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Abstract Remote, satellite-based sensing is a cost-effective way to gather infor-

mation needed for regional water quality assessments in lake-rich areas. A major

advantage is that it enables retrieval of current and historic information on lakes that

were not part of ground-based sampling programs. Advances over the past decade

have enabled the use of satellite imagery for regional-scale measurement of lake

characteristics, such as clarity and chlorophyll. For example, in the Midwest USA,
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historic and recent Landsat water clarity assessments have been conducted on more

than 20,000 lakes to investigate spatial and temporal patterns and explore factors

that affect water quality. The spatial characteristics of Landsat imagery allow for

the assessment of all lakes larger than ~4 ha, but the broad nature and placement of

its spectral bands have limited assessments largely for water clarity. European

Space Agency (ESA) MERIS imagery with spectral bands that were selected for

water has been used to assess chlorophyll for about 900 of Minnesota’s large lakes
(those > 150 ha). Improvements of the recently launched Landsat 8 and upcoming

ESA Sentinel-2 satellites will expand our capabilities further enabling assessment

of other optically related water quality characteristics, such as chlorophyll, colored

dissolved organic matter (CDOM), and mineral suspended solids for all lakes, and

upcoming Sentinel-3 will continue these capabilities for large lakes.

Keywords CDOM • Chlorophyll a • Lake water quality • Satellite imagery

Landsat • Secchi depth • Sentinel

1 Introduction

Inland water bodies, such as lakes and reservoirs, are important natural resources

for sustenance, recreation, and aesthetic enjoyment, and they add to the economic

vitality and quality of life of regions where they occur. Water quality properties,

such as chlorophyll a, total suspended matter, turbidity, colored dissolved organic

matter (CDOM), and nutrients, are used by regulatory and resource management

agencies to guide management and public safety decisions. In situ point sampling is

the conventional method for collecting information on water quality variables. For

effective lake management, it is important to have long-term water quality infor-

mation on a synoptic scale. The “big picture” view of water quality allows man-

agers to take into account not only differences among lakes but also changes

through time for the whole lake and surrounding water bodies within a watershed

or typically much larger areas. Unfortunately, only a small percentage of inland

waters are regularly monitored by conventional methods, and historical water

quality data are lacking for most inland waters. The “big picture” view of water

quality is not practical with conventional point sampling methods due to limited

resources, and historic water quality data are sparse. Satellite remote sensing has

become a viable option for current synoptic measurements and historic assessments

of important water quality variables due to improved computer software and

hardware, as well as the availability of free or inexpensive satellite imagery.
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2 Rationale for Optical Remote Sensing Using Satellite

Imagery

Satellite remote sensing has the potential to provide synoptic and frequent water

quality measurements of inland waters. Remote sensing satellites such as the

Landsat series have been collecting and archiving imagery regularly since the

early 1970s, which allows for the assessments of some historic water quality

information even on inland waters lacking historical ground-based data. Satellite

systems planned for launch in the next few years will allow better characterization

of inland water quality on regional-to-global scales.

Optical remote sensing (ORS) using satellite imagery can be used to measure

water quality of inland, marine, and coastal waters. Although there are many

similarities between ORS applied to inland waters and ORS applied to marine

systems, there also are profound differences. For example, spatial resolution

requirements are much lower for the broad expanses of the oceans and most coastal

areas than are needed for small inland water bodies. Several generations of satellite

sensors acquire images with large pixel sizes (~0.3–1 km) that provide adequate

spatial resolution for oceanic and most coastal studies but are too coarse for small

inland water bodies. For perspective, the smallest water body that can be measured

by a satellite sensor with a pixel size of 1 km is ~1,000 ha [1]. The spatial resolution

of Landsat satellites, 30 m, generally allows measurements on water bodies larger

than ~4 hectares (ha). As pixel size increases, the likelihood decreases that an image

will have at least one pixel (preferably four or more) focused solely on open water

and not affected by terrestrial and shallow near-shore areas. The smaller pixel size

also allows for better characterization of bays and narrow portions of complex lake

systems

A second difference relates to the optical complexity of inland waters. Remote

sensing scientists focusing on marine systems are able to use increasingly sophisti-

cated instrumentation such as the Moderate Resolution Imaging Spectroradiometer

(MODIS) aboard the Aqua and Terra satellites to develop analytical and semi-

analytical algorithms that retrieve chlorophyll levels from the oceans, and this has

become a routine, global-scale operation [2, 3]. Remote sensing scientists focusing

on inland waters have had to develop procedures primarily using other satellites like

Landsat, which have adequate spatial resolution but at the same time have critical

deficiencies in spectral and temporal resolution. The blue and green spectral bands

used to retrieve chlorophyll levels from oceanic waters are not so useful for such

purposes in optically complex inland waters [4–7]. These deficiencies have limited

development of retrieval algorithms for inland water quality variables by satellite

imagery mostly to empirical and semiempirical (described in Sect. 3.1) approaches.

More sophisticated ground-based and aircraft-mounted spectroradiometers also

have been used in recent years to advance the science of inland water ORS.

In summary, the requirements for spatial resolution, most effective spectral bands,

ability to use analytical (versus empirical) approaches, and ranges of interest for

water quality variables like chlorophyll and CDOM are different between inland
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waters and marine systems; these differences resulted in the development of two

closely related but separate fields of study (e.g., also see [8]).

2.1 Inherent and Apparent Optical Properties
and the Radiative Transfer Equation

When a photon of light interacts with matter, it can either disappear (energy

converted to heat or a chemical bond), which is called absorption, or it can change

its direction and/or energy, which is called scattering. The absorption and scattering

properties of natural waters are the basis for use of ORS in measurement of inland

water quality and can be expressed in terms of inherent optical properties (IOPs) and

apparent optical properties (AOPs). IOPs depend only on the water medium and are

independent of the available light field. Three important IOPs relative to ORS are the

absorption coefficient, volume scattering function, and beam attenuation coefficient,

all of which are wavelength dependent. The beam attenuation coefficient “c” is the

sum of terms for the absorption “a” and scattering “b” of light in the medium:

c λð Þ ¼ a λð Þ þ b λð Þ ð1Þ

where (λ) means a term is a function of wavelength; both a(λ) and b(λ) are functions
of the nature and concentrations of substances in natural waters.

AOPs depend on the IOPs and also on the directional structure of the ambient

light field in the medium. The most important AOPs relative to ORS are the

irradiance reflectance and various diffuse attenuation coefficients. Signals received

by satellite sensors for ORS ultimately get converted to irradiance reflectance

values and to a closely related property called “remote sensing reflectance,”

hereafter referred to as Rrs. Radiative transfer theory provides the connection

between IOPs and the AOPs [9] and thus is the basis for relating Rrs to concen-

trations of substances in water that affect light absorption and/or light scattering.

The basic radiative transfer equation is [10, 11]:

Rrs ¼ G λð Þ bb λð Þ
a λð Þ þ bb λð Þ ð2Þ

where

a λð Þ ¼ aw þ a�ph λð ÞCchla þ aCDOM λð Þ þ a�NAP λð ÞCNAP ð3Þ
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and

bb λð Þ ¼ 0:5bw λð Þ þ b�b,ph λð ÞCchla þ b�b,NAP λð ÞCNAP ð4Þ

G(λ) is a scaling factor accounting for geometrical conditions (e.g., solar zenith

angle) and the state of the air-water interface; a(λ) is the total absorption coefficient,
which is the sum of absorption coefficients for water itself, phytoplankton, CDOM,

and non-algal particles (NAP); a�ph(λ) is a chlorophyll-specific absorption coeffi-

cient for phytoplankton; Cchla is the concentration of chlorophyll a; a�NAP(λ) is the
specific absorption coefficient for NAP; CNAP is the concentration of NAP; and

bb(λ) is the total backscattering coefficient, which similarly is composed of scat-

tering terms for water itself, phytoplankton, and NAP. The backscattering coeffi-

cient for pure water is equal to one-half of the total scattering coefficient of pure

water; it is assumed that there is equal probability of scattering in the forward and

backward directions [11]. Equations (2)–(4) assume that the absorption and scat-

tering properties of a water body depend on contributions from four components:

pure water, phytoplankton, CDOM, and NAP. Ultimately, analytical and semi-

analytical models for retrieval of water quality information on these variables are

based on these equations.

2.2 Water Quality Variables Amenable to Measurement
by Optical Remote Sensing

2.2.1 Currently Measured Variables

To be measurable by ORS, a water quality constituent must affect at least one of the

two principal optical properties that control the amount of light reflected back to a

sensor from the water body: absorption and scattering. Because pure water strongly

absorbs incoming radiation in the ultraviolet (UV) range and also (but to a some-

what lesser extent) in the infrared (IR) range, the portion of the electromagnetic

spectrum useful for remote sensing of water quality is limited to the visible range

(~400–700 nm) plus the near UV (roughly 360–400 nm) and the near IR (~700–

900 nm). Beyond this range, absorption of incoming radiation is so strong that

essentially nothing is reflected back into the atmosphere. Consequently, the water

quality constituents amenable to measurement by ORS must absorb or scatter light

within this wavelength range.

Constituents like plant pigments, especially chlorophyll a, and humic sub-

stances, which constitute much of the CDOM in water bodies, are the most

important examples of light-absorbing substances amenable to measurement by

ORS. CDOM is usually reported by limnologists and remote sensing scientists in

terms of its light absorptivity at specific wavelengths, commonly 420 and 440 nm,

e.g., a440 (m
�1), but chloroplatinate units (CPU) are still used by some water quality
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scientists and engineers. Although many synthetic organic compounds used in

modern society are colored (i.e., absorb light in the visible range), they do not

occur in natural waters at sufficient concentrations, except in very rare pollution

events, to be measurable by ORS. Similarly, a variety of metal ions and metal-ion

complexes are visibly colored (e.g., species of Cr, Cu, and Mn), but their concen-

trations in natural waters, especially in forms that are colored, are far too low to

affect reflectance spectra. A possible exception, iron (Fe), is discussed below in the

context of CDOM measurements.

Suspended particles, including phytoplankton, organic detritus derived from

microbial decomposition and secondary production, and mineral suspended solids

such as aluminosilicate clays and soil particles (SSmin), are the primary constituents

in natural waters that affect scattering. Because the spectral characteristics of light

scattering by various types of suspended particles are not sufficiently unique, ORS

techniques generally are not able to distinguish among the types of suspended

particles causing scattering and thus affecting reflectance. Phytoplankton cells,

because of their chlorophyll content, are an exception, but results normally are

presented in terms of chlorophyll concentrations and not cell counts or cell volume.

Light-scattering water quality constituents measured by ORS thus are “lumped

parameters” like total suspended solids (TSS) and turbidity. Light scattering

depends on a complicated set of factors, including particle numbers, sizes, shapes,

and surface properties; no universal relationship between the reflectance of light

and TSS (in mg/L) thus should be expected. Rather, such relationships are time and

place specific depending on the properties of the suspended particles, as mentioned

above. Because turbidity measured by a laboratory turbidimeter or nephelometer is

directly related to the scattering of light in water bodies that produces the reflected

light measured by optical remote sensors, development of universal or quasi-

universal ORS relationships for turbidity may be possible. A few studies have

reported on the measurement of turbidity by ORS and are discussed further in

Sect. 2.2.4.

Secchi depth (SD), an important optical property of natural waters, is affected by

both light scattering and light absorption. In most water bodies, scattering caused by

phytoplankton and plankton-derived particles controls SD, and thus it serves as a

common and simple measure of lake trophic status. Many studies have shown

strong correlations between SD�1 and chlorophyll levels (or log SD versus log

[chlorophyll]) in lakes [1, 12]. CDOM and SSmin also affect SD in some waters, and

proper interpretation of SD data depends on what factors are affecting water clarity.

Brezonik [13] quantified the influence of CDOM on SD using in situ experiments in

which a concentrated source of CDOM-like material was added incrementally to

low-CDOM and low turbidity lake water in mesocosm-scale “limnobags.” At a

measured CDOM of 200 CPU, equivalent to a440� 20 m�1, representative of

highly colored bog lakes, and negligible SSmin, the SD was ~1.5 m; at CDOM¼ 70

CPU (a440� 7 m�1), representative of moderately colored lakes, the SD was 4.5 m.

Preisendorfer [14] showed that SD�1 is proportional to the sum of two fundamental

optical properties: α+Kd, where α is the beam attenuation coefficient (measured by

an underwater transmissometer) and Kd, the diffuse attenuation coefficient
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(determined by measuring the amount of incident light remaining as a function of

depth with an underwater light meter). Kd and α are spectrally and depth averaged

values for a given water body.

Values of Kd at specific wavelengths, most commonly Kd,490, have been

retrieved from ORS data by marine scientists as part of efforts to develop analytical

methods to retrieve water quality information from satellite imagery (e.g., [10, 15,

16]). Plug-in algorithms to compute Kd,490 were developed for several MERIS

processors in the BEAM software system, including the Case 2 Regional and Boreal

lakes processors [17–19]. Kd is not a common water quality variable in inland

waters, however, and there seems to have been little interest among freshwater

remote sensing scientists in using the algorithms for Kd in inland lakes. This

situation is likely to change when improved satellite sensors (see Sect. 2) that

allow for more analytical retrieval methods become available for inland water

ORS measurements.

In summary, only a few water quality variables are amenable to direct measure-

ment by ORS, but they include two variables, chlorophyll a and CDOM, that are

critically important for understanding lake metabolism and carbon cycling. A third

variable, SD, probably is the most widely measured lake water quality parameter

because its simplicity and low cost facilitates use by citizen monitoring programs.

SD also is important because it is related directly to water quality as perceived by

lake users and to trophic conditions and chlorophyll levels. TSS and turbidity round

out the common water quality variables amenable to measurement by ORS.

2.2.2 Potential Variables with Improved Spectral Characteristic

Sensors

As noted above, a few other variables could become important in applications of

ORS to regional-scale measurements of inland lake water quality when sensors with

improved spectral characteristics and adequate spatial resolution become available.

These include SSmin, Kd, and specific plant pigments indicative of various classes of

algae (e.g., see [10]), such as phycocyanin for cyanobacteria. Identification and

measurement of the abundance of submerged and emergent aquatic plants also can

be achieved using ORS [20–22], but details of this topic are beyond our scope.

2.2.3 Non-optical Variables Sometimes Correlated with Variables

Having Optical Properties

Many examples can be found in the remote sensing literature that claim the ability

to measure water quality variables that do not directly affect light reflectance or are

present in natural waters at such low concentrations that they do not affect reflec-

tance signals measured by satellite sensors. Examples include mercury, bacteria

(e.g., Escherichia coli) [23], and total phosphorus (TP) [24, 25]. In all cases, the

reported relationships involve empirical regression equations. Despite the fact that
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high r2 values sometimes are reported, the relationships “work” only because the

“non-optical” variable is correlated in the water bodies used to develop the relation-

ship with an optical variable that affected reflectance. For example, the bacterial

indicator of fecal contamination, E. coli, is found in waters contaminated by human

activities, and correlation of E. coli abundance with TSS and turbidity might be

expected. Similarly, phosphorus often is the limiting nutrient for algal growth in

lakes, and correlations between chlorophyll and TP or SD and TP thus are common

(e.g., [12]). Such relationships cannot be applied reliably beyond the database from

which they were derived because no intrinsic or causative relationship exists

between the non-optical and optical variables or between the non-optical variable

and reflectance.

The use of empirical relationships that depend on secondary correlations has led

to criticisms that remote sensing scientists are “overselling” their technology (e.g.,

[8, 26]). A more transparent and defendable approach is to develop relationships

between reflectance data and variables that directly affect reflectance and then

separately determine whether a sufficiently close relationship exists between the

optical variable retrieved from imagery and a non-optical variable of interest.

Applications of such empirical relationships still should be limited to the data

sets on which they are based, but situations exist in which useful information can

be obtained by this approach. For example, evaluation of a suite of environmental

conditions retrieved from satellite imagery was found useful in predicting outbreaks

of waterborne diseases even though the disease-causing microorganisms do not

directly affect satellite imagery signals [27]. Similarly, atmospheric scientists have

estimated transport of specific pollutants like mercury (Hg) from Asia across the

Pacific Ocean to North America by tracking atmospheric dust using satellite

imagery and independent measurements of the pollutant (e.g., Hg) concentrations

in atmospheric dust over the Pacific.

Relationships between DOC (dissolved organic carbon) and reflectance also

have been reported (e.g., [28]), but insofar as DOC per se is not an optical variable

and does not itself affect reflectance, these also are the results of indirect corre-

lations. To the extent that such relationships work, they rely on the fact that a

fraction of DOC (CDOM) affects reflectance. For some waters good correlations

exist between CDOM and DOC, but as Brezonik et al. [29] recently showed, no

single DOC-CDOM relationship applies across a broad spectrum of surface waters.

Some sources of DOC, e.g., autochthonous organic matter and anthropogenic

organic matter derived from wastewater, have low color per unit of carbon. As a

result, CDOM and DOC are poorly correlated in many natural waters. For example,

Spencer et al. [30] found that r2 values for DOC-CDOM relationships were �0.5 in

11 of 30 large North American rivers, and four rivers (the Colorado, Columbia, Rio

Grande, and St. Lawrence) had r2< 0.2. Factors giving rise to poor DOC-CDOM

relationships include the extent to which the DOC is autochthonous or anthro-

pogenic and the extent to which allochthonous DOC has been photodegraded.
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The following three sections summarize the spectral basis for retrieval of the

three most important water quality characteristics—clarity, chlorophyll, and

CDOM—from remote sensing imagery.

2.2.4 Water Clarity Variables

Three water clarity variables discussed here include Secchi depth (SD), turbidity,

and TSS.

Water clarity, whether measured as light scattering in laboratory turbidimeters,

as the in situ depth of disappearance of a white disk (SD), or as the slope of the

logarithm of light attenuation with depth (Kd) in a water body, provides critically

important information to both users of water bodies and to water resource man-

agers. Fortunately, because of their close relationship to both IOPs and AOPs of

water, clarity parameters are well suited to measurement by ORS.

In part because of the widespread availability of calibration data from citizen and

agency monitoring programs, SD has been the subject of many ORS studies (see

Sect. 4 for details). Retrieval of SD from satellite imagery also is facilitated by the

fact that the broad Landsat bands are suitable for SD retrieval. Numerous studies

have yielded good relationships for SD that involve bands 1 and 3 in two-term

equations like ln(SD)¼ a(TM1/TM3) + bTM1+ c [31], where ln(SD) is the natural
logarithm of Secchi depth; a, b, and c are regression coefficients; and TM1 and

TM3 are reflectance values for thematic mapper bands 1 and 3. As SD decreases,

reflectance in the red band (TM3) increases. The blue band (TM1) tends to

normalize brightness in the red and improves algorithm performance. R2 values

for such equations are in the range 0.71–0.96 for lakes in Minnesota [32]; others

[33] reported similar ranges of fit. Olmanson et al. [1] found that MERIS and

Landsat imagery worked equally well for SD, but the coarser spatial resolution of

MERIS allowed assessment of only about 8 % of the Minnesota lakes accessed by

Landsat.

Models for turbidity and TSS in optically complex waters, where phytoplankton,

CDOM, and SSmin all may affect IOP features, should avoid the absorption

characteristics of chlorophyll in the red and CDOM in the blue region and use the

scattering peak at ~705 nm or band combinations in the NIR or green regions

(where plant pigments have minimal absorption). For example, Gitelson et al. [34]

found that a difference ratio algorithm (R560�R520)/(R560 +R520) was highly

correlated with TSS in lakes and rivers with TSS values < 66 mg/L. Phytoplankton

absorption is at a minimum near 560 nm, but reflectance at this wavelength is

sensitive to TSS; in contrast, reflectance at 520 nm is relatively insensitive to

changes in TSS [35].

Numerous studies have shown the usefulness of NIR bands for turbidity and TSS

(for reviews, see [10, 35]). The scattering peak at ~700 nm was found to be strongly

correlated with TSS by many studies (e.g., [36–38]), and Senay et al. [39] reported a

good relationship for turbidity. The difference in reflectance at 710 and 740 nm was
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found useful by Shafique et al. [40]. The scattering peak at ~700 by itself also was

found to work well for NVSS (nonvolatile SS, essentially equivalent to SSmin) [41].

Olmanson et al. [42] found strong relationships between reflectance at 705 nm

and both turbidity and TSS (r2¼ 0.77–0.93 for both) using airborne hyperspectral

imagery to assess water quality in the optically complex waters of the Minnesota,

Mississippi, and St. Croix Rivers in the Minneapolis-St. Paul region. Depending on

location and time, CDOM, phytoplankton, and/or SSmin all may dominate the

optical properties of these rivers. They also found a predictive equation

(r2¼ 0.80–0.90) for volatile suspended solids, VSS, a measure of organic

suspended matter, using the ratio of reflectance at 705 to 670 nm. For SSmin they

found that using band at 705 nm and the ratio of reflectance at 705 to 670 nm, a

combined model (TSS and chlorophyll a), yielded an r2 of 0.85–0.97 for SSmin. The

resulting maps clearly distinguished phytoplankton-based turbidity from SSmin

(Fig. 1 [42]: reprinted with permission from the publisher). The transition from

phytoplankton-dominated water at location “a” (Fig. 1B) to inorganic sediment-

dominated water at location “e” is captured in the reflectance spectra extracted from

the imagery (Fig. 2). Absorption characteristics of chlorophyll are distinctly visible

at location “a” but become more moderate toward location “e.” This example

demonstrates the massive quantity of information obtainable from a single image

that would have been missed by traditional monitoring, which would probably

involve only one sample for the entire area.

Fig. 1 Maps of Pig’s Eye Lake, St. Paul, Minnesota, showing transition from conditions domi-

nated by inorganic sediment to conditions dominated by phytoplankton: (A) turbidity, (B) chloro-

phyll a, and (C) NVSS/TSS (% SSmin); August 30, 2007. Reprinted from Olmanson et al. [42] with

permission of the publisher
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2.2.5 Chlorophyll and Other Pigments

Predictive models that use ORS to estimate a water quality variable should use

wavelengths that identify key spectral characteristics of the variable without inter-

ference from competing optical features of other variables. For chlorophyll, this

means that algorithms commonly used for the open oceans, which involve reflec-

tance in the blue and green regions, do not work well for inland waters because

these waters are influenced by TSS and CDOM. This makes them optically more

complex [43] than open ocean waters, where chlorophyll and chlorophyll-related

properties are the primary factors affecting reflectance. CDOM and SSmin have

overlapping absorption features with chlorophyll a in the blue region.

Successful chlorophyll models for inland waters thus use absorption character-

istics in the red wavelengths—a reflectance trough at ~670 nm caused by a peak in

absorption by chlorophyll a and a reflectance peak at the red edge (~700–710 nm)

caused by scattering by phytoplankton; absorption by CDOM and suspended solids

is minimal at these wavelengths [44, 45]. Many studies (e.g., [34, 46–50]) have

reported strong relationships between chlorophyll a and the reflectance ratio for

~700 nm and ~670 nm in a variety of inland waters and over a wide range of

concentrations (e.g., 0.1–350 μg/L; [35]). The usefulness of the red-edge signal for
chlorophyll a estimation in optically complex river waters also was shown by

Fig. 2 Reflectance spectra of the transition zone for conditions dominated by inorganic sediment

in the Mississippi River to conditions dominated by phytoplankton in Pig’s Eye Lake, August

30, 2007 (Fig. 1b). Tabulated chl a, turbidity, and NVSS/TSS values were calculated from

reflectance spectra using the best predictive models. Reprinted from Olmanson et al. [42] with

permission of the publisher

Remote Sensing for Regional Lake Water Quality Assessment: Capabilities and. . . 121



Olmanson et al. [42] using airborne hyperspectral imagery on waters of the Minne-

sota, Mississippi, and St. Croix Rivers. For chlorophyll a, the ratio of reflectance at
705 to 670 nm yielded r2 values of 0.75–0.93. Of the recently or currently available
and forthcoming satellite sensors, only MERIS and the Sentinel-2 and Sentinel-3

satellites have appropriately narrow red-edge bands.

Despite the above comments, it must be noted that many studies have reported

strong empirical relationships between the broad bands of Landsat sensors and

chlorophyll a (e.g., [1]); typical predictive equations involve the ratio of TM or

ETM+ bands 1 and 3. Absorption by chlorophyll a is strong in bands 1 (450–

520 nm) and 3 (630–690 nm). Nonetheless, increased scattering by phytoplankton

cells counteracts some of the absorption effects and leads to increased reflectance

with increasing chlorophyll a levels in band 1 and even larger increases in band 3. If
it is known that the optical properties of the water bodies being studied are

dominated by phytoplankton, the use of these empirical relationships may be

considered acceptable. However, for regional assessments where specific water

quality characteristics are not known, lakes with high CDOM and/or SSmin may

be misclassified.

As an example, when we used Landsat 8 imagery to estimate chlorophyll a and

SD in lakes of northeastern Minnesota for August 31, 2013, we found strong

relationships for both variables (r2¼ 0.70 and 0.77; RMSE 0.758 and 0.406,

respectively). Calibration data (�3 days) for the images are from the Minnesota

Pollution Control Agency (for chlorophyll a, n¼ 99; for SD, n¼ 258) [51]. For

most Minnesota lakes, the results are believed accurate because phytoplankton

dominates their optical properties. When we used the same models for the

St. Louis River Estuary (SLRE), where optical properties of the waters are domi-

nated by CDOM and SSmin, however, the resulting maps misrepresented SSmin as

chlorophyll (Fig. 3 zoomed into Duluth, MN & Superior, WI area: SLRE at the

western edge of Lake Superior). Consequently, we believe it is best to limit

regional-scale assessments using Landsat to water clarity or turbidity, which is

appropriate for the spectral characteristics of the Landsat sensors, unless indepen-

dent data are available to verify that SSmin and CDOM are not important factors in

the lakes being assessed.

The characteristics of Landsat, MERIS, and MODIS sensors for regional water

quality measurements were analyzed by Olmanson et al. [1]. Imagery from the three

sensors was compared for spatial and spectral characteristics, and empirical models

were developed for chlorophyll a using various bands and band ratio combinations

as dependent variables. MERIS provided a better fit for chlorophyll a (R2¼ 0.85,

n¼ 90) than Landsat andMODIS (R2¼ 0.79 for both, n¼ 177 and 42, respectively).

The red-edge band at 708 nm improved the fit and allowed discrimination between

phytoplankton and SSmin, but the Landsat and MODIS results misclassified high

SSmin levels as chlorophyll a, similar to Fig. 3.

Phycocyanin, a pigment occurring in cyanobacteria (formerly known as blue-

green algae), can serve as a marker for the presence of these microorganisms in

surface waters and is amenable to measurement by ORS. Cyanobacteria are com-

mon in eutrophic water bodies, and some species produce substances that are toxic
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to animals. Thus, there has been much interest by water resource managers in

methods for real- or near real-time assessment of the abundance and spatial

distribution of cyanobacterial blooms. Phycocyanin has a strong absorption peak

near 620 nm, which leads to a characteristic dip in reflectance spectra around 600–

630 nm for water bodies with cyanobacteria blooms (e.g., Fig. 4). Several

researchers have reported empirical algorithms for cyanobacterial abundance

using hyperspectral measurements and reflectance ratios around this wavelength

range [52, 53]. Unfortunately, this wavelength range represents a gap in coverage

by the sensors of the Landsat satellites (for OLI of Landsat 8, band 3 has a range of

530–590 nm and band 4 a range of 640–70 nm). Vincent et al. [54] claimed to be

able to measure phycocyanin and trace cyanobacterial blooms in Lake Erie using

Landsat. They reported an r2 of 0.77 for the relationship, but this is thought to be an
example of indirect correlation (e.g., [35]). The retrieval equation probably was

responding to chlorophyll signals; cyanobacteria were the dominant algae in the

lake at the time of the measurements, and a high correlation could be expected

between phycocyanin and chlorophyll levels. Several groups (e.g., [55–58]) have

found that the narrower bands of MERIS are suitable for retrieval of phycocyanin

concentrations. In these cases, the fluorescence of phycocyanin at ~681 nm is

detected using a semiempirical second derivative function that also uses reflectance

data for nearby bands at 709 and 665 nm.

Fig. 3 Maps of chlorophyll a and SD in the St. Louis River Estuary (SLRE) at west end of Lake

Superior created from an Aug. 31, 2013, Landsat 8 image. Spectral characteristics of the OLI

sensor do not allow discrimination of phytoplankton from SSmin in optically complex waters. The

SSmin dominated waters of Pokegama Creek and Allouez Bay are misclassified as having high

chlorophyll a. Models were developed for the entire path 27 row 27 Landsat image using available

lake data, n¼ 260 for SD, 71 for chlorophyll a within 3 days of the image
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2.2.6 Colored Dissolved Organic Matter

Interest among aquatic scientists has increased greatly over the past decade in ORS

applications to measure CDOM in surface waters. In part, this reflects a growing

interest in quantifying the role of lakes and other surface water bodies in the global

carbon cycle, along with the understanding that CDOM represents a large fraction

of the total DOC in many aquatic systems.

A wide range of approaches, including analytical, semi-analytical, matrix inver-

sion, and empirical techniques, have been used to retrieve CDOM values for fresh

and marine waters by satellite imagery. The most successful algorithms for marine

conditions (including coastal waters) involve semi-analytical matrix inversion

methods (e.g., [59–61]); but such approaches have been used only a few times for

freshwaters (e.g., [11, 62]). The most common retrieval methods for lakes are

empirical reflectance-ratio equations that involve nonlinear (power) equations.

For example, the equation of Kutser et al. [4] uses the ratio of Advanced Land

Imager (ALI) band 2 (525–605 nm) to band 3 (630–690 nm): a420¼ 5.13(ALI2/

ALI3)2.67. ALI bands 2 and 3 have approximately the same wavelength ranges as

Landsat TM and ETM+ bands 2 and 3 and Landsat 8 OLI bands 3 and 4. Menken

et al. [49] independently found a similar relationship using ground-based

hyperspectral reflectance data, a440¼ 146.4(R670/R550)
2.08, and Ficek et al. [63]

also used a similar equation.

Using in situ reflectance hyperspectra and associated water quality measure-

ments on ~30 Minnesota and Wisconsin lakes with wide ranges of CDOM, chloro-

phyll, and TSS, Brezonik et al. [29] recently found that the best band ratio models

used similar wavelengths for Landsat 8 bands. With the larger selection of Sentinel-

2 and Sentinel-3 bands, a different ratio using ~500 nm:~750 nm worked best.

Fig. 4 Reflectance spectra for a eutrophic stretch of the Mississippi River downstream of St. Paul,

Minnesota. Data redrawn from Brezonik et al. [29]

124 L.G. Olmanson et al.



Simulated Landsat 8, Sentinel-2, and Sentinel-3 bands calculated from the

hyperspectra yielded r2¼ 0.84–0.86 for a440. The broader Landsat 8 bands worked

nearly as well as the narrower Sentinel bands and hyperspectral bands, probably

because CDOM lacks specific peaks or troughs in absorbance or reflectance. These

r2 values generally are considered very good for remote sensing predictive equa-

tions. Nonetheless, the average for absolute values of percent difference between

measured and predicted CDOM across the four best predictive models was 31 %.

Although some of the differences can be attributed to sampling variability and

measurement uncertainty, the largest source likely is model error. Such large

uncertainties should serve as a cautionary note to limnologists and remote sensing

scientists.

The effectiveness of predictive equations based on longer wavelengths is coun-

terintuitive given that CDOM absorptivity increases quasi-exponentially with

decreasing wavelength and is increasingly diminished in the green and red regions.

Although the physical basis for the relationships is still uncertain, the higher band

(ALI3, OLI4) centered at 670 nm probably corrects for effects of chlorophyll on

reflectance, and the lower band (ALI2, OLI3) centered at ~560 nm probably

measures the influence of CDOM. It is important to realize that the small absor-

bance values measured in laboratory spectrophotometers involve much shorter light

paths (1–10 cm) than those of interest in lakes. For example, as noted earlier, a

CDOM level of a440¼ 20 m�1 implies a Secchi depth of ~1.5 m. Based on

UV-visible absorbance spectra we have measured on similar waters, such a sample

would have an absorbance (A) of ~0.022 at 560 nm in a 1 cm cell. Given that the

Beer-Lambert law applies, the value of A that would apply to a light path of 1.5 m

would be ~3.3, and converting to percent of incident light at 560 nm remaining at a

depth of 1.5 m yields a value of ~3 %. Light reflected back to the air-water interface

from the white surface of the Secchi disk again must travel 1.5 m through the

absorbing medium, and thus much less than 1 % of the incident light at 560 nm

arrives back at the water surface. Clearly, even small absorbance values measured

in the laboratory have large effects on reflectance when the long light paths of lake

water columns are considered.

Brezonik et al. [29] found a CDOM-dependent difference in slopes of reflectance

spectra in the range of ~570–650 nm. For low-CDOMwaters, reflectance decreased

with increasing wavelength, but for high-CDOM waters reflectance increased with

increasing wavelength. Even though CDOM absorbance is low in this range, it does

affect reflectance, as the calculation in the preceding paragraph demonstrated.

Other constituents that affect reflectance spectra (notably plant pigments) have

minimal effects in this wavelength region.

CDOM levels are much lower in marine waters than in freshwaters; absorptivity

at 412 nm, a412, generally is < 1 m�1 in coastal waters and < 0.1 m�1 in the open

ocean. In contrast, a440 values < ~2 m�1 in lakes generally are considered negli-

gible, although remote sensing scientists are starting to take interest in measuring

CDOM in low-CDOM lakes [29]. Values in lakes that are considered “humic

colored” commonly are in the range of ~5–20 m�1 and may range up to 40 m�1

or even more in highly colored bogs. Concentrations of TSS and chlorophyll also
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tend to be higher in freshwaters than in the oceans, and most freshwaters thus are

optically very complex. As noted earlier for chlorophyll, remote sensing methods

used for marine waters are not always applicable to freshwaters, and this situation

also applies to CDOM. For example, marine scientists interested in CDOM look

forward to using a band in the near UV (~380 nm) that will be available on a

forthcoming NASA sensor for ocean CDOM. Plant pigment absorbance decreases

greatly below ~400 nm, but CDOM absorbance continues to increase exponentially.

This band thus avoids interference between the absorbance of plant pigments and

CDOM that precludes using bands in the blue region for CDOM retrieval. Bands in

the near UV likely would not be useful for inland waters, however, because light

absorption by the typically higher levels of CDOM is so strong that there is

essentially no reflectance signal (all incoming light is absorbed).

Finally, one of the main reasons for measuring CDOM by ORS is the possibility

of using the values to estimate DOC in lakes at regional-to-global scales. As

discussed in Sect. 2.2.3, this is not straightforward because DOC-CDOM corre-

lations are not always high. Even when they are, a relationship that works well for

one set of lakes may not be the same for a different set of lakes. A further

complication in DOC-CDOM relationships is the recent finding that complexation

of DOM by dissolved iron enhances the color intensity of the organic substances

[64, 65]. Scientists interested in using CDOM to estimate DOC at regional-to-

global scales should recognize that DOC-CDOM relationships are site specific and

perhaps time specific [29]. Additional predictor variables likely will be needed to

develop more robust predictive relationships between CDOM and DOC. In addition

to a possible need to account for the iron content of the water, water residence time

would help account for photobleaching of CDOM [66], the CDOM spectral slope

(S) would help define the quality or structural nature of CDOM [67, 68], and

various climatic and landscape metrics [69, 70] may account for DOC loadings to

lakes.

3 Current and Upcoming Remote Sensing Systems

for Regional Water Quality Assessment

A large number of airborne and space-borne sensors are potentially available for

remote sensing of water resources (Table 1), but none is ideally suited for moni-

toring inland waters, especially regarding our primary interest for this chapter—

water quality assessments of all lakes (above some nominal size) at regional scales.

Systems that are expensive, need to be tasked to collect specific imagery, cover only

small areas, or have coarse spatial resolution may be suitable for special projects

but not for routine synoptic lake monitoring. Moreover, sensors with only a few

broad bands do not provide reflectance data useful for accurate retrieval of water

quality measures like chlorophyll across a broad range of water quality conditions,

i.e., for optically complex inland waters. Characteristics of systems suitable for

regional aquatic assessments include spatial resolution appropriate for lakes > 4 ha

(i.e., spatial resolution or pixel size of 5–50 m2), regular collection of imagery

126 L.G. Olmanson et al.



T
a
b
le

1
P
o
te
n
ti
al

sp
ac
e-
b
o
rn
e
se
n
so
rs

fo
r
re
m
o
te

se
n
si
n
g
o
f
w
at
er

re
so
u
rc
es

R
es
o
lu
ti
o
n

S
at
el
li
te
/

se
n
so
r

P
er
io
d
o
f

o
p
er
at
io
n

S
p
at
ia
l

(m
)

S
p
ec
tr
al

(n
o
.
b
an
d
s)
(V

is
/R
E
/

N
IR
/S
W
IR
/T
IR
)a
(n
o
.)

R
ad
io
m
et
ri
c

(b
it
s)

T
em

p
o
ra
l

(d
ay
s)

S
w
at
h

w
id
th

(k
m
)

Im
ag
e

co
st
($
)

L
im

it
at
io
n
s

L
a
nd

sa
t
cl
a
ss

L
an
d
sa
t
5

1
9
8
4
–
2
0
1
2

3
0
/1
2
0

3
/0
/1
/2
/1

(7
)

8
1
6

1
8
0

F
re
e

S
p
ec
tr
al
,
te
m
p
o
ra
l

L
an
d
sa
t
7

1
9
9
9
–
p
re
se
n
t

3
0
/6
0

3
/0
/1
/2
/1

(7
)

8
1
6

1
8
0

F
re
e

S
p
ec
tr
al
,
te
m
p
o
ra
l

L
an
d
sa
t
8

2
0
1
3
–
p
re
se
n
t

3
0
/1
0
0

4
/0
/1
/2
/2

(1
0
)

1
2

1
6

1
8
0

F
re
e

S
p
ec
tr
al
,
te
m
p
o
ra
l

S
p
o
t-
5

2
0
0
2
–
p
re
se
n
t

1
0
/2
0

3
/0
/1
/0
/0

(4
)

8
2
6
n
ad
ir
,

2
–
3

6
0

$
S
p
ec
tr
al
,
co
st

S
p
o
t-
6

2
0
1
2
–
p
re
se
n
t

6
3
/0
/1
/0
/0

(4
)

1
2

2
6
n
ad
ir
,
2

6
0

$$
S
p
ec
tr
al
,
co
st

S
p
o
t-
7

2
0
1
4
–
p
re
se
n
t

6
3
/0
/1
/0
/0

(4
)

1
2

2
6
n
ad
ir
,
2

6
0

$$
S
p
ec
tr
al
,
co
st

R
ap
id
E
y
e

2
0
0
8
–
p
re
se
n
t

5
3
/1
/1
/0
/0

(5
)

1
2

5
.5

n
ad
ir
,
1

7
7

$
S
p
ec
tr
al
,
co
st

H
ig
h
re
so
lu
ti
o
n

IK
O
N
O
S

1
9
9
9
–
p
re
se
n
t

3
.2

3
/0
/1
/0
/0

(4
)

1
1

3
.5

1
1
.3

$$
S
p
ec
tr
al
,
co
st

Q
u
ic
k
B
ir
d

2
0
0
1
–
p
re
se
n
t

2
.4
4

3
/0
/1
/0
/0

(4
)

1
1

3
1
6
.5

$$
S
p
ec
tr
al
,
co
st

G
eo
E
y
e-
1

2
0
0
8
–
p
re
se
n
t

1
.6
5

3
/0
/1
/0
/0

(4
)

1
1

2
6
n
ad
ir
,

4
–
5

1
5
.2

$$
S
p
ec
tr
al
,
co
st

W
o
rl
d
V
ie
w
-2

2
0
0
9
–
p
re
se
n
t

1
.8
5

5
/1
/2
/0
/0

(8
)

1
1

1
.1

o
ff

n
ad
ir

1
6
.4

$$
$

C
o
st
,
sw

at
h

W
o
rl
d
V
ie
w
-3

2
0
1
4
–
p
re
se
n
t

1
.2
4
/

3
.7
/3
0

9
/1
/5
/1
3
/0

(2
8
)

1
1

4
.5

o
ff

n
ad
ir

6
6

(5
st
ri
p
s)

$$
$$

C
o
st

(c
o
n
ti
n
u
ed
)

Remote Sensing for Regional Lake Water Quality Assessment: Capabilities and. . . 127



T
a
b
le

1
(c
o
n
ti
n
u
ed
)

R
es
o
lu
ti
o
n

S
at
el
li
te
/

se
n
so
r

P
er
io
d
o
f

o
p
er
at
io
n

S
p
at
ia
l

(m
)

S
p
ec
tr
al

(n
o
.
b
an
d
s)
(V

is
/R
E
/

N
IR
/S
W
IR
/T
IR
)a
(n
o
.)

R
ad
io
m
et
ri
c

(b
it
s)

T
em

p
o
ra
l

(d
ay
s)

S
w
at
h

w
id
th

(k
m
)

Im
ag
e

co
st
($
)

L
im

it
at
io
n
s

O
ce
an

og
ra
p
hi
c

C
Z
C
S

1
9
7
8
–
1
9
8
6

8
2
5

4
/0
/1
/1
/0

(6
)

8
V
ar
ie
s

1
,5
6
6

F
re
e

S
p
at
ia
l,
sp
ec
tr
al

S
ea
W
iF
S

1
9
9
7
–
2
0
1
0

1
,1
0
0

6
/0
/1
/1
/0

(8
)

1
0

1
2
,8
0
1

F
re
e

S
p
at
ia
l,
sp
ec
tr
al

M
O
D
IS

T
er
ra

1
9
9
9
–
p
re
se
n
t

2
5
0
/

5
0
0
/

1
k
m

1
0
/0
/6
/1
4
/6

(3
6
)

1
2

1
2
,3
3
0

F
re
e

S
p
at
ia
l,
sp
ec
tr
al

M
O
D
IS

A
q
u
a

2
0
0
2
–
p
re
se
n
t

2
5
0
/

5
0
0
/

1
k
m

1
0
/0
/6
/1
4
/6

(3
6
)

1
2

1
2
,3
3
0

F
re
e

S
p
at
ia
l,
sp
ec
tr
al

H
yp
er
sp
ec
tr
al

H
IC
O

2
0
0
9
–
p
re
se
n
t

~
9
0

5
2
/2
/3
3
/0
/0

(8
7
)

1
2

V
ar
ie
s

4
2
�
1
9
2

F
re
e

E
x
p
er
im

en
ta
l,

li
m
it
ed

im
ag
es

H
y
p
er
io
n

2
0
0
0
–
p
re
se
n
t

3
0

3
4
/2
/4
3
/1
6
3
/0

(2
2
0
)

1
2

V
ar
ie
s

7
.5
�
1
0
0

F
re
e

E
x
p
er
im

en
ta
l,

li
m
it
ed

im
ag
es

A
pp

ro
a
ch
in
g
id
ea
l

M
E
R
IS

2
0
0
2
–
2
0
1
2

3
0
0

8
/1
/6
/0
/0

(1
5
)

1
2

3
1
,2
0
0

F
re
e

S
p
at
ia
l,
n
o
S
W
IR

fo
r
at
m

co
rr

S
en
ti
n
el
-2

P
la
n
n
ed

2
0
1
5

1
2
/2
0
/

6
0

4
/1
/5
/3
/0

(1
3
)

1
2

5
2
9
0

F
re
e

S
p
ec
tr
al

b
u
t
h
as

re
d
ed
g
e

S
en
ti
n
el
-3

(O
L
C
I)

P
la
n
n
ed

2
0
1
5

3
0
0

1
0
/1
/1
0
/0
/0

(2
1
)

1
2

2
.8

1
,2
6
9

F
re
e

S
p
at
ia
l

T
h
is
is
n
o
t
an

ex
h
au
st
iv
e
li
st
o
f
sa
te
ll
it
e
se
n
so
rs

th
at

p
ro
v
id
e
m
o
n
it
o
ri
n
g
ca
p
ab
il
it
ie
s
fo
r
aq
u
at
ic

re
so
u
rc
es

b
u
t
in
cl
u
d
es

th
e
o
n
es

th
at

h
av
e
b
ee
n
u
se
d
m
o
st

w
id
el
y
o
r
sh
o
w
th
e
g
re
at
es
t
p
ro
m
is
e
fo
r
fu
tu
re

u
se

a
V
is
v
is
ib
le
,
R
E
re
d
ed
g
e,
N
IR

n
ea
r
in
fr
ar
ed
,
S
W
IR

sh
o
rt
w
av
e
in
fr
ar
ed
,
T
IR

th
er
m
al

in
fr
ar
ed

128 L.G. Olmanson et al.



(preferably at least weekly but every 2–3 days is better), appropriate spectral bands

(discussed further below), and images that are inexpensive or available for free. As

Table 1 indicates, all current sensors fail to meet one or more of these criteria. The

Medium Resolution Imaging Spectrometer (MERIS) sensor on the European satel-

lite Envisat came closest to meeting the above criteria, but it has not been ope-

rational since 2012, and its pixel size (300 m2) limited it to moderately large lakes

(> 150 ha [~370 ac]). For Minnesota, its spatial resolution provided measurements

for only ~8 % of the state’s lakes [1].
This situation leaves Landsat and related satellites (Table 1) as the current

“default systems” for inland lake monitoring by ORS. The Landsat series was

designed primarily for land features and has been hugely important for land

use/land cover analyses, vegetation condition, and agricultural applications, but

Landsat sensors also have been used for over 30 years to estimate some water

quality variables on inland lakes [71–76]. The biggest drawback of the Landsat

sensors, aside from low temporal resolution (repeat coverage every 16 days), is

their limited and coarse spectral resolution (only 3–4 bands in the visible range

(e.g., for Landsat 5 and 7: band 1, 450–520 nm; band 2, 520–600 nm; band 3, 630–

690 nm; Landsat 8 added a new band 1, 430–450 nm, and slightly narrowed the

ranges for the earlier three bands, which now are designated band 2 through band

4). As described in Sect. 2.2.5, this may hinder the accurate retrieval of data on

important variables like chlorophyll in waters with complex optical properties and

also limits the types of algorithms applicable to Landsat data.

A class of multispectral sensors with high spatial resolution (Table 1) could be

used for more locally based regions, such as city-scale projects. This imagery can

be fairly expensive, but for important areas and projects, it has the advantage of

being able to monitor smaller water bodies than Landsat can. For example, Sawaya

et al. [21] found that IKONOS imagery worked as well as Landsat for water clarity

(SD) assessment, and a single image was able to assess the clarity of 236 lakes and

ponds as small as 0.08 ha in the City of Eagan, Minnesota. In contrast, Landsat

imagery was able to assess only 48 of the water bodies (minimum size of 1.5 ha).

The spatial resolution of IKONOS and QuickBird images has made them parti-

cularly useful for aquatic plant surveys [21, 22]. Several high-resolution systems

are now operational (Table 1), but WorldView-2 and WorldView-3 with 8 and

28 spectral bands, respectively, may be particularly useful for water quality

assessments.

Launched in February 2013 with a new Operational Land Imager (OLI) sensor,

Landsat 8 has several improvements over the Thematic Mapper (TM) and

Enhanced Thematic Mapper (ETM+) instruments on previous Landsat satellites.

The OLI sensor has improved signal-to-noise ratio, radiometric resolution (12-bit

vs. 8-bit for Landsat 5 and 7), and two new spectral bands—a shorter wavelength

blue band (see above) and a shortwave infrared band positioned to detect cirrus

clouds. These advancements should improve the ability to map variables like water

clarity and CDOM but may not improve the discrimination of chlorophyll from

SSmin. Landsat 7 launched in 1999 continues to collect imagery and can be used for

water clarity assessments.

US government agencies have made significant investments in systems like the

Coastal Zone Color Scanner (CZCS), Sea-viewing Wide Field-of-view Sensor
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(SeaWiFS), and MODIS, to monitor oceans and coastal areas. Each sensor yielded

advances in sensor technology, and as noted earlier, they provide useful infor-

mation on chlorophyll and other optically related variables using analytical and

semi-analytical algorithms. Their spatial resolutions, however, are suitable only for

large lakes (> 900, 1,100, and 400 ha, respectively). MODIS has been used

effectively for water quality studies on some of the Laurentian Great Lakes [77,

78]. Another important problem regarding inland lake applications of these sensors

is that their spectral bands were designed for marine waters. They lack a critically

important red-edge band needed for most inland water studies.

The next advancement for remote sensing of regional water quality of lakes will

come from the European Space Agency (ESA) Sentinel-2 satellites, which at the time

of this writing are scheduled for launch in April 2015 (Sentinel-2A) and approximately

one year later for Sentinel-2B. Although these satellites were designed primarily for

land observations, their improved spatial resolution (10, 20, and 60 m), spectral bands

(narrower green and red, red edge, and 3 NIR bands), and temporal coverage (every

3–5 days) will greatly enhance the capabilities to assess optically related water quality

characteristics (e.g., chlorophyll, CDOM, SSmin) in inland lakes. Landsat 8 and

Sentinel-2 have specific SWIR bands selected for atmospheric corrections and cloud

screening that will greatly enhance their use for routine monitoring.

An example of water quality maps for chlorophyll a and CDOM created from

Sentinel-2 bands is shown in Fig. 5 for the SLRE. In this case, the band information

Fig. 5 CDOM and chlorophyll a maps for the St. Louis River Estuary at west end of Lake

Superior created from an Aug. 31, 2013, HICO image using simulated Sentinel-2 bands. Spectral

characteristics of Sentinel-2 sensor allow discrimination of phytoplankton from SSmin in optically

complex waters. The SSmin dominated waters of Pokegama Creek and Allouez Bay are classified

correctly as having low chlorophyll a and high CDOM. Models were developed using data from

the St. Louis River Estuary and Lake Superior. Background imagery: Aug 31, 2013, Landsat

8 image
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was simulated from imagery obtained by the Hyperspectral Imager for the Coastal

Ocean (HICO) on the International Space Station. The spectral characteristics of the

simulated Sentinel-2 imagery allowed for accurate measurements of chlorophyll in

optically complex waters in contrast to the limitations encountered with Landsat

8 bands (Fig. 3; see Sect. 2.2.5) which misrepresented SSmin as chlorophyll a.

3.1 Empirical and Semi-analytical Approaches
to Lake Water Quality Assessment

The algorithms used to retrieve water quality data for inland waters from satellite

imagery are empirical to semi-analytical. Empirical algorithms statistically model

relationships between measured water quality variables and spectral bands and/or

combinations of spectral bands. Strictly empirical algorithms require no under-

standing of the physics required to model atmospheric and underwater optical

properties. Thus, they are relatively simple to perform and are well represented in

the literature. This approach is also where many have “oversold” what can be

sensed with remote sensing (i.e., when imagery is used for measurements of vari-

ables that have no optical properties, such as phosphorus, DOC, or bacteria [23, 24,

79, 80]).

A better approach involves semi-empirical methods, which use bands that are

selected based on knowledge of how optically active parameters affect reflectance

in various spectral bands. Once such models are identified, they can be applied and

used for routine monitoring, as has been done for water clarity assessments of over

20,000 lakes in Minnesota [32], Wisconsin [81], and Michigan [82, 83]. These

assessments used field data within a few days of the Landsat image acquisition to

calibrate models using the ratio of the Landsat TM1/TM3 bands plus band TM1 as

predictor variables. Matthews [35] recently provided a thorough review of the

literature on empirical and semi-empirical methods using ORS to measure inland

water quality, and that paper should be accessed for further details.

Theoretically, once systemic and atmospheric correction is accurately applied to

imagery allowing for a true water-leaving reflectance product, universal algorithms

could be developed for specific sensors and water quality variables, which would

reduce the need for contemporaneous field data. Unfortunately, accurate atmo-

spheric correction for inland water quality is difficult on a regional basis and

needs further development to be operational [1, 84].

Analytical methods are theoretically derived and use complex approaches such

as radiative transfer or bio-optical modeling, and semi-analytical methods use

analytical techniques that are empirically parameterized with in situ data. Semi-

analytical methods to estimate water quality variables are thought by some to be the

pathway to global water quality products using ORS [84]. However, many chal-

lenges remain with parameterization of the algorithms, and at present there are no

successful validated regional assessments using semi-analytical methods in the
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literature. Semi-analytical methods are typically region specific and applied to one

lake or a few lakes. They require ground-based measurements of the IOPs of each

lake for proper model calibration. More recent “adaptable” inversion algorithms

[59, 85] are more robust and have the potential to be able to be applied for regional

assessments of hundreds to thousands of lakes [84].

4 Regional Lake Water Quality Assessment: Case Studies

4.1 Water Quality of Inland Lakes

Early studies using Landsat imagery for water quality assessment were largely

exploratory and involved only one or a few lakes [71–76]. An exception is the work

of Martin et al. [86], who used semiautomated procedures to assess the trophic

status of around 3,000 lakes in Wisconsin using Landsat Multispectral Scanner

(MSS) imagery. The first regional assessment using Landsat TM imagery was

completed in the Twin Cities Metropolitan Area (Minnesota, USA) on the water

clarity of over 500 lakes [87]. Kloiber et al. [31, 88] followed with a temporal

assessment and statistical analysis of SD in those same lakes for the 1973 to 1998

period. A decrease in imagery costs corresponding with the launch of Landsat 7 in

April 1999, and the establishment of a NASA-funded Upper Midwest Regional

Earth Science Applications Center (RESAC) also in 1999, allowed for statewide

SD assessments for Minnesota, Wisconsin, and Michigan by the University of

Minnesota, University of Wisconsin-Madison, and Michigan State University.

After RESAC funding ended in 2003, Olmanson et al. [32] continued the remote

sensing for SD in Minnesota over eight periods from 1975 to 2008. A statistical

analysis of the spatial and temporal trends was recently published [89] (see

Sect. 4.2). Minnesota lake water clarity data can be accessed in the Lake

Browser [90].

The Wisconsin Department of Natural Resources also continued statewide

Landsat water clarity assessments on approximately 8,000 Wisconsin lakes annu-

ally [81]. All available clear late summer images are being processed for water

clarity assessment on an interannual basis (S. Greb, Wisconsin Department of

Natural Resources, personal communication, 2014). Wisconsin lake water clarity

data can be accessed in the Lakes and AIS Mapping Tool [91].

Since the original water clarity assessment of Michigan lakes in 2002 [82], the

United States Geological Survey (USGS) has continued statewide water clarity

assessments for ~3,000 lakes. The 2003–2005 and 2007–2008 assessments were

documented by Fuller et al. [83]. Since then, the USGS has conducted annual

assessments of water clarity in Michigan with 2009–2010 and 2011 completed

and 2013–2014 and 2000 assessments underway. Michigan water clarity data can

be accessed in the Michigan Lake Water Clarity Interactive Map Viewer [92].
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In Maine, McCullough et al. [93] combined watershed characteristics with

Landsat data to assess the water clarity of ~1,500 lakes. This approach was also

used to investigate temporal trends in water clarity [94], which found that water

clarity declined in Maine’s lakes during the 1995–2010 period.

4.1.1 Remote Sensing of Great Lakes Water Clarity

The Great Lakes are a good example of water resources for which remote sensing

has been used to compensate for the paucity of in situ data. Binding et al. [95]

showed the advantage of remote sensing over ground-based monitoring with

substantial increase in spatial and temporal coverage. Results using CZCS for the

1979–1985 period and the SeaWiFS for the 1998–2006 period showed seasonal and

interannual variability in SD due to phytoplankton blooms, resuspension of bottom

sediments, and whiting events. The satellite observations document how long-term

impacts can be monitored. The findings indicate that the reduction of nutrient

loading and particulate removal by the introduction of zebra mussels through filter

feeding significantly changed water clarity for Lake Erie and Lake Ontario. For

Lake Erie, SD increased in the eastern basin but decreased in the western basin. SD

in Lake Ontario more than doubled to> 4 m after the introduction of zebra mussels.

The study also indicated a reduction in the frequency and intensity of whiting

events due to the effects of calcium uptake by increased mussel populations.

4.2 Geospatial and Temporal Analysis of Minnesota’s
10,000 Lakes

Landsat imagery provides a reliable method to obtain comprehensive spatial and

temporal coverage of an important water quality variable, water clarity. Traditional

ground-based monitoring programs generally target larger recreational lakes and

thus are not randomly selected. Using such data to extrapolate to the larger

population could lead to biased conclusions [89]. Fortunately, the use of such

data to calibrate Landsat imagery for regional assessments allows for the entire

population to be studied.

In Minnesota the water clarity database for more than 10,500 lakes for time

periods centered around 1985, 1990, 1995, 2000, and 2005 was analyzed statisti-

cally for spatial distributions, temporal trends, and relationships with morphometric

and watershed factors that potentially affect lake clarity [89]. The analysis found

that water clarity is lower in southern and southwestern Minnesota and clearer in

the northern and northeastern portions of the state. Temporal trends were detected

in ~11 % of the lakes with 4.6 % having improving clarity and 6.2 % decreasing

clarity. Small and shallow lakes appeared to be more susceptible to decreasing

clarity trends than large and deep lakes. Deep lakes generally had higher clarity
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than shallow lakes overall and when grouped by watershed land cover percentages.

Lakes in agriculturally dominated ecoregions in southern and western Minnesota

were more susceptible to decreasing clarity than the rest of the state. Statewide

water clarity remained stable from 1985 to 2005 but decreased in ecoregions where

agricultural is the main land use. Water clarity decreased as agriculture and/or

urban percentages increased and forested land was associated with higher water

clarity.

5 Conclusions

ORS using satellite imagery can be used to measure water quality of inland, marine,

and coastal waters. ORS in marine waters is well established with a large invest-

ment in several generations of increasingly sophisticated satellite sensors acquiring

images with large pixel sizes that are ideal for oceanic and most coastal studies but

are too coarse for most inland water bodies. With these systems sophisticated

analytical and semi-analytical algorithms have been developed that retrieve chloro-

phyll levels from the oceans on a routine, global-scale basis.

Remote sensing scientists focusing on inland waters have had to rely on other

satellites like Landsat, which have adequate spatial resolution but critical deficien-

cies in spectral and temporal resolution. The spectral bands used to retrieve

chlorophyll levels from oceanic waters do not work in optically complex inland

waters. These deficiencies have limited development of retrieval algorithms for

inland water quality variables by satellite imagery mostly to empirical and semi-

empirical approaches.

Therefore, use of remote sensing for regional inland water quality has progressed

slowly since the launch of the first Landsat satellite in 1972. Although there have

been many successful regional water quality assessments, these have largely been

limited to water clarity due to the available spectral bands and/or to only very large

lakes (due to the large pixel size of sensors designed to study the oceans). Landsat

8 (launched in 2013) has some significant improvements over its predecessors, but

its spectral and temporal characteristics remain largely unchanged, except for a

shorter wavelength blue band. The next big advancement for remote sensing of

regional water quality of lakes will come from the ESA Sentinel-2 and Sentinel-3

satellites. Improvements in spectral and temporal characteristics of these satellites

will allow for better characterization of chlorophyll, CDOM, and SSmin in optically

complex waters.

For effective lake management, it is essential to have long-term water quality

information on a synoptic scale. Combining Landsat and Sentinel satellite imagery

will greatly improve the ability to acquire imagery when needed and should

significantly improve the utility and usefulness of ORS for water resource man-

agers. Landsat 8 and Sentinel-2 imagery can be used for the assessment of all lakes,

and Sentinel-3 can be used for large lakes more often with its higher temporal

resolution. Once reliable water quality products can be produced in a timely fashion
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on a regional basis, their adoption and use by resource managers should increase

significantly. The increased use of remote sensing will greatly improve the man-

agement of our water resources and should ultimately lead to better remote sensing

systems for monitoring these important natural resources.
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