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Abstract Algorithms centered around spinal columns in CT data such as spinal
canal detection, disk and vertebra localization and segmentation are known to be
computationally intensive andmemory demanding. Themajority of these algorithms
need initialization and try to reduce the search space to a minimum. In this work we
introduce bone profiles as a simple means to compute a tight ROI containing the
spine and seed points within the spinal canal. Bone profiles rely on the distribution
of bone intensity values in axial slices. They are easy to understand, and parameters
guiding the ROI and seed point detection are straight forward to derive. The method
has been validated with two datasets containing 52 general and 242 spine-focused
CT scans. Average runtimes of 1.5 and 0.4 s are reported on a single core. Due to its
slice-wise nature, the method can be easily parallelized and fractions of the reported
runtimes can be further achieved. Our memory requirements are upper bounded by
a single CT slice.

1 Introduction

Image analysis methods focussing on spinal columns in CT scans such as detection,
localization and segmentation of disks, vertebrae and spinal canal need high com-
putational power and memory. This is particularly true for scans containing lower
extremities or even full body scans. In such cases it turns out that for any spine
related image processing task a significant portion of the CT data is unnecessary to
deal with. Slices containing legs, which often make up the half of the data, can be left
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out already during volume reconstruction from the DICOM input. Parts too far from
the spinal canal can be ignored during the search for vertebrae and intervertebral
disks.

In this work we present a fast, memory efficient and easy to implement method
to find bounding boxes around spinal columns and to propose reliable initialization
seeds for subsequent algorithms. We propose a one-pass, slice-wise method based
on simple bone distribution signatures. It is:

slice-wise, i.e. memory-efficient. Every DICOM slice is processed independently
of the others. Memory requirements shrink to allocation of one image.

one-pass, i.e. fast. Each slice needs to be processed only once. The runtime there-
fore scales linearly with the total number of slices and the slice resolution. Being
slice-wise the algorithm is furthermore suitable for parallelization, e.g. a map-
reduce paradigm.

easy to implement. Contrary to machine learning approaches, we propose sim-
ple, threshold-based, bone-distribution descriptors and map-reduce them into 1D
arrays referred to as bone profiles. The algorithm has 6 easy to understand para-
meters. We list them together with the values used for the validation.

The rest of this paper is organized as follows:Webriefly describe state-of-the-art in
Sect. 2. In Sect. 3 we propose simple bone distribution descriptors and introduce their
aggregation in bone profiles. In Sect. 4 we show how the profiles help localizing the
spine. The proposed method is evaluated in Sect. 5. This paper ends with discussion
and conclusions in Sect. 6.

2 Related Work

Spine ROI localization is conducted as an initial step in the literature in order to
accelerate the detection and segmentation of the spinal parts. The authors of [3] start
with a slice-wise detection of candidate positions located on bones and extend the
positions to regions where features are extracted. The features are then compared
to a sample set of previously annotated vertebra regions to find the best candidate
which surrounds the vertebra. The approach of [7] extracts disk clue points and
fits polynomials to them on every sagittal slice of an MR scan. Vertebra height
statistics are computed along the fitted polynomials and the polynomial with the
minimum vertebra height variance indicates the slice for further processing. Stern
et al. [8] work with 3D CT and MR scans. They extract the spinal centerline by
using gradient vectors of opposite pairs of vertebral body edge points. In [10] at first
spine regions are localized slice-wise through thresholding and connected component
analysis. The watershed algorithm is then used to extract spinal canal candidates.
Graph search helps to find the spinal canal. Klinder et al. [5] apply Generalized
Hough Transform using vertebral foramen meshes. The global maximum in the
Hough space corresponds to a position in the spinal cord. Kelm et al. [4] localize
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spine regions roughly as a first step such as we do. However, they apply the Marginal
Space Learning algorithm on machine learned position candidates in CT and MR
scans. In summary and in contrast to our work, the aforementioned algorithms for
spine localization use either more costly features, or more complex machine-learned
models, or a combination of both.

3 Bone Distribution Descriptors and Profiles

We assume sequences of axial CT slices with known z coordinate and pixel spacing,
both given in millimeters. We denote the pixel positions in the patient coordinates as
p = (px , py, pz). For sake of simplicity we also assume the feet-to-head, face-up
(supine) orientation of the patient. The pixel gray values will be denoted as g = g(p)

and we assume them to be in Hounsfield units.
Our approach is based on bone distribution signatures within slices. For a fixed

slice at location z we are therefore first interested in a rough segmentation Bz of
the bones. Given the Hounsfield intensities g, this can be achieved by an interval
threshold, i.e., using two constants:

Bz = {p = (px , py, pz) | pz = z ∧ g(p) ∈ [400, 1050]} (1)

3.1 Centroids and Deviations

The simplest features are based on the centroid of segmentations Bz

μz = 1

|Bz|
∑

p∈Bz

p = (μx
z , μ

y
z , z) (2)

and on the length σz of the associated standard deviation vector

σz =
√√√√ 1

|Bz| − 1

∑

p∈Bz

(px − μx
z )

2 + (py − μ
y
z )

2. (3)

Centroids μz correlate with the spine reliably in the lumbar slices where pelvis, ribs,
or head do not contribute to it.

The lumbar part can be characterized by deviation lengths σz related to size of a
vertebra seen in an axial slice [9]. Values of σz larger than 40mm indicate presence
of non-vertebra bones.
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Fig. 1 Examples showing centroids μz (square), a circle of radius σz , the 80×140mm refinement
window (rectangle), and refined center νz (star)

Centroid refinement. While reliable in the lumbar area, the centroids μz may drift
remarkably from the spine if the pelvis or ribs contribute by their pixels (cf. Fig. 1).

To avoid this we refine the centroidsμz within rectangular 80×140mmwindows,
asymmetrically spanned around them:

Wz = {p ∈ Bz | − 40 ≤ px − μx
z ≤ 40 ∧ −40 ≤ py − μ

y
z ≤ 100} (4)

The size of the windows is set to be sufficiently big to accommodate any vertebra in
an axial view [9] and to account for relative positions of the centroids and vertebrae
in pelvis slices. The centroids μz are refined to the center νz of bone pixels in this
window:

νz = 1

|Wz |
∑

p∈Wz

p (5)

3.2 Shape Histograms: AP Versus LR Distribution

To identify leg slices, we propose to discriminate slices with bone distributions
dominant in the left-to-right direction and zero contributions in the anterior-posterior
direction (see Fig. 2).

We construct 4-bin histograms located in the refined centers νz. Putting δ = p−νz
we define the following four quantities:

h A
z = |{p ∈ Bz | δy < −|δx | ≤ 0}| (6)

h P
z = |{p ∈ Bz | δy > |δx | ≥ 0}| (7)

h R
z = |{p ∈ Bz | δx < −|δy | < 0}| (8)

hL
z = |{p ∈ Bz | δx > |δy | > 0}| (9)
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Fig. 2 Right, left, ante, and poste histogram bins centered at νz overlaid over a negative of a CT
slice at position z showing legs and table

With the AP/LR histogramswe reformulate the leg detection as a search for slices,
where ante-poste bone contributions vanish. We introduce scalars λz and a threshold
to yield this:

0 ≤ λz = h A
z

hL
z + h R

z
< 0.04 (10)

Fig. 3 An example CT scan in a frontal maximum intensity projection (MIP) (a), its histogram
profile (b) and deviation profile (c)
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Note that we exclude the posterior voxels h P
z from (10) in order to ignore eventual

contribution of a CT table.

3.3 Bone Profiles

In the previous section we have introduced two bone distribution descriptors, i.e.
scalars λz and σz for every slice z. Next we aggregate them into two 1D arrays
indexed by z and refer to as the bone profiles. A symmetric plot of bone profiles
along the z-axis is shown in Fig. 3.

4 Applications to Spinal Column Localization

In this sectionwe show how the bone profiles and the refined centers νz can be used to
bound the spinal column and to identify a reliable initialization seed for subsequent
computations.

4.1 Discarding the Slices up to the Ischium

When dealing with spines, leg slices should be taken out of consideration. We
observed that the first occurrence of vanishing λz in the top-to-bottom order may
correspond either to the bottom of sacrum or the bottom of the pelvis—the ischium
(cf. Fig. 3b).

In order to have a security margin between the spine and the slices to drop we
suggest to identify ischium slices. We identify them by the first 65mm long segment
of zeros in the histogram profile, i.e. a sequence longer than the average distance
from ischium to bottom of sacrum.

4.2 Seeding a Spinal Canal Search

Algorithms using incremental/propagated search need to be initialized [5]. To obtain
a reliable seed point near the spinal canal we consider the refined center νz� in a slice
with minimal deviation σz (cf. Eq. 11). In this case no other bones except for vertebra
contribute to the signatures and the point νz� yields an estimate of the spinal canal.
Such slices are predominantly found either in the lumbar area between pelvis and
the first rib (cf. Fig. 3c) or in the neck area.

νz� | z� = argmin{σz} (11)
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4.3 Bounding the Spinal Column

Machine learning methods need to compute a vector of features at every voxel.
Reducing the amount of voxels to be classified to a minimum can therefore signif-
icantly speed up such algorithms. After the leg slices have been discarded we wish
to further prune the space by setting coronal and sagittal bounding planes.

For healthy spines the previously found seed νz� could be reused to set up a bound-
ing box of a predefined size. Such an approach would, however, fail for scolioses
and other spine curvature related disorders.

To deal with such cases we derive coronal and sagittal planes from the bounding
box of the 80× 140mm windows (cf. Eq. 4) spanned symmetrically around a subset
of centers νz. The refined centers νz are first sorted by a drift reliability Δz = ||νz−μz||
from the original centroids μz: the smaller the drift the more reliable the center. A
fraction of sorted νz involved in spanning bounding planes balances the tightness of
bounding around spinal column and the data reduction. It is the last and the only free
parameter in our method.

5 Results

Data and timing. All experiments were performed on two datasets. Dataset 1 con-
tained 52 diversely cropped CT scans from three different vendors including 18
instances with legs up to abdomen and 34 scans with torso and/or head with neck.
29 out of the 52 were CTA scans containing contrast-enhanced vessels. The pixel
sizes of the 512× 512 axial images range from 0.26 to 1mm, and the slice distances
vary from 0.1 to 3mm. The smallest and largest scan comprised of 103 and 5,966
slices respectively. Ground truth (ischium slice, spinal canal centers and vertebral
body centers) was generated by amedical expert. For Dataset 2we used the annotated
spine CT database for benchmarking of vertebrae localization and identification with
242 spine-focused CT scans containing varying pathologies [2] (publicly available
at http://spineweb.digitalimaginggroup.ca). Vertebral body centers were present for
this dataset, ischium and spinal canal centers were added. The time performance has
been measured single threaded on an Intel Core i7 2.6 GHz machine. The computa-
tion of both profiles took on average 1.5s for Dataset 1 and 0.4s for Dataset 2.
Discarding the leg slices. The ischium identification quality was measured in the 18
CT scans of Dataset 1 where legs were present. The mean error from the true ischium
slice was 16.5± 13.2mm which yields a sufficiently tall margin to the bottom of the
spine, i.e. no cropping of the spine was observed. The amount of voxels has been
reduced by a factor of 2.5 on average. For the remaining 276 scans without leg slices
we counted the false positive occurrence of an ischium slice which was 0.
Seed detection. To assess the quality of the seeds νz� we evaluated their distribution
w.r.t. the associated spinal canal centers (cf. Fig. 4). Table1 summarizes the seed
detection results: the average x- and y-deviations of νz� from spinal canal centers

http://spineweb.digitalimaginggroup.ca
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(a) (b)

Fig. 4 Distribution of seeds vz for all instances of Dataset 1 (a) and Dataset 2 (b) relative to the
ground truth spinal canal centers (located at origin) overlaid on an example slice (Color figure
online)

Table 1 x- and y-deviations of detected spinal canal seeds from ground truth annotations and spinal
canal identification rate (CIDR) for Dataset 1 and 2

x-deviation (mm) y-deviation (mm) CIDR (%)

Dataset 1 2.8 ± 2.4 6.8 ± 5.0 75

Dataset 2 4.0 ± 3.3 8.0 ± 5.6 79

and the spinal canal identification rates (CIDR) for both datasets. The spinal canal
identification rate indicates how often the seeds hit the spinal canal. For data where
the seed was not detected within the spinal canal (25% in Dataset 1 and 21% in
Dataset 2), it was placed either on the vertebral arch or on the vertebra body.

Bounding the spinal column. In order to evaluate the accuracy and utility of the
spinal column boundingwe analyzed howwell spine ground truthwas covered by the
planes and to what amount data was reduced. As for the spine coverage, all expert-
annotated vertebral body centers were contained within the coronal and sagittal
bounding planes. To see the accuracy of the spine coverage of whole vertebrae we
measured the minimum distances between the vertebral body center annotations and
the left/right sagittal planes (Δx), the anterior coronal plane (Δy A) and the posterior
coronal plane (Δy P ) for each scan. Two distinct distances in the y-direction were
necessary because of the sagittal asymmetry of vertebrae around the vertebral body
center. In order to see if our bounding planes crop into vertebrae, we compared
Δx to the half of the average midtransverse diameter (lx = 22.5mm) of lumbar
vertebrae [9],Δy A to the half of the average inferior width of lumbar vertebral bodies
(l A

y = 17mm) and Δy P to the average sagittal distance from vertebral body center
to spinous process (l P

y = 65mm) of lumbar vertebrae [1]. As higher percentages
of reliable seeds stretched the bounding planes away from body centers (Sect. 4.3
and Fig. 6b), we investigated two percentage values, 40 and 90%. For Dataset 1,
3%(0%) of the cases had slightly smaller Δx than lx when using 40%(90%) of the
most reliable seeds for bounding plane computation. lx was not completely covered
by 1.5%(1%) of the scans in Dataset 2 with 40%(90%) of the reliable seeds. These
outliers were due to scoliosis in both datasets. Examples are shown in Fig. 5a, b.
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(a) (b) (c) (d)

Fig. 5 MIPs of example data with bounding planes (green lines) generated by 40% of the most
reliable seeds. a, b Frontal MIPs of highly scoliotic spines. c, d Sagittal MIPs of cases where the
input volume is cropped either on the anterior or on the posterior side near to vertebral body center
annotations (Color figure online)

As for the Δy A values, all of the cases had larger Δy A values than l A
y for both

reliability percentages in Dataset 1. 1.6% of the cases had smaller Δy A values
than l A

y for both percentages in Dataset 2. These cases, however, were already too
tightly cropped scans where expert annotations of vertebra centers were too close
to the anterior volume border (see Fig. 5c) and our bounding planes did not further
crop into the volume. The Δy P values were in 5% of the cases smaller than l P

y
for both reliability percentages in Dataset 1 which was due to tightly cropped input
scans in the posterior direction with annotations close to the volume border (see
Fig. 5d). In Dataset 2, 27%(18%) of the scans had smaller Δy P values than l P

y for
40%(90%) of the most reliable seeds. 4 CT scans out of the 27% were slightly
cropped. The remaining scans out of the 27% and all cases out of the 18% were
handled correctly (full vertebra coverage) and either had annotations close to volume
borders or contained vertebrae with smaller sagittal vertebral lengths than those of
lumbar vertebrae (l P

y ).
To assess the utility of the spinal bounding planes, the average data reduction factor

(DRF) was measured for both datasets after discarding the leg slices. It was 4.5(3.3)
on average for Dataset 1 and 1.7(1.5) for Dataset 2 when considering 40%(90%) of
the most reliable seeds for bounding plane construction.

6 Discussion and Conclusion

To the best of our knowledge, this is the first time a machine-learning-free method
yields fast and reliable spine localization in such large (52 + 242) and diverse pop-
ulation of both normal and abnormal CT scans. Other machine-learning free related
works (such as [3, 5]) achieve results with comparable accuracy to ours but they are
slower and tested on much less data. Graf et al. [3] tested on 34 CT scans within an
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average time of approximately 1 minute per scan and Klinder et al. [5] needs 7.6s to
find an initial spine seed in a collection of 64 CT scans.

Machine-learning-based approaches [2, 4] are not only competitive enough based
on accuracy to the method we proposed, but they were tested with similarly high
amounts of data and achieved good time performances. Glocker et al. [2] used 242
spine CT scans (our Dataset 2) for testing and Kelm et al. [4] needed only 11.5s on
average for intervertebral disk detection and labeling. In the following we therefore
discuss our work from the perspective of machine learning methods.

First, setting-up a machine learning method requires ground truth annotations
which is a labor intensive and error-prone task.

Second, the state-of-the-art machine learning algorithms (i.e., decision trees, ran-
dom forests) combine image features in unintuitive and hard to interpret ways [6].
Potential algorithm failures are consequently impossible to explain and fix. On the
contrary we proposed six parameters with a clear interpretation and justification (see
Table2): two Hounsfield unit thresholds for rough bone segmentation (Eq.1), width
and height of the refinement and spanning rectangles (Eq. 4, Sect. 4.3) deduced from
morphometry of vertebrae and pelvis. The threshold to distinguish between legs and
the rest of the slices λz (Eq. 10) was set empirically and validated after plurality of
ground annotations was available (see Fig. 6a). The amount of reliable seeds involved
in bounding the spine (Sect. 4.3) yields a parameter to control the bounding tight-
ness (see Fig. 6b). Increasing this amount increases the overall minimal distance of
the planes to the vertebral body center annotations, i.e. it decreases the DRF (see
Sect. 5). This is the only free parameter of our method and users may tailor it to
own applications: 10% assures bounding of all vertebral body centers, 40% bounds
whole vertebrae but some cases may get slightly cropped, 90% contains only a small
set of vertebrae not covered completely and 100% guaranties full coverage of the
spinal column.

The six parameters make our method easy to implement. In contrast, parameters
inherent to machine learning based methods (e.g., tree depth, number of trees) need
to be found in a cross-validation scheme [6]. Such parameter setups pose difficulties
for researchers who desire to re-implement the algorithms for own purposes.

Finally, learning methods need to compute high dimensional feature vectors
at every voxel to yield a class or a regression value after the volume has been

Table 2 Summary of parameters and their values used within this work

Parameter name Parameter value

Bone segmentation threshold, low 400 HU

Bone segmentation threshold, high 1050 HU

Spanning rectangle, width 80 mm

Spanning rectangle, height 140 mm

Ischium detection threshold 0.04

Amount of most reliable seeds 10%,40%, 90%,100%
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Fig. 6 a Empirical selection of parameter values for λz based on average ischium detection errors of
Dataset 1. λz yields the least average error at 0.04. b Empirical parameter selection for the tightness
of bounding planes based on Dataset 1. The values are minima of the 52 minimal distances (Δx ,
Δy A and Δy P ).

reconstructed from the slices and loaded into memory. Moreover, data structures
often involved in feature extraction (e.g., pyramids or integral volumes) demand
additional memory. From perspective of machine learning methods, we thus intro-
duced a computationally inexpensive tool to prune the search space. It is not clear
howmachine learningmethodswould performwith really big data.While the biggest
of the currently available volumes of Dataset 2 is 256 MB, we were able to process
a 3 GB scan in Dataset 1 within a memory required by one axial slice. We agree that
the memory issue is irrelevant during research. It may, however, become a crucial
argument for radiological departments who often pose tight memory constraints.

We have shown that our method delivers reliable results for spine localization
within average times of 1.5 and 0.4 s for two sets of CT scans. It is faster compared
to other methods such as [3] taking 1min and [5] taking 7.6s.

Possibleweakness of our algorithm is related to the influence of artificialmaterials
and artifacts with Hounsfield values similar to bones (e.g., contrast agents, implants,
imaging artifacts). However, our results on CTA scans, pathological cases and scans
from multiple vendors showed that our method is able to handle data with abnor-
malities and different imaging parameter settings correctly. A detailed study on this
topic is left to future work.
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