
Chapter 10
A Unified View of Halogen Bonding, Hydrogen
Bonding and Other σ-Hole Interactions

Peter Politzer and Jane S. Murray

Abstract The term “σ-hole” refers to a region of diminished electronic density along
the extension of a covalent single bond to a hydrogen or an atom of Groups IV—VII.
This region often has a positive electrostatic potential through which the atom can in-
teract attractively with a negative site (such as a lone pair of a Lewis base, π electrons
or an anion) to form a noncovalent complex. Hydrogen bonding and halogen bonding
are the most prominent examples of such σ-hole interactions, although they have long
been known experimentally for Groups IV—VI as well (but without the σ-hole label).
σ-Holes result from the anisotropic charge distributions of covalently-bonded atoms.
It follows from the Hellmann-Feynman theorem that σ-hole interactions can be un-
derstood and described as Coulombic, which includes polarization and dispersion.
In the context of noncovalent interactions, charge transfer is simply a mathematical
formulation of polarization.

10.1 Noncovalent Interactions: The Chemistry
of the Twenty-First Century

Recent years have seen a remarkable surge of research activity in the area of nonco-
valent interactions. One indication of this is the number of review and perspective
papers that have appeared just since the year 2000; some of them (certainly not all)
are cited here [1–17]. Indeed, an observation made by Schneider appears thus far to
be borne out: “. . . one might assert that the chemistry of the last century was largely
the chemistry of covalent bonding, whereas that of the present century is more likely
to be the chemistry of noncovalent binding.” [18].

Much of this recent interest has focused upon what is known as “halogen bond-
ing,” a highly-directional attractive interaction that is found to occur between many
covalently-bonded halogen atoms and negative sites (lone pairs of Lewis bases, π

electrons, anions, etc.). The interest is due in part to the applications of halogen
bonding, existing and potential, in fields such as crystal engineering, molecular bi-
ology and pharmacology [5, 8, 10, 15], but it also reflects the intriguing fact that an
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electronegative halogen is attracted to a negative site. This was sometimes described
as an enigma!

Our primary focus in this chapter will be upon halogen bonding. We emphasize,
however, that this is simply a subset of a much larger category of noncovalent in-
teractions, “σ-hole bonding,” that can involve covalently-bonded atoms of Groups
IV—VI as well as Group VII (the halogens) and also includes hydrogen bonding.
The nature of the interaction is essentially the same in all of these cases, as shall be
discussed. The formation of noncovalent complexes between Group IV—VII atoms
and negative sites has been known to experimentalists for decades, although the
unifying σ-hole interpretation is of more recent origin.

10.2 Some Historical Background

A very early example of what we now call halogen bonding was the report, in 1814,
of an interaction between iodine and ammonia [19]. The product was later purified
by Guthrie [20] and formulated as I2·NH3. Additional complexes of Cl2, Br2 and
I2 with amines were subsequently observed [21, 22], as well as an adduct between
iodoform and quinoline [23].

The twentieth century saw many more R-X—B systems being identified, where
RX is a halide molecule and B is a Lewis base; a number of these studies are
cited by Blackstock et al [24]. Of particular note was the spectral characterization
of complexes of molecular iodine with benzene and other aromatic hydrocarbons
by Benesi and Hildebrand [25, 26]. Their observations were a factor in Mulliken’s
development of his “charge-transfer” formalism [27], which is frequently invoked
as a mathematical (but not physical) description of noncovalent bonding. However
Mulliken incorrectly suggested that in the I2—C6H6 complex, the I2 axis is parallel
to the benzene plane.

Important advances in elucidating the structure of halogen bonding have come
through crystallography. In the 1960’s, Hassel and his colleagues determined the
crystal structures of a number of complexes between organic halides and oxy-
gen/nitrogen Lewis bases; this work contributed to his receiving the Nobel Prize
in 1969. These studies showed the crystals to be composed of chain-like structures
held together by weak X–B bonds, e.g. 1 [28]. For a review, see Bent [29]. At about the
same time, attractive Br—O intermolecular interactions were found in solid POBr3

[30] and Cl—O in solid POCl3 [31].
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A few years later, Murray-Rust et al conducted extensive surveys of halide (RX;
X = Cl, Br, I) crystal structures, using the Cambridge Structural Database [32–34].
Their objective was to identify close contacts between halogen atoms and atoms of
neighboring molecules. Close contact was defined as being less than the sum of the
respective van derWaals radii, and was taken to reflect an attractive interaction.A very
significant pattern was revealed: Close contacts of halogen atoms with electrophilic
sites, such as metal ions, were primarily at angles of 90–120◦ relative to the R–X
bond (2); close contacts with nucleophilic sites, e.g. nitrogens and oxygens, tended
to be nearly linear, the angles being 160–180◦ (3).

R X

electrophile (positive site)

2

R X nucleophile (negative site)

3

Thus a given halogen atom can interact favorably, but in different directions, with
both positive and negative sites.

The near-linear interactions of covalently-bonded halogens with nucleophiles, as
in 3, are what we call halogen bonding, R-X—B. To our knowledge, this term was
first used in 1976 [35, 36]. In the past, halogen bonding was sometimes viewed
as very puzzling, since univalent halogens are generally regarded as being negative
in character; how then can they be attracted to negative sites? This question was
answered in 1992, as shall be discussed in Sect. 10.3.2.

During the last two decades, the practical significance and potential applica-
tions of halogen bonding have increasingly been recognized. Imakubo et al prepared
semiconducting crystals and a superconductor by linking iodine-containing organic
sulfides via negative ions (acting as the bases) [37, 38]. An important development
was the realization that the role of halogen bonding in formulating new materials is en-
hanced if the halogen-containing molecule also contains strongly electron-attracting
groups, e.g. perfluorination [39]. This helped to stimulate a great deal of activity in
the area of crystal engineering, with applications in electronics, nonlinear optical
activity, magnetic materials, liquid crystals, etc. [5, 8, 10, 40–42]. Catalysis through
halogen bonding is also being explored [43, 44].

In chemical biology as well, there is a growing awareness of the importance of
halogen bonding. A milestone was the survey of the Protein Data Bank by Auffinger
et al [45], revealing C-X—O close contacts (X = Cl, Br, I); it was subsequently
expanded by Lu et al to C-X—Y (X = Cl, Br, I; Y = O, N, S) [46]. Such interactions
are now known to affect protein-ligand binding, recognition and assembly processes,
docking, conformational stability, protein folding, etc. [5, 15, 41, 47], and are being
exploited in drug design.

During roughly the same years as the surveys of halide crystal structures by
Murray-Rust et al [32–34], discussed above, analogous studies of close contacts in
organic sulfides and selenides were being carried out [48–50]. Very similar results
were obtained. Electrophilic sites interacted with the lateral sides of the sulfur or
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selenium (4), while interactions with nucleophiles were close to linear, along the
extensions of the R1–S(Se) and/or R2–S(Se) bonds (5). Some of the close contacts
were between a sulfur in one molecule and the same sulfur in another identical
molecule [49], i.e. “like attracting like” (6); the interactions were linear for one of
the sulfurs and lateral for the other.

R1
S(Se)

electrophile (positive site)

4

R2

R1 (Se)
S

nucleophile (negative site)
5
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10.3 The Electrostatic Potential and the σ-Hole

All of these observations were explained and the “enigma” of halogen bonding was
resolved in 1992—through the analysis of molecular electrostatic potentials. We will
accordingly give some brief background concerning this property.

10.3.1 The Electrostatic Potential

The nuclei and electrons of a molecule (or other system) create an electrostatic
potential V(r) at each point r in the surrounding space:

V(r) =
∑

A

ZA

|RA − r| −
∫

ρ(r′)dr′

|r′ − r| (10.1)

In Eq. (10.1), which is simply one form of Coulomb’s Law, ZA is the charge on
nucleus A, located at RA, and ρ(r) is the molecule’s electronic density distribution.
V(r) is positive or negative in any given region depending upon whether the effects
of the positive nuclei or the negative electrons are dominant there.

If a point charge Q is placed at r, then its interaction energy �E with the molecule’s
nuclei and electrons is,

�E = QV(r) (10.2)
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If Q and V(r) have the same sign (positive or negative), then �E > 0 and the inter-
action is repulsive; if they have opposite signs, then �E < 0 and the interaction is
attractive.

The electrostatic potential is accordingly an effective means of predicting close
contacts and noncovalent interactions [51–53]. In general, regions of positive V(r)
tend to interact favorably (at least initially) with negative sites and negative V(r) with
positive sites. (A more detailed analysis needs to take polarization into account, as
shall be discussed.)

We want to emphasize that the electrostatic potential is a real property of a system,
a physical observable. It can be determined experimentally by diffraction methods
[54–56], as well as computationally.

When V(r) is used for interpreting and predicting noncovalent interactions,
it is typically computed on the molecular “surface” defined by the 0.001 au
(electrons/bohr3) contour of the molecule’s electronic density ρ(r). This was sug-
gested by Bader et al [57] as a reasonable representation of a molecular surface;
it encompasses roughly 97 % of the electronic charge and reflects specific features
such as lone pairs, π electrons and atomic anisotropies. V(r) on the 0.001 au surface
is labeled VS(r), and its locally most positive and most negative values (of which
there may be several) are designated by VS,max and VS,min, respectively.

10.3.2 The σ-Hole

In 1992, Brinck et al reported something quite unexpected [58]: covalently-bonded
halogens with regions of positive electrostatic potential on their outer sides, on the
extensions of the covalent bonds. The lateral sides of the halogens were negative, as
anticipated. Additional studies in the next two years produced similar results [59, 60].
See, for instance, Fig. 10.1; the outer sides of the bromines, on the extensions of the
C–Br bonds, have positive VS(r) while the lateral sides of the bromines are negative
(although less so after perfluorination).

Such positive outer regions appear to contradict the common view that univalent
halogens are negative in character. However, as Brinck et al pointed out [58, 59],
these findings do provide an immediate explanation of halogen bonding and of the
patterns of crystallographic close contacts observed by Murray-Rust et al [32–34],
i.e. structures 2 and 3. Halogen bonding is the attractive interaction between the
positive outer portion of the halogen and a negative site. Since the positive region
on the halogen surface is on the extension of the covalent bond to the halogen, the
same will be true of the interaction with the negative site; it will be near-linear, as
shown in 3. The halogen can also interact favorably with positive sites through its
negative lateral sides, as in 2 (except for occasional instances in which the halogen’s
entire surface is positive). Some years later, Auffinger et al [45] and Awwadi et al
[61] presented analogous intepretations of halogen bonding.

In 2007, the term “σ-hole” was introduced to denote the outer regions of positive
potential on univalent halogens [62, 63]. The name reflects their being along the
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Fig. 10.1 Computed
electrostatic potentials on
0.001 au molecular surfaces
of a 1,4-dibromo-n-butane
and b 1,4-dibromoperfluoro-
n-butane. Bromines are at far
left and far right. Black
hemispheres indicate positive
potential maxima on
bromines, on extensions of
C–Br bonds. Color ranges, in
kcal/mol: red, greater than 25;
yellow, between 25 and 15;
green, between 15 and 0;
blue, less than 0 (negative).
Note that bromines become
more positive after
perfluorination.
Computational level:
M06-2X/6-311G(d, p)

extensions of σ bonds. As will be pointed out, however, σ-holes can sometimes also
have negative potentials.

At about the same time that regions of positive potential were found on the exten-
sions of covalent bonds to halogens [58–60], an analogous discovery was made for
divalent sulfur. In a computational analysis of the heterocycle 7 [64], Burling and
Goldstein showed that the sulfur has positive potentials on the extensions of the C–S
bonds, with negative ones on its lateral sides. It was noted that this is consistent with
the crystallographically-revealed patterns of close contacts in divalent sulfides and
selenides [48–50], structures 4–6; it also explains intramolecular S—O and Se—O
close contacts that stabilize certain biologically-active thiazole and selenazole con-
formations [64]. (See also a later computational study involving other substituted
sulfur—and selenium-containing heterocycles [65].) The basis for “like attracting
like,” 6, now becomes apparent—for halides as well as for sulfides and selenides:
The positive outer region on one of these atoms interacts favorably with a negative
side of the same atom in another, identical molecule, as in 6.
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Fig. 10.2 Computed electrostatic potential on 0.001 au molecular surface of HSeCN. The selenium
is in the foreground, cyano group at the right. Black hemispheres indicate selenium positive σ-
holes on extensions of C–Se and H–Se bonds, the former being more positive. Color ranges, in
kcal/mol: red, greater than 25; yellow, between 25 and 15; green, between 15 and 0; blue, less than
0 (negative). Computational level: M06-2X/6-311G(d, p)

N

S

7

What Burling and Goldstein described are simply more examples of what are now
called positive σ-holes: Regions of positive electrostatic potential on the outsides of
singly-bonded atoms, along the extensions of the covalent bonds. Between 2007 and
2009, numerous positive σ-holes were found computationally on atoms of Groups
IV—VI as well as Group VII (the halogens); this work in summarized in several
reviews [11, 15, 16]. Through these regions, the atoms can interact favorably with
negative sites (lone pairs of Lewis bases, π electrons, anions, etc.), forming non-
covalent complexes. This is σ-hole bonding, of which halogen bonds are a subset.
The interactions are highly directional, close to linear, along the extensions of the
covalent single bonds to the atoms (see 3 and 5).

Since Group IV—VI atoms can form four, three and two single bonds (or more if
hypervalent [66, 67]), they can have the same numbers of σ-holes on the extensions
of these bonds. This can be seen in Figs. 10.2, 10.3 and 10.4, which show that the
σ-holes on a given atom can have different potentials, depending upon the partners
in the bonds that gave rise to the σ-holes.

Some reports in the recent literature describe noncovalent interactions between
Group IV—VI atoms and negative sites as new discoveries. This is incorrect (an error
of which we have also been guilty [68]). Experimentalists have been familiar with
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Fig. 10.3 Computed
electrostatic potential on
0.001 au molecular surface of
PF2Br. The phosphorus is in
the foreground, bromine at
top. Black hemispheres
indicate phosphorus positive
σ-holes on extensions of Br–P
and F–P bonds, the former
being more positive. Color
ranges, in kcal/mol: red,
greater than 25; yellow,
between 25 and 15; green,
between 15 and 0; blue, less
than 0 (negative).
Computational level:
M06-2X/6-311G(d, p)

them for decades, as is well documented in two reviews [16, 69]. What is new is the
unifying σ-hole interpretation of a great many of these interactions [11,14–17].

10.4 Origins of σ-Holes

10.4.1 Anisotropies of Covalently-Bonded Atoms

The electronic density of a free neutral atom is, on the average, spherically-
symmetrical [70]. The electrostatic potential V(r) due to its nucleus and electrons
is positive for all r < ∞ [71], the effect of the nucleus dominating over that of the
dispersed electrons. When two atoms begin to interact, at large separations, the elec-
tronic density of each of them becomes somewhat polarized toward the other [72], in
response to the electric field of the latter. This results in the electronic density being
less on the outer side of each atom (along the internuclear axis) than on its lateral
sides. These diminished outer electron densities are incipient σ-holes!

As the atoms continue to approach and to interact in forming a covalent single
bond, there is further redistribution of electronic densities, depending upon the atoms’
relative polarizabilities and electronegativities. However the σ-holes continue to have
lesser electronic densities than the surrounding portions of the atoms. It is indeed
well established that covalently-bonded atoms have anisotropic charge distributions
[14, 17, 49, 50, 61, 73–79]; their “radii” are less along the extensions of single bonds
than perpendicular to them. For example, in the bromines in Fig. 10.1a, the distances
to the 0.001 au surface are 2.06 Å along the extensions of the C–Br bonds and 2.28
Å in the perpendicular directions. In Fig. 10.1b, the same distances are 2.02 Å and
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Fig. 10.4 Two views of the
computed electrostatic
potential on the 0.001 au
molecular surface of SiH3CN.
In a the silicon is in the
foreground, cyano group at
right. In b a hydrogen is in
the foreground, cyano group
at top. Black hemispheres
indicate silicon positive
σ-holes on extensions of C–Si
and H–Si bonds, the former
being more positive. Color
ranges, in kcal/mol: red,
greater than 25; yellow,
between 25 and 15; green,
between 15 and 0; blue, less
than 0 (negative).
Computational level:
M06-2X/6-311G(d, p)

2.24 Å. These values show the effect of the fluorines in attracting electronic density
from the bromines.

The electronic density in a σ-hole is often sufficiently low that a positive electro-
static potential VS(r) results (Figs. 10.1, 10.2, 10.3 and 10.4). This is then a positive
σ-hole, and favorable interactions with negative sites can be anticipated. In some in-
stances, on the other hand, the electronic density in the σ-hole is high enough that its
VS(r) is negative, i.e. a negative σ-hole, although less negative than its surroundings;
see Fig. 10.5a. Examples of the VS,max of both positive and negative σ-holes are in
Table 10.1 for the halogens [80, 81] and in Table 10.2 for Group IV—VI atoms [81].
The tables also give the most negative potentials (VS,min) on these atoms.

It is very important to keep in mind, however, that the VS(r) computed for a free
molecule in its unperturbed ground state, e.g. Figs. 10.1, 10.2, 10.3, 10.4 and 10.5,
does not reflect the polarization induced by the electric field of another molecule
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Fig. 10.5 Two views of the
computed electrostatic
potential on the 0.001 au
molecular surface of FOH. In
a the fluorine is in the
foreground; the black
hemisphere indicates its
σ-hole, which is negative, on
the extension of the O–F
bond. In b the hydrogen is to
the left; the black hemisphere
on the hydrogen indicates the
positive σ-hole on the
extension of the O–H bond.
Color ranges, in kcal/mol:
red, greater than 30; yellow,
between 30 and 0; green,
between 0 and—8; blue, more
negative than—8.
Computational level:
M06-2X/6-311G(d, p)

when they begin to interact. It has been demonstrated [82, 83] that polarization due
to an external field can strengthen or weaken a σ-hole, and can sometimes convert it
from negative (positive) to positive (negative). Thus one can occasionally find that
a σ-hole complex forms even though the σ-hole may have been negative or near-
neutral prior to the interaction; the negative site induced the positive σ-hole [84].
Some examples are H3C-Cl—O = CH2 [85] and H3P—NSH [86], in which positive
σ-holes were induced on the chlorine of H3C–Cl and the phosphorus of H3P.
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Table 10.1 Most positive σ-hole potentials (VS,max) and most negative potentials (VS,min) on 0.001
au surfaces of the halogens shown in bold type, in kcal/mol. Computational method:M06–2X/6-
311G(d, p)

Molecule Bond producing σ-hole VS,max (σ-hole) VS,min Reference

HO–F O–F − 6.9 − 19.7 Present work

F–F F–F 11.2 − 2.6 17

F–Cl F–Cl 45.1 + 0.3 80

F–Br F–Br 53.2 − 0.1 80

Cl–Cl Cl–Cl 25.4 − 2.7 80

Br–Br Br–Br 29.0 − 4.1 80

H3C–F C–F − 24.6 − 25.3 Present work

H3C–Cl C–Cl − 0.9 − 15.6 Present work

H3C–Br C–Br 5.6 − 14.8 Present work

Br–(CH2)4–Br C–Br 5.8 − 13.5 Present work

F3C–F C–F − 1.3 − 2.8 81

F3C–Cl C–Cl 19.9 − 0.8 81

F3C–Br C–Br 25.3 − 2.0 81

Br–(CF2)4–Br C–Br 26.3 − 1.7 Present work

F3C–I C–I 31.9 − 1.9 81

NC–F C–F 12.8 10.9 17

NC–Cl C–Cl 36.0 10.3 17

NC–Br C–Br 42.7 8.6 17

NC–I C–I 48.7 7.1 17

H3Si–Br Si–Br 0.2 − 11.9 Present work

H3Ge–Br Ge–Br − 2.1 − 13.7 Present work

H2P–Br P–Br 3.5 − 14.3 Present work

F2P–Br P–Br 9.6 − 7.6 80

Cl–C≡C–Cl C–Cl 23.7 − 0.6 Present work

Br–C≡C–Br C–Br 30.1 − 2.1 17

C6H5–Cl C–Cl 4.5 − 13.7 Present work

C6H5–Br C–Br 10.2 − 13.7 Present work

10.4.2 Trends in σ-Hole Potentials

Since σ-holes are created by the shifting of electronic charge away from the outer
portion of a singly-bonded atom, it is reasonable that the σ-hole electrostatic poten-
tial should become more positive as the atom is more polarizable and as it is less
electronegative relative to the remainder of the molecule (particularly its bonding
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Table 10.2 Most positive σ-hole potentials (VS,max) and most negative potentials (VS,min) on 0.001
au surfaces of the Group IV—VI atoms shown in bold type, in kcal/mol. Computational method:
M06-2X/6-311G(d, p). The data are from the present work except as otherwise indicated

Molecule Bond producing σ-hole VS,max (σ-hole) VS,min

FOBr F–O 10.5 − 11.7

Br–O −3.4 − 11.7

FSBr F–S 35.9 − 4.0

Br–S 27.2 − 4.0

FSeBr F–Se 43.5 − 4.9

Br–Se 35.2 − 4.9

HSeCN H–Se 26.4 − 2.3

C–Se 43.5 − 2.3

F2NBr F–N 13.2 − 9.4

Br–N 11.8 − 9.4

H2PBr H–P 18.6 − 9.3

Br–P 35.0 − 9.3

F2PBr F–P 32.3 11.4

Br–P 35.1 11.4

F2AsBr F–As 39.7 20.9

Br–As 38.6 20.9

F3CBr F–C 16.0a nonea

Br–C 21.6a nonea

F3SiBr F–Si 39.0a nonea

Br–Si 45.0a nonea

F3GeBr F–Ge 45.3a nonea

Br–Ge 44.5a nonea

H3SiCN H–Si 26.8 none

C–Si 37.7 none

aReference 81

partner). Two common generalizations are [11,15–17]: (1) Within a given Group and
for a particular molecular framework, the σ-hole potential (VS,max) tends to become
more positive in going from the lighter to the heavier (more polarizable and less
electronegative) atoms, and (2) for a given atom, VS,max increases as the remainder
of the molecule becomes more electron-attracting. These are useful empirical gen-
eralizations; supporting evidence can be seen in Tables 10.1 and 10.2. They explain,
for example, why much of the early crystal engineering involving halogen bonding
focused upon iodine, but in perfluorinated molecules [5, 8, 39]. Figure 10.1 and
Table 10.1 show that perfluorination of the carbon chain of 1,4-dibromo-n-butane
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increases the bromine VS,max from 5.8 to 26.3 kcal/mol. The empirical generaliza-
tions also account for the fact that changing the bonding partner of bromine from
the more electronegative carbon to silicon and germanium (in H3C–Br, H3Si–Br
and H3Ge–Br) causes the bromine σ-hole VS,max to become less positive and even
negative (Table 10.1).

The first-row atoms N, O and F, being least polarizable and most electronegative,
often have negative σ-holes (Fig. 10.5). It was indeed believed at one time that
fluorine does not halogen bond. However it is well established since 2007 that fluorine
can have a positive σ-hole and can participate in halogen bonding when it is in a
sufficiently electron-attracting molecular environment [87–89]. In FCN, in fact, the
portion of the molecular surface that is associated with the fluorine is entirely positive
[87]; this is true as well of the other halocyanides (Table 10.1), demonstrating that
positive σ-holes are not always surrounded by negative regions but sometimes simply
by less positive ones. It has also been known since 2007–2009 that carbon [67],
nitrogen [68] and oxygen [90] can also have positive σ-holes in appropriate molecular
environments, and participate in σ-hole interactions. In the case of tetravalent Group
IV atoms (which have no lone pairs), we have customarily found their entire exposed
surfaces to be positive [67, 81].

It must be acknowledged that the generalizations concerning trends in σ-hole po-
tentials, mentioned above, are somewhat oversimplified (although frequently valid).
Consider, for instance, the molecule F2PBr in Table 10.2 and Fig. 10.3. The phospho-
rus σ-hole produced by the bond to the bromine is more positive than that due to the
bond to the fluorine, despite the fluorine’s greater electronegativity. A detailed anal-
ysis [80] has shown that it is not only the polarizability and relative electronegativity
of the σ-hole atom that are involved, but also the polarizability and electron-attracting
power of the remainder of the molecule, plus factors such as overlapping with the
electrostatic potentials of other parts of the molecule.

10.4.3 Covalently-Bonded Hydrogen

σ-Holes are not necessarily limited to singly-bonded atoms of Groups IV—VII. In
particular, we must consider covalently-bonded hydrogen. Its electronic charge dis-
tribution, which involves just a single electron, is certainly anisotropic; it is centered
in the internuclear region. This is why standard crystallographic techniques under-
estimate the lengths of covalent bonds to hydrogens [91, 92]. Accordingly, there is
generally a positive σ-hole on the outer side of a hydrogen. This was in fact ob-
served for the hydroxyl hydrogen in ethanol already in 1991 [93], although it was
not labeled a σ-hole. Figure 10.5b clearly shows the hydrogen σ-hole in FOH. In
some instances, as in Fig. 10.4b, a VS,max is not found on a hydrogen surface because
the hydrogen’s positive potential is overlapped by that of a larger neighboring atom.
In Fig. 10.1a, the hydrogens do have VS,max but they are not shown explicitly. The
interactions of such positive regions with negative sites readily explains hydrogen
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bonding as a σ-hole interaction [14, 15, 94, 95]; indeed, electrostatic interpretations
of hydrogen bonding long preceded the discovery of σ-holes [55,93,96–100].

Since hydrogen has only the one valence electron, its lateral sides have relatively
low electronic densities and the positive σ-hole usually covers a larger area than is
typical of the Group V—VII atoms. Thus hydrogen σ-holes are less focused, as can
be seen in Fig. 10.5b and in earlier reports [11, 15, 17, 94, 101]. It is accordingly
not surprising that hydrogen bonds are overall less directional than are other σ-hole
bonds [94, 102, 103].

10.5 σ-Hole Interactions

10.5.1 Interaction Energies

Attractive interactions between positive σ-holes and negative sites can give rise to
numerous noncovalent complexes. Some examples are presented in Table 10.3 for
the complexes R-X—B, R-Y—B and R-H—B, where X is a halogen, Y is a Group
IV—VI atom and B represents the negative sites; in Table 10.3, these are the lone
pairs of NH3, HCN, (H3C)2O and H2S, the π electrons of C6H6, and the Br− ion. The
table includes theVS,max of the σ-holes, theVS,min of the negative sites, the interaction
energies �E, the angles R-X—B, R-Y—B and R-H—B and the separations X—B,
Y—B and H—B. The interaction energies were obtained with Eq. (10.3),

�E = E(complex) −
2∑

i= 1

E(component i) (10.3)

Table 10.3 confirms that the X—B,Y—B and H—B distances are less than or similar
to the sums of the respective van der Waals radii [104, 105]. The interactions are
approximately linear, i.e. along the extensions of the R–X, R–Y and R–H bonds. De-
viations from linearity generally reflect secondary interactions involving neighboring
atoms; this is illustrated in Figs. 10.6 and 10.7.

In view of the structural similarity between halogen and hydrogen bonds (both
are due to positive σ-holes on univalent atoms), it is natural to compare them. For
a given R and B, the R-H—B interaction is generally stronger than the R-X—B
(�E more negative) when X = F or Cl, but they become competitive when X =
Br or I, with halogen bonding sometimes being stronger [106–108]. Compare, for
instance, the �E values for F3C-H—NH3 (−4.2 kcal/mol), F3C-Cl—NH3 (−2.5
kcal/mol) and F3C-Br—NH3 (−3.7 kcal/mol) in Table 10.3. Instances of halogen
bonding dominating over hydrogen bonding have long been observed experimentally
[109, 110].
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Table 10.3 Computed data for various types of σ-hole complexes. Interaction energies �E and
geometries were obtained by optimizations with the M06-2X/aug-cc-pVTZ procedure. σ-Hole
VS,max and negative site VS,min, prior to interaction, were calculated at the M06-2X/6-311G(d) level

Complex Negative Separationa (Å) Angle (degrees)

σ-Hole site

�E VS,max VS,min

(kcal/mol)

Halogen-bonded:

F-F—NH3 − 1.5 11.2 − 46.7 F—N: 2.60 (3.05) F-F—N: 177

F3C-Cl—NCH − 1.6 19.9 − 33.5 Cl—N: 3.13 (3.35) C-Cl—N: 179

F-F—O(CH3)2 − 1.8 11.2 − 34.8 F—O: 2.48 (3.00) F-F—O: 169

Br2C =
CBr(Br)—NCH

− 2.1 24.1 − 33.5 Br—N: 3.09 (3.46) C-Br—N: 178

F3C-Cl—NH3 − 2.5 19.9 − 46.7 Cl—N: 3.03 (3.35) C-Cl—N: 180

Br-C≡C-Br—NCH − 2.7 30.1 − 33.5 Br—N: 3.05 (3.46) C-Br—N: 180

Cl-Cl—SH2 − 2.9 25.4 − 20.2 Cl—S: 3.13 (3.53) Cl-Cl—S: 178

F3C-Br—NH3 − 3.7 25.3 − 46.7 Br—N: 3.07 (3.46) C-Br—N: 180

N≡C-Cl—O(CH3)2 − 4.0 36.0 − 34.8 Cl—O: 2.77 (3.30) C-Cl—O: 169

Br-C≡C-Br—
O(CH3)2

− 4.1 30.1 − 34.8 Br—O: 2.86 (3.41) C-Br—O: 172

Br-C≡C-Br—NH3 − 4.2 30.1 − 46.7 Br—N: 2.99 (3.46) C-Br—O: 180

F-Br—NCH − 7.1 53.2 − 33.5 Br—N: 2.60 (3.46) F-Br—N: 180

F3C-Cl—Br− − 8.8 19.9 − 136.4 Cl—Br: 3.19
(3.59)

C-Cl—Br: 179

F3C-Br—Br− − 12.9 25.3 − 136.4 Br—Br: 3.09
(3.70)

C-Br—Br: 180

Group IV-VI σ -hole-bonded:

Cl2Se—NCH − 4.0 36.1 − 33.5 Se—N: 2.92 (3.51) Cl-Se—N: 179

H2FP—SH2 − 4.1 38.8 − 20.2 P—S: 3.25 (3.59) F-P—N: 166

H3FSi—NCH − 4.2 34.7 − 33.5 F—Si: 2.89 (3.54) F-Si—N: 180

F2S—NCH − 4.5 40.2 − 33.5 S—N: 2.79 (3.40) F-S—N: 174

H2FP—NCH − 4.7 38.8 − 33.5 P—N: 2.81 (3.41) F-P—N: 164

H3FGe—NCH − 4.9 43.0 − 33.5 Ge—N: 2.89 (–) F-Ge—N: 180

HFS—SH2 − 5.0 45.9 − 20.2 S—S: 3.08 (3.58) F-S—S: 170

H2FAs—NCH − 5.7 44.5 − 33.5 As—N: 2.82 (3.46) F-As—N: 163

H2FP—NH3 − 7.2 38.8 − 46.7 P—N: 2.71 (3.41) F-P—N: 167

HFS—NH3 − 8.4 45.9 − 46.7 S—N: 2.48 (3.40) F-S—N: 170

H2FAs—NH3 − 8.7 44.5 − 46.7 As—N: 2.73 (3.46) F-As—N: 165

ClF3Si—NH3 − 10.5 47.6 − 46.7 Si—N: 2.07 (3.71) Cl-Si—N: 180

HFSe—NH3 − 11.3 50.9 − 46.7 Se—N: 2.51 (3.51) F-Se—N: 170
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Table 10.3 Continued

Complex Negative Separationa (Å) Angle (degrees)

σ-Hole site

�E VS,max VS,min

(kcal/mol)

Hydrogen-bonded:

NC–H—SH2 − 2.6 51.3 − 20.2 H—S: 2.71 (2.88) C-H—S: 178

F3C-H—NCH − 3.0 34.8 − 33.5 H—N: 2.39 (2.70) C-H—N: 178

H3CO-H—SH2 − 3.1 44.4 − 20.2 H—S: 2.53 (2.88) O-H—S: 168

H3CO-H—NCH − 4.1 44.4 − 33.5 H—N: 2.13 (2.70) O-H—N: 160

F3C-H—NH3 − 4.2 34.8 − 46.7 H—N: 2.31 (2.70) C-H—N: 178

NC-H—NCH − 4.7 51.3 − 33.5 H—N: 2.21 (2.70) C-H—N: 180

H3CO-H—C6H6 − 4.8 44.4 − 19.4 b b

NC-H—NH3 − 6.6 51.3 − 46.7 H—N: 2.11 (2.70) C-H—N: 180

H3CO-H—NH3 − 6.7 44.4 − 46.7 H—N: 1.96 (2.70) O-H—N: 176

F3C-H—Br− − 14.0 34.8 − 136.4 H—Br: 2.45 (2.94) C-H—Br: 180

H3CO-H—Br− − 14.5 44.4 − 136.4 H—Br: 2.34 (2.94) O-H—Br: 160

NC-H—Br− − 19.5 51.3 − 136.4 H—Br: 2.29 (2.94) C-H—Br: 180

aValues in parentheses are the sums of the van der Waals radii of the interacting atoms, references
104 and 105. No van der Waals radius was found for germanium
bThe hydroxyl hydrogen is above the center of the benzene ring, and thus is not directly in line with
any particular atom

10.5.2 Interaction Energy Relationships

Since we consider σ-hole interactions to be electrostatic, does it follow that the
�E values should correlate directly with the magnitudes of the VS,max and VS,min?
Not necessarily, for several reasons. First, the attractive interactions are not simply
between a single point on the σ-hole (the VS,max) and a single point on the negative
site (the VS,min); the whole σ-hole and negative regions can participate, as was shown
by Shields et al [94]. Furthermore, interactions involving the remaining portions of
the molecules may be significant (Figs. 10.6 and 10.7) [65, 81, 111]. Second, as
pointed out in Sect. 4.1, the VS,max and VS,min are for the unperturbed molecules,
prior to interaction, and do not reflect their mutual polarizing effects; these can be
quite important, as shall be seen.

Despite these potential complications, which can be real, �E has been related—
perhaps surprisingly well—to VS,max and to combinations of VS,max and VS,min. When
the negative site is kept the same, good correlations have been obtained between �E
and the VS,max of the σ-holes [15, 16, 83, 111, 112]; as VS,max is more positive, �E
tends to become more negative (stronger interaction). For instance, plots of �E vs.
VS,max for two series of Group IV—VII complexes with NH3 and with HCN had R2 of
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Fig. 10.6 Optimized geometries of Br-C≡C-Br—O(CH3)2 (top) and H3CO-H—NCH (bottom).
Carbons are gray, nitrogen blue, oxygens red, bromines burgundy and hydrogens white. The C-
Br—O and O-H—N angles are 172.4 and 160.4◦, respectively. Possible reasons for the deviations
of these angles from 180◦ are the secondary interactions of methyl hydrogens with the negative
sides of the bromine in the top structure and with the nitrogen lone pair in the bottom structure.
Computational level: M06-2X/aug-cc-pVTZ

0.95 and 0.98, respectively [16]. When different negative sites are involved, then both
the VS,max and the VS,min must be taken into account. Thus when the aforementioned
complexes with NH3 and HCN were taken together and �E was plotted against the
product of the σ-hole VS,max and the negative site VS,min, an R2 of 0.96 was obtained.

We have now carried out a double regression analysis encompassing all 39 com-
plexes in Table 10.3, thereby including σ-hole interactions of hydrogens, halogens
and Groups IV—VI with six different negative sites. �E was expressed as,

�E = c1VS,max + c2VS,min + c3 (10.4)

The relationship between the predicted and the computed�E is presented in Fig. 10.8;
the R2 is 0.91, which is noteworthy considering the varied nature of the database.
(When the �E in Table 10.3 are correlated with the product of VS,max and VS,min, R2

is 0.88. While using the product may appear to be more consistent with Coulomb’s
Law, this is actually not the case, since VS,max and VS,min are potentials, not charges.)
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Fig. 10.7 Optimized
geometries of HFS—SH2

(top) and H2FAs—NH3

(bottom). Fluorines are light
blue, nitrogen royal blue,
sulfurs yellow, arsenic
lavender and hydrogens
white. The F-S—S and
F-As—N angles are 169.5
and 165.0◦, respectively.
Possible reasons for the
deviations of these angles
from 180◦ are the secondary
interactions of the HFS
hydrogen with a negative side
of the sulfur in the top
structure and the hydrogens
of H2FAs with the nitrogen
lone pair in the bottom
structure. Computational
level: M06-2X/aug-cc-pVTZ

In a variation of these studies, Shields et al looked at �E as a function of the
positive potentials that would be created by the isolated R–H and R–Br molecules
at the positions of the nitrogens in two series of complexes: (a) R-H—NCH and
R-Br—NCH, and (b) R-H—NH3 and R-Br—NH3 [94]. This was done for R-H—
N and R-Br—N angles ranging from 100 to 180◦. For each series, �E correlated
linearly and extremely well with the positive potentials at the nitrogen positions at
the different angles; R2 was 0.986 for the NH3 complexes and 0.990 for the HCN.
All of the interactions had negative �E, confirming that the entire σ-hole region can
participate.

10.5.3 Thermodynamic Stability

We have discussed the energetics of σ-hole complex formation in terms of the inter-
action energies �E, as is customary. From a thermodynamic standpoint, however,
stability is governed by the free energy change �G; at a given absolute temperature T,

�G = �H − T�S (10.5)

where �H and �S are the changes in enthalpy and entropy that accompany the
formation of the complex. For thermodynamic stability, �G must be negative.

For a noncovalent interaction A + B → A—B in the gas phase at T = 298 K, �H
is normally within 1 kcal/mol of �E [16, 113], and if the interaction is attractive,
as in Table 10.3, then �E < 0 and �H < 0. �S is also typically negative, because
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Fig. 10.8 Plot of �E predicted by double regression analysis, Eq. (10.4), vs. �E computed with
Eq. (10.3) for the σ-hole complexes in Table 10.3. R2 = 0.91

forming the complex diminishes the degrees of freedom of A and B. This can result
in |T�S| > |�H|, so that �G > 0 and the complex is thermodynamically unstable
despite the interaction being attractive and having �E < 0 and �H < 0.

It has been found that �G > 0 for many σ-hole complexes in the gas phase at 298
K [16, 113, 114]; it is only the relatively strong interactions that have |�H| > |T�S|
and therefore �G < 0. It should be kept in mind, however, that �G > 0 does not
completely preclude an interaction; it simply means that the equilibrium constant is
less than one.

When the interaction takes place in solution or in the solid state, additional factors
are involved that may lead to �G < 0 even when �G > 0 for the gas phase com-
plex. For example, the halogen-bonded solid —Cl-C(O)-C(O)-Cl—1,4-dioxane—
was characterized crystallographically already in 1965 [115], although its gas phase
�G(298 K) has been computed to be + 6.0 kcal/mol [16]. For further discussion of
thermodynamic stability in relation to σ-hole interactions, see Politzer et al [16, 113].
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10.6 The Nature of σ-Hole Interactions

10.6.1 The Hellmann-Feynman Theorem

We have presented a physical interpretation of σ-hole interactions, which include
hydrogen bonding, in terms of electrostatics/polarization (the two are inextricably
linked, unless only point charges are involved). This interpretation, which many
theoreticians find unacceptably straightforward, has rigorous support: The potential
energy terms in the Hamiltonian operator are Coulombic. This leads, via the rigorous
Hellmann-Feynman theorem [116–119], to the conclusion that the forces acting
upon the nuclei in a molecule or complex can be determined purely classically as
Coulombic interactions with the electrons and with the other nuclei. (As an interesting
aside, note that the Hellmann-Feynman theorem was originally derived neither by
Hellmann nor by Feynman.)

As Levine put it, “. . . there are no ‘mysterious quantum-mechanical forces’acting
in molecules.” [120] A knowledge of the electronic density distribution, the nuclear
positions and Coulomb’s Law suffices to determine the forces within the system—in
fact the electronic density also locates the positions of the nuclei, and indeed all of
the system’s properties, according to the Hohenberg-Kohn theorem [121].

Notwithstanding all of the above, theoreticians have happily argued for years about
the relative roles of covalency and electrostatics in hydrogen bonding [96, 122, 123].
The argument is unimpeded by the fact that covalent bonds are themselves Coulom-
bic (Hellmann-Feynman theorem) nor by the absence of any rigorous definition of
covalency. The latter point is indeed very advantageous: since covalency cannot be
measured, no one can be proved wrong and the argument can (and doubtless will)
continue indefinitely. To make matters even better, new victims have appeared—
halogen bonding and other σ-hole interactions—and can be subjected to the same
intense scrutiny!

How can the distressingly simple Coulombic explanation of noncovalent bond-
ing (i.e. electrostatics/polarization) be reconciled with the formidable array of
complexities that are typically invoked? These generally consist of some subset
of electrostatics, exchange, Pauli repulsion, polarization (or induction), charge
transfer (or donor-acceptor interaction), dispersion, orbital overlap, etc. (Different
researchers emphasize different subsets.)

We will begin by separating exchange and Pauli repulsion from the others. They
refer to mathematical requirements that must be satisfied by the wave function. Elec-
trons are indistinguishable, which is handled by introducing exchange, and the wave
function must be antisymmetric, which results in the Pauli exclusion principle (Pauli
“repulsion”). These are mathematical effects [120, 124, 125], not physical forces.
In the same context, orbitals are a valuable means of expressing wave functions but
they have no physical existence [126]—nor does, therefore, orbital overlap.

Next, it should be recognized that analyses of noncovalent bonding commonly
use the term “electrostatics” in a restricted and misleading manner, as referring
to the Coulombic interaction between the unperturbed molecules prior to forming
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the complex. This is physically unrealistic [84]; it ignores the polarization of each
molecule’s electronic density distribution by the electric field of the other. This is
shown schematically for the σ-hole complexes R-X—B, R-Y—B and R-H—B in
8–10 (X = halogen, Y = Group IV—VI atom). Such polarization is an intrinsic part
of the Coulombic interaction [14–16, 85, 86, 95].

RR--XX------BB RR--YY------BB RR--HH------B
←  ←  ←← ←   ←←   ← ←   ←←   ←

88 99 1010

The error incurred in treating the electrostatic interaction as involving only the un-
perturbed isolated molecules and ignoring their mutual polarization is graphically
illustrated by computing the difference between the electron density of the complex
and the sum of the electronic densities of the isolated molecules placed at the same
separation as in the complex. Such density difference plots for σ-hole complexes
show exactly the features depicted in 8–10 [14, 85, 127, 128]: The electric field of
the σ-hole polarizes the electronic charge of B toward the σ-hole, while the electric
field of the negative site on B polarizes the electronic charge near the σ-hole away
from B.

Another demonstration of the importance of polarization was provided by Henne-
mann et al [82]. They showed computationally that the electric field of a point charge
Q placed at a distance of 1.90 Å from one of the hydrogens of a water molecule,
Q—H-OH, caused the σ-hole potential of that hydrogen to vary linearly as a function
of the charge on Q. In the absence of the point charge, the hydrogen’s VS,max was
57 kcal/mol. As Q was made increasingly negative, it repelled electronic charge
from the hydrogen σ-hole and made it more positive; thus for Q = −0.4 au, the
σ-hole VS,max was 75 kcal/mol. As Q was made increasingly positive, on the other
hand, it attracted electronic charge to the hydrogen σ-hole and made it less positive;
for Q = 0.4 au, VS,max = 38 kcal/mol. This shows how polarization can affect the
electronic density distribution of a molecule, and in particular, that it can strengthen,
weaken or even induce a positive σ-hole. It explains why the complexes H3C-Cl—
O = CH2 [85] and H3P—NSH [86] were found to form despite the chlorine and
the phosphorus σ-holes in H3C–Cl and H3P being near-neutral or negative; positive
σ-holes were induced by the electric fields of O = CH2 and NSH (Sect. 4.1).

The polarization depicted in 8–10 and clearly evident in density difference plots
[14, 83, 127, 128] readily explains why the formation of an initial σ-hole bond may
promote a second one (“cooperativity”) or might inhibit it [11, 15, 79, 89, 129]. Thus,
it can be anticipated that 11 will have an enhanced likelihood for further interactions
through both the terminal nitrogen and the terminal hydrogen. In 12, on the other
hand, the terminal atoms should be less prone to forming additional σ-hole bonds.
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NC-Br---NC-H Br-C≡C-Br---NC-CN

11 12

It was shown in Sect. 5.2 that the interaction energies of σ-hole complexes correlate
quite well with the σ-hole VS,max and the negative site VS,min, even though these are
computed for the isolated molecules prior to interaction and therefore do not reflect
their mutual polarization. An example of such a correlation is Fig. 10.8, which is
based upon Table 10.3. Some σ-hole complexes, however, have been found to have
unusually negative �E and short separations [130, 131], indicating atypically strong
interactions. This simply means that polarization, particularly of the negative site, is
very significant, and the polarizabilities of the σ-hole and especially of the negative
site must be taken explicitly into account along with theirVS,max andVS,min. When this
is done, via regression analyses, good correlations between predicted and computed
�E are again obtained. For more extensive discussions of this, see Politzer et al
[16, 17, 131].

Proceeding to dispersion, this is a very useful concept in interpreting noncova-
lent interactions since it can always be invoked when all else fails. The relative
roles of dispersion and electrostatics are a favorite subject for debate, even though
the Hellmann-Feynman theorem tells us that dispersion is part of the Coulombic
interaction.

Dispersion is commonly linked to electronic correlation [101, 132, 133]. This
refers to the instantaneous correlated movements of electrons as they respond to
their mutual electrostatic repulsions. The usual view is that these movements create
temporary dipoles, and it is the attraction between these dipoles that accounts for the
stabilizing effect of dispersion.

Another view, widely overlooked, was proposed by Feynman [72]. He argued
that the attraction is between the nuclei of each molecule and its own electronic
charge, which has shifted to some extent into the intermolecular region. A study by
Hirschfelder and Eliason [134] and a proof by Hunt [135] supported Feynman.

Whichever explanation one prefers, dipole-dipole or nuclear-electronic attrac-
tions, the point is that both are Coulombic. Thus dispersion is fully encompassed by
the Hellmann-Feynman theorem.

10.6.2 Charge Transfer or Polarization?

Charge transfer from an “electron donor” to an “electron acceptor” has been widely
invoked as an important factor in hydrogen and halogen bonding, and in σ-hole
interactions in general. Some small fraction of an electron is supposedly transferred
from the negative site B (the donor) into an antibonding orbital of the molecule R–X,
R–Y or R–H that has the σ-hole (the acceptor). This weakens the R–X, R–Y or R–H
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bond and accounts for its stretching frequency often (but not always) being lower in
the complex than in the isolated molecule (a red shift).

While this scenario can sometimes be effective as a purely mathematical model, it
should not be confused with physical reality. Electrons are indivisible; a small portion
of one cannot be plucked away. Orbitals—bonding, antibonding or otherwise—do
not really exist [126], however useful and convenient the concept may be. It is in-
creasingly being recognized [136–140] that charge transfer theory is a mathematical
attempt to represent a physical process, which is the mutual polarization of the inter-
acting molecules, the so-called “donor” and “acceptor.” Thus it is redundant to cite
both charge transfer and polarization as separate factors in noncovalent interactions
[83, 84].

Hermansson [141] and Qian and Krimm [142] have derived formalisms that ex-
plain and predict both the red and the blue shifts in R–X, R–Y and R–H stretching
frequencies in terms of just the electric field of B and the permanent and induced
dipole moments of the R–X, R–Y and R–H molecules. These procedures have been
extensively applied to σ-hole interactions [143, 144].

A simple demonstration of how polarization can produce either a red or a blue shift
was provided by Hennemann et al [84]. They put a point charge Q near the hydroxyl
hydrogen of methanol, Q—H-O-CH3, and computed the O–H stretching frequency
as a function of the charge on Q. Starting with Q = 0, as Q was made increasingly
negative, the O–H frequency steadily decreased; when Q was made increasingly
positive, the frequency increased until Q = 0.3 and then began to decrease. Thus both
red and blue shifts could be produced by varying the charge and hence the electric
field of Q, thereby polarizing the methanol molecule. The lower O–H frequencies
cannot be due to the transfer of electronic charge into an antibonding orbital of the
methanol because Q has no electronic charge to transfer. Both the red shifts and the
blue shifts are purely polarization effects.

The mathematical rather than physical nature of the charge transfer concept is
illustrated by an example due to Stone and Misquitta [145]. The usual quantum
chemical description of a noncovalent complex, for example R-Y—B, is in terms of
basis orbitals on both R–Y and B. However it could also be done quite satisfactorily
using orbitals on only R–Y or only B, if enough of them were used. The polarization
shown in 9 would be adequately described, by the computed electronic density
distribution of the complex. However the charge transfer from an orbital of B into
an orbital of R–Y would necessarily be zero, since either B or R–Y has no orbitals.
The physical reality is maintained (by the electronic density distribution, which is
an observable), but the mathematical model (charge transfer) fails.

To summarize, “charge transfer” in noncovalent interactions is, physically, po-
larization and polarization is Coulombic. The Hellmann-Feynman theorem lives
on!
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10.7 The Fallacy and Inadequacy of Atomic Charges

The preceding discussion is clearly linked to the question: Is it meaningful to assign
quantitatively a charge to an atom in a molecule? In the laboratory, experience indi-
cates the usefulness of viewing some atoms as having positive or negative characters
relative to others. It is tempting to try to quantify this (a temptation to which one
of the current authors yielded in his misspent youth [146]). However the concept
of an atom in a molecule, while very useful in practice, does not have a rigorous
basis—and therefore neither does giving it a numerical charge [53]. Since there is no
correct way to do this, everyone is free to invent his/her own scheme, and many have
done so. By 1994, more than 30 different procedures for assigning atomic charges
had been proposed [147]. They sometimes produce remarkably varied results; for
instance, Wiberg and Rablen cited calculated charges for the carbon in H3C–NO2

that ranged from—0.478 to + 0.564 [148].
Furthermore, attributing a single positive or negative charge to an atom in a

molecule ignores the well-known anisotropies of its charge distribution and its
electrostatic potential (Sect. 4.1). Price has referred to this rather bluntly as “a
travesty of bonding theory” [149]. As was discussed in earlier sections, it is these
anisotropies that account for the observed abilities of many covalently-bonded atoms
to interact favorably with both positive and negative sites and for the phenomenon
of “like attracting like.” Calculated atomic charges cannot explain such behavior
[45, 84, 150].

Auffinger et al [45] pointed out that since many force fields used in molecular
mechanics and molecular dynamics do use atomic charges, they may miss some non-
covalent interactions; an example was presented by Dobeš et al [151]. Accordingly
several research groups have sought to develop more realistic force fields [152–155].

10.8 Concluding Comments

The avalanche of studies that has descended upon the area of noncovalent interactions
in recent years has subjected them to minute dissection and extensive compartmental-
ization. For instance, the literature now mentions at least a dozen types of hydrogen
bonding!

Our emphasis, however, has been upon the unifying principle that a great many
noncovalent interactions—involving atoms of Groups IV—VII as well as hydrogen—
fit under the umbrella of σ-hole bonding (illustrated on the front cover of Physical
Chemistry Chemical Physics, volume 15, issue 27, 2013): A region of positive
electrostatic potential, on the extension of a single covalent bond to the atom, interacts
attractively with a negative site. Closely related to this is so-called “π-hole” bonding,
in which the positive potential is perpendicular to an atom or region in a planar portion
of a molecular framework. This is examined in detail elsewhere [16, 156, 157].

We have also invoked the rigorous Hellmann-Feynman theorem (which seems to
often be overlooked) to point out that these noncovalent interactions can be fully
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understood and described as being Coulombic, which includes polarization and dis-
persion. If this seems simplistic to some, we argue that it is because of a tendency to
confuse mathematical modeling with physical reality. The latter can be annoyingly
straightforward. Newton said that, “Nature is pleased with simplicity” [158]. Einstein
seemed to agree: “Nature is the realization of the simplest conceivable mathematical
ideas” [158].

References

1. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and
theory. Chem Rev 100:143–167

2. Engkvist O, Åstrand P-O, Karlström G (2000) Accurate intermolecular potentials obtained
from molecular wave functions: bridging the gap between quantum chemistry and molecular
simulations. Chem Rev 100:4087–4108
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