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Abstract A central topic in Natural Language Processing (NLP) is the design of
effective linguistic processors suitable for the target applications. Within this sce-
nario, Convolution Kernels provide a powerful method to directly apply Machine
Learning algorithms to complex structures representing linguistic information. The
main topic of this work is the definition of the semantically Smoothed Partial Tree
Kernel (SPTK), a generalized formulation of one of themost performant Convolution
Kernels, i.e. the TreeKernel (TK), by extending the similarity between tree structures
with node similarities. The main characteristic of SPTK is its ability to measure the
similarity between syntactic tree structures, which are partially similar and whose
nodes can differ but are nevertheless semantically related. One of the most impor-
tant outcomes is that SPTK allows for embedding external lexical information in the
kernel function only through a similarity function among lexical nodes. The SPTK
has been evaluated in three complex automatic Semantic Processing tasks: Question
Classification in Question Answering, Verb Classification and Semantic Role Label-
ing. Although these tasks address different problems, state-of-the-art results have
been achieved in every evaluation.
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1 Introduction

Most human knowledge is represented and expressed using language and modern
systems in Information Technology need to access the huge amount of information
that is stored and constantly produced in the Web. This source of information can be
represented in structured form, e.g. stored inside Databases or Data Warehouses, but
the vast majority is still produced in an unstructured form, e.g. documents written in
natural language. In such a scenario which is also recurrent in real time marketing,
semantic web-search, security or exploratory data analysis, the proper application of
Natural Language Processing (NLP) techniques allows for more sophisticated access
to information, hence providing more natural human-machine interfaces. Tradition-
ally, Information Retrieval (IR) has dealt with representation, storage, organization
of, and access to information items, e.g. documents, as described in [1]. However,
given the rapid growth of the Web, although people can browse and generate lin-
guistic contents, they still do not provide any effective enrichment of the produced
information, e.g. a description of the linguistic content that can be exploited by
search engines. The open research questions are: How to exploit this huge source
of information? How do we interpret this large amount of textual data? Information
Retrieval faces nowadays contemporary challenges such as Question Answering
(QA) [2] or Sentiment Analysis (SA) [3]: in such tasks, complex and fine-grained
linguistic information are involved and a principled model of both linguistic content
and background knowledge is needed.

In this scenario, the main goal of Computational Natural Language Learning is
to acquire knowledge and models needed to turn texts into meaningful structures
(i.e. interpretations). The application of such models provides language learning
systems, as largely described in [4, 5]. These allow for generalizing linguistic obser-
vations into rules and patterns as statistical models of higher level semantic infer-
ences. Statistical learning methods make the assumption that lexical or grammatical
observations are useful hints for modeling different semantic inferences, such as in
document topical classification, predicate and role recognition in sentences as well
as in question classification in Question Answering. Lexical features here include
lemmas, multi-word expressions or Named Entities that can be directly observed in
the texts. Features are then generalized into predictive components in the final model,
induced from the training examples. A proper model of the linguistic observation
is needed as a computational representation. A manual feature encoding, where an
expert emphasizes the informative properties with respect to the target problem,
represents one solution. This activity produces an artificial representation of the lin-
guistic observations which can be employed by a learning system. One important
drawback of such process is the cost of the definition of the proper features for a
novel task. Even if the learning algorithm can select the most informative ones, they
still need to be defined. Moreover, this activity is very tied to the target applica-
tion and cannot be easily reused for different tasks. The support for the fast design
of accurate automatic systems requires to implicitly derive this information from
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the data distribution itself for an automatic engineering of syntactic and semantic
properties.

Kernel methods, discussed in [6], have been employed in NLP, as in [7], in order
to provide a statistical model able to decouple the problem representation and learn-
ing algorithm, still satisfying the above requirements. A kernel function [8], allows
us to express the similarity between two objects, that are explanatory of the tar-
get problem, without defining their explicit representation and, most importantly,
it can be used along with kernel-based learning algorithms, e.g. Support Vector
Machines, that represent the state-of-the-art machine learning algorithms applied to
NLP tasks. Themain idea is that the algorithmcan effectively learn the target phenom-
enon by focusing on the notion of similarity among observations, instead of their
representations. A linguistic phenomenon can nevertheless be modeled at a more
abstract level making the modeling process easier. For example, which represen-
tation would be employed to learn the difference between a correct and incor-
rect syntactic parse tree? By using the parse tree itself, the learner would focus
only on the properties useful for the sake of making a decision. This idea is
expanded in Tree Kernels, introduced by [7], that allow to model similarity between-
training examples as a function of the shared syntactic information, in terms of shared
syntactic tree fragments, in the corresponding parses.

In this work, we provide the definition of a semantically Smoothed Partial Tree
Kernel (SPTK) that augments the existing Tree Kernel formulations with node simi-
larity and allows to design effective language learning systems. The underlying idea
is to provide a similarity score among lexical nodes depending on the semantic simi-
larity between their labels. SPTK can therefore automatically provide the learning
algorithm with a huge set of generalized structural patterns by simply applying the
kernel function to the structural representation of the target task instances.Within this
scenario, a meaningful similarity measure is thus crucial; in fact the lack of proper
lexical generalization is often quoted to bear the main responsibility for significant
performance drops in out-of-domain semantic processing tasks, e.g. Semantic Role
Labeling, as discussed in [9]. Moreover, due to the expensiveness of developing
large scale lexical Knowledge Bases, corpus driven methods will be used to acquire
meaning generalizations in an unsupervised fashion, as suggested in [10–12]. A
distributional paradigmwill enable the extension of the SPTK through the adoption of
vector basedmodels of lexical meaning. A large-scale corpus is statistically analyzed
and a geometrical space (the Word Space discussed in [11]) is defined: here words
are modeled as vectors whose dimensions reflect the words co-occurrence statistics
over texts, and the similarity (or distance) among vectors models a notion of semantic
similarity between the corresponding words.

A large-scale empirical evaluation of SPTKwill be discussed to assess its applica-
bility and robustness. The same kernel will be thus applied to different complex
semantic tasks: the Question Classification task in a Question Answering setting
[13], which represents a sentence classification task; the Verb Classification task
[14], which is a fundamental topic of computational linguistics research given its
importance in understanding the role of verbs in conveying semantics of natural
language; the FrameNet based Semantic Role Labeling task, which represents a
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complex semantic annotation task [15]. In such tasks, the proposed model will not
rely on manual feature engineering for linguistic phenomena: the employed dis-
criminative learning algorithm, i.e. Support Vector Machines, will select the most
informative features for the target problem without any explicit definition. Fur-
thermore, the lexical information provided by the proposed distributional perspec-
tive will be investigated and compared with information obtained from hand-built
dictionaries.

In the rest of the paper, Sect. 2 discusses limits of traditional Tree Kernel functions
and introduces Distributional Models of Lexical Semantics. Section3 defines the
Smoothed Partial Tree Kernel. Section4 provides the experimental evaluation.
Finally, conclusions are derived in Sect. 5.

2 Tree Kernels and Distributional Models
of Lexical Semantics

In order to better understand Tree Kernels and discuss their intrinsic limits, let us
describe a task where these kernels have been successfully applied, i.e. Semantic
Role Labeling (SRL), as proposed in [15, 16]. Since late 70s, frame semantics [17]
has been proposed as amodel of real world situations or events: a linguistic predicate,
called frame, is evoked in a sentence through the occurrence of specific lexical units,
i.e. words (e.g. nouns or verbs) that linguistically express the intended situation.
A frame characterizes the set of prototypical semantic roles that describe the partic-
ipants in the event for all lexical units. SRL is thus the task of automatic recognition
of individual predicates together with their main roles, as they are semantically and
grammatically realized in input sentences. For example, the following two sentences
evoke theStatement frame, i.e. the situation of communicating the act of a Speaker
or a Medium to address a Message to some Addressee using language:

[President Kennedy]Speaker said [to an astronaut]Addressee[“Man is still

the most extraordinary computer of all.”]Message (1)

[The report]Medium stated [that some problems needed to be solved.]Message (2)

The frame is evoked through the lexical units say and state, and the considered roles
are Speaker,Medium andMessage. SRL is crucial to support reliable and accurate
analysis of unstructured text, in order to enrich it with semantic meta-data and other
kinds of information which is implicit in texts.

SRL has been a popular task since the availability of the PropBank [18] and
FrameNet [19] annotated corpora and the successful CoNLL evaluation campaigns
[20]. In SRL, the role of grammatical information has been outlined since the sem-
inal work by [16], where syntactic parse trees are shown to relate a predicate word
to its arguments. State-of-the-art approaches to SRL are based on Support Vector
Machines, trained over manually built representations derived from syntactic parse
trees (e.g. [9, 21]). As discussed in [22, 23], syntactic information of annotated



Semantic Tree Kernels for Statistical Natural Language Learning 97

examples can be effectively generalized in SRL through the adoption of tree kernel-
based learning, without relying on manual feature engineering: as tree kernels model
similarity between two training examples as a function of their shared tree fragments,
discriminative information is automatically selected by the learning algorithm, e.g.,
Support Vector Machines.

However, when the availability of training data is limited, the information derived
from structural patterns may be not sufficient to discriminate examples. In fact, one
important limitation of Tree Kernels is that only string matching between node labels
is applied when estimating the number of common substructures. Consequently, this
entails a poor lexical generalization. Let us consider the example in sentences 1 and 2.
Two phrases like “President Kennedy said…” and “The report stated…” both evoke
the Judgment_communication frame, but the two logical subjects represent two
different roles:President Kennedy represents a human being, then associatedwith the
Speaker role, while report is a means of communication, therefore associated with
the Mean role. When a kernel function is applied between the above phrases and
“The mail says…”, the word mail differs both from president and report, therefore it
does not provide any contribution to the overall similarity estimation. Nevertheless,
it should be considered that mail and report are semantically related in the inductive
inference process, in order to associate the Mean role with the above text. On the
contrary, the resulting learning algorithm should be providedwith all exampleswhere
the subject of a verb like say is ameans of communication in order to learn differences
between the Speaker and Mean roles. Problems thus arise when the availability of
training data is scant: lexical information should be properly generalized to obtain
more informative structural patterns.

A significant research has been done on the study of Distributional Models of
lexical semantics to automatically acquire meaningful word generalizations: these
models follow the distributional hypothesis [24] and characterize lexical meanings
in terms of context of use [25]. By inducing geometrical notions of vectors and
norms through corpus analysis, they provide a topological definition of semantic
similarity, i.e., distance in a space. They can capture the similarity between words
such as report and mail. In supervised language learning, when few examples are
available, DMs support cost-effective lexical generalizations, often outperforming
knowledge based resources (such as WordNet, as in [26]). Obviously, the choice of
the context type determines the type of targeted semantic properties. Wider contexts
(e.g., entire documents) are shown to suggest topical relations. Smaller contexts tend
to capture more specific semantic aspects, e.g. the syntactic behavior, and better
capture paradigmatic relations, such as synonymy. In particular, word space models,
as described in [11], define contexts as the words appearing in a n-sized window,
centered around a targetword.Co-occurrence counts are thus collected in awords-by-
words matrix, where each element records the number of times two words co-occur
within a single window of word tokens. Moreover, robust weighting schemas are
used to smooth counts against too frequent co-occurrence pairs: Pointwise Mutual
Information (PMI) scores [27] are commonly adopted. In such statistical paradigm,
robust representations can be obtained through intelligent dimensionality reduction
methods. According the Latent Semantic Analysis (LSA) technique [28], the original
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word-by-word matrix M can be decomposed through Singular Value Decomposition
(SVD) [29] into the product of three new matrices: U, S, and V so that S is diagonal
and M = USVT . M is then approximated by Mk = UkSkVT

k , where only the first k
columns of U and V are used, corresponding to the first k greatest singular values.
This approximation supplies away to project a generic termwi into the k-dimensional
space using W = UkS1/2

k , where each row corresponds to the representation vector
wi. The original statistical information aboutM is captured by the new k-dimensional
space, which preserves the global structure while removing low-variant dimensions,
i.e., distribution noise. Given two words w1 and w2, the term similarity function σ
is estimated as the cosine similarity between the corresponding projections w1,w2
in the LSA space, i.e. σ(w1, w2) = w1·w2‖w1‖‖w2‖ . This is known as Latent Semantic
Kernel (LSK), proposed in [30], as it defines a positive semi-definite Gram matrix
G = σ(w1, w2) ∀w1, w2 [8]. σ is thus a valid kernel and can be combined with other
kernels, as discussed in the next session.

3 Semantically Smoothed Partial Tree Kernel

Themain drawback of pure lexical information is due to its non-compositional nature
as the grammatical structure of the sentences is ignored and it is not designed to
compute the meanings of phrases. As already addressed in recent works, e.g. [31],
the definition of methods able to express the meaning of phrases or sentences as
composition operations over geometric representations is a complex problem, and
a still largely open issue. Some studies, e.g. [32–36], propose classes of algebraic
operators (e.g. tensor products) as effective combination of lexical information. Their
focus is to explicitly combine vectors representingwords in a phrase in order to obtain
a new vector representing the semantics of the entire phrase. These works propose
algebraic models of words composition with constraints imposed by the targeted
phrase structure. However, these models still work on simple syntactic structures,
e.g. they provide a composition between two or three words, although they lack the
proper expressivity to be employed in complex tasks.

In this work a different approach is pursued based upon to the idea of convolution
kernels: rather than providing an explicit representation of the sentence semantics
in terms of word composition, a method is instead defined to estimate the similar-
ity between sentences, embedding this lexical information directly in the similarity
function. In this perspective, one interesting approach, proposed in [37], encoded
lexical similarity in tree kernels. The model is essentially the Syntactic Tree Kernel
(STK), defined in [7], in which syntactic fragments from constituency trees can be
matched even if they differ in the leaf nodes (i.e., they are constituted by related
words with different surface forms). This kernel has been named Semantic Syntactic
Tree Kernel (SSTK) and its computation is recursively carried out by the following
ΔSSTK function:

• if n1 and n2 are not pre-terminals and the productions at n1 and n2 are different then
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Fig. 1 Examples of syntactic parse trees

ΔSSTK (n1, n2) = 0

• if n1 and n2 are pre-terminals and label(n1) = label(n2) then

ΔSSTK (n1, n2) = λKS(ch1n1 , ch1n2)

• if n1 and n2 are not pre-terminals and the productions at n1 and n2 are the same1

then:

ΔSSTK (n1, n2) = λ

nc(n1)∏

j=1

(1 + ΔSSTK (chj
n1 , chj

n2))

where label(ni) is the label of node ni and KS is a valid term similarity kernel. Note
that in constituency parse trees n1 and n2 are pre-terminals and they can have only
one child (i.e. ch1n1 and ch1n2 ) and such children are words. This kernel uses matching
scores between fragments (i.e., features) that depend on the semantic similarity KS

between the corresponding leaves in the syntactic fragments. This allows to match
fragments having the same structure but different leaves by assigning a score which
is proportional to the product of the lexical similarities of each leaf pair.

Notwithstanding the aforementioned idea is promising and the SSTK provided
good results in several NL tasks, such as Question Classification in [37] and Textual
Entailment Recognition in [38]. However, the SSTK inherits the intrinsic limita-
tions that reduce the effectiveness of semantic smoothing: in Fig. 1a, b, two simple
fragments from a constituency parse tree are shown, representing the two nominal
syntagmas “a nice large orange” and “the big apple”, respectively. These short texts
are semantically related and a proper lexical similarity could acquire this information
by comparing words like a/the, big/large or orange/apple. However, the SSTK does
not estimate this similarity among leaves because the production rules [NP [DT
JJ JJ NN]] and [NP [DT JJ NN]] are not the same. Moreover, the SSTK
cannot be applied to information represented through dependency parse trees. In
Fig. 1c, d, two trees derived from the noun phrases as dependency graphs are shown;
it is worth noting that the graph governor is the tree root, while the dependents are
the leaves. As the SSTK estimates the KS only between tree leaves, it is trivial that
it cannot be applied to such trees, as their roots are different.

Hereafter, amore general tree kernel is defined and it can be applied to any tree and
exploit any combination of lexical similarities thought respecting the syntax enforced

1 It implies that nc(n1) = nc(n2).
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by the tree. To overcome such issues, the tree kernel proposed in [39], namely the
Partial Tree Kernel (PTK), is augmented with node similarity. This allows to use
any tree and any lexical similarity metrics between nodes for any position of the tree
(not just on the leaves as in [37]). In other words, the new Smoothed PTK (SPTK)
can automatically provide the learning algorithm, e.g., Support Vector Machines
(SVMs), with a huge set of generalized structural patterns by simply applying it
to the structural representation of instances of the target task. Combining lexical
and structural kernels provides clear advantages on all-vs-all word similarity, which
tends to semantically diverge. Indeed syntax provides the necessary restrictions to
compute an effective semantic similarity.

3.1 Smoothed Partial Tree Kernel Definition

As for the evaluation of PTK, the evaluation of the common SPTK rooted in nodes
n1 and n2 requires the selection of the shared child subsets of the two nodes. Due
to the importance of the order of the children, we can use subsequence kernels for
their generation. More in detail, let F = {f1, f2, . . . , f|F |} be the set of all possible
PT fragment and let the indicator function Ii(n) be equal to 1 if the target fi is rooted
at node n and 0 otherwise, we define the SPTK as:

• If n1 and n2 are leaves then ΔSPTK (n1, n2) = μλστ (n1, n2)
• else

ΔSPTK (n1, n2) = μστ (n1, n2)

×
(
λ2 +

∑

I1,I2,l(I1)=l(I2)

λd(I1)+d(I2)
l(I1)∏

j=1

ΔSPTK (cn1(I1j), cn2(I2j))
)

(3)

Here the formulation is similar to the PTK, cn1 and cn2 are the ordered child sequences
of n1 and n2 respectively, while I1 = 〈I11, I12, I13, . . .〉 and I2 = 〈I21, I22, I23, . . .〉
are index sequences associated with the ordered child sequences such that cn1(I1j)

and cn2(I2j) are the jth children in the two sequences respectively. The function l(·)
returns the sequence length. As for PTK, two decay factors are employed: 0 < μ ≤ 1
for the height of the tree and0 < λ ≤ 1 for the length of the child sequences. It follows
that both larger trees and subtrees built on child subsequences that contain gaps are
penalized depending on the exponent d(I1) = I1l(I1) − I11 and d(I2) = I2l(I2) − I21,
i.e. the width of the production rule.

The novelty of SPTK is represented by the embedding of a similarity function στ

between nodes which are typed according to τ . It is more general than the SSTK as it
depends on the position of the node pairs within the trees, i.e. non terminals nodes and
leaves. Furthermore, the overall SPTK is neutral with respect to the target linguistic
problems discussed in this work. Obviously, the similarity function between nodes
must be carefully designed in order to grant effectiveness in the target semantic
processing task: in fact, the SPTK would enumerate and compare any possible node
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Algorithm 1 στ (n1, n2, lw)

στ ← 0,
if τ (n1) = τ (n2) = synt ∧ label(n1) = label(n2) then

στ ← 1
end if
if τ (n1) = τ (n2) = pos ∧ label(n1) = label(n2) then

στ ← 1
end if
if τ (n1) = τ (n2) = lex ∧ pos(n1) = pos(n2) then

στ ← σLEX (n1, n2) × lw
end if
return στ

pairs, including non terminal nodes. From a linguistic perspective this is problematic
as each node reflects a specific aspect of data and the comparison between nodes of
different nature, e.g. syntactic nodes like NP or VP, and lexical nodes like apple or
orange should be avoided. The similarity functionστ (n1, n1) between two nodes n1
and n2 must depend on the nodes’ type τ . An example of στ is shown byAlgorithm1:
given two nodes n1 and n2, it applies a different similarity for each node type.
Types are described by τ and are divided into: syntactic categories (i.e., τ = synt),
POS-Tag labels (i.e., τ = pos) or a lexical (i.e., τ = lex) type. In this example
we require a hard match between non lexical nodes, i.e. assigning 0/1 similarity for
synt and pos nodes. For lex type, a lexical kernel KLEX , introduced in Sect. 2, is
applied between words sharing the same POS-Tag. It means that words that belong to
different shallow grammatical classes are never considered compatible, e.g., nouns
with a verbs or adjectives.

The lexical similarity function is therefore crucial in order to provide a mean-
ingful kernel estimation. As discussed in the following sections when focusing on
empirical evaluations, this lexical kernel can be acquired from an existing lexi-
con or directly through Distributional modeling. Indeed, such general formulation
also allows for using weighting schemes with different similarity functions. For
examples, in Algorithm1 the contribution of the lexical information is amplified (or
reduced) trough a lexical weight (lw), that multiplies the similarity function between
lexemes.

The underlying principle that allows employing SPTK in a kernel based learning
algorithms, e.g. Support Vector Machine, is that SPTK must be a valid kernel. In
order to demonstrate its validity, let us consider the node similarity function σ as
a string matching between node labels and λ = μ = 1. Each recursive step of
Eq.3 can be seen as a summation of (1 + ∏l(I1)

j=1 ΔSTK (cn1(I1j), cn2(I2j))), i.e. the
ΔSTK recursive equation, for all subsequences of children cn1(I1j). In other words,
PTK is a summation of an exponential number of STKs, which are valid kernels.
It follows that PTK is a kernel. Note that the multiplication by λ and μ elevated
to any power only depends on the target fragment. Thus, it just gives an additional
weight to the fragment and does not violate the Mercer’s condition, that is discussed
in [6]. In contrast, the multiplication by σ(n1, n2) does depend on both comparing
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examples, i.e. on n1 and n2. However, if the matrix
[
σ(n1, n2)

]∀n1, n2 ∈ f ∈ F is
positive semi-definite, a decomposition exists such that σ(n1, n2) = φ(n1)φ(n2) ⇒
Δσ(n1, n2) can be written as

∑|F |
i=1 φ(n1)χi(n1)φ(n2)χi(n2) =

∑|F |
i=1 φσ(n1)φσ(n2),

which proves SPTK to be a valid kernel.

3.2 Proposed Computational Structures

The feature space generated by the structural kernels, presented in the previous
section, obviously depends on the input structures. In case of PTKandSPTKdifferent
tree representations may lead to engineer more or less effective syntactic/semantic
feature spaces, as discussed in [7, 39]. Due to their nature, constituency parse trees
can be easily employed in the TK estimation. Given the following sentence:

(s1) What is the width of a football field?

The representation tree for a phrase structure paradigm leaves little room for vari-
ations as shown by the constituency tree (CT) in Fig. 2. We apply lemmatization
to the lexemes to improve generalization and, at the same time, we add to them a
generalized PoS-tag, i.e. noun (n::), verb (v::), adjective (::a), determiner (::d) and
so on. This is useful in forcing similarity to insist only between lexemes of the same
grammatical category.

In contrast, the conversion of dependency structures in computationally effective
trees (for the above kernels) is not straightforward. We need to define the role of
lexemes, PoS-tags and grammatical functions (GR). In order to transform the depen-
dency graph in a tree structure, the edge label can be associated with tree nodes to
surrogate the syntactic information. The basic idea of our structures is to use (i) one
of the three kinds of information above the central nodes, from which dependencies
are drawn and (ii) all the other information as features (in terms of dominated nodes)
attached to the formed ones.

We define three main versions to represent dependency trees, such as the one
shown in Fig. 3:

Fig. 2 Constituent Tree
(CT)

S1

SBARQ
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?::.

SQ

VP

NP

PP

NP

NN

field::n

NN

football::n

DT
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What is the width of a football field ?

WP VBZ DT NN IN DT NN NN .

Fig. 3 Dependency Parse Tree
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Fig. 4 PoS-Tag Centered Tree (PCT)
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Fig. 5 Grammatical Relation Centered Tree (GRCT)

• the PoS-Tag Centered Tree (PCT), e.g. see Fig. 4, where the GR is added as father
and the lexical as a child;

• the GR Centered Tree (GRCT), e.g. see Fig. 5, where the PoS-Tags are children
of GR nodes and fathers of their associated lexemes;
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be::v

VBZROOT?::.

.P
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NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w
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Fig. 6 Lexical Centered Tree (LCT)

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Fig. 7 Lexical Only Centered Tree (LOCT)

• the Lexical Centered Tree (LCT), e.g. see Fig. 6, in which both GR and PoS-Tag
are added as the rightmost children.

To better study the role of the above dependency structures, especially from a
performance perspective, we specify additional structures. Figure7 shows the Lexi-
cal Only Centered Tree (LOCT) which is directly derived from the parse tree. It
only accounts on the lexemes, where untyped binary relations are used for recursive
structures. The grammatical generalization provided by the syntactic edge labels is
thus neglected. In order to have a meaningful comparison, two trees whose structures
does not reflect the sentence syntactic information are here defined. Figure8 shows
the Lexical and PoS-Tag Sequences Tree (LPST) in the form of a flattened tree
with two levels, one for PoS-Tag information, where lexemes are simply added as
leaves. Finally, in Fig. 9 only lexical items are leaves of a single root node. These

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v
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what::w

Fig. 8 Lexical and PoS-Tag Sequences Tree (LPST)
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TOP

?::.field::nfootball::na::dof::iwidth::nthe::dbe::vwhat::w

Fig. 9 Lexical Sequences Tree (LST)

two structures are interesting as they allow to employ a PTK or SPTK to surrogate
the Sequence Kernel [40].

4 Experimental Evaluation

A large scale empirical evaluation is here discussed to describe the application of
SPTK to a different semantic processing task: the Question Classification task in
Sect. 4.2, the Verb Classification task in Sect. 4.3 and the Semantic Role Labeling
task in Sect. 4.4. The aim of the following experiments is to analyze different levels
of representation, i.e. structure, for syntactic dependency parses. Most importantly,
the role of lexical similarity embedded in syntactic structures will be investigated.

4.1 General Experimental Setup

The following semantic processing task are modeled as a classification problem,
where a SVM classifier is employed. For SVM learning, we extended the SVM-
LightTK software2 (which includes structural kernels in SVMLight [41]) with the
smooth match between tree nodes. For generating constituency trees, we used the
Charniak parser [42] whereas we applied LTH syntactic parser (described in [43])
to generate dependency trees. Lexical similarity is derived through the distributional
analysis of UkWaC [44], which is a large scale document collectionmade by 2 billion
tokens. More specifically, to build the matrix M, POS tagging is first applied so that
its rows are pairs 〈lemma, ::POS〉, or lemma::POS in brief. The contexts of such items
are the columns of M and are short windows of size [−3,+3], centered on the items.
This allows for better capturing syntactic properties of words. The most frequent
20,000 items are selected along with their 20k contexts. The entries of M are the
point-wise mutual information between them. The SVD reduction is then applied to
M, with a dimensionality cut of l = 250. In Question Classification experiments the
contribution of distributional models is compared with a resource based similarity
derived from the word list (WL) provided in [13].

SVM-LightTK is applied to thedifferent tree representations discussed inSect. 3.2.
We experiment withmulti-classification, whichwemodel through one-vs-all scheme

2 http://disi.unitn.it/moschitti/Tree-Kernel.htm.

http://disi.unitn.it/moschitti/Tree-Kernel.htm
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Table 1 Accuracyof several structural kernels ondifferent structures for coarse andfinegrainedQC

COARSE FINE

NO LSA WL NO LSA WL

lw Acc. (%) lw Acc. (%) lw Acc. (%) lw Acc. (%) lw Acc. (%) lw Acc. (%)

CT 4 90.80 2 91.00 5 92.20 4 84.00 5 83.00 7 86.60

GRCT 3 91.60 4 92.60 2 94.20 3 83.80 4 83.20 2 85.00

LCT 1 90.80 1 94.80 1 94.20 0.33 85.40 1 86.20 0.33 87.40

LOCT 1 89.20 1 93.20 1 91.80 1 85.40 1 86.80 1 87.00

LST 1 88.20 1 85.80 1 89.60 1 84.00 1 80.00 1 85.00

LPST 3 89.40 1 89.60 1 92.40 3 84.20 4 82.20 1 84.60

PCT 4 91.20 4 92.20 5 93.40 4 84.80 5 84.00 5 85.20

CT-STK − 91.20 − − − − − 82.20 − − − −
BOW − 88.80 − − − − − 83.20 − − − −

by selecting the category associated with the maximum SVMmargin. The quality of
such classification ismeasuredwith accuracy.We determine the statistical signicance
by using the model described in [45] and implemented in [46].

The parameterization of each classifier is carried on a held-out set and concerns
with the setting of the trade-off parameter (option -c) and the Leaf Weight (lw) (see
Algorithm1), which is used to linearly scale the contribution of the leaf nodes. In
contrast, the cost-factor parameter of the SVM-LightTK is set as the ratio between
the number of negative and positive examples for attempting to have a balanced
Precision/Recall.

4.2 Question Classification

The typical architecture of a QA system includes three main phases: question
processing, document retrieval and answer extraction [2]. Question processing is
usually centered around the so called Question Classification task. It maps a ques-
tion into one of k predefined answer classes, thus posing constraints on the search
space of possible answers. For these experiments, we used the UIUC dataset [13].
It is composed by a training set of 5,452 questions and a test set of 500 questions.3

Question classes are organized in two levels: 6 coarse-grained classes (like ENTITY
or HUMAN) and 50 fine-grained sub-classes (e.g. Plant, Food as subclasses of
ENTITY).

The outcome of the several kernels applied to several structures for the coarse and
fine grained QC is reported in Table 1. Since PTK and SPTK are typically used in
our experiments, to have a more compact acronym for each model, we associate the

3 http://cogcomp.cs.illinois.edu/Data/QA/QC/.

http://cogcomp.cs.illinois.edu/Data/QA/QC/
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latter with the name of the structure, i.e. this indicates that PTK is applied to it. Then
the presence of the subscript WL and LSA indicates that SPTK is applied alongwith the
corresponding similarity, e.g. LCTWL is the SPTK kernel applied to LCT structure,
using WL similarity. The first column shows the experimented models, obtained by
applying PTK/SPTK to the structures described in Sect. 3.2. The last two rows are:
CT-STK, i.e. Syntactic Tree Kernel, proposed in [7] applied to a constituency tree
and BOW, which is a linear kernel applied to lexical vectors. Column 2, 3 and 4
report the accuracy using no, LSA and WL similarity, where lw is the amplifying
parameter, i.e. weight, associated with the leaves in the tree. The last three columns
refer to the fine- grained task.

It is worth nothing that when no similarity is applied: (i) BOW produces high
accuracy, i.e. 88.8% but it is improved by STK, current state-of-the-art4 in QC;
(ii) PTK applied to the same tree of STK produces a slightly lower value (non-
statistically significant difference); (iii) interestingly, when PTK is instead applied
to dependency structures, it improves STK, i.e. 91.60 versus 91.40% (although not
significantly); and (iv) LCT, strongly based on lexical nodes, is the less accurate,
i.e 90.80% since it is obviously subject to data sparseness (fragments only com-
posed by lexicals are very sparse). The very important results can be noted when
lexical similarity is used, i.e. SPTK is applied: (a) all the syntactic-base structures
using both LSA or WL improve the classification accuracy (b) CT gets the lowest
improvement whereas LCT achieves an impressive result of 94.80%, i.e. more than
41% of relative error reduction. It seems that the lexical similar paths when driven
by syntax produces accurate features. Indeed, when syntax is missing such as for the
unstructured lexical path of LSTLSA, the accuracy does not highly improve or may
also decrease. Additionally, the result of our best model is so high that its errors only
refer to questions likeWhat did Jesse Jackson organize?, where the classifier selected
Entity instead of Human category. These are clear examples where a huge amount
of background knowledge is needed. Finally, on the fine grained experiments LCT
still produces the most accurate outcome again exceeding the state-of-the-art [47],
where WL significantly improves on all models (CT included).

4.3 Verb Classification

Verb classification is a fundamental topic of computational linguistics research given
its importance for understanding the role of verbs in conveying semantics of natural
language (NL). Currently, a lot of interest has been devoted to the VerbNet verb cat-
egorization scheme [48]. However, the definition of models for optimally combining
lexical and syntactic constraints is still far for being accomplished. In particular, the
exhaustive design and experimentation of lexical and syntactic features for learning

4 Note that in [37], higher accuracy values for smoothed STK are shown for different parameters
but the best according to a validation set is not highlighted.
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verb classification appears to be computationally problematic. For example, the verb
order can belongs to the two VerbNet classes:

• The class 60.1, i.e., order someone to do something as shown in: The Illinois
Supreme Court ordered the commission to audit Commonwealth Edison’s con-
struction expenses and refund any unreasonable expenses.

• The class 13.5.1: order or request something like in: …Michelle blabs about it to
a sandwich man while ordering lunch over the phone.

Clearly, the syntactic realization can be used to discern the cases above but it would
not be enough to correctly classify the following verb occurrence: “. . . ordered the
lunch to be delivered . . . ” inVerb class 13.5.1. For such a case, selectional restrictions
are needed.

The implicit feature space generated by structural kernels and the corresponding
notion of similarity between verbs obviously depend on the input structures. First
we employed the constituency tree (CT) representation, enriching the target verb
node with the target label. Here, we apply tree pruning to reduce the computa-
tional complexity of tree kernels as it is proportional to the number of nodes in the
input trees. Accordingly, we only keep the subtree dominated by the target VP by
pruning from it all the S-nodes along with their subtrees (i.e., all nested sentences
are removed). To encode dependency structure information in a tree we employed
the GR Centered Tree (GRCT) and the Lexical Centered Tree (LCT); for both trees,
the pruning strategy only preserves the verb node, its direct ancestors (father and
siblings) and its descendants up to two levels (i.e., direct children and grandchildren
of the verb node). Note that our dependency tree can capture the semantic head of
the verbal argument along with the main syntactic construct, e.g., to audit.

In these experiments, we tested the impact of our different verb representations
using different kernels, similarities and parameters. We also compared with simple
bag-of-words (BOW)models and the state-of-the-art. In particular, we used the same
verb classification setting of [14]: sentences are drawn from the Semlink corpus [49],
which consists of the PropBanked Penn Treebank portions of theWall Street Journal.
It contains 113K verb instances, 97K of which are verbs represented in at least one
VerbNet class. Semlink includes 495 verbs, whose instances are labeled with more
than one class (including one single VerbNet class or none). We used all instances of
the corpus for a total of 45,584 instances for 180 verb classes.When instances labeled
with the none class are not included, the number of examples becomes 23,719. We
used 70% of instances for training and 30% for testing.

Our verb (multi) classifier is designed with the one-vs-all [50] multi-classification
schema. This uses a set of binary SVM classifiers, one for each verb class (frame)
i. The sentences whose verb is labeled with the class i are positive examples for the
classifier i. The sentences whose verbs are compatible with the class i but evoking
a different class or labeled with none (no current verb class applies) are added as
negative examples. In the classification phase the binary classifiers are applied by (i)
only considering classes that are compatible with the target verbs; and (ii) selecting
the class associatedwith themaximumpositive SVMmargin. If all classifiers provide
a negative score the example is labeled with none. To assess the performance of
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our settings, we also derive a simple baseline based on the bag-of-words (BOW)
model. For it, we represent an instance of a verb in a sentence using all words of
the sentence (by creating a special feature for the predicate word). We also used
a Sequence Kernel (SK) applied to the LST structure, described in Sect. 3.2; for
efficiency reasons,5 we only consider the 10 words before and after the predicate
with subsequence features of length up to 5. Table2 reports the accuracy of different
models for VerbNet classification. It should be noted that: first, LST produces a
much higher accuracy than BOW, i.e., 82.08 versus 79.08%. On one hand, this
is generally in contrast with standard text categorization tasks, for which n-gram
models show accuracy comparable to the simpler BOW. On the other hand, it simply
confirms that verb classification requires the dependency information between words
(i.e., at least the sequential structure information provided by LST). Second, LST
is 2.56% points below the state-of-the-art achieved in [14] (BR), i.e., 82.08 versus
84.64. In contrast, STK applied to our representation (CT, GRCT and LCT) produces
comparable accuracy, e.g., 84.83, confirming that syntactic representation is needed
to reach the state-of-the-art. Third, PTK, which produces more general structures,
improves over BR by almost 1.5 (statistically significant result) when using our
dependency structures GRCT and LCT. CT does not produce the same improvement
since it does not allow PTK to directly compare the lexical structure (lexemes are
all leaf nodes in CT and to connect some pairs of them very large trees are needed).
Finally, the best model of SPTK (i.e., using LCT) improves over the best PTK (i.e.,
using LCT) by almost 1 point (statistically significant result): this difference is only
given by lexical similarity. SPTK improves on the state-of-the-art by about 2.08
absolute percent points, which, given the high accuracy of the baseline, corresponds
to 13.5% of relative error reduction.

Table 2 VerbNet accuracy with the none class

STK PTK SPTK

lw Acc. (%) lw Acc. (%) lw Acc. (%)

CT − 83.83 8 84.57 8 84.46

GRCT − 84.83 8 85.15 8 85.28

LCT − 77.73 0.1 86.03 0.2 86.72

Br. et Al 84.64%

BOW 79.08%

LST 82.08%

5 The average running time of the SK is much higher than the one of PTK.When a tree is composed
by only one level PTK collapses to SK.
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4.4 FrameNet Role Classification

To verify that our findings are general and that our syntactic/semantic dependency
kernels can be effectively exploited for diverse NLP tasks, we experimented with a
completely different application, i.e. FrameNet SRL classification. Given a predicate
(the lexical unit, as described in Sect. 2) and a set of arguments, theRoleClassification
consists in the assignment of the proper role label to each argument. We used the
FrameNet version 1.3with the 90/10%split between training and test set (i.e. 271,560
and 30,173 examples respectively), as defined in [9], one of the best system for
FrameNet parsing. We used the LTH dependency parser. LSA was applied to the
BNC corpus, the source of the FrameNet annotations.

For each of 648 frames, we applied SVM along with the best models for QC,
i.e. GRCT and LCT, to learn its associated binary role classifiers (RC) for a total of
4,254 classifiers. For example, Fig. 10 shows the LCT representation of the first two
roles of the following sentence:

[Bootleggers]Creator, then copy [the film]Original
[onto hundreds of VHS tapes]Goal

Table3 shows the results of the different multi-classifiers. GRCT and LCT show a
large accuracy, i.e. 87.60%. This improves up to 88.74% by activating the LSA simi-
larity. The combination GRCTLSA+LCTLSA significantly improves the above model,
achieving 88.91%. This is very close to the state-of-the-art of SRL for classification
(using a single classifier, i.e. no jointmodel), i.e. 89.6%, achieved in [9]. These results
thus confirm the idea that a lexical generalization allows to improve the quality of
the Argument Classification, especially for examples where the syntactic informa-
tion alone is not discriminative, like the examples of Sentences 1 and 2. Finally, it
should be noted that, to learn and test the Self_motion multi-classifier, containing
14,584 examples, distributed on 22 roles, SVM-SPTK employed 1.5h and 10min,
respectively.6

Fig. 10 LCT Examples for
argument roles

copy::v

VBPROOTbootlegger::n

NNSSBJ

copy::v

VBPROOTfilm::n

NNOBJthe::d

DTNMOD

6 Using one of the 8 processors of an Intel(R) Xeon(R) CPU E5430 @ 2.66GHz machine,
32Gb Ram.
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Table 3 Argument
Classification Accuracy

Kernel Accuracy (%)

GRCT 87.60

GRCTLSA 88.61

LCT 87.61

LCTLSA 88.74

GRCT + LCT 87.99

GRCTLSA + LCTLSA 88.91

5 Conclusions

This paper has proposed a study on representation of dependency structures for
the design of effective structural kernels. Most importantly, we have defined a new
class of kernel functions, i.e. SPTK, that carry out syntactic and lexical similarity
on the above structures. This allows for automatically generating feature spaces
of generalized syntactic/semantic dependency substructures. To test our models, we
carried out experiments onQuestion Classification, Verb Classification and Semantic
Role Labeling. These show that by exploiting the similarity between two sets of
words carried out according to their dependency structure leads to an unprecedented
result, whereas no structure is used the accuracy does not significantly improves. We
have also provided a fast algorithm for the computation of SPTK and empirically
shown that it can easily scale. Such result enables many promising future research
directions: the most important being the use of SPTK for many NLP tasks with many
different similarities.
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