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Abstract Fractures associated with osteoporosis are a significant public health risk,
and one that is likely to increase with an ageing population. However, many osteo-
porotic vertebral fractures present on images do not come to clinical attention or
lead to preventative treatment. Furthermore, vertebral fracture assessment (VFA)
typically depends on subjective judgement by a radiologist. The potential utility of
computer-aided VFA systems is therefore considerable. Previous work has shown
that Active Appearance Models (AAMs) give accurate results when locating land-
marks on vertebra in DXA images, but can give poor fits in a substantial subset of
examples, particularly the more severe fractures. Here we evaluate Random Forest
Regression Voting Constrained Local Models (RFRV-CLMs) for this task and show
that, while they lead to slightly poorermedian errors thanAAMs, they aremuchmore
robust, reducing the proportion of fit failures by 68%. They are thus more suitable
for use in computer-aided VFA systems.

1 Introduction

Osteoporosis is a common skeletal disorder defined by a reduction in bone mineral
density (BMD) resulting in a T-score of <2.5 (i.e. more than 2.5 standard deviations
below the mean in young adults), measured using dual energy X-ray absorptiometry
(DXA) images [15]. It significantly increases the risk of fractures, most commonly
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occurring in the hips, wrists or vertebrae. Approximately 40% of postmenopausal
caucasian women are affected, increasing their lifetime risk of fragility fractures to
as much as 40% [15]. Osteoporosis therefore presents a significant public health
problem for an ageing population.

Accurate identification of vertebral fractures is clinically important in the diag-
nosis of osteoporosis. Radiological assessment typically uses a semi-quantitative
approach [10] requiring subjective judgement by a radiologist. Furthermore, only
about one third of vertebral fractures present on images come to clinical attention;
they are frequently not noted by radiologists, not entered into medical notes, and do
not lead to preventative treatments [6]. Many of these cases involve images acquired
for purposes other than VFA. However, a recent multicenter, multinational prospec-
tive study [8] has found a false negative rate of 34% in VFA performed on lateral
radiographs of the thoracolumbar spine. The potential utility of computer-aided VFA
systems is therefore considerable.

Several authors have investigated the use of methods based on statistical shape
models to segment vertebrae in both radiographs and DXA images (e.g. [16]) as
a preliminary step for VFA. However, state-of-the-art results achieved using active
appearance models (AAMs) [17] exhibit significant numbers of large errors due to fit
failures, particularly on themore severely fractured vertebrae. This is the result of two
effects. First, osteoporosis patientswith vertebral fracturesmost commonly have only
one or two fractures (e.g. [11]). Therefore, models encompassing multiple vertebrae
must typically be trainedondatasets containingmorenormal than fracturedvertebrae,
potentially introducing a bias against the most severe shape changes. Second, work
on natural images of faces has shown that holisticmethods such as AAMs, which rely
on a single model of shape and intensity that covers all landmarks, tend to generalise
poorly [7]. An alternative is to use a set of models, each covering an individual
landmark. The ambiguity inherent in the use of local image patches may be dealt
with by imposing a global shape constraint (e.g. [9]). In particular, regression voting
(RV) methods (e.g. [19]), especially those (e.g. [3, 7, 13]) based on Random Forests
(RFs) [1] tend to be robust. The RFRV Constrained Local Model (RFRV-CLM)
[3, 13], which uses a RF regressor for each point constrained by a global shape
model, has been applied successfully to the annotation of landmarks both in facial
(e.g. [3]) and clinical (e.g. [13]) images, and shows superior generalisation on facial
images compared to the AAM [18].

The hypothesis investigated here is that the superior generalisation capability of
the RFRV-CLM will lead to performance improvements, compared to AAMs, in
terms of the number of fit failures on DXA spinal images. RFRV-CLMs are applied
to annotate vertebral landmarks in a dataset of 320 such images, the first time they
have been applied to this task. Extensive experiments were performed to investigate
the effect of the free parameters. The results were compared to those from [17] using
AAMs on the same dataset, and show that RFRV-CLMs provide a considerable
(68%) reduction in fit failures across all vertebral classifications.
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2 Method

The reader is referred to [3, 13] for full details of the RFRV-CLM algorithm; the key
points are described below.

Constrained Local Models CLMs [5] build on previous work on Active Shape
Models (ASMs) [4] and AAMs [2], providing a method for matching the points of
a statistical shape model to an image. They combine global shape constraints with
local models of the pattern of intensities. Given a set of training images with manual
annotations xl of a set of n landmarks l = 1, . . . , n on each, a statistical shape model
is trained by applying principal component analysis (PCA) to the aligned shapes [2].
This yields a linear model of shape variation, which represents the position of each
landmark l using

xl = Tθ (x̄l + Plb + rl) (1)

where x̄l is the mean position of the point in a suitable reference frame, Pl is a set of
modes of variation, b are the shape parameters, rl allows small deviations from the
model, and Tθ applies a global transformation (e.g. similarity) with parameters θ .

To match the model to a query image, I, the overall quality of fit Q, of the model
to the image is optimised over parameters p = {b, θ, rl}

Q(p) = �n
l=1Cl(Tθ (x̄l + Plb + rl)) s.t. bT S−1

b b ≤ Mt and |rl | < rt (2)

where Cl is a cost image for the fitting of landmark l, Sb is the covariance matrix of
shape model parameters b, Mt is a threshold on the Mahalanobis distance, and rl is
a threshold on the residuals. Mt is chosen using the cumulative distribution function
(CDF) of the χ2 distribution so that 98% of samples from a multivariate Gaussian
of the appropriate dimension would fall within it. This ensures a plausible shape
by assuming a flat distribution for model parameters b constrained within hyper-
ellipsoidal bounds [2]. In the original work [2], Cl was provided by normalised
correlation with a globally constrained patch model.

RF Regression Voting in the CLM Framework. In RFRV-CLM, Cl in Eq.2 is
provided by voting with a Random-Forest (RF) regressor. To train the RF for a single
landmark, the shape model is used to assess the global pose, θ , of the object in each
image by minimising |Tθ (x̄) − x|2. Each image is resampled into a standardised
reference frame by applying the inverse of the estimated pose. The model is scaled
so that the width of the reference frame of the mean shape is a given value, wframe.
Sample patches of area w2

patch are then generated from the resampled images at a
set of random displacements from the true point positions. The displacements d j

are drawn from a flat distribution in the range [−dmax,+dmax] in x and y. Finally,
image features f j are extracted from the sample patches. Haar-like features [20] are
used, as they have proven effective for a range of applications and can be calculated
efficiently from integral images. To allow for inaccurate initial estimates of the pose
and to make the detector locally pose-invariant, the process is repeated with random
perturbations in scale and orientation of the pose estimate. A RF [1] is then trained,
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using a standard, greedy approach, with the feature vectors f j as inputs and the
displacements d j as regression targets. Each tree is trained on a bootstrap sample of
Ns pairs {(f j , d j )} from the training data. At each node, a random sub-set of n f eat

features are chosen from this sample, and a feature fi and threshold t that best split
the data into two compact groups are selected by minimising an entropy measure
[3]. Splitting terminates at either a maximum depth, Dmax, or a minimum number of
samples, Nmin. The process is repeated to generate a forest of size ntrees .

RFRV-CLM Fitting Fitting to a query image is initialised via an estimate of the pose
of the model e.g. from a small number of manual point annotations or a previous
model, providing initial estimates b and θ (see Sect. 3). Equation2 is then optimised
as follows. The image is resampled in the reference frame using the current pose. Cost
images Cl are then computed by evaluating a grid of points in the resampled images
over a region of interest around the current estimate of each point; the grid size is
defined by a search range [−dsearch,+dsearch], and the cost images are calculated for
all landmarks independently. At each point zl in the grid, the required feature values
are extracted and the RF regressor Rl applied. Rl then casts a vote into a cost image
Cl using Cl(zl + δ) → Cl(zl + δ) + c. Each leaf node of the RF contains the mean
d̄ and covariance Sd of the random displacements di from the true point position,
in the reference frame, of its training samples. This supports several voting styles
(c, δ); a single, unit vote at d̄, or probabilistic voting by weighting with |Sd |−0.5, or
by casting a Gaussian spread of votes N (d̄, Sd).

The point positions are re-estimated by finding the lowest cost point within a disk
of radius r of the current position in each cost image, applying the shape model and
moving b to nearest valid point on the limiting ellipsoid if the shape constraint in
Eq.2 is violated, updating all point positions using xl → Tθr (x̄l + Plb + rl), and
iterating whilst reducing r → krr . The initial disk radius rmax was set to the search
range dsearch , the search was terminated at rt = 1.5 pixels (in the reference image),
and kr was set to 0.7. The optimisation is described in full in Algorithm 1.

3 Evaluation

A series of experiments was performed to optimise the various free parameters and
options of the RFRV-CLM for application to the task of vertebral localisation in
DXA images, and to compare the results to those achieved in [17] using AAMs. To
facilitate this comparison, the same dataset and performance metrics were used. The
dataset consisted of 320 DXA VFA images scanned on various Hologic (Bedford
MA) scanners, obtained from: (a) 44patients fromaprevious study [14]; (b) 80 female
subjects in an epidemiological study of a UK cohort born in 1946; (c) 196 females
attending a local clinic for DXA BMD measurement, and for whom the referring
physician had also requested VFA (as approved by the local ethics committee).
Manual annotations of 405 landmarks were available for each image, covering the
thoracic vertebrae from T7 to T12 and the lumbar vertebrae from L1 to L4. Each of
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Algorithm 1 Iterative model matching procedure to estimate the shape and pose
parameters in the reference frame, given a set of feature point based cost images Cl .

SHAPE MODEL AND POSE PARAMETER OPTIMISATION

Input: rmax , rt , kr , xl and Cl ∀1 ≤ l ≤ n
1. Set r → rmax , θr → Identity, xl → x̄l + Pl b, rl = 0
2. While r ≥ rt

a. For every feature point l, find the best point ŷl in a disk of radius r around the current
estimate
ŷl → argmaxyl :|yl−xl |<r Cl (yl )

b. Fit the shape model to these best points to estimate shape and pose parameters {b, θr } by
solving
ŷl = Tθr (x̄l + Pl b)

c. If bT S−1
b b > Mt then move b to nearest valid point on limiting ellipsoid

d. Update all feature point positions using xl → Tθr (x̄l + Pl b + rl )

e. Set r → kr r with 0 < kr < 1

3. Transform the resulting feature point positions into the image frame using Tθ with θ → θ ◦ θr

these vertebrae in each image was also classified by an expert radiologist into one
of five groups (normal, deformed but not fractured, and grade 1, 2 and 3 fractures
according to the Genant definitions [10]; see Fig. 1).

Following [3, 13], 2-stage, coarse-to-fine RFRV-CLMs were used and, in com-
mon with [17], individual models were trained for each vertebra; each covered the
target vertebra and its two neighbours, or one neighbour for the top (T7) and bottom
(L4) vertebrae. Fitting of the first-stage model was initialised using the approximate
centre points of each of the vertebrae covered by the model, calculated from the
manual annotations as the centroid of the two central points on the upper and lower
vertebral end-plates. This approach was adopted to avoid the significant reduction
in random error, compared to individual manual annotations, that would occur if
the centre points were calculated as the centroids of all manual annotations on each
vertebra. Second-stage fitting was initialised using the results from the first stage. To
compensate for the aperture problem present when annotating points on an extended
edge, errors on automatic annotations were calculated as the mean, over each verte-
bra, of the minimum Euclidean distances between the automatic annotations and a
Bezier spline through the manual annotations. This was applied to the points on the
central vertebra in each model i.e. no use was made of the multiple fits for each point
(see Sect. 4).

RFRV-CLM Parameter Optimisation. The free parameters of the RFRV-CLM,
as described in Sect. 2, were divided into two sets; RF structure parameters (ntrees,
nfeat , Nmin and Dmax), and image parameters (wframe,wpatch, dmax and dsearch).1 These
were optimised empirically and, to limit processor time requirements, a sequential
approachwas applied across both parameters and stages i.e. eachfirst-stage parameter

1 Parameters wpatch, dmax and dsearch were defined in the reference image.
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Fig. 1 Example DXA spinal images. a–c 405-point manual annotations. d–f Automatic annotation
of the L2 vertebra (using the L1-L3model), using the fully optimised, 2-stageRFRV-CLM.Example
(a, d) shows grade 2 fractures on L2 and L3, (b, e) show a grade 3 fracture on L1, and (c, f) show
a grade 3 fracture on L1 and a grade 1 fracture on L2
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was optimised independently without applying the second-stage model; the optimal
values were then fixed, and each second-stage parameter was optimised indepen-
dently in a two-stage approach. Furthermore, the optimisation experiments were
performed only on the L2 vertebra (i.e. the L1-L3 triplet model). L2 was chosen as it
was the least obscured by confounding bony structures (ribs, scapulae, the iliac crest
etc.) and imaging artefacts, minimising the contamination of the results with fitting
failures. The optimisation results were then extended to the other vertebral levels by
scaling the optimised wframe using data on mean vertebral heights from [12], such
that all image-based parameters were scaled. The data set was divided randomly into
halves for training and testing. RF training includes a stochastic element, both in
the random selection of data used to train each tree, and the random sub-selection
from that data at each node. Therefore, each experiment was repeated five times to
evaluate random errors.

For the sake of brevity, complete results are reported only for wframe and wpatch,
the parameters showing the greatest effect on performance; these are shown in Fig. 2.
The graphs show the proportional area under the CDF of mean point-to-curve error
on the L2 vertebra across the 160 test images. Performance generally increased with
first-stage wframe; however, dsearch and wpatch are defined in the reference frame,
and so reducing wframe increases the capture range. Therefore, wframe was set using
the point at which the performance increase ceased to be significant, giving 40 and
110 pixels for the first and second stages. Varying wpatch had a smaller effect on
performance over most of the range tested, but showed more complex behaviour;
values of 18 and 21 pixels were selected for the first and second stages, respectively,
since these were close to optimal over large portions of the tested ranges of wframe.
The remaining parameterswere optimised similarly, giving (first stage, second stage):
ntrees = 2, 15; nfeat = 100, 200; Nmin = 1, 1; Dmax = 30, 30; wframe = 40, 110
pixels; wpatch = 18, 21 pixels; dmax = 15, 15 pixels; dsearch = 15, 10 pixels (all
pixel units except for wframe were defined in the reference frame). In general, the
dependence of performance on parameters was weak over large ranges.
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CLMs on the L2 vertebra. Performance was measured as the percentage area under the CDF of
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Effects of the Shape Model Constraint. A concern with the application of shape
models is that the shape constraint may introduce a bias towards the mean of the
training data; this is sub-optimal in clinical applications, where the pathological
(i.e. outlying) cases are of most interest. To evaluate the effect, experiments were
performed using the procedure and optimal parameters described above, both with
and without the application of the shape model constraint during the fitting of the
second stage of the RFRV-CLM, such that the shape constraint only aided in the
approximate location of the global optimum; the final result was based on image
information alone. The results are shown in Fig. 3 as the CDF of mean point-to-
curve error for the L2 vertebra over the 160 test images. The elimination of the
shape model constraint resulted in a small and statistically insignificant change in
performance, indicating that any shape model bias had an insignificant effect on the
results given the error measure used here.

Effects of the Voting Style. As described in Sect. 2, several methods for voting
into the cost images were available. These alternatives were evaluated using the
experimental procedure and optimised parameters described above, to determine
whether probabilistic voting provided performance enhancements. The results are
shown in Fig. 4 as the CDF of mean point-to-curve error for the L2 vertebra over the
160 test images.

The results show that probabilistic voting provided no performance advantage.
The performance ofGaussian votingwas almost identical to that of single, unit voting.
Single, weighted voting resulted in a small decrease in performance; however, these
differences were not statistically significant. Similar results have previously been
found when applying RFRV-CLMs to facial images [3].

Performance across Multiple Vertebrae. A set of leave-1/4-out experiments was
performed to evaluate the RFRV-CLM on all vertebrae between T7 and L4 in all
320 images. The optimised parameters were derived from the L2 vertebra; they
were adapted for the other vertebrae by scaling wframe according to the ratio of mean
vertebral heights in normal subjects from [12]. Shapemodel constraints were applied
in all stages and single, unit voting was used.
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Fig. 3 Evaluation of the effect of the shape constraint in the final fitting stage using the L2 vertebra.
Error bars are given as the standard deviation across five repeats; (b) is an expanded view of (a)
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The results are shown in Fig. 5, and example fits are shown in Fig. 1. Annotation
accuracy for T7 and L4 was lower than that for the other vertebrae, reflecting the
fact that the corresponding models covered only two vertebrae, rather than three.
The performance also decreased with increasing vertebral level; this may reflect the
smaller size of the higher vertebrae and the presence of confounding bony structures
(ribs, scapulae; see Fig. 1) in the thoracic region. However, mean errors of less than
2 and 4mm were achieved for 95 and 99% respectively of the vertebrae at all levels.
The results divided according to vertebral status show that, as expected, performance
decreased with increasing severity of fracture i.e. increasing deformation relative to
the mean shape. However, mean errors of <4mm were achieved for 95% of grade 3
fractures, and 100% of other classifications.

Table1 provides numerical performancemeasures for the RFRV-CLMs, and com-
pares them to the state-of-the-art results reported in [17], which applied AAMs to
the same task and dataset. The AAM achieves better performance at the lower end
of the CDF, as indicated by lower median errors, indicating smaller random errors
on individual points. However, the RFRV-CLM achieves better mean errors for the
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more severely fractured vertebrae, and substantially lower numbers of vertebrae with
mean errors >2mm regardless of classification, indicating better performance at the
higher end of the CDF i.e. a smaller number of fit failures (errors >2mm on 3.6%
of all vertebrae for AAMs versus 1.2% for RFRV-CLMs). The median and mean
errors across all 3,200 vertebrae were 0.60 and 0.65mm respectively, compared to
0.43 and 0.60mm from [17]. Mean search time was 366ms per triplet per image on
a Dell Precision workstation with 2 Intel Xeon 5670 processors and 24GB RAM,
running OpenSuse 11.3×64 (Linux kernel 2.6.34), using a single core. Mean search
time per image (i.e. for all ten triplets) was 3.7 s.

4 Discussion and Conclusions

This paper has compared the performance of multi-stage RFRV-CLMs to that of
AAMs in the task of vertebral landmark annotation on DXA spinal images. Several
preliminary experiments were performed to optimise the various free parameters and
options of the algorithm. In particular, no significant performance differences were
observed, for the error metrics used, either when implementing fully probabilistic
regression voting or when eliminating the shape model constraint in the final stage
of fitting, such that the result was driven by image information alone.

Comparison of the errors on automatic landmarks from AAMs and RFRV-CLMs
can be divided into two components; the random errors on landmarks from successful
fits, best represented by the median of the error distribution due to its non-Gaussian
shape, and the number of fit failures. Application of fully optimised models to ten
vertebral levels in 320 DXA spinal images showed that, whilst the AAM produced
smaller median errors, the differencewas small at less than 0.2mm regardless of clas-
sification. For comparison, the Genant method for vertebral fracture classification
[10] defines grade 1, 2 and 3 fractures as vertebral height reductions of 20–25, 25–
40, and >40%, respectively, and [12] measured mean vertebral heights varying from
22.97±1.52mm for T7 to 35.62±2.21mm for L4 in a sample of 108 normal women.
Therefore, vertebral fractures are defined via height reductions of �5mm regardless
of grade or level. The more significant difference between the two techniques is in
terms of the number of fit failures, since these represent cases where accurate diag-
nosis of the vertebral status using the automatic landmarks would not be possible.
Fit failures were identified using a threshold of 2mm, for ease of comparison to the
results presented in [17]. The RFRV-CLMproduced lower numbers of vertebrae with
errors >2mm for all classifications; a reduction of 68%. Therefore, in the region of
the CDF important for computer-aided VFA, RFRV-CLMs out-perform AAMs.

In this work, no use was made of the multiple fits to each vertebra provided by the
overlaps of the models; only the points on the central vertebra in each were used. In
future work, we intend to explore the combination of the multiple fits with goodness-
of-fit measures both to improve the accuracy of the automatic annotation, in terms
of random error, and to detect instances of fit failures i.e. systematic errors in indi-
vidual fits. Furthermore, we intend to extend the work to include both radiographs
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and mid-line sagittal CT images. Finally, we intend to investigate the use of auto-
matic landmarks for vertebral classification, comparing the accuracy of approaches
based on the Genant height ratios to classifiers applied both to the point locations
themselves, and to the shape parameters generated during fitting.
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