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Abstract We describe a fully automated approach to vertebrae segmentation from
CT images which operates on superpixels. The method is based on a conditional ran-
dom field model incorporating constraints learned from labelled superpixel features.
The method is shown to provide consistently accurate segmentations of different
vertebrae from a variety of subjects.

1 Introduction

Automatic segmentation of vertebrae from CT images is a challenging problem due
to the complex and varied shape of the vertebrae, in addition to the various artefacts
whichmay result from the acquisition process. However, segmenting the vertebrae by
hand is a difficult and time consuming process. Automated segmentation is therefore
desired to obtain reliable and accurate segmentations on any large scale.

Much of the previous work in this area has concentrated on sagittal views to
provide segmentation of many vertebrae and intervening discs. With this view the
pedicles and posterior elements of the vertebrae are frequently not visible, so seg-
mentation has focussed on the vertebral bodies and employed tools such as statistical
shape models and appearance models combined with probabilistic graphical models;
e.g., [7, 11]. Huang et al. [8] have recently described a level set method for vertebrae
segmentation using transverse (axial) CT slices.

In this paper, we describe a fully automated segmentation method that effectively
segments the whole vertebra structure (including pedicles and posterior elements)
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from transverse (axial) views. Our method for CT images is adapted from a method
developed for MR images, described in [9]. At heart, the method uses a condi-
tional random field (CRF) model on superpixels. Operating on superpixels reduces
computational complexity and enables more descriptive features to be extracted to
characterise the vertebra (foreground) and non-vertebra (background) classes, while
the CRF relates the underlying class labels of the superpixels to the observed features
and promotes coherence. We use supervised learning to train a classifier on labelled
superpixel features and obtain probability estimates expressing the likelihood of
belonging to either the vertebra or background class. Distance metric learning [17]
is also used to find an appropriate dissimilarity measure between superpixel pairs.
The probability estimates and learned distance metric are incorporated into the CRF
model in the form of first- and second-order clique potentials of the CRF energy
function. This formulation enables minimisation of the energy function to be carried
out efficiently using graph cuts [3].

We evaluate the performance of the method on CT data from a range of sub-
jects collected for the Computational Methods and Clinical Applications for Spine
Imaging (CSI 2014) segmentation competition. We show that consistently accurate
segmentations can be obtained for each of the different lumbar vertebrae.

2 Segmentation Model

Our method is based on a conditional random field (CRF) [2] model which operates
on the superpixels of an image; we denote the set of superpixels by S. The energy
function of the CRF defines a posterior probability distribution P(x | y) for a set of
class labels x for the superpixels, given a set of features y describing the superpixels.
The energy function can be written as a sum of first- and second-order potential
functions in the form

E(x, y) =
∑

i∈S
ψ(yi | xi )︸ ︷︷ ︸
Data term

+λ
∑

i∈S

∑

j∈Ni

φ(yi , y j | xi , x j )︸ ︷︷ ︸
Smoothness term

(1)

where Ni is the set of neighbours of superpixel i . The constant λ controls the rel-
ative importance of the data and smoothness terms. The CRF formulation enables
maximum a posteriori (MAP) inference of the labels x to be carried out efficiently
using graph cuts. We use the min-cut/max-flow algorithm of [4] to find the optimal
solution.

We define the potential functions of (1) by using supervised learning on labelled
superpixel features and deriving constraints using the resulting trained models.
Sections3 and 4 describe the superpixel features used to learn the constraints and
how they are incorporated into the CRF potential functions.
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3 Superpixels

We use the Simple Linear Iterative Clustering (SLIC) [1, 16] algorithm to parti-
tion the image into superpixels. As shown in Fig. 1, boundaries of superpixels tend
to coincide with boundaries of anatomical objects, enabling an accurate pixel-level
segmentation to be recovered from the classified superpixels. The primary advan-
tages of using superpixels are twofold: firstly, as the number of nodes in the graph
decreases significantly from a pixel-level graph, there is a corresponding reduction
in computational complexity. Secondly, multiple features can be extracted from the
superpixel regions which can help to discriminate between the classes more effec-
tively.

We aim to characterise the superpixels by extracting multiple features from them
that incorporate information about intensity, texture, location and edge response. As
described in the next section, these features are used to discriminate between the
vertebra and background superpixels by learning a classifier and distance metric on
a set of ground truth images. We emphasise that this training occurs only once, after
which the trained models can be used in the CRF potential functions for any further
images.

The superpixel features are summarised in Table1. The feature vector for a super-
pixel i is a concatenation of the individual features:

yi = [yT
i , yL

i , yE
i ]�. (2)

We exhaustively tested different subsets of the features, but found that the best per-
formance was obtained by combining all features. The features were chosen in part

Fig. 1 The left figure shows a CT slice with ground truth contour (magenta) for a section of the
vertebra. The right figure shows boundaries for superpixels assigned to the vertebra class (magenta)
and background class (cyan). The superpixels preserve the boundary detail of the vertebrae (color
figure online)
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Table 1 Superpixel features (pn denotes the nth percentile)

Feature Description Dimension

yT1
i Concatenation of intensity histogram from superpixel i and average

histogram from neighbours Ni

20

yT2
i SIFT descriptor calculated at the centroid of superpixel i 128

yL1
i Mean, p10 and p90 of the row and column pixel coordinates in the

superpixel, centred on the matched contour region
6

yL2
i Mean, p10 and p90 of the matched contour distance transform gradient

in the superpixel, in both the horizontal and vertical direction
6

yE1
i Mean, p10 and p90 of the LoG response within the superpixel, taken

over 4 scales
12

yE2
i Mean, p10 and p90 of the structure tensor eigenvalues of the superpixel,

taken over 4 scales
24

for their generality and as a consequence are directly applicable to different imaging
modalities such as MRI [9].

The first set of features yT
i characterise the intensity and textural properties of the

superpixels. They take the form of normalised intensity histograms over the pixels
within each superpixel and SIFT [14, 16] descriptors of a fixed size calculated at the
superpixel centroids.

The location features are based on a local coordinate system for each vertebra.
This helps segmentation by providing features that describe the superpixel’s relative
location. The local coordinates are obtained by matching a contour to the top of the
vertebral body.We do this by first (automatically) cropping the ground truth segmen-
tation contours above their centroids, so that the resulting contour set C corresponds
to the upper, roughly semi-circular, boundary of each vertebral body in the ground
truth set. Each ground truth image is therefore associated with a single contourC ∈ C
and our goal is to find the best matching contour of the set for a new image. We use
a Laplacian of Gaussian (LoG) filter to detect the outer boundary of the vertebra and
search over the image to find the point where the average LoG response along the
contour is greatest. The best match is the contour with the maximum response of the
set. Features are derived from the matched contour region by centring the pixel coor-
dinates at the region’s centroid and computing the gradient of the distance transform
[9]. While the matching process depends on the presence of an adequate number
of ground truth contours, in practice only an approximate match to the vertebra is
required to derive the location features. Using a set of generated synthetic contours
is a possibility in cases where the ground truth data is very limited.

Finally, the features in yE
i are distinctive of superpixels at the edges and corners

of the vertebrae and help to separate the vertebra and background classes around the
boundary. We take the LoG response within the superpixel over 4 different scales to
form the first feature vector. The second feature vector is formed from the eigenvalues
of the structure tensor [12] within the superpixel, taken over 4 scales.
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4 Potential Functions

We next describe the potential functions used in (1). Both the data and smoothness
terms of the CRF are based on the characteristics learned from superpixel training
examples.

We first convert the pixel-level ground truth labels into superpixel-level labels by
assigning each superpixel to the class with the majority vote; as Fig. 1 illustrates,
there is little ambiguity in this assignment. We then use the superpixel feature/label
examples to train a support vector machine (SVM) [5] using an RBF kernel, given by

K (yi , y j ) = exp
(
−γ||yi − y j ||22

)
(3)

where γ is a kernel width parameter found using cross-validation on the training data.
Probability estimates for the vertebra and background classes are obtained from the
SVM using the method of [18] and incorporated into the data term of the CRF. To do
this we define the data term as the negative log likelihood of an observation (feature
vector) given the class label (i.e. vertebra or background):

ψ(yi | xi ) = − log (P(yi | xi )) (4)

where the likelihood term P(yi | xi ) for each superpixel is given by the SVM
posterior probability. The superpixel likelihoods given by the data term are highly
discriminative and localised to the vertebrae regions, as can be seen in the examples
shown in Fig. 2b. Note that all pixels within a given superpixel are assigned the same
probability, so the figure shows the superpixel-wise probability estimates.

For the second-order potential of our CRF model, we use distance metric
learning to learn an appropriate distance metric between the superpixel features.
While second-order penalties based on standard Euclidean distance measures are
often used in graph cut formulations, metric learning tailors the distance measure
to the data itself, rather than being chosen ad hoc. In particular, we use the Large
Margin Nearest Neighbour (LMNN) [17] algorithm to learn a pseudometric of the
form

DM(yi , y j ) = (yi − y j )
�M(yi − y j ). (5)

The metric is estimated by learning a linear transformation of the data L such that
L�L = M. The goal is that the k-nearest neighbours of examples in the transformed
space (determined by L) should belong to the same class while those belonging to
different classes should be separated by a large margin.

We incorporate the learned metric into the second-order potential function as
follows

φ(yi , y j | xi , x j ) =
{
exp

(−DM(yi , y j )
)

if xi �= x j

0 otherwise
(6)
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(a) (b) (c) (d)

0 0.25 0.5 0.75 1

Fig. 2 a Shown top to bottom are CT images corresponding to theminimum,median andmaximum
Dice similarity score (0.88, 0.97 and 0.98), respectively. b SVMprobability estimates for the images
in the left hand column. Darker regions indicate higher probability of belonging to the vertebra
class. c Final segmentation contours from the CRF shown overlaid with the probability estimates
(cyan). d Segmentation contours shown for both the ground truth annotations (magenta) and CRF
model (cyan) (color figure online)

which penalises neighbouring superpixels which have similar feature vectors and are
assigned to different classes. The final segmentations using the CRF are compared
with the probability estimates from the data term in Fig. 2c.

5 Experiments

We next assess the performance of the method. We first describe the data used for
the experiments and the training procedure for the CRF. The segmentation results
are then discussed.
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5.1 Experimental Setup

TheCTdata consists of 2D axial slices of lumbar vertebrae from10 different subjects,
each of which has been manually annotated.1 The images were acquired with Philips
or Siemens multi detector CT scanners using an in plane resolution of between 0.31
and 0.45mm with a slice thickness of 1mm [19]. We used a total of 50 ground truth
images by selecting the middle vertebral slice from each of the 5 lumbar vertebrae
of each manually annotated subject. The 512 × 512 pixel images were cropped to
391 × 371 using a bounding box around the vertebrae regions.

The experimentswere carried out on a 4-core Intel i5 2.50GHzmachinewith 8GB
of RAM. The implementation is written in MATLABwith outside C++ code for cer-
tain tasks including superpixel extraction, SVM optimisation and CRF minimisation
using graph cuts.

5.2 Model Training

To train the SVMs, leave-one-out (LOO) cross-validation was performed by leaving
out one subject (i.e. 5 images) on each iteration and training on the remaining 45
images. The model was then tested on the 5 images from the held out subject and
the process was repeated for all 10 subjects. Thus the training and test images were
always from separate subjects. The SVM cost parameter C = 4 and the kernel width
parameter γ = 0.25 were determined by cross-validation and used for all training
runs.

Note that the training data is unbalanced, as there are many more negative (back-
ground) examples than positive (foreground) examples.We addressed this by training
on a fixed proportion of randomly sampled positive and negative examples. The same
LOO approach was used for the LMNN algorithm, with the distance metric learned
on the training images for each LOO iteration and applied on the 5 held out images.

5.3 Segmentation Results

To evaluate the degree of overlap between the automatic segmentation and the ground
truth, the Dice similarity coefficient (DSC) was used. Given two segmentations x and
x′, the DSC score is defined as

DSC(x, x′) = 2|x ∩ x′|
|x| + |x′| . (7)

1 Data from the CSI2014 segmentation competition is available from the SpineWeb initiative: http://
spineweb.digitalimaginggroup.ca.

http://spineweb.digitalimaginggroup.ca
http://spineweb.digitalimaginggroup.ca
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The score is in the range [0, 1]with 0 indicating no overlap and 1 indicatingmaximum
overlap. LOO testing was used to evaluate the segmentation performance of the
method, with the scores taken over all LOO runs.

The segmentations were also evaluated using three distance measures. The mean
symmetric absolute surface distance (MSD) score is determined by finding for each
set of boundary pixels of both the segmentation and corresponding ground truth, the
closest boundary pixels of the other set. The mean of the Euclidean distances to the
closest points gives the score for the image, with 0 indicating a perfect segmentation.
The RMS symmetric surface distance takes the squared distances between the two
sets of boundary pixels, with the final score defined as the root of the average squared
distances. Finally, the maximum symmetric absolute surface distance is similar to
the MSD score but takes the maximum of the distances instead of the mean. Further
discussion of these metrics is provided in [6].

The average processing time for segmentation of a single image was approxi-
mately 50s. The average DSC score was 0.97 with standard deviation 0.01 and the
average MSD score was 1.83 with standard deviation 2.54. Table2 summarises the
results obtained on each lumbar vertebra using the evaluation metrics. Figure2d
shows example segmentation contours for both the ground truth and CRF model,
corresponding to the minimum, median and maximum DSC score (0.88, 0.97 and
0.98). As the figure suggests, in most cases the automatic segmentation is very close
to the manually determined region.

The results obtained by our method compare favourably with those recently pre-
sented in [8], who reported an average DSC score of 0.94± 0.02. In the same work,
the authors showed that their method obtained superior results compared with two
other recent approaches to vertebra segmentation [10, 13].

Table 2 Minimum,median andmaximumvalues of the evaluationmetrics for each lumbar vertebra

Metric L1 L2 L3 L4 L5

Dice score Min 0.92 0.96 0.95 0.94 0.88

Median 0.97 0.97 0.97 0.97 0.97

Max 0.98 0.98 0.98 0.98 0.98

Mean surf. dist. Min 0.91 0.61 0.88 0.85 0.85

Median 1.20 1.09 1.34 1.37 1.40

Max 5.29 1.96 1.77 1.99 7.99

RMS surf. dist. Min 1.38 0.89 1.65 1.30 1.15

Median 2.00 2.11 2.13 2.52 2.79

Max 14.87 8.29 4.30 5.47 22.25

Max surf. dist. Min 5.00 3.17 9.00 6.71 6.00

Median 14.02 12.39 15.51 14.53 15.62

Max 91.76 71.87 32.56 42.30 101.55
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5.4 3D Segmentation of Vertebrae

The method we have described can also be used to obtain 3D segmentations of
vertebrae from individually segmented slices by modifying the way the location
features are derived. To do this, the contour matching is first carried out on each slice
of the image stack. We then use the M-estimator sample consensus (MSAC) [15]
algorithm to remove poor contour matches by detecting and eliminating outliers.
Outliers are determined based on the distance to their k-nearest neighbours in the
set of matched contours and removed by fitting a polynomial curve through the set
of inliers. Location features analogous to the 2D case can then be derived from the
correctly matched contours by computing the distance transform in 3D. Figure3
shows an example 3D vertebra segmentation constructed from segmentations of the
constituent slices.

Fig. 3 The top figure shows a 3D segmentation of a lumbar vertebra (L2) constructed from segmen-
tations of the constituent slices. The bottom figure shows the overlap between the CRF segmentation
(cyan) and ground truth (magenta) (color figure online)
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6 Conclusion

We presented an automatic approach for segmentation of vertebra slices from CT
images. Our method avoids the requirement of explicit prior shape information and
can therefore deal with a wide range of anatomical variation. The results demonstrate
that consistently accurate segmentations can be obtained on each of the different
lumbar vertebrae from a variety of subjects. Key to the effectiveness of this method
is the learning of superpixel features from ground truth data for incorporation into
the conditional random field, which in turn ensures spatial coherence. We note that
much poorer performance is obtained with traditional features such as just intensity
histograms. Finally,wenote that thismethodmaybe extended to 3Dsegmentation in a
straightforward way. Future work will aim to improve the results in 3D by operating
on supervoxels rather than superpixels and by generalising the set of features to
characterise the supervoxel regions.

Acknowledgments H. Hutt was funded by the EPSRC. We are grateful to the SpineWeb initiative
for making the data available and to the organisers of the CSI2014 competition.
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