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Abstract Segmenting tubular structures from medical image data is a common
problem; be it vessels, airways, or nervous tissue like the spinal cord. Many
application-specific segmentation techniques have been proposed in the literature,
but only few of them are fully automatic and even fewer approaches maintain a con-
vex formulation. In this paper, we show how to integrate a cross-sectional similarity
prior into the convex continuous max-flow framework that helps to guide segmen-
tations in image regions suffering from noise or artefacts. Furthermore, we propose
a scheme to explicitly include tubularity features in the segmentation process for
increased robustness and measurement repeatability. We demonstrate the perfor-
mance of our approach by automatically segmenting the cervical spinal cord in
magnetic resonance images, by reconstructing its surface, and acquiring volume
measurements.

S. Pezold (B) · K. Fundana · P.C. Cattin
Department of Biomedical Engineering, University of Basel, Basel, Switzerland
e-mail: simon.pezold@unibas.ch

K. Fundana
e-mail: ketut.fundana@unibas.ch

P.C. Cattin
e-mail: philippe.cattin@unibas.ch

M. Amann · M. Andelova · A. Pfister · T. Sprenger
University Hospital Basel, Basel, Switzerland
e-mail: michael.amann@usb.ch

M. Andelova
e-mail: michaela.andelova@usb.ch

A. Pfister
e-mail: armanda.pfister@usb.ch

T. Sprenger
e-mail: till.sprenger@usb.ch

© Springer International Publishing Switzerland 2015
J. Yao et al. (eds.), Recent Advances in Computational Methods and Clinical
Applications for Spine Imaging, Lecture Notes in Computational Vision
and Biomechanics 20, DOI 10.1007/978-3-319-14148-0_10

107



108 S. Pezold et al.

1 Introduction

The segmentation of oriented tubular structures in the body is a common task in
medical applications. Examples include measuring functional vessel volumes in
patients of cardiovascular diseases, or quantifying spinal cord atrophy (i.e., the loss
of nervous tissue) in a variety of neurodegenerative diseases. Multiple sclerosis (MS)
is a prominent example among the latter diseases. Clinical MS studies have shown
relationships between the degree of cord atrophy and both the strength of disease [1]
and disease duration [2]. Therefore, in recent years, assessing spinal cord atrophy
has become a highly active topic of research, resulting in a number of methods that
were specifically tailored towards the segmentation of the spinal cord (see e.g. the
recently published segmentation approaches of Asman et al. [3], De Leener et al. [4]
and the methods referenced therein, or the earlier review of Miller et al. [5]). Only
few of these methods, however, make extensive use of the fact that the spinal cord
is an inherently tubular structure.

In this paper, we present an automated method that aims at the more general goal
of segmenting tubular structures in image volumes.Manual intervention on the target
data is reduced to placing a landmark if the segmentation result is ambiguous. As
a proof of concept, we successfully demonstrate the practicability of our method
by segmenting the spinal cord in magnetic resonance (MR) images and acquiring
volume measurements from surface reconstructions of the segmentation results.

We adjust Yuan et al.’s continuous max-flow framework [6] to include a cross-
sectional similarity prior. This prior exploits the fact that an oriented elongated struc-
ture shows only little change in shape along its orientation. Thus, the prior may guide
the segmentation in regions where image information is missing or ambiguous. A
related approach of including a similarity prior is pursued by Qiu et al. [7]. Due to
their different problem setting (they aim for axial symmetry), they formulate parts
of the problem in a discrete setting, while our formulation is continuous. We also
propose a way to include tubularity features in the segmentation process. Specifically
for the segmentation of the spinal cord, we furthermore introduce the new csfness
feature, which is designed to improve discrimination between the spinal cord and
the cerebrospinal fluid (CSF) that immediately surrounds it.

2 Method

In the following subsections, we introduce our adaptation of the max-flow approach
and define the flow capacity functions together with the features that we use in
experiments.We present an algorithm to solve the adapted problem, andwe conclude
the section by proposing a scheme to reconstruct the surface from the segmentation
result, which we use for quantitative measurements.

Notation. Let I : � → I denote the intensity non uniformity corrected image
[8] with intensities in the normalized intensity space I = [0, 1], where
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x = (x1, x2, x3)T ∈ � are the coordinates in the continuous image domain � ⊂ R
3.

Throughout the whole section, we furthermore assume that the tubular structure of
interest is roughly oriented parallel to the x3 axis. Figuring out the orientation should
be straightforward for most clinical applications, as the subject’s orientation with
respect to the image can be determined from the image’s meta data for most clinical
imaging modalities.

Original max-flow formulation. A general formulation for the continuous max-
flow problem with spatial flow p(x), source flow ps(x), sink flow pt (x), and
corresponding flow capacities C(x), Cs(x), Ct (x) is stated by Yuan et al. [6] as

max
ps ,pt ,p

∫

�

psdx, (1)

subject to the flow capacity constraints

ps(x) ≤ Cs(x), pt (x) ≤ Ct (x), ‖p(x)‖ ≤ C(x) (2)

and the flow conservation constraint

div p(x) − ps(x) + pt (x) = 0. (3)

2.1 Cross-Sectional Similarity Prior

Following our goal to impose a cross-sectional similarity prior on the segmentation,
we split the spatial flow p(x) into an in-slice component q : � → R

2 and a through-
slice component r : � → R with respect to slices that lie perpendicular to the x3
axis (see Fig. 1a). The resulting continuous max-flow problem can then be written
as follows:

max
ps ,pt ,q,r

∫

�

psdx, (4)

subject to the new flow capacity constraints

ps(x) ≤ Cs(x), pt (x) ≤ Ct (x), ‖q(x)‖ ≤ α(x), |r(x)| ≤ β(x) (5)

and the new flow conservation constraint

div12 q(x) + r ′(x) − ps(x) + pt (x) = 0, (6)

where div12 q denotes the divergence of q perpendicular to the x3 axis and r ′ denotes
the derivative of r along the x3 axis.

The flow formulation now possesses the desired property of having the spatial
flow capacity C(x) of [6] represented by two separate terms, namely the in-slice
flow capacity α(x) and the through-slice flow capacity β(x). The latter capacity,
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(a) (b) (c) (d)

Fig. 1 Method overview. a Proposedflowconfiguration: the spatial flow is split into an in-slice com-
ponent q, perpendicular to the axis along which the tubular structure is oriented, and a through-slice
component r , parallel to the axis. b Sample sagittal slice of one of the images used for evaluation.
c Segmentation result. d Surface reconstruction with cutting planes for volume measurement

β(x), represents the cross-sectional similarity prior that allows for precise control
over the through-slice flow behavior: For example, we may choose an edge-based
cost function for α(x) that drives the segmentation towards edges in I, while setting
β(x) = β0 to enforce constant similarity throughout all slices. Or we may calculate
β(x) = β(x3) as a slice wise cost-function that, for each slice, adjusts the similarity
prior to the in-slice noise level (reinforcing the similarity prior if the noise level is
high and relaxing it if the noise level is low). Other combinations are possible, of
course: note that both α and β may be formulated pointwise.

Dual formulation. Introducing the Lagrange multiplier u = u(x) and following the
steps in [6], the max-flow problem can be reformulated as the equivalent primal-dual
model

max
ps ,pt ,q,r

min
u

∫

�

psdx +
∫

�

u · (div12 q + r ′ − ps + pt )dx (7)

subject to the capacity constraints (5). The equivalent dual model representing a
relaxed min-cut problem then becomes

min
u∈[0,1] E(u) :=

∫

�

{
(1 − u)Cs + uCt + α| ∇12 u| + β|u′|} dx . (8)

Here, ∇12 u denotes the in-slice gradient and u′ denotes the through-slice derivative
of u with respect to the x3 axis, similar to the definitions of div12 q and r ′ above. It
can be shown that each level set function u�(x), � ∈ (0, 1] given by

u�(x) :=
{
1, u∗(x) > �

0, u∗(x) ≤ �
with u∗ := argmin

u
E(u) (9)

is a global binary solution of the adapted problem stated in Eq. (4).
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2.2 Tubularity Features

As our goal is to segment tubular structures in the image, it appears natural to include
tubularity features in the flow capacity calculations. A well-known tubularity feature
is Frangi’s measure of vesselness [9] (see Fig. 2b), v∗(x) = maxξ∈Sv v(x; ξ), where,
for each scale ξ in the predefined set of scales Sv, the vesselness v(x; ξ) of bright
tubular structures on dark background is

v(x; ξ) =
⎧⎨
⎩
0, λ2 ≥ 0 ∨ λ3 ≥ 0(
1 − exp(−2

λ22
λ23

)

)
exp(−2

λ21
λ2λ3

)

(
1 − exp(−

∑3
i=1 λ2i
2h2

)

)
else,

(10)

with λi = λi (x) denoting the ordered eigenvalues (|λ1| ≤ |λ2| ≤ |λ3|) of the point-
wise Hessian matrices that result from convolving the input image I with Gaussian
derivatives of standard deviation ξ. We define h as half of the maximum Hessian
norm at the current scale as suggested by Frangi [9].

In our experiments on segmenting the spinal cord, we decided to include another
feature that specifically describes the background that immediately surrounds the
target structure. The spinal cord is embedded in cerebrospinal fluid (CSF), which
appears dark in the used MR sequences. As the CSF also appears largely elongated,
but exhibits both tube-like and plate-like properties, we adapt Frangi’s vesselness
feature to a csfness feature w∗(x) (see Fig. 2c) that discriminates between blob-like
structures and non-blobs. We do so by replacing the eigenvalue ratio terms of v∗ with
an equivalent term composed of λ1 and λ3, as it is the latter ratio that discriminates
both vessels and plates from blobs in Hessian eigenvalue analysis [9]. Consequently,
we define w∗(x) = maxξ∈Sw w(x; ξ) for dark non-blobs on bright background in the
scales Sw with

w(x; ξ) =
⎧⎨
⎩
0, λ3 ≤ 0

exp(−2
λ21
λ23

)

(
1 − exp(−

∑3
i=1 λ2i
2h2

)

)
else.

(11)

Fig. 2 Features used in segmentation. a Image intensities. b Vesselness response. c Csfness
response
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Combining the features. Let V = [0, 1] � v∗, W = [0, 1] � w∗ be the vesselness
and csfness feature spaces, let Y = I × V ⊂ R

2 and Z = I × V ×W ⊂ R
3 be two

combined feature spaces, let I2 : � → Y , I3 : � → Z be two new image functions
that map to the combined feature spaces, and let y ∈ Y , z ∈ Z be the coordinates in
the combined feature spaces.

Furthermore, let Y f = {yi
f }M

i=1, Yb = {y j
b }N

j=1 be two sets holding samples of Y
with known foreground and background membership, respectively. Based on these
training sets, we propose to calculate the capacities for the terminal flow constraints
(5) using kernel density estimates:

Cs(y) = Cs(I2(x)) =
1
M

∑M
i=1 K� f (y − yi

f )

1
M

∑M
i=1 K� f (y − yi

f ) + 1
N

∑N
j=1 K�b (y − y j

b )
, (12)

Ct (y) = Ct (I2(x)) = 1 − Cs(y), (13)

where K�. is a Gaussian kernel with zero mean and diagonal covariance matrix �.,
holding variances σ 2

d for the feature dimensions d as diagonal elements. Terminal
capacities for the feature spaceZ may be calculated in a similar way. For the sake of
simplicity, we choose the non-terminal capacities as constants in our experiments:
α(x) = α0, β(x) = β0.

2.3 Algorithm

In accordance with the original max-flow approach, we propose to find a global solu-
tion to our adapted formulation by setting up the respective augmented Lagrangian
equation as

Lc(ps, pt , q, r, u) :=
∫

�

psdx +
∫

�

u · (div12 q + r ′ − ps + pt )dx

− c

2

∥∥div12 q + r ′ − ps + pt
∥∥2 , (14)

and iteratively optimizing it using Algorithm 1, based on the algorithm in [6].

2.4 Surface Reconstruction

As can be concluded from Eq. (9), reconstructing the surface of the segmented struc-
ture amounts to finding the isosurface of level � ∈ (0, 1] in the segmentation result
u∗ (see Fig. 1c, d). We propose to extract the isoline as a polygon of m vertices for
each slice along the x3 axis and successively connect the resulting dots in space.
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Algorithm 1 Augmented Lagrangian based max-flow algorithm.

Arbitrarily initialize p1s , p1t , q1, r1, u1; initialize Cs , Ct , α, β; specify a tolerance ε̂ and a step size
c; set the iteration count k = 1. For each iteration, perform the following:

• Optimize q, fixing the other variables:

qk+1 ← argmax
‖q‖≤α

Lc = argmax
‖q‖≤α

− c

2

∥∥∥∥div12 q + r ′ k − pk
s + pk

t − uk

c

∥∥∥∥
2

,

using a projected gradient ascent step of step size γq , as suggested in [10]:

– update q: qk+1 ← qk + γq · ∇12(div12 qk + r ′ k − pk
s + pk

t − uk

c ),

– project q: qk+1 ←
⎧⎨
⎩

qk+1

‖qk+1‖ · min{∥∥qk+1
∥∥, α}, qk+1 �= 0

0, qk+1 = 0
.

• Optimize r, fixing the other variables:

rk+1 ← argmax
|r |≤β

Lc = argmax
|r |≤β

− c

2

∥∥∥∥div12 qk+1 + r ′ − pk
s + pk

t − uk

c

∥∥∥∥
2

,

using a projected gradient ascent step of step size γr :

– update r : rk+1 ← rk + γr · ∂
∂x3

(div12 qk+1 + r ′ k − pk
s + pk

t − uk

c ),

– project r : rk+1 ← sgn(rk+1) · min{∣∣rk+1
∣∣, β}.

• Optimize ps and pt pointwise:

– i) pk+1
s ← 1

c − uk

c + div12 qk+1 + r ′ k+1 + pk
t , ii) pk+1

s ← min{pk+1
s , Cs},

– iii) pk+1
t ← uk

c − div12 qk+1 − r ′ k+1 + pk+1
s , iv) pk+1

t ← min{pk+1
t , Ct }.

• Calculate the pointwise error ε: εk+1 ← c · (div12 qk+1 + r ′ k+1 − pk+1
s + pk+1

t ).

• Update u: uk+1 ← uk − εk+1.
• Terminate if 1

|�|
∫
�

∣∣εk+1(x)
∣∣ dx < ε̂, otherwise update k ← k + 1 and continue.

This provides us with the slicewise contours of the segmentation at no additional
cost, which then facilitates estimating the centerline, namely as a curve fit through
the centroids of the contours. A centerline estimate, in turn, may be useful to acquire
quantitative measurements from the reconstruction (see Sects. 3, 4).

If there are multiple foreground regions in u∗, a point of reference may be used to
choose the region closest to it. Likewise, heuristic criteria like sudden jumps of the
centroid or a threshold on the contour line’s convexity may be used to determine a
cutoff for the tubular structure of interest. In the spinal cord segmentation experiments
below, we define a point of reference by an anatomical landmark, and we define
two cutoff criteria as finding either a distance > d between the centroids of two
consecutive slices or finding a contour line with convexity < t . As a measure of
convexity,we employ the ratio of the contour line’s area and the area of its convexhull.
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3 Materials

Applicability of our approach is shown by segmenting the spinal cord in MR images
of healthy volunteers (Figs. 1b, 2a) and MS patients.

To assess accuracy and reproducibility, 11 healthy volunteers (3 female, 8 male,
mean age 32.7year, range 26–44year) were scanned on a 3 T whole-body MR scan-
ner (Verio, Siemens Medical, Germany) with a T1-weighted MPRAGE sequence
(TR/TI/TE/α = 2.0 s/1.0 s/3.4ms/8◦); 192 slices in sagittal orientation parallel to
the interhemispheric fissure were acquired with an isotropic resolution of 1mm3.
Image volumes were corrected for gradient nonlinearity distortions using the scan-
ner manufacturer’s correction routine.

To show applicability to clinical data, we used follow-up data of 32 MS patients
(21 female, 11 male, mean age 47.1year, range 22–60year; 22 patients with
relapsing-remitting MS, 10 patients with primary progressive MS, mean disease
duration 13.8year, range 3–31year, median EDSS 3.0, range 1.5–6.0). The patients
were scanned on a 1.5T whole-body MR scanner (Avanto, Siemens Medical, Ger-
many)with a T1-weightedMPRAGE sequence (TR/TI/TE/α = 2.08 s/1.1 s/3.93ms/
15◦); 160 slices in sagittal orientation parallel to the interhemispheric fissure were
acquired with an in-slice resolution of 0.98mm × 0.98mm and a slice thickness of
1mm. Scans were acquired at two points in time approximately 5 years apart (mean
5.04 year, range 4.55–5.41 year); demographic data above is givenwith respect to the
earlier scan. Distortion correction was applied to the surface reconstructions using
the method of Janke et al. [11].

For the calculation of the terminal flow constraints C.(y) and C.(z), sample
sets were acquired on 150 separate scans of MS patients. The training patients
were scanned with the same MPRAGE sequence as the 32 MS patients above.
Foreground/background membership of the training samples was determined using
a graph cuts-based [12] semi automated method described as presegmentation
in [13]. To speed up calculations, features were discretized to 50 bins in the
[0, 1] interval in each feature dimension. Silverman’s rule of thumb with σd =
4

1
D+4 (n(D + 2))

−1
D+4 σ̂d provided a σ 2

d estimate, where n is the number of samples,
σ̂d is the sample standard deviation in d, and D is 2 for C.(y) and 3 for C.(z). To
avoid zero bins, a small additive constant of 0.0001k was added to the resulting bin
values, where k is the maximum value of all bins.

For all experiments, the following parameters were applied: α0 = 0.5, β0 =
2.5, Sv = [2mm, 4mm] (16 values), Sw = [1mm, 2mm] (8 values) for the flow
capacities; � = 0.5, m = 60, d = 10mm, t = 0.95 for the surface reconstruction.
Likewise for all reported volume measurements, the volume of a spinal cord surface
segment of 50mm centerline length, which was clipped by planes perpendicular to
the centerline and which was located approximately 25mm inferior of a manually
marked landmark, was evaluated as described in [13].
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4 Results

Scan–rescan evaluation. In two experiments on scan–rescan data, we evaluated the
accuracy and reproducibility of our method. To show the benefits of splitting the
spatial flow into an in-slice component and a through-slice component, we repeated
all experiments using Yuan et al.’s original formulation [6] for segmentation, setting
the spatial flow capacityC(x) (see Eq. (2)) to a value ofC(x) = 1.0, as this parameter
choice provided the highest number of successful surface reconstructions in the
second experiment below. For the experiments, we scanned the 11 healthy volunteers
(see Sect. 3) three times in a row (scans S1, S2, S3), without repositioning between
S1 and S2 andwith repositioning between S2 and S3, resulting in 33 scans altogether.

Accuracy:Asweworkwith human in-vivo data, it was not possible to acquire quanti-
tative ground truthmeasurements, for example, via histologic specimen.We therefore
used manual segmentations of the image data as a gold standard for comparison in
the first experiment. To make such manual measurements feasible, a semiautomated
approach that allows for human feedback in the segmentation process seemed appro-
priate. We thus segmented all scan–rescan datasets with the method described as
presegmentation in [13], placing foreground/background seeds manually and adjust-
ing them in an iterative manner until we acquired a satisfying binary segmentation.
We then compared the overlap of this gold standard segmentation with the binarized
results of the automated segmentation for a 50mm cord segment, located 25mm
inferior of the manually marked landmark. As a measure of overlap agreement, we
calculated Dice coefficients for the region overlaps.

With our approach, we gained a mean Dice coefficient of 0.88 using the pro-
posed feature combination Z (i.e., intensity + vesselness + csfness) and 0.82 using
feature combination Y (i.e., intensity + vesselness). With Yuan et al.’s approach,
we gained a mean Dice coefficient of 0.86 using Z and 0.79 using Y . Therefore,
our approach proves superior in the given problem setting. Furthermore, it can be
seen that including the csfness feature into the segmentation process improves the
segmentation accuracy.

Reproducibility: In the second experiment, we assessed the reproducibility of our
method. The cervical spinal cordwas segmented using feature combinationsY andZ ,
its surfacewas reconstructed, and the volume of the 50mm cord surface segment (see
Sect. 3)was comparedbetween scans and rescans.As ameasure of reproducibility,we
calculated the coefficients of variation (CV; i.e., the sample standard deviation over
the mean) of the measured volumes for all possible S1–S2 comparisons (i.e., without
repositioning) and S1–S3 comparisons (i.e., with repositioning). An overview of the
mean CVs is given in Table1.

For our proposed segmentation approach, the subsequent reconstruction of the
complete surface segment succeeded for 30 out of 33 scans using Y and 32 out of 33
scans using Z . All failures happened for the same subject, whose scans showed an
extremely low signal-to-noise ratio upon visual inspection. For Yuan et al.’s segmen-
tation approach, the surface reconstruction succeeded for 25 out of 33 scans using
Y and 28 out of 33 scans using Z .
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Table 1 Coefficients of variation (%) for spinal cord segment volume measurements, using feature
combinations Y and Z with Yuan et al.’s and our segmentation method

Y Z
S1 versus S2 S1 versus S3 S1 versus S2 S1 versus S3

Ours 2.02 5.81 2.13 4.90

Yuan et al. 2.54 6.84 2.85 4.42

As one could expect, CVs are lower for the S1–S2 comparison, due to the fact
that the subjects were not repositioned. Furthermore, including the csfness feature
makes the segmentationmore robust (more successful surface reconstructions) while
at the same time having beneficial effects on the reproducibility (substantially lower
CVs for the more realistic S1–S3 comparisons). Similar statements on improved
robustness and reproducibility can be made when comparing our adapted max-flow
formulation with the original formulation: in both aspects, our method proves largely
superior. Andwhile for feature combinationZ the S1–S3CVof the original approach
is better than ours, one has to keep in mind that ours is calculated on a higher number
of successful reconstructions, including the more challenging ones on which the
original approach failed.

An exemplary case where the surface reconstruction failed for the original max-
flow formulation while succeeding for our adapted formulation is shown in Fig. 3.
As can be seen, the segmentation stops early for the original formulation while it
extends further down into the noisy image regions for ours. Relaxing C(x) in this
case would possibly enable the original formulation to also extend further down;
however, this would come at the price of an overall higher susceptibility to noise. By
contrast, controlling α(x) and β(x) separately in our approach enables us to largely
circumvent this tradeoff.

On the whole, the CVs we obtained by our method are higher than those of
establishedmethods that are actually used inMS research (most notably, Losseff et al.
[1] and the methods compared in [13]). On the one hand, however, one should keep

Fig. 3 Comparison of the segmentation approaches on noisy, low-contrast case. a Input image.
b Segmentation result using the original max-flow formulation [6]. c Segmentation result using our
max-flow formulation
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in mind the substantially higher amount of manual intervention in these approaches.
On the other hand, we see our presented framework in its current state more as a
proof of concept than as a tool that is ready for clinical use.

Evaluation on patient data. A comparison of the five-year follow-up MS patient
data (see Sect. 3), using the proposedmax-flow formulation for segmentation, showed
a mean yearly atrophy of 25.4mm3 in the 50mm cord surface segment (maximum
loss: 194.3mm3, maximum gain: 53.4mm3). The mean yearly percentage loss was
0.9% (maximum loss: 7.0%, maximum gain: 2.0%). These measurements agree
well with the observation of cord atrophy during MS progression reported in the
literature [2]. Nevertheless, due to the high variability, our measurements should
again be interpreted as a proof of concept for our segmentation method rather than
as hard clinical data.

Computational performance. As we implemented the max-flow segmentation on
the GPU based on code provided by the authors of [6, 10], results can be acquired
extremely fast, namely in the order of seconds. Other parts of the implementation
also show a high parallelization potential in that they are mainly pointwise (such
as the feature calculation and the surface extraction). We therefore assume that the
complete chain of steps from feature calculation to quantitative measurements could
be optimized to run in less than a minute per subject.

5 Conclusion

We presented a new segmentation algorithm based on continuous max flow that
was specifically tailored towards the segmentation of elongated structures: a cross-
sectional similarity prior was introduced, which guides the segmentation in regions
of missing or contradictory image information. We showed how tubularity features
may be used in the flow capacity constraints to increase segmentation robustness
and measurement repeatability. Finally, we successfully demonstrated the clinical
applicability of our method by segmenting the spinal cord in both healthy volunteers
and multiple sclerosis patients.
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