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Abstract Accurate and robust segmentation of spinal and vertebral structures from
medical images is a challenging task due to a relatively high degree of anatomical
complexity and articulation of spinal structures, as well as due to image spatial res-
olution, inhomogeneity and low signal-to-noise ratio. In this paper, we describe an
improved framework for vertebra segmentation that is based on an existing shape-
constrained deformablemodel, whichwasmodifiedwith the aim to improve segmen-
tation accuracy, and combined with a robust initialization that results from vertebra
detection by interpolation-based optimization. The performance of the proposed seg-
mentation framework was evaluated on 10 computed tomography (CT) images of
the lumbar spine. The overall segmentation performance of 0.43± 0.14mm in terms
of mean symmetric absolute surface distance and 93.76± 1.61% in terms of Dice
coefficient, computed against corresponding reference vertebra segmentations, indi-
cates that the proposed framework can accurately segment vertebrae fromCT images
of the lumbar spine.
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1 Introduction

Accurate and robust segmentation of spinal and vertebral structures from medical
images is a challenging task due to a relatively high degree of anatomical complex-
ity (i.e. vertebrae consisting of the vertebral body, pedicles, laminae and spinous
process) and due to the articulation of vertebrae with each other. In addition to the
complexity and articulation, the problem also lies in insufficient image spatial resolu-
tion, inhomogeneity and low signal-to-noise ratio. Since skeletal structures have high
contrast when observed in computed tomography (CT) images, CT is commonly the
modality of choice for assessing three-dimensional (3D) skeletal structures, such as
the spine and vertebrae.

In recent years, several automated and semi-automated methods focusing on the
vertebra segmentation problemhave been developed forCT images.Kim andKim [8]
proposed a fully automated method that constructs 3D fences to separate vertebrae
from valley-emphasized Gaussian images, and then the region growing algorithm is
applied within 3D fences to obtain the final segmentation. Klinder et al. [9] progres-
sively adapted tube-shaped segments to extract the spine curve, performed vertebra
detection on curved-planar reformatted images using the generalized Hough trans-
form, identified vertebrae by rigid registration of appearance models to the detected
candidates, and obtained the final segmentation by adapting shape-constrained mod-
els of the individual vertebrae.Kadoury et al. [6, 7] built an articulated shapemanifold
from a training database by embedding the data into a low-dimensional sub-space,
and applied the Markov random field optimization to infer between the unseen target
shape and shape manifold. Lim et al. [10] incorporated local geometrical features
using theWillmore flow and prior shape knowledge by kernel density estimation into
a level set segmentation framework. Ma and Lu [12] introduced a learning-based
bone structure edge detection algorithm and hierarchical coarse-to-fine deformable
surface-based segmentation that relied on response maps of a trained edge detector.
Rasoulian et al. [14] developed a statistical multi-vertebrae model of shape and pose,
and proposed a novel iterative expectation maximization registration technique to
align the model to CT images of the spine. Ibragimov et al. [5] presented a segmen-
tation framework, inwhich a novel landmark-based shape representation of vertebrae
was combined with a landmark detection framework based on game theory.

In this paper, we describe an improved framework for vertebra segmentation
that is based on the shape-constrained deformable model [9, 15]. Our framework is
initialized by the results of a novel vertebra detection and alignment algorithm [4], and
the segmentation of each vertebra is then obtained by a mesh deformation technique
that moves mesh vertices to their optimal locations while preserving the underlying
vertebral shape. The performance of the proposed segmentation framework was
evaluated on vertebrae from CT images of the lumbar spine, and the obtained results
with the mean error below 0.5mm indicate that accurate segmentation of vertebrae
was achieved.
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2 Methodology

2.1 Mean Shape Model of the Lumbar Spine

Let set T contain 3D images of the lumbar spine, where each image is assigned
a series of binary masks representing reference segmentations of each individual
lumbar vertebra from level L1 to L5. To extract a shape model of each vertebra from
each image inT , themarching cubes algorithm [11] is applied to each corresponding
binary mask, resulting in a 3D face-vertex mesh consisting of vertices with triangle
connectivity information. The dependency of the number of vertices in each mesh
on the size of the image voxel and of the observed vertebra is removed by isotropic
remeshing [1]. In order to establish pointwise correspondences among vertices of
the same vertebral level, the nonrigid transformation among sets of vertices is recov-
ered using state-of-the-art coherent point drift algorithm [13] that outperforms other
methods for point set registration. Finally, the generalized Procrustes alignment [3]
is used to remove translation, rotation and scaling from correspondingmeshes, yield-
ing the mean shape model of each vertebra, represented by a 3D face-vertex mesh
M = {

V ,F
}
of |V | vertices and |F | faces (i.e. triangles). Themean shapemodel of

the whole lumbar spine, i.e. a chain of mean shape models of individual vertebrae, is
further used for spine detection, while the mean shapemodels of individual vertebrae
are used for vertebra detection and segmentation in an unknown 3D image I.

2.2 Vertebra Detection

The detection of vertebrae in an unknown 3D image I was performed by a novel opti-
mization scheme that is based on interpolation theory [4]. The optimization scheme
consists of three steps: spine detection, vertebra detection and vertebra alignment.
To detect the spine in image I, the pose of mesh M representing the mean shape
model of the lumbar spine (i.e. a chain of meshes representing individual vertebrae
from L1 to L5) is optimized against three translations (i.e. coordinates x , y and z rep-
resenting sagittal, coronal and axial anatomical directions, respectively). The global
maximum of the resulting interpolation represents the location of the spine in the 3D
image, and is further used to initialize the detection of individual vertebrae. To detect
individual vertebrae, the pose of mesh M, now representing the mean shape model
of the observed lumbar vertebra, is optimized against three translations, however, in
this case all local maxima of the resulting interpolation are extracted, corresponding
to locations of the observed and neighboring vertebrae. The correct location of each
vertebra is determined by the optimal path that passes through a set of locations,
where each location belongs to a local maxima at a different vertebral level. Finally,
a more accurate alignment of the mean shape model of each observed vertebra is per-
formed by optimizing the pose of each model against three translations, one scaling
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(i.e. factor s) and three rotations (i.e. angles ϕx , ϕy and ϕz about coordinate axes x , y
and z, respectively). The resulting alignment represents the final vertebra detection
result. A detailed description of the interpolation-based optimization scheme can be
found in [4].

2.3 Vertebra Segmentation

After the interpolation-based alignment [4] of the mean shape model of each lumbar
vertebra to the unknown image I, segmentation of each lumbar vertebra is performed
by a mesh deformation technique that moves mesh vertices to their optimal locations
while preserving the underlying vertebral shape [9, 15]. In this iterative procedure,
the following two steps are executed in each iteration: image object detection for
mesh face centroids that are represented by the centers of mass for mesh faces
F ∈ M, followed by reconfiguration of mesh vertices V ∈ M. By combining the
robust initialization resulting from vertebra detection (Sect. 2.2) with modifications
to themesh deformation technique, we improve the accuracy of the resulting vertebra
segmentation.

2.3.1 Object Detection

By displacing each mesh face centroid ci ; i = 1, 2, . . . , |F | along its corresponding
mesh face normal n(ci ), a new candidate mesh face centroid c∗

i is found in each kth
iteration:

c∗
i = ci + δ j∗i n(ci ), (1)

where δ is the length of the unit displacement, and j∗i is an element from set J ;
j∗i ∈ J. SetJ represents the search profile along n(ci ), called the sampling parcel
(Fig.1):

J =
{

− j,− j + 1, . . . , j − 1, j
}
; j = J − k + 1, (2)

which is of size 2J +1 at initial iteration k = 1 and 2(J − K +1)+1 at final iteration
k = K. The element j∗i that defines the location of c∗

i is determined by detecting
vertebra boundaries:

j∗i = argmax
j∈J

{
F

(
ci , ci + δ j n(ci )

) − D δ2 j2
}
. (3)

where c′
i = ci + δ ji n(ci ) is the candidate location for c∗

i (Eq. 1), and parameter
D controls the tradeoff between the response of the boundary detection operator
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Fig. 1 Each i th face centroid ci of the 3D face-vertex mesh of the observed vertebra is displaced
for δ ji along the sampling parcel in the direction of its face normal n(ci ). In an iterative framework,
where the length of the sampling parcel is gradually reduced, each centroid moves to the location
c∗

i that best corresponds to vertebra boundaries (dashed curve)

F (Eq. 4) and the distance from ci to c′
i . In comparison to the original approach

[9, 15], we propose an improved boundary detection operator F that is based on
image intensity gradients, weighted by an image appearance operator:

F(ci , c′
i ) = gmax

(
gmax + ∥

∥gW (c′
i )

∥
∥)

g2
max + ∥

∥gW (c′
i )

∥
∥2

〈
n(ci ), gW (c′

i )
〉
, (4)

where ‖·‖ denotes the vector norm, 〈·, ·〉 denotes the dot product, gmax is the estimated
mean amplitude of intensity gradients at vertebra boundaries that is used to suppresses
theweighted gradients, whichmay occur if the gradient magnitude at the boundary of
the object of interest is considerably smaller thanof another object in its neighborhood
(e.g. pedicle screws), and gW is the image appearance operator at candidate mesh
centroid location c′

i :

gW (c′
i ) = (

1 + C(c′
i )

)
g(c′

i ), (5)

where g(c′
i ) is the intensity gradient at c′

i and C(c′
i ) ∈ [0, 1] is the continuous

response to the Canny edge operator [2]. By adding additional weights to the image
intensity gradients, vertebra boundary points are more likely to be detected. In con-
trast to the original technique [9, 15], the size of the sampling parcel J (Eq. 2) is
reduced in each iteration k and the image intensity gradients g (Eq.5) are additionally
weighted, both to improve the accuracy of the resulting segmentation.
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2.3.2 Mesh Reconfiguration

Once the new candidate mesh face centroids c∗
i are detected, mesh M = {V ,F }

is reconfigured in each kth iteration by minimizing the weighted sum E of energy
terms:

min
M

{
E

} = min
M

{
Eext + αEint

}
, (6)

whereα is theweighting parameter. The external energy Eext attractsmeshM to new
face centroids c∗

i , i = 1, 2, . . . , |F | (Eq. 1), that are located on vertebra boundaries:

Eext =
|F |∑

i=1

w∗
i

〈

c∗
i − ci ,

gW (c∗
i )∥

∥gW (c∗
i )

∥
∥

〉2
(7)

where |F | is the number of mesh faces, gW is the image appearance operator (Eq.5),
and wi ; i = 1, 2, . . . , |F |, are weights that are defined according to the obtained j∗i
(Eq. 3) to give a greater influence to more promising centroid locations:

w∗
i = max

{
0, F(ci , c∗

i ) − D δ2 j∗i
2
}

(8)

The internal energy Eint restricts the flexibility of mesh M by penalizing the
deviation between deformation vertices V and mean vertices V m :

Eint =
|V |∑

i=1

∑

j∈Ni

∥
∥
∥
(

vi − v j

)
−

(
s R

(
vm

i − vm
j

)
+ t

)∥
∥
∥
2

(9)

where vi and vm
i are vertices from sets V and V m , respectively,Mm = {V m,Fm}

represents the mean shape model of the observed lumbar vertebra (Sect. 2.1), andNi

is the set of vertices neighboring to vi (or vm
i , since the topology is preserved). The

scaling factor s, rotation matrix R and translation vector t that align mesh vertices
vi to the mean vertices vm

i are determined prior to calculation of Eq. (9) by using
Procrustes superimposition [3].

3 Experiments and Results

The performance of the described vertebra segmentation framework was tested on
a database of 10 CT images of the lumbar spine (i.e. a total of 50 lumbar verte-
brae, with axial in-plane pixel size of 0.3–0.8mm and cross-sectional thickness of
0.7–1.5mm) by applying a leave-one-out evaluation scheme. A reference segmen-
tation binary mask was available for each vertebra in the database. The framework
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was implemented in Matlab, and executed on a personal computer with Intel Core
i5 processor at 3.2GHz and 16GB of memory without a graphics processing unit.

3.1 Experimental Details

The mean shape model of the lumbar spine (Sect. 2.1) was obtained by applying the
marching cubes algorithm [11] to binarymasks representing reference segmentations
of each vertebra, resulting in 3D face-vertex meshes M = {

V ,F
}
of genus 1

(i.e. the number of holes is 1, as expected for lumbar vertebrae). The corresponding
number of vertices |V | = 31.542–161.790 (the number of faces was |F | = 2 |V |)
was further reduced to |V | = 3.228–5.642 by isotropic remeshing with mean edge
length of 2.25mm [1]. After establishing correspondences among meshes of the
same vertebral level by the coherent point drift algorithm [13] and applying the
generalized Procrustes alignment [3], the mean shape model of each lumbar vertebra
was obtained. The initialization of vertebra segmentation was obtained from the
results of interpolation-based vertebra detection [4] based on spline approximation
on an equidistant grid. Segmentation of each vertebra (Sect. 2.3) consisted of 25
iterations (from k = 1 to k = 25) of object detection and mesh reconfiguration. The
corresponding parameters, which were obtained from the original mesh deformation
technique [9, 15] and not further tuned to search for a possibly better segmentation
performance on the tested database, were set to J = 25 (Eq.2), D = 0.6mm−2

(Eqs. 3 and 8), δ = 0.3mm (Eqs. 1, 3 and 8), gmax = 100HU (Eq.4) and α = 33
(Eq.6). The minimization of the sum of energy terms (Eq.6) was performed by the
conjugate gradient method.

3.2 Results

The performance of the proposed framework was evaluated by the mean sym-
metric absolute surface distance (MSD), symmetric root-mean-square surface dis-
tance (RMSSD), maximal symmetric absolute surface distance (MaxSD) and Dice
coefficient (DICE), computed between the resulting 3D meshes and corresponding
reference segmentation binary masks. Detailed results for the segmentation of indi-
vidual vertebral levels are presented in Table1 separately for the original mesh
deformation framework [9, 15] and for the proposed framework that is based on
a robust initialization and additional modifications with the aim to improve the
framework performance. The overall vertebral segmentation performance (mean ±
standard deviation) was MSD = 0.43 ± 0.14mm, RMSSD = 0.83 ± 0.33mm,
MaxSD = 7.32 ± 3.23mm and DICE = 93.76 ± 1.61% for the proposed
framework, compared to MSD = 0.55 ± 0.21mm, RMSSD = 1.10 ± 0.47mm,
MaxSD = 9.65± 4.37mm and DICE = 92.19± 2.19% of the original framework.
The detection of all five lumbar vertebrae (i.e. levels from T1 to T5) took on average
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Table 1 Lumbar vertebra segmentation results in terms of mean symmetric absolute surface
distance (MSD), symmetric root-mean-square surface distance (RMSSD), maximal symmetric
absolute surface distance (MaxSD) and Dice coefficient (DICE), reported as mean ± standard
deviation

Vertebral level MSD (mm) RMSSD (mm) MaxSD (mm) DICE (%)

Original framework [9, 15]

L1 0.46 ± 0.13 0.92 ± 0.34 8.67 ± 4.11 93.37 ± 1.49

L2 0.42 ± 0.11 0.78 ± 0.23 6.79 ± 2.80 93.63 ± 1.24

L3 0.54 ± 0.14 1.13 ± 0.48 11.60 ± 5.81 92.60 ± 1.21

L4 0.67 ± 0.19 1.34 ± 0.40 11.04 ± 3.07 90.94 ± 1.98

L5 0.69 ± 0.28 1.32 ± 0.62 10.17 ± 4.41 90.43 ± 2.79

Proposed framework

L1 0.34 ± 0.09 0.69 ± 0.32 6.52 ± 4.04 94.83 ± 0.90

L2 0.36 ± 0.08 0.66 ± 0.16 5.72 ± 1.52 94.47 ± 0.82

L3 0.40 ± 0.11 0.76 ± 0.26 6.28 ± 2.13 94.06 ± 0.97

L4 0.52 ± 0.12 1.05 ± 0.27 9.56 ± 2.26 92.73 ± 1.44

L5 0.51 ± 0.19 0.99 ± 0.44 8.52 ± 4.08 92.71 ± 2.28

Fig. 2 An example of vertebra segmentation initialization (in blue) and vertebra segmentation
results (in yellow) in comparison to reference segmentation (in red) for a selected CT lumbar spine
image, shown in selected a mid-sagittal, b mid-coronal and c mid-axial cross-sections (Color figure
online)

around 220s, while the segmentation of each individual vertebra took on average
around 1min. An example of the resulting segmentation is for a selected CT lumbar
spine image shown in Fig. 2.
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4 Discussion and Conclusion

In this paper, we combined robust detection of the object of interest [4] with an
improved shape-constrained deformablemodel to segment vertebrae fromCT images
of the lumbar spine. Vertebra segmentation from 3D spine images has been already
addressed in several studies [6–10, 12, 14]. The best performance in terms of accu-
racy was reported by Klinder et al. [9], who reported a mean point-to-surface error
(i.e. one surface is represented by a set of surface points and the other by a surface
mesh model) of 0.76mm by applying the original shape-constrained deformable
model technique, but also progressively adapted tube-shaped segments to extract
the spine curve, performed vertebra detection on curved-planar reformatted images
using the generalized Hough transform, and identified vertebrae by rigid registra-
tion of appearance models to the detected candidates. On the other hand, Kadoury
et al. [6, 7] reported the highest Dice coefficient, i.e. of 92.5%, which was obtained
by building an articulated shape manifold from a training database and embedding
the data into a low-dimensional sub-space, followed by the Markov random field
optimization to infer between the unseen target shape and shape manifold. Although
the overall results of the proposed method of 0.43± 0.14mm in terms of MSD and
93.76± 1.61% in terms of the Dice coefficient can not be directly compared to the
results reported by the existing studies because of different evaluation methodolo-
gies and data collection techniques, as well as because of different databases, we can
conclude that the proposed automated spine and vertebra detection segmentation
framework produces accurate results. Moreover, to objectively compare the effects
of the performedmodifications of the original shape-constrained deformablemodels,
we report vertebra segmentation results also for the original technique obtained on
the same database of CT lumbar spine images. From Table1 it can be observed that
an improvement of around 20% in terms of MSD in favor of the proposed frame-
work was achieved. It can be therefore concluded that the performed modifications
improved the accuracy of vertebra segmentation, and that when combined with a
robust initialization, the proposed framework can accurately segment vertebrae from
CT images of the lumbar spine.
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