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Abstract Automated detection of sclerotic metastases (bone lesions) in Computed
Tomography (CT) images has potential to be an important tool in clinical practice
and research. State-of-the-art methods show performance of 79% sensitivity or true-
positive (TP) rate, at 10 false-positives (FP) per volume. We design a two-tiered
coarse-to-fine cascade framework to first operate a highly sensitive candidate gen-
eration system at a maximum sensitivity of ∼92% but with high FP level (∼50 per
patient). Regions of interest (ROI) for lesion candidates are generated in this step
and function as input for the second tier. In the second tier we generate N 2D views,
via scale, random translations, and rotations with respect to each ROI centroid coor-
dinates. These random views are used to train a deep Convolutional Neural Network
(CNN) classifier. In testing, the CNN is employed to assign individual probabilities
for a new set of N random views that are averaged at each ROI to compute a final
per-candidate classification probability. This second tier behaves as a highly selec-
tive process to reject difficult false positives while preserving high sensitivities. We
validate the approach on CT images of 59 patients (49 with sclerotic metastases and
10 normal controls). The proposed method reduces the number of FP/vol. from 4
to 1.2, 7 to 3, and 12 to 9.5 when comparing a sensitivity rates of 60, 70, and 80%
respectively in testing. The Area-Under-the-Curve (AUC) is 0.834. The results show
marked improvement upon previous work.
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1 Introduction

Early detection of sclerotic bone metastases plays an important role in clinical
practice. Their detection can assess the staging of the patient’s disease, and therefore
has the potential to alter the treatment regimen the patient will undergo [1]. Approx-
imately 490,000 patients per year are affected by metastatic diseases of the skeletal
structures in the United States alone [2].More than 80% of these bonemetastases are
thought to originate from breast and prostate cancer [3]. As a ubiquitous screening
and staging modality employed for disease detection in cancer patients, Computed
Tomography (CT) is commonly involved in the detection of bone metastases. Both
lytic and sclerotic metastatic diseases change or deteriorate the bone structure and
bio-mechanically weaken the skeleton. Sclerotic metastases grow into irregularly
mineralized and disorganized “woven” bone [4–7]. Typical examples of sclerotic
metastases are shown in Fig. 1. The detection of sclerotic metastases often occurs
during manual prospective visual inspection of every image (of which there may
be thousands) and every section of every image in each patient’s CT study. This is
a complex process that is performed under time restriction and which is prone to
error. Furthermore, thorough manual assessment and processing is time-consuming
and has potential to delay the clinical workflow. Computer-Aided Detection (CADe)
of sclerotic metastases has the potential to greatly reduce the radiologists’ clinical
workload and could be employed as a second reader for improved assessment of
disease [8–10].

The CADe method presented here aims to build upon an existing system for
scleroticmetastases detection and focuses on reducing the false-positive (FP) number
of its outputs. We make use of recent advances in computer vision, in particular deep
Convolutional Neural Networks (CNNs), to attain this goal. Recently, the availability
of large annotated training sets and the accessibility of affordable parallel computing
resources via GPUs has made it feasible to train “deep” CNNs (also popularized
under the keyword: “deep learning”) for computer vision classification tasks. Great
advances in classification of natural images have been achieved [11, 12]. Studies that
have tried to apply deep learning and CNNs to medical imaging applications also
showed promise, e.g. [13, 14]. In particular, CNNs have been applied successfully
in biomedical applications such as digital pathology [15]. In this work, we apply
CNNs for the reduction of FPs using random sets of 2D CNN observations. Our
motivation is partially inspired by the spirit of hybrid systems using both parametric
and non-parametric models for hierarchical coarse-to-fine classification [16].

Fig. 1 Examples of sclerotic metastases as detected by the CADe candidate generation step
(red mark) (Color figure online)
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2 Methods

2.1 Sclerotic Metastases Candidate Detection

We use a state-of-the-art CADe method for detecting sclerotic metastases candidates
from CT volumes [9, 17]. The spine is initially segmented by thresholding at certain
attenuation levels and performing region growing. Furthermore,morphological oper-
ations are used to refine the segmentation and allow the extraction of the spinal canal.
For further information on the segmentation refer to [18]. Axial 2D cross sections
of the spinal vertebrae are then divided into sub-segments using a watershed algo-
rithm based on local density differences [19]. The CADe algorithm then finds initial
detections that have a higher mean attenuation then neighboring 2D sub-segments.
Because the watershed algorithm can cause over-segmentation of the image, similar
2D sub-segments detections aremerged by performing an energyminimization based
on graph cuts and attenuation thresholds. Finally, 2D detections on neighboring cross
sections are combined to form 3D detections using a graph-cut-based merger. Each
3D detection acts as a seed point for a level-set segmentation method that segments
the lesions in 3D. This step allows the computation of 25 characteristic features,
including shape, size, location, attenuation, volume, and sphericity. A committee of
SVMs [20] is then trained on these features. The trained SVMs further classify each
3D detection as ‘true’ or ‘false’ bone lesion. Example of bone lesions candidates
using this detection scheme are shown in Fig. 1. Next, true bone lesions from this
step are used as candidate lesions for a second classification based on CNNs as pro-
posed in this paper. This is a coarse-to-fine classification approach somewhat similar
to other CADe schemes such as [16].

2.2 CNN Training on 2D Image Patches

A Region-of-Interest (ROI) in a CT image is extracted at each bone lesion candidate
location (see Fig. 2). In order to increase the variation of the training data and to
avoid overfitting analogous to the data augmentation approach in [11], each ROI
is translated along a random vector v in axial space. Furthermore, each translated
ROI is rotated around its center Nr times by a random angle α = [0◦, . . . , 360◦].
These translations and rotations for each ROI are computed Ns times at different
physical scales s (the edge length of each ROI), but with fixed numbers of pixels.
This procedure results in N = Ns × Nt × Nr random observation of each ROI—an
approach similar to [21]. Note that 2.5–5 mm thick-sliced CT volumes are used for
this study. Due to this relative large slice thickness, our spatial transformations are
all drawn from within the axial plane. This is in contrast to other approaches that
use CNNs which sample also sagittal and/or coronal planes [13, 14]. Following this
procedure, both the training and test data can be easily expanded to better scale to this
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Fig. 2 Image patches are generated from CADe candidates using different scales, 2D translations
(along a random vector v) and rotations (by a random angle α) in the axial plane

type of neural net application. A CNN’s predictions on these N random observations
{P1(x), . . . , PN } can then be simply averaged at eachROI to compute a per-candidate
probability:

p (x |{P1(x), . . . , PN (x)}) = 1

N

N∑

i=1

Pi (x). (1)

Here, Pi (x) is the CNN’s classification probability computed one individual image
patch. In theory, more sophisticated fusion rules can be explored but we find that
simple averaging works well. This proposed random resampling is an approach to
effectively and efficiently increase the amount of available training data. In computer
vision, translational shifting and mirroring of 2D image patches is often used for this
purpose [11]. By averaging the N predictions on random 2D views as in Eq.1, the
robustness and stability of CNN can be further increased as shown in Sect. 3.

2.3 CNN Architecture

A CNN derives its name from the convolutional filters that it applies to the input
images. Typically, several layers of convolutional filters are cascaded to compute
image features. Other layers of a CNN often perform max-pooling operations or
consist of fully-connected neural networks.OurCNNendswith afinal 2-way softmax
layer for ‘true’ and ‘false’ classification (see Fig. 3). The fully connected layers are
typically constrained in order to avoid overfitting. We use “DropConnect” for this
purpose. “DropConnect” is a method that behaves as a regularizer when training
the CNN [22]. It can be seen as a variation of the earlier developed “DropOut”
method [23]. GPU acceleration allows efficient training of the CNN.We use an open-
source implementation by Krizhevsky et al. [11] with the DropConnect extension
by Wan et al. [22]. Further execution speed-up for both training and evaluation is
achieved by using rectified linear units as the neuron model instead of the traditional
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Fig. 3 The proposed convolution neural network consists of two convolutional layers, max-pooling
layers, locally fully-connected layers, a DropConnect layer, and a final 2-way softmax layer for
classification. The number of filters, connections for each layer, and the first layer of learned
convolutional kernels are shown

neuron model f (x) = tanh(x) or f (x) = (1 + e−x )−1 [11]. At the moment, it
is still difficult to design a theoretically optimal CNN architecture for a particular
image classification task [12].We evaluate several CNNswith slightly different layer
architectures (independently to the later evaluations) in order to find a suitable CNN
architecture for our classification task, using a small number of CT cases within
the training data subset. We find relatively stable behavior over model variations
and hence fix the CNN architecture for subsequent experiments performed in this
study. Recently, approaches have been proposed that aim to visualize the feature
activations of CNNs in order to allow better CNN design [12]. Potentially, these
approaches allow better understanding of how CNNs behave at a given task. This
could lead to improved CNN architecture design compared to the heuristic approach
applied in this work.

3 Evaluation and Results on Sclerotic Metastases

In our evaluation, radiologists label a total of 532 sclerotic metastases (‘positives’) in
CT images of 49 patients (14 female, 35 male patients; mean age, 57.0 years; range,
12–77 years). A lesion is only labeled if its volume is greater than 300mm3. The
CT scans have reconstruction slice thicknesses ranging between 2.5mm and 5mm.
Furthermore, we include 10 control cases (4 female, 6 male patients; mean age, 55.2
years; range, 1970 years) without any spinal lesions.

Any false-positive detections from the candidate generation step on these patients
are used as ‘negative’ candidate examples for training the CNN. All patients were
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randomly split into five sets at the patient level in order to allow a 5-fold cross-
validation.We adjust the sample rates for positive and negative image patches in order
to generate a balanced data set for training (50% positives and 50% negatives). This
proves to be beneficial for training the CNNs—no balancing was done during testing.
Each three-channel image patch was centered at the CADe coordinate with 32× 32
pixels in resolution. All patches were sampled at 4 scales of s = [30, 35, 40, 45]mm
ROI edge length in physical image space, after iso-metric resampling of the CT
image (see Fig. 2). We used a bone window level of [−250, 1250 HU]. Furthermore,
all ROIs were randomly translated (up to 3mm) and rotated at each scale (Ns = 4,
Nt = 5 and Nr = 5), resulting in N = 100 image patches per ROI. Training each
CNN model took 12–15 hours on a NVIDIA GeForce GTX TITAN, while running
100 2D image patches at each ROI for classification of one CT volume only took
circa 30s. Image patch extraction from one CT volume took around 2min on each
scale.

We now apply the trained CNN to classify image patches from the test data sets.
Figures4 and 5 show typical classification probabilities on random subsets of positive
and negative ROIs in the test case. Averaging the N predictions at each sclerotic
metastases candidate allows us to compute a per-candidate probability p(x), as in
Eq.1. Varying thresholds on probability p(x) are used to compute Free-Response
Receiver Operating Characteristic (FROC) curves. The FROC curves are compared
in Fig. 6 for varying amounts of N . It can be seen that the classification performance
saturates quicklywith increasing N . Thismeans the run-time efficiency of our second

Fig. 4 Test probabilities of the CNN for being sclerotic metastases on ‘true’ sclerotic metastases
candidate examples (close to 1.0 is good)
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Fig. 5 Test probabilities of the CNN for being sclerotic metastases on ‘false’ sclerotic metastases
candidate examples (close to 0.0 is good)

Fig. 6 Free-Response Receiver Operating Characteristic (FROC) curves for a 5-fold cross-
validation using a varying number of N random CNN observers in 59 patients (49 with sclerotic
metastases and 10 normal controls). AUC values are computed for corresponding ROC curves

layer detection could be further improved without losing noticeable performance by
decreasing N . The proposed method reduces the number of FP/vol. of the existing
sclerotic metastases CADe systems [9] from 4 to 1.2, 7 to 3, and 12 to 9.5 when
comparing a sensitivity rates of 60, 70, and 80% respectively in cross-validation
testing (at N = 100). This has the potential to greatly reduce radiologists’ clinical
workload when employing the proposed CADe system as a second reader. The Area-
Under-the-Curve (AUC) shows a value of 0.834 at this number of N .
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Fig. 7 Comparison of Free-Response Receiver Operating Characteristic (FROC) curves of the first
layer bone lesion candidate generation (squares) and the second layer classification using N = 100
CNN observers (lines) for both training and testing cases. Result are computed using a 5-fold
cross-validation in 59 patients (49 with sclerotic metastases and 10 normal controls)

Figure7 compares the FROCs from the initial (first layer) CADe system [9] and
illustrates the progression towards the proposed coarse-to-fine two tiered method in
both training and testing datasets. This clearly demonstrates a marked improvement
in performance.

4 Discussion and Conclusions

This work demonstrates that deepCNNs can be generalized to tasks inmedical image
analysis, such as effective FP reduction in Computer-aided Detection (CADe) sys-
tems. This is especially true, since themain drawback of current CADe developments
often generates too many false positive detections at clinically relevant sensitivity
levels. We show that a random set of CNN classifications can be used to reduce
FPs when operating an existing method for CADe of sclerotic metastases (bone
lesions) at a particular point its FROC curve. Different scales, random translations,
and rotations around each of the CADe detections can be utilized to increase the
CNN’s classification performance. The FROC curves show a marked reduction of
the FP/vol. rate at clinically useful levels of sensitivity. These results improve upon
the state-of-the-art.

The average of CNN classification probabilities was chosen in this work for
simplicity (see Eq.1), but this approach shows to be very efficient and effective.
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Future work will investigate more sophisticated methods of label fusion from the
CNNs. A similar 2.5D generalization of CNNs also shows promise in the detection
of lymph nodes in CT images (see [14]). In this work, we decide against a 2.5D or
full 3D approach due to the relative large slice thicknesses of ∼5mm in the used
CT data. This prevents reformatting the data in sufficient detail in any other than the
axial plane. However, the improvements achieved in this study and other methods
utilizing CNNs in medical image computing show promise for a variety of appli-
cations in computer-aided detection of 2D and 3D medical images. Our mainly 2D
approach may adapt and generalize particularly well to the current trend of low-dose,
low-resolution (slice thickness) CT imaging protocols, compared to direct 3D based
methods that require volumetric medical images of higher resolution.

Acknowledgments This work was supported by the Intramural Research Program of the NIH
Clinical Center.

References

1. Msaouel, P., Pissimissis, N., Halapas, A., Koutsilieris, M.: Mechanisms of bone metastasis
in prostate cancer: clinical implications. Best Pract. Res. Clin. Endocrinol. Metabol. 22(2),
341–355 (2008)

2. Hitron, A., Adams, V.: The pharmacological management of skeletal-related events from
metastatic tumors. Orthopedics 32(3), 188 (2009)

3. Coleman, R.: Metastatic bone disease: clinical features, pathophysiology and treatment strate-
gies. Cancer Treat. Rev. 27(3), 165–176 (2001)

4. Saylor, P., Smith, M.: Bone health and prostate cancer. Prostate Cancer Prostatic Dis. 13(1),
20–27 (2010)

5. Keller, E.T., Brown, J.: Prostate cancer bone metastases promote both osteolytic and osteoblas-
tic activity. J. Cell. Biochem. 91(4), 718–729 (2004)

6. Lee, R.J., Saylor, P.J., Smith, M.R.: Treatment and prevention of bone complications from
prostate cancer. Bone 48(1), 88–95 (2011)

7. Guise, T.A., Mundy, G.R.: Cancer and bone 1. Endocr. Rev. 19(1), 18–54 (1998)
8. Wiese, T., Yao, J., Burns, J.E., Summers, R.M.: Detection of sclerotic bone metastases in

the spine using watershed algorithm and graph cut. In: SPIE Medical Imaging, International
Society for Optics and Photonics (2012) 831512–831512

9. Burns, J.E., Yao, J., Wiese, T.S., Muñoz, H.E., Jones, E.C., Summers, R.M.: Automated detec-
tion of sclerotic metastases in the thoracolumbar spine at ct. Radiology 268(1), 69–78 (2013)

10. Hammon, M., Dankerl, P., Tsymbal, A., Wels, M., Kelm, M., May, M., Suehling, M., Uder,
M., Cavallaro, A.: Automatic detection of lytic and blastic thoracolumbar spine metastases on
computed tomography. Eur. Radiol. 23(7), 1862–1870 (2013)

11. Krizhevsky,A., Sutskever, I.,Hinton,G.: Imagenet classificationwith deep convolutional neural
networks. Advances in Neural Information Processing Systems 25 (2012)

12. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional neural networks.
arXiv:1311.2901 (2013)

13. Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for
knee cartilage segmentation using a triplanar convolutional neural network. MICCAI (2013)

14. Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E.,
Summers, R.M.: A new 2.5D representation for lymph node detection using random sets of
deep convolutional neural network observations. MICCAI 2014 (in-print), arXiv:1406.2639
[cs.CV] (2014)

http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1406.2639


12 H.R. Roth et al.
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