Chapter 12
Discovery of Driving Behavior Patterns

Stephan Spiegel

Abstract Given a set of time series, our goal is to identify prototypes that cover
the maximum possible amount of occurring subsequences regardless of their order.
This scenario appears in the context of the automotive industry, where the objec-
tive is to determine operational profiles that comprise frequently recurring driving
behavior patterns. This problem can be solved by clustering, however, standard dis-
tance measures such as the dynamic time warping distance might not be suitable for
this task, because they aim at capturing the cost of aligning two time series rather
than rewarding pairwise occurring patterns. In this work, we propose a novel time
series distance measure, based on the theoretical foundation of recurrence plots,
which enables us to determine the (dis)similarity of multivariate time series that
contain segments of similar trajectories at arbitrary positions. We use recurrence
quantification analysis to measure the structures observed in recurrence plots and
to investigate dynamical properties, such as determinism, which reflect the pairwise
(dis)similarity of time series. In experiments on real-life test drives from Volkswagen,
we demonstrate that clustering multivariate time series using the proposed recurrence
plot-based distance measure results in prototypical test drives that cover significantly
more recurring patterns than using the same clustering algorithm with dynamic time
warping distance.

Reduced Emissions: The Drive Green Scenario

Since Steven entered preliminary school at the early age of five, he always loved to
spend the Sunday afternoons in solitary reading books about theoretical and applied
mathematics. None of this has changed in the last 30 years and nobody in his family
was surprised about his recent decision to work as an associate researcher at one of the
leading car manufacturers. Although Steven is passionate about modern technology,
his father thought him to respect and preserve nature. When Steven was a teenager,
he and his dad often went hiking to watch birds at one of the small lakes in the forest
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of the nearby mountains. On their hikes, Steven was told a lot about the local wildlife
and everything his father had learned from the scouts when he was a boy. At that time,
Steven decided that he would dedicate his adult life to preserve that untouched nature
for his own children and the generations after. He soon realized that he could use his
natural talent for mathematics to solve environmental problems and to contribute to
society. His current position in a research and development department for internal
combustion engines allows Steven to take an active part in reducing the emission of
greenhouse gases, which have long been known to cause global warming.

)

Recent political debates about climate change have led to profound environmental
regulations that limit the maximum permissible emission for vehicles on European
roads. To avoid severe sanctions, the automotive industry has to ensure that their
newly developed engines go below the allowed limit of exhaust fumes. However,
automobile manufacturer face the problem that a nationwide survey of their car fleet
would result in exorbitant cost and effort. Instead of that, Steven proposed to draw
samples from test drives which characterize specific combinations of driver, vehicle,
and route. In further investigations, the derived operational profiles could be used
to simulate typical driving behavior and to spot-check against the newly introduced
emission regulations. Although the top management is not fully convinced, Steven
has strong support from his own rows and was invited to present his detailed proposal
to the decision-making department.

Steven explains that he aims at deriving characteristic operational profiles of their
new vehicle fleet by means of several controlled test drives. His idea is to record
multiple engine parameters during test drives to discover driving behavior patterns
which typically occur under certain circumstances. The main challenge is to develop
an algorithm that is able to efficiently and effectively compare the high-dimensional
measurements with regard to co-occurring temporal patterns. Test drives with a high
number of typical driving behavior patterns may than be used for engine simulations
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and emission evaluations. Due to the fact that Steven’s approach is less expensive
and time consuming than a nationwide survey, the decision committee felt positive
about his idea and assigned him to lead the research project.

Leading a team of researchers in developing more efficient and environment-
friendly combustion engines does not only mean a real breakthrough in Steven’s
career, but also a huge success on a personal level. Since his childhood, he always
dreamed of finding a way to use own skills to do something for the benefit of the
nature his father taught him to love. This is a unique opportunity for Steven to make
a positive impact on the environment of future generations. He wants his children
and grandchildren to enjoy and experience nature in the same was as he did as a kid.
With this in mind, Steven accepts the challenge of his lifetime.

12.1 Introduction

Clustering of times series data is of pivotal importance in various applications [9]
such as, for example, seasonality patterns in retail [ 13], electricity usage profiles [17],
DNA microarrays [26], and fMRI brain activity mappings [39]. A crucial design
decision of any clustering algorithm is the choice of (dis)similarity function [1, 14].
In many clustering applications, the underlying (dis)similarity function measures
the cost of aligning time series to one another. Typical examples of such functions
include the DTW and the Euclidean distance [4, 10, 27].

Alignment-based (dis)similarity functions, however, seem not to be justified for
applications, where two time series are considered to be similar, if they share common
or similar subsequences of variable length at arbitrary positions [2, 16, 28, 40].
A real-life example for such an application comes from the automotive industry,
where test drives of vehicles are considered to be similar, if they share similar driving
behavior patterns, i.e., engine behavior or drive maneuvers, which are described by
the progression of multiple vehicle parameters over a certain period of time [33, 35].
In this scenario, the order of the driving behavior patterns does not matter [32], but
the frequency with which the patterns occur in the contrasted time series.

Recent work [5] on time series distance measures suggests to neglect irrelevant and
redundant time series segments, and to retrieve subsequences that best characterize
the real-life data. Although subsequence clustering is a tricky endeavor [12], several
studies [2, 7, 16, 28, 40] have demonstrated that in certain circumstances ignoring
sections of extraneous data and keeping intervals with high discriminative power
contributes to cluster centers that preserve the characteristics of the data sequences.
Related concepts that have been shown to improve clustering results include time
series motifs [2, 16], shapelets [28, 40], and discords [7].

In this contribution, we propose to adopt recurrence plots (RPs) [18, 21, 22] and
related recurrence quantification analysis (RQA) [19, 20, 23] to measure the simi-
larity between multivariate time series that contain segments of similar trajectories
at arbitrary positions in time [32]. We introduce the concept of joint cross recur-
rence plots (JCRPs), an extension of traditional RPs, to visualize and investigate
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multivariate patterns that (re)occur in pairwise compared time series. In dependence
on JCRPs and known RQA measures, such as determinism, we define a RecuRRence
plot-based (RRR) distance measure, which reflects the proportion of time series seg-
ments with similar trajectories or recurring patterns, respectively.

In order to demonstrate the practicability of our proposed recurrence plot-based
distance measure, we conduct experiments on both synthetic time series and real-
life vehicular sensor data [32, 33, 35]. The results show that, unlike commonly used
(dis)similarity functions, our proposed distance measure is able to (i) determine clus-
ter centers that preserve the characteristics of the data sequences and, furthermore,
(i1) identify prototypical time series that cover a high amount of recurring patterns.

The rest of the chapter is organized as follows. In Sect. 12.2, we state the general
problem being investigated. Related work is discussed in Sect. 12.3. Subsequently,
we introduce traditional recurrence plots as well as various extensions in Sect. 12.4.
Recurrence quantification analysis and corresponding measures are discussed in
Sect. 12.5. Our proposed recurrence plot-based distance measure and respective
evaluation criteria are introduced in Sect. 12.6. Possible ways to reduce the com-
putational complexity of our introduced distance measure are offered in Sects. 12.7
and 12.8. Our experimental results are presented and discussed in Sect. 12.9. In addi-
tion, Sect. 12.10 presents BestTime, a platform-independent Matlab application with
graphical user interface, which enables us to find representative that best comprehend
the recurring temporal patterns contained in a certain time series dataset. Finally, we
conclude with future work in Sect. 12.11.

12.2 Problem Statement

Car manufacturers aim to optimize the performance of newly developed engines
according to operational profiles that characterize recurring driving behavior. To
obtain real-life operational profiles for exhaust simulations, Volkswagen (VW) col-
lects data from test drives for various combinations of driver, vehicle, and route.

Given a set X = {X1, Xo, ..., X;} of ¢ test drives, the challenge is to find a
subset of k prototypical time series Y = {Y7, ..., Yx} € X that best comprehend
the recurring (driving behavior) patterns found in set X. Test drives are represented
as multivariate time series X = (xy, ..., x,) of varying length n, where x; € RY is
a d-dimensional feature vector summarizing the observed measurements at time i.
A pattern S = (x5, ..., xg+j—1) of X = (x1, ..., x,) is a subsequence of / consecu-
tive time points from X, where/ <nand1 <s < s+/—1 < n. Assuming two time
series X = (x1,...,xy) and Y = (y1, ..., y) with patterns S = (xg, ..., Xs4/—1)
and P = (yp, ..., yp+i—1) of length [, we say that § and P are recurring patterns

of X and Y ifd(S, P) < €, whereandd : X x X — R is a (dis)similarity function
and € is a certain similarity threshold. Note that recurring patterns of X and Y may
occur at arbitrary positions and in different order.

Since we aim to identify k prototypical time series that (i) best represent the set X’
and (ii) are members of the set X', one can employ the k-medoid clustering algorithm.
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12.3 Related Work

The main goal of clustering is to organize unlabeled data into homogeneous groups
that are clearly separated from each other. In general, clustering involves the cluster-
ing algorithm, the similarity or rather distance measure, and the evaluation criterion.
Clustering algorithms are categorized into partitioning, hierarchical, density-based,
grid-based, and model-based methods. All of these clustering algorithms can be
applied for static and temporal data [14]. In the following, we discuss important
considerations, common pitfalls, successful applications, and recent developments
in time series clustering.

Time Series Clustering. Unlike static data, temporal data evolves over time and
therefore requires special handling. One could either modify the existing clustering
algorithms to handle time series data or convert the time series into a form that
can be directly clustered. The former approach works with the raw time series, and
the major modification lies in replacing the distance/similarity measure. The latter
approach converts the raw time series either into feature vectors or model parameters,
and then applies conventional clustering algorithms. Thus, time series clustering
approaches can be categorized into raw-data-based, feature-based, and model-based
methods [14].

Time Series Representation. In this study, we mainly focus on clustering meth-
ods that work with raw data, in particular multivariate time series with same sample
rate. Clustering time series only differs from conventional clustering in how to com-
pute the similarity between data objects [14]. Therefore, the key is to understand the
unique characteristics of the time series and then to design an appropriate similar-
ity measure accordingly. For instance, Meesrikamolkul et al. [25] have proposed a
novel method which combines the widely used k-means clustering algorithm with the
Dynamic Time Warping distance measure, instead of the traditional Euclidean dis-
tance, to study sequences with time shifts. Unlike before, the new method determines
cluster centers that preserve the characteristics of the data sequences.

Distance/Similarity Measures. Besides Euclidean distance and Dynamic Time
Warping distance, commonly used similarity measures include Minkowski distance,
Levenshtein distance, Short Time Series distance, Pearson correlation coefficient,
cross-correlation-based distances, probability-based distance functions, and many
others. The choice of similarity measure depends on whether the time series is
discrete-valued or real-valued, uniform or nonuniform sampled, univariate or multi-
variate, and whether the data sequences are of equal or unequal length [14].

Distortions and Invariance. Furthermore, the choice of the time series distance
measure depends on the invariance required by the domain. The literature [1] has
introduced techniques designed to efficiently measure similarity between time series
with invariance to (various combinations of) the distortions of warping, uniform scal-
ing, offset, amplitude scaling, phase, occlusions, uncertainty, and wandering baseline.
Recent work [32] has proposed an order-invariant distance which is able to deter-
mine the (dis)similarity of time series that exhibit similar subsequences at arbitrary
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positions. The authors demonstrate that order invariance is an important consideration
for domains such as automotive engineering and smart home environments [33, 35],
where multiple sensors observe contextual patterns in their naturally occurring order,
and time series are compared according the occurrence of these multivariate patterns.

Evaluation Criterion. Evaluation criteria for clustering are distinguished between
known ground truth and unknown ground truth [14]. In case of known ground truth,
the similarity between known clusters and obtained clusters can be measured. The
most commonly used clustering quality measure for known ground truth is the Rand
Index or minor variants of it [40]. In contrast, without prior knowledge the clusters
are usually evaluated according their within-cluster similarity and between-cluster
dissimilarity [14]. Various validity indices have been proposed to determine the
number of clusters and their goodness. For instance, the index / has been found to
be consistent and reliable, irrespective of the underlying clustering technique and
data dimensionality, and furthermore has been shown to outperform the Dunn and
David-Bouldin index [24].

Realistic Assumptions. The majority of publicly available time series datasets
were preprocessed and cleaned before publishing. For instance, the UCR archive [9]
contains only time series with equal length, which are mostly snippets of the origi-
nal data that were retrieved manually. The publication of perfectly aligned patterns
of equal length has lead to huge amount of time series classification and clustering
algorithms that are not able to deal with real-world data, which contains irrelevant
sections. Hu et al. [5] suggest to automatically build a data dictionary, which contains
only a small subset of the training data and neglects irrelevant sections and redun-
dancies. The evaluations show that using a data dictionary with a set of retrieved
subsequences for each class leads to higher classification accuracy and is several
time faster than the compared strawman algorithms. However, one needs to be care-
ful about how to retrieve subsequences, for reasons explained in the following.

Subsequence Clustering. Keogh and Lin [12] state that the clustering of time
series subsequences is meaningless, referring to the finding that the output does not
depend on input, and the resulting cluster centers are close to random ones. In almost
all cases the subsequences are extracted with a sliding window, which is assumed to
the quirk in clustering. To produce meaningful results the authors suggest to adopt
time series motifs, a concept highly related to clusters. Their experiments demonstrate
that motif-based clustering is able to preserve the patterns found in the original time
series data [12].

Time Series Motifs. Motifs are previously unknown, frequently occurring
patterns, which are useful for various time series mining tasks: such as summa-
rization, visualization, clustering and classification of time series [2, 16]. According
to the definition [16] a time series motif is a subsequence that comprises all non-
trivial matches within a given range. Since the naive (brute-force) approach to motif
discovery has quadratic complexity, Lin et al. [16] introduce a new motif discov-
ery algorithm that provides fast exact answers, and faster approximate answers,
achieving a speedup of one to two orders of magnitude. In order to reduce the num-
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ber of possible candidates of motifs, Chiu et al. [2] propose to omit consecutive
subsequences that resemble each other. Furthermore, the set of subsequences in each
motif should be mutually exclusive, because otherwise the motifs would be essen-
tially the same. Although normalization techniques are commonly applied to com-
pare time series with different offset and amplitude, Chiu et al. [2] state that these are
important characteristics that might prove to be useful to distinguish motifs, because
after normalization most subsequences correspond to almost the same upward or
downward trend and become indistinguishable.

Time Series Shapelets. Most existing methods for time series clustering rely
on distances calculated on the shape of the signals. However, time series usually
contain a great amount of measurements that do not contribute to the differentiation
task or even decrease cluster accuracy. Hence, to cluster time series, we are generally
better off ignoring large sections of extraneous data and keeping intervals with high
discriminative power. Recent work [28, 40] proposes to use local patterns, so called
shapelets, to cluster time series databases. According to the definition [40], a shapelet
is a time series snippet that can separate and remove a subset of the data from the
rest of the database, while maximizing the separation gap or rather information gain.
Although the experiments demonstrate that shapelet-based clustering gives better
results than statistical-based clustering of the entire time series, finding optimal
shapelets is a nontrivial task, and almost certainly harder than the clustering itself
[40]. However, the results underline the importance of ignoring some data to cluster
time series in real-world applications under realistic settings.

Time Series Discords. Different from motifs or shapelets, time series discords
are subsequences of longer time series that are most unusual or rather maximally
different to all the rest of the time series subsequences. Keogh et al. [7] have shown
that time series discords are particularly attractive as anomaly detectors because
they only require one intuitive parameter, namely the length of the subsequences.
Furthermore, discords have implications for the time series clustering, cleaning, and
summarization.

Time Series Prototypes. To sum up, the concepts that may possibly be adapted to
identify time series prototypes (as described in our problem statement in Sect. 12.2)
include motifs [2, 16] and shapelets [28, 40]. However, in both cases this would
require major modifications of the existing algorithm. A straightforward approach
to solve the stated problem is presented in the following sections.

12.4 Recurrence Plots

Recurrence plots (RPs) are used to visualize and investigate recurrent states of
dynamical systems or rather time series [23, 31]. Even though RPs give very vivid
and impressive images of dynamical system trajectories, their implicit mathematical
foundation is deceptively simple [18]:
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R j(e) = O(e — |lxi — x;lI) xieRY i j=1...n (12.1)

where x is a time series of length n, || - || a norm and @ the Heaviside function. One
of the most crucial parameters of RPs is the recurrence threshold €, which influences
the formation of line structures [21]. In general, the recurrence threshold should be
chosen in a way that noise corrupted observations are filtered out, but at the same
time a sufficient number of recurrence structures are preserved. As a rule of thumb,
the recurrence rate should be approximately one percent with respect to the size of
the plot. For quasiperiodic processes, it has been suggested to use the diagonal line
structures to find the optimal recurrence threshold. However, changing the threshold
does not preserve the important distribution of recurrence structures [23].

A general problem with standard thresholding methods is that an inappropriate
threshold or laminar states cause thick diagonal lines, which basically corresponds
to redundant information. Schultz et al. [31] have proposed a local minima-based
thresholding approach, which can be performed without choosing any particular
threshold and yields in clean RPs of minimized line thickness. But this approach
comes with some side effects, e.g., bowed lines instead of straight diagonal lines.

Furthermore, it is important to discuss the definition of recurrences, because
distances can be calculated using different norms [18]. Although the L;-norm is
used in most cases, the Loo-norm is sometimes preferred for relatively large time
series with high computational demand [23].

Although traditional RPs only regard one trajectory, we can extend the concept
in a way that allows us to study the dynamics of two trajectories in parallel [22].
A cross recurrence plot (CRP) shows all those times at which a state in one dynamical
system occurs in a second dynamical system. In other words, the CRP reveals all
the times when the trajectories of the first and second time series, x and y, visits
roughly the same area in the phase space. The data length, n and m, of both systems
can differ, leading to a nonsquare CRP matrix [19, 21].

CRI V(€)= Oe—|lxi—yjll) xi,y; €RY, i=1...n, j=1..m (122)

For the creation of a CRP, both trajectories, x and y, have to present the same
dynamical system with equal state variables because they are in the same phase
space. The application of CRPs to absolutely different measurements, which are not
observations of the same dynamical system, is rather problematic and requires some
data preprocessing with utmost carefulness [21].

In order to test for simultaneously occurring recurrences in different systems,
another multivariate extension of RPs was introduced [22]. A joint recurrence plot
(JRP) shows all those times at which a recurrence in one dynamical system occurs
simultaneously with a recurrence in a second dynamical system. With other words,
the JRP is the Hadamard product of the RP of the first system and the RP of the
second system. JRPs can be computed from more than two systems. The data length
of the considered systems has to be the same. [19, 21].
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IR (€, €)= 0 —|lxi — xjID) - O’ — [lyi — ;I (12.3)
x,-eRdl, yjeRdz, i,j=1...n

Such joint recurrence plots have the advantage that the individual measurements
can present different observables with different magnitudes or range. They are often
used for the detection of phase synchronization [19, 21].

Since this work aims at clustering test drives, which involves pairwise
(dis)similarity comparisons of multivariate time series, we propose a combination of
joint and cross recurrence plot, namely (JCRP) joint cross recurrence plot. A JCRP
shows all those times at which a multivariate state in one dynamical system occurs
simultaneously in a second dynamical system.

JCRI (e, .. ) =0 =] —yjl) x - x O —[Ixf =yl (12.4)
v erd o _
x,y; €RY, i=1...n, j=1...m

For the creation of a JRCP both trajectories, x and y, need to have the same
dimensionality or number of parameters d, but can have different length, n and m.
We shall see that JCRPs are very useful, because they enable us to compare two mul-
tivariate systems with the same set of observables that can have different magnitudes.
In other words, the introduced JCR notation allows us to determine an e-threshold
for each individual parameter, which is advantageous for observables with different
variance. A toy example for JCRPs is given in the following:

. — | 4fcghGATHERSPEED1mknhDECELERATEghfkd
~ | rsqtpACCELERATORXywzVBRAKEPEDALtvVSWr

__ | kdhfSLOWDOWNglbkchdgfGATHERSPEEDnkml
" | tpsBRAKEPEDALzrysxtwvACCELERATORXtWV

Assume two multivariate time series x and y which comprise the speed and accel-
erator signal recorded during different car drives. Both time series contain multivari-
ate states or rather string sequences that occur in both systems, as demonstrated in
Fig.12.1a. The corresponding JCRP of x and y, as illustrated in Fig. 12.1b, shows
the times at which a multivariate state occurs simultaneously in both systems. Fur-
thermore, the diagonal line structure in Fig. 12.1b reveals that both trajectories run
through a similar region in phase space for a certain time interval. With other words,
both systems contain the same multivariate pattern, which represents that the driver
hits the ‘ACCELERATOR’ pedal and the vehicle simultaneously ‘GATHERSPEED’.
In Sect. 12.5, we discuss how to interpret single recurrence points and diagonal line
structures, and explain how to use them to define a distance measure for time series
with certain distortions or invariance.
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Fig. 12.1 a ASCii decimal encoding of two multivariate time series x and y which contain the
same pattern or string sequence at different positions in time. b Joint cross recurrence plot (JCRP)
of time series x and y, introduced in a, with € = 0. The diagonal line structure in the recurrence plot
indicates the existence and position of a co-occurring multivariate pattern. The single recurrence
points can be considered as noise

12.5 Recurrence Quantification

Recurrence quantification analysis (RQA) is used to quantify the structures observed
in recurrence plots [21]. RQA is grounded in theory, but possesses statistical utility
in dissecting and diagnosing nonlinear dynamic systems across multiple fields of
science [38]. The explicit mathematical definition to distinct features in recurrence
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plots enables us to analyze signals that are multivariate, nonlinear, nonstationary, and
noisy.

The global (large-scale) appearance of a RP can give hints on stationarity and
regularity, whereas local (small-scale) patterns are related to dynamical properties,
such as determinism [38]. Recent studies have shown that determinism, the percent-
age of recurrence points that form lines parallel to the main diagonal, reflects the
predictability of a dynamical system [21].

Given a recurrence matrix R with N x N entries generated by any of the intro-
duced recurrence plot variations, such as our proposed JCRP, we can compute the
determinism DET (¢, /jnin) for a predefined e-threshold and a minimum diagonal line
length /iy as followed [19, 21]:

S 1 P(e])

DET (€, Imin) = (12.5)
>V ioi Rije)
N
P(e, ) = Z[ (1= Ri—1,j-1(e)
i,j=1
X (1= Riqs,j+1 (€))
-1
<[] Risr.jsx (€ ] (12.6)

k=0

where P (e, [) is the histogram of diagonal lines of length / with respect to a certain
€ neighborhood.

In general, processes with chaotic behavior cause none or short diagonals, whereas
deterministic processes cause relatively long diagonals and less single, isolated recur-
rence points [21, 37]. In respect to JCRPs, diagonal lines usually occur when the
trajectory of two multivariate time series segments is similar according to a certain
threshold. Since we aim to measure the similarity between time series that contain
segments of similar trajectories at arbitrary positions, which in turn cause diagonal
line structures, we propose to use determinism as a similarity measure. According to
the introduced JCRP approach, a high DET value indicates high similarity or rather a
high percentage of multivariate segments with similar trajectory, whereas a relatively
low DET value suggests dissimilarity or rather the absence of similar multivariate
patterns.

However, data preprocessing like smoothing can introduce spurious line struc-
tures in a recurrence plot that cause high determinism value. In this case, further
criteria like the directionality of the trajectory should be considered to determine the
determinism of a dynamic system, e.g., by using iso-directional and perpendicular
RPs [19, 21, 23]. In contrast to traditional recurrence plots, perpendicular recur-
rence plots (PRPs) consider the dynamical evolution of only the neighborhoods in
the perpendicular direction to each phase flow, resulting in plots with lines of the
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similar width without spreading out in various directions. Removing spurious widths
makes it more reasonable to define line-based quantification measures, such as diver-
gence and determinism [3]. Another solution is to estimate the entropy by looking
at the distribution of the diagonal lines [23]. The entropy is based on the probability
p(e, ) that diagonal lines structures with certain length / and similarity € occur in
the recurrence matrix [19, 21], and can be computed as follows:

N
ENTR(€, Imin) = — D, p(e.]) In p(e,]) (12.7)

1=lmin

Recurrence plots (RPs) and corresponding recurrence quantification analysis
(RQA) measures have been used to detect transitions and temporal deviations in
the dynamics of time series. Since detected variations in RQA measures can easily
be misinterpreted, Marwan et al. [20] have proposed to calculate a confidence level
to study significant changes. They formulated the hypothesis that the dynamics of a
system do not change over time, and therefore the RQA measures obtained by the
sliding window technique will be normally distributed. Consequently, if the RQA
measures are out of a predefined interquantile range, an observation can be considered
significantly. Detecting changes in dynamics by means of RQA measures obtained
from a sliding window have been proven to be useful in real-life applications such
as comparing traffic flow time series under fine and adverse weather conditions [37].

Since recurrence plot-based techniques are still a rather young field in nonlinear
time series analysis, systematic research is necessary to define reliable criteria for
the selection of parameters, and the estimation of RQA measures [23].

12.6 Recurrence Plot-Based Distance

According to our formalization of joint cross recurrence (JCR) in Eq. 12.4 and the
denotation of the determinism (DET) in Eq. 12.5, we can define our RecuRRence
Plot-based (RRR) distance measure as follows:

RRR(€, Imin) = 1 — DET(€, Iimin) (12.8)

Since the DET value ranges from 0 to 1, depending on the proportion of diagonal
line structures found in a JCR plot, the RRR distance is O if the trajectory of both
dynamical systems is identical and 1 if there are no similar patterns at any position
in time.

Although our proposed RRR distance measure can be used as a subroutine for
various time series mining tasks, this work primarily focuses on clustering. Our aim
is to group a set of ¢ unlabeled time series 7 into k clusters C with centroids Z.
In order to evaluate the performance of the time series clustering with respect to
our RRR distance, we suggest to quantify the number of similar patterns that recur
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within the established clusters. Therefore, we define the following cluster validation
index:

E(k):ﬁ z z RRR(z, ¢) (12.9)

z€{Z} ce{C \z}

According to our problem setting, the more patterns occur jointly when comparing
each centroid z € {Z} with all objects ¢ € {C,\z} of the corresponding cluster, the
lower E, the better our clustering, and the more characteristic are the corresponding
prototypes.

Furthermore, we are going to evaluate the clustering of time series according to
the index [ [24], whose value is maximized for the optimal number of clusters:

1 E(1
0= % . Dy)? (12.10)

The index [ is a composition of three factors [24], namely 1/k, E(1)/E(k), and
Dy The first factor will try to reduce index [ as the number of clusters k increases.
The second factor consists of the ratio of E (1), which is constant for a given dataset,
and E(k), which decreases with increase in k. Consequently, index I increases as
E (k) decreases, encouraging more clusters that are compact in nature. Finally, the
third factor, Dy (which measures the maximum separation between two clusters over
all possible pairs of clusters), will increase with the value of k, but is bounded by the
maximum separation between two points in the dataset.

k
Dkzmaﬁllz,-—zj‘ll (12.11)
i,j=

Thus, the three factors are found to compete with and balance each other critically.
The power p is used to control the contrast between the different cluster configura-
tions. Previous work [24] suggests to choose p = 2.

The index I has been found to be consistent and reliable, irrespective of the
underlying clustering technique and data dimensionality, and furthermore has been
shown to outperform the Dunn and David-Bouldin index [24].

12.7 Dimensionality Reduction

As with most problems in computer science, the suitable choice of representation
greatly affects the ease and efficiency of time series data mining [15]. Piecewise
Aggregate Approximation (PAA), a popular windowed averaging technique, reduces
atime series x of length n to length n/r by dividing the data into r equal sized frames.
The mean value of the data falling within a frame is calculated and a vector of these
values becomes the data-reduced representation.
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The PAA dimensionality reduction is intuitive and simple, yet has been shown
to rival more sophisticated dimensionality reduction techniques like Fourier trans-
forms and wavelets [15]. Having transformed a time series database into PAA, we
can apply our proposed recurrence plot-based time series distance measure on the
reduced representation. Since the computational complexity of our RRR distance
measure is quadratic in the length n of the time series, reducing the original time
series to r dimensions leads to a performance improvement of factor (n/r)2. In our
experiments on the real-life vehicular data we use a compression rate of n/r = 10,
which correspond to a speedup of two orders of magnitude or rather 100 times less
matrix entries to compute. However, this approach comes with the cost of missing
recurrences [23].

12.8 Adjustment Window Condition

Another approach to reduce the computational complexity of our proposed recurrence
plot-based (RRR) time series distance measure is to constrain the number of cells
that are evaluated in the distance matrix [30]. Constraints have been successfully
applied to the Dynamic Time Warping (DTW) distance to create tight lower bounds
which allow to prune similarity calculations [8, 11]. The two most commonly used
constraints are the Itakura Parallelogram [6] and the Sakoe-Chiba Band [29], which
both speed up calculations by a constant factor, but still lead to quadratic complexity
if the window size w is a linear function of the time series.

Given the formal definition of (joint) cross recurrence (see Eqs. 12.2 and 12.4),
the Sakoe-Chiba Band is an adjustment window condition which corresponds to the
fact that time-axis fluctuations in usual cases never causes a too excessive timing
difference [29]:

li—Jjl<w (12.13)
Vx,y;eRl, i=1...N, j=1...M

In general, constraints work well in domains where time series have only a small
variance, but perform poorly if time series are of events that start and stop at radically
different times [30]. Since this study considers time series that exhibit recurring
patterns at arbitrary positions, we refrain from applying constraints for the data
under study.
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12.9 Evaluation

The goal of our evaluation is to assess how well the RRR distance is suited for: (i)
calculating the similarity between time series with order-invariance (in Sect. 12.9.1),
(ii) clustering time series that contain similar trajectories at arbitrary positions (in
Sect. 12.9.2), and (ii) identifying prototypical time series that cover as much as pos-
sible patterns which co-occur in other sequences of the dataset (in Sect. 12.9.3).

12.9.1 Order-Invariance

In this section, we demonstrate the practicality of our proposed RRR distance on a
sample dataset of synthetic time series. As illustrated in Fig. 12.2a, we consider four
different normally distributed pseudorandom time series with artificially implanted
sinus patterns. The first two time series comprise the same subsequences in reverse
order, whereas the last two time series contain a subset of the artificially implanted
signals.

Figure 12.2b illustrates the cross recurrence plot (CRP) of time series ABCD and
DCBA as well as ABCD and A**D introduced in Fig. 12.2a. Lines parallel to the
main diagonal (from upper left to bottom right corner) indicate similar subsequences
in both time series. The percentage of recurrence points that form diagonal lines is
much higher in the CRP of the time series ABCD and DCBA than in the CRP of
the pair ABCD and A**D. As discussed in Sect. 12.6, we quantify the local small-
scale structures in the recurrence plots by means of the determinism DET (refer to
Eq.12.5).

Figure 12.2c shows a direct comparison of Dynamic Time Warping and our intro-
duced RRR distance measure. As expected, the hierarchical cluster tree generated by
means of DTW indicates a relatively small distance between the time series ABCD,
A**D and *BC¥*, because they exhibit similar subsequences at the same positions.
However, DTW treats the time series DCBA as an outlier, because the artificially
implanted patterns occur in reverse order and cross-alignment is prevented. In con-
trast, the RRR measure considers the time series ABCD and DCBA as most similar,
as the order of the matched patterns is disregarded. Furthermore, the dendrogram
generated by means of RRR reveals that the time series A**D and *BC* are dissim-
ilar to ABCD and DCBA, which is due to the fact that the overlap of same or similar
subsequences is relatively small (<50 %).

The results presented in Fig. 12.2 serve to demonstrate that the proposed RRR
distance measure is able to handle time series with order-invariance. In the following,
we investigate the capability of our RRR measure to cluster time series which exhibit
same or similar subsequences at arbitrary positions in time.
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Fig. 12.2 a Sample dataset of normally distributed pseudorandom time series (named as ABCD,
DCBA, A**D and *BC#*, illustrated left) with artificially implanted sinus patterns (labeled as A-D,
presented in their occurring order on the right). b Cross Recurrence Plot (CRP) of synthetic time
series ABCD and DCBA (left) as well as ABCD and A**D (right) introduced in a. Note that
the main diagonal runs from upper left to bottom right. ¢ Agglomerative hierarchical cluster tree
(dendrogram) of synthetic time series data (introduced in a) according to the DTW distance (/eft)
and our proposed RRR distance (right), where the x-axis reveals the distance between the time
series being merged and the y-axis illustrates the corresponding name and shape of the signal
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12.9.2 Synthetic Data

This controlled experiment aims at visualizing the clustering results of the proposed
RRR distance measure compared to the DTW distance.

We generated a labeled dataset, which consists of nine time series from three
different categories, called Wave, YoYo, and Peak. Each category comprises three
time series characterized by multiple occurrence of the same artificial patterns at
arbitrary positions. The dataset consists of univariate time series of equal length,
as shown in Fig.12.3. To visualize the clustering results of the RRR and DTW
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Fig. 12.3 Univariate a and multivariate b synthetic time series with artificially implanted patterns
(red color) at arbitrary positions, where each time series belongs to one of three groups (Wave,
YoYo, and Peak)
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distance, we applied agglomerative hierarchical clustering with complete linkage on
the synthetic dataset.

Figure 12.4 illustrates the generated hierarchical cluster trees for both examined
distance measures on the synthetic time series. The first observation to be made is
that RRR perfectly recovers the cluster structure provided by the ground truth, given
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Fig. 12.4 Cluster tree (dendrogram) of univariate a and multivariate b synthetic time series (intro-
duced in Fig. 12.3) according to the DTW and RRR distance. The x-axis reveals the distance between
the time series being merged and the y-axis illustrates the corresponding name and shape of the
time series
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our knowledge that there are three categories. In contrast, the DTW distance fails and
assigns time series of different categories to the same cluster at an early stage. The
second observation to be made is that RRR is able to recover the ground truth even
if a large portion of the time series is noisy. The DTW distance, however, groups
time series into the same clusters, if they have globally a similar shape. Therefore,
the noisy parts of the time series supersede or superimpose the relevant recurring
patterns.

12.9.3 Real-Life Data

This experiment aims at assessing the time series prototypes identified by the pro-
posed RRR distance measure compared to the DTW distance.

For our evaluation, we consider the VW DRIVE dataset, which consists of 124
real-life test drives recorded by one vehicle operated by seven different individuals.
Test drives are represented as multivariate time series of varying length and com-
prise vehicular sensor data of the same observed measurements. Since we aim to
identify operations profiles that characterize recurring driving behavior, we exclu-
sively consider accelerator, speed, and revolution measurements, which are more or
less directly influenced by the driver. The complete VW DRIVE dataset contains
various other measurements, such as airflow and engine temperature, and can be
obtained by mailing the first author of this paper.

To measure the (dis)similarity of the VW DRIVE time series using our proposed
RRR distance, we first need to determine the optimal similarity threshold € and pattern
length /i for each of the considered measurements, such that a considerable amount
of the recurring patterns is preserved.

Figure 12.5 shows the determinism value for the accelerator, speed, and revolu-
tion signal in regard to different parameters settings. We can observe that for all
considered signals the DET value decreases with increasing pattern length /i, and
decreasing similarity threshold €. Furthermore, Fig. 12.5 reveals that the speed sig-
nal is highly deterministic, meaning that the same patterns occur frequently, whereas
the acceleration and revolution signal are less predictable and show more chaotic
behavior.

Since we aim to analyze all signals jointly by means of the proposed joint cross
recurrence plot (JCRP) approach, we have to choose a pattern length or rather min-
imum diagonal line length /i, that is suitable for all signals. In general, we are
looking for relatively long patterns with high similarity. In other words, we aim to
find a parameter setting with preferably large /i, and small € which results in a DET
value that is above a certain threshold. To preserve the underlying characteristics or
rather recurring patterns contained in examined data, at least 20 % of the recurrence
points should form diagonal line structures, which corresponds to DET > 0.2. Based
on this criterion, we choose liyin = 5 and € = 14/2/40 for the accelerator, speed, and
revolution signal, respectively. Note that the individual signals were not normalized,
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Fig. 12.6 Evaluation of RRR and DTW distance for clustering a univariate and b multivariate
time series of our DRIVE dataset. We compare the index E for the number of clusters k where
the (normalized) index I reaches its maximum. The results are based on 1,000 runs of k-medoids
clustering with random initialization

wherefore the e-threshold represents the accelerator pedal angle, kilometers per hour,
and rotations per minute.

To identify prototypical time series using RRR and DTW distance respectively,
we applied k-medoids clustering with random initialization. For evaluation purpose,
we computed index I and E for a varying number of k prototypes. The results of
index I were normalized in a way that the highest value, which indicates the optimal
number of clusters, equals one. Since index E is a sum of RRR values (see Eq. 12.9)
and RRR = 1 — DET, the lower E, the higher the average DET value, and the more
recurring (driving behavior) patterns are comprised of the prototypes identified by
the respective distance measure.

Figure 12.6 shows the empirical results for clustering univariate and multivariate
time series of the VW DRIVE dataset using RRR and DTW distance, respectively.
Since the VW DRIVE dataset consists of ‘only’ 124 test drives recorded by one
and the same vehicle, the optimal number of clusters for both RRR and DTW dis-
tance is rather small. However, the proposed RRR distance is able to find cluster
configurations with lower index E values or rather prototypes with higher amount
of recurring patterns than the DTW distance. In case of univariate time series (a),
in particular speed measurements, RRR and DTW achieved an index E value of
around 0.52 and 0.65 for the optimal number of clusters, which corresponds to a
determinism value of 0.48 and 0.35, respectively. In the multivariate case (b), RRR
and DTW reached an index E value of around 0.74 and 0.84 for the optimal number
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Fig. 12.7 Medoid time series of biggest cluster (with k = 2) found by our RRR distance measure
for a univariate and b multivariate case. The intervals highlighted in red color indicate patterns that
frequently recur in the time series objects of the corresponding cluster, whereas intervals in blue
indicate low recurrence

of clusters, which corresponds to determinism value of 0.26 and 0.16, respectively.
As might be expected, the results for the univariate time series are better than for
the multivariate case, because the search space expands and the probability of recur-
ring patterns decreases with an increasing number of dimensions or measurements,
respectively. In both cases, however, our RRR distance performs about 10 % better
than the compared DTW distance, meaning that the identified prototypes contain
10 % more recurring (driving behavior) patterns.

Figure 12.7 shows the prototype or rather medoid time series of the biggest cluster
found by the k-medoids algorithm (for k = 2) in combination with our RRR distance
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measure. In the univariate case (a) the medoid contains a high amount of patterns that
recur in the time series objects of the corresponding cluster, making it an excellent
prototype. As expected, in the multivariate case (b) the medoid time series contains
less and shorter intervals of recurring patterns.

12.10 Application

Having introduced our recurrence plot-based distance measure, we are eventually in
the position to present BestTime, a platform-independent Matlab application with
graphical user interface, which enables us to find representatives that best com-
prehend the recurring temporal patterns contained in a certain time series dataset.
Although BestTime was originally designed to analyze vehicular sensor data and
identify characteristic operational profiles that comprise frequent behavior patterns
[32], our extended version [36] can be used to find representatives in arbitrary sets
of single- or multi-dimensional time series of variable length.

As described above, our approach to find representatives in time series datasets
is based on agglomerative hierarchical clustering [14]. We define a representative as
the time series that is closest to the corresponding cluster center of gravity [25]. Since
we want a representative to comprehend the recurring temporal patterns contained
in the time series of the respective cluster, we need a distance measure that accounts
for similar subsequences regardless of their position in time [32].

Howeyver, as mentioned before, traditional time series distance measures, such as
the Euclidean distance (ED) and Dynamic Time Warping (DTW), are not suitable to
match similar subsequences that occur in arbitrary order [1, 4]. Hence, we proposed
to employ Recurrence Plots (RPs) and corresponding Recurrence Quantification
Analysis (RQA) [21, 38] to measure the pairwise (dis)similarity of time series with
similar patterns at arbitrary positions [34]. Above, we introduced a novel recurrence
plot-based distance measure, which is used by our BestTime tool to cluster time
series and find representatives.

In the following, we briefly describe the operation of our BestTime application
and illustrate the data processing for a small set of sample time series, see Figs. 12.8
and 12.9. Please feel free to download our BestTime tool [36] to follow the stepwise
operating instructions given below.

Input Data.  BestTime is able to analyze multivariate time series with same dimen-
sionality and of variable length. Each individual time series needs to be stored
in an independent csv (comma separated values) file, where rows correspond to
observations and columns correspond to variables. Optionally, the first row may
specify the names of the variables. The user selects an input folder that should
contain all time series in specified csv format. A small set of sample time series
that we use as input is illustrated in Fig. 12.8.
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Minimum Number of Observations. Depending on the application, the user can
optionally reduce the size of the dataset by specifying the minimum length of the
time series which should be consider for further processing.

Data Reduction Rate.  Since the computational complexity of our distance calcu-
lations is quadratic in the length of the time series, we offer the possibility to
reduce the length via piecewise aggregate approximation [4]. Given a time series
of length n and a reduction rate r, the approximate time series is of length n/r.

Minimum Pattern Length.  Asdescribed in Sect. 12.9, the predetermined minimum
pattern length /i, directly influences the time series similarity. This parameter
strongly depends on the application and needs to be chosen by a domain expert.

Variable Selection. In case of time series datasets with multiple dimensions, the
user interface of our tool offers the possibility to select the variables that should
be considered for further analysis.

Similarity Threshold. This parameter is usually very sensitive and directly influ-
ences the clustering result. Since it may be challenging to determine an appropri-
ate similarity threshold e for each variable, our tool can alternatively recommend
(estimated) thresholds.

Parallel Computing. Calculating the distance matrix is costly for large datasets.
However, this step is fully parallelized and runs almost ncpy-times faster than
serial processing. Up to 12 parallel workers are supported.

Quality Control.  Our tool presents a colored plot of the computed distance matrix
and a histogram of the distance distribution in order to ensure appropriate parame-
ter settings as well as clusters that preserve the time series characteristics. Since
both plots are updated iteratively during distance calculations, we can abort com-
putation anytime the preview suggests undesired results. For the distance matrix,
a high variance in the distances/colors indicates an appropriate parameter setting,
and a low variance in the distances/colors may result in poor clustering. In general,
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Fig.12.9 BestTime operation and data processing for finding representatives in time series datasets,
exemplified on sample time series introduced in Fig. 12.8. a Visualization of computed distance
matrix and distance distribution, which are used to ensure both appropriate parameter settings
and clusters that preserve the time series characteristics. b Clustering results which show various
validation indexes for a changing number of clusters, the list of identified representatives for a
selected number of clusters, and the cardinality of the individual clusters. ¢ Detailed view of a
representative and its corresponding pattern frequency with regard to the selected cluster
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good clustering results can be achieved when the distances do not accumulate at
either end of the interval (all close to zero or one). Figure 12.9a shows the quality
control for our sample dataset.

Clustering Validation. To support the user in choosing an optimal number of k
clusters or representatives, our tool validates the cluster goodness for changing
k according to three cluster validation indexes. Figure 12.9b shows the cluster
validation for our sample dataset.

Cluster Distribution.  The clustering may result in groups of different size. Our tool
illustrates the cluster distribution to identify outliers and emphasize prominent
groups with expressive representatives. For our sample dataset all clusters have
the same size, see Fig. 12.9b.

List of Representatives. ~ Since we aim at finding representatives, our tool does not
only show a list of identified candidates as illustrated in Fig. 12.9b, but also allows
to visualize the time intervals or patterns that co-occur in other time series of the
same cluster, see Fig. 12.9c.

Please note that we provide supplementary online material [36], which includes
our BestTime tool for finding time series representatives, real-life testing data,
a video demonstration, and a technical report.

12.11 Conclusion and Future Work

This work is a first attempt to solve time series clustering with nonlinear data analy-
sis and modeling techniques commonly used by theoretical physicists. We adopted
recurrence plots (RPs) and recurrence quantification analysis (RQA) to measure the
(dis)similarity of multivariate time series that contain segments of similar trajectories
at arbitrary positions and in different order.

Strictly speaking, we introduced the concept of joint cross recurrence plots
(JCRPs), a multivariate extension of traditional RPs, to visualize and investigate
recurring patterns in pairwise compared time series. Furthermore, we defined a recur-
rence plot-based (RRR) distance measure to cluster (multivariate) time series with
order invariance.

The proposed RRR distance was evaluated on both synthetic and real-life time
series, and compared with the DTW distance. Our evaluation on synthetic data
demonstrates that the RRR distance is able to establish cluster centers that preserve
the characteristics of the (univariate and multivariate) sample time series. The results
on real-life vehicular data show that, in terms of our cost function, RRR performs
about 10 % better than DTW, meaning that the determined prototypes contain 10 %
more recurring driving behavior patterns.

In addition, we have introduced BestTime, a Matlab tool, which implements our
RRR distance to find time series representatives that best comprehend the recurring
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temporal patterns in a corresponding dataset. Although BestTime was originally
designed to analyze vehicular sensor data [32], our extended version [36] can be
used to find representatives in arbitrary sets of single- or multi-dimensional time
series of variable length.

Worthwhile future work includes (1) the investigation of RQA measures which
quantify recurring patterns with uniform scaling, (2) the application of speed-up
techniques for RP computations, and (3) the formalization/analysis of a RP-based
distance metric.
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