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Abstract  Aging is a multifactorial process that depends on diverse molecular and 
cellular mechanisms, such as genome instability, epigenetic and transcriptional 
changes, loss of proteostasis, cell death and senescence, metabolic dysfunction, and 
inflammation. Enzymes of the family of poly(ADP-ribose) polymerases (PARPs) 
catalyze the synthesis of the biopolymer poly(ADP-ribose) (PAR), a drastic post-
translational modification that plays significant roles in all of these processes. On 
the one hand, poly(ADP-ribosyl)ation (PARylation) contributes to genome and 
proteome homeostasis, as it participates in chromatin remodeling, genome main-
tenance, cell cycle control, and the regulation of the ubiquitin-proteasome system. 
On the other hand, PARPs and PARylation interfere with cellular and organismic 
energy metabolism, and act as mediators of inflammation, senescence and cell 
death. Therefore, PARylation is discussed both as a longevity assurance factor on 
the one hand and an aging-promoting factor on the other hand. Here we highlight 
the mechanisms underlying the various roles of PARylation in longevity and aging 
with a focus on molecular and cellular mechanisms.
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6.1  Introduction

Aging has been defined as a progressive post-maturational decline in physiological 
capacity, accompanied by an increased susceptibility to disease and an increased 
mortality risk [2]. It is important to keep in mind that aging is a pleiotropic and sto-
chastic process and not restricted to a few distinct processes, but affects a plethora of 
molecular mechanisms that lead to accumulation of cellular damage and disturbed 
tissue homeostasis over time. Interestingly, many molecular mechanisms that are 
associated with aging are also involved in cancer biology, which supports a theory 
that aging and cancer are two sides of the same coin, with many mechanisms that 
protect from carcinogenesis contributing to aging in late life. Recently, a number of 
hallmarks of aging have been defined [3] mainly affecting the following processes: 
(i) genome maintenance (ii) epigenetics and transcription, (iii) proteostasis, (iv) cel-
lular and organismic energy metabolism, (v) inflammation and immunity, and (vi) 
cell death, cellular senescence and stem cell regeneration. In general, mechanisms 
to maintain cellular homeostasis, such as genome maintenance and proteostasis are 
thought to counteract the aging process, whereas inflammation, senescence, and 
cell death are considered a driving force of human aging. As discussed below, the 
post-translational modification poly(ADP-ribosyl)ation (PARylation) is involved in 
all of these processes via a multitude of different, but often interconnected mecha-
nisms. Due to the complexity and interrelation of these pro- and anti-aging mecha-
nisms, there is no “simple”, unidirectional role for PARylation in aging and lon-
gevity. In contrast, there is ample evidence supporting a role for PARylation as a 
longevity assurance factor on the one hand, but also as an aging-promoting factor 
on the other hand. In this chapter, we will discuss the numerous cellular functions of 
PARylation in the context of mechanisms of longevity and aging and will put these 
into an organismic perspective by summarizing in vivo studies in mice and humans.

6.2  PARPs and PARylation

PARylation is a ubiquitous post-translational modification of proteins that occurs in 
most eukaryotic organisms. The reaction is carried out by enzymes of the family of 
poly(ADP-ribose) polymerases (PARPs) by using NAD+ as a substrate to synthesize 
the linear or branched biopolymer poly(ADP-ribose) (PAR), which consists of up to 
200 ADP-ribose subunits (Fig. 6.1) [4]. PARP activation leads to covalent modifica-
tion of various proteins with PAR, including PARPs themselves, as most of them 
catalyze their automodification. Individual proteins are either covalently modified 
or interact with PAR chains in a non-covalent fashion, or both. Covalent linkage 
is mediated through synthesis of PAR chains at glutamate, aspartate or lysine resi-
dues of the acceptor proteins [4]. Several hundreds of covalent PARylation target 
proteins have been identified that are involved in DNA repair and metabolism, 
transcription, chromatin organization, and mRNA processing [5, 6]. Apart from 
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covalent modification, a wide range of proteins bind pre-existing PAR chains in a 
non-covalent fashion. The non-covalent PAR-protein interaction is mediated via at 
least five different PAR binding modules. Those include (i) a 20-amino-acid PAR 
binding motif (PBM), (ii) distinct macrodomains, (iii) a PAR-binding zinc finger, 
(iv) a WWE domain, and (v) a PAR-binding regulatory modif (pbR), all of which 
fulfill diverse cellular functions [7–13]. Whereas the PAR-binding macrodomains, 
zinc fingers, WWE domains, and the PbR are restricted to a limited number of hu-
man proteins (< 50), the 20-aa PBM has been identified in several hundred human 
protein sequences [8, 9]. This weakly conserved motif consists of (i) a cluster rich 
in basic amino acids and (ii) a pattern of hydrophobic amino acids interspersed with 
basic residues [8, 9].

Similar to proteins that are targeted by covalent PARylation, most of the non-
covalent PAR-binding proteins identified to date are involved in a wide spectrum 
of cellular mechanisms such as genome maintenance, chromatin remodeling, tran-
scription, replication, RNA metabolism, inflammation, cell cycle control, and cell 
death [9, 14]. Both covalent PARylation as well as non-covalent protein-PAR inter-
action modulate protein function by modifying enzymatic activities or interactions 
with other macromolecules such as DNA, RNA, or proteins, thereby controlling and 

Fig. 6.1   The PARylation reaction. PARPs cleave the glycosidic bond of NAD+ between nicotin-
amide and ribose followed by the covalent modification of acceptor proteins with an ADP-ribosyl 
unit. PARPs also catalyze an adduct elongation, giving rise to linear polymers with chain lengths 
of up to 200 ADP-ribosyl units, characterized by their unique ribose (1’’ → 2’) ribose phosphate–
phosphate backbone. At least some of the PARP family members also catalyze a branching reac-
tion by creating ribose (1’’’ → 2’’) ribose linkages. (Reprinted from [1])
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fine-tuning the spatio-temporal localization and activity of target proteins within the 
cell [15] (Fig. 6.2).

Importantly, the cellular existence of PAR is transient, since the polymer is rap-
idly hydrolyzed by PARPs’ catabolic counterpart, poly(ADP-ribose) glycohydro-
lase (PARG). PARG possess both exo- and endoglycosidic activities and is encoded 
by a single gene giving rise to at least five different splice variants with distinct 
subcellular localizations [16–20]. In addition, a second enzyme was identified with 
weak PARG activity, i.e., ADP-ribose-arginine protein hydrolase 3 (ARH3), with 
evidence that this enzyme is associated with PAR degradation in mitochondria [21, 
22]. Both enzymes, PARG and ARH3 are not able to cleave off the last ADP-ri-
bose moiety from target proteins. Recent studies demonstrated that macrodomain-
containing proteins, such as MacroD1 and MacroD2, fulfill that task by acting as 
mono-ADP-ribosylhydrolases on the terminal, protein-proximal ADP-ribose ester 
linkage, releasing ADP-ribose and an unmodified amino acid that is readily avail-
able for the next round of ADP-ribosylation [23, 24].

The PARP gene family consists of 17 homologues in the human genome [4]. It 
is important to note that not all of these gene products are able to synthesize PAR, 
instead some PARPs act as mono-ADP-ribosyl transferases or are catalytically in-
active. Thus far, PARylation capacity has been demonstrated experimentally for 

Fig. 6.2   PARylation in the spatio-temporal control of protein function. It is important to note that 
PARylation can regulate protein function and localization in both directions. Depending on the 
specific target protein and the cellular condition, on the hand, PARylation can mediate protein 
complex assembly and recruitment of proteins to other macromolecules such as DNA and RNA; 
however, on the other hand PARylation can also induce disassembly of protein complexes and 
repulsion of proteins from DNA
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PARPs 1-3, vPARP (PARP4) and Tankyrases 1 and 2 (PARPs 5A and 5B, TNKS 1 
and 2) [25]. In this chapter we will focus on the genuine “PARPs” with verified abil-
ity to catalyze the formation of PAR, which are briefly introduced in the following.

PARP1 is the founding member of the gene family. It exhibits key roles in the 
regulation of nuclear and cellular functions and can be activated either by DNA 
damage, post-translational protein modifications, or potentially by direct protein-
protein interactions [26]. The strongest stimulation of PARP1 activity is mediated 
by its binding to DNA strand breaks, which induces its catalytic activation as a 
monomer or dimer by several hundred-fold [27–31]. Thus, measurements by quan-
titative isotope dilution mass spectrometry revealed that under physiological con-
ditions ~ 3000 PAR molecules consisting of 10 ADP-ribose moieties exist; upon 
treatment of cells with genotoxins this number can rise to > 150,000 molecules [31]. 
Under these conditions, PARP1 accounts for > 75 % of the overall cellular PARyla-
tion capacity [32, 33].

The finding that PARP1-deficient cells still synthesized PAR led to the identi-
fication of an additional nuclear PARP, i.e. PARP-2, which can be also activated 
by binding to certain DNA structures [32, 33]. PARP-2 accounts for most of the 
residual nuclear PAR formation upon DNA damage and physically and functionally 
interacts with PARP1. PARP1 and PARP-2 exhibit, at least in part, redundant func-
tions. This is supported by partially overlapping phenotypes of the corresponding 
single-gene knock-out mice and by the fact that double deficiency results in embry-
onic lethality in the mouse [34, 35]. Recently, functions of PARP-2 independent of 
PARP1 in genome maintenance, gene transcription, T cell development, and energy 
metabolism were reported [34, 36].

PARP-3 mainly resides in the nucleus [37], where it exhibits mono(ADP-ribo-
syl)ation and PARylation activity and is primarily involved in the control of cell 
division and DNA double strand break repair [38–40]. Parp3-/- knockout mice are 
viable and fertile, and develop no obvious spontaneous phenotype until the age of 
15 months. Interestingly, double deficiency in Parp1-/- and Parp3-/- significantly 
decreased survival rates after whole body irradiation compared to single knock-out 
mice [40].

PARP-4 also known as vault PARP (VPARP) is part of the cytoplasmic vault 
ribonucleoprotein complex, which has been implicated in multidrug resistance, and 
exhibits PARylation activity. vPARP has been localized to the nuclear pore and the 
mitotic spindle [41, 42]. VPARP-deficient mice show an increase in carcinogen-
induced colon and lung tumor incidence as well as reduced tumor latency [43].

PARP5a and PARP5b, better known as tankyrases (TNKS) 1 and 2 are localized 
to multiple subcellular sites including cytoplasmic membrane compartments, telo-
meres and spindle poles. TNKS1 was reported to act as a positive regulator of telo-
mere length and is required to resolve sister telomeres during mitosis (see below). 
Apart from this, TNKS1 was implicated in GLUT4 vesicle trafficking [42, 44]. 
Both tankyrases seem to exhibit at least in part redundant functions, since Tnks1 
and Tnks2 single knock-out mice are viable, whereas double deficiency is embry-
onically lethal [45].
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Apart from direct DNA damage-dependent activation, PARP activity is also 
regulated by posttranslational modifications such as phosphorylation, acetylation, 
and sumoylation [46–50]. Moreover, PARP activity is subject to regulation by di-
rect protein-protein interactions [51–53]. DNA damage independent activation of 
PARPs holds in particular true for cytosolic PARPs, which play important roles in 
cell division and cellular stress response [54, 55].

In conclusion, three non-exclusive mechanisms of the cellular functions of 
PARPs can be distinguished: (i) Functions that rely on the enzymatic activity of 
PARPs and the subsequent covalent modification or non-covalent interaction of 
nuclear proteins with PAR. (ii) Direct interactions of proteins with PARPs via pro-
tein-protein interaction. And (iii) interference with the cellular NAD+ metabolism 
by excessive PARP stimulation and potential signaling functions of free PAR or its 
derivatives. Each of these three mechanisms contributes to the function of PARyla-
tion in various cellular processes as discussed below.

6.3 � PARylation in Aging-Associated Molecular 
Mechanisms

There is a large body of evidence showing a positive correlation of PARylation 
capacity and mammalian longevity. Previously, we demonstrated that PARylation 
capacity in peripheral blood mononuclear cells (PBMCs) of 13 mammalian species 
strongly correlates with their maximum lifespan, e.g., maximum PARylation levels 
were five times higher in humans than in rodents [56]. Interestingly, these differ-
ence in PARylation are not associated with different enzyme levels, but are rather 
influenced by a higher PARylation capacity of the human PARP1 enzyme in com-
parison to its rodent orthologue [57]. Moreover, PARylation capacity in PBMCs 
declines with age in humans and rodents [56, 58]. Interestingly, humans exhibiting 
an exceptional long lifespan, i.e., centenarians, display a significantly higher PAR-
ylation capacity than the average population [59], which is comparable to those of 
young subjects [60]. Moreover, in support of the view that PARP1 counteracts the 
aging process, is the finding that Parp1-/- mice age moderately faster compared to 
wild-type animals [61].

On the other hand, the interaction of PARPs with key regulators of immune func-
tion, such as NF-κB, its drastic effects on NAD+ metabolism, and its potential to in-
duce cell death may contribute to aging-promoting mechanisms. Consistently, PAR-
ylation has been linked to many aging-associated inflammatory and degenerative 
diseases, which is supported by various studies demonstrating that pharmacological 
inhibition of PARylation as well as a genetic knock out of Parp1 in mice protects 
from such diseases.

It is tempting to speculate that the opposing effects of PARylation in cellular 
homeostasis on the one hand, and inflammation and cell death on the other hand, at 
least in part, explain the rather mild premature aging phenotype of Parp1-/- mice. 
The ambivalent role of PARylation in aging and longevity is associated with its 
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multifunctional role in many molecular and cellular mechanisms, such as (i) ge-
nome maintenance, (ii) epigenetics and transcriptions, (iii) proteostasis, (iv) cell 
death and senescence, (v) energy metabolism, and (vi) inflammation and immunity 
are discussed in the following sections (Fig. 6.3).

6.3.1  Genome Maintenance

A large body of evidence supports the theory that genomic instability acts as a caus-
ative factor of aging, which is evident from the fact that most mouse models of 
premature aging as well as human progeria syndromes are related to dysfunctional 
genome maintenance [63]. This may be attributed to the fact that DNA serves as a 
blueprint for all cellular RNA and proteins. Consequently any acquired change in its 
sequence, which may arise from molecular damage, is permanent and thus may have 
irreversible consequences. For this reason, nature invested in a sophisticated net-
work of various mechanisms to maintain genome integrity, such as DNA repair and 
cell cycle control. However, even if these mechanisms may be very efficient, they 
cannot cope with all the insults induced in the genome, leading to a gradual accumu-
lation of DNA damage and mutations, thus contributing to organismic aging [63].

Fig. 6.3   PARylation-related mechanisms of aging and longevity. For details see text. (Adapted 
from [62]). (Reprinted with permission of Elsevier)
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Multiple cellular studies support a role of PARylation as a cell survival factor 
upon genotoxic stimuli and a general caretaker of genomic stability. For instance, 
trans-dominant inhibition of PARP1 by overexpression of its DNA binding domain 
potentiates cytotoxicity upon treatment of cells with various genotoxins [64]. Con-
sistent with this, overexpression studies demonstrated that PARP1 acts as a negative 
regulator of alkylation-induced sister chromatid exchange [65], and ex vivo sup-
plementation of human PBMCs with the NAD+ precursor nicotinic acid enhances 
cellular PARylation and improves cell viability upon induction of genotoxic stress 
[66]. Furthermore, ample evidence for a role of PARylation in genome maintenance 
comes from a plethora of studies in three independently generated Parp1 knock-
out mouse models. Thus, Parp1-/- mice and cells derived from them are hypersen-
sitive to DNA damaging agents and Parp1-/- cells display increased spontaneous 
genomic instability as measured by the frequency of sister chromatid exchanges, 
chromosome aberrations and micronuclei formation [67–71]. Moreover, various 
studies supported the notion that PARP1 acts as a tumor suppressor gene, since 
PARP1 deficiency enhances carcinogenesis during aging and upon induction by 
DNA damaging agents [61, 72–75]. Consistently, data from human studies showed 
that a hypomorphic PARP1 polymorphism (V762A) serves as a risk factor for the 
development of several types of human cancers [76–83].

As discussed in the following sections, apart from its direct involvement in sev-
eral DNA repair mechanisms, PARPs and PARylation participate in genome main-
tenance by regulating telomere length, chromatin structure, DNA replication, and 
cell cycle control (Fig. 6.4).

6.3.1.1  DNA Repair

It is estimated that thousands of DNA damage lesions occur in a mammalian cell 
every day, all of which need to be repaired to ensure genomic stability and longev-
ity. In mammals, at least six major DNA repair pathways exist, i.e. O6-methyl gua-
nine methyltransferase (MGMT), base excision repair (BER), nucleotide excision 
repair (NER), mismatch repair (MMR), and DNA double strand break (DSB) repair 
including the sub-pathways homologous recombination (HR) and non-homologous 
end joining (NHEJ) [84]. Interestingly, defects in DNA repair lead to premature 
aging, but on the other hand, DNA repair mechanisms themselves can be subjected 
to age-related changes and deterioration [85]. PARylation is one of the first and 
certainly a very influential post-translational modification that is induced upon vari-
ous forms of genotoxic stress, such as oxidative and alkylation damage, ionizing as 
well as UV irradiation, and affects several hundreds of target proteins with profound 
functions at all levels of cellular stress response [6, 86]. Of note, the recruitment of 
PARP1 to sites of DNA damage and induction of PARylation occurs within seconds 
and is one of the most immediate DNA damage responses [87, 88]. Except for the 
MGMT pathway, there is ample evidence that DNA damage dependent PARPs, 
i.e., PARPs 1-3 are involved in all known repair mechanisms, and therefore, these 



1336  Multitasking Roles for Poly(ADP-ribosyl)ation in Aging and Longevity

PARPs are considered as important caretakers of genomic stability with partially 
overlapping, but also distinct functions [26, 40].

Base excision and single strand break repair (BER/SSBR) is the major DNA 
repair pathway that acts on damage that occurs during cellular metabolism includ-
ing damage from ROS, methylation, deamination, and hydroxylation. The levels 
of many of these lesions increase with age including the well-studied lesion 8-oxo-
deoxyguanine (8-oxo-dG). Moreover, BER activity decreases with age in multiple 

Fig. 6.4   PARP1, some interaction partners, and their role in genomic maintenance. ATM indi-
cates ataxia telangiectasia mutated; Bub3 Budding uninhibited by benzimidazoles 2; Cenpa/b cen-
tromeric protein a/b; CSB Cockayne syndrome type B; DEK DEK oncogene; DNA-Polβ DNA 
polymerase β; DNA-PKCS DNA-activated protein kinase catalytic subunit; HMGB1 high mobility 
group box 1; Ku70/80 Ku antigens 70/80 kDa subunit; MRE11 meiotic recombination 11; p21 
cyclin-dependent kinase inhibitor 1A; p53 tumor suppressor protein p53; PCNA proliferating cell 
nuclear antigen; TRF2 telomeric repeat binding factor 2; WRN Werner syndrome protein; XRCC1 
X-ray repair complementing defective in Chinese hamster 1; XPA xeroderma pigmentosum com-
plementation group A. (Reprinted from [1])
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tissues [89]. The core BER reaction is initiated by a DNA single strand break (SSB) 
upon excision of the damaged bases by DNA glycosylases [90].

PARP1 detects such SSB via its second zinc finger (ZFII), thus triggering its 
enzymatic activation [91, 92]. Moreover, PARP1 cooperates with certain DNA 
glycosylases that are important for the repair of oxidative DNA damage. For in-
stance, PARP1 physically interacts with 8-oxo-dG-DNA glycosylase (OGG1), 
which further stimulates PARP1 activity, whereas activated PARP1 inhibits OGG1 
activity indicating a reciprocal functional regulation of the two factors [93]. Simi-
larly, PARP1 binds to the glycosylase NEIL1 which stimulates PARylation activity, 
whereas activated PARP1 inhibits incision activity of NEIL1. Interestingly, and 
consistent with the notion of compromised DNA repair during aging, PARP1 binds 
less efficiently to NEIL1 in old mice compared to young ones [94]. Another, impor-
tant factor in BER/SSBR is the loading platform X-ray repair complementing fac-
tor 1 (XRCC1). Strikingly, its recruitment to SSBs is completely dependent on PA-
Rylation [95–97]. Thus, PARP1 and PAR are required for the assembly and stability 
of XRCC1 nuclear foci after DNA damage [96]. Furthermore, XRCC1 and PARP1 
interact with DNA polymerase-β and DNA ligase III, forming a multiprotein com-
plex consisting of the major BER factors [98–100]. As mentioned above, PARP1 
and PARP-2 work at least partially in a redundant fashion which is evident from 
the fact that they homo- and heterodimerize and only double knock-out mice show 
embryonic lethality [35, 101]. Consistent with this idea, PARP-2 also participates 
in BER and interacts physically and functionally with XRCC1, DNA polymerase-β, 
and DNA ligase III. Recruitment studies indicate a role of PARP-2 in later steps of 
BER repair [102].

Nucleotide excision repair is responsible for the removal of bulky helix-distort-
ing DNA adducts, which are caused by UV irradiation and endogenous metabolites 
[90]. Two distinct modes of NER are known: global genome repair (GGR) and tran-
scription coupled repair (TCR). Whereas in TCR, DNA damage signaling is mediat-
ed via Cockayne syndrome group A and B proteins (CSA/CSB), GGR relies on the 
damage recognition by XPC and the UV-DDB complex (DDB1-DDB2-containing 
E3-ubiquitin ligase complex). Subsequent to DNA damage recognition, both sub-
pathways merge into the same pathway, characterized by damage verification via 
XPA, DNA unwinding by the helicases XPB and XPD, excision of the damaged 
DNA fragment by the nucleases ERCC1/XPF and XPG, and DNA resynthesis and 
ligation via Pol δ/ε and ligase I/III, respectively. The functional role of the NER as a 
longevity assurance mechanism is impressively represented by the fact that patients 
with defects in a subset of NER proteins, i.e., CSA and CSB (Cockayne syndrome) 
and XPB, XPD, TTDA (trichothiodystrophy), as well as corresponding mouse mod-
els, show in some tissues a strong premature aging phenotype [84].

A role of PARP1 in NER is well established, and several NER factors, were iden-
tified as PAR binding factors, i.e., the DNA-dependent ATPase (CSB) protein, the 
DNA lesion recognition protein xeroderma pigmentosum group A (XPA), DDB2, 
and XPF [8, 103, 104]. Consistently, it has been reported that UVC light activates 
cellular PARylation [105], that PARP inhibition renders cells sensitive to UVC ir-
radiation [106, 107], and that PARP inhibition sensitizes mice for the development 
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of UVB-induced skin cancers [108]. With regards to potential underlying molec-
ular mechanisms of these findings, it was reported that CSB physically interacts 
with PARP1 and its ATPase activity is inhibited by PARylation. Furthermore, the 
damage recognition protein DDB2 directly interacts with PARP1, which promotes 
PARP1 activation, subsequent chromatin relaxation, and recruitment of XPC and 
the chromatin-modifier ALC1 [106, 107, 109–111]. This may attract the central 
NER factor XPA, since this protein physically interact with PARP1 and PAR caus-
ing a reciprocal functional regulation of XPA and PARP1 at the site of the damage 
[103, 112, 113].

DNA double strand breaks (DSBs) arise from ionizing radiation, free radicals, 
chemicals, or during attempted replication of a SSB through collapsed replication 
forks. They represent the most cytotoxic form of DNA damage and, if unrepaired, 
they can trigger apoptosis, senescence, or genomic instability. Consistent with this, 
there is growing evidence that the number of DSB increases with age and that this 
profoundly affects cell and tissue homeostasis during the aging process [114]. Mam-
malian cells repair DSBs via two mechanisms: homologous recombination repair 
(HRR) utilizes the sister chromatid or chromosome for error-free repair of the DSB, 
whereas non-homologous end joining (NHEJ) reattaches free DNA ends without 
using a template. For this reason, NHEJ is prone to micro-deletions or insertions 
which can cause frameshift mutations [90]. If HRR or NHEJ is employed depends 
on the species, cell type, and cell cycle phase [115].

In both pathways, PARylation already participates at very early stages. Thus, 
PARP1 and the DSB sensing complexes MRN (MRE11/Rad50/NBS1) (involved 
in HR) and Ku70/80 (involved in NHEJ) were shown to interact with and compete 
for binding at free DNA ends, with PARP1 potentially guiding these proteins to the 
damaged site [87, 116]. PARP1 also physically and functionally interacts with two 
phosphatidyl inositol 3-like protein kinases, i.e., ATM (involved in HR) and DNA-
PKcs (involved in NHEJ), which are crucial for DSB signaling [117–120]. With 
regards to NHEJ, two sub-types exist: the classical one, which is largely error-free 
and is initiated by the Ku complex; and a more error-prone alternative pathway. 
Several studies revealed that PARP1 is in particular responsible for the initiation 
of the alternative route and acts as a molecular switch between the two NHEJ sub-
pathways [116, 121, 122]. It was suggested that PARP1 serves as a general DNA 
damage detecting molecule, which potentially also acts as a switch between NHEJ 
and the HRR [115, 123]. Consistent with this, several reports demonstrated an anti-
recombinogenic activity of PARP1 [124–126]. However, the precise role of PAR-
lyation in DSBR is very complex and so far it is not clear under which conditions 
PARylation supports HRR and under which conditions it induces a shift towards 
NHEJ and one of the two sub-pathways.

Another level of complexity is added by recent work demonstrating that SIRT6 
is recruited to sites of DSBs. SIRT6 is one of seven mammalian sirtuins, which are 
homologues of the yeast Sir2 deacetylase that functions as a longevity regulator in 
yeast [127]. SIRT6 itself acts as an ADP-ribosylase and NAD+ -dependent deacety-
lase. A direct role of SIRT6 in mammalian lifespan regulation is suggested by the 
finding that SIRT6 deficiency in mice leads to shortened lifespan and an aging-like 
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phenotype [128], whereas SIRT6 overexpression results in lifespan extension by 
15 % in male mice [129]. On a molecular level, SIRT6 appears to be involved in 
BER and DSBR. Of note, SIRT6 interacts with PARP1 and stimulates its activity, 
thereby enhancing DSBR upon oxidative stress [130]. Furthermore, overexpression 
of SIRT6 in middle-aged and pre-senescent human fibroblasts with age-related de-
cline in HRR capacity, led to restoration of HRR activity. Interestingly, this effect 
was dependent on functional PARP1, suggesting that PARP1 and SIRT6 cooperate 
to maintain efficient HRR in cells at young age [131].

Apart from PARP1 and PARP-2, recently PARP-3 joined the club of DNA dam-
age dependent PARPs. In particular, PARP-3 appears to play an important role in 
DSBR. Thus, PARP-3 interacts with several NHEJ factors such as DNA-PKcs, 
Ku70/80, and DNA ligase IV [37]. Moreover, a series of recent studies demon-
strated that PARP-3 acts in concert with PARP1 to control the relative contribution 
of HRR and NHEJ pathways [39, 132–134].

Taken together, these studies underscore that PARPs and PARylation act on mul-
tiple levels within the DNA repair network, but more work is necessary to define the 
exact molecular mechanisms by which PARylation participates in DNA repair and 
which role this may have during aging.

Telomere Maintenance

Telomeres are repetitive sequences at the end of the chromosomes and function 
as buffers to prevent loss of coding sequences during DNA replication. They are 
capped by a protein complex known as shelterin, which tightly regulates the telo-
meric structure by interaction with several DNA repair proteins and the telomere-
elongating reverse transcriptase, i.e., telomerase. Deterioration of telomeres can be 
seen as a specific subform of genomic instability, as uncapped telomeres trigger 
a sustained DNA damage response. In accordance with this view, telomerase de-
ficiency in humans is associated with several diseases, such pulmonary fibrosis, 
dyskeratosis congenita, and aplastic anemia, that are characterized by a loss of re-
generative capacity of different tissues [135] and telomere shortening has been de-
scribed as an important factor during normal human aging [136]. In line with this 
view, reactivation of telomerase can reverse tissue degeneration in aged telomerase-
deficient mice [137].

The first PARP that was associated with telomere regulation was TNKS 1 [138]. 
TNKS1 regulates telomere length by modifying the shelterin component TRF1, 
thereby inhibiting its release from telomeres and blocking the access of telomerase 
to the end of the chromosomes [44]. In this respect, it has been shown in RNA inter-
ference experiments that TNKS1 and telomerase synergistically cooperate in telo-
mere length regulation [139]. Proper TNKS1 activity in telomere maintenance is 
important also for overall genome maintenance, since TNKS1 knock-down or phar-
macological inhibition sensitizes cells to ionizing irradiation-induced cell death, 
chromosome aberrations, and telomere fusions [140].
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Apart from TNKS1, a role of PARP1 in the regulation of telomere length is well 
established. In vivo a substantial loss of telomeric DNA by 30 % was observed in 
the first generation of Parp1-/- mice [141]. Gomez et al. reported that PARP1 is dis-
pensable for the capping of normal telomeres, but is specifically recruited to eroded 
telomeres, where it might help to protect chromosomes against end to end fusions 
and genomic instability [142]. Our group demonstrated in a number of different 
cell culture systems that pharmacological inhibition of PARylation or knock-down 
of PARP1 via RNA interference leads to a rapid decrease in telomere length and 
stabilization at a lower level. Importantly, neither the length of the single-stranded 
telomeric overhang nor telomerase activity was affected by PARP1 inhibition. In-
terestingly, release from PARP inhibition led to a fast re-gain in telomere length 
in telomerase-positive cells indicating that PARP1 activity is an important deter-
minant in telomere length regulation [143]. On a molecular level, the function of 
PARP1 in telomere length regulation presumably depends on its interaction with the 
telomeric repeat binding factor 2 (TRF2). TRF2 is another key component of the 
shelterin complex and is responsible for telomeric stability, length regulation, and 
suppression of unscheduled activity of the double-strand break repair machinery 
by maintaining the t-loop [144]. PARP1 interacts with and modifies TRF2, and the 
PARylation of TRF2 affects its binding to telomeric DNA [142, 145].

Another PARP1 interaction partner that is involved in telomere regulation is the 
RecQ helicase WRN [146]. Patients with the rare autosomal recessive disorder Wer-
ner syndrome (WS), in which the WRN gene is mutated, display genomic instabil-
ity and telomere shortening on the cellular and premature aging on the organismic 
level with symptoms resembling normal human aging in many aspects including 
cataracts, graying of hair and alopecia, atherosclerosis, osteoporosis, and higher 
cancer incidence. The premature aging phenotype of these patients appears to be 
at least partially dependent on telomere length, since human symptoms were only 
recapitulated in mice with short telomeres, i.e., WRN/telomerase double knock-out 
mice [146, 147]. [NB. Mice usually exhibit considerably longer telomeres (~ 40 kb) 
than humans (5–15 kb)]. On a cellular level, fibroblasts derived from WS patients 
display genomic instability and a reduced replicative lifespan. This phenotype is 
in accordance with experimental data demonstrating that WRN is involved in mul-
tiple aspects of DNA metabolism, such as DNA replication, genomic maintenance, 
and telomere regulation [146]. WRN functions as a 3′-5′ helicase and additionally 
as a 3′-5′ exonuclease. Proper enzymatic activity of WRN seems to be crucial for 
maintaining genomic integrity, since pharmacological inhibition of WRN’s helicase 
activity causes DSBs and apoptosis [148]. WRN and PARP1 directly interact with 
each other physically and PARP1 modulates WRN’s exonuclease and helicase ac-
tivities [149, 150]. In addition, we recently demonstrated that WRN interacts with 
PAR itself via at least one specific PAR binding motif and that this interaction in-
hibits WRN’s DNA binding affinity as well as all its enzymatic functions [151]. 
These results indicated that PARP1 and PARylation regulate WRN activity towards 
its substrates in time and space. Interestingly, as observed with other factors, the 
regulation of PARP1 and WRN appears to be reciprocal, because PARylation is im-
paired in WRN-deficient cells indicating that WRN is required for fully functional 
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PARP1-dependent PARylation [152]. How exactly the interplay between PARP1 
and WRN affects telomere maintenance mechanisms awaits further clarification. 
Moreover, obviously factors other than PARP1 and WRN are involved in these 
mechanisms, because WRN and PARP1 share many interaction partners, including 
DNA-PK, P53, and TRF2 (Fig. 6.5). For instance, PARP1, WRN, and DNA-PK 
(including Ku70/80 and DNA-PKcs) can form a complex, in which PAR-modified 
Ku70/80 inhibits WRN [153]. Furthermore, both PARP1 and WRN have a positive 
impact on telomere length, presumably by regulating the binding of TRF2 to the 
t-loop. Genetic cooperation between PARP1 and WRN was demonstrated in vivo, 
because mice with deficiencies in both proteins display higher rates of chromatid 
breaks, chromosomal rearrangements and cancer than each of the single mutant 
mice [154]. Moreover, double mutants appear to have reduced median and maxi-
mum lifespan, despite the fact that these mice were on a telomerase-positive genetic 
background and telomere lengths of single mutant MEFs did not differ significantly 
from the double mutant MEFs. This finding suggests that telomere-independent 
functions of WRN and PARP1 exist in the mouse to maintain organismic longevity. 
In conclusion, since PARP1 and WRN share many interaction partners and both 
proteins participate in other DNA repair pathways such as BER and NHEJ, they 

Fig. 6.5   Interaction map between PARP1 and the Werner syndrome protein ( WRN). The two pro-
teins share many overlapping interaction pathways. There is a reciprocal interaction with DNA-PK 
(double-headed arrow) and p53, stimulation of base-excision repair ( BER, one-headed arrow), and 
inhibition of TRF2-DNA binding (blocked arrow). PARP1 also inhibits WRN functions if in an 
unmodified state. (Modified from [144] with permission of Oxford University Press)
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probably synergistically collaborate to maintain overall genomic stability and en-
sure longevity.

DNA Replication

The WRN helicase also participates in the response to replicative stress, a cellu-
lar stressor that was linked to mammalian aging, due to its ability to drive cells, 
including stem cells, into senescence and apoptosis [155, 156]. Replication forks 
contain several proteins such as helicases and polymerases, forming the so-called 
replisome. Usually progression of the replication fork continues until it encounters 
a replication fork barrier such as DNA-protein complexes or SSBs. In this case the 
replicative helicase progresses much more slowly, so that the fork is “stalled”. If 
this goes along with the disassembly of the replisome the fork “collapses” and a 
DSB is formed [157].

WRN and PARP1 are involved in the reactivation of stalled replication forks. 
Specifically, PARP1 binds to and is activated at stalled replication forks and medi-
ates the recruitment of MRE11, a key component of the MRN complex. MRE11 
may collaborate with WRN helicase to resect DNA ends for RAD51 loading and 
subsequent HR repair to promote replication fork restart after release from replica-
tion blocks [87, 157–159]. Interestingly, PARP1 not only mediates the recruitment 
of MRE11 to the stalled replication fork, but also controls its function, thereby 
protecting stalled replication forks from uncontrolled Mre11-dependent degrada-
tion [160]. In accordance with these data, PARylation is required for effective rep-
lication fork restart upon treatment of cells with sublethal doses of the replication-
stress-inducing topoisomerase 1 inhibitor, camptothecin [161]. Specifically, PARP1 
activity regulates the timing of replication fork restart by stabilizing forks in the 
regressed state and recruiting and controlling the RECQ helicase RECQ1 at the 
stalled fork, which in turn mediates repair and fork restart [162, 163].

6.3.1.2  Mitosis and Cell Cycle Control

After DNA replication is completed, proper mitotic regulation is crucial to ensure 
genomic integrity during cell proliferation [164]. During mitosis, the spindle pole 
formation requires the centrosome, whereas the centromere is the chromosomal 
region that organizes the kinetochore, thus enabling the attachment of the mitotic 
spindle microtubules. Strong evidence that mitotic spindle checkpoint proteins play 
an important role to ensure mammalian longevity is supported by studies demon-
strating that mice with low levels of the mitotic checkpoint protein BubR1 and mice 
haploinsufficient for Bub3 and Rae1—another mitotic checkpoint gene—age pre-
maturely [N.B.: A complete knockout of these genes results in embryonic lethality 
in the mouse] [165, 166]. On the other hand transgenic overexpression of BubR1 in 
mice protected cells from age-related aneuploidy and cancer and extended a healthy 
life-span in these mice [167]. Moreover, mutations in human BubR1 are often 
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linked with the mosaic variegated aneuploidy (MVA) syndrome—a rare autosomal 
recessive disorder that is characterized by inaccurate chromosome segregation and 
aneuploidy. The disease is characterized by several segmental premature aging fea-
tures, such as high cancer rates, facial dysmorphisms, short stature, cataracts, and 
death during childhood. Strikingly, a mouse model carrying a MVA mutation in one 
allele of BubR1 resulted in a premature aging phenotype and reduced lifespan, as 
well [168].

The first evidence for a role of PARylation in spindle regulation was obtained 
from a study with Xenopus laevis egg extracts showing that PAR itself is a compo-
nent of the mitotic spindle and is required for its assembly and function, which was 
attributed to the enzymatic activity of TNKS1 [169, 170]. These authors suggested 
that PAR provides a dynamic cross-linking function at spindle poles by regulating 
the spindle pole protein NuMa, which promotes the assembly of exactly two poles 
[171]. Moreover, another study showed that TNKS1 modifies the mitotic kinetics 
regulator (Miki) at the Golgi apparatus in late G2 to prophase, which then translo-
cates to mitotic centrosomes to induce downstream events that ensure appropriate 
prometaphase progression [172]. Furthermore, TNKS1 PARylates CPAP, which is 
required for procentriole formation, thereby regulating the CPAP levels during cell 
cycle to limit centriole elongation and ensure normal centrosome function [173].

In addition to TNKS1, PARP-3 is localized at the centrosomes during cell divi-
sion and is involved in the regulation of G1/S cell cycle progression [174]. PARP-3 
interacts with PARP1, which also resides in the centrosome during the cell cycle 
and it was shown that haploinsufficiency for PARP1 is related to centrosome du-
plication and chromosomal instability [174–177]. Moreover, PARP1 and PARP-2 
are present at centromeres and interact with the constitutive centromere proteins 
CENPA, CENPB and the spindle check point protein Bub3 [178, 179]. The physi-
cal and functional relationship of PARP1 with the centrosome and the centromere 
links DNA damage surveillance to the mitotic spindle checkpoint. Importantly, 
apart from mitosis PARylation also plays a role in the regulation of other cell cycle 
phases. Thus, as discussed above, damaged replication forks during S-phase can 
activate PARylation. The PAR formed stimulates Chk1 kinase activity and PAR is 
required for efficient retention of Chk1 and phosphorylated Chk1 at the fork. To this 
end, Chk1-PAR interaction is important for proper S-phase checkpoint regulation 
with effects on Chk1 target proteins, such as p53 [7].

Because severe DNA damage or mitotic misregulation can cause genomic insta-
bility leading to tumor formation, a complex cellular security network has evolved 
to counteract carcinogenesis. This signaling network can stop the cell cycle at dif-
ferent stages, thereby either inducing DNA repair, or eradicating or neutralizing 
heavily damaged cells by apoptosis or senescence, respectively. To this end, apop-
tosis and senescence are powerful tumor-suppressive mechanisms, but on the other 
hand, both pathways can lead to depletion of the regenerative cell pool, thus pro-
moting tissue degeneration and organ failure, which are hallmarks of aging [180]. 
One of the most important regulators of cell cycle progression and induction of 
senescence/apoptosis is the transcription factor p53. Consequently, mouse studies 
demonstrated that p53-deficiency leads to premature death due to tumor develop-
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ment, whereas constantly active p53 protects against cancer at the cost of a prema-
ture aging phenotype [180].

Consistent with the role of PARP1 and p53 as caretakers and guardians of the 
genome, PARP1 and p53 synergistically cooperate in vivo in telomere and chromo-
somal maintenance as well as in tumor suppression [75, 181–184]. Many functional 
interactions between PARP1 and p53 during DNA damage response and apoptosis 
exist, such as delayed p53 transactivation potential in PARP1-deficient cells [185–
188]. In addition to its function as a positive regulator of gene expression, p53 also 
acts as a gene-specific transcriptional transrepressor. Interestingly, p53-mediated 
transrepression of the MTA1 gene (MTA1, metastasis associated protein 1), a com-
ponent of a nucleosome remodeling complex which is associated with very aggres-
sive tumor phenotypes, depends on functional PARylation of p53 [189]. On the 
other hand PARylation of p53 is also able to inhibit its binding to its transcriptional 
consensus sequence, indicating that multifaceted regulatory mechanisms exist be-
tween PARP1 and p53 [190, 191]. Kanai et al. suggested a mechanism of PARP1-
dependent regulation of p53 activity: According to this study, PARylation induces 
structural changes in p53 that mask its nuclear export sequence, resulting in an 
accumulation of p53 in the nucleus, where it exerts its transactivational functions. 
Accordingly, a p53 mutant in which PAR acceptor sites were mutated, localized to 
the cytoplasm to a greater extent than wildtype P53 [192].

In conclusion, there is ample evidence that PARP1 modulates p53 stability, intra-
cellular localization and transcriptional activity with likely implications in the in-
duction of apoptosis and senescence on a cellular and therefore aging and longevity 
on an organismic level. However, studying the combined role of PARP1 and p53 
in the aging process is complicated by the situation that mouse models with defi-
ciencies in both tumor-suppressor genes show cancer-dependent premature death 
unrelated to other signs of premature aging. The development of sophisticated con-
ditional mouse models with spatio-temporal controlled expression of PARP1 and 
p53 may represent an approach to overcome these hurdles.

Apart from the direct regulation of cell cycle proteins PARPs and PARylation 
are involved in cell cycle regulation through their role in chromatin remodeling and 
regulation of gene transcription. Thus, for instance, PARP-2 regulates cell cycle-
related genes by controlling histone deacetylation and methylation independently 
of its PARylation activity [193] and PARP1 directly controls the action of the tran-
scription factor SP1 during cell cycle progression [194]. The role of PARylation in 
chromatin regulation, epigenetics and transcription and how this may be connected 
to mechanisms of aging is discussed in the next section.

6.3.2  Chromatin Regulation, Epigenetics, and Transcription

In principle, all cells of the human body contain almost identical genomes, but 
show huge functional and phenotypical variability. For example, this becomes ob-
vious when comparing hepatocytes, neurons and muscle cells. These phenotypic 
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differences are largely regulated by epigenetic mechanisms. Epigenetics imply 
modifications of the cellular chromatin, i.e., DNA and associated proteins, such as 
DNA methylation and histone modifications. These marks are set during organismal 
development, but remain to a certain extent highly dynamic throughout a life-time. 
There is extensive evidence that aging is accompanied by a plethora of epigen-
etic changes [195] and that such epigenetic changes can affect the aging process 
at multiple levels, since they induce alterations in gene transcription networks and 
interfere with genome maintenance mechanisms [196].

DNA methylation occurs exclusively at cytosines in the mammalian genome 
and this predominantly happens in the context of the symmetrical CG dinucleo-
tides, which are often localized as CpG islands (discrete 0.5–2 kb regions rich in 
CpG sites) in gene promoters, where CpG methylation is involved in transcriptional 
regulation. Promoter CpG island methylation is stable and self-perpetuated during 
cell division by enzymes of the family of DNA methyltransferases (DNMTs). De-
pending on the context, DNA methylation can be a dynamic process, since enzymes 
of the ten-eleven translocation (TET) family can sequentially oxidize 5-methyl-
cytosine resulting in intermediates, such as 5-hydroxymethylcytosine that finally 
leads to demethylation [197]. Genome wide studies in aging cells and tissues have 
identified a stochastic DNA methylation drift. These drifts are thought to reflect 
the imperfect maintenance of epigenetic marks, generating epigenetic mosaicism in 
aging stem cells that could potentially disturb their regenerative potential, leading 
to stem cell exhaustion and focal proliferation defects that can contribute to cancer 
and aging [197].

PARylation affects DNA methylation at multiple levels and participates in the 
establishment and maintenance of genome methylation patterns. Thus, PAR non-
covalently interacts with DNMT1, thereby inhibiting its enzymatic activity. Ac-
cording to these data, in the absence of PARylated PARP1, DNMT1 is free to meth-
ylate DNA, while if high levels of PARylated PARP1 are present, DNMT1 will 
be inhibited, preventing DNA methylation [198]. Interestingly, this seems to affect 
promoter activity of DNMT1 itself, since PARylated PARP1 occupies the Dnmt1 
promoter, suggesting that PARylated PARP1 plays a role in protecting the promoter 
from methylation [199]. The chromatin insulator CTCF (CCCTC-binding factor) 
is another important regulator of gene transcription and chromatin structure. CTCF 
is able to activate PARP1 which then forms a complex with DNMT1 and inhibits 
its methylase activity at CTCF-bound CpGs [200]. Recent evidence suggests that 
not only methylation is regulated by PARylation, but also the demethylation pro-
cess is under PARylation control. It was shown that active DNA demethylation is 
required for complete imprint erasure in primordial germ cells [201]. Interestingly, 
this study suggested that this mechanism is dependent on PARylation. Consistently, 
PARP activity enhances the expression of Tet1 hydroxylases, which is involved in 
DNA demethylation [202]. Furthermore, PARP1 deficiency led to a large increase in 
5mC accumulation in MEFs during epigenetic reprogramming through iPS induc-
tion [203].

In conclusion, these findings suggest that PARylation actively contributes to the 
dynamics of DNA methylation establishing an epigenetic program that directs sub-
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sequent transcriptional induction at relevant loci during organismic development 
and aging.

Apart from DNA methylation, epigenetic changes of DNA-associated proteins 
and chromatin provide another level of control of replication, transcription and oth-
er fundamental cellular processes. Chromatin is a dynamic structure which is regu-
lated by posttranslational modifications, such as acetylation, methylation, or PARy-
lation. Such structural and functional alterations of chromatin are widely associated 
with aging from yeast to mammals [204]. The molecular mechanisms leading to 
chromatin disturbances in aging are largely unknown, but may be related to altera-
tions in transcriptional programs thereby contributing to the aging process [204]. 
Moreover, DNA damage may lead to sustained alterations in chromatin structure. 
This potentially causes a positive feedback mechanism of DNA damage leading to 
chromatin rearrangements which, in turn, sensitizes DNA as a substrate for further 
damage. As discussed above, the histone deacetylase SIRT6, which is involved in 
BER and DSBR, gives an striking example that loss of function of an epigenetically 
relevant enzyme can lead to premature aging, whereas gain of function of such an 
enzyme can extend longevity in mice [3, 129, 205].

In terms of PARPs and PARylation, PARP1 acts as a structural and regulatory 
component of chromatin, both in undamaged cells and upon genotoxic stress. It 
may either regulate chromatin structure directly by PARylation of chromatin com-
ponents, or indirectly by controlling the recruitment of chromatin remodeling fac-
tors [206]. Many PAR acceptor and binding proteins contribute to chromatin and 
nuclear architecture such as histones, lamins, high-mobility group (HMG) proteins, 
heterochromatin protein 1 (HP1), and the DEK protein [206–211]. It was proposed 
that PARP1 induces a histone shuttling mechanism, based on findings that PARyla-
tion of polynucleosomes causes relaxation of chromatin structure and that activity 
of PARG degrades PAR from modified histones [212–215]. According to this mod-
el, DNA-bound histones dissociate from DNA upon PARylation, causing an open 
chromatin structure and guiding repair factors to sites of DNA damage. Upon degra-
dation of PAR by PARG, DNA reassociates with histones, thereby restoring the con-
densed chromatin structure. Moreover, upon DNA damage PARP1 activation leads 
to the recruitment of the histone variant macroH2A1.1 to the site of the damage, 
which transiently causes chromatin rearrangements and dynamically modulates the 
DNA damage response [13]. Kim et al. reported that PARP1 itself can function as 
a component of chromatin [216], i.e., histone H1 and PARP1 bind in a competitive 
and mutually exclusive manner to nucleosomes in vitro. Thereby, PARP1 promotes 
the local compaction of chromatin into higher-order structures, which are associ-
ated with transcriptional repression. The authors suggested that PARP1 modulates 
the chromatin architecture and gene transcription through its intrinsic enzymatic 
activity in a DNA-damage-independent manner; i.e., PARP1 activation and auto-
modification triggers its release from chromatin, thereby facilitating chromatin de-
condensation and gene transcription by RNA polymerase II. Subsequent cellular 
studies demonstrated that PARP1 could replace histone H1 at RNA polymerase II-
transcribed promoters, which was associated with actively transcribed genes [217].
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In addition to a functional interplay between PARP1 with histones, an interest-
ing physical and functional interaction exists between PARP1 and DEK. The DEK 
protein is a major non-histone chromatin component with functions in DNA metab-
olism and repair on a cellular, and carcinogenesis and autoimmunity on an organ-
ismic level. DEK is often found to be upregulated in tumor tissue, and high levels 
of DEK favor cell immortalization by inhibiting senescence and apoptosis. Consis-
tently, DEK-deficient cells are prone to the induction of senescence in the response 
to genotoxic stress [218]. We and others have shown that PARP1 PARylates DEK. 
Moreover, DEK interacts with PAR in a non-covalent manner, which regulates its 
DNA binding affinity and multimerization with possible implications in response 
to genotoxic stress and gene transcription. In terms of gene transcription, DEK is 
released from chromatin upon PARylation to permit transcriptional initiation [208, 
211, 219]. Whether DEK itself or its interplay with PARP1 have a direct role in ag-
ing mechanisms remains to be clarified.

Importantly, not only structural components of the chromatin are regulated by 
PARylation, PAR also serves as an important factor in the regulation of chromatin 
remodeling factors, such as ALC1 and NURD [12, 220–222]. For example, the 
recruitment of the NURD chromatin remodeling complex to sites of DNA lesions 
depends on the synthesis of PAR. Interestingly, this complex was identified as an 
important modulator of aging-associated chromatin defects, and loss of several 
NURD components and function was evident during human premature aging [223].

The role of PARP1 in gene transcription and chromatin remodeling was impres-
sively demonstrated in a Drosophila study [224]. The authors revealed that PARP1 
is crucial for puff formation in giant polytene chromosomes. Puff formation arises 
from local relaxation of the chromatin structure and is associated with actively tran-
scribed regions [224]. Ju et al. provided interesting mechanistic evidence linking 
PARP1-dependent initiation of transcription and its function in DNA binding [225]. 
According to this work, PARP1 acts in concert with another binding partner, i.e., 
topoisomerase II. Topoisomerase II introduces a transient double strand break at the 
promoter, which leads to PARP1 binding and activation. The subsequent rapid but 
transient PARylation triggers chromatin relaxation and initiation of transcription. 
Furthermore, JIL-1 kinase mediated changes in nucleosome conformation trigger 
chromatin decondensation via PARylation. JIL-1 phosphorylates the C-terminus 
of the H2Av histone variant, which stimulates PARP1 enzymatic activity in the 
surrounding chromatin, leading to further modification of histones and chromatin 
loosening. The authors propose that chromatin loosening and associated initiation 
of gene expression is activated by phosphorylation of H2Av in a nucleosome posi-
tioned in promoter regions of PARP1 dependent genes [226].

Together, these findings suggest a functional interplay of PARylation and PARPs 
with chromatin components and associated remodeling factors, implying an active 
role of PARylation in chromatin function and transcriptional regulation during the 
aging process. Gene profiling data support such a hypothesis, since PARP1 defi-
ciency alters expression of genes involved in cell cycle progression, DNA replica-
tion, oxidative stress, cancer initiation and aging [227, 228]. In addition to PARP1, 
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PARP-2 appears to have overlapping as well as distinct functions from PARP1 in 
epigenetics and transcription [229]. The detailed spatial and temporal characteris-
tics of these mechanisms in aging and longevity, however, remain to be determined.

6.3.3  Proteostasis

Besides maintaining genome integrity, homeostasis of the proteome plays an impor-
tant role in aging and longevity, as accumulation of misfolded or damaged proteins 
are an important determinant of the aging process [230]. Many mechanisms exist 
that assure protein quality control in the cell, starting from supporting correct pro-
tein folding, such as heat shock family proteins, to several mechanisms of protein 
degradation such as the ubiquitin-proteasome and the autophagy-lysosomal system 
[231]. There is now accumulating evidence that some aspects of aging are related to 
a collapse of proteostasis [232]. Consistent with this view, experimental manipula-
tions that improve proteostasis were able to delay aging in mammals [3, 233].

6.3.3.1 �A  Role for PARylation in Protein Folding and the Unfolded Protein 
Response

The endoplasmatic reticulum (ER) is one of the major cellular organelles involved 
in protein homeostasis. The major mechanism by which the ER ensures proper pro-
tein folding under stressed conditions is the unfolded protein response (UPR). The 
main function of this system is (i) to shut down further protein synthesis in order 
to prevent accumulation of misfolded proteins, (ii) to induce ER-associated chap-
erones to enhance proper protein folding, and (iii) to activate ER-associated deg-
radation system to reduce the burden of misfolded proteins [231]. As a major pro-
teostasis mechanism, many studies linked the UPR with aging and age-associated 
neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases. So far 
the role of PARylation and PARPs in UPR is limited, but a recent interesting study 
suggested a role of PARP16, which acts as a mono-ADP-ribsyl-transferase in the 
UPR by activating the ER stress sensors PERK and IRE1α [234].

Another interesting role for PARylation in protein folding comes from a study 
that screened for compounds that rescue proper folding of the pathogenic F508 
deletion of the cystic fibrosis transmembrane conductance regulator (CFTR). This 
study identified the natural compounds latonduines as F508del-CFTR correctors. 
Using chemical proteomics, several PARPs, i.e., PARPs 1-4, as well as TNKS1 
and 2, were identified as latonduine binders. Functional analysis revealed that in 
particular PARP-3 activity is inhibited by latonduines [235]. In accordance with 
this, another study revealed that inhibiting PARPs, and in particular PARP1, activi-
ties restores F508del-CFTR trafficking in different cell lines and mouse embryonic 
fibroblasts [236]. Although the exact molecular mechanisms for these effects are 
not clear to date, these studies link PARylation to protein folding. Thus, in response 
to these studies the existence of a PARP-dependent proteostasis system has been 
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suggested [237]. How exactly PARylation is involved in such mechanisms and how 
the PARylation-dependent regulation contributes to aging processes, needs to be 
clarified. Apart from a function in protein folding many other studies indicate that 
PARylation plays an important role in other proteostasis mechanisms, such as the 
ubiquitin-proteasome system.

6.3.3.2  PARylation in the Ubiquitin-Proteasome System

The ubiquitin proteasome network represents the major cellular pathway for the 
degradation of dynamically regulated or damaged proteins. Modification of pro-
teins with poly-ubiquitin chains targets proteins for proteasomal degradation. The 
mammalian proteasome consists of a 20S core unit and 19S regulatory particles, 
located at the ends of the core unit, forming the 26S proteasome [231]. A role for the 
ubiquitin-proteasome system in mechanisms of aging is well established [238, 239]. 
In particular it has been shown that proteasomal activity declines with age and that 
this is associated with impaired capacity to remove damaged proteins [231]. For 
instance, transgenic mice with decreased proteasomal activity exhibited a shortened 
lifespan and developed age-related metabolic pathologies [240]. On the other hand, 
the longest-lived rodent, the naked mole-rat (lifespan of > 30 yrs) shows a three- to 
sixfold higher proteasome activity than laboratory mice, which promotes an effi-
cient turnover and clearance of misfolded and damaged proteins [241].

A role of PARylation in proteasomal regulation is well established (Fig.  6.6) 
and this has been directly linked with an age-related loss of proteasome function 
[242]. Specifically, the 20S proteasome undergoes a rapid activation in response to 
oxidative stress, and this activation depends on the presence and activity of PARP1 
[243–245]. Furthermore, inhibition of PARP1-dependent proteasome activation im-
paired the DNA repair capacity of cells suggesting an interesting link between the 
clearance of damaged proteins and the effectiveness of the DNA repair machin-
ery [245]. Of note, replicative senescence of human fibroblasts is associated with 
dysfunctional stress-induced proteasomal activation in the nucleus [242], and this 
decline is due to a declined expression and activity of PARP1 both in cultured cells 
as well as in the skin of aged donors. These results indicate that PARP1 and PA-
Rylation play important roles in age-related dysfunction of the proteasome [242]. 
Apart from PARP1, TNKS activity has been associated with proteasome regulation 
(Fig. 6.6). Thus TNKS directly interacts with and modifies the proteasome regulator 
PI31, which reduces its affinity for a specific 20S proteasome subunit, thereby acti-
vating 20S proteasome activity. In addition the PI31 PARylation directly stimulates 
the assembly of the 26S proteasome assembly by promoting the binding of 19S 
regulatory particles [246].

As it holds true for other cellular processes, the role of PARylation in the ubiqui-
tin proteasome system is manifold, since PARylation not only regulates overall pro-
teasome activity, but also promotes ubiquitination and targeting of specific proteins 
to proteasomal degradation [247]. Of central importance is the E3 ubiquitin ligase 
RNF146/Iduna. RNF146’s ligase activity requires non-covalent PAR binding via a 
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WWE domain, thereby targeting proteins for ubiquitination and proteasomal degra-
dation. RNF146 binds a number of proteins that are PARylated including PARP1/2, 
histones, XRCC1 and several other chromatin and DNA repair factors. Consistent 
with these findings, RNF146 facilitates DNA repair and promotes cell survival after 
induction of genotoxic stress [248]. However, no general conclusions can be drawn 
regarding the question if PARylation promotes or inhibits proteasomal degradation 
of proteins: Thus on the one hand, PAR-dependent ubiquitination of PARP1 targets 
it for proteasomal degradation [248], however, another study showed that PARyla-
tion of XRCC1 prevents its ubiquitination, despite the fact that it is an interaction 
partner of RNF146. These results indicate that the effect of PARylation on pro-
teasomal degradation of target proteins highly depends on the target protein itself 
and the specific conditions and cell types studied. Apart from DNA repair, it has 
been shown that Wnt signaling is under the control PAR-dependent ubiquitination 
and proteasomal degradation (Fig. 6.6). The Wnt/β-catenin signaling pathway plays 
critical roles in embryonic development, stem cell biology, tissue homeostasis, and 
cancer development. Of note, Wnt/β-catenin signaling increases with aging and has 

Fig. 6 .6  PARylation in the control of the ubiquitin-proteasome system. The regulation of the 
ubiquitin-proteasome system is twofold: ( i) direct effects of PARP1/TNKS1 on proteasome activ-
ity have been described. ( ii) TNKS1/PARP1 can target certain proteins for proteasomal degra-
dation through the PAR-dependent attraction of E3 ubiquitin ligases containing a WWE PAR 
binding sequence (e.g., Iduna/RNF146). For details see text. (Scheme based on [242–245, 247, 
248, 257–261])

   



148 A. Mangerich and A. Bürkle

a prominent role in many age-related conditions [249]. If Wnt/β-catenin signaling 
promotes or counteracts aging is a matter of debate [250]. On the one hand, down-
regulation of Wnt/β-catenin signaling causes cellular senescence in primary human 
cells [251]. On the other hand, Wnt/β-catenin signaling is increases in a mouse 
model of premature aging [252], and inhibition of Wnt/β-catenin signaling rescues 
the age-related impairment of muscle stem cell function and reduces tissue fibrosis 
[253, 254]. Moreover, Wnt/β-catenin signaling contributes to mesenchymal stem 
cell aging by induction of ROS and DNA damage response pathways, linking it to 
DNA damage and genomic instability [255, 256].

Axin is a scaffold protein of the β-catenin destruction complex and a nega-
tive regulator of the Wnt/β-catenin signaling pathway. Active Wnt signaling and 
translocation of β-catenin to the cell nucleus requires degradation of axin. A series 
of articles has shown that TNKS1 PARylates axin, which triggers the binding of 
RNF146, subsequent axin ubiquitination and its proteasomal degradation, thereby 
releasing β-catenin for nuclear translocation [257–261]. Overall, it appears as if the 
PARylation-directed ubiquitination and degradation mediated by RNF146/Iduna 
(and potentially also other E3 ubiquitin ligases comprising WWE domains) evolved 
as a general mechanism to control protein turnover that is analogous to phosphory-
lation-directed ubiquitination mediated by the SCF E3 ubiquitin complex [247]. It 
is very likely that such mechanisms contribute to proteostasis-dependent effects in 
organismic aging.

6.3.3.3  PARylation and Autophagy

In addition to proteasomal degradation, autophagy (‘self-digestion’) is another 
mechanism to turn-over proteins or whole organelles. It is based on the lysosomal 
degradation system and normally it is activated under stress conditions, such as 
starvation. Usually, it acts as a cytoprotective mechanism by removing damaged 
structures and mobilizing bioenergetic sources to ensure cellular survival and ho-
meostasis [231]. However, in its most extreme form it can also lead to self-digestion 
of the whole cell and therefore to cell death (see below). The role of autophagy in 
aging and longevity has been extensively reviewed previously [262]. There is now 
convincing evidence that autophagy represents an aging-related mechanism, since, 
e.g., normal aging is often associated with a reduced autophagic capacity. Further-
more, genetic inhibition of autophagy induces age-related degenerative changes in 
mammals, while organismic model systems with increased life span often stimu-
lated autophagic mechanisms [262].

Several studies analyzed the role of PARylation and in particular PARP1 in 
autophagy [263–268]. According to these studies, PARP1 exerts an active role in 
DNA-damage-induced autophagy and in the decision if a cell undergoes autoph-
agy or cell death via necrosis. Specifically, PARP1 seems to promote autophagy 
through the AMPK-mTOR pathways. This pathway is of central importance in the 
regulation of autophagy, with AMPK generally considered a positive—and mTOR 
a negative regulator of autophagy. Both proteins exhibit key functions in aging-
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related mechanisms by controlling the intracellular response to insulin/IGF1 sig-
naling, which plays an important role in molecular mechanisms of life-span ex-
tension by caloric restriction [269]. Interestingly, starvation-induced autophagy is 
linked to DNA damage formation in its early phase, potentially via ROS generation, 
and PARP1 deficiency strongly delays this autophagic response [267]. This study 
showed that PARP1 deficiency inhibited AMPK activation and prevented the com-
plete loss of mTOR activity, thereby leading to a delay in autophagy and promoting 
apoptotic cell death. These results suggest a pro-sruvival role of autophagy and 
PARP1 activation after nutrient deprivation [267]. Interestingly, rapamycin, which 
targets the mTOR (mammalian target of rapamycin) pathway and leads to life-span 
extension in various organisms including mammals, inhibits stress-induced cellular 
PARylation, thereby linking PARylation with age-related mTOR signaling [270]. In 
the same line, another study showed that exposing cells to a DNA alkylating agent 
leads to PARP-dependent immediate drop in NAD+ and ATP levels, while AMP lev-
els strongly increased. This led to activation of AMPK and inhibition of the mTOR 
pathway, thereby demonstrating that PARP1 and PARylation affect the energetic 
status of a cell by balancing the route of cell death in response to stress [271].

In conclusion, there is ample evidence that PARylation is involved in cellular 
proteostasis at multiple levels, including protein folding and maturation as well 
as protein turn-over via the ubiquitin proteasome and the autophagy pathways. In 
particular the latter one is closely connected to energy metabolism, another cellular 
process were PARylation plays an active role, as the PARylation substrate, NAD+, 
is of central importance in many cellular bioenergetic pathways.

6.3.4  Energy and NAD+ Metabolism

Dysregulated energy metabolism represents an important aspect in the aging pro-
cess. This includes several molecular pathways such as insulin and IGF-1 signaling 
and other nutrient and energy response systems, such as mTOR and AMPK, as 
briefly discussed above. In general, there is strong support that anabolic signal-
ing accelerates aging and decreased nutrient signaling extends longevity, which is 
evident from the fact that dietary restriction leads to prolonged life-span and health 
benefits in all species tested so far including in non-human primates. However, 
these benefits may come at the cost of reduced stress resistance and fertility [3, 
272].

NAD+ is a central metabolic cofactor by functioning as an important redox fac-
tor and serving as a substrate for enzymes, such as PARPs as well as the class 
III deacetylases known as sirtuins [273]. There is ample evidence that NAD+ me-
tabolism plays a crucial role in aging-dependent mechanisms. For example, NAD+ 
levels are reduced in aged animals, including mammals [274, 275]. Moreover, de-
creasing NAD+ levels causes a reduction in C. elegans lifespan. Conversely, genetic 
or pharmacological restoration of NAD+ prevents age-associated metabolic decline 
and extends longevity in C. elegans [275].
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With regards to molecular causes and consequences of age-related changes in 
NAD+ levels, two classes of enzymes come into play, i.e., PARPs and the fam-
ily of type III histone-deacetylases of sirtuins ( i.e., in humans and mice SIRT1-7). 
Sirtuins regulate the energy homeostasis by controlling the acetylation status and 
activity of various enzymes and transcriptional regulators and have been identified 
to act as longevity factors in various species [276]. In vivo studies demonstrated 
that SIRT1-overexpressing mice are leaner, metabolically more active, show im-
proved glucose tolerance, exhibit less inflammation, and are resistant to the devel-
opment of certain types of cancers [277–281]. The action of PARPs and sirtuins 
is interrelated at three levels: (i) by competition for the common NAD+ substrate, 
(ii) by mutual posttranslational modifications, and (iii) by direct transcriptional ef-
fects [282]. Apart from the aging-relevant interaction of SIRT6 with PARylation (as 
discussed in Sec. 3.1.1), a crosstalk of PARPs with SIRT1 has been identified and 
characterized to date: Parp2-/- mice exhibit increased SIRT1 activity and are pro-
tected against diet-induced obesity [283]. In this case, SIRT1 activity was not due 
to increased availability of NAD+. Instead, PARP-2 serves as a negative regulator 
of SIRT1 gene expression by controlling the SIRT1 promoter on a transcriptional 
level [283]. Furthermore, PARP1 and SIRT1 show an antagonistic interplay on a 
functional level [221, 284]. In contrast to the PARP-2/SIRT1 interaction, the inter-
relation of PARP1 with SIRT1 is based on the fact that both enzymes compete for 
NAD+ as a common substrate. This circumstance can be presumably attributed to 
the higher enzymatic activity of PARP1 compared to PARP-2. Apart from such in-
direct effects, PARP1 and SIRT1 directly interact with each other physically. In this 
regard, it has been shown that acetylation of PARP1 upon cellular stress induces 
its enzymatic activation, thereby potentially causing necrotic cell death via NAD+ 
/ATP depletion (see below). SIRT1, however, can reverse this acetylation, thereby 
deactivating PARP1 and promoting cell survival [221]. Consistently, Parp1-/- mice 
exhibit increased NAD+ content and enhanced SIRT1 activity in various tissues. 
Consequently, Parp1-/- mice phenocopy many aspects of SIRT1 activation, such as 
a higher mitochondrial content, increased energy expenditure, reduced body weight 
and protection against metabolic disease [285]. In line with these results, a study on 
human pelvic skin samples revealed that PARP activity and DNA damage signifi-
cantly increased with age and inversely correlated with tissue NAD+ levels. On the 
other hand, sirtuin activity negatively correlated with age, but positively correlated 
with NAD+ levels [286]. Accordingly, this raises the hypothesis that age-related 
accumulation of DNA damage leads to chronic PARP activation, which reduces 
NAD+ levels and thereby compromises sirtuin activity. Strikingly, and in favor of 
such a scenario, PARP inhibition extended lifespan in C. elegans, and this lifespan 
extension was dependent on functional sirtuins [275].

6.3.5  Cell Death and Cellular Senescence

Cell death is a process that is important for the regulation of many physiological 
processes, such as organismic development, tissue homeostasis, and elimination of 



1516  Multitasking Roles for Poly(ADP-ribosyl)ation in Aging and Longevity

cells that encountered irreparable damage [287]. On the other hand, cell death path-
ways also play significant roles in pathophysiological processes, such as cancer, 
degenerative diseases and aging. Historically, two major mechanisms of mamma-
lian cell death are distinguished, i.e., apoptosis and necrosis. [NB: In addition, in its 
most extreme form autophagy can also result in cell death (see above)]. Apoptosis 
is considered as the default pathway, where cell death occurs in a controlled manner 
resulting in the elimination of cells by macrophages without secondary damage of 
the surrounding cells. In contrast, necrosis is considered an uncontrolled process 
which leads to disruption of cells promoting tissue inflammation [288]. However, 
mounting evidence indicates that necrosis also occurs in a highly regulated manner 
[289]. Several transition states between the two pathways exist such as apoptosis 
inducing factor (AIF)-dependent cell death also known as parthanatos (named after 
PAR and Thanatos the Greek god of death) [290]. Cell death is an important factor 
contributing to organismic aging, because apoptosis can lead to depletion of the 
regenerative cell pool, while necrosis can cause chronic inflammatory conditions 
that promote age related-pathologies, such as cancer, atherosclerosis, and neurode-
generative diseases (see below).

It has been shown that H2O2 treatment of lymphocytes from young individu-
als mainly results in necrotic cell death, whereas lymphocytes from older donors 
undergo apoptosis [291]. Interestingly, in this study both kinds of cell death could 
almost completely be blocked by PARP inhibition. This result is consistent with the 
general view that PARP1 is involved in necrosis as well as in apoptosis at various 
levels, depending on the cell type and the intensity of DNA damage.

Excessive DNA damage, as it can be triggered by pathophysiological stimuli and 
during NF-κB-dependent inflammatory responses, can lead to PARP1 overactiva-
tion, which induces the depletion of cellular NAD+ pools and subsequently of ATP 
pools triggering bioenergetic failure [271, 292]. Interestingly, under specific con-
ditions DNA repair mechanisms themselves in association with PARP1 activation 
can contribute to cell death induction, as it was shown that the DNA glycosylase 
MPG mediates excision of alkylation-induced DNA damage products resulting in 
strand breaks, subsequent PARP1 activation and necrotic cell death [293]. More-
over not only NAD+ depletion, but also NAD/ATP regeneration processes appear 
to play important roles in PARP-dependent necrosis, since cells that are depleted 
in ALKBH7, a mitochondrial ALKBH dioxygenase, exhibit rapid recovery from 
depleted intracellular NAD and ATP levels and are protected from PARP-dependent 
alkylation-induced cell death [294]. Future studies will provide further insight into 
the exact molecular mechanisms leading to PARP-dependent necrosis. Whatever 
these mechanisms are, current data suggests that PARP-dependent necrosis rein-
forces tissue inflammation leading to a vicious cycle of PARP1 activation, necrosis 
and inflammation contributing to age-related diseases.

The role of PARP1 in apoptosis is manifold depending on the cell cycle state. 
Two major types of apoptosis exist: caspase-dependent and caspase-independent 
apoptosis. On the one hand, in proliferating cells, PARP1 contributes to classical 
caspase-dependent apoptosis through its regulatory activity on p53 [295]. Here, af-
ter an initial synthesis of PAR, PARP1 is cleaved by caspases 3 and 7 in a 24 kD and 
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an 89 kD fragment [296]. This occurs potentially to inactivate PARP1 and to pre-
serve cellular ATP pools for the apoptosis program [297–299]. On the other hand, 
it was shown that PARP1 contributes to caspase-independent apoptosis by releasing 
AIF from the mitochondria in a cell death pathway named parthanatos (see above) 
[300, 301]. Here, PAR itself acts as a signaling molecule between the nucleus and 
mitochondria, where it binds to AIF in a non-covalent manner and then triggers its 
release. AIF then translocates to the nucleus, where it causes chromatin condensa-
tion, large scale DNA fragmentation, and finally cell death [302–304]. Importantly, 
it has been demonstrated recently that this mechanism is responsible for age-de-
pendent dopaminergic neuron loss in a mouse model of Parkinson’s disease [305].

In conclusion, many interconnected cellular mechanisms have been proposed 
to be responsible for the involvement of PARP1 in cell death and associated age-
related pathologies. First, PARP1 overactivation by severe DNA damage upon an 
initial pathological insult can lead to NAD+ and subsequent ATP depletion causing 
necrotic cell death due to a bioenergetic crisis [292]. Second, such an initial patho-
logical insult or secondary necrotic disruption of cells can trigger an inflammatory 
response leading to further damage of the surrounding tissue, thereby supporting 
the aforementioned vicious cycle of DNA damage, subsequent PARP1 activation, 
and cell death potentiating inflammation and tissue damage. Third, the PAR-depen-
dent release of apoptosis inducing factor (AIF) from the mitochondria resulting in 
caspase-independent apoptosis may contribute to some extent to PARP-dependent 
pathologies in particular neurodegenerative disorders [300, 303–305]. Over time 
these mechanisms can contribute to aging and the development of age-related path-
ological conditions.

Besides these detrimental effects, in particular apoptosis represents a classical 
tumor suppressive mechanism in the adult, since heavily damaged cells that are at 
risk to undergo malignant transformation, are eliminated from the body. In addition 
to cell death, cellular senescence exists as a second, alternative mechanism to func-
tionally withdraw heavily damaged cells from the body. Senescence represents a 
state in which the cell is halted in a permanent cell cycle arrest, unable to divide, but 
still metabolically active. If a damaged cell dies or enters the state of cellular senes-
cence largely depends on the cell type and the kind of stimulus the cell encountered 
[3]. Similar to cell death, on the organismic level cellular senescence is thought to 
be beneficial in the short run, since it withdraws heavily damaged cells from the 
body and therefore counteracts tumorigenesis. However, in the long run, this could 
lead to the depletion of the regenerative cell pool and thereby contribute to tissue 
aging at all levels. Accordingly, there is ample evidence that cellular senescence 
contributes to organismic aging [3].

A role for PARylation in cellular senescence is obvious based on the fact that 
many of the mechanism as discussed above, such as DNA damage signaling and 
cell cycle control, represent upstream mechanisms causing the induction of cellular 
senescence. Consistent with this notion, PARylation contributes to p53-dependent 
senescence in aging human fibroblasts and PARP inhibition extents the cellular life 
span [306].
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Apart from depleting the regenerative cell pool, senescence contributes to ag-
ing via a second mechanism, as it is associate with a change in cellular physiology 
leading to the secretion of inflammatory cytokines, a paracrine effect known as 
senescence-associated secretory phenotype (SASP) [307, 308]. This can contribute 
to a pro-inflammatory state that may play a causative role in tissue aging [3]. In-
terestingly, PARylation itself contributes to this SAS phenotype of senescence cells 
[309], which points to a general role of PARylation in inflammatory processes as 
discussed in the next section.

6.3.6  Inflammation and Immunity

A direct relationship exists between physiological aging and increasing incidence 
of chronic inflammatory diseases. In its acute form inflammation acts as a protec-
tive mechanism in response to pathogen invasion or tissue damage and helps to 
restore physiological integrity and function. However, in its chronic form, inflam-
mation can exert detrimental effects on the cellular as well as the organismic level 
[310]. The innate immune system, especially the mononuclear phagocyte system, 
is the most important mediator of chronic inflammation. Macrophages participate 
in the killing of invading microorganisms and emerging tumor cells through the 
production of reactive oxygen or nitrogen species (ROS and RNS). In addition, 
macrophages secrete cytokines, which play a key role in the regulation of multiple 
immune functions, especially inflammatory responses [310]. During aging, the con-
tinuous pressure on the immune system caused by repeated antigen stimulation, 
such as infections, food antigens, allergens, and self-antigens leads to an increase 
in activated cells and secretion of proinflammatory cytokines, such as TNFα [311]. 
These circulating proinflammatory factors may keep the immune system in a state 
of chronic low-level activation, a phenomenon described as ‘inflammaging’ [308, 
312]. Eventually this causes ‘immunosenescence’, i.e., an age-related decline in the 
capacity of adaptive immunity, consisting of more specific responses carried out 
by B and T-cells [313]. Thus, with advanced age, the immune system undergoes 
a gradual remodeling in the attempt to re-establish a new balance that assures sur-
vival, however favoring the development of chronic inflammatory conditions [308, 
312, 314, 315].

DNA damage and inflammation are inevitably linked by the production of reac-
tive chemical species, such as ROS and RNS. Cellular ROS and RNS production 
occurs constantly under physiological as well as pathophysiological conditions as a 
consequence of electron leakage of the mitochondrial electron transport chain and 
via enzymes such as NADPH oxidase, nitric oxide synthases, and xanthine oxidase. 
The ‘free radical theory of aging’ posits that aging and its related diseases are the 
net consequence of free radical-induced damage and the inability to counterbalance 
these changes by antioxidative defenses and sufficient DNA repair [316]. Chronic 
inflammation results in the generation of a broad spectrum of ROS and RNS by 
activated macrophages and neutrophils, which damage cellular macromolecules 
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including DNA [317, 318]. Conversely, the generation of ROS and RNS activates 
redox sensitive transcription factors, such as NF-κB, resulting in the generation of 
proinflammatory molecules. Altogether, this can trigger a positive feedback loop 
that amplifies the processes of inflammation, damage and destruction in target cells 
and organs, leading to an organismic decline and death over time. For example, 
chronic inflammation has been associated with an age-related decline in the func-
tion of hematopoietic and mesenchymal stem cells [319, 320] and has been impli-
cated as a mediator of almost all of the aging-associated diseases, such as vascular 
diseases, diabetes, neurodegenerative diseases, and cancer [308, 310, 312, 315].

Various studies demonstrated that PARylation and in particular PARP1 partici-
pates in immunological processes, both in adaptive as well as innate immunity [321, 
322]. Regarding its function in adaptive immunity, it is evident that, in general, 
lymphocytes exhibit high PARP1 expression levels, and specifically, it was shown 
that PARP1 modulates the differentiation and function of various subsets of T and 
B cells. Furthermore, both PARP1 and PARP14 deficient mice display reduced TH2 
cell differentiation and impaired allergic responses [322].

Although our knowledge on the role of PARylation in adaptive immunity is 
growing, a huge body of evidence demonstrates its involvement in innate immu-
nity and inflammation. The first evidence that PARylation is involved in the regu-
lation of inflammation and the development of related pathologies was revealed 
by genetic studies in Parp1-/- mice, because these animals (and to a lesser extent 
also Parp2-/- mice) are protected from a series of inflammation and cell death-
associated pathologies such as ischemic infarction, collagen-induced arthritis, and 
LPS-induced septic shock [71, 323]. Moreover, Parp1-/- animals are resistant to 
MPTP-induced Parkinson’s disease and streptozotocin-induced diabetes mellitus 
[324–327]. Maybe the best studied process in this regard is the interaction of PARP1 
with NF-κB. The transcription factor NF-κB is considered a master regulator in 
controlling gene expression upon proinflammatory stimuli. NF-κB is composed 
of dimeric combinations of Rel family members with the major subunits p65 and 
p50. In non-stimulated cells, NF-κB is located in the cytoplasm via the binding to 
the inhibitory IκB proteins. Upon proinflammatory stimuli, IκB proteins are phos-
phorylated by IκB kinases (IKK), which causes their degradation by the ubiquitin/
proteasome system. Subsequently, NF-κB is translocated to the nucleus, where it 
can activate the transcription of a number of genes, especially inflammatory genes 
[328]. Apart from the regulation of NF-κB by its sub-cellular localization, its ac-
tion is tightly regulated within the nucleus by posttranslational modifications and 
interaction with transcriptional co-factors. Importantly, NF-κB-dependent gene ex-
pression is associated with aging in the mouse as well as in humans [329]. Recently, 
it was shown that hyperactive NF-κB signaling contributes to premature aging in 
the mouse [128], and blocking of NF-κB in aged mice was sufficient to reverse 
some features of skin aging [329, 330]. In accordance with these studies, pharma-
cological inhibition of NF-κB prolongs lifespan of Drosophila melanogaster by 
~ 15 % [331]. Cellular studies showed that NF-κB-dependent gene transcription can 
be induced by genotoxic stress and gene transcription studies in conditionally im-
mortalized human fibroblast suggested that NF-κB signaling plays a causal role in 
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the development of senescence [332]. In addition, NF-κB signaling was implicated 
in maintaining cellular senescence, because NF-κB-deficient fibroblasts escape se-
nescence earlier and immortalize at a faster rate [333]. On the other hand, NF-κB-
dependent gene transcription can be induced by genotoxic stress and is required 
for the transcription of many SASP factors [308]. In summary, there is substantial 
evidence that NF-κB plays a crucial role in aging and age-related diseases [334].

The expression and activation patterns of PARP1 and NF-κB are remarkably 
similar in various tissues. A direct role of PARP1 in NF-κB-mediated transcription 
was emphasized by the finding that expression of NF-κB-dependent pro-inflam-
matory mediators, such as TNFα, IL6, or iNOS is impaired in Parp1-/- mice [323, 
335]. PARP1 physically interacts with both major subunits of NF-κB, i.e., p65 and 
p50, and is required for NF-κB-dependent gene transcription (Fig. 6.7) [336]. More-
over, PARP1 is acetylated by the histone acetylase p300/CBP upon inflammatory 
stimuli, leading to a stronger association with NF-κB [49]. Subsequent expression 
of pro-inflammatory mediators such as iNOS lead to the production of highly reac-
tive chemical species that, in turn, cause extensive DNA damage in the target cell, 
potentially supporting a positive-feedback mechanism. Importantly, in this study 
neither the DNA binding nor the enzymatic activity of PARP1 were necessary for 
direct transcriptional activation of NF-κB [337]. On the other hand, inhibition of 
PARP’s enzymatic activity is sufficient to decrease the expression of iNOS, IL6 and 
TNFα in cultured cells and to reduce the expression of inflammatory mediators in 
mice [338]. This is consistent with a recent study demonstrating that the PARP1-
dependent activation of NF-κB occurs at two levels (Fig. 6.7): Thus, in addition to 
the nuclear co-activator function of PARP1 on NF-κB activity, this study identified 
PARP1 as a trigger for the translocation of NF-κB from the cytoplasm into the 
nucleus upon genotoxic stress (Fig. 6.7) [339]. According to this model, PARP1 is 
recruited to DNA strand breaks and is automodified with PAR. Upon dissociation 
into the nucleoplasm, PARP1 then rapidly forms a signalosome composed of the 
SUMO1 ligase PIASy, IKKγ (NEMO), and ATM. The signalosome is stabilized 
by a network of direct protein-protein interactions as well as by PAR binding of 
PIASy and ATM through PAR binding motifs. PAR degradation by PARG causes 
subsequent destabilization of the signalosome, resulting in IKKγ SUMOylation, 
translocation to the cytoplasm, phosphorylation of IκB proteins and NF-kB activa-
tion. This mechanism directly links the DNA damage signaling functions of PARP1 
to its role in inflammation-related mechanisms. Interestingly, PARP1-NF-κB sig-
naling seems also to contribute to the activation and maintenance of the secretory 
phenotype of senescent cells [309]. In consequence, the associated secretion of pro-
inflammatory factors possibly changes the tissue microenvironment and forms a 
site of low level chronic inflammation with tumor and aging-promoting properties.

Evidence supporting a role of PARP1 and PARylation as a driving force of inflam-
mation on an organismic level is given by the fact that Parp1-/- mice are protected 
from several inflammation and cell death associated diseases and that Parp1-/- mice 
and cells display lower expression levels of a whole spectrum of proinflammatory 
cytokines, adhesion molecules, and enzymes [323]. Consequently, given the role of 
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inflammation during mammalian aging, PARP1 and PARylation were postulated to 
act as aging-promoting factors [340]. In line with this concept, PARP inhibition or 
ablation of gene transcription has beneficial effects on several age-related diseases, 
including aging-associated cardiac and vascular dysfunctions [338, 341, 342].

Conversely, the phenotype Parp1-/- mice is mirrored by the phenotype of mice 
with ectopic expression of hPARP1 [343]. These mice develop sporadic obesity and 
show impaired glucose tolerance. Furthermore, hPARP1-expressing mice exhibit 
impaired survival rates, which is accompanied by premature development of sev-
eral inflammation and age-associated pathologies, such as nephropathy, dermatitis, 
pneumonitis, myocardiopathy, and hepatitis. In support of this hypothesis, hPARP1 
mice develop normocytic, normochromic anemia and show an increase in the frac-
tion of circulating monocytes, which is suggestive of anemia of chronic inflamma-
tory disease [344, 345]. Moreover, hPARP1 mice show typical signs of premature 
aging, such as early development of kyphosis and impaired hair regrowth. In ad-
dition to a potentially altered interplay between PARP1 and sirtuins in these mice, 
the pathological phenotype of hPARP1 mice might be related to an altered PARP1-
NF-κB interaction leading to a continuous low-level increase in pro-inflammatory 
stimuli. Consistently, expression of NF-κB-dependent target genes, such as TNFα, 
IL1, and IL6, is dysregulated in hPARP1 animals. This may contribute to the pre-
mature development of typical age-related chronic diseases in these mice [343]. 
Interestingly, hPARP1 mice also display an impaired DNA repair capacity. These re-

Fig. 6.7   Simplified model of PARP1-dependent mechanisms of NF-kB activation. For details see 
text. (Scheme based on [323, 339]. Reprinted from [1])
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sults from hPARP1 mice resemble the situation observed in the fungal aging model 
Podospora anserine. This organism exhibits one Parp homolog and when overex-
pressing this homolog this leads to increased sensitivity to DNA damaging agents, 
impaired growth and fertility and a shortened lifespan [346]. Together, these studies 
indicate that each organism has adapted optimal PARylation levels and responses 
for its respective molecular environment. Thus, reduced as well as increased PARP 
expression levels result in impaired genomic integrity.

6.4  Conclusions

Aging is a complex process which cannot be explained by a single pathway or 
even a set of closely related pathways. More likely, many diverse cellular functions 
will contribute to aging and they will do so in a highly inter-dependent manner 
[204]. As summarized here, this complexity is already represented at the level of 
a single post-translational modification. PARylation is a factor that connects DNA 
damage response, epigenetics, transcription, proteostasis, cell death and inflamma-
tory mechanisms, all of which are closely associated with mammalian aging and 
longevity. Thus, under physiological conditions and mild stresses PARylation is 
thought to play an important role in genome and protein maintenance (Fig. 6.6). On 
the other hand, under pathophysiological conditions, PARylation can drive energy 
dysbalance, inflammation, and cell death, which contribute to the depletion of the 
regenerative cell pool and tissue dysfunction accumulating in the aging process.

There is ample evidence supporting a role of PARP1 as a longevity assurance 
factor on the one hand, but also as an aging-promoting factor on the other hand 
(Fig. 6.8). The dual role of PARP1 in longevity and aging might be reflected in the 
moderate premature aging phenotype observed in cohorts of Parp1-/- mice [61]. 
Thus, it is reasonable to assume that overall aging in these mice is kept nearly in 
balance, due to compromised genomic integrity on the one hand, but reduced in-
flammatory status on the other hand. The generation of Parp1-/- mice with tissue 
specific reconstitution of PARP1 expression may be a suitable model to test such a 
hypothesis: Tissue-specific re-expression of PARP1 in cells of the innate immune 
system on an otherwise Parp1-/- background may lead to a more drastic accel-
erated aging phenotype, since PARP1-overexpressing cells of the innate immune 
system are expected to exhibit an enhanced inflammatory status, while cells of the 
remaining Parp1-/- tissues are genomically unstable. Another possibility explain-
ing the moderate premature aging phenotype of Parp1-/- mice may be that alterna-
tive mechanisms are able to compensate for the PARP1 deficiency. Such potential 
backup mechanisms rely most likely on PARP-2 which shares some redundancy to 
PARP1, as it is evident by the finding that Parp1/ Parp2 double deficient mice are 
not viable. The generation of conditional and inducible double knockout mice may 
help to test this hypothesis.

Many theories of aging exist. Most of these are not mutually exclusive and al-
though none of these is probably able to explain all characteristics of human aging, 
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in all probability there is some truth in many of them. The ‘antagonistic pleitropy’ 
theory of aging postulates the existence of pleiotropic genes and mechanisms hav-
ing opposite effects on fitness at different stages of age. Thus a gene or mechanism 
may be beneficial for survival in early life, when natural selection is strong, but 
harmful at later ages, when selection is weak or absent [347]. Mechanisms of DNA 
damage response as well as inflammation may support such a theory. DNA damage 
response, with its final end points, DNA repair, senescence and apoptosis, is clearly 
beneficial at young age, as these mechanisms prevent cancer development. How-
ever at older age, this may become detrimental, as depletion of the regenerative cell 
pool by senescence or apoptosis may contribute to tissue degeneration and aging. 
The same holds true for inflammation. At young age, inflammatory responses most 
likely fulfill beneficial functions, e.g., acting as a first line defense against infec-
tions. ( N.B.: This is supported by the finding that some mouse models with deficien-
cies in NF-κB signaling are hypersensitive to infectious diseases [348]) However, 
at older age continuous pressure on the immune system caused by repeated antigen 
stimulation leads to remodeling of the immune system with pro-inflammatory prop-
erties reinforcing the aging process and the development of age-related disease. 
Because PARPs and PARylation fulfill key roles in opposing mechanisms such as 
DNA repair and inflammation, it is conceivable that functions of this post-trans-
lational modification act in some aspects in an antagonistic pleiotropic way, with 
beneficial functions in the youth and detrimental functions at old age (Fig. 6.8).

In conclusion, PARPs and the synthesis of poly(ADP-ribose) are emerging as 
central factors in general cellular stress response with functions in a plethora of 
molecular mechanisms, such as chromatin remodeling, transcription, DNA damage 
signaling, DNA repair, cell cycle regulation, proteostasis, cell death, and inflamma-
tion. As reviewed here, there is ample evidence that PARylation fulfills numerous 
direct as well as indirect roles in mechanisms of aging and longevity, which renders 

Fig. 6.8   Pleiotropic role of PARPs and PARylation in health and disease. For details see text. 
(Modified from [1])
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it an interesting factor to study in order to better define mechanisms of the aging 
process.
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