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Abstract The vertebral column is of particular importance for many clinical
procedures such as anesthesia or anaelgesia. One of the main challenges for diagnos-
tic and interventional tasks at the spine is its robust and accurate segmentation. There
exist a number of segmentation approaches that mostly perform segmentation on the
individual vertebrae. We present a novel segmentation approach that uses statistical
multi-object shape+pose models and evaluate it on a standardized data set. We could
achieve a mean dice coefficient of 0.83 for the segmentation. The flexibility of our
approach let it become valuable for the specific segmentation challenges in clinical
routine.

1 Introduction

Segmentation of the spinal column is an important task for many computer-aided
diagnosis and intervention procedures. Despite the high contrast of bony structures
in CT volumes, it remains challenging due to the presence of unclear boundaries,
the complex structure of vertebrae, and substantial inter-subject variability of the
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anatomy. Most of the proposed methods for automatic or semi-automatic spine seg-
mentation rely on an initialization step of one or multiple vertebrae followed by a
separate segmentation of each vertebra [1–7]. Considering each vertebra separately,
however, may result in overlapping segmentations in areas where a clear boundary
is missing in the volume data. Although there exist approaches as the one of Klinder
et al. [2] that e.g. penalize overlapping areas, to our knowledge there is no method
that incorporates common shape variations among the vertebrae of one subject which
can be of great benefit for the segmenation quality. We thus propose an approach
for segmentation of the spine in CT data which is based on a statistical multi-object
model which incorporates both shape and pose information of the vertebral column.

2 Methods

Our segmentation technique is based on a statistical multi-vertebrae shape+pose
model which is registered to the bony edges of the spinal column as extracted from
the CT volume. The basic principles of this method have previously been presented
in [8, 9] and will be summarized in the following paragraphs.

2.1 Model Construction

For construction of the model the idea is to analyze the pose and shape statistics
separately as they are not necessarily correlated and are not formulated in the same
parameter space. The model training then results in the modes of variations for both
shape and pose, represented by vs and vp, respectively. Hence, a new instance of the
model can be calculated as follows

S = Φ
( Ns∑

k=1

ws
kvs

k,

Np∑
l=1

wp
l vp

l

)
. (1)

where Φ is a similarity transform, Ns and Np are the number of modes of variations
for shape and pose, and ws

k and wp
l are the corresponding weights.

Building a singlemodel for the entire vertebral columnwould require all vertebrae
to be present in the training images and the images to be segmented. This limits
the choice of volumes for the training data set and restricts the applicability of the
segmentation method to such “complete” volumes. To be able to cope with arbitrary
number of vertebrae present in the CT images and for segmentation of the whole
spinal column, we propose to construct and align small sub-models with limited
number of vertebrae. For this purpose, training data is collected for every vertebrae
(in this case T1 to L5) and is used to build individual sub-models each containing 3
vertebrae and the ensemble of all models covering the whole spinal column (Fig. 1).
The training step then results inmanymodels and their associatedmodes of variation.
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Fig. 1 Construction of the 3-vertebrae statistical shape+pose sub-models. Training data is available
for all vertebrae. The individual models are build as detailed in [9]
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Fig. 2 Workflow of the segmentation approach. Initially, the center of gravity of one vertebral
body is selected in the CT volume (cross). Next, the corresponding 3-vertebrae model is registered
and the middle vertebra is segmented. The last vertebra (superior iterations) or the first vertebra
(inferior iterations) of the registered model (arrow) is then used to initialize the next model. This
process continues until it reaches the extents of the CT volume or the first/last vertebra

2.2 Segmentation

Segmentation using a single statistical multi-object shape+pose model can be for-
mulated as a registration problem where the model is registered to the bone edge
point cloud extracted from the CT volume using a canny edge detection preceded
by a median filter (kernel radius 1). The transformation parameters as well as the
described weights are then optimized using the Expectation Maximization (EM)
algorithm such that the resulting model maximizes its likelihood of observing the
CT edge point data [9].

The workflow for segmentation of the whole spinal column is depicted in Fig. 2.
For initialization, the user has to specify the center of gravity of one specific vertebral
body. After registration of the model starting at this initial position, the resulting
registered instance is used to initialize the neighboringmodel either one level superior
or one level inferior. This iterative registration is repeated until the newmodels reach
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Table 1 Mean (μ) and standard deviation (σ ) of dice coefficient for segmentation of individual
vertebrae averaged over n = 10 cases

L5 L4 L3 L2 L1 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

μ 0.82 0.85 0.85 0.87 0.83 0.82 0.75 0.75 0.76 0.76 0.76 0.75 0.75 0.84 0.83 0.82 0.75

σ 0.10 0.05 0.05 0.02 0.06 0.06 0.06 0.07 0.07 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.05

the extent of the CT volume or the first/last vertebra covered. The segmentation is
then obtained from the registered models.

3 Results

Data from 87 CT volumes containing parts of the lumbar or thoracic spine were used
formodel construction. Evaluation and parameter optimizationwas performed on the
provided training data. The segmentation results for the training data of the MICCAI
challenge (leave-one-out approach) yielded a mean dice coefficient of 0.83 ± 0.04
(averaged over the ten cases) for the complete spine segmentation. The results for
the individual vertebrae are shown in Table1.

4 Discussion

Statistical multi-object models that incorporate both pose and shape statistics are
evaluated with respect to their applicability for segmentation of the whole spinal
column.We could achieve amean dice coefficient of the segmentations of 0.83±0.04
which is comparable with other approaches for spine segmentation. The usage of 3-
vertebrae sub-models for the segmentation task let our method become flexible in
terms of vertebrae covered by the input CT volume. This flexibility comes to price
of a possible segmentation overlap at the boundaries of the sub-models especially
for the closely spaced thoracic vertebrae. We are currently working on a generic
n-vertebrae model that is able to cope with this issue and also allows for automatic
model initialization. Further improvement is to be expected by consideration of
the CT intensity information e.g. by means of an appearance modeling approach.
We thus believe that the segmentation approach can be of great benefit for various
interventional and diagnostic applications.
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