latitude. A typological approach, where reference condi-

tions are developed at the subecoregion level, could also be effective; however, the

effects of latitude and seasonality should be carefully observed and potentially

controlled.

6 Conclusions

In this chapter, we provided an introduction to the major components of

assemblage-level bioassessments of aquatic systems. Macroinvertebrates, fish,

and algae are the most commonly used assemblages, although the methods

described here are applicable to, and have been successfully used with, other biotic
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assemblages [150–152]. One emerging strategy is in the use of prokaryote assem-

blages, which has historically been limited because many prokaryotes are not

readily cultured in the laboratory. However, emerging technologies that allow for

quantification of assemblage composition through DNA sequencing have largely

removed this limitation, making prokaryote assemblage assessments an emerging

new option for bioassessment of aquatic systems [152, 153]. Rapidly evolving

DNA sequencing methods have the potential to greatly enhance not only

bioassessments using prokaryotes but also those using assemblages that have

traditionally been evaluated by identification of specimens based on morphological

characteristics [154–157].

Regardless of the assemblage type chosen or the methods used for identifying

taxa in the assemblage, the most challenging aspect of bioassessments has been, and

remains, the difficulty in separating environmental effects on assemblages that are

the result of naturally varying factors such as climate and geology from those

caused by anthropogenic factors. The use of the RCA, coupled with advanced

predictive modeling methods such as machine learning techniques, has enhanced

our ability to predict how assemblages should vary based on natural environmental

factors. Such enhanced predictive power should ultimately allow for more accurate

determination of assemblage variation patterns that indicate impairment. Despite

these advancements, predictive modeling and the use of the RCA are greatly

confounded by the lack of suitable reference sites in many regions. To this end,

alternative strategies that employ both impaired and reference sites to derive

expected reference conditions have been proposed [118–121] and warrant further

evaluation to determine their widespread applicability. Because of the scarcity of

reference sites in many regions and the high potential for complex interactions

between natural environmental factors and stressors, the development of additional

data-efficient methods for predicting expected assemblages under unimpaired con-

ditions and for quantifying deviations from these expectations is much needed.

An additional challenge for contemporary bioassessment programs is the

shifting baseline syndrome (sensu Hawkins et al. [43]) wherein future climate

change is likely to alter temperature and precipitation regimes globally, thus

changing the assemblage compositions that might reasonably be expected under

minimally impaired conditions. To meet this challenge, spatially and temporally

extensive monitoring is essential to derive realistic reference conditions. Several

large-scale assessment programs have been recently developed, such as the EU

Water Framework Directive, the US Geological Survey’s National Water Quality

Assessment program, the US EPA’s National Aquatic Resources Survey, the US

National Science Foundation’s National Ecological Observatory Network, and the

Canadian Biological Monitoring network. These programs include rigorous and

thoroughly documented bioassessment protocols focused on monitoring aquatic

assemblages over large spatial and long temporal scales. Data produced by these

important programs will enhance our ability to overcome the inherent challenges in

evaluating ecological integrity when least-impaired reference conditions are rare,

highly variable among regions, and changing in response to global climate change.
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