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Abstract With the advances in minimal invasive surgical procedures, accurate and
detailed extraction of the vertebral boundaries is required. In practice, this is a difficult
challenge due to the highly complex geometry of the vertebrae, in particular at the
processes. This paper presents a statistical modeling approach for detailed vertebral
segmentation based on part decomposition and conditional models. To this end,
a Vononoi decomposition approach is employed to ensure that each of the main
subparts the vertebrae is identified in the subdivision. The obtained shape constraints
are effectively relaxed, allowing for an improved encoding of the fine details and
shape variability at all the regions of the vertebrae. Subsequently, in order tomaintain
the statistical coherence of the ensemble, conditional models are used to model the
statistical inter-relationships between the different subparts. For shape reconstruction
and segmentation, a robust model fitting procedure is introduced to exclude outlying
inter-part relationships in the estimation of the shape parameters. The experimental
results based on a database of 30 CT scans show significant improvement in accuracy
with respect to the state-of-the-art and the potential of the proposed technique for
detailed vertebral modeling.
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1 Introduction

Automatic segmentation of the vertebrae is an important pre-requisite for a number
of clinical applications, ranging from the assessment of spinal disorders to image-
guided interventions. The latter one in particular, with the recent advances inminimal
invasive surgical procedures, requires accurate and detailed extraction of the verte-
bral boundaries. However, this is challenging in practice due to the highly complex
geometry of the vertebrae, in particular at the region of the processes. Figure1 shows
some examples of typical areas of high geometrical complexity and curvature in the
lumbar vertebra L5.

Amongst existing techniques for vertebral image segmentation, statistical models
of 3D shape [4] have been extensively used [2, 3, 5, 7, 8] due to their ability to build
a shape prior from a representative training population. However, these methods
consider at best a whole vertebra as the smallest unit for the construction of the point
distribution models (PDMs). Due to the large variability of the vertebrae in particular
at the processes and the generally small number of samples available for training,
the obtained models are too constraining and not flexible enough to localize the fine
details at areas of high curvatures.

In this paper, we present a new method for detailed modeling and segmentation
of the vertebrae. The fundamental idea behind the proposed technique is to decom-
pose each vertebra into a set of subparts based on their geometrical properties. By
using a Vononoi [9] decomposition approach, we ensure that each of the main sub-
parts of the vertebrae is well identified. With this approach, the shape constraints are
effectively relaxed, allowing for an improved encoding of the fine details and shape
variability at all the regions of the structures. Subsequently, in order to maintain the
statistical coherence of the ensemble, conditional models are used to model the sta-
tistical inter-relationships between the different subparts. For shape reconstruction
and segmentation, a robust model fitting procedure is introduced to exclude outlying

Fig. 1 Examples of segmentations (in blue) obtained with local PDMs, showing suboptimal fitting
in areas of complex geometry and high curvature on the spine (Color figure online)
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inter-part relationships in the estimation of the shape parameters. The proposed tech-
nique is validated with a total of 30 spinal CT scans.

2 Method

The proposed framework consists of threemain stages. Firstly, in Sect. 2.1, a subdivi-
sion of each vertebra into a number of subparts is proposed based on an approximate
Voronoi region decomposition. Subsequently, the conditional models describing the
statistical inter-relationships between the subparts are presented in Sect. 2.2. Finally,
a model fitting approach based on all pair wise conditional models is introduced in
Sect. 2.3, with the aim to estimate the shape parameters for each subpart robustly.

2.1 Vertebral Decomposition

Let us denote x = (x1, . . . , xn)T the landmark-based shape representation of each
vertebra, where n is the number of landmarks used to discretize the 3D shape. The
aim of this section is to obtain a subdivision of x into K sub-components.

We do this in this paper by using a polygon clustering algorithm described in [9],
which provides a compact subdivision of the shape based on the concept of a Voronoi
diagram [1]. Furthermore, let us denote V = (C1, . . . , Cm)T the triangulation of the
shape x, where Ci , i = 1, . . . , m, represents each face on the mesh, and E j the set of
edges between all adjacent triangles. Given the centroids ci corresponding to each of
the triangular triangles Ci , the algorithm computes an approximation of a centroidal
Voronoi diagram (CVD). The energy term to minimize is:

F =
K∑

k=1

⎛

⎝
∑

i∈Rk

wi ||ci − cRk ||2
⎞

⎠ , (1)

where Rk is a subset of V (i.e. subpart of the shape), cRk is the center of the region,
and wi is the area of triangle Ci .

To minimize Eq.1, we use an iterative approach over the subset of edges E j

between adjacent regions. The regions Rk are initialized as a single triangle that is
randomly chosen amongst V. The remaining triangles are assigned to the null region
R0. We then iterate only over the edges that are between two regions Rk and Rl ,
or between any Rk and R0. Then we assign one of the two triangles adjacent to
the current edge to the region that minimizes Eq.1. At some point, the region R0
will become empty. The iterative algorithm will continue until no modification of
the region assignments for the triangles lead to an improvement of the subdivision
according to Eq.1.
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Fig. 2 The obtained Voronoi decomposition with 18 subparts

Given that the regions of highest complexity and curvature on the vertebra are
the different vertebral processes, we chose the lowest number of clusters K such
that points selected roughly at the distal region of every process (transverse, supe-
rior/inferior articular and spinous) are assigned to a different region after the subdi-
vision.

Once the algorithm converges, all Ci ∈ V will belong to a unique region Ri .
However, the points that lie on the boundary edges between subparts will now belong
to two adjacent regions. To resolve this ambiguity, we perform a last stepwherewe go
through the different regions sequentially and assign boundary points to the current
region unless previously assigned.

Figure2 shows the obtained subdivision with K = 18, where it can be seen that
the main regions of high curvature now belong to a unique subpart.

2.2 Conditional Model Parametrization

In the previous section we obtained K subcomponents xk , k = 1, . . . , K . The aim
of this section is to describe the statistical modeling of the inter-part probability
distributions, i.e. P(xk |xl), where k, l = 1, . . . , K and k �= l. More specifically,
we would like to obtain new constraints for each part xk based on its conditional
relationship with xl , that is, a new mean and covariance in the space of the shape
parameters bk . Let us denote μkl and Σkl the values that form the new conditional
constraints. In this paper, we choose to model P(xk, xl) using a normal probability
distribution. Thus, the mean and the covariance estimates are calculated as:

μkl = ΣklΣ
−1
ll bl (2)

Σkl = Σkk − ΣklΣ
−1
ll Σlk (3)
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bl in Eq.2 is the parametric representation after eigendecomposition of the a
given conditioning shape Sl , and the covariance matrices in Eqs. 2 and 3 are obtained
from the partitioned covariance matrix in Eq.4:

Σ =
[

Σkk Σkl

Σlk Σll

]
(4)

In Eqs. 2 and 3 ΣklΣ
−1
ll are called the matrix regression coefficients of bk on bl .

In order to compute the conditional mean μ and covariance matrix Σ, we need
to compute the inverse of the covariance matrix of the predictor shape, however, as
the dimensionality of the shapes is much larger than the number of training samples
available, the covariance matrix becomes singular, and cannot be inverted. Also,
the computational burden of computing inverse of matrices representing several
thousands of points can become cumbersome. We address this issues by reducing
the dimensionality of the problem using PCA before computation of the mean and
covariance matrix as follows [6]:

given subshapes xk and xl ,

xk = xk + Φkbk (5)

xl = xl + Φlbl , (6)

their parametric representation is

bk = ΦT
k xk − xk (7)

bl = ΦT
l xl − xl . (8)

Then the cross-covariancematrixΣkl = BkBT
l is the product of parametric shapes

matrices Bk and Bl . The self-covariance matrices Σkk and Σll are the diagonal
eigenvalue matrices Λk and Λl obtained by eigendecomposition of the individual
subparts.

The proposed parametrization of the conditional model has two important ben-
efits. Firstly, it decreases the over-constraining of the global model caused by the
dimensionality disparity between the available samples and the natural variabilty of
the shapes. Additionally, and as detailed in next section, the inter-part models can
be used as a mechanism to find the optimal domain of valid subregions and exclude
incorrect localized segmentations due to image inhomogeneities.

2.3 Robust Model Fitting

To maintain the coherence of the ensemble in spite of the decomposition, the esti-
mation of the shape parameters must be carried out by considering all pairwise
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conditional probabilities P(xk |xl). This is challenging at the segmentation stage
because all subparts are being optimized simultaneously, and therefore, there is a
degree of uncertainty surrounding the values of the different xl in P(xk |xl). This
could lead to inaccurate constraining and parameter estimation of xk if some of the
xl , l = 1, . . . , K, k �= l are erroneous during the segmentation procedure. To address
this problem, we use a median-based estimation approach to exclude potentially
incorrect conditional relationships.

Firstly, we calculate the initial shape parameter b0
k by projecting the boundary

feature points (as obtained using normal search profile) onto the standard PDM
of xk . Subsequently, we calculate K − 1 shape parameters bkl by considering the
K − 1 shape constraints formed by the conditional mean parameter μkl and its
corresponding bounds λkl (derived from the eigenvalues of Σkl ), i.e.,

bkl =
⎧
⎨

⎩

b0
k if |b0

k − μkl | ≤ 3
√

λkl

μkl + 3
√

λkl if bk > μkl + 3
√

λkl

μkl − 3
√

λkl if bk < μkl − 3
√

λkl

(9)

Due to the fact that some subparts are inevitably erroneous during the image search
due to imaging inhomogeneities, some of the bkl values will be incorrect. To exclude
these values and obtain a consensus robust estimation of the shape parameters, we
use a median-based final estimation of bkl , i.e.,

b f inal
k = median(bkl). (10)

3 Validation

Wevalidate ourmethod using 30 image volumes of the lumbar spine (L1-L5) fromCT
scans. The image datasets were collected at the National Center for Spinal Disorders
(Budapest, Hungary). The images have an in-plane resolution of 0.6 × 0.6 mm and
slice thickness of 0.62 mm. All images were manually segmented using open source
software.

All segmentations were performed by preserving 98% of the total variance,
and allowing ±3 standard deviations from the mean. All segmentations are per-
formed following a leave-one-out scheme. Accuracy is measured as the RMS point
to surface distance between the manual segmentations and the reconstructions.
Furthermore, we compare the proposed approach against the results obtained with a
standard ASM using single-vertebra PDMs.

Figure3 shows the segmentation errors for all the 30 scans using both ASM
methods. It is evident that the proposed technique outperforms the single model
ASMs for nearly all cases (with the exception of case 24, with minor differences).
The average improvement is of 16% and in some cases the improvement is over
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Fig. 3 Point to surface segmentation error comparison between the proposedmethod and a standard
ASM single-vertebra PDM

Table 1 Image segmentation errors (mm) comparing the performance of our parts-based models
(pb), and a single-vertebra PDM (sv). Errors are shown individually for each lumbar vertebra

Structure L1 L2 L3 L4 L5

pb sv pb sv pb sv pb sv pb sv

Mean 0.81 1.05 0.82 1.08 0.84 1.05 0.88 1.12 1.06 1.23

± Std 0.13 0.15 0.15 0.23 0.17 0.19 0.20 0.25 0.24 0.18

20% due to the ability of the proposed technique to better encode the fine details of
the vertebrae.

Table1 summarizes the segmentation results for the proposed part-based tech-
nique (pb) and the single vertebra ASM (sv) for the different lumbar vertebrae
(L1 to L5). It can be seen that the performance of the proposed technique is consis-
tently better for the entire lumbar spine.

Finally, we show in Fig. 4 two illustrations of the error distribution for both the
standard ASM and the proposed technique. It can be seen that the errors introduced
locally by the use of a single vertebral model are corrected by the proposed parts-
based approach. For both examples, the errors are consistently low in all regions of
the vertebra.
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Fig. 4 Point to surface segmentation error comparison between the proposed method (right
top/bottom), and a standard ASM single-vertebra PDM (left top/bottom)

4 Conclusions

In this paper,we presented a newpart-basedASMapproach for detailed segmentation
of the lumbar vertebrae. The proposed technique addresses the difficulty tomodel the
variability in the area of high complexity and curvature by decomposing the vertebrae
into a set of subparts, which are subsequently linked using conditional shape models.
A robust median-based estimation of the shape parameters of each subpart is used to
minimize potential errors due to the presence of image inhomogeneities. The results
indicate potential for more detailed localization of the fine details of the vertebrae.
Future work include the study of the effect of the number of subparts on the models
and segmentation properties.

References

1. Aurenhammer, F.: Voronoi diagrams: a survey of a fundamental geometric data structure. ACM
Comput. Surv. (CSUR) 23(3), 345–405 (1991)

2. Benameur, S., Mignotte, M., Parent, S., Labelle, H., Skalli, W., de Guise, J.: 3d/2d registration
and segmentation of scoliotic vertebrae using statistical models. Comput. Med. Imaging Graph.
27(5), 321–337 (2003)



Detailed Vertebral Segmentation Using Part-Based Decomposition … 103

3. de Bruijne, M., Nielsen, M.: Image segmentation by shape particle filtering. ICPR 3, 722–725
(2004)

4. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and
application. Comput. Vis. Image Underst. 61(1), 38–59 (1995). doi:10.1006/cviu.1995.1004

5. Kadoury, S., Labelle, H., Paragios, N.: Spine segmentation in medical images using manifold
embeddings and higher-order mrfs. Med. Imaging, IEEE Trans. 32(7), 1227–1238 (2013)

6. Metz, C., Baka, N., Kirisli, H., Schaap, M., van Walsum, T., Klein, S., Neefjes, L., Mollet, N.,
Lelieveldt, B., de Bruijne,M., et al.: Conditional shapemodels for cardiacmotion estimation. In:
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2010, pp. 452–459.
Springer (2010)

7. Rasoulian, A., Rohling, R., Abolmaesumi, P.: Lumbar spine segmentation using a statistical
multi-vertebrae anatomical shape+pose model. Med. Imaging IEEE Trans. 32(10), 1890–1900
(2013). doi:10.1109/TMI.2013.2268424

8. Roberts, M.G., Cootes, T.F., Adams, J.E.: Linking sequences of active appearance sub-models
via constraints: An application in automated vertebralmorphometry. In: BMVC, pp. 1–10 (2003)

9. Valette, S., Chassery, J.M.: Approximated centroidal Voronoi diagrams for uniform polygonal
mesh coarsening 24(3), 381–389 (2004). doi:10.1111/j.1467-8659.2004.00769.x

http://dx.doi.org/10.1006/cviu.1995.1004
http://dx.doi.org/10.1109/TMI.2013.2268424
http://dx.doi.org/10.1111/j.1467-8659.2004.00769.x

	Detailed Vertebral Segmentation  Using Part-Based Decomposition  and Conditional Shape Models
	1 Introduction
	2 Method
	2.1 Vertebral Decomposition
	2.2 Conditional Model Parametrization
	2.3 Robust Model Fitting

	3 Validation
	4 Conclusions
	References


