
Lecture Notes in Computational Vision and Biomechanics 20

Jianhua Yao
Ben Glocker
Tobias Klinder
Shuo Li    Editors

Recent Advances 
in Computational 
Methods and Clinical 
Applications for Spine 
Imaging



Lecture Notes in Computational Vision
and Biomechanics

Volume 20

Series editors

João Manuel R.S. Tavares, Porto, Portugal
R.M. Natal Jorge, Porto, Portugal

Editorial Advisory Board

Alejandro Frangi, Sheffield, UK
Chandrajit Bajaj, Austin, USA
Eugenio Oñate, Barcelona, Spain
Francisco Perales, Palma de Mallorca, Spain
Gerhard A. Holzapfel, Stockholm, Sweden
J. Paulo Vilas-Boas, Porto, Portugal
Jeffrey A. Weiss, Salt Lake City, USA
John Middleton, Cardiff, UK
Jose M. García Aznar, Zaragoza, Spain
Perumal Nithiarasu, Swansea, UK
Kumar K. Tamma, Minneapolis, USA
Laurent Cohen, Paris, France
Manuel Doblaré, Zaragoza, Spain
Patrick J. Prendergast, Dublin, Ireland
Rainald Löhner, Fairfax, USA
Roger Kamm, Cambridge, USA
Shuo Li, London, Canada
Thomas J.R. Hughes, Austin, USA
Yongjie Zhang, Pittsburgh, USA



More information about this series at http://www.springer.com/series/8910

• Applications of Computational Vision and
Biomechanics

• Biometrics and Biomedical Pattern Analysis
• Cellular Imaging and Cellular Mechanics
• Clinical Biomechanics
• Computational Bioimaging and Visualization
• ComputationalBiology inBiomedical Imaging
• Development of Biomechanical Devices
• Device and Technique Development for

Biomedical Imaging
• Digital Geometry Algorithms for Computa-

tional Vision and Visualization
• Experimental Biomechanics
• Gait & Posture Mechanics
• Multiscale Analysis in Biomechanics
• Neuromuscular Biomechanics
• Numerical Methods for Living Tissues
• Numerical Simulation
• Software Development on Computational

Vision and Biomechanics

• Grid and High Performance Computing for
Computational Vision and Biomechanics

• Image-based Geometric Modeling and Mesh
Generation

• Image Processing and Analysis
• Image Processing and Visualization in

Biofluids
• Image Understanding
• Material Models
• Mechanobiology
• Medical Image Analysis
• Molecular Mechanics
• Multi-Modal Image Systems
• Multiscale Biosensors in Biomedical Imaging
• Multiscale Devices and Biomems

for Biomedical Imaging
• Musculoskeletal Biomechanics
• Sport Biomechanics
• Virtual Reality in Biomechanics
• Vision Systems

The research related to the analysis of living structures (Biomechanics) has been a source of
recent research in several distinct areas of science, for example, Mathematics, Mechanical
Engineering, Physics, Informatics, Medicine and Sport. However, for its successful
achievement, numerous research topics should be considered, such as image processing and
analysis, geometric and numerical modelling, biomechanics, experimental analysis, me-
chanobiology and enhanced visualization, and their application to real cases must be
developed and more investigation is needed. Additionally, enhanced hardware solutions and
less invasive devices are demanded.

On the other hand, Image Analysis (Computational Vision) is used for the extraction of
high level information from static images or dynamic image sequences. Examples of
applications involving image analysis can be the study of motion of structures from image
sequences, shape reconstruction from images, and medical diagnosis. As a multidisciplinary
area, Computational Vision considers techniques and methods from other disciplines, such as
Artificial Intelligence, Signal Processing, Mathematics, Physics and Informatics. Despite the
many research projects in this area, more robust and efficient methods of Computational
Imaging are still demanded in many application domains in Medicine, and their validation in
real scenarios is matter of urgency.

These two important and predominant branches of Science are increasingly considered to be
strongly connected and related. Hence, the main goal of the LNCV&B book series consists
of the provision of a comprehensive forum for discussion on the current state-of-the-art in these
fields by emphasizing their connection. The book series covers (but is not limited to):

http://www.springer.com/series/8910


Jianhua Yao • Ben Glocker
Tobias Klinder • Shuo Li
Editors

Recent Advances
in Computational Methods
and Clinical Applications
for Spine Imaging

123



Editors
Jianhua Yao
Clinical Center
National Institutes of Health
Bethesda, MD
USA

Ben Glocker
Department of Computing
Imperial College
London
UK

Tobias Klinder
Innovative Technologies
Philips Research
Hamburg
Germany

Shuo Li
GE Healthcare and University of Western
Ontario

London, ON
Canada

ISSN 2212-9391 ISSN 2212-9413 (electronic)
Lecture Notes in Computational Vision and Biomechanics
ISBN 978-3-319-14147-3 ISBN 978-3-319-14148-0 (eBook)
DOI 10.1007/978-3-319-14148-0

Library of Congress Control Number: 2014959524

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
Chapters 1 and 23 were created within the capacity of an US governmental employment. US copyright
protection does not apply.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

The spine represents both a vital central axis for the musculoskeletal system and a
flexible protective shell surrounding the most important neural pathway in the body,
the spinal cord. Spine-related diseases or conditions are common and cause a huge
burden of morbidity and cost to society. Examples include degenerative disc dis-
ease, spinal stenosis, scoliosis, osteoporosis, herniated discs, fracture/ligamentous
injury, infection, tumor, and spondyloarthropathy. Treatment varies with the disease
entity and the clinical scenario can be nonspecific. As a result, imaging is often
required to help make the diagnosis. Frequently obtained studies include plain
radiographs, DXA, bone scans, CT, MR, ultrasound, and nuclear medicine.
Computational methods play a steadily increasing role in improving speed, confi-
dence, and accuracy in reaching a final diagnosis. Although there has been great
progress in the development of computational methods for spine imaging over the
recent years, there are a number of significant challenges in both methodology and
clinical applications.

The goal of this workshop on “Computational Methods and Clinical Applica-
tions for Spine Imaging” was to bring together clinicians, computer scientists, and
industrial vendors in the field of spine imaging, for reviewing the state-of-the-art
techniques, sharing the novel and emerging analysis and visualization techniques,
and discussing the clinical challenges and open problems in this rapidly growing
field. We invited papers on all major aspects of problems related to spine imaging,
including clinical applications of spine imaging, computer-aided diagnosis of spine
conditions, computer aided detection of spine-related diseases, emerging compu-
tational imaging techniques for spinal diseases, fast 3D reconstruction of spine,
feature extraction, multiscale analysis, pattern recognition, image enhancement of
spine imaging, image-guided spine intervention and treatment, multimodal image
registration and fusion for spine imaging, novel visualization techniques, seg-
mentation techniques for spine imaging, statistical and geometric modeling for
spine and vertebra, spine and vertebra localization.

This is the second MICCAI workshop on this particular topic. This year we add
a challenge on “Vertebra segmentation on CT.” We received many high quality
submissions addressing many of the above-mentioned issues. All papers underwent
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a thorough double-blinded review with each paper being reviewed by three
members of the paper reviewing committee. The program committee consisted of
researchers who had actively contributed to the field of spine imaging in the past.
From all submissions, we finally accepted 22 papers including 10 oral presenta-
tions, 6 poster presentations, and 6 challenge presentations. The papers are orga-
nized into five sessions according to the topics. The sessions are Computer Aided
Diagnosis and Intervention, Spine MRI Processing, Localization, Poster session,
and Vertebra Segmentation Challenge.

In order to give deeper insights into the field and stimulate further ideas, we had
invited lectures held during the workshop. We are very thankful to Dr. David R.
Haynor from University of Washington to give a talk on “Towards quantitative
diagnosis and measurement of chronic spinal diseases: the role of image process-
ing,” and Dr. Nassir Navab from Technische Universitaet Muenchen and Johns
Hopkins University to give a talk on “Domain Specific Simulation Environments
for Accelerating Validation and Deployment of Novel Image-guided Spine Surgery
Techniques.”

We hope that with this workshop we raised attention toward this important and
interesting field of computational spine imaging and would like to finally thank all
contributors for their efforts in making this workshop possible. We especially thank
the following institutes for their sponsorship: Journal of Computerized Medical
Imaging and Graphics, GE Healthcare, Microsoft Research, Digital Imaging group
of London, Imperial College London, Philips Research, and National Institutes of
Health.

Jianhua Yao
Ben Glocker

Tobias Klinder
Shuo Li
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Detection of Sclerotic Spine Metastases
via Random Aggregation of Deep
Convolutional Neural Network
Classifications

Holger R. Roth, Jianhua Yao, Le Lu, James Stieger, Joseph E. Burns
and Ronald M. Summers

Abstract Automated detection of sclerotic metastases (bone lesions) in Computed
Tomography (CT) images has potential to be an important tool in clinical practice
and research. State-of-the-art methods show performance of 79% sensitivity or true-
positive (TP) rate, at 10 false-positives (FP) per volume. We design a two-tiered
coarse-to-fine cascade framework to first operate a highly sensitive candidate gen-
eration system at a maximum sensitivity of ∼92% but with high FP level (∼50 per
patient). Regions of interest (ROI) for lesion candidates are generated in this step
and function as input for the second tier. In the second tier we generate N 2D views,
via scale, random translations, and rotations with respect to each ROI centroid coor-
dinates. These random views are used to train a deep Convolutional Neural Network
(CNN) classifier. In testing, the CNN is employed to assign individual probabilities
for a new set of N random views that are averaged at each ROI to compute a final
per-candidate classification probability. This second tier behaves as a highly selec-
tive process to reject difficult false positives while preserving high sensitivities. We
validate the approach on CT images of 59 patients (49 with sclerotic metastases and
10 normal controls). The proposed method reduces the number of FP/vol. from 4
to 1.2, 7 to 3, and 12 to 9.5 when comparing a sensitivity rates of 60, 70, and 80%
respectively in testing. The Area-Under-the-Curve (AUC) is 0.834. The results show
marked improvement upon previous work.
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1 Introduction

Early detection of sclerotic bone metastases plays an important role in clinical
practice. Their detection can assess the staging of the patient’s disease, and therefore
has the potential to alter the treatment regimen the patient will undergo [1]. Approx-
imately 490,000 patients per year are affected by metastatic diseases of the skeletal
structures in the United States alone [2].More than 80% of these bonemetastases are
thought to originate from breast and prostate cancer [3]. As a ubiquitous screening
and staging modality employed for disease detection in cancer patients, Computed
Tomography (CT) is commonly involved in the detection of bone metastases. Both
lytic and sclerotic metastatic diseases change or deteriorate the bone structure and
bio-mechanically weaken the skeleton. Sclerotic metastases grow into irregularly
mineralized and disorganized “woven” bone [4–7]. Typical examples of sclerotic
metastases are shown in Fig. 1. The detection of sclerotic metastases often occurs
during manual prospective visual inspection of every image (of which there may
be thousands) and every section of every image in each patient’s CT study. This is
a complex process that is performed under time restriction and which is prone to
error. Furthermore, thorough manual assessment and processing is time-consuming
and has potential to delay the clinical workflow. Computer-Aided Detection (CADe)
of sclerotic metastases has the potential to greatly reduce the radiologists’ clinical
workload and could be employed as a second reader for improved assessment of
disease [8–10].

The CADe method presented here aims to build upon an existing system for
scleroticmetastases detection and focuses on reducing the false-positive (FP) number
of its outputs. We make use of recent advances in computer vision, in particular deep
Convolutional Neural Networks (CNNs), to attain this goal. Recently, the availability
of large annotated training sets and the accessibility of affordable parallel computing
resources via GPUs has made it feasible to train “deep” CNNs (also popularized
under the keyword: “deep learning”) for computer vision classification tasks. Great
advances in classification of natural images have been achieved [11, 12]. Studies that
have tried to apply deep learning and CNNs to medical imaging applications also
showed promise, e.g. [13, 14]. In particular, CNNs have been applied successfully
in biomedical applications such as digital pathology [15]. In this work, we apply
CNNs for the reduction of FPs using random sets of 2D CNN observations. Our
motivation is partially inspired by the spirit of hybrid systems using both parametric
and non-parametric models for hierarchical coarse-to-fine classification [16].

Fig. 1 Examples of sclerotic metastases as detected by the CADe candidate generation step
(red mark) (Color figure online)
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2 Methods

2.1 Sclerotic Metastases Candidate Detection

We use a state-of-the-art CADe method for detecting sclerotic metastases candidates
from CT volumes [9, 17]. The spine is initially segmented by thresholding at certain
attenuation levels and performing region growing. Furthermore,morphological oper-
ations are used to refine the segmentation and allow the extraction of the spinal canal.
For further information on the segmentation refer to [18]. Axial 2D cross sections
of the spinal vertebrae are then divided into sub-segments using a watershed algo-
rithm based on local density differences [19]. The CADe algorithm then finds initial
detections that have a higher mean attenuation then neighboring 2D sub-segments.
Because the watershed algorithm can cause over-segmentation of the image, similar
2D sub-segments detections aremerged by performing an energyminimization based
on graph cuts and attenuation thresholds. Finally, 2D detections on neighboring cross
sections are combined to form 3D detections using a graph-cut-based merger. Each
3D detection acts as a seed point for a level-set segmentation method that segments
the lesions in 3D. This step allows the computation of 25 characteristic features,
including shape, size, location, attenuation, volume, and sphericity. A committee of
SVMs [20] is then trained on these features. The trained SVMs further classify each
3D detection as ‘true’ or ‘false’ bone lesion. Example of bone lesions candidates
using this detection scheme are shown in Fig. 1. Next, true bone lesions from this
step are used as candidate lesions for a second classification based on CNNs as pro-
posed in this paper. This is a coarse-to-fine classification approach somewhat similar
to other CADe schemes such as [16].

2.2 CNN Training on 2D Image Patches

A Region-of-Interest (ROI) in a CT image is extracted at each bone lesion candidate
location (see Fig. 2). In order to increase the variation of the training data and to
avoid overfitting analogous to the data augmentation approach in [11], each ROI
is translated along a random vector v in axial space. Furthermore, each translated
ROI is rotated around its center Nr times by a random angle α = [0◦, . . . , 360◦].
These translations and rotations for each ROI are computed Ns times at different
physical scales s (the edge length of each ROI), but with fixed numbers of pixels.
This procedure results in N = Ns × Nt × Nr random observation of each ROI—an
approach similar to [21]. Note that 2.5–5 mm thick-sliced CT volumes are used for
this study. Due to this relative large slice thickness, our spatial transformations are
all drawn from within the axial plane. This is in contrast to other approaches that
use CNNs which sample also sagittal and/or coronal planes [13, 14]. Following this
procedure, both the training and test data can be easily expanded to better scale to this
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Fig. 2 Image patches are generated from CADe candidates using different scales, 2D translations
(along a random vector v) and rotations (by a random angle α) in the axial plane

type of neural net application. A CNN’s predictions on these N random observations
{P1(x), . . . , PN } can then be simply averaged at eachROI to compute a per-candidate
probability:

p (x |{P1(x), . . . , PN (x)}) = 1

N

N∑

i=1

Pi (x). (1)

Here, Pi (x) is the CNN’s classification probability computed one individual image
patch. In theory, more sophisticated fusion rules can be explored but we find that
simple averaging works well. This proposed random resampling is an approach to
effectively and efficiently increase the amount of available training data. In computer
vision, translational shifting and mirroring of 2D image patches is often used for this
purpose [11]. By averaging the N predictions on random 2D views as in Eq.1, the
robustness and stability of CNN can be further increased as shown in Sect. 3.

2.3 CNN Architecture

A CNN derives its name from the convolutional filters that it applies to the input
images. Typically, several layers of convolutional filters are cascaded to compute
image features. Other layers of a CNN often perform max-pooling operations or
consist of fully-connected neural networks.OurCNNendswith afinal 2-way softmax
layer for ‘true’ and ‘false’ classification (see Fig. 3). The fully connected layers are
typically constrained in order to avoid overfitting. We use “DropConnect” for this
purpose. “DropConnect” is a method that behaves as a regularizer when training
the CNN [22]. It can be seen as a variation of the earlier developed “DropOut”
method [23]. GPU acceleration allows efficient training of the CNN.We use an open-
source implementation by Krizhevsky et al. [11] with the DropConnect extension
by Wan et al. [22]. Further execution speed-up for both training and evaluation is
achieved by using rectified linear units as the neuron model instead of the traditional
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Fig. 3 The proposed convolution neural network consists of two convolutional layers, max-pooling
layers, locally fully-connected layers, a DropConnect layer, and a final 2-way softmax layer for
classification. The number of filters, connections for each layer, and the first layer of learned
convolutional kernels are shown

neuron model f (x) = tanh(x) or f (x) = (1 + e−x )−1 [11]. At the moment, it
is still difficult to design a theoretically optimal CNN architecture for a particular
image classification task [12].We evaluate several CNNswith slightly different layer
architectures (independently to the later evaluations) in order to find a suitable CNN
architecture for our classification task, using a small number of CT cases within
the training data subset. We find relatively stable behavior over model variations
and hence fix the CNN architecture for subsequent experiments performed in this
study. Recently, approaches have been proposed that aim to visualize the feature
activations of CNNs in order to allow better CNN design [12]. Potentially, these
approaches allow better understanding of how CNNs behave at a given task. This
could lead to improved CNN architecture design compared to the heuristic approach
applied in this work.

3 Evaluation and Results on Sclerotic Metastases

In our evaluation, radiologists label a total of 532 sclerotic metastases (‘positives’) in
CT images of 49 patients (14 female, 35 male patients; mean age, 57.0 years; range,
12–77 years). A lesion is only labeled if its volume is greater than 300mm3. The
CT scans have reconstruction slice thicknesses ranging between 2.5mm and 5mm.
Furthermore, we include 10 control cases (4 female, 6 male patients; mean age, 55.2
years; range, 1970 years) without any spinal lesions.

Any false-positive detections from the candidate generation step on these patients
are used as ‘negative’ candidate examples for training the CNN. All patients were
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randomly split into five sets at the patient level in order to allow a 5-fold cross-
validation.We adjust the sample rates for positive and negative image patches in order
to generate a balanced data set for training (50% positives and 50% negatives). This
proves to be beneficial for training the CNNs—no balancing was done during testing.
Each three-channel image patch was centered at the CADe coordinate with 32× 32
pixels in resolution. All patches were sampled at 4 scales of s = [30, 35, 40, 45]mm
ROI edge length in physical image space, after iso-metric resampling of the CT
image (see Fig. 2). We used a bone window level of [−250, 1250 HU]. Furthermore,
all ROIs were randomly translated (up to 3mm) and rotated at each scale (Ns = 4,
Nt = 5 and Nr = 5), resulting in N = 100 image patches per ROI. Training each
CNN model took 12–15 hours on a NVIDIA GeForce GTX TITAN, while running
100 2D image patches at each ROI for classification of one CT volume only took
circa 30s. Image patch extraction from one CT volume took around 2min on each
scale.

We now apply the trained CNN to classify image patches from the test data sets.
Figures4 and 5 show typical classification probabilities on random subsets of positive
and negative ROIs in the test case. Averaging the N predictions at each sclerotic
metastases candidate allows us to compute a per-candidate probability p(x), as in
Eq.1. Varying thresholds on probability p(x) are used to compute Free-Response
Receiver Operating Characteristic (FROC) curves. The FROC curves are compared
in Fig. 6 for varying amounts of N . It can be seen that the classification performance
saturates quicklywith increasing N . Thismeans the run-time efficiency of our second

Fig. 4 Test probabilities of the CNN for being sclerotic metastases on ‘true’ sclerotic metastases
candidate examples (close to 1.0 is good)
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Fig. 5 Test probabilities of the CNN for being sclerotic metastases on ‘false’ sclerotic metastases
candidate examples (close to 0.0 is good)

Fig. 6 Free-Response Receiver Operating Characteristic (FROC) curves for a 5-fold cross-
validation using a varying number of N random CNN observers in 59 patients (49 with sclerotic
metastases and 10 normal controls). AUC values are computed for corresponding ROC curves

layer detection could be further improved without losing noticeable performance by
decreasing N . The proposed method reduces the number of FP/vol. of the existing
sclerotic metastases CADe systems [9] from 4 to 1.2, 7 to 3, and 12 to 9.5 when
comparing a sensitivity rates of 60, 70, and 80% respectively in cross-validation
testing (at N = 100). This has the potential to greatly reduce radiologists’ clinical
workload when employing the proposed CADe system as a second reader. The Area-
Under-the-Curve (AUC) shows a value of 0.834 at this number of N .
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Fig. 7 Comparison of Free-Response Receiver Operating Characteristic (FROC) curves of the first
layer bone lesion candidate generation (squares) and the second layer classification using N = 100
CNN observers (lines) for both training and testing cases. Result are computed using a 5-fold
cross-validation in 59 patients (49 with sclerotic metastases and 10 normal controls)

Figure7 compares the FROCs from the initial (first layer) CADe system [9] and
illustrates the progression towards the proposed coarse-to-fine two tiered method in
both training and testing datasets. This clearly demonstrates a marked improvement
in performance.

4 Discussion and Conclusions

This work demonstrates that deepCNNs can be generalized to tasks inmedical image
analysis, such as effective FP reduction in Computer-aided Detection (CADe) sys-
tems. This is especially true, since themain drawback of current CADe developments
often generates too many false positive detections at clinically relevant sensitivity
levels. We show that a random set of CNN classifications can be used to reduce
FPs when operating an existing method for CADe of sclerotic metastases (bone
lesions) at a particular point its FROC curve. Different scales, random translations,
and rotations around each of the CADe detections can be utilized to increase the
CNN’s classification performance. The FROC curves show a marked reduction of
the FP/vol. rate at clinically useful levels of sensitivity. These results improve upon
the state-of-the-art.

The average of CNN classification probabilities was chosen in this work for
simplicity (see Eq.1), but this approach shows to be very efficient and effective.
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Future work will investigate more sophisticated methods of label fusion from the
CNNs. A similar 2.5D generalization of CNNs also shows promise in the detection
of lymph nodes in CT images (see [14]). In this work, we decide against a 2.5D or
full 3D approach due to the relative large slice thicknesses of ∼5mm in the used
CT data. This prevents reformatting the data in sufficient detail in any other than the
axial plane. However, the improvements achieved in this study and other methods
utilizing CNNs in medical image computing show promise for a variety of appli-
cations in computer-aided detection of 2D and 3D medical images. Our mainly 2D
approach may adapt and generalize particularly well to the current trend of low-dose,
low-resolution (slice thickness) CT imaging protocols, compared to direct 3D based
methods that require volumetric medical images of higher resolution.
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Stacked Auto-encoders for Classification
of 3D Spine Models in Adolescent
Idiopathic Scoliosis

William E. Thong, Hubert Labelle, Jesse Shen, Stefan Parent
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Abstract Current classification systems for adolescent idiopathic scoliosis lack
information on how the spine is deformed in three dimensions (3D), which can
mislead further treatment recommendations. We propose an approach to address this
issue by a deep learning method for the classification of 3D spine reconstructions of
patients. A low-dimensional manifold representation of the spine models was learnt
by stacked auto-encoders. A K-Means++ algorithm using a probabilistic seeding
method clustered the low-dimensional codes to discover sub-groups in the studied
population. We evaluated the method with a case series analysis of 155 patients with
Lenke Type-1 thoracic spinal deformations recruited at our institution. The clustering
algorithm proposed 5 sub-groups from the thoracic population, yielding statistically
significant differences in clinical geometric indices between all clusters. These results
demonstrate the presence of 3D variability within a pre-defined 2D group of spinal
deformities.
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1 Introduction

Adolescent idiopathic scoliosis (AIS) refers to a complex deformation in three
dimensions (3D) of the spine. Classification of the rich and complex variability of
spinal deformities is critical for comparisons between treatments and for long-term
patient follow-ups. AIS characterization and treatment recommendations currently
rely on the Lenke classification system [10] because of its simplicity and its high
inter- and intra-observer reliability comparedwith previous classification systems [8].
However, these schemes are restricted to a two-dimensional (2D) assessment of sco-
liosis from radiographs of the spine in the coronal and sagittal planes. Misinter-
pretations could arise because two different scoliosis deformities may have similar
2D parameters. Therefore, improvements in the scoliosis classification system are
necessary to ensure a better understanding and description of the curve morphology.

Computational methods open up new paths to go beyond the Lenke classifica-
tion. Recent studies seek new groups in the population of AIS using cluster analysis
[4, 5, 15, 17] with ISOData, K-Means or fuzzy C-Means algorithms. Their common
aspect is founded upon the clustering of expert-based features, which are extracted
from 3D spine reconstructions (Cobb angles, kyphosis and planes of maximal defor-
mity). This methodology stems from the fact that clustering algorithms are very
sensitive to the curse of dimensionality. Still, these parameters might not be enough
to tap all the rich and complex variability in the data. Computational methods should
be able to capture the intrinsic dimensionality that explains as much as possible
the highly dimensional data into a manifold of much lower dimensionality [2, 11].
Hence, another paradigm for spine classification is to let the algorithm learn its own
features to discriminate between different pathological groups. This implies directly
analyzing the 3D spine models instead of expert-based features as it has been exper-
imented previously. To our knowledge, only one study tried to learn a manifold from
the 3D spine model [7] using Local Linear Embeddings (LLE). In this study, we
propose to use stacked auto-encoders—a deep learning algorithm—to reduce the
high-dimensionality of 3D spine models in order to identify particular classes within
Lenke Type-1 curves. This algorithm was able to outperform principal component
analysis (PCA) and LLE [6, 11].

Recent breakthroughs in computer vision and speech processing using deep learn-
ing algorithms suggest that artificial neural networks might be better suited to learn
representations of highly non-linear data [2]. Training a deep neural network has been
a challenging task in many applications. Nowadays, this issue is tackled by lever-
aging more computation power (i.e. parallelizing tasks), more data and by a better
initialization of the multilayer neural network [6]. Deep neural networks promote
the learning of more abstract representations that result in improved generalization.
Network depth actually helps to become invariant to most local changes in the data
and to disentangle the main factor of variations in the data [2].

We propose a computational method for the classification of highly dimensional
3D spine models obtained from a group of patients with AIS. The core of the
methodology, detailed in Sect. 2, builds a low-dimensional representation of the 3D
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spine model based on stacked auto-encoders that capture the main variabilities in the
shape of the spine. The low-dimensional codes learnt by the stacked auto-encoders
are then clustered using the K-Means++ algorithm. Finally, a statistical analysis
assesses the relevance of the clusters identified by the framework based on clinical
geometrical indices of the spine. Experiments conducted with this methodology are
shown and discussed in Sect. 3, while Sect. 4 concludes this paper.

2 Methods

The proposed method consists of four main steps: (1) reconstruction of a 3D spine
model from biplanar X-rays for each patient; (2) dimensionality reduction of each
high-dimensional model to a low-dimensional space; (3) clustering of the low-
dimensional space; (4) analysis of the clusters obtained with the clinical data.

2.1 3D Spine Reconstruction

A 3D model for each patient’s spine was generated from anatomical landmarks
with a semi-supervised statistical image-based technique built in a custom software
in C++ [13]. Seventeen 3D anatomical landmarks were extracted per vertebra (12
thoracic, 5 lumbar): center, left, right, anterior and posterior of superior and inferior
vertebral endplates (10 landmarks); left and right transverse process (2 landmarks);
spinous process (1 landmark); and tips of both pedicles (4 landmarks). All 3D spine
models were normalized with regards to their height and rigidly translated to a
common referential at theL5vertebra.Hence, eachobservation contains 867 features,
which corresponds to the concatenation of the 3D coordinates of all the landmarks
into an observation vector.

2.2 Stacked Auto-encoders for Dimensionality Reduction

An auto-encoder is a neural network that learns a hidden representation to reconstruct
its input. Consider a one hidden layer auto-encoder network. First, the input vector
x of dimension d, representing the 3D coordinates of a spine model, is mapped by
an encoder function f into the hidden layer h, often called a code layer in the case
of auto-encoders:

h = f (x) = s(−W(1)x + b(1)) (1)

where W(1) is the encoding weight matrix, b(1) the bias vector and s(·) the activation
function. Note that this one hidden layer auto-encoder network corresponds to a
principal component analysis if the activation function is linear. Then, the code
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representation is mapped back by a decoder function g into a reconstruction z:

z = g( f (x)) = s(−W(2)h + b(2)) (2)

where W(2) is the decoding weight matrix. Tying the weights (W(2) = W(1)T
)

has several advantages. It acts as a regularizer by preventing tiny gradients and
it reduces the number of parameters to optimize [2]. Finally, the parameters θ =
{W(1), b(1), b(2)} are optimized in order tominimize the squared reconstruction error:

L2(x, z) = ‖x − z‖2 . (3)

In the case of dimensionality reduction, the code layer h has a smaller dimension
than the input x. One major drawback comes from the gradient descent algorithm
for the training procedure that is very sensitive to the initial weights. If they are
far from a good solution, training a deep non-linear auto-encoder network is very
hard [6]. A pre-training algorithm is thus required to learnmore robust features before
fine-tuning the whole model.

The idea for initialization is to build a model that reconstructs the input based
on a corrupted version of itself. This can either be done by Restricted Boltzmann
Machines (RBMs) [6] or denoising auto-encoders [18] (used in this study). The
denoising auto-encoder is considered as a stochastic version of the auto-encoder [18].
The difference lies in the stochastic corruption process that sets randomly some of
the inputs to zero. This corrupted version x̃ of the input x is obtained by a stochastic
mapping x̃ ∼ qD(x̃|x)with a proportion of corruption v. The denoising auto-encoder
is then trained to reconstruct the uncorrupted version of the input from the corrupted
version, which means that the loss function in Eq.3 remains the same. Therefore,
the learning process tries to cancel the stochastic corruption process by capturing the
statistical dependencies between the inputs [2]. Once all the layers are pre-trained, the
auto-encoder proceeds to a fine-tuning of the parameters θ (i.e. without the corruption
process).

2.3 K-Means++ Clustering Algorithm

Once the fine-tuning of the stacked auto-encoder has learnt the parameters θ , low-
dimensional codes from the code layer can be extracted for each patient’s spine.
Clusters in the codes were obtained using the K-Means++ algorithm [1], which is a
variant of the traditional K-Means clustering algorithm but with a selective seeding
process. First, a cluster centroid is initialized among a random code layer h of the
dataset χ following a uniform distribution. Afterwards, a probability is assigned to
the rest of the observations for choosing the next centroid:
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p(h) = D(h)2∑
h∈χ D(h)2

(4)

where D(h)2 corresponds to the shortest distance from a point h to its closest cluster
centroid. After the initialization of the cluster centroids, the K-Means++ algorithm
proceeds to the regular Lloyd’s optimization method.

The selection of the right number of clusters k is based on the validity ratio [14],
which minimizes the intra-cluster distance and maximizes the inter-cluster distance.
The ratio is defined as validity = intra/inter. The intra-cluster distance is the average
of all the distances between a point and its cluster centroid:

intra = 1

N

k∑

i=1

∑

x∈Ci

‖h − ci‖2. (5)

where N is the number of observations in χ and ci the centroid of cluster i . The
inter-cluster distance is the minimum distance between cluster centroids.

inter = min(‖ci − c j‖2) (6)

where i = 1, 2, . . . , k − 1 and j = i + 1, . . . , k.

2.4 Clinical Data Analysis

Once clusters were created from the low-dimensional representation of the dataset,
we analyzed the clustered data points with 3D geometric indices in the main thoracic
(MT) and thoracolumbar/lumbar (TLL) regions for each patient’s spine. One-way
ANOVA tested differences between the cluster groups with a significance level α =
0.05. The p-values were adjusted with the Bonferroni correction. For all cases, the
following 3D spinal indices were computed: the orientation of the plane of maximum
curvature (PMC) in each regional curve, which corresponds to the plane orientation
where the projected Cobb angle is maximal; the kyphotic angle, measured between
T2 and T12 on the sagittal plane; the lumbar lordosis angle, defined between L1
and S1 on the sagittal plane; the Cobb angles in the MT and TLL segments; and the
axial orientation of the apical vertebra in the MT region, measured by the Stokes
method [16].
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3 Clinical Experiments

3.1 Clinical Data

Acohort of 155AISpatientswas recruited for this preliminary study at our institution.
A total of 277 reconstructions of the spine was obtained in 3D. From this group, 60
patients had repeat measurements from multiple clinic visits (mean = 3 visits). The
mean thoracic Cobb angle was 53.2 ± 18.3◦ (range = 11.2–100.2◦). All patients
were diagnosed with a right thoracic deformation and classified as Lenke Type-1
deformity. A lumbar spine modifier (A, B, C) was also assigned to each observation,
using the biplanar X-Ray scans available for each patient. The dataset included 277
observations divided in 204 Lenke Type-1A, 43 Lenke Type-1B and 30 Lenke Type-
1C deformities. The training set included 235 observations, while the validation set
included 42 observations (15% of the whole dataset). Observations were randomly
assigned in each set.

3.2 Hyper-Parameters of the Stacked Auto-Encoders

The neural network hyper-parameters were chosen by an exhaustive grid search. The
architecture yielding to the lowest validation mean squared error (MSE) is described
in Fig. 1. We used an encoder with layers of size 867-900-400-200-50 and a decoder
with tied weights to map the high-dimensional patient’s spine models into low-

Fig. 1 Illustration of the
stacked auto-encoders
architecture to learn the 3D
spine model by minimizing
the loss function. The middle
layer represents a
low-dimensional
representation of the data,
called the code layer. An
optimal layer architecture of
867-900-400-200-50 was
found after a coarse grid
search of the
hyper-parameters
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Fig. 2 Evolution of themean squared error (MSE)with respect to the number of epochs to determine
the optimal model described in Fig. 1

dimensional codes. All units in the network were activated by a sigmoidal function
s(a) = 1/(1 + e−a), except for the 50 units in the code layer that remain linear
s(a) = a.

3.3 Training and Testing the Stacked Auto-encoders

Auto-encoder layers were pre-trained and fine-tuned with the stochastic gradient
descent method using a GPU implementation based on the Theano library [3]. Pre-
training had a proportion of corruption for the stochastic mapping in each hidden
layer of v = {0.15, 0.20, 0.25, 0.30} and a learning rate of ε0 = 0.01. Fine-tuning
ran for 5,000 epochs and had a learning rate schedule with ε0 = 0.05 that annihilates
linearly after 1,000 epochs. Figure2 shows the learning curve of the stacked auto-
encoder. The optimal parameters θ for the model in Fig. 1 were found at the end
of training with a normalized training MSE of 0.0127, and a normalized validation
MSE of 0.0186, which corresponds to 4.79 and 6.46mm2 respectively on the original
scale. The learning curve describes several flat regions before stabilizing after 3,500
epochs.

3.4 Clustering the Codes

The K-Means++ algorithm was done using the scikit-learn library [12]. For each
number of clusters k (2 through 9), the algorithm ran for 100 times with different
centroid seeds in order to keep the best clustering in terms of inertia. Figure3 depicts
the validity ratio against the number of clusters. The validity ratio suggests that
the optimal number of clusters should be 4 or 5. However, subsequent analysis
illustrated in Table1 indicates that 5 clusters is the right number of clusters for this
dataset because all the clinical indices are statistically significant (α = 0.05) given
that the other indices are in the model. Figure4 presents the visualization of the five
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Fig. 3 Validity ratio with respect to the number of clusters, to determine the optimal number of
clusters

clusters using a PCA to project the codes in 3D and 2D views. However, it should be
mentioned that the clustering was performed on the codes of dimension 50. Figure5
shows the frontal, lateral and daVinci representations of the centroid of each cluster.

3.5 Clinical Significance

Based on the five identified clusters, cluster 1 is composed of 50 Lenke Type-1A, 12
Type-1B and 2 Type-1C, representing hyper-kyphotic, hyper-lordotic profiles, with
high curvatures in the sagittal plane. No sagittal rotation was detected in cluster 1.
Cluster 2 is composed of 29 Lenke Type-1A, 7 Type-1B and 0 Type-1C, representing
a high axial rotation of the apical vertebra, with the strongest thoracic deformation
of all clusters. Moreover, those two clusters have no lumbar derotation.

Clusters 3, 4 and 5 represent the clusters with higher lumbar deformities. Cluster
3 includes 34 Lenke Type-1A, 17 Type-1B and 20 Type-1C, with a minimal thoracic
deformation and the highest angulation ofTLLplane of all clusters. Cluster 4 includes
23 observations, with 21 Lenke Type-1A, 2 Type-1B and 0 Type-1C. Cluster 4 is
characterized by a hypo-kyphotic profile (mean = 7◦) and the highest angulation of
theMT plane of all clusters. Finally, cluster 5 includes 70 Lenke Type-1A, 5 Type-1B
and 8Type-1C,with a low kyphosis, andmedium range thoracic deformations.While
this last cluster has a higher orientation of the thoracolumbar curve, its magnitude is
not significant.

Surgical strategies based on current 2D classification systems are suboptimal since
they do not capture the intrinsic 3D representation of the deformation. Lenke Type-1
classification currently leads to selective thoracic arthrodesis. This very restrictive
surgery treatment comes from the hard thresholds on the geometric parameters. A
small change in Cobb angle could lead to two different classifications and to two
different fusion recommendations subsequently [9]. Therefore, identifying groups
based on their true 3D representation will help to better adjust surgery choices
such as levels of fusion, biomechanical forces to apply or surgical instrumentations.
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(a) (b)

Three-dimensional view Two-dimensional view

Fig. 4 Visualization of the five clusters found by the K-Means++ algorithm on low-dimensional
points, by projecting the 50-dimensional codes into 3 (a) and 2 (b) principal components (PC) using
PCA

In this study, the learning framework provided an optimal number of 5 clusters based
on the input population. It is not possible at this stage to infer that Lenke Type-1
should be divided in 5 groups. However, this study confirms that within a defined
2D class currently used for surgical planning, there exists a number of sub-groups
with different 3D signatures that are statistically significant. Therefore, each sub-
group would lead to different surgical strategies. Previous studies have indicated
that within Lenke Type-1 [5, 7, 15], there indeed exists 3D variability in terms of
geometric parameters that could be divided in 4–6 sub-groups.

4 Conclusion

In this paper, we presented an automated classification method using a deep learning
technique, namelywith stacked auto-encoders, to discover sub-groupswithin a cohort
of thoracic deformations. The code layer of the auto-encoder learns a distributed
representation in low-dimension that aims to capture the main factors of variation in
the training dataset. However, different examples from the distribution of the training
dataset may potentially yield to high reconstruction errors [2]. Therefore, having a
large and representative training dataset of AIS is critical. This will also prevent the
model from overfitting.

The current study evaluated the 3D sub-classification of Lenke Type-1 scoli-
otic curves, suggesting that shape variability is present within an existing 2D group
used in clinical practice. However, these types of approaches include complex syn-
thetization tasks, which require sizeable datasets to improve the data representation
within the code layer. Therefore, a multicentric dataset may help to significantly
increase the number of cases fromvarious sites andobtain amore reproduciblemodel.
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Fig. 5 Frontal, lateral and top view profiles of cluster centers, with daVinci representations depict-
ing planes of maximal deformities. a Centroid of cluster 1. b Centroid of cluster 2. c Centroid of
cluster 3. d Centroid of cluster 4. e Centroid of cluster 5
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Furthermore, the development of computationalmethodswill ultimately lead tomore
reliable classification paradigms, helping to identify possible cases which might
progress with time. Future work will include additional Lenke types, such as double
major and lumbar deformations. Otherworkswill propose to use longitudinal data for
surgical treatment planning, whereas each observation is considered independently
in the current framework. Finally, a reliability study will be undertaken to evaluate
the relevance of classification systems.
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An Active Optical Flow Model for Dose
Prediction in Spinal SBRT Plans

Jianfei Liu, Q. Jackie Wu, Fang-Fang Yin, John P. Kirkpatrick,
Alvin Cabrera and Yaorong Ge

Abstract Accurate dose predication is critical to spinal stereotactic body radiation
therapy (SBRT). It enables radiation oncologists and planners to design treatment
plans that maximally protect spinal cord while effectively controlling surrounding
tumors. Spinal cord dose distribution is primarily affected by the shapes of tumor
boundaries near the organ. In this work, we estimate such boundary effects and
predict dose distribution by exploring an active optical flow model (AOFM). To
establish AOFM, we collect a sequence of dose sub-images and tumor contours near
spinal cords from a database of clinically accepted spine SBRT plans. The data are
classified into five groups according to the tumor location in relation to the spinal
cords. In each group, we randomly choose a dose sub-image as the reference and
register all other dose images to the reference using an optical flowmethod. AOFM is
then constructed by importing optical flow vectors and dose values into the principal
component analysis. To develop the predictivemodel for a group, we also build active
shapemodel (ASM) of tumor contours near the spinal cords. The correlation between
ASM and AOFM is estimated via the multiple regression model. When predicting
dose distribution of a new case, the group was first determined based on the case’s
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tumor contour. Then the corresponding model for the group is used to map from the
ASM space to the AOFM space. Finally, the parameters in the AOFM space are used
to estimate dose distribution. This method was validated on 30 SBRT plans. Analysis
of dose-volume histograms revealed that at the important 2% volume mark, the dose
difference between prediction and clinical plan is less than 4%. These results suggest
that theAOFM-based approach is a promising tool for predicting accurate spinal cord
dose in clinical practice.

1 Introduction

Spinal tumors are neoplasm located at spinal cords, and most of them are metastases
from primary cancers elsewhere [10]. The compression of spinal tumors causes
patients to undergo severe pain, and radiation therapy is a primary procedure for
pain relief and tumor removal [5]. In contrast to radiation therapy on lung [12] and
bladder [11] in which parts of organ can be scarified to ensure tumors receiving
maximum dosage, spinal cords are a sensitive serial organ that must be protected
because they control the nerve system. Due to this challenge, knowledge-guided
dose prediction on spinal cords is seldom addressed.

Dose levels at spinal cords are mainly caused by the tumor enclosure around the
cord in Fig. 1. Dose values within the yellow curve in Fig. 1d are higher than in Fig. 1c
because the tumor surrounds the cordmore in Fig. 1b in comparisonwith Fig. 1a. One
way to predict dose is therefore to estimate correlation between dose distributions
and tumor boundary shapes. Statistical shape analysis can serve this purpose, and
it has been extensively studied in the fields of computer vision and medical image
analysis [4]. Cootes [2] pioneered this research by applying the principal component
analysis (PCA) to a set of landmarks in face images. Active shape model (ASM) was
constructed to guide face recognition. Later on, Cootes embedded intensity values
and landmark positions into the PCA, which yielded the active appearance model
(AAM) [3]. However, both ASM andAAM require extensive labor work tomanually

Fig. 1 The effects of tumor enclosure on dose distributions. a, b Spinal tumors (marked by red
curves) and cords (yellow curves), and c, d corresponding dose distributions, where blue to red
means small to large dose values (Color figure online)
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select a set of points from each sample image. Rueckert [9] directly imported control
points of image deformation fields into the PCA analysis to avoid manual labeling,
and the resulting statisticalmodel showed great accuracy inmeasuring shape variance
of a brain image database. Such idea was also extended to 3D irregular heart models
to estimate cardiac motion [6]. This method may not directly apply to spinal cord
dose prediction because it focused on the statistical description of shape variance
to assist organ segmentation and registration. Moreover, ASM established on a set
of sparse points cannot meet the accuracy requirements of dose prediction in small
spinal cords.

In this paper, we present an active optical flow model (AOFM) to predict dose
in spinal cords by (1) applying optical flow to measure the variations at every point
of a dose image, (2) importing dose values and optical flow vectors into the PCA
analysis, (3) establishing ASM of the tumor contours, and (4) utilizing multiple
regression method to compute correlation between AOFM and ASM.

2 Methods

This section elaborates on our framework with respect to data preprocessing, active
optical flowmodel, correlation computation, and dose prediction. In this framework,
we treat dose distribution as dose images with intensity at image point representing
dose value.

2.1 Data Preprocessing

This step aims to extract a sequence of dose sub-images and tumor contours adjacent
to spinal cords from SBRT plans in Fig. 2. AOFM is constructed in the sub-images
because dose at spinal cords are only affected by local tumor boundaries.

The size of dose sub-image is 41 × 41 pixels indicated as a green square in
Fig. 2a (approximately 41mm if intra-spacing is 1.0mm in the CT images) because
the diameter of spinal cord is 10–15mm and tumors have minor effect on spinal
cord if their distance is larger than 10mm. Thus, 41 pixels are sufficient to include
all types of tumors located at different sides of the cord while still preserving the
accuracy ofmeasuring the boundary effects on dose prediction.Wenext extract tumor
contours that are adjacent to spinal cords in Fig. 2c because tumors and cord contours
are available in the SBRT plan. Finally, all dose sub-images and tumor contours are
classified into five groups in terms of spatial relationships between tumors and spinal
cords in Fig. 3.
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Fig. 2 Extracting dose sub-images and tumor contours to buildAOFMandASM. a Green rectangle
at the cord center illustrates the spatial range of the sub-image, b dose sub-image, and c the red
curve representing the tumor contours near the spinal cord (Color figure online)

Fig. 3 Five types of spatial relationships between spinal cords and tumors, where dose images are
overlaid on the CT images

2.2 Active Optical Flow Model (AOFM)

Dose sub-images are used to compute AOFM, which is essentially a statistical model
to describe the dose distributions within a group. Estimating AOFM involves optical
flow computation and principal component analysis.

In each group, we randomly choose a dose image Dr (x, y) as the reference image
(Fig. 4a). Rigid image registration [7] is performed to remove global motion between
the reference image and the current dose image (Fig. 4b), and generate the registered

Fig. 4 Process of optical flow computation. a Reference dose image, b current dose image,
c transformed current dose image after rigid registration, and d transformed image after optical
flow computation
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image Dg(x, y) (Fig. 4c). Dg(x, y) is represented in the reference image coordinate,
and optical flow computation thus becomesmeaningful tomeasure local deformation
between the registered image and the reference image. Let u = (ux , uy) be the
optical flow vector at a point p = (x, y) in the sub-image domain Ω . The optical
flow computation is formulated as a global energy functional within a variational
framework.

E(u) =
∫

Ω

(
Ψ (|Dg(p + u) − Dr (p)|2) + αΨ (|∇Dg(p + u) − ∇Dr (p)|2)

+ βΨ (|∇ux |2 + |∇uy |2)
)

dp (1)

where Ψ (s2) = √
s2 + 0.0012 is a modified L1 norm that allows for handling out-

liers. α and β are constant values to balance different terms. Minimizing Eq.1 gener-
ates an optical flow field [1]. Figure4d gives the result by using optical flow vectors
to transform Fig. 4c.

Next,we performPCAanalysis on M optical flowfields to establishAOFM,where
M is the number of sub-images in the current group and each sub-image defines a
feature vector x = (u1

x , . . . , uN
x , u1

y, . . . , uN
y , d1, . . . , d N ). N is the number of pixels

in Ω and di is the dose value at i th pixel. We can approximate any feature vector x
using

x = x̄ + � f b f (2)

Here, x̄ is the average feature vector, � f is formed by the eigenvectors of the covari-
ance matrix, and b f is the vector of principal component scores. Figure5a shows the
variance of AOFM corresponding to the group in Fig. 3e by setting the first parameter
of b f to ±3

√
λ1, where λ1 ≥ · · · ≥ λN are eigenvalues of the covariance matrix.

Fig. 5 Instances of a active optical flow model and b active shape model. The center image of (a)
and (b) is the average model, and the left and right images are the first modes of variation equal to
−3

√
λ1 and 3

√
λ1, respectively
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Similarly, we can adapt ASM [2] to measure the shape variance of the tumor
contours in the current group.

y = ȳ + �sbs (3)

Each shape feature vector y includes tumor contour locations, cord contour locations,
and distance between tumor contours and spinal cords. Figure5b shows the resulting
ASM.We can observe that dose values in the cord (the center of the images) increase
in proportion to the extent of tumor enclosure on spinal cords.

2.3 Correlation Computation

This step quantitatively measures correlation between AOFM and ASM using the
multiple regressionmethod [8]. Principal component scores,b f andbs ofAOFMand
ASM are chosen for the estimation of correlation parameters since b f = (x− x̄) ·�T

f

and bs = (y − ȳ) · �T
s can normalize the feature vectors in two models. The first 11

components of b f and bs are selected to estimate correlation parameters r satisfying
b f = r ·bs , because these components are found through experimentation sufficient
to represent the characteristics of AOFM and ASM.

2.4 Dose Prediction

The final step is to predict dose in the new case. A sequence of image slices containing
both spinal cords and tumors are first determined. In each image slice, we extract
tumor contours and formulate a shape feature vector y. A group is then selected
by searching for the shortest distance between the current tumor contour and the
average contour in the group. The principal component score of the current contour
is computed as bs = (y − ȳ) · �T

s . The corresponding principal component score of
the AOFM is computed as b f = r · bs . The feature vector containing dose values
and optical flow vectors is derived as x = r · bs · � f + x̄. An initial dose shown in
Fig. 6a can be reconstructed by using x. However the initial dose is represented in the
reference image coordinate of the selected group, and we need to transform it into
the current image space. Such image transformation is estimated by using iterative
closest point algorithm [13] to match the tumor contours in the reference image (red
curve in Fig. 6a) and contours in the current image (red curve in Fig. 6c). Figure6b
gives the transformed result, and as shown, it is comparable with the actual clinical
plan in Fig. 6c. Finally, dose of the current case was predicted by iteratively applying
the mentioned strategy to all other image slices that contain tumor and spinal cord.
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Fig. 6 Process of dose prediction. a Initial dose in the reference image coordinate, b final dose in
the current patient image coordinate, and c clinical dose

3 Validation Datasets and Methods

Thirty clinically accepted spinal SBRT plans were evenly divided into training and
testing datasets (15 patients each) in this study. The anatomic distributions were
4 C-spine, 6 L-spine and 20 T-spine SBRT plans, with tumor size ranging in
13.24–982.8cm3 (mean ± std.: 116.68 ± 175.34cm3), and the affected cord vol-
ume range in 0.62–16.04cm3 (mean ± std.: 4.49±4.12cm3). The prescription dose

Fig. 7 DVH graphs of four cases, where green points represent D2 (Color figure online). Note that
DVH results are comparable in the first three cases (a-c), while there contain large errors in the low
dose region in (d). However, the dose values are still similar at 2 % volume
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range was 14.25–25Gy (meanstd.: 18 ± 3Gy) in 2–5 fractions. Dose-volume his-
togram (DVH) (Fig. 7) was chosen to evaluate the predicted dose in comparison with
the clinical dose, which was considered as the ground-truth. The DVH was plotted
with bin doses along the horizontal axis, and the column height of the bin represents
the volume of spinal cords receiving greater than or equal to that dose. We measured
the dose difference between the predicted and clinical dose at 2% volume in theDVH
(D2). This is a common strategy to evaluate the quality of SBRT radiation plans in
the clinical settings.

4 Experimental Results

Figure7 shows the DVH results on L-spine (Fig. 7a), C-spine (Fig. 7b), and T-spine
(Fig. 7c, d) SBRT plans in the testing dataset. One can find that the estimated DVH
(blue curve) and clinical DVH (red curve) are very similar except in the low dose
regions in Fig. 7d. In this case, the dose in the spinal cord is much lower than all
samples in the training dataset. However, the clinical and predicted dose at D2 (green
points) are still comparable. We compute this value in the entire testing dataset, and
the dose difference between prediction and clinical plan at D2 is 3.3 ± 3.5%.

In Fig. 8, we show four predicted dose corresponding to four plans in Fig. 7. In the
left column, tumors are located at the top of the spinal cord, and AOFM can predict
dose very well in comparison with the clinical dose. The second column illustrated
a tumor in the left side, and AOFM still predicted it reasonably well. Similar results
can be observed in the third column where tumors wrap around spinal cords from the
bottom. The fourth column gives an example in which our algorithm over-predicted
the dose values because the training dataset was considerably different from this

Fig. 8 Comparison of the predicted dose (top row) and clinical dose (bottom row). Each column
corresponding to a SBRT plan in Fig. 7. Spinal cords are represented as the yellow curves (Color
figure online)
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extreme case. Thus, in Fig. 7d, the predicted DVH is higher than the clinical DVH
in the low dose region. All these experimental results support our findings in Fig. 7.

5 Conclusion and Future Work

In thiswork,we developed an active optical flowmodel to represent dose distributions
and active shape model to measure the shape variance of tumor contours near the
spinal cords. We used multiple regression models to correlate parameters between
AOFM and ASM of a clinically accepted SBRT plan database to predict dose dis-
tributions in the new cases. The early experiments are very encouraging; predicting
dose with less than 4% difference from the clinically planned dose at 2% volume
in the Dose-volume histogram. Future work will include training and testing our
models on significantly larger datasets, fine tuning of model parameters, and further
exploration of higher order models for more robustness and better accuracy.
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Portable Optically Tracked Ultrasound
System for Scoliosis Measurement
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Abstract Monitoring spinal curvature in adolescent kyphoscoliosis requires regular
radiographic examinations; however, the applied ionizing radiation increases the risk
of cancer. Ultrasound imaging is favorable over X-ray because it does not emit ion-
izing radiation. It has been shown in the past that tracked ultrasound can be used
to localize vertebral transverse processes as landmarks along the spine to measure
curvature angles. Tests have been performed with spine phantoms, but scanning pro-
tocol, tracking system, data acquisition and processing time has not been considered
in human subjects yet. In this paper, a portable optically tracked ultrasound system
for scoliosis measurement is presented. It provides a simple way to acquire data in
the clinical environment with the aim of comparing results to current X-ray-based
measurement. The workflow of the procedure was tested on volunteers. The cus-
tomized open-source software is shared with the community as part of our effort to
make a clinically practical system.
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1 Introduction

1.1 Adolescent Idiopathic Scoliosis

The most frequent form of spinal deformities is adolescent idiopathic scoliosis.
Studies conducted in different countries found its prevalence between 1 and 5%,
therefore, it is considered a common disease in children [1–3]. The etiology of this
disease has not yet been fully discovered, however, genetic factors influence both
the incidence and the severity of scoliosis [4]. It is most commonly diagnosed in
early adolescence (9–12 years of age) and progresses until the spine reaches full
development, around the age of 18–20 years.

Symptoms of adolescent idiopathic scoliosis include lateral curvature of the spine
in straight standing position, kyphosis, and permanent vertebral rotation around the
axis of the spine. The severity of scoliosis is characterized by the angle of curvature
between vertebrae above and below the curvature (Cobb angle). Therapeutic proto-
cols are based on Cobb angle: (i) curvatures less than 20◦ require X-ray monitoring
every 3–6 months, depending on the rate of progression; (ii) scoliosis between 20◦–
40◦ degrees is treatedwith bracing; and (iii) scoliosis over 40◦, or if chest deformation
causes breathing difficulties, is treated surgically, permanently fusing the vertebrae
in a straight position. Scoliosis monitoring continues after surgical treatment as well
using regular spine imaging. About 10% of adolescent scoliosis cases progress to a
state when they require therapy.

Although screening children in the early adolescent age for scoliosiswould be nec-
essary for optimal treatment and optimal use of clinical resources, currently afford-
able screening methods are inaccurate [5]. Therefore, patients may be diagnosed
when scoliosis progressed in an advanced stage.

Once diagnosis is confirmed, it is important to frequently monitor all cases to
make sure progression is detected early and appropriate therapy is started. However,
frequent X-ray imaging in children can lead to increased risk of cancer. Girls who
undergo regular spine X-ray, have a nearly twofold risk of breast cancer as adults
[6, 7]. Another study found that repeated X-ray exams in childhood significantly
contribute to leukemia and prostate cancer [8]. Further studies may be needed to
establish accurate estimates of the risks of X-ray, but a safe scoliosis monitoring
method would improve the health of this young patient population.

1.2 Scoliosis Monitoring Techniques

Radiation-free scoliosis monitoring methods have been investigated in the past, but
none of them have been successful in replacing X-ray in the clinical practice. The
optimal method needs to be: free of ionizing radiation, accessible to the patient
population, and accurate for therapeutic decision making.
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Magnetic resonance imaging (MRI) is a safe and accurate alternative to X-ray.
OpenMRI machines permit scanning from a standing patient position, making these
images suitable for scoliosis angle measurement. Unfortunately, MRI is less accessi-
ble than X-ray due to its high cost and the patient has to stand motionless for several
minutes while the scanner captures the entire spinal column, which further limits its
use for routine monitoring in an adolescent population [9].

Inspection will yield visual signs of scoliosis on the back of the patient. Visual
signs of spinal curvatures have beenmeasured using computerized topographic scans
of the skin surface using laser scanners and stereo camera technology [10]. However,
surface scans are not informative enough to support therapeutic decisions [11].

Ultrasound does not have a large enough field of view to directly visualize spinal
curvatures. There have been attempts to use indirect ways of measuring spinal curva-
tures with ultrasound. A correlation between vertebral rotation and scoliosis angles
in untreated patients was discovered [12] but this correlation is unreliable and com-
pletely lost in patients receiving therapy [13].

One of the recently emerging imaging modalities is tracked ultrasound: a com-
bination of conventional ultrasound and position tracking technology. With tracked
ultrasound it is possible to create a 3D reconstruction from 2D ultrasound images.
Position trackingof the ultrasound transducer allows to display thewhole spine region
in 3D. Experimental results have confirmed that landmarks on reconstructed image
volumes could be used to monitor spine curvature angles [14, 15]. Tracked ultra-
sound appears to be the only alternative to X-ray that fulfills all three requirements:
safety, accessibility and accuracy.

A new method for scoliosis measurement has been developed previously, and
tested on phantommodels [16]. Tracked ultrasound (TUS) has been successfully used
in medical imaging and image-guided interventions. In particular, it has been tested
in spinal injection navigation [17] and vertebra localization for spine surgery [18].

1.3 Objectives

Our goal is to develop a clinically practical system for scoliosis monitoring. As part
of this translational effort we build upon of the proof of concept phantom system
proposed by [16] and present a portable TUS system based on a new ultrasound
machine and optical tracking. We streamline the workflow of the procedure so it
can be easily replicated by other researchers and operated without deep technical
background. The workflow is implemented as an open-source module of the 3D
Slicer1 application, and can be conveniently installed from the 3D Slicer extension
manager (app store). We evaluated the usability of the developed TUS system.

1 www.slicer.org.

www.slicer.org
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Fig. 1 Schematics of the TUS system (left panel), and the prototype system in use (right panel)

2 Materials and Methods

2.1 System Design

The TUS system has three main components. An optical tracker (Micron Tracker,
Claron Technologies Inc., Toronto, Ontario, Canada), a portable ultrasound scan-
ner with USB connection (General Purpose 99–5914 Probe, Interson Corporation,
Pleasanton, CA, USA), and a laptop computer (Fig. 1).

Contrary to [16] we use an optical tracker instead of an electromagnetic tracker.
Optical trackers can use wireless markers, are generally more accurate and are not
affected by metallic or electronic objects in the environment. Sensors used as ref-
erence markers are made of paper, which is very cheap and also makes feasible the
tracking of multiple reference markers. This can be used for patient motion detection
and to be more robust to markers occlusions.

Hardware interfaces are implemented in the PLUS software2 [19]. PLUS imple-
ments an abstraction layer over tracker and imaging devices, and provides calibration
and synchronization methods for tracked ultrasound. It transmits tracked images to
3D Slicer through the OpenIGTLink protocol [20].

The interface for the portable Interson ultrasound probe was implemented in
PLUS. Nevertheless, the system can be used with any of the ultrasoundmachines and
trackers supported by PLUS, which makes reproducibility of the system convenient.

2.2 System Setup

The hardware described in previous section was integrated using the PLUS library.
Configuration files to connect different acquisition systems are provided in PLUS
website. In particular, sample configuration files used to connect the Interson Probe
and the Micron Tracker can be found in the PLUS website.

2 www.plustoolkit.org.

www.plustoolkit.org
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As with any TUS system, it requires a calibrated probe. If US imaging parameters
are not changed, the calibration can be done once and saved in the configuration file.
We found that 10cm depth is adequate for this application.

When the patient comes in, at least one reference marker is attached to his back.
This reference marker is used because the patient may move during the acquisition.
The assumption is that the relative position between the transverse processes and the
reference marker is the same during the whole scanning.

The tracker should be facing a wall where a reference marker must be attached.
During the acquisition, the patient will be asked to place in front of the wall. The
reason why a marker is attached to the wall is to be able to project the transverse
processes positions to the wall. This makes the angle measurements compatible with
the traditional procedure done on frontal X-ray radiographies.

2.3 Slicelet Implementation for Spinal Curvature
Measurement

Wedesigned and implemented a customworkflowand user interface, called a slicelet,
based on the 3D Slicer application platform and its SlicerIGT extension.3 Slicelets
are custom user interfaces programmed for the 3D Slicer application that typically
support a single clinical workflow without the complexity of the full 3D Slicer user
interface. Our slicelet helps in the localization of vertebral transverse processes as
landmarks along the spine to measure curvature angles. We build upon [16] and
added new features and interfaces to streamline the procedure, reducing the lengthy
analysis time.

The slicelet currently consists of the steps depicted in Fig. 2: communication
with acquisition devices, tracked ultrasound snapshots and continuous tracked ultra-
sound video acquisition, localization of vertebral transverse processes in the acquired
images and computation of angles between vertebrae.

2.3.1 Communication with Acquisition Devices

Images and tracker positions are provided by the PLUS server. Once the PLUS server
is running, the status of the communication can be seen in the slicelet as shown in
Fig. 3. A tool viewer, with a convenient color code, showsmarkers and tools visibility.
This tool is very useful when working with optical trackers.

At this point of the procedure, it is important to check the working volume and
also to make sure that the markers and the probe are visible in the region of interest.
The wall reference marker does not need to be visible during the acquisition, but it is
assumed that the relative position between the tracker and the wall does not change
during patient scanning.

3 www.slicerigt.org.

www.slicerigt.org
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Fig. 2 Workflow of the slicelet

Fig. 3 The tool viewer shows the visibility of the markers. The spatial position of the US probe
(Probe), three references markers (R1, R2 and R3) attached to the patient, a Stylus and a marker
attached to the wall that faces the patient are acquired by the software. Currently, only the Probe,
R1 and the Wall are used to compute the angle between the vertebrae but in the future we plan to
explore the use of the others to improve the workflow

2.3.2 Tracked US Images Acquisition

The scoliosis monitoring slicelet can be used to measure vertebral angles using
both: tracked ultrasound snapshots and video sequences. We decided to offer both
possibilities because transverse process localization is easier with snapshots, while
time occupied during patient scan is lower when video sequences are acquired. In
both cases, data can be saved to be inspected afterwards and can also be used to build
a database.

If the physician feels comfortable using snapshots, he must scan the patient until
he finds a transverse process and then a snapshot is acquired with the aid of the table
shown in Fig. 4. To reduce patient waiting time, a quick scan may be preferred. The
software offers the possibility to acquire sequences for the left and right side of the
spine. Those video sequences are stored, and used afterwards, to localize the images
where the transverse processes are visible.

Fig. 4 The table is used to acquire the Left Transverse Process (LTP) and Right Transverse Process
(RTP) images and to mark the LTP and RTP points
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Fig. 5 When the transverse processes points that define a vertebra line are already acquired the
corresponding row in the table is shown in green. When two lines are already defined is possible to
compute the angle between them (Color figure online)

2.3.3 Transverse Processes Localization

Regardless of themethod used to acquire the images, left and right transverse process
must be manually marked in the corresponding images. When the left and right
transverses processes of a vertebra are already located, the software automatically
computes and shows the segment determined by the two transverse processes in a 3D
Scene. When the transverse process points that define two vertebrae lines are already
acquired, it is possible to compute the angle between them as shown in Fig. 5.

3 Curvature Angle Computation

The segments that determine the angle between two vertebrae are projected to the
wall that faces the patient and then the angle between the projected segments is
computed. The segments are projected to the wall to simulate the X-ray projection
and to have an angle comparable with the Cobb angle.
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4 Results

The workflow described in previous section has been implemented; it provides all of
the required capabilities for scoliosis monitoring using tracked ultrasound snapshots
and video sequences.

As an example, Fig. 6 shows the tracked ultrasound snapshots acquired during a
procedure. Red points correspond to the transverse processes locations in the ultra-
sound images. The red lines connect two transverse process that belong to the same
vertebra.

The software can be installed from the extension manager of the latest version
of the 3D Slicer application. The extension manager is a plug-in mechanism that
allows researchers and developers to add extensions to the core 3D application.
Those extensions can be installed by the user after installing the main 3D application
without any programming required. The name of the slicelet is Scoliosis Monitoring
and is part of the Scoliosis extension. All software used in this study is open-source,
freely available for research or commercial use without any restrictions. This allows
incremental research, and focus work on unsolved problems like transverse process
automatic segmentation or spine volume reconstruction.

The whole procedure can be tested with various ultrasound and tracker systems
supported by PLUS. This includes the most popular tracking systems (Polaris,
Micron, Aurora, Ascension) and the Interson USB and Ultrasonix ultrasound
machine. Besides, Epiphan or Imaging Control frame grabber can be used to acquire
the images of any ultrasound machines with video output.

The workflow was implemented with the portable USB ultrasound probe, which
shows sufficient image quality for this application. The size and weight of the acqui-

Fig. 6 The vertebral lines are shown in the 3D scene. In this case the transverse processes corre-
sponding to L2 and T5 vertebrae were acquired
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sition systems that were used allows to pack and move the system, which will make
this a portable solution for scoliosis measurement in future clinical applications.

5 Discussion

Although some previous works have shown the feasibility of tracked ultrasound to
localize vertebral processes tomeasure spinal curvature, the problem is still open.We
believe we are sharing a valuable tool that can be very useful to show physicians the
potential of the methods and also to identify the main challenges we need to tackle
in order to bring scoliosis monitoring with ultrasound into routine clinical use.

The portable optically tracked ultrasound system can save ultrasound video
sequences along with tracking data. This enables the acquisition of experimental
studies from volunteers and patients looking forward to building the essential dataset
for the research in the field. Currently, vertebral transverse processes aremarkedman-
ually by the physician and the data is used to compute the curvature angle. This expert
segmentation can also be saved in the application and this valuable information will
enable testing future automatic segmentation algorithms.

The tool is integrated into the Slicer platform and the Slicer-IGT extension. This
Slicer platform can be freely used by the research community and it enables an
easy manipulation of the tracked ultrasound studies and the integration with other
modalities such as X-ray, CT or MRI. Future developments in the field can also
be rapidly integrated into Slicer as extensions (its plug-in mechanism) and shared
through the Slicer app-store.

Our next step in this ongoing project will be to study the correlation between the
radiography and sonographic curvature measuring methods in real patients. Another
future research line will be related to the segmentation of the transverse processes.
In some patients it is hard for the physician to correctly identify some transverse
processes. We plan to explore the feasibility of using tracked ultrasound volume
reconstructions of the spine in conjunctions with models of the spine. A nice 3D
model of the spine might give the physician some spatial information that could
greatly facilitate the transverse process localization procedure.
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Atlas-Based Registration for Accurate
Segmentation of Thoracic and Lumbar
Vertebrae in CT Data

Daniel Forsberg

Abstract Segmentation of the vertebrae in the spine is of relevance tomanymedical
applications related to the spine. This paper describes a method based upon atlas-
based registration for achieving an accurate segmentation of the thoracic and the
lumbar vertebrae in the spine as imaged by computed tomography. The method has
been evaluated on ten data sets provided as a part of the segmentation challenge hosted
by the 2ndMICCAI workshop on Computational Methods and Clinical Applications
for Spine Imaging. An average point-to-surface error of 1.05 ± 0.65mm and a mean
DICE coefficient of 0.94 ± 0.03 were obtained when comparing the computed
segmentations with ground truth segmentations. These results are highly competitive
when compared to the results of earlier presented methods.

1 Introduction

Segmentation of organs in the human body is one of the most important problems in
medical image computing. The challenges associated with medical image segmenta-
tion, and what is causing further research to be motivated within the domain, include
low contrast between organ of interest and surrounding tissues, imaging artifacts,
image noise and anatomical variation. There exists many different approaches for
how a segmentation problem can be solved. Proposed methods vary from simple
thresholding to more elaborate methods using e.g. probabilistic shape models. The
relevance of the different approaches depend on the specific organ to segment along
with the employed imaging modality. This work is focused on the segmentation of
the vertebrae in the spine as imaged by computed tomography (CT).

The spinal column forms an important support structure in the human body and
consists of the vertebral bones, seven cervical, twelve thoracic and five lumbar ver-
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tebrae. As such, the vertebrae form an important part of the diagnosis, treatment
planing and the understanding of various conditions affecting the spine. Thus, an
accurate segmentation of the vertebrae is of relevance in several medical applica-
tions. Segmentation of the vertebrae is challenging, mainly due to shape variation
and neighboring structures of similar intensity (e.g. other vertebrae and/or tissues).

There already exists a number of proposed methods for segmentation of the ver-
tebrae in the spine from CT data. For example, in [9], Kim and Kim proposed a
fully automatic method based upon deformable fences for separating lumbar ver-
tebra in the spinal column. Klinder et al. presented in [10] a method, commonly
referred to as the current state-of-the-art for both identification and segmentation
of an arbitrary set of vertebrae. The method is based upon spinal curve extraction
with vertebra detection followed by vertebra identification and segmentation based
upon shape models. Ma et al. [13] also proposed a method capable of both seg-
mentation and identification, but only for the thoracic vertebrae. Their method is
based upon training bone-structure edge detectors along with coarse-to-fine registra-
tion of a deformable model. Other and more recently proposed methods are found
in [8, 12, 14], where the authors of the first work propose an improved level set
method based upon edge- and region-information. The authors of the second work
also propose to use a level set method but including the Willmore flow and where
the third work presents a method based on a multi-vertebrae anatomical shape and
pose model. Note that all of these three methods were only evaluated segmenting the
lumbar vertebrae.

In this paper, a method based upon atlas-based segmentation is proposed and
evaluated. Atlas-based segmentation is a method where image registration between
an atlas image and a target image is performed and where the predefined labels of the
atlas are used for segmenting the region of interest in the target image. Atlas-based
segmentation has found its way into many application domains within medical imag-
ing and in particular for segmentation of various structures in the brain in magnetic
resonance imaging [2]. In atlas-based segmentation, it is common to use a number
of atlases that are registered towards a target image and where label fusion is used
to derive a single segmentation from the labels of the registered atlases.

The method, described in this paper, benefits from the knowledge of previous
work in term of preprocessing (vertebral pose estimation), spine registration (non-
rigid registration based on phase-difference and the use of graphics processing units)
and label fusion (majority voting), and combines these into an effective pipeline
providing automatic and accurate segmentation of both lumbar and thoracic vertebrae
in the spinal column.

2 Methods

The method used in this work for vertebrae segmentation is inspired and to a
large extent based upon the work presented in [6, 7], although some components
have changed and others have been added. This has been done in order to improve
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Fig. 1 An overview of the method used for segmentation of the thoracic and lumbar vertebrae in
the spine. In the middle section of this figure, the green-colored spine refers to the atlas and the
red-colored to the target data set (Color figure online)

the performance but mainly since the work in [6, 7] was targeted at scoliotic spines.
The most notable differences are the use of multiple gray-level atlases, instead of a
single binary model in the registration step, and the subsequent use of label fusion.
The employed method consists of a preprocessing step, where an approximate posi-
tion and rotation (pose) of each vertebra in the target data set and in the atlases is
estimated. The results from the preprocessing are used to obtain an initial alignment
between the atlases and the target data set. The preprocessing step is followed by a
registration step, where each atlas is registered to the target data set. The labels of the
registered atlases are combined to a single label volume using label fusion to form
the segmentation of the spine as imaged in the target data set. A graphical overview
of the method is provided in Fig. 1.

2.1 Preprocessing

The preprocessing consists of the following sub-steps:
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Fig. 2 The preprocessing steps starts with a seed point detection (a) for the tracking of the spinal
canal (b). Given the spinal canal, an intensity profile running through the vertebrae is sampled and
analyzed to detect the position of the discs and implicitly the mid-axial slices of the vertebra (c).
The mid-axial slices with initial estimates of the axial vertebral rotation (d) provide input to the
final pose estimations (e). Note that the marked regions in (d) and (e) correspond to the volumes
used for symmetry assessment

1. Spinal canal tracking—Seed points for the spinal canal are detected using the
Hough transform on a thresholded axial image in themiddle of the image volume.
A growing and moving circle is used to detect the center of the spinal canal, i.e. a
small circle is initialized at a given seed point and the circle grows until it hits
bone upon which it tries to move away from the bone, in order to grow further.
This growing and moving process is iterated until the circle either cannot grow or
move anymore without hitting bone. The growing and moving circle process is
repeated for each image as the spinal canal is tracked in both the cranial and the
caudal direction. A minimum and a maximum size of the circle is defined along
with exit criteria to ensure that the tracking stops as the sacrum or the top cervical
vertebrae are reached. A spline curve is fitted to the extracted centerline in order
to obtain a smooth curve. Seed point detection and tracking of the spinal canal
are depicted in Fig. 2a, b.

2. Disc detection—Given that the vertebrae are located anterior to the spinal canal,
an intensity profile, running through the vertebrae, is sampled and filtered with
quadrature filters of varying center frequencies. Given the distinctive pattern of
the intensity profile, the filtered intensity profiles can be used to detect the position
of the discs, simply by searching for peaks. Some heuristics have been added to
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remove false positive peaks. An example of the characteristic intensity profile is
given in Fig. 2c.

3. Initial vertebral rotation estimation—In an image slice located between the
detected discs, an initial axial vertebral rotation is estimated based upon mini-
mizing an error measure for assessing the symmetry between two halves of an
image (left and right halves). The center of rotation is set to the center-point of
the spinal canal and the orientation of the image plane is given by the tangent
of the spinal canal centerline. For a more robust rotation estimation, not just a
single image is used but a number of images. The volume enclosed by the green
marking in Fig. 2d, refers to region for which the lateral symmetry is maximized.

4. Vertebra position and rotation estimation—The two previous steps provide an
initial estimate of the position and the orientation of each vertebra. To improve
this estimate, an error measure is defined with six parameters [x, y, z] and
[θX , θY , θZ ], defining the vertebra center-point and the rotation of the vertebra.
The error measure is defined to assess the symmetry across various half-planes.
The optimal parameters are found using Powell’s method, as provided by the
MATLAB package iFit [4]. This step is similar to the method used in [15] for
estimating the center-point and the orientation of each vertebra in the spine.
The green marked region, in Fig. 2e, is used to assess the lateral symmetry, and
where the red marked region is used to assess anterior-posterior symmetry and
the inferior-superior symmetry.

Note that all atlases and the target data set are processed with this preprocessing step.
Parameters used in the preprocessing step were fixed for the processing of all data
sets but were empirically determined based upon initial processing of one of the data
sets.

2.2 Initial Alignment

The estimated poses are used for establishing an initial alignment between the verte-
brae of the atlases and the vertebrae of the spine in the target data set. The alignment
is achieved by translating one atlas according to the mean displacement between the
respective vertebrae in the data sets, i.e. the displacement between vertebrae T1 in
the target and in the atlas data sets, and between T2 in the target and in the atlas data
sets and so forth. Furthermore, a scaling of the atlas data sets is included by using
the ratio between the two T1-L5 distances in the target and the atlas data sets.

2.3 Atlas-Based Registration

Given the initial alignment between the vertebrae of the target data set and an atlas,
the vertebrae are then processed in groups of five, starting from the caudal end of the
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spine, i.e. L5-L1, L1-T9, T9-T5, T5-T1. A sub-volume is extracted from both the
target data set and the atlas at hand, containing the vertebrae to be registered along
with any surrounding vertebrae. After the initial alignment, a non-rigid registration
step is applied, minimizing the voxel-wise local phase-difference [11], according to

u = argmin
d

∑

k

1

2
‖ckT

(
dk n̂k − d

)‖2, (1)

where T is the local structure tensor and dk the local phase-difference in orientation
n̂k . For computational performance, an implementation of the non-rigid registration
algorithm on graphics processing units has been used [5]. The finally computed
transformation is used to deform the atlas onto the target data set, and, thus, the
labels of the deformed atlas provide a segmentation of the vertebrae in the target data
set. This process is repeated for each available atlas.

2.4 Label Fusion

The final step is tomerge the labels of the deformed atlases into a single label volume.
In this case, a straight forward majority voting has been employed for label fusion,
although more refined methods for label fusion are available, e.g. STAPLE [16].

2.5 Implementation

The method has been implemented in MATLAB and CUDA, and is available at
https://bitbucket.org/dforsberg/ for download.

3 Data

The data used for evaluation consists of ten CT data sets acquired during daily
clinical routine work at a trauma center, and is provided as training data for the
segmentation challenge at the 2nd MICCAI Workshop on Computational Methods
and Clinical Applications for Spine Imaging. The included patients are 16–35 years
old and the scans covers all thoracic and lumbar vertebrae. The resolution of the
data ranges between 0.31 and 0.45mm for the in-plane resolution and the slice
thickness is 1mm. Along with the image data there also exists ground truth data
consisting of semi-automatically segmented vertebrae. More information about the
image data is found in [17]. Before processing, the image data was resampled to an
isotropic resolution of 1×1×1mm3 using linear interpolation, in order to allow the
usage of quadrature filters with isotropic resolution in the non-rigid registration step.

https://bitbucket.org/dforsberg/
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Since ten data sets were available, each data set was segmented using the remaining
nine as atlases.

The ground truth data was compared with the segmentations obtained from the
atlas-based segmentation using the point-to-surface error (PSE) and the DICE coef-
ficient. The PSE is defined as the smallest distance between a node on the computed
segmentation and the closest surface of the ground truth segmentation. The meshes
defining the vertebrae were acquired from their corresponding binary volumes using
iso2mesh [3]. The DICE coefficient is defined as

DICE = 2 ∗ |GT ∩ S|
|GT| + |S| (2)

where GT and S refer to the ground truth and the computed segmentations respec-
tively, and where | . . . | denotes the volume in voxels.

4 Results

The results from the atlas-based segmentation of the ten CT data sets are provided in
Table1. In the results, it can be noted that the lumbar vertebrae and the lower thoracic
vertebrae in general obtain a PSE < 0.90 and a DICE coefficient of ≥ 0.95, which is

Table 1 Average PSE and
average DICE coefficient as
estimated from the
atlas-based segmentation
of the ten data sets

Vertebra PSE DICE

T1 1.37 ± 1.15 0.86 ± 0.09

T2 0.89 ± 0.35 0.94 ± 0.00

T3 0.90 ± 0.37 0.93 ± 0.03

T4 1.27 ± 1.07 0.90 ± 0.09

T5 1.66 ± 1.53 0.88 ± 0.11

T6 1.78 ± 1.61 0.86 ± 0.17

T7 1.57 ± 1.57 0.88 ± 0.17

T8 1.10 ± 0.74 0.91 ± 0.10

T9 0.96 ± 0.52 0.94 ± 0.05

T10 0.89 ± 0.35 0.95 ± 0.02

T11 0.87 ± 0.32 0.95 ± 0.01

T12 0.87 ± 0.34 0.95 ± 0.00

L1 0.86 ± 0.32 0.96 ± 0.00

L2 0.86 ± 0.36 0.96 ± 0.01

L3 0.87 ± 0.37 0.96 ± 0.01

L4 0.89 ± 0.46 0.96 ± 0.00

L5 0.93 ± 0.53 0.95 ± 0.01

All 1.05 ± 0.65 0.94 ± 0.03
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Fig. 3 Example results of the atlas-based registration, where (a) and (b) depict the results for data
set #6 and (c) and (d) for data set #8, i.e. the data sets with the best respectively the worst results
for the DICE coefficient

to be considered as excellent. Good scores are also achieved for the remaining tho-
racic vertebrae but where there are some vertebrae that obtain notably worse results.
When observing the results data set by data set, it is apparent that the segmentation
failed for for vertebrae T5-T8 in data sets #4 and #8. In addition, vertebra T1 obtains,
almost consistently, lower scores than the other vertebrae. Example visualizations of
the results are provided in Fig. 3. Note the failed segmentations of vertebrae T5-T8
in Fig. 3c, d, which correspond to the segmentation results for data set #8.

A run time analysis was also conducted for the proposed method. The results
of this analysis are given in Table2 and show that a complete segmentation of all

Table 2 Average run time for the proposed method when segmenting a single data set, i.e. the
results correspond to the average time of preprocessing a single target data set, registering nine
atlases to a target data set and fusing nine label volumes to a single label volume

Preprocessing (s) Non-rigid registration (s) Label fusion (s) Total (s)

191 ± 16 509 ± 25 19 ± 5 718 ± 40
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thoracic and lumbar vertebrae can be achieved within 12 min. Note that the timing
results for the preprocessing step correspond to the preprocessing of a single data set.
In addition, time needed for I/O and similar activities along with the resampling of
the original data to a 1 × 1 × 1mm3 resolution has not been included in the results.

5 Discussion

In this paper, a method for segmentation of the thoracic and the lumbar vertebrae has
been described and evaluated. The method is based on atlas-based segmentation and
makes use of a preprocessing step for estimating the local pose of each vertebrae.
The preprocessing step is important for the initial alignment of the atlases before the
registration of the atlases to the target data set. This is because the repetitive structure
of the vertebrae in the inferior-superior direction easily can cause a mis-alignment
of adjacent vertebrae.

The evaluation of the described method on ten data sets achieved an average PSE
of 1.05 ± 0.65mm and a mean DICE coefficient of 0.94 ± 0.03. Note that both
scores could be expected to be better if not the method had failed for a few of the
thoracic vertebrae in two of the data sets. As noted earlier, the registration accuracy
for vertebra T1 is almost consistently lower than the other vertebrae. This is most
likely due to the fact that in some data sets vertebra T1 is the top vertebra being
imaged, while some other data sets contain some of the cervical vertebrae as well.
Because of this, the registration process sometimes extends vertebra T1 to vertebra
C7 or similar. This problem is not present at the other end of the spinal column,
i.e. for vertebra L5, since the sacrum is included in all data sets and, thus, creates an
effective barrier for making sure that vertebra L5 is not mis-aligned with S5 in the
sacrum.

In comparison with related work, the presented results can be considered as good
to excellent. For example, Klinder et al. [10] achieves amean PSE of 1.12 ± 1.04mm
for their method. Ma et al. [13] obtain a slightly better mean PSE of 0.95 ± 0.91mm
for their algorithm, and where their method was only evaluated for the thoracic
vertebrae. Rasoulian et al. [14], on the other hand, only segmented lumbar vertebrae
and obtained an average error distance of 1.38 ± 0.56 between the fitted model and
the manual segmentations. Huang et al. [8] and Lim et al. [12] are the only that report
the DICE coefficient in their results, and where Huang et al. achieved an average
DICE score of 0.94± 0.02 andLim et al. an averageDICE score of 0.89 ± 0.02.Note
that both methods are only evaluated on lumbar vertebrae. In addition, the method
of Huang et al. segments the vertebrae slice by slice and then fuses the separate 2D
segmentations to form a 3D segmentation. Hence, they only segment out a single
3D object and are unable to separate adjacent vertebrae. Kim and Kim [9] does not
provide any results useful for comparison, since their assessment is only based on a
visual grading of how well the lumbar vertebrae are separated.

In terms of run time, it is to be noted that the time required for the registration step
is directly related to the number of atlases that are used, i.e. decreasing or increasing
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the number of atlases will correspondingly decrease or increase the time needed
for the registration. Comparing run times of different methods is difficult given that
hardware architectures, implementation methods and data sizes differ too much. In
addition, some report the run times per slice, some per vertebra and some per data
set. Hence, here it is simply noted that the run times reported by others correspond
to 1–6s per slice [8], 1min per vertebra [14] or approximately 40min for all thoracic
vertebrae [10].

A limitation of the results presented here refers to the fact that the segmented
data sets did not include any pathological spines or any notable imaging artifacts. In
terms of larger spinal deformities, e.g. as such induced by idiopathic scoliosis, it was
shown in [6] that a similar approach as described in this paper was able to achieve an
average PSE of 0.9 ± 0.9mm. Thus, for larger spinal deformities the segmentation
accuracy of the proposed method is likely to be similar as presented here. How other
issues, such as imaging artifacts from e.g. metal implants, will affect the results are
difficult to foresee and further speculations are, thus, refrained from.

Future work for improving the performance of the method includes making better
use of the estimated poses for each vertebra, since the current poses are only used
to create a translation and a scaling between the target data set and the atlases. One
approach would be to use the estimated poses to compute a linear transformation for
each vertebra between the target data set and an atlas, and to combine these into a
single transformation using the Log-Euclidean framework as presented by Arsigny
et al. [1]. In addition, it would be relevant to investigate other methods for label
fusion, e.g. STAPLE as already mentioned, and to add a step of selecting which
atlases to include in the label fusion, i.e. a best atlas selection step.

References

1. Arsigny, V., Commowick, O., Ayache, N., Pennec, X.: A fast and Log-Euclidean polyaffine
framework for locally linear registration. J. Math. Image. Vis. 33(2), 222–238 (2009)

2. Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Bach Cuadra, M.: A review of Atlas-based
segmentation for magnetic resonance brain images. Comput. Methods Progr. Biomed. 104(3),
e158–e177 (2011)

3. Fang, Q., Boas, D.A.: Tetrahedral mesh generation from volumetric binary and grayscale
images. In: Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International
Symposium on, pp. 1142–1145. IEEE (2009). doi:10.1109/ISBI.2009.5193259

4. Farhi, E., Debab, Y., Willendrup, P.: iFit: A new data analysis framework, applications for
data reduction and optimization of neutron scattering instrument simulations with mcstas.
J. Neutron Res. 17(1), 5–18 (2014)

5. Forsberg, D., Eklund, A., Andersson, M., Knutsson, H.: Phase-based non-rigid 3D image
registration—from minutes to seconds using CUDA. In: HP-MICCAI/MICCAI-DCI 2011
(2011)

6. Forsberg,D., Lundström,C.,Andersson,M.,Knutsson,H.:Model-based registration for assess-
ment of spinal deformities in idiopathic scoliosis. Phys. Med. Biol. 59(2), 311–326 (2014)

7. Forsberg, D., Lundström, C., Andersson, M., Vavruch, L., Tropp, H., Knutsson, H.: Fully auto-
matic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic
scoliosis. Phys. Med. Biol. 58(6), 1775–1787 (2013)

http://dx.doi.org/10.1109/ISBI.2009.5193259


Atlas-Based Registration for Accurate Segmentation … 59

8. Huang, J., Jian, F., Wu, H., Li, H.: An improved level set method for vertebra CT image
segmentation. Biomed. Eng. Online 12(1), 48 (2013)

9. Kim,Y.,Kim,D.:A fully automatic vertebra segmentationmethod using 3Ddeformable fences.
Comp. Med. Imag. Graph. 33(5), 343–352 (2009)

10. Klinder, T., Ostermann, J., Ehm,M., Franz, A., Kneser, R., Lorenz, C.: Automatedmodel-based
vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13(3),
471–482 (2009)

11. Knutsson, H., Andersson, M.: Morphons: Segmentation using elastic canvas and paint on
priors. In: Image Processing (ICIP), 2005 IEEE International Conference on, pp. II-1226-9.
IEEE (2005). doi:10.1109/ICIP.2005.1530283

12. Lim, P.H., Bagci, U., Bai, L.: Introducing Willmore flow into level set segmentation of spinal
vertebrae. Biomed. Eng. IEEE Trans. 60(1), 115–122 (2013)

13. Ma, J., Lu, L., Zhan, Y., Zhou, X., Salganicoff, M., Krishnan, A.: Hierarchical segmentation
and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine
deformable model. In: Medical Image Computing and Computer-Assisted Intervention MIC-
CAI 2010, Lecture Notes in Computer Science, vol. 6361, pp. 19–27. Springer (2010)

14. Rasoulian, A., Rohling, R., Abolmaesumi, P.: Lumbar spine segmentation using a statistical
multi-vertebrae anatomical shape+pose model. Med. Imag. IEEE Trans. 32(10), 1890–1900
(2013)

15. Vrtovec, T.: Modality-independent determination of vertebral position and rotation in 3D. In:
Medical Imaging and Augmented Reality, Lecture Notes in Computer Science, vol. 5128,
pp. 89–97. Springer (2008)

16. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation
(STAPLE): an algorithm for the validation of image segmentation. Med. Imag. IEEE Trans.
23(7), 903–921 (2004)

17. Yao, J., Burns, J., Munoz, H., Summers, R.: Detection of vertebral body fractures based on
cortical shell unwrapping. In: Medical Image Computing and Computer-Assisted Intervention
MICCAI 2012, Lecture Notes in Computer Science, vol. 7512, pp. 509–516. Springer (2012)

http://dx.doi.org/10.1109/ICIP.2005.1530283


Segmentation of Lumbar Vertebrae
Slices from CT Images

Hugo Hutt, Richard Everson and Judith Meakin

Abstract We describe a fully automated approach to vertebrae segmentation from
CT images which operates on superpixels. The method is based on a conditional ran-
dom field model incorporating constraints learned from labelled superpixel features.
The method is shown to provide consistently accurate segmentations of different
vertebrae from a variety of subjects.

1 Introduction

Automatic segmentation of vertebrae from CT images is a challenging problem due
to the complex and varied shape of the vertebrae, in addition to the various artefacts
whichmay result from the acquisition process. However, segmenting the vertebrae by
hand is a difficult and time consuming process. Automated segmentation is therefore
desired to obtain reliable and accurate segmentations on any large scale.

Much of the previous work in this area has concentrated on sagittal views to
provide segmentation of many vertebrae and intervening discs. With this view the
pedicles and posterior elements of the vertebrae are frequently not visible, so seg-
mentation has focussed on the vertebral bodies and employed tools such as statistical
shape models and appearance models combined with probabilistic graphical models;
e.g., [7, 11]. Huang et al. [8] have recently described a level set method for vertebrae
segmentation using transverse (axial) CT slices.

In this paper, we describe a fully automated segmentation method that effectively
segments the whole vertebra structure (including pedicles and posterior elements)
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from transverse (axial) views. Our method for CT images is adapted from a method
developed for MR images, described in [9]. At heart, the method uses a condi-
tional random field (CRF) model on superpixels. Operating on superpixels reduces
computational complexity and enables more descriptive features to be extracted to
characterise the vertebra (foreground) and non-vertebra (background) classes, while
the CRF relates the underlying class labels of the superpixels to the observed features
and promotes coherence. We use supervised learning to train a classifier on labelled
superpixel features and obtain probability estimates expressing the likelihood of
belonging to either the vertebra or background class. Distance metric learning [17]
is also used to find an appropriate dissimilarity measure between superpixel pairs.
The probability estimates and learned distance metric are incorporated into the CRF
model in the form of first- and second-order clique potentials of the CRF energy
function. This formulation enables minimisation of the energy function to be carried
out efficiently using graph cuts [3].

We evaluate the performance of the method on CT data from a range of sub-
jects collected for the Computational Methods and Clinical Applications for Spine
Imaging (CSI 2014) segmentation competition. We show that consistently accurate
segmentations can be obtained for each of the different lumbar vertebrae.

2 Segmentation Model

Our method is based on a conditional random field (CRF) [2] model which operates
on the superpixels of an image; we denote the set of superpixels by S. The energy
function of the CRF defines a posterior probability distribution P(x | y) for a set of
class labels x for the superpixels, given a set of features y describing the superpixels.
The energy function can be written as a sum of first- and second-order potential
functions in the form

E(x, y) =
∑

i∈S
ψ(yi | xi )︸ ︷︷ ︸
Data term

+λ
∑

i∈S

∑

j∈Ni

φ(yi , y j | xi , x j )︸ ︷︷ ︸
Smoothness term

(1)

where Ni is the set of neighbours of superpixel i . The constant λ controls the rel-
ative importance of the data and smoothness terms. The CRF formulation enables
maximum a posteriori (MAP) inference of the labels x to be carried out efficiently
using graph cuts. We use the min-cut/max-flow algorithm of [4] to find the optimal
solution.

We define the potential functions of (1) by using supervised learning on labelled
superpixel features and deriving constraints using the resulting trained models.
Sections3 and 4 describe the superpixel features used to learn the constraints and
how they are incorporated into the CRF potential functions.
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3 Superpixels

We use the Simple Linear Iterative Clustering (SLIC) [1, 16] algorithm to parti-
tion the image into superpixels. As shown in Fig. 1, boundaries of superpixels tend
to coincide with boundaries of anatomical objects, enabling an accurate pixel-level
segmentation to be recovered from the classified superpixels. The primary advan-
tages of using superpixels are twofold: firstly, as the number of nodes in the graph
decreases significantly from a pixel-level graph, there is a corresponding reduction
in computational complexity. Secondly, multiple features can be extracted from the
superpixel regions which can help to discriminate between the classes more effec-
tively.

We aim to characterise the superpixels by extracting multiple features from them
that incorporate information about intensity, texture, location and edge response. As
described in the next section, these features are used to discriminate between the
vertebra and background superpixels by learning a classifier and distance metric on
a set of ground truth images. We emphasise that this training occurs only once, after
which the trained models can be used in the CRF potential functions for any further
images.

The superpixel features are summarised in Table1. The feature vector for a super-
pixel i is a concatenation of the individual features:

yi = [yT
i , yL

i , yE
i ]�. (2)

We exhaustively tested different subsets of the features, but found that the best per-
formance was obtained by combining all features. The features were chosen in part

Fig. 1 The left figure shows a CT slice with ground truth contour (magenta) for a section of the
vertebra. The right figure shows boundaries for superpixels assigned to the vertebra class (magenta)
and background class (cyan). The superpixels preserve the boundary detail of the vertebrae (color
figure online)
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Table 1 Superpixel features (pn denotes the nth percentile)

Feature Description Dimension

yT1
i Concatenation of intensity histogram from superpixel i and average

histogram from neighbours Ni

20

yT2
i SIFT descriptor calculated at the centroid of superpixel i 128

yL1
i Mean, p10 and p90 of the row and column pixel coordinates in the

superpixel, centred on the matched contour region
6

yL2
i Mean, p10 and p90 of the matched contour distance transform gradient

in the superpixel, in both the horizontal and vertical direction
6

yE1
i Mean, p10 and p90 of the LoG response within the superpixel, taken

over 4 scales
12

yE2
i Mean, p10 and p90 of the structure tensor eigenvalues of the superpixel,

taken over 4 scales
24

for their generality and as a consequence are directly applicable to different imaging
modalities such as MRI [9].

The first set of features yT
i characterise the intensity and textural properties of the

superpixels. They take the form of normalised intensity histograms over the pixels
within each superpixel and SIFT [14, 16] descriptors of a fixed size calculated at the
superpixel centroids.

The location features are based on a local coordinate system for each vertebra.
This helps segmentation by providing features that describe the superpixel’s relative
location. The local coordinates are obtained by matching a contour to the top of the
vertebral body.We do this by first (automatically) cropping the ground truth segmen-
tation contours above their centroids, so that the resulting contour set C corresponds
to the upper, roughly semi-circular, boundary of each vertebral body in the ground
truth set. Each ground truth image is therefore associated with a single contourC ∈ C
and our goal is to find the best matching contour of the set for a new image. We use
a Laplacian of Gaussian (LoG) filter to detect the outer boundary of the vertebra and
search over the image to find the point where the average LoG response along the
contour is greatest. The best match is the contour with the maximum response of the
set. Features are derived from the matched contour region by centring the pixel coor-
dinates at the region’s centroid and computing the gradient of the distance transform
[9]. While the matching process depends on the presence of an adequate number
of ground truth contours, in practice only an approximate match to the vertebra is
required to derive the location features. Using a set of generated synthetic contours
is a possibility in cases where the ground truth data is very limited.

Finally, the features in yE
i are distinctive of superpixels at the edges and corners

of the vertebrae and help to separate the vertebra and background classes around the
boundary. We take the LoG response within the superpixel over 4 different scales to
form the first feature vector. The second feature vector is formed from the eigenvalues
of the structure tensor [12] within the superpixel, taken over 4 scales.



Segmentation of Lumbar Vertebrae Slices from CT Images 65

4 Potential Functions

We next describe the potential functions used in (1). Both the data and smoothness
terms of the CRF are based on the characteristics learned from superpixel training
examples.

We first convert the pixel-level ground truth labels into superpixel-level labels by
assigning each superpixel to the class with the majority vote; as Fig. 1 illustrates,
there is little ambiguity in this assignment. We then use the superpixel feature/label
examples to train a support vector machine (SVM) [5] using an RBF kernel, given by

K (yi , y j ) = exp
(
−γ||yi − y j ||22

)
(3)

where γ is a kernel width parameter found using cross-validation on the training data.
Probability estimates for the vertebra and background classes are obtained from the
SVM using the method of [18] and incorporated into the data term of the CRF. To do
this we define the data term as the negative log likelihood of an observation (feature
vector) given the class label (i.e. vertebra or background):

ψ(yi | xi ) = − log (P(yi | xi )) (4)

where the likelihood term P(yi | xi ) for each superpixel is given by the SVM
posterior probability. The superpixel likelihoods given by the data term are highly
discriminative and localised to the vertebrae regions, as can be seen in the examples
shown in Fig. 2b. Note that all pixels within a given superpixel are assigned the same
probability, so the figure shows the superpixel-wise probability estimates.

For the second-order potential of our CRF model, we use distance metric
learning to learn an appropriate distance metric between the superpixel features.
While second-order penalties based on standard Euclidean distance measures are
often used in graph cut formulations, metric learning tailors the distance measure
to the data itself, rather than being chosen ad hoc. In particular, we use the Large
Margin Nearest Neighbour (LMNN) [17] algorithm to learn a pseudometric of the
form

DM(yi , y j ) = (yi − y j )
�M(yi − y j ). (5)

The metric is estimated by learning a linear transformation of the data L such that
L�L = M. The goal is that the k-nearest neighbours of examples in the transformed
space (determined by L) should belong to the same class while those belonging to
different classes should be separated by a large margin.

We incorporate the learned metric into the second-order potential function as
follows

φ(yi , y j | xi , x j ) =
{
exp

(−DM(yi , y j )
)

if xi �= x j

0 otherwise
(6)
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(a) (b) (c) (d)

0 0.25 0.5 0.75 1

Fig. 2 a Shown top to bottom are CT images corresponding to theminimum,median andmaximum
Dice similarity score (0.88, 0.97 and 0.98), respectively. b SVMprobability estimates for the images
in the left hand column. Darker regions indicate higher probability of belonging to the vertebra
class. c Final segmentation contours from the CRF shown overlaid with the probability estimates
(cyan). d Segmentation contours shown for both the ground truth annotations (magenta) and CRF
model (cyan) (color figure online)

which penalises neighbouring superpixels which have similar feature vectors and are
assigned to different classes. The final segmentations using the CRF are compared
with the probability estimates from the data term in Fig. 2c.

5 Experiments

We next assess the performance of the method. We first describe the data used for
the experiments and the training procedure for the CRF. The segmentation results
are then discussed.
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5.1 Experimental Setup

TheCTdata consists of 2D axial slices of lumbar vertebrae from10 different subjects,
each of which has been manually annotated.1 The images were acquired with Philips
or Siemens multi detector CT scanners using an in plane resolution of between 0.31
and 0.45mm with a slice thickness of 1mm [19]. We used a total of 50 ground truth
images by selecting the middle vertebral slice from each of the 5 lumbar vertebrae
of each manually annotated subject. The 512 × 512 pixel images were cropped to
391 × 371 using a bounding box around the vertebrae regions.

The experimentswere carried out on a 4-core Intel i5 2.50GHzmachinewith 8GB
of RAM. The implementation is written in MATLABwith outside C++ code for cer-
tain tasks including superpixel extraction, SVM optimisation and CRF minimisation
using graph cuts.

5.2 Model Training

To train the SVMs, leave-one-out (LOO) cross-validation was performed by leaving
out one subject (i.e. 5 images) on each iteration and training on the remaining 45
images. The model was then tested on the 5 images from the held out subject and
the process was repeated for all 10 subjects. Thus the training and test images were
always from separate subjects. The SVM cost parameter C = 4 and the kernel width
parameter γ = 0.25 were determined by cross-validation and used for all training
runs.

Note that the training data is unbalanced, as there are many more negative (back-
ground) examples than positive (foreground) examples.We addressed this by training
on a fixed proportion of randomly sampled positive and negative examples. The same
LOO approach was used for the LMNN algorithm, with the distance metric learned
on the training images for each LOO iteration and applied on the 5 held out images.

5.3 Segmentation Results

To evaluate the degree of overlap between the automatic segmentation and the ground
truth, the Dice similarity coefficient (DSC) was used. Given two segmentations x and
x′, the DSC score is defined as

DSC(x, x′) = 2|x ∩ x′|
|x| + |x′| . (7)

1 Data from the CSI2014 segmentation competition is available from the SpineWeb initiative: http://
spineweb.digitalimaginggroup.ca.

http://spineweb.digitalimaginggroup.ca
http://spineweb.digitalimaginggroup.ca
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The score is in the range [0, 1]with 0 indicating no overlap and 1 indicatingmaximum
overlap. LOO testing was used to evaluate the segmentation performance of the
method, with the scores taken over all LOO runs.

The segmentations were also evaluated using three distance measures. The mean
symmetric absolute surface distance (MSD) score is determined by finding for each
set of boundary pixels of both the segmentation and corresponding ground truth, the
closest boundary pixels of the other set. The mean of the Euclidean distances to the
closest points gives the score for the image, with 0 indicating a perfect segmentation.
The RMS symmetric surface distance takes the squared distances between the two
sets of boundary pixels, with the final score defined as the root of the average squared
distances. Finally, the maximum symmetric absolute surface distance is similar to
the MSD score but takes the maximum of the distances instead of the mean. Further
discussion of these metrics is provided in [6].

The average processing time for segmentation of a single image was approxi-
mately 50s. The average DSC score was 0.97 with standard deviation 0.01 and the
average MSD score was 1.83 with standard deviation 2.54. Table2 summarises the
results obtained on each lumbar vertebra using the evaluation metrics. Figure2d
shows example segmentation contours for both the ground truth and CRF model,
corresponding to the minimum, median and maximum DSC score (0.88, 0.97 and
0.98). As the figure suggests, in most cases the automatic segmentation is very close
to the manually determined region.

The results obtained by our method compare favourably with those recently pre-
sented in [8], who reported an average DSC score of 0.94± 0.02. In the same work,
the authors showed that their method obtained superior results compared with two
other recent approaches to vertebra segmentation [10, 13].

Table 2 Minimum,median andmaximumvalues of the evaluationmetrics for each lumbar vertebra

Metric L1 L2 L3 L4 L5

Dice score Min 0.92 0.96 0.95 0.94 0.88

Median 0.97 0.97 0.97 0.97 0.97

Max 0.98 0.98 0.98 0.98 0.98

Mean surf. dist. Min 0.91 0.61 0.88 0.85 0.85

Median 1.20 1.09 1.34 1.37 1.40

Max 5.29 1.96 1.77 1.99 7.99

RMS surf. dist. Min 1.38 0.89 1.65 1.30 1.15

Median 2.00 2.11 2.13 2.52 2.79

Max 14.87 8.29 4.30 5.47 22.25

Max surf. dist. Min 5.00 3.17 9.00 6.71 6.00

Median 14.02 12.39 15.51 14.53 15.62

Max 91.76 71.87 32.56 42.30 101.55
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5.4 3D Segmentation of Vertebrae

The method we have described can also be used to obtain 3D segmentations of
vertebrae from individually segmented slices by modifying the way the location
features are derived. To do this, the contour matching is first carried out on each slice
of the image stack. We then use the M-estimator sample consensus (MSAC) [15]
algorithm to remove poor contour matches by detecting and eliminating outliers.
Outliers are determined based on the distance to their k-nearest neighbours in the
set of matched contours and removed by fitting a polynomial curve through the set
of inliers. Location features analogous to the 2D case can then be derived from the
correctly matched contours by computing the distance transform in 3D. Figure3
shows an example 3D vertebra segmentation constructed from segmentations of the
constituent slices.

Fig. 3 The top figure shows a 3D segmentation of a lumbar vertebra (L2) constructed from segmen-
tations of the constituent slices. The bottom figure shows the overlap between the CRF segmentation
(cyan) and ground truth (magenta) (color figure online)
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6 Conclusion

We presented an automatic approach for segmentation of vertebra slices from CT
images. Our method avoids the requirement of explicit prior shape information and
can therefore deal with a wide range of anatomical variation. The results demonstrate
that consistently accurate segmentations can be obtained on each of the different
lumbar vertebrae from a variety of subjects. Key to the effectiveness of this method
is the learning of superpixel features from ground truth data for incorporation into
the conditional random field, which in turn ensures spatial coherence. We note that
much poorer performance is obtained with traditional features such as just intensity
histograms. Finally,wenote that thismethodmaybe extended to 3Dsegmentation in a
straightforward way. Future work will aim to improve the results in 3D by operating
on supervoxels rather than superpixels and by generalising the set of features to
characterise the supervoxel regions.

Acknowledgments H. Hutt was funded by the EPSRC. We are grateful to the SpineWeb initiative
for making the data available and to the organisers of the CSI2014 competition.
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Interpolation-Based Detection of Lumbar
Vertebrae in CT Spine Images

Bulat Ibragimov, Robert Korez, Boštjan Likar,
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Abstract Detection of an object of interest can be represented as an optimization
problem that can be solved by brute force or heuristic algorithms. However, the
globally optimal solution may not represent the optimal detection result, which can
be especially observed in the case of vertebra detection, where neighboring vertebrae
are of similar appearance and shape. An adequate optimizer has to therefore consider
not only the global optimum but also local optima that represent candidate locations
for each vertebra. In this paper, we describe a novel framework for automated spine
and vertebra detection in three-dimensional (3D) images of the lumbar spine, where
we apply a novel optimization technique based on interpolation theory to detect the
location of the whole spine in the 3D image and to detect the location of individual
vertebrae within the spinal column. The performance of the proposed framework
was evaluated on 10 computed tomography (CT) images of the lumbar spine. The
resulting mean symmetric absolute surface distance of 1.25± 0.41mm and Dice
coefficient of 83.67± 4.44%, computed from the final vertebra detection results
against corresponding reference vertebra segmentations, indicate that the proposed
framework can successfully detected vertebrae in CT images of the lumbar spine.
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1 Introduction

Detection and segmentationof anobject of interest can always be represented as a spe-
cific optimization problem. As optimization problems are usually non-deterministic
polynomial-time hard (NP-hard) or non-analytically defined, they can be solved by
brute force algorithms that are computationally demandingor byheuristic approaches
thatmay not find the globally optimal solution.Moreover, if the optimization problem
is ill-posed, there is no guarantee that the optimal detection or segmentation result
is associated with the global optimum of the problem. Such lack of correspondence
is observed in the case of vertebra detection in medical images of the spine, where
neighboring vertebrae are of similar appearance and shape, which often causes mis-
detections. We can therefore conclude that there is a need for an optimizer that will
consider not only the global optimum but also local optima of the problem that rep-
resent candidate locations for each vertebra, and that can be further used for accurate
and robust spine and vertebra detection. As standard optimization techniques, such as
the Powell’s optimizer [1] or covariance matrix adaptation evolution strategy (CMA-
ES) [2], detect only a single local optimum, we propose to use interpolation theory
to overcome the above mentioned limitations and ensure the detection of all local
optima. Interpolation theory estimates the behavior of smooth functions according to
a small set of points, for which the behavior is known. In the case of object detection,
interpolation theory can predict the position of the object of interest by computing
a specified detector response for a sparse set of points, i.e. possible transformations
of the object of interest. In this paper, we describe a novel framework for automated
spine and vertebra detection in three-dimensional (3D) computed tomography (CT)
images of the lumbar spine, where we first apply interpolation-based optimization
to detect the location of the whole lumbar spine in the 3D image, and then detect the
location of individual lumbar vertebrae within the spinal column.

2 Methodology

Detection of the object of interest (e.g. spine, vertebra) in an unknown 3D image
I can be, in general, performed by optimizing an objective function f = f (ρ, I ),
whichmaps the model of the object of interest, represented by a set ρ of n parameters
describing its geometrical properties (e.g. position, rotation, scaling etc.), to image
I in n-dimensional parameter space. The most straightforward but computationally
demanding approach for optimizing f is to apply brute force to compute its response
for all ρ ∈ Ωn , where Ωn is a bounded domain in the parameter space. Alternative
approaches [1, 2] often compute function responses in a neighborhood of an initial
set ρ′; ρ′ ∈ Ωn , predict the optimal ρ∗ and iteratively move towards ρ∗. Although
such optimization is computationally not demanding and may, especially if ρ′ is
relatively close to ρ∗, lead to the globally optimal solution, it may still converge to
local optima. Therefore, there is a need to observe the whole Ωn and, at the same
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time, minimize actual computations of f . To overcome these problems, we propose
a novel optimization scheme that is based on interpolation theory [3]. The proposed
optimization scheme does not depend on initialization and observes the whole Ωn ,
and we apply it for spine and vertebra detection in 3D spine images. Depending on
the objective function f , the scheme searches for optima in the form of either minima
or maxima, however, we will refer to them as maxima in the following text.

2.1 Interpolation Theory

By assuming that the objective function f is smooth and its values are similar for
similar sets ρ of parameters, f can be approximated by function f̄ if the response
of f is known for a limited set of nodes P;P ⊂ Ωn (Fig. 1). If nodes in P
are selected properly, the difference between f and its approximation f̄ , i.e. the
interpolation error, is relatively small, and the maximum of f̄ corresponds to the
maximum of f at the same point ρ∗. The main concept of interpolation theory [3]
is to select the interpolation function, in our case f̄ , from a given class of func-
tions so that its response passes through the nodes in P , which form the interpola-
tion grid over the observed domain Ωn . However, interpolation of high-dimensional
functions is computationally challenging, as the number of nodes grows exponen-
tially with the increasing number of dimensions n. To reduce the computational
complexity, various strategies can be applied [4, 5], but in our case we take into
account the properties of spine detection. The standard spine image acquisition pro-
cedure restricts the orientation of the imaged subject, and therefore the relative incli-

Fig. 1 An illustration of the L3 vertebra detection. a Reference segmentation binary mask, over-
layed onto a selected sagittal cross-section of the CT image. bThe interpolation grid. cThe objective
function f is computed only for nodes forming the interpolation grid. d The local maxima of the
interpolation function f̄ indicate candidate locations of the observed vertebra. In this case, the
global maximum (in green) does not correspond to the location of L3 (Color figure online)
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nation of the spinal column in the image is more constant than its position, and
similarly the orientation of a vertebra is restricted by the position of neighboring
vertebrae. It can be concluded that dimensions related to object translation have to
be associated with a larger number of interpolation nodes than dimensions related
to object rotations. To optimize the objective function f , defined on domain Ωn of
n dimensions, we therefore propose the following algorithm:

1. Initialize set σ of optimized dimensions as σ = {}
, and set σ̄ of the remaining

dimensions as σ̄ = {
1, 2, . . . , n

}
.

2. Interpolate f with f̄ against the first k � n dimensions.
3. Find t local maxima of f̄ , then insert the observed dimensions into σ ; σ ←

σ ∪ {
1, 2, . . . , k

}
, and remove them from σ̄ ; σ̄ ← σ̄ \ {

1, 2, . . . , k
}
.

4. For each local maximum among t , perform the following steps:

4a. If σ̄ 	= {}
, take the next k available dimensions and interpolate f with f̄ by

considering dimensions from σ to be optimized.
4b. Find the global maximum of f̄ , insert the observed dimensions into σ and

remove them from σ̄ . Return to step 4a.

5. The resulting global maxima represent the locations of t local maxima of f .

In the proposed algorithm, the optimization dimensions have to be ordered according
to the decreasing number of corresponding interpolation nodes, while the number
of dimensions k considered in each interpolation step may vary for different steps.
Nevertheless, by taking into account only k dimensions at once, the computational
complexity of the high-dimensional optimization problem is reduced.

2.2 Mean Shape Model of the Lumbar Spine

Let set T contain 3D images of the lumbar spine, where each image is assigned
a series of binary masks representing reference segmentations of each individual
lumbar vertebra from level L1 to L5. To extract a shape model of each vertebra
from each image in T , the marching cubes algorithm [6] is applied to each cor-
responding binary mask, resulting in a 3D face-vertex mesh consisting of vertices
with triangle connectivity information. The dependency of the number of vertices in
each mesh on the size of the image voxel and of the observed vertebra is removed
by isotropic remeshing [7], and the coherent point drift algorithm [8] is used to
recover the nonrigid transformation among sets of vertices and establish point wise
correspondences among vertices of the same vertebral level. Finally, the generalized
Procrustes alignment [9] is used to remove translation, rotation and scaling from
corresponding meshes, yielding the mean shape model of each vertebra, represented
by a 3D face-vertex meshM = {

V, F
}
of |V | vertices and |F | faces (i.e. triangles).

The mean shape model of the whole lumbar spine, i.e. a chain of mean shape models
of individual vertebrae, is further used for spine detection, while mean shape models
of individual vertebrae are used for vertebra detection in an unknown 3D image I.
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2.3 Spine Detection

Let the 3D meshM = {
V, F

}
represent the mean shape model of the lumbar spine

(Sect. 2.2), i.e. a chain of meshes representing individual vertebrae from L1 to L5.
The objective function f that measures the agreement between meshM and image
I is defined as:

f (M, I ) =
|V |∑

i=1

〈gH (vi , I ) , n (vi )〉 , (1)

where 〈·, ·〉 denotes the dot product, |V | is the number of mesh vertices, vi ∈ V is
a mesh vertex, gH (vi , I ) is the Haar-like gradient [10] of image I at the location
of vertex vi , and n(vi ) is the mesh normal at vertex vi . If mesh M is correctly
aligned with the spine in image I, then mesh normals pointing outwards of the mesh
are in maximal agreement with the Haar-like gradients pointing outwards of the
spine, resulting in the maximum of the objective function f (M, I ). As Haar-like
gradients are described as a difference between two neighboring cuboids instead
of two neighboring voxels, they are not sensitive to local intensity fluctuations and
therefore make spine detection more robust.

To detect the spine in image I, we optimize the pose of mesh M only against
three translations (i.e. coordinates x , y and z representing sagittal, coronal and axial
anatomical directions, respectively) according to the interpolation function f̄ . The
dimensionality of the optimization problem is therefore n = 3 on the corresponding
domainΩ3

s , meaning that complexity reduction (Sect. 2.1) is in this case not required
(i.e. k = n = 3). The global maximum of the resulting interpolation represents the
location of the spine in the 3D image, and is further used to initialize the detection
of individual vertebrae.

2.4 Vertebra Detection

Spine detection based on translation of the mean shape model of the lumbar spine is
not adequate for robust detection of individual vertebrae due to natural anatomical
differences in the size and/or curvature of the spine. If the detection error is usually
low in sagittal and coronal directions, the detection error in the axial direction can be
considerable, as neighboring vertebrae are of similar shape and therefore the mean
shape model of the lumbar spine can be axially shifted for one or even two vertebral
levels.

Let now the 3D mesh M = {
V, F

}
represent the mean shape model of the

observed vertebra of the lumbar spine (Sect. 2.2). To detect individual vertebrae after
spine detection (Sect. 2.3), a domain Ω3

v that represents again three translations (i.e.
coordinates x , y and z) is introduced, however, it is defined separately for each
observed vertebra, moreover, it captures several neighboring vertebrae to take into
account the eventual longitudinal shift of the mean shape model. As a result, by
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aligning mesh M to the observed vertebra in image I, several local maxima of the
objective function f (M, I ) (Eq. 1) exist and correspond to vertebrae within Ω3

v ,
moreover, the global maximum of f may not correspond to the correct location of
the observed vertebra. We therefore optimize the pose of mesh M against three
translations (i.e. coordinates x , y and z) according to the interpolation function f̄ .
The dimensionality of the optimization problem is again n = 3 on the corresponding
domain Ω3

v , meaning that complexity reduction (Sect. 2.1) is in this case also not
required (i.e. k = n = 3). However, in contrast to spine detection, in this case all
local maxima of the resulting interpolation are extracted.

Let set M = {
M1, M2, . . . , MR

}
then represent local maxima of the resulting

interpolation for all R vertebrae, where Mr = {
mr,1, mr,2, . . . , mr,t

}
is the set of t

local maxima for the r th vertebra. To detect the location of each vertebra, we find the
optimal path M∗ that passes through R locations, where each location corresponds
to a local maxima at a different vertebral level:

M∗ = argmax
p

(
R−1∑

r=1

g
(
mr,pr , mr+1,pr+1 , r

)
)

, (2)

where set p = {
p1, p2, . . . , pR

}
represents a combination of indices of local max-

ima belonging to different vertebral levels (i.e. exactly one from each set Mr ), and
function g

(
mr,pr , mr+1,pr+1 , r

)
measures the agreement of relative locations mr,pr

and mr+1,pr+1 belonging to neighboring r th and (r + 1)th vertebrae, respectively:

g
(
mr,pr , mr+1,pr+1 , r

) =
3∏

k=1

G
(
Δk(mr,pr , mr+1,pr+1), r

)
, (3)

where Δk(mr,pr , mr+1,pr+1) is the difference in kth dimension (i.e. one of the coor-
dinates x , y or z) between locations mr,pr and mr+1,pr+1 , and G

(
Δk(·, ·), k

)
is the

Gaussian kernel estimation of the agreement between Δk(·, ·) and the difference in
kth dimension for neighboring r th and (r + 1)th vertebrae. The obtained optimal
path M∗ is a set that contains the optimal location of each observed vertebra.

2.5 Vertebra Alignment

After detecting all vertebrae, a more accurate alignment of the mean shape model of
each observed vertebra is performed. As the length of the lumbar spine and relative
orientation of each vertebra can be obtained from optimal path M∗ (Eq. 2), each
mean shape model is first scaled according to the ratio between the obtained length
and the length of the mean shape model of the lumbar spine (Sect. 2.3), and oriented
according to the location of its neighboring mean shape models in the optimal path.
Next, a domain Ω7

v of three translations (i.e. coordinates x , y and z), one scaling
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(i.e. factor s) and three rotations (i.e. angles ϕx , ϕy and ϕz about coordinate axes
x , y and z, respectively) is initialized and used to interpolate the objective function
f (M, I ) (Eq. 1). However, as an exhaustive search through all n = 7 dimensions
is computationally expensive, the complexity is reduced dimension-wise by first
optimizing k = 4 dimensions consisting of translations and scaling, and then the
remaining k = 3 dimensions consisting of rotations (Sect. 2.1). The resulting align-
ment represents the final vertebra detection result.

3 Experiments and Results

The performance of the described spine and vertebra detection framework was tested
on a database of 10 CT images of the lumbar spine [11]1 (i.e. a total of 50 lumbar
vertebrae, with axial in-plane pixel size of 0.3–0.8mm and cross-sectional thickness
of 0.7–1.5mm) by applying a leave-one-out evaluation scheme. A reference segmen-
tation binary mask was available for each vertebra in the database. The framework
was implemented in C#, and executed on a personal computer with Intel Core i7
processor at 2.8GHz and 8GB of memory without graphics processing unit.

3.1 Experimental Details

The mean shape model of the lumbar spine (Sect. 2.2) was obtained by applying the
marching cubes algorithm [6] to binary masks representing reference segmentations
of each vertebra, resulting in 3D face-vertexmeshesM = {

V, F
}
of genus 1 (i.e. the

number of holes is 1, as expected for lumbar vertebrae). The corresponding number
of vertices |V | =31.000–161.000 (the number of faces was |F | = 2|V |) was fur-
ther reduced to |V | =3.228–5.642 by isotropic remeshing with mean edge length of
2.25mm[7].After establishing correspondences amongmeshes of the same vertebral
level by the coherent point drift algorithm [8] and applying the generalized Procrustes
alignment [9], themean shapemodel of each lumbar vertebra was obtained. To detect
the spine and vertebrae in each 3D image, the interpolation-based approach was
applied by using splines for the interpolation function f̄ on an equidistant interpola-
tion grid, which usually results in a low interpolation error [3]. For spine detection
(Sect. 2.3), the interpolation domain Ω3

s was defined for each translation x , y and z
on the [−30mm,+30mm] interval (6mm step), with the resulting number of nodes
on the interpolation grid equal to 1331. For vertebra detection (Sect. 2.4), the inter-
polation domainΩ3

v was defined for translations x and y on the [−25mm,+25mm]
interval (5mm step), and for the translation z on the [−70mm,+70mm] interval
(5mm step), with the resulting number of nodes on the interpolation grid equal to

1 Publicly available through http://lit.fe.uni-lj.si.

http://lit.fe.uni-lj.si
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3, 509. For the subsequent more accurate alignment of the mean shape model of
each lumbar vertebra (Sect. 2.5), the interpolation domain Ω7

v was defined for each
translation x , y and z on the [−7mm,+7mm] interval (2mm step), for the scaling
factor s on the [0.9, 1.1] interval (0.05 step), and for each rotation ϕx , ϕy and ϕz

on the [−9◦,+9◦] interval (0.86◦ step), with the resulting number of nodes on the
interpolation grid equal to 1,985. In the case of spine detection, the initial location
of the mean shape model of the lumbar spine, i.e. the origin of interpolation domain
Ω3

s , was set to the average location of the spine, as observed in the set of training
images used to generate the mean shape model of the lumbar spine. In the case of
vertebra detection and vertebra alignment, the initial location of the mean shape
model of each lumbar vertebra, i.e. the origin of interpolation domains Ω3

v and Ω7
v ,

was set according to the location resulting from the previous optimization step, i.e.
according to the results of spine detection and vertebra detection, respectively.

3.2 Results

The performance of the proposed framework was evaluated by the mean sym-
metric absolute surface distance (MSD), symmetric root-mean-square surface dis-
tance (RMSSD), maximal symmetric absolute surface distance (MaxSD) and Dice
coefficient (DICE), computed between the resulting 3D meshes and correspond-
ing reference segmentation binary masks. Detailed results for the detection of
individual vertebral levels are presented in Table1. The overall lumbar vertebra
detection performance (mean ± standard deviation) was MSD = 1.25 ± 0.41mm,
RMSSD = 1.73±0.55mm,MaxSD = 8.64±2.46mmandDICE = 83.67±4.44%.
On average, spine detection took around 1min, vertebra detection around 2min, and
vertebra alignment around 40 s. Figure2 shows the initialization of the mean shape
model of the lumbar spine and the resulting spine detection results, while Fig. 3
shows the results of vertebra detection and vertebra alignment for selected examples
of CT lumbar spine images from the evaluation database.

Table 1 Final lumbar vertebra detection results in terms of mean symmetric absolute surface
distance (MSD), symmetric root-mean-square surface distance (RMSSD), maximal symmetric
absolute surface distance (MaxSD) and Dice coefficient (DICE), reported as mean ± standard
deviation

Vertebral level MSD (mm) RMSSD (mm) MaxSD (mm) DICE (%)

L1 1.02 ± 0.23 1.44 ± 0.33 8.00 ± 2.79 85.95 ± 2.63

L2 1.04 ± 0.18 1.46 ± 0.25 6.93 ± 1.32 85.62 ± 2.06

L3 1.17 ± 0.23 1.61 ± 0.29 8.35 ± 1.18 84.94 ± 2.11

L4 1.45 ± 0.52 2.05 ± 0.73 9.50 ± 2.50 81.56 ± 4.85

L5 1.54 ± 0.50 2.10 ± 0.63 10.42 ± 2.75 80.26 ± 2.75
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Fig. 2 Selected examples of CT lumbar spine images, shown in mid-sagittal cross-sections, with
overlayed initialization of the mean shape model (top row) and spine detection results (bottom row)

Fig. 3 Selected examples of CT lumbar spine images, shown in mid-sagittal cross-sections, with
overlayed vertebra detection results (top row) and vertebra alignment result (bottom row)

4 Discussion and Conclusion

Computerized spine analysis is above all based on accurate and robust detection of
each vertebra, however, this task is hampered by the fact that neighboring verte-
brae are similar in shape. As a result, vertebrae cannot be successfully distinguished
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without observing the whole spine, or at least a larger spine section, and without
observing neighboring structures, such as the sacrum, ribs or specific internal organs.
Semi-automatic vertebra detection methods require manual identification of such an
anchor structure [12], or manual annotation in image of one modality followed by its
propagation to images of different modalities of the same subject [13]. On the other
hand, automated vertebra detection approaches split the problem into detection of
candidate objects of interest, i.e. vertebrae or intervertebral discs,which is often based
on inter-object spatial relationships. Feature-based vertebra detection methods treat
vertebra centers or all image voxels belonging to the observed vertebra as points
of interest, i.e. landmarks, and model them by single intensity- or Haar wavelet-
based features that are combined into landmark detectors by Adaboost or random
forests approaches [14–16]. Alternatively, vertebra detection can rely on vertebra
shape, which is often described by active shape and appearance models [17–19],
generalized Hough transforms [20, 21] or features that are based on vertebral
bilateral symmetry and cylindricality of the vertebral body [22]. Although most
of the approaches assume that the whole spine or a predefined part of the spine is
present in the image, several frameworks also deal with more challenging images of
arbitrary field of view [15, 16, 20].

In this paper, we propose a novel lumbar spine and vertebra detection framework.
As vertebra detection suffers from convergence to wrong maxima, i.e. the target
vertebra can be mis-detected at the location of its neighboring vertebrae, all local
maxima of the objective function have to be detected. We therefore cannot use stan-
dard optimizers such as the Powell’s optimizer [1] or CMA-ES [2], which are usually
limited by their initialization and detect a single maximum. We proposed to use a
novel optimizer that is based on interpolation theory [3] and takes into account the
complete domain, where the object of interest can be located and where the objective
function is defined. To avoid brute force analysis over the domain, we computed the
objective function on a sparse set of points on that domain and then approximated the
objective function on the complete domain. The obtained spine and vertebra detec-
tion results can be used to initialize methods for accurate segmentation of individual
vertebrae [23]. However, interpolation theory is not limited to vertebra detection
or even object detection, but can be used to speed up optimization and smooth the
potentially harmful fluctuations of the objective function in various image analysis
problems. In our future work, we therefore plan to extend this methodology, validate
it on larger databases of spine images with different field of view, and combine it
with vertebra segmentation.

Acknowledgments This work was supported by the Slovenian Research Agency (ARRS) under
grants P2–0232 and L2–4072.
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An Improved Shape-Constrained Deformable
Model for Segmentation of Vertebrae
from CT Lumbar Spine Images
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Abstract Accurate and robust segmentation of spinal and vertebral structures from
medical images is a challenging task due to a relatively high degree of anatomical
complexity and articulation of spinal structures, as well as due to image spatial res-
olution, inhomogeneity and low signal-to-noise ratio. In this paper, we describe an
improved framework for vertebra segmentation that is based on an existing shape-
constrained deformablemodel, whichwasmodifiedwith the aim to improve segmen-
tation accuracy, and combined with a robust initialization that results from vertebra
detection by interpolation-based optimization. The performance of the proposed seg-
mentation framework was evaluated on 10 computed tomography (CT) images of
the lumbar spine. The overall segmentation performance of 0.43± 0.14mm in terms
of mean symmetric absolute surface distance and 93.76± 1.61% in terms of Dice
coefficient, computed against corresponding reference vertebra segmentations, indi-
cates that the proposed framework can accurately segment vertebrae fromCT images
of the lumbar spine.
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1 Introduction

Accurate and robust segmentation of spinal and vertebral structures from medical
images is a challenging task due to a relatively high degree of anatomical complex-
ity (i.e. vertebrae consisting of the vertebral body, pedicles, laminae and spinous
process) and due to the articulation of vertebrae with each other. In addition to the
complexity and articulation, the problem also lies in insufficient image spatial resolu-
tion, inhomogeneity and low signal-to-noise ratio. Since skeletal structures have high
contrast when observed in computed tomography (CT) images, CT is commonly the
modality of choice for assessing three-dimensional (3D) skeletal structures, such as
the spine and vertebrae.

In recent years, several automated and semi-automated methods focusing on the
vertebra segmentation problemhave been developed forCT images.Kim andKim [8]
proposed a fully automated method that constructs 3D fences to separate vertebrae
from valley-emphasized Gaussian images, and then the region growing algorithm is
applied within 3D fences to obtain the final segmentation. Klinder et al. [9] progres-
sively adapted tube-shaped segments to extract the spine curve, performed vertebra
detection on curved-planar reformatted images using the generalized Hough trans-
form, identified vertebrae by rigid registration of appearance models to the detected
candidates, and obtained the final segmentation by adapting shape-constrained mod-
els of the individual vertebrae.Kadoury et al. [6, 7] built an articulated shapemanifold
from a training database by embedding the data into a low-dimensional sub-space,
and applied the Markov random field optimization to infer between the unseen target
shape and shape manifold. Lim et al. [10] incorporated local geometrical features
using theWillmore flow and prior shape knowledge by kernel density estimation into
a level set segmentation framework. Ma and Lu [12] introduced a learning-based
bone structure edge detection algorithm and hierarchical coarse-to-fine deformable
surface-based segmentation that relied on response maps of a trained edge detector.
Rasoulian et al. [14] developed a statistical multi-vertebrae model of shape and pose,
and proposed a novel iterative expectation maximization registration technique to
align the model to CT images of the spine. Ibragimov et al. [5] presented a segmen-
tation framework, inwhich a novel landmark-based shape representation of vertebrae
was combined with a landmark detection framework based on game theory.

In this paper, we describe an improved framework for vertebra segmentation
that is based on the shape-constrained deformable model [9, 15]. Our framework is
initialized by the results of a novel vertebra detection and alignment algorithm [4], and
the segmentation of each vertebra is then obtained by a mesh deformation technique
that moves mesh vertices to their optimal locations while preserving the underlying
vertebral shape. The performance of the proposed segmentation framework was
evaluated on vertebrae from CT images of the lumbar spine, and the obtained results
with the mean error below 0.5mm indicate that accurate segmentation of vertebrae
was achieved.
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2 Methodology

2.1 Mean Shape Model of the Lumbar Spine

Let set T contain 3D images of the lumbar spine, where each image is assigned
a series of binary masks representing reference segmentations of each individual
lumbar vertebra from level L1 to L5. To extract a shape model of each vertebra from
each image inT , themarching cubes algorithm [11] is applied to each corresponding
binary mask, resulting in a 3D face-vertex mesh consisting of vertices with triangle
connectivity information. The dependency of the number of vertices in each mesh
on the size of the image voxel and of the observed vertebra is removed by isotropic
remeshing [1]. In order to establish pointwise correspondences among vertices of
the same vertebral level, the nonrigid transformation among sets of vertices is recov-
ered using state-of-the-art coherent point drift algorithm [13] that outperforms other
methods for point set registration. Finally, the generalized Procrustes alignment [3]
is used to remove translation, rotation and scaling from correspondingmeshes, yield-
ing the mean shape model of each vertebra, represented by a 3D face-vertex mesh
M = {

V ,F
}
of |V | vertices and |F | faces (i.e. triangles). Themean shapemodel of

the whole lumbar spine, i.e. a chain of mean shape models of individual vertebrae, is
further used for spine detection, while the mean shapemodels of individual vertebrae
are used for vertebra detection and segmentation in an unknown 3D image I.

2.2 Vertebra Detection

The detection of vertebrae in an unknown 3D image I was performed by a novel opti-
mization scheme that is based on interpolation theory [4]. The optimization scheme
consists of three steps: spine detection, vertebra detection and vertebra alignment.
To detect the spine in image I, the pose of mesh M representing the mean shape
model of the lumbar spine (i.e. a chain of meshes representing individual vertebrae
from L1 to L5) is optimized against three translations (i.e. coordinates x , y and z rep-
resenting sagittal, coronal and axial anatomical directions, respectively). The global
maximum of the resulting interpolation represents the location of the spine in the 3D
image, and is further used to initialize the detection of individual vertebrae. To detect
individual vertebrae, the pose of mesh M, now representing the mean shape model
of the observed lumbar vertebra, is optimized against three translations, however, in
this case all local maxima of the resulting interpolation are extracted, corresponding
to locations of the observed and neighboring vertebrae. The correct location of each
vertebra is determined by the optimal path that passes through a set of locations,
where each location belongs to a local maxima at a different vertebral level. Finally,
a more accurate alignment of the mean shape model of each observed vertebra is per-
formed by optimizing the pose of each model against three translations, one scaling
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(i.e. factor s) and three rotations (i.e. angles ϕx , ϕy and ϕz about coordinate axes x , y
and z, respectively). The resulting alignment represents the final vertebra detection
result. A detailed description of the interpolation-based optimization scheme can be
found in [4].

2.3 Vertebra Segmentation

After the interpolation-based alignment [4] of the mean shape model of each lumbar
vertebra to the unknown image I, segmentation of each lumbar vertebra is performed
by a mesh deformation technique that moves mesh vertices to their optimal locations
while preserving the underlying vertebral shape [9, 15]. In this iterative procedure,
the following two steps are executed in each iteration: image object detection for
mesh face centroids that are represented by the centers of mass for mesh faces
F ∈ M, followed by reconfiguration of mesh vertices V ∈ M. By combining the
robust initialization resulting from vertebra detection (Sect. 2.2) with modifications
to themesh deformation technique, we improve the accuracy of the resulting vertebra
segmentation.

2.3.1 Object Detection

By displacing each mesh face centroid ci ; i = 1, 2, . . . , |F | along its corresponding
mesh face normal n(ci ), a new candidate mesh face centroid c∗

i is found in each kth
iteration:

c∗
i = ci + δ j∗i n(ci ), (1)

where δ is the length of the unit displacement, and j∗i is an element from set J ;
j∗i ∈ J. SetJ represents the search profile along n(ci ), called the sampling parcel
(Fig.1):

J =
{

− j,− j + 1, . . . , j − 1, j
}
; j = J − k + 1, (2)

which is of size 2J +1 at initial iteration k = 1 and 2(J − K +1)+1 at final iteration
k = K. The element j∗i that defines the location of c∗

i is determined by detecting
vertebra boundaries:

j∗i = argmax
j∈J

{
F

(
ci , ci + δ j n(ci )

) − D δ2 j2
}
. (3)

where c′
i = ci + δ ji n(ci ) is the candidate location for c∗

i (Eq. 1), and parameter
D controls the tradeoff between the response of the boundary detection operator
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Fig. 1 Each i th face centroid ci of the 3D face-vertex mesh of the observed vertebra is displaced
for δ ji along the sampling parcel in the direction of its face normal n(ci ). In an iterative framework,
where the length of the sampling parcel is gradually reduced, each centroid moves to the location
c∗

i that best corresponds to vertebra boundaries (dashed curve)

F (Eq. 4) and the distance from ci to c′
i . In comparison to the original approach

[9, 15], we propose an improved boundary detection operator F that is based on
image intensity gradients, weighted by an image appearance operator:

F(ci , c′
i ) = gmax

(
gmax + ∥∥gW (c′

i )
∥∥)

g2
max + ∥∥gW (c′

i )
∥∥2

〈
n(ci ), gW (c′

i )
〉
, (4)

where ‖·‖ denotes the vector norm, 〈·, ·〉 denotes the dot product, gmax is the estimated
mean amplitude of intensity gradients at vertebra boundaries that is used to suppresses
theweighted gradients, whichmay occur if the gradient magnitude at the boundary of
the object of interest is considerably smaller thanof another object in its neighborhood
(e.g. pedicle screws), and gW is the image appearance operator at candidate mesh
centroid location c′

i :

gW (c′
i ) = (

1 + C(c′
i )

)
g(c′

i ), (5)

where g(c′
i ) is the intensity gradient at c′

i and C(c′
i ) ∈ [0, 1] is the continuous

response to the Canny edge operator [2]. By adding additional weights to the image
intensity gradients, vertebra boundary points are more likely to be detected. In con-
trast to the original technique [9, 15], the size of the sampling parcel J (Eq. 2) is
reduced in each iteration k and the image intensity gradients g (Eq.5) are additionally
weighted, both to improve the accuracy of the resulting segmentation.
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2.3.2 Mesh Reconfiguration

Once the new candidate mesh face centroids c∗
i are detected, mesh M = {V ,F }

is reconfigured in each kth iteration by minimizing the weighted sum E of energy
terms:

min
M

{
E

} = min
M

{
Eext + αEint

}
, (6)

whereα is theweighting parameter. The external energy Eext attractsmeshM to new
face centroids c∗

i , i = 1, 2, . . . , |F | (Eq. 1), that are located on vertebra boundaries:

Eext =
|F |∑

i=1

w∗
i

〈
c∗

i − ci ,
gW (c∗

i )∥∥gW (c∗
i )

∥∥

〉2
(7)

where |F | is the number of mesh faces, gW is the image appearance operator (Eq.5),
and wi ; i = 1, 2, . . . , |F |, are weights that are defined according to the obtained j∗i
(Eq. 3) to give a greater influence to more promising centroid locations:

w∗
i = max

{
0, F(ci , c∗

i ) − D δ2 j∗i
2
}

(8)

The internal energy Eint restricts the flexibility of mesh M by penalizing the
deviation between deformation vertices V and mean vertices V m :

Eint =
|V |∑

i=1

∑

j∈Ni

∥∥∥
(

vi − v j

)
−

(
s R

(
vm

i − vm
j

)
+ t

)∥∥∥
2

(9)

where vi and vm
i are vertices from sets V and V m , respectively,Mm = {V m,Fm}

represents the mean shape model of the observed lumbar vertebra (Sect. 2.1), andNi

is the set of vertices neighboring to vi (or vm
i , since the topology is preserved). The

scaling factor s, rotation matrix R and translation vector t that align mesh vertices
vi to the mean vertices vm

i are determined prior to calculation of Eq. (9) by using
Procrustes superimposition [3].

3 Experiments and Results

The performance of the described vertebra segmentation framework was tested on
a database of 10 CT images of the lumbar spine (i.e. a total of 50 lumbar verte-
brae, with axial in-plane pixel size of 0.3–0.8mm and cross-sectional thickness of
0.7–1.5mm) by applying a leave-one-out evaluation scheme. A reference segmen-
tation binary mask was available for each vertebra in the database. The framework
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was implemented in Matlab, and executed on a personal computer with Intel Core
i5 processor at 3.2GHz and 16GB of memory without a graphics processing unit.

3.1 Experimental Details

The mean shape model of the lumbar spine (Sect. 2.1) was obtained by applying the
marching cubes algorithm [11] to binarymasks representing reference segmentations
of each vertebra, resulting in 3D face-vertex meshes M = {

V ,F
}
of genus 1

(i.e. the number of holes is 1, as expected for lumbar vertebrae). The corresponding
number of vertices |V | = 31.542–161.790 (the number of faces was |F | = 2 |V |)
was further reduced to |V | = 3.228–5.642 by isotropic remeshing with mean edge
length of 2.25mm [1]. After establishing correspondences among meshes of the
same vertebral level by the coherent point drift algorithm [13] and applying the
generalized Procrustes alignment [3], the mean shape model of each lumbar vertebra
was obtained. The initialization of vertebra segmentation was obtained from the
results of interpolation-based vertebra detection [4] based on spline approximation
on an equidistant grid. Segmentation of each vertebra (Sect. 2.3) consisted of 25
iterations (from k = 1 to k = 25) of object detection and mesh reconfiguration. The
corresponding parameters, which were obtained from the original mesh deformation
technique [9, 15] and not further tuned to search for a possibly better segmentation
performance on the tested database, were set to J = 25 (Eq.2), D = 0.6mm−2

(Eqs. 3 and 8), δ = 0.3mm (Eqs. 1, 3 and 8), gmax = 100HU (Eq.4) and α = 33
(Eq.6). The minimization of the sum of energy terms (Eq.6) was performed by the
conjugate gradient method.

3.2 Results

The performance of the proposed framework was evaluated by the mean sym-
metric absolute surface distance (MSD), symmetric root-mean-square surface dis-
tance (RMSSD), maximal symmetric absolute surface distance (MaxSD) and Dice
coefficient (DICE), computed between the resulting 3D meshes and corresponding
reference segmentation binary masks. Detailed results for the segmentation of indi-
vidual vertebral levels are presented in Table1 separately for the original mesh
deformation framework [9, 15] and for the proposed framework that is based on
a robust initialization and additional modifications with the aim to improve the
framework performance. The overall vertebral segmentation performance (mean ±
standard deviation) was MSD = 0.43 ± 0.14mm, RMSSD = 0.83 ± 0.33mm,
MaxSD = 7.32 ± 3.23mm and DICE = 93.76 ± 1.61% for the proposed
framework, compared to MSD = 0.55 ± 0.21mm, RMSSD = 1.10 ± 0.47mm,
MaxSD = 9.65± 4.37mm and DICE = 92.19± 2.19% of the original framework.
The detection of all five lumbar vertebrae (i.e. levels from T1 to T5) took on average
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Table 1 Lumbar vertebra segmentation results in terms of mean symmetric absolute surface
distance (MSD), symmetric root-mean-square surface distance (RMSSD), maximal symmetric
absolute surface distance (MaxSD) and Dice coefficient (DICE), reported as mean ± standard
deviation

Vertebral level MSD (mm) RMSSD (mm) MaxSD (mm) DICE (%)

Original framework [9, 15]

L1 0.46 ± 0.13 0.92 ± 0.34 8.67 ± 4.11 93.37 ± 1.49

L2 0.42 ± 0.11 0.78 ± 0.23 6.79 ± 2.80 93.63 ± 1.24

L3 0.54 ± 0.14 1.13 ± 0.48 11.60 ± 5.81 92.60 ± 1.21

L4 0.67 ± 0.19 1.34 ± 0.40 11.04 ± 3.07 90.94 ± 1.98

L5 0.69 ± 0.28 1.32 ± 0.62 10.17 ± 4.41 90.43 ± 2.79

Proposed framework

L1 0.34 ± 0.09 0.69 ± 0.32 6.52 ± 4.04 94.83 ± 0.90

L2 0.36 ± 0.08 0.66 ± 0.16 5.72 ± 1.52 94.47 ± 0.82

L3 0.40 ± 0.11 0.76 ± 0.26 6.28 ± 2.13 94.06 ± 0.97

L4 0.52 ± 0.12 1.05 ± 0.27 9.56 ± 2.26 92.73 ± 1.44

L5 0.51 ± 0.19 0.99 ± 0.44 8.52 ± 4.08 92.71 ± 2.28

Fig. 2 An example of vertebra segmentation initialization (in blue) and vertebra segmentation
results (in yellow) in comparison to reference segmentation (in red) for a selected CT lumbar spine
image, shown in selected a mid-sagittal, b mid-coronal and c mid-axial cross-sections (Color figure
online)

around 220s, while the segmentation of each individual vertebra took on average
around 1min. An example of the resulting segmentation is for a selected CT lumbar
spine image shown in Fig. 2.
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4 Discussion and Conclusion

In this paper, we combined robust detection of the object of interest [4] with an
improved shape-constrained deformablemodel to segment vertebrae fromCT images
of the lumbar spine. Vertebra segmentation from 3D spine images has been already
addressed in several studies [6–10, 12, 14]. The best performance in terms of accu-
racy was reported by Klinder et al. [9], who reported a mean point-to-surface error
(i.e. one surface is represented by a set of surface points and the other by a surface
mesh model) of 0.76mm by applying the original shape-constrained deformable
model technique, but also progressively adapted tube-shaped segments to extract
the spine curve, performed vertebra detection on curved-planar reformatted images
using the generalized Hough transform, and identified vertebrae by rigid registra-
tion of appearance models to the detected candidates. On the other hand, Kadoury
et al. [6, 7] reported the highest Dice coefficient, i.e. of 92.5%, which was obtained
by building an articulated shape manifold from a training database and embedding
the data into a low-dimensional sub-space, followed by the Markov random field
optimization to infer between the unseen target shape and shape manifold. Although
the overall results of the proposed method of 0.43± 0.14mm in terms of MSD and
93.76± 1.61% in terms of the Dice coefficient can not be directly compared to the
results reported by the existing studies because of different evaluation methodolo-
gies and data collection techniques, as well as because of different databases, we can
conclude that the proposed automated spine and vertebra detection segmentation
framework produces accurate results. Moreover, to objectively compare the effects
of the performedmodifications of the original shape-constrained deformablemodels,
we report vertebra segmentation results also for the original technique obtained on
the same database of CT lumbar spine images. From Table1 it can be observed that
an improvement of around 20% in terms of MSD in favor of the proposed frame-
work was achieved. It can be therefore concluded that the performed modifications
improved the accuracy of vertebra segmentation, and that when combined with a
robust initialization, the proposed framework can accurately segment vertebrae from
CT images of the lumbar spine.
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Detailed Vertebral Segmentation
Using Part-Based Decomposition
and Conditional Shape Models
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Abstract With the advances in minimal invasive surgical procedures, accurate and
detailed extraction of the vertebral boundaries is required. In practice, this is a difficult
challenge due to the highly complex geometry of the vertebrae, in particular at the
processes. This paper presents a statistical modeling approach for detailed vertebral
segmentation based on part decomposition and conditional models. To this end,
a Vononoi decomposition approach is employed to ensure that each of the main
subparts the vertebrae is identified in the subdivision. The obtained shape constraints
are effectively relaxed, allowing for an improved encoding of the fine details and
shape variability at all the regions of the vertebrae. Subsequently, in order tomaintain
the statistical coherence of the ensemble, conditional models are used to model the
statistical inter-relationships between the different subparts. For shape reconstruction
and segmentation, a robust model fitting procedure is introduced to exclude outlying
inter-part relationships in the estimation of the shape parameters. The experimental
results based on a database of 30 CT scans show significant improvement in accuracy
with respect to the state-of-the-art and the potential of the proposed technique for
detailed vertebral modeling.
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1 Introduction

Automatic segmentation of the vertebrae is an important pre-requisite for a number
of clinical applications, ranging from the assessment of spinal disorders to image-
guided interventions. The latter one in particular, with the recent advances inminimal
invasive surgical procedures, requires accurate and detailed extraction of the verte-
bral boundaries. However, this is challenging in practice due to the highly complex
geometry of the vertebrae, in particular at the region of the processes. Figure1 shows
some examples of typical areas of high geometrical complexity and curvature in the
lumbar vertebra L5.

Amongst existing techniques for vertebral image segmentation, statistical models
of 3D shape [4] have been extensively used [2, 3, 5, 7, 8] due to their ability to build
a shape prior from a representative training population. However, these methods
consider at best a whole vertebra as the smallest unit for the construction of the point
distribution models (PDMs). Due to the large variability of the vertebrae in particular
at the processes and the generally small number of samples available for training,
the obtained models are too constraining and not flexible enough to localize the fine
details at areas of high curvatures.

In this paper, we present a new method for detailed modeling and segmentation
of the vertebrae. The fundamental idea behind the proposed technique is to decom-
pose each vertebra into a set of subparts based on their geometrical properties. By
using a Vononoi [9] decomposition approach, we ensure that each of the main sub-
parts of the vertebrae is well identified. With this approach, the shape constraints are
effectively relaxed, allowing for an improved encoding of the fine details and shape
variability at all the regions of the structures. Subsequently, in order to maintain the
statistical coherence of the ensemble, conditional models are used to model the sta-
tistical inter-relationships between the different subparts. For shape reconstruction
and segmentation, a robust model fitting procedure is introduced to exclude outlying

Fig. 1 Examples of segmentations (in blue) obtained with local PDMs, showing suboptimal fitting
in areas of complex geometry and high curvature on the spine (Color figure online)
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inter-part relationships in the estimation of the shape parameters. The proposed tech-
nique is validated with a total of 30 spinal CT scans.

2 Method

The proposed framework consists of threemain stages. Firstly, in Sect. 2.1, a subdivi-
sion of each vertebra into a number of subparts is proposed based on an approximate
Voronoi region decomposition. Subsequently, the conditional models describing the
statistical inter-relationships between the subparts are presented in Sect. 2.2. Finally,
a model fitting approach based on all pair wise conditional models is introduced in
Sect. 2.3, with the aim to estimate the shape parameters for each subpart robustly.

2.1 Vertebral Decomposition

Let us denote x = (x1, . . . , xn)T the landmark-based shape representation of each
vertebra, where n is the number of landmarks used to discretize the 3D shape. The
aim of this section is to obtain a subdivision of x into K sub-components.

We do this in this paper by using a polygon clustering algorithm described in [9],
which provides a compact subdivision of the shape based on the concept of a Voronoi
diagram [1]. Furthermore, let us denote V = (C1, . . . , Cm)T the triangulation of the
shape x, where Ci , i = 1, . . . , m, represents each face on the mesh, and E j the set of
edges between all adjacent triangles. Given the centroids ci corresponding to each of
the triangular triangles Ci , the algorithm computes an approximation of a centroidal
Voronoi diagram (CVD). The energy term to minimize is:

F =
K∑

k=1

⎛

⎝
∑

i∈Rk

wi ||ci − cRk ||2
⎞

⎠ , (1)

where Rk is a subset of V (i.e. subpart of the shape), cRk is the center of the region,
and wi is the area of triangle Ci .

To minimize Eq.1, we use an iterative approach over the subset of edges E j

between adjacent regions. The regions Rk are initialized as a single triangle that is
randomly chosen amongst V. The remaining triangles are assigned to the null region
R0. We then iterate only over the edges that are between two regions Rk and Rl ,
or between any Rk and R0. Then we assign one of the two triangles adjacent to
the current edge to the region that minimizes Eq.1. At some point, the region R0
will become empty. The iterative algorithm will continue until no modification of
the region assignments for the triangles lead to an improvement of the subdivision
according to Eq.1.
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Fig. 2 The obtained Voronoi decomposition with 18 subparts

Given that the regions of highest complexity and curvature on the vertebra are
the different vertebral processes, we chose the lowest number of clusters K such
that points selected roughly at the distal region of every process (transverse, supe-
rior/inferior articular and spinous) are assigned to a different region after the subdi-
vision.

Once the algorithm converges, all Ci ∈ V will belong to a unique region Ri .
However, the points that lie on the boundary edges between subparts will now belong
to two adjacent regions. To resolve this ambiguity, we perform a last stepwherewe go
through the different regions sequentially and assign boundary points to the current
region unless previously assigned.

Figure2 shows the obtained subdivision with K = 18, where it can be seen that
the main regions of high curvature now belong to a unique subpart.

2.2 Conditional Model Parametrization

In the previous section we obtained K subcomponents xk , k = 1, . . . , K . The aim
of this section is to describe the statistical modeling of the inter-part probability
distributions, i.e. P(xk |xl), where k, l = 1, . . . , K and k �= l. More specifically,
we would like to obtain new constraints for each part xk based on its conditional
relationship with xl , that is, a new mean and covariance in the space of the shape
parameters bk . Let us denote μkl and Σkl the values that form the new conditional
constraints. In this paper, we choose to model P(xk, xl) using a normal probability
distribution. Thus, the mean and the covariance estimates are calculated as:

μkl = ΣklΣ
−1
ll bl (2)

Σkl = Σkk − ΣklΣ
−1
ll Σlk (3)
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bl in Eq.2 is the parametric representation after eigendecomposition of the a
given conditioning shape Sl , and the covariance matrices in Eqs. 2 and 3 are obtained
from the partitioned covariance matrix in Eq.4:

Σ =
[

Σkk Σkl

Σlk Σll

]
(4)

In Eqs. 2 and 3 ΣklΣ
−1
ll are called the matrix regression coefficients of bk on bl .

In order to compute the conditional mean μ and covariance matrix Σ, we need
to compute the inverse of the covariance matrix of the predictor shape, however, as
the dimensionality of the shapes is much larger than the number of training samples
available, the covariance matrix becomes singular, and cannot be inverted. Also,
the computational burden of computing inverse of matrices representing several
thousands of points can become cumbersome. We address this issues by reducing
the dimensionality of the problem using PCA before computation of the mean and
covariance matrix as follows [6]:

given subshapes xk and xl ,

xk = xk + Φkbk (5)

xl = xl + Φlbl , (6)

their parametric representation is

bk = ΦT
k xk − xk (7)

bl = ΦT
l xl − xl . (8)

Then the cross-covariancematrixΣkl = BkBT
l is the product of parametric shapes

matrices Bk and Bl . The self-covariance matrices Σkk and Σll are the diagonal
eigenvalue matrices Λk and Λl obtained by eigendecomposition of the individual
subparts.

The proposed parametrization of the conditional model has two important ben-
efits. Firstly, it decreases the over-constraining of the global model caused by the
dimensionality disparity between the available samples and the natural variabilty of
the shapes. Additionally, and as detailed in next section, the inter-part models can
be used as a mechanism to find the optimal domain of valid subregions and exclude
incorrect localized segmentations due to image inhomogeneities.

2.3 Robust Model Fitting

To maintain the coherence of the ensemble in spite of the decomposition, the esti-
mation of the shape parameters must be carried out by considering all pairwise
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conditional probabilities P(xk |xl). This is challenging at the segmentation stage
because all subparts are being optimized simultaneously, and therefore, there is a
degree of uncertainty surrounding the values of the different xl in P(xk |xl). This
could lead to inaccurate constraining and parameter estimation of xk if some of the
xl , l = 1, . . . , K, k �= l are erroneous during the segmentation procedure. To address
this problem, we use a median-based estimation approach to exclude potentially
incorrect conditional relationships.

Firstly, we calculate the initial shape parameter b0
k by projecting the boundary

feature points (as obtained using normal search profile) onto the standard PDM
of xk . Subsequently, we calculate K − 1 shape parameters bkl by considering the
K − 1 shape constraints formed by the conditional mean parameter μkl and its
corresponding bounds λkl (derived from the eigenvalues of Σkl ), i.e.,

bkl =
⎧
⎨

⎩

b0
k if |b0

k − μkl | ≤ 3
√

λkl

μkl + 3
√

λkl if bk > μkl + 3
√

λkl

μkl − 3
√

λkl if bk < μkl − 3
√

λkl

(9)

Due to the fact that some subparts are inevitably erroneous during the image search
due to imaging inhomogeneities, some of the bkl values will be incorrect. To exclude
these values and obtain a consensus robust estimation of the shape parameters, we
use a median-based final estimation of bkl , i.e.,

b f inal
k = median(bkl). (10)

3 Validation

Wevalidate ourmethod using 30 image volumes of the lumbar spine (L1-L5) fromCT
scans. The image datasets were collected at the National Center for Spinal Disorders
(Budapest, Hungary). The images have an in-plane resolution of 0.6 × 0.6 mm and
slice thickness of 0.62 mm. All images were manually segmented using open source
software.

All segmentations were performed by preserving 98% of the total variance,
and allowing ±3 standard deviations from the mean. All segmentations are per-
formed following a leave-one-out scheme. Accuracy is measured as the RMS point
to surface distance between the manual segmentations and the reconstructions.
Furthermore, we compare the proposed approach against the results obtained with a
standard ASM using single-vertebra PDMs.

Figure3 shows the segmentation errors for all the 30 scans using both ASM
methods. It is evident that the proposed technique outperforms the single model
ASMs for nearly all cases (with the exception of case 24, with minor differences).
The average improvement is of 16% and in some cases the improvement is over
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Fig. 3 Point to surface segmentation error comparison between the proposedmethod and a standard
ASM single-vertebra PDM

Table 1 Image segmentation errors (mm) comparing the performance of our parts-based models
(pb), and a single-vertebra PDM (sv). Errors are shown individually for each lumbar vertebra

Structure L1 L2 L3 L4 L5

pb sv pb sv pb sv pb sv pb sv

Mean 0.81 1.05 0.82 1.08 0.84 1.05 0.88 1.12 1.06 1.23

± Std 0.13 0.15 0.15 0.23 0.17 0.19 0.20 0.25 0.24 0.18

20% due to the ability of the proposed technique to better encode the fine details of
the vertebrae.

Table1 summarizes the segmentation results for the proposed part-based tech-
nique (pb) and the single vertebra ASM (sv) for the different lumbar vertebrae
(L1 to L5). It can be seen that the performance of the proposed technique is consis-
tently better for the entire lumbar spine.

Finally, we show in Fig. 4 two illustrations of the error distribution for both the
standard ASM and the proposed technique. It can be seen that the errors introduced
locally by the use of a single vertebral model are corrected by the proposed parts-
based approach. For both examples, the errors are consistently low in all regions of
the vertebra.



102 M. Pereañez et al.

Fig. 4 Point to surface segmentation error comparison between the proposed method (right
top/bottom), and a standard ASM single-vertebra PDM (left top/bottom)

4 Conclusions

In this paper,we presented a newpart-basedASMapproach for detailed segmentation
of the lumbar vertebrae. The proposed technique addresses the difficulty tomodel the
variability in the area of high complexity and curvature by decomposing the vertebrae
into a set of subparts, which are subsequently linked using conditional shape models.
A robust median-based estimation of the shape parameters of each subpart is used to
minimize potential errors due to the presence of image inhomogeneities. The results
indicate potential for more detailed localization of the fine details of the vertebrae.
Future work include the study of the effect of the number of subparts on the models
and segmentation properties.
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Automatic Segmentation of the Spinal
Cord Using Continuous Max Flow
with Cross-sectional Similarity
Prior and Tubularity Features

Simon Pezold, Ketut Fundana, Michael Amann, Michaela Andelova,
Armanda Pfister, Till Sprenger and Philippe C. Cattin

Abstract Segmenting tubular structures from medical image data is a common
problem; be it vessels, airways, or nervous tissue like the spinal cord. Many
application-specific segmentation techniques have been proposed in the literature,
but only few of them are fully automatic and even fewer approaches maintain a con-
vex formulation. In this paper, we show how to integrate a cross-sectional similarity
prior into the convex continuous max-flow framework that helps to guide segmen-
tations in image regions suffering from noise or artefacts. Furthermore, we propose
a scheme to explicitly include tubularity features in the segmentation process for
increased robustness and measurement repeatability. We demonstrate the perfor-
mance of our approach by automatically segmenting the cervical spinal cord in
magnetic resonance images, by reconstructing its surface, and acquiring volume
measurements.

S. Pezold (B) · K. Fundana · P.C. Cattin
Department of Biomedical Engineering, University of Basel, Basel, Switzerland
e-mail: simon.pezold@unibas.ch

K. Fundana
e-mail: ketut.fundana@unibas.ch

P.C. Cattin
e-mail: philippe.cattin@unibas.ch

M. Amann · M. Andelova · A. Pfister · T. Sprenger
University Hospital Basel, Basel, Switzerland
e-mail: michael.amann@usb.ch

M. Andelova
e-mail: michaela.andelova@usb.ch

A. Pfister
e-mail: armanda.pfister@usb.ch

T. Sprenger
e-mail: till.sprenger@usb.ch

© Springer International Publishing Switzerland 2015
J. Yao et al. (eds.), Recent Advances in Computational Methods and Clinical
Applications for Spine Imaging, Lecture Notes in Computational Vision
and Biomechanics 20, DOI 10.1007/978-3-319-14148-0_10

107



108 S. Pezold et al.

1 Introduction

The segmentation of oriented tubular structures in the body is a common task in
medical applications. Examples include measuring functional vessel volumes in
patients of cardiovascular diseases, or quantifying spinal cord atrophy (i.e., the loss
of nervous tissue) in a variety of neurodegenerative diseases. Multiple sclerosis (MS)
is a prominent example among the latter diseases. Clinical MS studies have shown
relationships between the degree of cord atrophy and both the strength of disease [1]
and disease duration [2]. Therefore, in recent years, assessing spinal cord atrophy
has become a highly active topic of research, resulting in a number of methods that
were specifically tailored towards the segmentation of the spinal cord (see e.g. the
recently published segmentation approaches of Asman et al. [3], De Leener et al. [4]
and the methods referenced therein, or the earlier review of Miller et al. [5]). Only
few of these methods, however, make extensive use of the fact that the spinal cord
is an inherently tubular structure.

In this paper, we present an automated method that aims at the more general goal
of segmenting tubular structures in image volumes.Manual intervention on the target
data is reduced to placing a landmark if the segmentation result is ambiguous. As
a proof of concept, we successfully demonstrate the practicability of our method
by segmenting the spinal cord in magnetic resonance (MR) images and acquiring
volume measurements from surface reconstructions of the segmentation results.

We adjust Yuan et al.’s continuous max-flow framework [6] to include a cross-
sectional similarity prior. This prior exploits the fact that an oriented elongated struc-
ture shows only little change in shape along its orientation. Thus, the prior may guide
the segmentation in regions where image information is missing or ambiguous. A
related approach of including a similarity prior is pursued by Qiu et al. [7]. Due to
their different problem setting (they aim for axial symmetry), they formulate parts
of the problem in a discrete setting, while our formulation is continuous. We also
propose a way to include tubularity features in the segmentation process. Specifically
for the segmentation of the spinal cord, we furthermore introduce the new csfness
feature, which is designed to improve discrimination between the spinal cord and
the cerebrospinal fluid (CSF) that immediately surrounds it.

2 Method

In the following subsections, we introduce our adaptation of the max-flow approach
and define the flow capacity functions together with the features that we use in
experiments.We present an algorithm to solve the adapted problem, andwe conclude
the section by proposing a scheme to reconstruct the surface from the segmentation
result, which we use for quantitative measurements.

Notation. Let I : � → I denote the intensity non uniformity corrected image
[8] with intensities in the normalized intensity space I = [0, 1], where
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x = (x1, x2, x3)T ∈ � are the coordinates in the continuous image domain � ⊂ R
3.

Throughout the whole section, we furthermore assume that the tubular structure of
interest is roughly oriented parallel to the x3 axis. Figuring out the orientation should
be straightforward for most clinical applications, as the subject’s orientation with
respect to the image can be determined from the image’s meta data for most clinical
imaging modalities.

Original max-flow formulation. A general formulation for the continuous max-
flow problem with spatial flow p(x), source flow ps(x), sink flow pt (x), and
corresponding flow capacities C(x), Cs(x), Ct (x) is stated by Yuan et al. [6] as

max
ps ,pt ,p

∫

�

psdx, (1)

subject to the flow capacity constraints

ps(x) ≤ Cs(x), pt (x) ≤ Ct (x), ‖p(x)‖ ≤ C(x) (2)

and the flow conservation constraint

div p(x) − ps(x) + pt (x) = 0. (3)

2.1 Cross-Sectional Similarity Prior

Following our goal to impose a cross-sectional similarity prior on the segmentation,
we split the spatial flow p(x) into an in-slice component q : � → R

2 and a through-
slice component r : � → R with respect to slices that lie perpendicular to the x3
axis (see Fig. 1a). The resulting continuous max-flow problem can then be written
as follows:

max
ps ,pt ,q,r

∫

�

psdx, (4)

subject to the new flow capacity constraints

ps(x) ≤ Cs(x), pt (x) ≤ Ct (x), ‖q(x)‖ ≤ α(x), |r(x)| ≤ β(x) (5)

and the new flow conservation constraint

div12 q(x) + r ′(x) − ps(x) + pt (x) = 0, (6)

where div12 q denotes the divergence of q perpendicular to the x3 axis and r ′ denotes
the derivative of r along the x3 axis.

The flow formulation now possesses the desired property of having the spatial
flow capacity C(x) of [6] represented by two separate terms, namely the in-slice
flow capacity α(x) and the through-slice flow capacity β(x). The latter capacity,
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(a) (b) (c) (d)

Fig. 1 Method overview. a Proposedflowconfiguration: the spatial flow is split into an in-slice com-
ponent q, perpendicular to the axis along which the tubular structure is oriented, and a through-slice
component r , parallel to the axis. b Sample sagittal slice of one of the images used for evaluation.
c Segmentation result. d Surface reconstruction with cutting planes for volume measurement

β(x), represents the cross-sectional similarity prior that allows for precise control
over the through-slice flow behavior: For example, we may choose an edge-based
cost function for α(x) that drives the segmentation towards edges in I, while setting
β(x) = β0 to enforce constant similarity throughout all slices. Or we may calculate
β(x) = β(x3) as a slice wise cost-function that, for each slice, adjusts the similarity
prior to the in-slice noise level (reinforcing the similarity prior if the noise level is
high and relaxing it if the noise level is low). Other combinations are possible, of
course: note that both α and β may be formulated pointwise.

Dual formulation. Introducing the Lagrange multiplier u = u(x) and following the
steps in [6], the max-flow problem can be reformulated as the equivalent primal-dual
model

max
ps ,pt ,q,r

min
u

∫

�

psdx +
∫

�

u · (div12 q + r ′ − ps + pt )dx (7)

subject to the capacity constraints (5). The equivalent dual model representing a
relaxed min-cut problem then becomes

min
u∈[0,1] E(u) :=

∫

�

{
(1 − u)Cs + uCt + α| ∇12 u| + β|u′|} dx . (8)

Here, ∇12 u denotes the in-slice gradient and u′ denotes the through-slice derivative
of u with respect to the x3 axis, similar to the definitions of div12 q and r ′ above. It
can be shown that each level set function u�(x), � ∈ (0, 1] given by

u�(x) :=
{
1, u∗(x) > �

0, u∗(x) ≤ �
with u∗ := argmin

u
E(u) (9)

is a global binary solution of the adapted problem stated in Eq. (4).
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2.2 Tubularity Features

As our goal is to segment tubular structures in the image, it appears natural to include
tubularity features in the flow capacity calculations. A well-known tubularity feature
is Frangi’s measure of vesselness [9] (see Fig. 2b), v∗(x) = maxξ∈Sv v(x; ξ), where,
for each scale ξ in the predefined set of scales Sv, the vesselness v(x; ξ) of bright
tubular structures on dark background is

v(x; ξ) =
⎧
⎨

⎩

0, λ2 ≥ 0 ∨ λ3 ≥ 0(
1 − exp(−2

λ22
λ23

)

)
exp(−2

λ21
λ2λ3

)

(
1 − exp(−

∑3
i=1 λ2i
2h2

)

)
else,

(10)

with λi = λi (x) denoting the ordered eigenvalues (|λ1| ≤ |λ2| ≤ |λ3|) of the point-
wise Hessian matrices that result from convolving the input image I with Gaussian
derivatives of standard deviation ξ. We define h as half of the maximum Hessian
norm at the current scale as suggested by Frangi [9].

In our experiments on segmenting the spinal cord, we decided to include another
feature that specifically describes the background that immediately surrounds the
target structure. The spinal cord is embedded in cerebrospinal fluid (CSF), which
appears dark in the used MR sequences. As the CSF also appears largely elongated,
but exhibits both tube-like and plate-like properties, we adapt Frangi’s vesselness
feature to a csfness feature w∗(x) (see Fig. 2c) that discriminates between blob-like
structures and non-blobs. We do so by replacing the eigenvalue ratio terms of v∗ with
an equivalent term composed of λ1 and λ3, as it is the latter ratio that discriminates
both vessels and plates from blobs in Hessian eigenvalue analysis [9]. Consequently,
we define w∗(x) = maxξ∈Sw w(x; ξ) for dark non-blobs on bright background in the
scales Sw with

w(x; ξ) =
⎧
⎨

⎩

0, λ3 ≤ 0

exp(−2
λ21
λ23

)

(
1 − exp(−

∑3
i=1 λ2i
2h2

)

)
else.

(11)

Fig. 2 Features used in segmentation. a Image intensities. b Vesselness response. c Csfness
response
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Combining the features. Let V = [0, 1] � v∗, W = [0, 1] � w∗ be the vesselness
and csfness feature spaces, let Y = I × V ⊂ R

2 and Z = I × V ×W ⊂ R
3 be two

combined feature spaces, let I2 : � → Y , I3 : � → Z be two new image functions
that map to the combined feature spaces, and let y ∈ Y , z ∈ Z be the coordinates in
the combined feature spaces.

Furthermore, let Y f = {yi
f }M

i=1, Yb = {y j
b }N

j=1 be two sets holding samples of Y
with known foreground and background membership, respectively. Based on these
training sets, we propose to calculate the capacities for the terminal flow constraints
(5) using kernel density estimates:

Cs(y) = Cs(I2(x)) =
1
M

∑M
i=1 K� f (y − yi

f )

1
M

∑M
i=1 K� f (y − yi

f ) + 1
N

∑N
j=1 K�b (y − y j

b )
, (12)

Ct (y) = Ct (I2(x)) = 1 − Cs(y), (13)

where K�. is a Gaussian kernel with zero mean and diagonal covariance matrix �.,
holding variances σ 2

d for the feature dimensions d as diagonal elements. Terminal
capacities for the feature spaceZ may be calculated in a similar way. For the sake of
simplicity, we choose the non-terminal capacities as constants in our experiments:
α(x) = α0, β(x) = β0.

2.3 Algorithm

In accordance with the original max-flow approach, we propose to find a global solu-
tion to our adapted formulation by setting up the respective augmented Lagrangian
equation as

Lc(ps, pt , q, r, u) :=
∫

�

psdx +
∫

�

u · (div12 q + r ′ − ps + pt )dx

− c

2

∥∥div12 q + r ′ − ps + pt
∥∥2 , (14)

and iteratively optimizing it using Algorithm 1, based on the algorithm in [6].

2.4 Surface Reconstruction

As can be concluded from Eq. (9), reconstructing the surface of the segmented struc-
ture amounts to finding the isosurface of level � ∈ (0, 1] in the segmentation result
u∗ (see Fig. 1c, d). We propose to extract the isoline as a polygon of m vertices for
each slice along the x3 axis and successively connect the resulting dots in space.
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Algorithm 1 Augmented Lagrangian based max-flow algorithm.

Arbitrarily initialize p1s , p1t , q1, r1, u1; initialize Cs , Ct , α, β; specify a tolerance ε̂ and a step size
c; set the iteration count k = 1. For each iteration, perform the following:

• Optimize q, fixing the other variables:

qk+1 ← argmax
‖q‖≤α

Lc = argmax
‖q‖≤α

− c

2

∥∥∥∥div12 q + r ′ k − pk
s + pk

t − uk

c

∥∥∥∥
2

,

using a projected gradient ascent step of step size γq , as suggested in [10]:

– update q: qk+1 ← qk + γq · ∇12(div12 qk + r ′ k − pk
s + pk

t − uk

c ),

– project q: qk+1 ←
⎧
⎨

⎩

qk+1

‖qk+1‖ · min{∥∥qk+1
∥∥, α}, qk+1 �= 0

0, qk+1 = 0
.

• Optimize r, fixing the other variables:

rk+1 ← argmax
|r |≤β

Lc = argmax
|r |≤β

− c

2

∥∥∥∥div12 qk+1 + r ′ − pk
s + pk

t − uk

c

∥∥∥∥
2

,

using a projected gradient ascent step of step size γr :

– update r : rk+1 ← rk + γr · ∂
∂x3

(div12 qk+1 + r ′ k − pk
s + pk

t − uk

c ),

– project r : rk+1 ← sgn(rk+1) · min{∣∣rk+1
∣∣, β}.

• Optimize ps and pt pointwise:

– i) pk+1
s ← 1

c − uk

c + div12 qk+1 + r ′ k+1 + pk
t , ii) pk+1

s ← min{pk+1
s , Cs},

– iii) pk+1
t ← uk

c − div12 qk+1 − r ′ k+1 + pk+1
s , iv) pk+1

t ← min{pk+1
t , Ct }.

• Calculate the pointwise error ε: εk+1 ← c · (div12 qk+1 + r ′ k+1 − pk+1
s + pk+1

t ).

• Update u: uk+1 ← uk − εk+1.
• Terminate if 1

|�|
∫
�

∣∣εk+1(x)
∣∣ dx < ε̂, otherwise update k ← k + 1 and continue.

This provides us with the slicewise contours of the segmentation at no additional
cost, which then facilitates estimating the centerline, namely as a curve fit through
the centroids of the contours. A centerline estimate, in turn, may be useful to acquire
quantitative measurements from the reconstruction (see Sects. 3, 4).

If there are multiple foreground regions in u∗, a point of reference may be used to
choose the region closest to it. Likewise, heuristic criteria like sudden jumps of the
centroid or a threshold on the contour line’s convexity may be used to determine a
cutoff for the tubular structure of interest. In the spinal cord segmentation experiments
below, we define a point of reference by an anatomical landmark, and we define
two cutoff criteria as finding either a distance > d between the centroids of two
consecutive slices or finding a contour line with convexity < t . As a measure of
convexity,we employ the ratio of the contour line’s area and the area of its convexhull.
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3 Materials

Applicability of our approach is shown by segmenting the spinal cord in MR images
of healthy volunteers (Figs. 1b, 2a) and MS patients.

To assess accuracy and reproducibility, 11 healthy volunteers (3 female, 8 male,
mean age 32.7year, range 26–44year) were scanned on a 3 T whole-body MR scan-
ner (Verio, Siemens Medical, Germany) with a T1-weighted MPRAGE sequence
(TR/TI/TE/α = 2.0 s/1.0 s/3.4ms/8◦); 192 slices in sagittal orientation parallel to
the interhemispheric fissure were acquired with an isotropic resolution of 1mm3.
Image volumes were corrected for gradient nonlinearity distortions using the scan-
ner manufacturer’s correction routine.

To show applicability to clinical data, we used follow-up data of 32 MS patients
(21 female, 11 male, mean age 47.1year, range 22–60year; 22 patients with
relapsing-remitting MS, 10 patients with primary progressive MS, mean disease
duration 13.8year, range 3–31year, median EDSS 3.0, range 1.5–6.0). The patients
were scanned on a 1.5T whole-body MR scanner (Avanto, Siemens Medical, Ger-
many)with a T1-weightedMPRAGE sequence (TR/TI/TE/α = 2.08 s/1.1 s/3.93ms/
15◦); 160 slices in sagittal orientation parallel to the interhemispheric fissure were
acquired with an in-slice resolution of 0.98mm × 0.98mm and a slice thickness of
1mm. Scans were acquired at two points in time approximately 5 years apart (mean
5.04 year, range 4.55–5.41 year); demographic data above is givenwith respect to the
earlier scan. Distortion correction was applied to the surface reconstructions using
the method of Janke et al. [11].

For the calculation of the terminal flow constraints C.(y) and C.(z), sample
sets were acquired on 150 separate scans of MS patients. The training patients
were scanned with the same MPRAGE sequence as the 32 MS patients above.
Foreground/background membership of the training samples was determined using
a graph cuts-based [12] semi automated method described as presegmentation
in [13]. To speed up calculations, features were discretized to 50 bins in the
[0, 1] interval in each feature dimension. Silverman’s rule of thumb with σd =
4

1
D+4 (n(D + 2))

−1
D+4 σ̂d provided a σ 2

d estimate, where n is the number of samples,
σ̂d is the sample standard deviation in d, and D is 2 for C.(y) and 3 for C.(z). To
avoid zero bins, a small additive constant of 0.0001k was added to the resulting bin
values, where k is the maximum value of all bins.

For all experiments, the following parameters were applied: α0 = 0.5, β0 =
2.5, Sv = [2mm, 4mm] (16 values), Sw = [1mm, 2mm] (8 values) for the flow
capacities; � = 0.5, m = 60, d = 10mm, t = 0.95 for the surface reconstruction.
Likewise for all reported volume measurements, the volume of a spinal cord surface
segment of 50mm centerline length, which was clipped by planes perpendicular to
the centerline and which was located approximately 25mm inferior of a manually
marked landmark, was evaluated as described in [13].
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4 Results

Scan–rescan evaluation. In two experiments on scan–rescan data, we evaluated the
accuracy and reproducibility of our method. To show the benefits of splitting the
spatial flow into an in-slice component and a through-slice component, we repeated
all experiments using Yuan et al.’s original formulation [6] for segmentation, setting
the spatial flow capacityC(x) (see Eq. (2)) to a value ofC(x) = 1.0, as this parameter
choice provided the highest number of successful surface reconstructions in the
second experiment below. For the experiments, we scanned the 11 healthy volunteers
(see Sect. 3) three times in a row (scans S1, S2, S3), without repositioning between
S1 and S2 andwith repositioning between S2 and S3, resulting in 33 scans altogether.

Accuracy:Asweworkwith human in-vivo data, it was not possible to acquire quanti-
tative ground truthmeasurements, for example, via histologic specimen.We therefore
used manual segmentations of the image data as a gold standard for comparison in
the first experiment. To make such manual measurements feasible, a semiautomated
approach that allows for human feedback in the segmentation process seemed appro-
priate. We thus segmented all scan–rescan datasets with the method described as
presegmentation in [13], placing foreground/background seeds manually and adjust-
ing them in an iterative manner until we acquired a satisfying binary segmentation.
We then compared the overlap of this gold standard segmentation with the binarized
results of the automated segmentation for a 50mm cord segment, located 25mm
inferior of the manually marked landmark. As a measure of overlap agreement, we
calculated Dice coefficients for the region overlaps.

With our approach, we gained a mean Dice coefficient of 0.88 using the pro-
posed feature combination Z (i.e., intensity + vesselness + csfness) and 0.82 using
feature combination Y (i.e., intensity + vesselness). With Yuan et al.’s approach,
we gained a mean Dice coefficient of 0.86 using Z and 0.79 using Y . Therefore,
our approach proves superior in the given problem setting. Furthermore, it can be
seen that including the csfness feature into the segmentation process improves the
segmentation accuracy.

Reproducibility: In the second experiment, we assessed the reproducibility of our
method. The cervical spinal cordwas segmented using feature combinationsY andZ ,
its surfacewas reconstructed, and the volume of the 50mm cord surface segment (see
Sect. 3)was comparedbetween scans and rescans.As ameasure of reproducibility,we
calculated the coefficients of variation (CV; i.e., the sample standard deviation over
the mean) of the measured volumes for all possible S1–S2 comparisons (i.e., without
repositioning) and S1–S3 comparisons (i.e., with repositioning). An overview of the
mean CVs is given in Table1.

For our proposed segmentation approach, the subsequent reconstruction of the
complete surface segment succeeded for 30 out of 33 scans using Y and 32 out of 33
scans using Z . All failures happened for the same subject, whose scans showed an
extremely low signal-to-noise ratio upon visual inspection. For Yuan et al.’s segmen-
tation approach, the surface reconstruction succeeded for 25 out of 33 scans using
Y and 28 out of 33 scans using Z .
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Table 1 Coefficients of variation (%) for spinal cord segment volume measurements, using feature
combinations Y and Z with Yuan et al.’s and our segmentation method

Y Z
S1 versus S2 S1 versus S3 S1 versus S2 S1 versus S3

Ours 2.02 5.81 2.13 4.90

Yuan et al. 2.54 6.84 2.85 4.42

As one could expect, CVs are lower for the S1–S2 comparison, due to the fact
that the subjects were not repositioned. Furthermore, including the csfness feature
makes the segmentationmore robust (more successful surface reconstructions) while
at the same time having beneficial effects on the reproducibility (substantially lower
CVs for the more realistic S1–S3 comparisons). Similar statements on improved
robustness and reproducibility can be made when comparing our adapted max-flow
formulation with the original formulation: in both aspects, our method proves largely
superior. Andwhile for feature combinationZ the S1–S3CVof the original approach
is better than ours, one has to keep in mind that ours is calculated on a higher number
of successful reconstructions, including the more challenging ones on which the
original approach failed.

An exemplary case where the surface reconstruction failed for the original max-
flow formulation while succeeding for our adapted formulation is shown in Fig. 3.
As can be seen, the segmentation stops early for the original formulation while it
extends further down into the noisy image regions for ours. Relaxing C(x) in this
case would possibly enable the original formulation to also extend further down;
however, this would come at the price of an overall higher susceptibility to noise. By
contrast, controlling α(x) and β(x) separately in our approach enables us to largely
circumvent this tradeoff.

On the whole, the CVs we obtained by our method are higher than those of
establishedmethods that are actually used inMS research (most notably, Losseff et al.
[1] and the methods compared in [13]). On the one hand, however, one should keep

Fig. 3 Comparison of the segmentation approaches on noisy, low-contrast case. a Input image.
b Segmentation result using the original max-flow formulation [6]. c Segmentation result using our
max-flow formulation
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in mind the substantially higher amount of manual intervention in these approaches.
On the other hand, we see our presented framework in its current state more as a
proof of concept than as a tool that is ready for clinical use.

Evaluation on patient data. A comparison of the five-year follow-up MS patient
data (see Sect. 3), using the proposedmax-flow formulation for segmentation, showed
a mean yearly atrophy of 25.4mm3 in the 50mm cord surface segment (maximum
loss: 194.3mm3, maximum gain: 53.4mm3). The mean yearly percentage loss was
0.9% (maximum loss: 7.0%, maximum gain: 2.0%). These measurements agree
well with the observation of cord atrophy during MS progression reported in the
literature [2]. Nevertheless, due to the high variability, our measurements should
again be interpreted as a proof of concept for our segmentation method rather than
as hard clinical data.

Computational performance. As we implemented the max-flow segmentation on
the GPU based on code provided by the authors of [6, 10], results can be acquired
extremely fast, namely in the order of seconds. Other parts of the implementation
also show a high parallelization potential in that they are mainly pointwise (such
as the feature calculation and the surface extraction). We therefore assume that the
complete chain of steps from feature calculation to quantitative measurements could
be optimized to run in less than a minute per subject.

5 Conclusion

We presented a new segmentation algorithm based on continuous max flow that
was specifically tailored towards the segmentation of elongated structures: a cross-
sectional similarity prior was introduced, which guides the segmentation in regions
of missing or contradictory image information. We showed how tubularity features
may be used in the flow capacity constraints to increase segmentation robustness
and measurement repeatability. Finally, we successfully demonstrated the clinical
applicability of our method by segmenting the spinal cord in both healthy volunteers
and multiple sclerosis patients.
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Automated Radiological Grading of Spinal
MRI

Meelis Lootus, Timor Kadir and Andrew Zisserman

Abstract This paper describes a fully automatic system for obtaining the standard
Pfirrmann degeneration grading of individual intervertebral spinal discs in T2 MRI
scans. It involves detecting and labeling all the vertebrae in the scan and then learning
a regression from the disc region to the grading. In developing the regression func-
tion we investigate a spectrum of support regions which involve differing degrees
of segmentation of the scan: our intention is to ascertain to what extent segmenta-
tion is necessary or detrimental in obtaining robust and accurate measurements. The
methods are assessed on a heterogeneous clinical dataset containing 1,710Pfirrmann-
graded discs, from 285 symptomatic back pain patients. We are able to predict the
grade to±1 precision at 85.8% accuracy. Our novel method proposes new image fea-
tures that outperform previous features and utilizes techniques to improve robustness
to MR imaging variations.

Keywords Spine ·Radiological measurement ·MRI ·Grading ·Discs ·Regression

1 Introduction

Our primary goal in this paper is to automate radiological measurements in multi-
slice clinical Magnetic Resonance Imaging (MRI) spinal scans, and to this end we
describe a system to extract the standard clinical Pfirrmann disc grading that is used
in the diagnosis and management of back pain patients, exploring accuracy and
robustness in the process. The task is defined in Fig. 1.
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Fig. 1 The task. Given a clinical MRI volume of the lumbar spine (a) as input, fully automatically
localize, label, and radiologically measure (b) the six lumbar discs in that volume, according to a
standard radiological grading system (c) [15]. The radiological measurement is the ‘degeneration
grade’ describing drying out of the disc (darkening in T2MRI), and disc space collapse, in terms of
four radiological features as defined in the main text. Note that in evaluation, the grade is considered
correct if predicted to ±1 accuracy, due to the ground truth intra-observer variability. a Input.
b Output. c Radiological grading atlas

Our secondary goal is to investigate the need for a complete segmentation of the
disc in order to accomplish this task. On the one hand, voxel wise segmentation can
help better define the grading task. On the other hand, anatomical units (discs and
vertebrae in this case) may be inseparable due to pathological changes, rendering the
task ill-defined. Also, in practice, segmentation is often prone to failure so avoiding
it can possibly improve the overall results. Thus, we ask the question: to segment or
not to segment?

We answer the question by formulating the task as one of regressing between an
image support region and the Pfirrmann disc grading, and then investigate a spectrum
of ways of obtaining the support region which cover: no segmentation, segmentation
of only the vertebrae, and finally segmentation of the disc.

The method is evaluated over a large heterogeneous clinical dataset, and this adds
to the challenge of the task since T2 images of the same anatomy and pathology look
different in different MRI machines and under different protocols (different “tissue
contrasts”). We introduce a normalization scheme to address this problem. The task
is also challenging because MR imaging artifacts can be confused with pathology.
Background. The normal intervertebral disc is composed of a soft liquid central part,
the nucleus pulposus (NP), and a hard ligamentous surrounding, the annulus fibrosus.
It is interfaced to the vertebral bodies above and below by cartilaginous endplates.
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The disc acts as both a cushion and a pivot point in the spine. Disc problems are a
common cause of back pain.

One common disc problem is Degeneration, the drying out and collapse of the
disc space, and this abnormality is clinicallymeasured using the standard radiological
Pfirrmann grade [15], illustrated in Fig. 1. Pfirrmann defines the categorical five-
score grade in terms of sequential changes to four MRI features: brightness of the
NP, uniformity of the NP, distinction between the NP and the annulus fibrosus, and
the disc height.

Since our ground-truth labelling is not perfect—the intra-observer grade agree-
ment in our database is only 71% based on grading 121 patients twice, while agree-
ment to ±1 is 98%—we assess our scores to within ±1 grade accuracy. Note,
Pfirrmann [15] measured 88–92% intra-observer agreement over measurements in
a single day. Our database was annotated by one radiologist over several years—
achieving similar variability to inter-observer variability witnessed by Pfirrmann.

While the Pffirrmann grade is widely used in clinical practice to assess the overall
disc quality, conflicting accounts have been presented in research studies regarding
the correlation between the grade, back pain, and surgical outcomes [5, 9, 12].

Given the quite high intra- and inter-observer variability of radiological mea-
surements, one advantage of automating measurement is that it should lead to an
improvement in consistency. In turn, this consistency may lead to improvements
in both clinical research studies on the correlation of back pain with radiological
measurements, and communication between radiologists.

1.1 Related Work

Recently, multiple medical imaging papers have been published attempting to auto-
matically diagnose a number of spinal conditions [1, 7, 14, 16, 19].

The existing publications on Disc Degeneration deal with the binary classification
task—e.g. the presence or absence of desiccation/degeneration [1, 7, 14, 19]—rather
than measuring the standard radiological Pfirrmann grade or a similar radiological
quantity. In addition, they are generally restricted to homogeneous data collected
from the same scanner, using the same [1, 19], or a relatively narrow range [14] of
protocols.

Image features for Pfirrmann grading have been proposed before [13], however
their computation is not fully automatic and they have not been used to automatically
measure the grade. Alomari et al. [1] and Neubert et al. [14] automatically predicted
a binary grading to high accuracy in MRI scans over a homogeneous dataset; and
we compare to their features here. Often, the methods require a segmentation step
[14] to accurately delineate the discs, or to find an exact square in the disc [1]. The
robustness of the methods to segmentation has not been explicitly studied, however
it is an important point.

A number of vertebra and disc segmentation algorithms have been proposed
[6, 8, 10, 18]. Vertebra segmentation methods have been more successful than disc
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segmentation ones. This is largely because vertebrae inMRI have well-defined edges
and consistent appearances across patients. In contrast, discs have variable appear-
ance, lack clear boundaries, and vary considerably due to degradation (the very
process we are assessing).

1.2 Contributions and Paper Layout

Contributions. We fully automatically measure the Pfirrmann grade to±1 accuracy,
and are the first to present results generalizing across clinical data from a number of
sites, scanner types and imaging sequences. We train and assess our results based on
ground truth annotations on clinical data, by an expert radiologist with 25years of
experience. We experimentally assess the effect of varying the amount of segmenta-
tion to define the feature support region, and compare our features to those proposed
in previous work on binary auto-grading [1, 14].
Paper layout. Themethod is presented in full in Sect. 2, explaining in detail the three
steps of the pipeline: feature support region definition, image feature extraction, and
regression. The dataset is described in Sect. 3.1, the evaluation protocol in Sect. 3.2,
and the experimental results and discussion in Sect. 3.3.

2 Regression of Radiological Measures

In this section, we describe a method for predicting the Pfirrmann grading. It is
formulated as a regression task, and we use standard machine learning methods to
learn the regressor from expert-annotated training scans, and then apply the regressor
to previously unseen clinical scans.

Although Pfirrmann grading is categorical, the underlying fundamental disc
degeneration process is continuous over time, and that is why we choose to for-
mulate it as regression rather than classification.

The pipeline from a raw multi-slice MRI scan to radiological measurement of
disc degeneration has three steps, described in more detail in the following sections:
first, finding the support region; second, extracting image features; third, predicting
the Pfirrmann grade. In Sect. 2.1, we explore three alternative methods of obtaining
the feature support region, named V-det (vertebra detection), V-seg (vertebra seg-
mentation), and D-seg (disc segmentation), illustrated in Fig. 2. This explores three
points on the ‘no segmentation’ to ‘full disc segmentation’ spectrum.

2.1 Step 1: Three Alternative Support Regions

Taking a clinical MRI scan as input, this step outputs the feature support region for
the six lumbar discs (annotated in Fig. 1) in three different ways, as contrasted in
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Fig. 2 Computation of the feature support regions. The top row illustrates the detection and seg-
mentation steps; the bottom row shows the three corresponding feature support regions for the b
V-det, c V-seg, and d D-segmethods. The full segmentation pipeline consists of vertebrae detection,
vertebrae segmentation, and intervertebral disc segmentation. In the top row, the green lines show
the detection and segmentation outputs, and the Obj. (object) and Bkg. (background) seeds show the
initializations used for the segmentations as the red and blue areas. The resulting support regions
are shown as green dashed lines in the bottom row. The V-det pipeline is the shortest, involving no
segmentation, and the D-seg pipeline is the longest, involving both vertebrae and disc segmentation.
See Sect. 2.1 for more detail. a Input image (zoom). b VB Detections. c VB Segmentations. d IVD
Segmentations (Color figure online)

Fig. 2. In V-det, the region is defined as a rectangle between vertebrae bounding
boxes. In V-seg, the region is defined as a rectangle based on vertebrae segmenta-
tions and excluding any vertebrae voxels. In D-seg, the region is defined as the disc
segmentation result, the disc mask. The full algorithm from image to vertebrae and
disc segmentation is sequential: (1) vertebrae detection, (2) vertebrae segmentation,
(3) disc segmentation, with each step automatically initializing the next. Both the
vertebrae and the discs are segmented using the standard graph cuts algorithm of
Boykov-Jolly [3] with region and boundary terms. As might be expected, each step
in the process has some degree of failure rate. So the more steps we employ, the
greater the potential for failure.
Implementation details. The detections are performed in all slices using the method
of Lootus et al. [11], picking—for each vertebra vi—the tight labelled bounding box
B(vi ) from the slice with the most confident detector output. This way, the system
is robust to scoliotic spines where not all lumbar vertebrae may be clearly visible
in the same sagittal slice. Note that the labelling starts from the sacrum and is per-
formed in the same manner and is consistent with the ground truth labelling process.
Therefore any labelling errors due to the natural variability in vertebra number will
not affect the results presented here, but will need to be considered in the future
work. The segmentations and gradings are performed in the mid-sagittal slice (as



124 M. Lootus et al.

clinical standard), initializing the support region selection based on the automati-
cally labelled bounding boxes. The segmentation of the vertebrae T12 (v1) to S1
(v7) is initialized automatically for each vi independently, by placing object (Obj.)
and background (Bkg.) seeds according to the bounding boxes B(vi−1), B(vi ), and
B(vi+1). The Obj. seed for vi is placed in an area obtained by eroding B(vi ) to half
its size. The two Bkg. seeds are placed as rectangles between B(vi−1) and B(vi ), and
B(vi ) and B(vi+1) respectively, at the arithmetic mean position of the corners of the
adjacent bounding box edges. Each seed is a quarter the height of B(vi ). The disc
segmentation is performed for discs T12/L1 to L5/S1. For each disc, it is automati-
cally initialized by seeding the foreground as the space between, and background as
the area of the neighboring vertebra segmentations. The region terms are modeled as
three-component Gaussian Mixture Models (GMMs) according to the image inten-
sities in the Obj. and Bkg. seeds for both the vertebrae and disc segmentations. Three
components were picked as best performing at earlier experiments. To arrive at the
final box regions for V-det, the box is placed at the angle of its lower neighboring
vertebra, with its height equal to a quarter of the mean heights, and its width equal
to the mean width of the neighboring vertebrae bounding boxes (optimal size found
by gird search). In V-seg, the vertical ‘walls’ of the region are placed at the same
positions as for the V-det case.

2.2 Step 2: Image Features

To characterize the disc, a number of intensity and shape features are extracted from
the feature support region, as described below. As mentioned in the introduction, one
of the challenges is the variation of MRI contrast across different protocols. There-
fore, before extraction, the image is normalized to 1.25 times the median vertebral
intensity as found from the bounding boxes (for V-det) or the segmented vertebrae
(for V-seg/D-seg). In early experiments, we tested a number of intensity normaliza-
tion techniques including normalizing to CSF and found this approach performed
best and provided sufficient robustness to variations in protocol and MRI scanners.
The conventional CSF-based normalization [2] also suffers from inconsistent CSF
signal due to various deformations in the dural sac. After normalization the new
median vertebral intensity becomes 0.8; intensities above one are truncated to one.
Thus, there is still dynamic range kept above the vertebrae intensity (e.g. for grade
1 or 2 discs), unlike in the case if the vertebra intensity was normalized to one.
Intensity features. Two groups of intensity features are extracted: first, a histogram
normalized so that the highest entry is one; second, four global statistical features:
standard deviation, kurtosis, skewness, and entropy.
Shape features. The mid-height to width ratio h/w of the feature support region,
approximating that of the disc, is used as the shape measure.
Implementation details. The histogram feature is modelled with 21 bins, making
up a 26-dimensional feature vector for each disc. The mid-height to width ratio h/w
is measured in the middle of the feature support region—the rectangle for V-det, the
disc space for V-seg, and the segmented disc for D-seg.
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Baseline Features. In addition to the above features, as a baseline we assess the
performance of our system using two previously proposed intensity features: Disc
Mean Intensity [1] and a GMM fitted to the support region [14].

2.3 Step 3: Regression

A linear epsilon Support Vector Regressor [17] is learned to map the 26-dimensional
feature vector x described above to the grading as:

f (x) = w · x + b (1)

where f is the predicted (continuous) disc grade, and the vector w and bias b are
learnt on the training set. The fitting process is influenced by two unitless parameters:
C > 0, and ε > 0. The parameter C determines the trade-off between the flatness of
f and the amount up to which deviations larger than ε are tolerated.
Implementation details. The values of ε and C for the Support Vector Regression
cost function are learnt by a grid search on a hold-out validation set, with a range of
0.01 to 1.0, and 0.1 to 10,000 respectively, using the LIBSVM package [4].

3 Evaluation and Comparison

3.1 Dataset

We evaluate our algorithm using T2 sagittal MRI scans from a large, clinical, hetero-
geneous dataset of 1,710 radiologically annotated lumbar discs in 285 symptomatic
backpain patients, exhibiting all the challenges highlighted in the introduction includ-
ing degeneration, herniation and scoliosis. Of the patients, 116weremale, 151 female
(30 unknown), with ages 10–88 years. The patients were split into a 114-scan training
(684 discs), 57-scan validation (342 discs), and 114-scan (684 discs) testing set.

In contrast to previous work where images were acquired using the same scanner
and protocol, our database includes scans from 25 different sites acquired using a
wide gamut of T2 sequences, fields-of-view, and 14 different scanner models. The
scan parameters ranged as follows: magnetic field 0.6–3T, TE 69–139ms, TR 1,
180–1,210ms, voxel size 0.34–1.68mm, slice spacing 3.85–15mm.

Each patient had each of their six lumbar discs (T12-L1, L1-L2, L2-L3, L3-L4,
L4-L5, and L5-S) Pfirrmann-graded by an expert spine radiologist with 25years of
clinical experience. There were 550 grade 1, 194 grade 2, 379 grade 3, 379 grade 4,
and 208 grade 5 discs in the dataset.
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3.2 Evaluation Protocol

We assess vertebrae detection accuracy by distance between the detected bounding
box center from ground truth bounding box centre in millimeters, and segmentation
accuracy according to an overlapmeasure—the ratio of intersection to union between
manually segmented vertebrae/discs, and the automatic segmentation results.

We assess grading accuracy by measuring the proportion of discs that are graded
correctly, as proposed by [20] for eye cataract grading. However, as discussed in the
introduction, our ground-truth labelling is not perfect due to intra-observer variability,
and thus we evaluate our regression performance as the fraction of scores which are
predicted to ±1 accuracy.

3.3 Results and Discussion

Asummary of the overall results and theD-seg confusionmatrix is presented in Fig. 3,
with example grading result shown for two patients in Fig. 4, and for two more in
Fig. 5. The median detection error was 2.0mm; the mean vertebrae segmentation
overlap measure was 0.808± 0.132 on fifty randomly selected patients. Overall, the
best performing method is D-seg (85.8%) using the Hist+ features. For all three
support region methods, the Hist+ features outperforms the baseline GMM and the
Mean Int. features. Also, the segmentation methods (D-seg and V-seg) outperform
detection only (V-det). For both Mean Int. and GMM, V-seg outperforms D-seg by
a small margin but performs similarly with Hist+ features. The D-seg with Hist+
features confusionmatrix shows that the greatest errors are in predicting agradeof ‘3’.

Based on qualitative analysis on all discs from levels 1–5 (1,425 in total), there
were 50 discs with detection/segmentation failure (3.5%), 21 discs (1.5%) with
low imaging quality, 19 discs (1.3%) failed slice selections. This sums to 6.3%, to
approximately half of all failure cases in the test set, and covers the principal causes
of error.

The Hist+ features provide a clear improvement. This may be because the
Mean Int. is insufficiently discriminative, while the GMM parameters might vary
significantly between discs (since GMM fitting minimizes error to the underlying
distribution, but does not constrain the component centers). The Hist+ features pro-
vide improved discriminative power, are repeatable, and also include the global

Fig. 3 Numerical results.
Percentage of discs with
Pfirrmann grade predicted to
±1 accuracy using each of
the features (columns) on
each of the support regions
(rows)

Mean Int. GMM Hist+

V-det 73.4% 77.5% 79.7%

V-seg 81.1% 84.6% 85.2%

D-seg 79.6% 83.3% 85.8%
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Fig. 4 Example results 1–2. The full segmentation and grading results are given for two example
input images. For each patient, in the second row from the top, the vertebrae segmentations are
shown as yellow lines. In the bottom three rows, the extracted regions for feature extraction, along
with the segmented areas for the vertebrae and the discs are given in the three bottom rows for
V-det, V-seg, and D-seg methods. At the bottom, the grading result is given for the D-seg method.
For both patients 1 and 2, five disc gradings succeed, and one fails. Note that the fact that both the
discs T12-L1 are predicted two grades too high is not a systematic error, but randomly present in
those two cases (Color figure online)

descriptors of the distribution shape (that the GMM can capture). In early experi-
ments, we found the global descriptors to improve performance.

We investigated the role of segmentation in our processing pipeline by testing
three different approaches to defining the feature support region—vertebra detection
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Fig. 5 Example results 3–4. The full segmentation and grading results are given for two example
input images. For each patient, in the second row from the top, the vertebrae segmentations are
shown as yellow lines. In the bottom three rows, the extracted regions for feature extraction, along
with the segmented areas for the vertebrae and the discs are given in the three bottom rows for
V-det, V-seg, and D-seg methods. At the bottom, the grading result is given for the D-seg method.
For both patients 3 and 4, all the six discs succeed. Note that in patient 3, discs L1-2, L3-L4, L4-5,
and L5-S, and in patient 4, disc L1-L2, are off by one grade, but still considered correct predictions
according to our ±1 criterion (Color figure online)

only, vertebra segmentation and direct disc segmentation. This spectrum represents a
trade-off between specificity of the feature support region and the likelihood of failure
in that step. In principle, though subject to failure, a support region that encompasses
only the object of primary interest, i.e. the disc, will outperformmore generic support
regions.
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There was a 5–7% difference in performance between the methods employing
segmentation and detection only, while there was little difference between the two
segmentation approaches. That vertebrae are easier to segment than discs due to their
more consistent and distinct appearance, as noted in previous work, may explain the
small margin between V-seg and D-seg.

An interesting question is whether the lower performance of V-det is due its box-
shaped support region or sub-optimal setting of its parameters. To answer this, we
replaced the simple vertebra height based adaptation with a box height set from
the height of the V-seg region. In other words, the support region is still a box but
its height is based on the V-seg support region. The regression performance for this
variationwas 80.2, 82.6 and 84.3% for theMean Intensity, GMMandHist+ features,
which is very similar to the V-seg and D-seg methods. So indeed it seems that it is
the size of the support region more than its exact shape that is responsible for the
lower performance.

A final question is whether the sub-optimal size setting is affecting all the discs
or just a subset. One might expect that the support region for the L5-S disc to be
problematic due to variability in the curvature of the spine at that location. Indeed,
by excluding all L5-S discs the average V-det performance improves to 80.4, 82.2
and 83.3% for the three features (computed on the box of original size).

One limitation of our study is that the grades could only be evaluated to within
±1 Pfirrmann grade, in effect reducing the five grades to three in the evaluation step.
This was due to the variability in the ground-truth mark-up. Nevertheless, the system
could still output the full range and prior work has only reported results on a binary
classification of healthy versus degraded.

4 Conclusion

We have presented the first fully automated system to predict all five Pfirrmann
grades. In a large dataset of 1,710 discs from 285 patients using standard clinical
MRI scans acquired on different scanners, protocols and sites, our system correctly
predicted towithin±1Pfirrmanngrade in 85.8%of discs.Our novelmethodproposes
new features that outperform previous ones, improves robustness to MR imaging
variations, and shows that disc segmentation is not essential for for this level of
performance.
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Automated 3D Lumbar Intervertebral
Disc Segmentation from MRI Data Sets

Xiao Dong and Guoyan Zheng

Abstract This paper proposed an automated 3D lumbar intervertebral disc (IVD)
segmentation strategy from MRI data. Starting from two user supplied landmarks,
the geometrical parameters of all lumbar vertebral bodies and intervertebral discs
are automatically extracted from a mid-sagittal slice using a graphical model based
approach. After that, a three-dimensional (3D) variable-radius soft tube model of the
lumbar spine column is built to guide the 3D disc segmentation. The disc segmenta-
tion is achieved as a multi-kernel diffeomorphic registration between a 3D template
of the disc and the observed MRI data. Experiments on 15 patient data sets showed
the robustness and the accuracy of the proposed algorithm.

1 Introduction

Intervertebral disc (IVD) degeneration is a major cause for chronic back pain and
function incapacity [1]. Magnetic Resonance Imaging (MRI) has become one of the
key investigative tools in clinical practice to image the spine with IVD degeneration
not only because MRI is non-invasive and does not use ionizing radiation, but more
importantly because it offers good soft tissue contrast which allows visualization of
the disc’s internal structure [2].

MRI quantification has great potential as a tool for the diagnosis of disc pathology
but before quantifying disc information, the IVDs need to be extracted from theMRI
data. IVD extraction from MRI data comprises two key steps. Firstly, all IVDs have
to be detected from the images and secondly, the regions belonging to IVDs have
to be segmented. Manual extraction methods [3, 4] as well as automated extraction
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methods [5–11] have been presented before. Since manual extraction is a tedious and
time-consuming process which lacks repeatability, automatedmethods are preferred.

There are different approaches for automatizing the extraction of IVDs from
medical images such as graphical model [5], probabilistic model [6], Random Forest
regression and classification [12, 13], watershed algorithm [7], atlas registration [8],
statistic shape model [10], graph cuts [9], and anisotropic oriented flux [11]. But
stable and accurate IVD segmentation remains a challenge.

In this paper we propose an automated 3D lumbar IVD extraction method with
minimal user interaction from MRI data sets. The main contribution of our method
is a combination of graphical model-based spine column localization with a multi-
kernel diffeomorphic registration based segmentation. The 3D IVDs are extracted
with a two-step procedure where we first identify the spine column structure and
then carry out the IVD segmentation. The motivation behind this two-step procedure
can be explained as follows. The IVD geometries are highly constrained by the
geometry of the spine column. If the geometrical parameters of the spine column
and each individual vertebral body can be estimated accurately from the observed
images, then they can provide both geometrical and appearance information about
the intervertebral discs, which helps to improve the accuracy and robustness of the
IVD segmentation.

The work flow of the proposed algorithm consists of following three steps

• Initialization. Two user supplied landmarks are required to indicate the centers
of L1 and L5 vertebral bodies.

• Lumbar spine column identification and modeling. Starting from the user ini-
tialization, the 3D geometry of the lumbar spine column is automatically extracted
from the 3D data sets. The outputs are the 3D geometric information of each indi-
vidual vertebral body of L1-L5 and a soft-tube model that fits the outer surface of
the lumbar spine column.

• Lumbar disc segmentation. Based on the prior information of the extracted lum-
bar spine column, the disc segmentation is achieved as a multi-kernel diffeomor-
phic registration between a disc template and the observed data.

2 Methods

2.1 Data Sets

All datasets used in this paperwere generated froma1.5TeslaMRI scanner (Siemens,
Erlangen, Germany). Dixon protocol was used to reconstruct four aligned high-
resolution 3D volumes during one data acquisition: in-phase, opposed-phase, water
and fat images, as shown in Fig. 1. Each volume has a resolution of 2 × 1.25 ×
1.25mm3 and the data set size is 40 × 512 × 512. The advantage of working with
such datasets is that different channels provide complementary information for our
disc segmentation task. In our proposed segmentation strategy, we always first extract
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Fig. 1 The four aligned channels of a patient data (for visualization purpose, we only show the
middle sagittal (mid-sagittal) slice of each channel.)

either intensity or feature information about different tissues on each channel and
then combine the 4 channel data into a single dataset.

2.2 Lumbar Spine Column Identification

On the mid-sagittal slice, two landmarks are picked to indicate the centers of L1
and L5 vertebral bodies as shown in Fig. 2a. Starting from the initialization, we first
carry out a 2D vertebral body and disc identification to localize vertebrae L1-L5 and
the 5 target discs from the mid-sagittal slice. The geometrical information of the 2D
identification is then used to guide a further 3D lumbar spine column modeling.

2.2.1 2D Vertebral Body and Disc Identification

Solutions for spine location and disc labeling include feature-based bottom-up meth-
ods, statistical model-based methods and graphical model-based solutions. For a
detailed review of the existing methods, we refer to [14]. In this paper, the 2D verte-
bral body and disc identification is achieved using a graphical model based strategy
introduced in [14]. Compared with the graphical models in [5, 6], the advantage of
the graphical model in [14] is that both the low level image observation model and
the high level vertebra context potentials need not to be learned from training data.
Instead they are capable of self-learning from the image data during the inference
procedure. For completeness, here we describe the key components of the method
that we previously introduced [14].

1. The graphical model: The graphical model is given in Fig. 2d. Each node Vi

represents a connected disc-vertebrae-disc chain of the spine, whose geometrical
parameters are given by Xi . We define

• The component observation model. p(I |Xi ) of a single component Vi rep-
resenting the probability that the configuration Xi of the node Vi match the
observed images I .
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Fig. 2 Initialization and 2D lumbar spine column detection. a User initialization by picking two
landmarks indicating the centers of L1 and L5 in the middle sagittal slice. b Probability assignment
(displayed as grey values) of the bone tissue in the mid-sagittal slice for 2D lumbar spine col-
umn detection. c 2D lumbar spine column detection result using the graphical model based detec-
tion algorithm, blue and green rectangles representing the vertebral bodies and IVDs respectively.
d Graphical model of 2D lumbar column detection (Color figure online)
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• The potentials. p(Xi , X j ) between neighboring components Vi and Vj

encoding the geometrical constraints between components which are defined
by the anatomical structure of the spine column.

The identification of the spine column from the mid-sagittal slice can then be
formalized as to find the optimal configurations of {Vi }, X = {Xi } that maximize

P(X |I ) ∝ Πi p(I |Xi )Πi, j p(Xi , X j ) (1)

with
p(I |Xi ) = pI (I |Xi )pG(I |Xi ) (2)

and
p(Xi , X j ) = pS(Xi , X j )pO(Xi , X j )pD(Xi , X j ) (3)

pI (I |Xi ) and pG(I |Xi ) stand for the probabilities that the observed image inten-
sity and image gradient distributionsmatch the geometrical parameters Xi respec-
tively. pS(Xi , X j ), pO(Xi , X j ) and pD(Xi , X j ) are the geometrical constraints
on the sizes, orientations and distances between neighboring components. All the
observation models and constraints can be designed according to the observed
data and prior anatomical knowledge of the spine structure. For detailed formu-
lation of these terms, we refer to [14].

2. Optimization: The optimization is achieved as an inference on the graphical
model. The method introduced in [14], which is a particle based nonparametric
belief propagation on the graphical model, is used here to carry out the inference.

Figure2b shows an example of the bone tissue probability assignment on the
mid-sagittal slice, which is computed from the user supplied 2 landmarks (Fig. 2a)
and 4 channel volume data (see Fig. 1 for an example) by a Gaussian distribution
modeling and an equally weighted combination of the intensity distributions of the
bony tissue in the 4 channels. This image is used for the computation of the intensity
observation model pI (I |Xi ) during the 2D lumbar column detection. Figure2c gives
the 2D lumbar column detection result. It can be observed that the centers, sizes and
orientations of the vertebral bodies and IVDs are correctly identified.

2.2.2 3D Lumbar Spine Column Modeling

We model each lumbar vertebral body as an elliptical cylinder and the lumbar spine
column as a variable-radius soft tube.Details of themodeling procedure are described
as follows:

• 3D modeling of each vertebral body: From the 2D vertebral body identification
results, the position, hight, radius and orientation of each vertebral body and the
image intensity distribution of the bone region can be estimated by modeling the
vertebral body as a cylinder. Accordingly for each voxel in the neighbourhood of
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the estimated cylinder, we can assign the probability that it belongs to the bony
tissue. To refine the 3D modeling of the vertebral bodies, we then further model
the vertebral body as an elliptical cylinder, a least-squares geometric fitting to the
voxels assigned with a high probability (>0.8) of belonging to the bony tissue
can extract the 3D geometry of each vertebral body, including the center, height,
orientation and the major radius and minor radius of the elliptical cylinder model.

• 3D modeling of the spine column: The lumbar column can be modeled as a
variable-radius soft tube that contains all the extracted vertebral bodies. Given the
3D models of L1-L5 vertebral bodies, the central axis and the variable-radius of
the soft tube can be obtained by a linear interpolation on the centers and radii of
the extracted 3D models of vertebral bodies. This results in a 3D variable-radius
soft-tube spine column model as shown in Fig. 3a.

Given the 3D soft-tube lumbar spine column model, the spine column region
can be extracted from the observed data sets (Fig. 3b). By further eliminating the
bony tissue region using the 3D models of vertebral bodies, the candidate region
for each target disc can be localized as shown in Fig. 3c–f. The following 3D IVD
segmentation is then carried out on the extracted candidate IVD regions.

2.3 3D Disc Segmentation

We solve the 3D disc segmentation as a template based registration between a geo-
metrical disc template and the observed data.

Fig. 3 3D lumbar spine column detection and modeling. a the 3D soft-tube model of the lumbar
spine column; b segmented lumbar spine column image; c–d segmented disc candidate regions
in sagittal slices; e–f segmented disc candidate regions in coronal slices. Although all tasks are
conducted in 3D, here we show the results in 2D slices for visualization purpose
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• The IVD template is set as a thin elliptical cylinder. Considering the anatomical
structure of the spine column, i.e., each IVD must fall between its neighbouring
vertebral bodies, the initial geometries (center, radii, orientation, hight) of the
IVD cylinder template can be estimated using the 3D spine column model and
the geometries of its neighboring vertebral bodies, which are all available from
the previous 3D lumbar spine column modeling procedure.

• For the segmentation of a specific IVD, the correspondent observed data to be
matched is just the extracted candidate IVD region as shown in Fig. 3c–f

• The registration algorithmwechoose is amulti-kernel diffeomorphic imagematch-
ing in the Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
work as described in [15] and related literatures [16–18].

2.3.1 Multi-kernel LDDMM Registration

LDDMM framework [17] is one of the two main computational frameworks in com-
putational anatomy [16]. Existing works show that LDDMM is a general solution for
nonrigid image registration with a high flexibility and accuracy. In [15] multi-kernel
LDDMM registration algorithms were investigated. Compared with the LDDMM
registration with a single kernel, multi-kernel LDDMM has the capability to opti-
mize the deformation in multiple spatial scales [15].

Following the general idea of LDDMM framework, we formalize themulti-kernel
image registration between two images I0 and I1 as an optimization problem to find
the optimal time dependent velocity field v(t) that minimizes the sum of a similarity
and a deformation energy formalized as

E (vα(t)) = 1

2

∑

i

wi

1∫

0

‖vi (t)‖2V i dt + ‖I0 ◦ φ−1
v (1) − I1‖2L2 (4a)

∂

∂t
φv(t) = v(t) ◦ φv(t) (4b)

v(t) =
∑

i

vi (t) (4c)

φv(0) = I d (4d)

where ‖vi (t)‖V i =< vi (t), vi (t) >
1
2
V i is the norm induced by the inner product

< u, v >V i =< LV i u, LV i v >L2 , and {KV i = (L+
V i LV i )−1} are the kernels. The

φv(t) is the time-dependent deformation computed as the integration of the velocity
field v(t) and I0 ◦ φ−1

v (t) is the transformed image of I0 by the deformation φv(t).
Using the optimal control based approach introduced in [19, 20], we get the Euler-

Poincare equation (EPDiff) for the multi-kernel LDDMM registration algorithm as
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İ (t) = −∇ I (t) ·
∑

i

vi (t) (5a)

Ṗ(t) = −∇(P(t) ·
∑

i

vi (t)) (5b)

vi (t) = −(wi )−1KV i � (P(t)∇ I (t)) (5c)

P(1) = −(I (1) − I1) (5d)

I (0) = I0 (5e)

The registration can then be carried out by updating the deformation velocity
fields vi (t) iteratively from an initial value of vi (t) using Eqs. (5a)–(5e). For more
details on the computation routine, we refer to [17, 19, 20].

2.3.2 Disc Segmentation by Diffeomorphic Registration

The IVD segmentation is achieved as a template based registration between the thin
cylinder IVD template and the correspondent candidate disc region as shown in
Fig. 3.

In order to explore both intensity and feature information to enhance the accuracy
and robustness of the segmentation, we consider a simultaneous registration of two
pairs of images, I I

0 /I I
1 and I E

0 /I E
1 , which stand for the image intensity and edge

information template/observation pairs respectively. Accordingly in the cost function
of the LDDMM registration (4a), the image similarity term includes two components
‖I I

0 ◦ φ−1
v (1) − I I

1 ‖2
L2 + β‖I E

0 ◦ φ−1
v (1) − I E

1 ‖2
L2 (Fig. 4).

Fig. 4 Determination of the high confidence disc region using the spine column model. Left to
right: The spine column region extracted using the spine column model shown in a sagittal and a
coronal slice; The central region of the spine column obtained by shrinking the radius of the spine
column model by a factor 0.5 shown in the same two slices; The detected high confidence disc
regions by further cutting out the bone tissue using the spine column model
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I I
0 /I I

1 and I E
0 /I E

1 can be computed from the initialized IVD template and the
extracted IVD candidate regions. Details about how to compute them are omitted
due to limited space. An example of the template images and correspondent target
images and the time dependent registration procedure is shown in Fig. 5.

The final segmented IVD can then be obtained as the deformed template achieved
by the multi-kernel LDDMM registration.

Fig. 5 3D IVD segmentation by multi-kernel LDDMM registration Left side: The data used in
diffeomorphic registration based 3D lumbar disc segmentation. In the target images, the bone tissue
regions are extracted using the spine column model. a–b: 3 sagittal/coronal slices of the candidate
disc region (disc L4-L5 in Fig. 2); c–d: the intensity disc template in 3 sagittal/coronal slices; e–
f : intensity information extracted from MRI data sets in 3 sagittal/coronal slices; g–h: the edge
disc template in 3 sagital/coronal slices; i–j:edge information computed from MRI data sets in 3
sagittal/coronal slices; Right side: The time-dependent deformation of the disc template during the
multi-kernel diffeomorphic registration for aL4-L5disc segmentation. left to right: the deformations
of the template at 6 time slots t=0, 0.2, 0.4, 0.6, 0.8, 1. t=0means the initial template and t=1 gives
the final registration results; from top row to bottom row: the evolution of the template visualized
in 6 different slices
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3 Experiments

The proposed algorithms are verified on MRI datasets of 15 patients obtained with
the Dixon protocol. In all the data sets, based on the two landmarks obtained from the
initialization step, both the 2D lumbar spine column and the 3D spine columnmodels
are correctly extracted. Examples of the disc segmentation results on 4 patient data
sets are shown in Fig. 6.

We also carried out quantitative evaluation of our algorithm. To do this, we man-
ually segmented all datasets (we only need to segment one channel for each patient
as all four channel volumes are aligned according to Dixon imaging protocol) and
took the binary volumes from the manual segmentation as the ground truth to verify
the accuracy of the present algorithm. We computed the Dice coefficient D which is
usually used to measure the overlap between two binary images:

D = 2 × |A ∩ B|
|A| + |B| × 100 (6)

Table1 shows the average dice coefficients of the 5 discs on all 15 patients when
the automated segmentation was compared to the manual segmentation. The highest
average dice coefficient was found for patient #8 (87.9%) and the lowest average
dice coefficient was found for patient #9 (80.5%). We also computed the average

Fig. 6 3D intervertebral disc segmentation results on 4 patients. For visualization purpose, we
display the results on 2D slices. For each image, the left three columns are sagittal slices and the
right three are coronal slices
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Table 1 Average Dice coefficients (%) of the 5 discs between the manual segmentation and the
proposed algorithm on different patients

Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Dice 86.1 81.9 82.6 86.3 86.8 83.6 87.6 87.9 80.5 84.1 86.3 85.4 86.9 87.7 83.1

Table 2 Average Dice coefficients (%) between the manual segmentation and the proposed algo-
rithm on different discs on all 15 data sets

Disc L1-L2 L2-L3 L3-L4 L4-L5 L5-S1

Dice 81.2 87.1 88.2 86.5 82.7

dice coefficients for all discs and the results are presented in Table2. We note that
Neubert et al. [10] reported a mean Dice of 76–80% in their 3D IVD segmentation
paper.

4 Conclusions

In this paper we proposed an automated lumbar intervertebral disc segmentation
strategy, whose key components include a graphical model based spine column iden-
tification algorithm and amulti-kernel LDDMM registration algorithm to achieve the
disc segmentation. By identifying the lumbar spine column structure before carrying
out the segmentation, we acquire geometrical and appearance information about the
spine column. These information can be used to accurately locate the candidate disc
region and provide constraints to enhance the performance of the disc segmentation.
By converting the segmentation problem as a template based diffeomorphic regis-
tration, we can explore both the intensity and edge information of the observed data
while keeping a smooth deformation of the template so that the final segmented discs
will possess smooth surfaces. The experiments on 15 patient data sets verified the
robustness and accuracy of our method.

We also noticed that for abnormal cases, such as withmissing/additional vertebrae
or the scoliosis case, the automated lumbar column identification may not be reliable
although the graphical model can handle the unknown vertebra number as shown
in [14]. A possible solution for these extreme cases is to ask the user to indicate
the center of each vertebra body during the initialization step. Once the centers are
known, the particle filtering-based inference can then achieve a reliable 2D lumbar
column identification and the following up 3D lumbar column modeling and disc
segmentation.



142 X. Dong and G. Zheng

References

1. Modic, M., Ross, J.: Lumbar degenerative disk disease. Radiology 245(1), 43–61 (2007)
2. Parizel, P., Goethem, J.V., den Hauwe, L.V., Voormolen, M.: Degenerative disc disease. In:

Van Goethem, J. (ed.) Spinal Imaging—Diagnostic imaging of the spine and spinal cord,
pp. 122–133. Springer, Berlin (2007)

3. Tsai, M., Jou, J., Hsieh, M.: A new method for lumbar herniated intervertebral disc diagnosis
based on image analysis of transverse sections. Comput. Med. Imaging Graph. 26(6), 369–380
(2002)

4. Niemelainen, R., Videman, T., Dhillon, S., Battie, M.: Quantitative measurement of interver-
tebral disc signal using mri. Clin. Radiol. 63(3), 252–255 (2008)

5. Schmidt, S., Kappes, J.H., Bergtholdt, M., Pekar, V., Dries, S., Bystrov, D., Schnorr, C.: Spine
detection and labeling using a parts-based graphical model. In: N. Karssemeijer, B.L. (ed.)
IPMI, pp. 122–133. Springer, Berlin (2007)

6. Corso, J., Alomari, R., Chaudhary,V.: Lumbar disc localization and labelingwith a probabilistic
model on both pixel and object features. In: Metaxas, e.a., D. (ed.) MICCAI, pp. 202–210.
Springer, Berlin (2008)

7. Chevrefils, C., Cheriet, F., Aubin, C., Grimard, G.: Texture analysis for automatic segmentation
of intervertebral disks of scoliotic spines from mr images. IEEE Trans. Inf. Technol. Biomed.
13(4), 608–620 (2009)

8. Michopoulou, S., Costaridou, L., Panagiotopoulos, E., Speller, R., Panayiotakis, G.,
Todd-Pokropek, A.: Atlas-based segmentation of degenerated lumbar intervertebral discs from
mr images of the spine. IEEE Trans. Biomed. Eng. 56(9), 2225–2231 (2009)

9. Ayed, I.B., Punithakumar, K., Garvin, G., Romano,W., Li, S.: Graph cuts with invariant object-
interaction priors: application to intervertebral disc segmentation. In: G. Szekely, H.H. (ed.)
IPMI, pp. 221–232. Springer, Berlin (2011)

10. Neubert, A., Fripp, J., Schwarz, R., Lauer, L., Salvado, O., Crozier, S.: Automated detection, 3d
segmentation and analysis of high resolution spine mr images using statistical shape models.
Phys. Med. Biol. 57, 8357–8376 (2012)

11. Law, M., Tay, K., Leung, A., Garvin, G., Li, S.: Intervertebral disc segmentation in mr images
using anisotropic oriented flux. Med. Image Anal. 17(1), 43–61 (2013)

12. Glocker, B., Feulner, J., Criminisi, A., Haynor, D., Konukoglu, E.: Automatic localization and
identification of vertebrae in arbitrary field-of-view ct scans. MICCAI, pp. 590–598. Springer-
Verlag, Berlin (2012)

13. Glocker, B., Zikic, D., Konukoglu, E., Haynor, D., Criminisi, A.: Vertebrae localization in
pathological spine ct via dense classification from sparse annotations. MICCAI, pp. 262–270.
Springer, Berlin (2013)

14. Dong, X., Lu, H., Sakurai, Y., Yamagata, H., Zheng, G., Reyes, M.: Automated intervertebral
disc detection from low resolution, sparse mri images for the planning of scan geometries. In:
Wang, F., Yan, P., Suzuki, K., Shen, D. (eds.) Machine Learning Medical Imaging. Lecture
Notes in Computer Science, pp. 10–17. Springer, Berlin Heidelberg (2010)

15. Risser, L., Vialard, F.X., Wolz, R., Murgasova, M., Holm, D.D., Rueckert, D.: Simultaneous
multiscale registration using large deformation diffeomorphic metric mapping. IEEE Trans.
Med. Imaging 30(10), 1746–1759 (2011)

16. Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quarterly of
Applied Mathematics LVI(4), pp. 617–694. (1998)

17. Beg, M.F., Miller, M.I., Trouv, A., Younes, L.: Computing large deformation metric mappings
via geodesic flow of diffeomorphisms. Int. J. Comput. Vis. 61, 139–157 (2005)

18. Miller, M.I., Trouv, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math.
Imaging. Vis. 24(2), 209–228 (2006)

19. Hart, G.L., Zach, C., Niethammer,M.:An optimal control approach for deformable registration.
In: Computer Vision and Pattern Recognition. (2009)

20. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3d image registration via
geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97, 229–241 (2012)



Minimally Supervised Segmentation
and Meshing of 3D Intervertebral
Discs of the Lumbar Spine for Discectomy
Simulation

Rabia Haq, Rifat Aras, David A. Besachio, Roderick C. Borgie
and Michel A. Audette

Abstract A framework for 3D segmentation of healthy and herniated intervertebral
discs from T2-weighted MRI was developed that exploits weak shape priors encoded
in simplex mesh active surface models. An ellipsoidal simplex template mesh was
initialized within the disc image boundary through affine landmark-based registra-
tion, and was allowed to deform according to image gradient forces. Coarse-to-fine
multi-resolution approach was adopted in conjunction with decreasing shape mem-
ory forces to accurately capture the disc boundary. User intervention is allowed to
turn off the shape feature and guide model deformation when internal shape mem-
ory influence hinders detection of pathology. For testing, 16 healthy discs were
automatically segmented, and 5 pathological discs were segmented with minimal
supervision. A resulting surface mesh was utilized for disc compression simulation
under gravitational and weight loads and Meshless-Mechanics (MM)-based cutting
using Simulation Open Framework Architecture (SOFA). The surface-mesh based
segmentation method is part of a processing pipeline for anatomical modeling to
support interactive surgery simulation. Segmentation results were validated against
expert guided segmentation and demonstrate mean absolute shape distance error of
less than 1 mm.
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1 Introduction

Imaging studies indicate that 40 % of patients suffering from chronic back pain
showed symptoms of inter-vertebral disc degeneration (IDD) [1, 2]. Primary treat-
ment for lower back pain consists of non-surgical treatment methods. If non-surgical
treatments are ineffective, a surgical procedure may be required to treat IDD, a proce-
dure known as spinal discectomy. Approximately 300,000 discectomy procedures,
over 90 % of all spinal surgical procedures [3], are performed each year, totaling
up to $11.25 billion in cost per year. Other spinal surgeries include treatment for
metastatic spinal tumors and spinal cord injury.

A patient-specific, high-fidelity spine anatomical model that faithfully represents
any existing spine pathology can be utilized to facilitate the fusion of several spine
medical images into a probabilistic intensity atlas of the spine that mirrors a brain
atlas [4] and that in turn could provide priors for identifying pathologies [5].

In this paper we propose an automatic method for segmentation of interverte-
bral discs, in conjunction with manual guidance in presence of pathology, from
high-resolution T2-weighted Magnetic Resonance Imaging (MRI). A simplex active
surface mesh is initialized in the sagittal plane of a patient MRI volume, and allowed
to deform using weak shape priors to capture the disc boundary. In the event that the
simplex model is unable to automatically capture the boundary accurately, the user
can manually guide the model deformation through constraint points placed on the
image volume. We present the application of a simplex model featuring weak shape
priors through automatic segmentation and controlled-resolution meshing of healthy
and pathological intervertebral discs, on the basis of landmark-based registration.
In addition, we utilize a surface-mesh result to initiate a tetrahedral finite-element
based Behavior Model in SOFA to simulate healthy disc compression and herniated
disc Meshless Mechanics (MM)-based cutting. Our results are validated on a clinical
dataset of 16 healthy disc cases and 5 herniated disc cases, and achieve mean absolute
shape distance segmentation error of less than 1 mm.

Section 2 surveys research related to intervertebral disc segmentation, Sect. 3
explains the framework of our segmentation method, compression and cutting simu-
lation, and Sect. 4 provides research results. We discuss future work and conclusions
in Sect. 5.

2 Related Research

3D segmentation of intervertebral discs is a prerequisite for the development of
a computer-based surgery planning tool. Various inter-vertebral disc segmentation
methods have been introduced, but are either limited to 2D segmentation of disc
pathology, or 3D segmentation of healthy intervertebral discs.

Michopoulou et al. [6] proposed an atlas-based method for segmentation of
degenerated lumbar intervertebral discs limited to 2D MRI scans coupled with
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intensity-based classifiers, with segmentation accuracy of 91.7 % for normal and
88.6 % of degenerated discs. Alomari et al. [7] proposed a herniated disc diagnostic
method that classifies pathology limited to 2D MRI scans using a Bayesian classifier
with a coupled active shape model and a gradient vector flow snake for segmenta-
tion. Klinder et al. [8] and Kelm et al. [9] proposed automatic, learning-based 3D
detection and segmentation frameworks of the spine, and suggested that existing disc
pathologies can be reliably segmented without specifying segmentation accuracy of
the pathological structure. Lalonde et al. [10] proposed kriging-based deformation of
a tetrahedral template mesh of the spine, which is based on high-resolution meshes
that are essentially inapplicable to interactive surgery simulation as a result of a
high element count. Neubert et al. [11] results indicate potential of using statistical
shape-aware models for segmentation of disc pathology without explicitly addressing
herniated disc segmentation accuracy. Disc pathology generally cannot be accurately
represented using strong shape priors, given that there is no average disc pathology
shape.

Our method supports the ability to successfully segment disc pathology, based on
semi-supervised, spatially variable weighting of weak prior shape information. We
also exploit controlled-resolution meshing conducive to a multi-resolution approach
to segmentation, as well as producing anatomical models with low element count for
interactive simulation.

3 Method

Our segmentation approach is based on the discrete Simplex surface model. A Sim-
plex deformable model is a physically-based system, where point vertices are treated
as point masses and edges model physical properties, such as a spring-like behavior,
or boundary smoothness, and is further discussed in Sect. 3.4.

Weak shape priors in Simplex mesh deformable models are exploited to deform
an ellipsoidal template mesh for segmentation of an intervertebral disc. In the event
that the simplex fails to accurately capture a herniated disc boundary, the user is
allowed to manually facilitate the segmentation process by placing constraint points
in the image volume. Similarly, ground truth for healthy intervertebral discs has also
been generated by implementing this semi-supervised technique, where the user is
allowed to manually assist the deformation to correct existing segmentation errors.

The remainder of this section discusses the image dataset and image preprocess-
ing steps, followed by the automatic Simplex mesh deformation and optional user-
guidance through constraint points. The data validation technique is presented to
quantify the proposed framework’s performance.
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3.1 Image Dataset

Our test and validation dataset consists of MR images of the lumbar spine per-
taining to 5 patients with various pathologies, such as herniated discs. Four inter-
vertebral discs have been identified as degenerated, due to vertebral fractures, disc
compression, and have been discarded from the dataset. Herniated discs are mostly
located in the L4–L5 and L5–S1 lumbar region and have been identified in the dataset
under expert supervision. T2-weighted MRI scans, acquired on a 1.5 T device using
spin-echo scanning sequence with repetition time (TR) = 1,500 ms, echo time (TE)
= 147 ms, flip angle = 150 and number of averages = 2, having a resolution of
0.5 × 0.5 × 0.9 mm3 have been utilized for testing and validating the segmentation
approach.

Five herniated discs has been manually segmented under expert [12] supervision
to be used for quantitative evaluation of the proposed semi-supervised automatic
segmentation framework, with results discussed in the Sect. 4.

3.2 Image Preprocessing

An anisotropic diffusion [13] filter (conductance = 0.8, timestep = 0.5, iterations
= 50) has been applied to the volumetric images to reduce image noise within the
structures while preserving image boundaries. The filter mitigates image intensity
inhomogeneity located around the disc due to overlapping image intensities of the
herniated disc boundary and the surrounding posterior ligament [14]. The Insight
Segmentation and Registration Toolkit (ITK) [15] has been utilized for applying
image preprocessing filters.

3.3 Model Initialization Through Landmark-Based Affine
Registration

An ellipsoidal template mesh is initialized within the herniated disc image volume
for simplex mesh deformation. Arbitrary translation, rotation and scaling effects
need to be captured between the template mesh and MRI image. Six landmarks are
manually placed on the ellipsoidal template mesh corresponding to landmarks within
the herniated disc image boundary to initialize the template within the herniated disc
image through affine registration. These landmarks are placed at the center, as well
as the superior, inferior, anterior and posterior points of the disc, as well as one at the
center of the superior disc surface to characterize rotation. The initialized template
mesh is then allowed to automatically deform using a multi-resolution surface model,
as described in Sect. 3.4.
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3.4 Automatic Multi-resolution Simplex Deformation

This research exploits simplex mesh discrete deformable models for segmentation of
intervertebral discs. Introduced by Delingette [16] for 3D shape reconstruction and
segmentation, a k-simplex mesh is a k-manifold discrete mesh with exactly k + 1
distinct neighbors [27]. A simplex mesh has the property of constant vertex connec-
tivity. Simplex meshes can represent various objects depending on the connectivity
k, where 1-simplex represents a curve, a 2-simplex represents a surface, and a 3-
simplex represents a volume. Our research is focused on surface representation for
image segmentation using 2-simplex meshes with constant 3-vertex connectivity.

The constant connectivity of the 2-simplex mesh leads to three simplex parame-
ters corresponding to a vertex with a mass and its three neighboring vertices that are
invariant under similarity transformations [16]. These independent simplex parame-
ters can be utilized to represent the geometric constraints enforced upon a vertex with
respect to its three neighbor vertices. The dynamics of each vertex P are governed
by a Newtonian law of motion represented by the equation

m
d2 Pi

dt2 = −γ
d Pi

dt
+ α

−→
F int + β

−→
F ext (1)

where m is the vertex mass, γ is the damping force and α and β are the weight factors
of the internal and external forces respectively. α has an average value of 0.4 and
β has an average value of 0.5 in our approach. Appropriate values of α and β are
selected prior to segmentation and are consistent across a dataset.

−→
F ext is the sum

of external forces governed by image edge information and gradient intensity values
that minimize the distance between a vertex P and maximum gradient intensity
in the neighborhood of P along the normal direction.

−→
F int is the sum of internal

forces represented by an elastic force that enforces smoothness and weak shape-
based constraints. This physically-based deformable model is governed by forces
to maintain internal stabilization through

−→
F int . Weak shape memory is enforced

by constraining the internal forces along the normal direction of vertex P . This is
implemented by constraining the mean curvature at vertex P governed by the simplex
angle φ by setting φ = φc, where φc is a constant [16].

3.5 Multi-resolution Simplex Model Creation

Delingette [16] proposed four topological operators for transformation of a k-simplex
mesh, which were refined by Gilles et al. [17] to optimize the simplex mesh quality by
applying quality constraints. These operators yield regular mesh faces with desired
edge length, leading to high quality multi-resolution meshes.

The global mesh resolution is adapted to the complexity of the anatomical shape
being segmented in a coarse-to-fine segmentation approach. Thus, various simplex
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Fig. 1 Multi-resolution segmentation refinement herniated disc model

mesh resolutions of a disc and toroidal shape have been generated through a multi-
resolution scheme without loss of vertex connectivity for segmentation refinement,
as demonstrated in Fig. 1.

Template mesh deformation is guided by the presence of MR image gradient
forces, resulting in 3–6 min of segmentation time per disc or vertebra. The resulting
simplex mesh is converted to a dual triangulated surface mesh with resolution con-
trol, which in turn is directly input to a tetrahedralization of similar resolution for
simulation, as discussed in Sect. 3.7.

3.6 User-Guided Pathology Segmentation

In the event that the internal simplex shape memory influence hinders detection of
pathology, as detected via visual inspection, user input is allowed to locally turn off
the shape feature and assist model deformation. This assistance is implemented by
placing internal and external constraint points on the volumetric image that grace-
fully constrain the deformation to correct under-and over-segmentation. Constraint
point forces are enforced as an addition to the total external force. The number of
constraint points applied to the images typically range between 37 and 60, while
requiring 5–7 min, depending on the shape of the pathology that the automatic Sim-
plex model deformation may fail to capture.

This semi-supervised segmentation method has also been utilized for manual cor-
rection of healthy intervertebral disc segmentation, which serves as ground truth for
validation of our healthy disc segmentation results. Similar segmentation evaluation
techniques have been employed in literature using manually corrected active shape
models for segmentation of anatomical structures [8, 18]. Manual segmentation is a
labor intensive process; each MRI volume consists of about 85–90 image slices in
the sagittal plane, with an average segmentation time of approximately 7 h of manual
segmentation time per disc. An anatomist performed manual and semi-supervised
segmentation for generation of ground truth verified by a neuroradiologist.
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Fig. 2 3D simulation of a healthy intervertebral disc under pressure. a Tetrahedral FEM. b Behav-
ioral Model: The bottom nodes (red) are constrained to be fixed and the Neumann boundary con-
dition is applied to the top surface (green) of the disc model. c Visual Model: Comparison of the
disc model at rest (red) and deformed (green) configurations (Color figure online)

3.7 Intervertebral Disc Simulation Model

Simulation Open Framework Architecture (SOFA) [19] is an open-source object-
oriented software toolkit that is targeted towards real-time interactive medical sim-
ulations. Several components of a model can be combined in hierarchies through an
easy-to-use scene file format to represent various model parameters such as material
properties, deformable behavior, constraints and boundary conditions, which makes
SOFA a very powerful and efficient prototyping tool. The following section describes
two SOFA applications using the disc surface mesh: a deformation based on an FEM
model and cutting based on an enriched Meshless Mechanics (MM)-based model.

3.7.1 Healthy Disc Compression Simulation

A healthy lumbar intervertebral disc has been modeled using SOFA to simulate the
biomechanical and physiological changes of the disc under compression [19]. The
tetrahedral mesh of the healthy L2–L3 disc has been generated from the segmented
surface mesh using the isosurface stuffing method [20]. This volumetric mesh has
been used to define the tetrahedral corotational finite element model of the disc,
depicted in Fig. 2a, which corresponds to the Behavior Model1 of the deformable
object. The boundary conditions and external compression forces have been defined
through the segmented surface mesh, which is linked to the underlying Behavior
Model of the deformable object (Fig. 2b). Following the actual anatomy of the sim-
ulated intervertebral disc, the bottom nodes that are in direct contact with the below
rigid vertebral body have been constrained to be fixed to their initial locations, and a
prescribed vertical pressure of 100 N/cm2 has been applied to the top surface of the
disc using SOFA’s TrianglePressureForceField2 component.

In the simulation phase, we have assumed a uniform isotropic material model for
representing the intervertebral disc. Our interbertebral disc biomechanical properties

1 http://www.sofa-framework.org/sofa/doc/sofadocumentation.pdf.
2 http://www.sofa-framework.org/classes?show=Triangle-PressureForceField.

http://www.sofa-framework.org/sofa/doc/sofadocumentation.pdf
http://www.sofa-framework.org/classes?show=Triangle-PressureForceField
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are consistent with values published by Malandrino et al. [21] and Spilker [22]. Using
these studies, we have chosen Poisson’s ratio to be 0.4 and Young’s modulus to be
1,5800 Pa, representing the ratio of disc model expansion versus compression and
the stiffness of the elastic model respectively. The effect of the compression force
on the disc has been captured in terms of the relative displacement of the surfaces of
the original and deformed configurations (Fig. 2c), where the uncompressed disc is
depicted in red and the compressed configuration in green. The simulation results in
a slightly bulging disc.

3.7.2 Herniated Disc Meshless Mechanics-Based Cutting

We present a proof of concept for point-based simulation and cutting of herniated
disc soft-tissue to be used in the context of interactive surgery simulation setting.
Figure 3a. demonstrates the application of a Meshless Mechanics (MM)-based cut-
ting engine that runs on SOFA, in conjunction with a controlled-resolution herniated
intervertebral disc model. The surgical tool that is depicted next to the disc is an 8 mm
curette. A coarse-resolution triangulation leads to a tetrahedral meshing of compara-
ble resolution, in conjunction with the it Behavior Model, while the fine-resolution
surface meshing is used in conjunction with the Visual Model.

The continuum equation of the deformable body is discretized using the meshless
moving least square (MLS) based approximation scheme. The cutting operation
is realized with a novel easy-to-use intrinsic meshless distance-based enrichment
technique that handles discontinuities, such as cutting, based on the work of Barbieri
et al. [23]. The utilized enrichment function [24, 25] improves on [23] multiplicative
enrichment in a manner that leads to full, seamless compatibility with multiple cuts.
Figure 3b. depicts the meshless cutting mechanics of a simulation object in the Visual
Model, which is controlled by the Behavior Model. An enrichment grid represented
by point primitives is generated for the cut, which is used to update the underlying
models of the deformable object. The integration of the meshless cutting model
depicted in Fig. 3c, described by [25], is currently being refined for the curette tool
geometry as shown in 3a.

Fig. 3 Meshless Mechanics-based cutting simulation in SOFA. a A herniated L5–S1 disc Visual
Model using an 8 mm curette. b Visual Model of an object represented by point primitives. c Meshless
cutting model [25]
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While there are similarities between our work and related research, our work fea-
tures innovations essential to the development of an interactive spine surgery simu-
lator. First, the anatomical modeling under development enables a trade-off between
weak shape priors and limited user supervision near the pathology of interest to the
simulation. Second, our approach specifically emphasizes resolution control with the
final simplex surface mesh, which leads to a controlled-resolution triangulated mesh
by duality; moreover the latter controlled-resolution triangulated mesh in turn leads
to a like-resolution tetrahedral mesh bounded by it. Both aspects of the meshing are
essential to the low element count needed for an interactive virtual tissue response.

This implementation is intended as a proof of concept to demonstrate use of
segmentation results to initiate a patient-specific simulation in SOFA, such that
an interactive response is feasible. Meanwhile, competing spine modeling methods
emphasize dense tetrahedral decomposition and onerous finite element computations
that preclude an interactive response. In particular, our controlled-resolution mod-
eling technique can produce a coarse triangular surface for constraining a coarse
tetrahedralization for a Behavior Model, a medium-resolution surface mesh for a
Collision Model, and a fine-resolution surface mesh for a Visual Model, all running
on SOFA and mapped to each other.

4 Results

MeshValmet [26] has been utilized for calculation of quantitative validation met-
rics. The mean absolute shape distance, MASD, (in mm) and absolute standard
deviation of all errors (in mm), absolute mean square distance MSD (in mm), the
Hausdorff distance (in mm) and DICE similarity coefficient comparison metrics have
been calculated to compare the quality of our segmentation approach with ground
truth. The Hausdorff distance is the maximum surface distance between two surface
meshes and quantitatively represents a measure of the worst segmentation error. DICE
similarity coefficient compares the similarity between the resulting segmentation and
ground truth, and has been calculated as s = (2|X ∩ Y |)/(|X | + |Y |).

Statistical comparison of 16 automatic segmentations of healthy lumbar inter-
vertebral discs with minimally supervised segmentation results, considered ground
truth, is represented in Table 1. The average absolute mean error of healthy disc

Table 1 Average validation metrics comparing automatic segmentation results with corresponding
semi-supervised segmentation of 16 healthy lumbar intervertebral discs

Validation metric (mm) Healthy disc

MASD 0.321

Absolute std. dev. 0.455

MSD 0.342

Average hausdorff distance 3.261

DICE coefficient 0.954
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Fig. 4 Comparison of an automatic L5–S1 healthy disc segmentation result against its correspond-
ing semi-supervised segmentation (ground truth), with −2.452 mm max. in, 2.081 mm max. out
error

segmentation approach is 0.323 mm ± 0.455 mm, with an average Hausdorff
distance of 3.26 mm and average DICE score of 0.954. The maximum surface error
was generally located at the lateral margins of the intervertebral disc, where the
automatic segmentation approach failed to faithfully capture the image boundary
due to image intensity ambiguity caused by surrounding spine tissues and ligaments.
Figure 4 compares automatic segmentation of a healthy L5–S1 disc with the semi-
supervised segmentation result, considered as ground truth. Maximum In error corre-
sponds with maximum under-segmentation error and maximum Out error represents
the over-segmentation error. Our automatic segmentation approach under-segmented
the lateral margins with a maximum In error of −2.45 mm, and a mean absolute seg-
mentation error of 0.19 mm ± 0.29 mm.

Average results of 5 herniated discs comparing semi-supervised segmentation
results against manual segmentation have been calculated. Evaluation results have
been obtained by calculating the surface to mesh difference between the manual seg-
mentation, considered ground truth, and the simplex model result from our approach
of the corresponding intervertebral disc. Our approach demonstrates mean absolute
shape distance of 0.61 mm ± 0.52 mm of segmentation of 5 herniated interverte-
bral discs (Table 2). Our results are favorable in comparison with competing 2D
segmentation methods of herniated discs, and 3D segmentation methods of healthy
discs respectively. Michopoulou et al. [6] reported a 2D mean absolute distance of
0.61mm, whereas Neubert et al. [11] achieved a 3D segmented Hausdorff distance of
3.55 mm for healthy discs in high-resolution 0.34×0.34×1−1.2 mm3 MR images;
in our case, the average Hausdorff distance is 3.261 mm.

Table 2 Average validation metrics comparing semi-supervised segmentation results with corre-
sponding manual segmentation of 5 herniated lumbar intervertebral discs

Validation metric (mm) Herniated disc

MASD 0.608

Absolute std. dev. 0.518

MSD 0.638

Average hausdorff distance 3.485

DICE coefficient 0.917
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Fig. 5 Spatial segmentation error of an L5–S1 herniated disc, with disc herniation circled a Compar-
ison of automatic segmentation using weak shape priors against manual segmentation, considered
ground truth (5.022 mm max. in, 2.603 mm max. out). b Comparison of semi-supervised segmen-
tation against its corresponding manual segmentation (3.369 mm max. in, 3.487 mm max. out)

Fig. 6 Sagittal MRI slice of
a herniated disc with
corresponding segmentation
and constraint points

Figure 5 shows the spatial distribution of error between initial automatic segmenta-
tion using weak shape priors, semi-supervised segmentation result after constraining
model deformation, and the corresponding manual segmentation of the herniated disc
results. Weak shape priors are successfully able to segment the disc with a maximum
in error of −5.022 mm near the disc pathology. This error is reduced to −3.369 mm
through semi-supervised segmentation of pathology. Figure 6 displays disc pathol-
ogy with its corresponding segmentation using constraint points in a sagittal MRI
slice. It can be observed that maximum error in our semi-supervised segmentation
result is located at the lateral portion of the intervertebral disc. This is likely due to
ambiguity in determining the intervertebral disc boundary at the lateral margins of
the anatomy during manual segmentation.

Robustness to variability in user supervision and landmark-placed template mesh
initialization is demonstrated in a series of experiments where the same anatomist’s
results are compared over several initializations, and where two anatomist results are
also compared.

Table 3 displays the intra-rater and inter-rater user variability during semi-
supervised segmentation of an L5–S1 herniated disc. As demonstrated in Fig. 7,
intra-rater variability is present at the disc pathology where constraint points were
required to correctly segment the herniated part of the anatomy. More variabil-
ity exists between different anatomists, with a larger mean segmentation error of
0.254 mm, present at the lateral margins of the disc as well as the disc pathology,
where manual interaction was required.
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Table 3 Validation metrics comparing two sets of semi-supervised segmentations of a herniated
intervertebral disc performed by the same anatomist and two different anatomists, demonstrating
intra-rater and inter-rater variability respectively

Validation metric (mm) Intra-rater Inter-rater

MASD 0.050 0.254

Absolute std. dev. 0.062 0.323

Maximum out error −1.214 −2.593

Maximum in error 0.905 2.290

Hausdorff distance 1.214 2.593

Intra-rater herniated disc error Inter-rater herniated disc error

Fig. 7 Maximum out (red) and maximum in (blue) segmentation error between two sets of herniated
disc segmentations performed by a the same rater (0.905 mm max. in, 1.214 mm max. out), and b
different raters (2.290 mm max. in, 2.593 max out). Over and under-segmentation is present at the
lateral margins and the pathology where constraint points were required to correct segmentation
(Color figure online)

5 Conclusion and Future Work

In our approach, weak shape priors in active surface models are a precursor of
application of statistical shape knowledge for segmentation of healthy as well as
herniated discs of the lumbar spine. We have reason to believe that incorporation
of statistical shape knowledge would reduce the lateral disc segmentation error, as
observed in Figs. 5 and 7.

This study describes the application of weak shape priors in active surface models
for segmentation of healthy as well as herniated discs. As herniated disc anatomy
cannot be faithfully captured by prior shape or intensity features, weak shape prior
influence is turned off locally and graceful degradation from these priors is allowed
in a user-controlled manner, refining the segmentation result. Our main contribution
is a framework for 3D surface-mesh based segmentation and controlled-resolution
meshing of healthy and herniated discs of the lumbar spine. In addition, this paper
presents a proof of concept of our segmentation method as part of a processing
pipeline for anatomical models input to interactive surgery simulation, specially of
a discectomy procedure, in conjunction with SOFA-based simulation that captures
spine pathology with fidelity.
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Localisation of Vertebrae on DXA
Images Using Constrained Local Models
with Random Forest Regression Voting

P.A. Bromiley, J.E. Adams and T.F. Cootes

Abstract Fractures associated with osteoporosis are a significant public health risk,
and one that is likely to increase with an ageing population. However, many osteo-
porotic vertebral fractures present on images do not come to clinical attention or
lead to preventative treatment. Furthermore, vertebral fracture assessment (VFA)
typically depends on subjective judgement by a radiologist. The potential utility of
computer-aided VFA systems is therefore considerable. Previous work has shown
that Active Appearance Models (AAMs) give accurate results when locating land-
marks on vertebra in DXA images, but can give poor fits in a substantial subset of
examples, particularly the more severe fractures. Here we evaluate Random Forest
Regression Voting Constrained Local Models (RFRV-CLMs) for this task and show
that, while they lead to slightly poorermedian errors thanAAMs, they aremuchmore
robust, reducing the proportion of fit failures by 68%. They are thus more suitable
for use in computer-aided VFA systems.

1 Introduction

Osteoporosis is a common skeletal disorder defined by a reduction in bone mineral
density (BMD) resulting in a T-score of <2.5 (i.e. more than 2.5 standard deviations
below the mean in young adults), measured using dual energy X-ray absorptiometry
(DXA) images [15]. It significantly increases the risk of fractures, most commonly
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occurring in the hips, wrists or vertebrae. Approximately 40% of postmenopausal
caucasian women are affected, increasing their lifetime risk of fragility fractures to
as much as 40% [15]. Osteoporosis therefore presents a significant public health
problem for an ageing population.

Accurate identification of vertebral fractures is clinically important in the diag-
nosis of osteoporosis. Radiological assessment typically uses a semi-quantitative
approach [10] requiring subjective judgement by a radiologist. Furthermore, only
about one third of vertebral fractures present on images come to clinical attention;
they are frequently not noted by radiologists, not entered into medical notes, and do
not lead to preventative treatments [6]. Many of these cases involve images acquired
for purposes other than VFA. However, a recent multicenter, multinational prospec-
tive study [8] has found a false negative rate of 34% in VFA performed on lateral
radiographs of the thoracolumbar spine. The potential utility of computer-aided VFA
systems is therefore considerable.

Several authors have investigated the use of methods based on statistical shape
models to segment vertebrae in both radiographs and DXA images (e.g. [16]) as
a preliminary step for VFA. However, state-of-the-art results achieved using active
appearance models (AAMs) [17] exhibit significant numbers of large errors due to fit
failures, particularly on themore severely fractured vertebrae. This is the result of two
effects. First, osteoporosis patientswith vertebral fracturesmost commonly have only
one or two fractures (e.g. [11]). Therefore, models encompassing multiple vertebrae
must typically be trainedondatasets containingmorenormal than fracturedvertebrae,
potentially introducing a bias against the most severe shape changes. Second, work
on natural images of faces has shown that holisticmethods such as AAMs, which rely
on a single model of shape and intensity that covers all landmarks, tend to generalise
poorly [7]. An alternative is to use a set of models, each covering an individual
landmark. The ambiguity inherent in the use of local image patches may be dealt
with by imposing a global shape constraint (e.g. [9]). In particular, regression voting
(RV) methods (e.g. [19]), especially those (e.g. [3, 7, 13]) based on Random Forests
(RFs) [1] tend to be robust. The RFRV Constrained Local Model (RFRV-CLM)
[3, 13], which uses a RF regressor for each point constrained by a global shape
model, has been applied successfully to the annotation of landmarks both in facial
(e.g. [3]) and clinical (e.g. [13]) images, and shows superior generalisation on facial
images compared to the AAM [18].

The hypothesis investigated here is that the superior generalisation capability of
the RFRV-CLM will lead to performance improvements, compared to AAMs, in
terms of the number of fit failures on DXA spinal images. RFRV-CLMs are applied
to annotate vertebral landmarks in a dataset of 320 such images, the first time they
have been applied to this task. Extensive experiments were performed to investigate
the effect of the free parameters. The results were compared to those from [17] using
AAMs on the same dataset, and show that RFRV-CLMs provide a considerable
(68%) reduction in fit failures across all vertebral classifications.
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2 Method

The reader is referred to [3, 13] for full details of the RFRV-CLM algorithm; the key
points are described below.

Constrained Local Models CLMs [5] build on previous work on Active Shape
Models (ASMs) [4] and AAMs [2], providing a method for matching the points of
a statistical shape model to an image. They combine global shape constraints with
local models of the pattern of intensities. Given a set of training images with manual
annotations xl of a set of n landmarks l = 1, . . . , n on each, a statistical shape model
is trained by applying principal component analysis (PCA) to the aligned shapes [2].
This yields a linear model of shape variation, which represents the position of each
landmark l using

xl = Tθ (x̄l + Plb + rl) (1)

where x̄l is the mean position of the point in a suitable reference frame, Pl is a set of
modes of variation, b are the shape parameters, rl allows small deviations from the
model, and Tθ applies a global transformation (e.g. similarity) with parameters θ .

To match the model to a query image, I, the overall quality of fit Q, of the model
to the image is optimised over parameters p = {b, θ, rl}

Q(p) = �n
l=1Cl(Tθ (x̄l + Plb + rl)) s.t. bT S−1

b b ≤ Mt and |rl | < rt (2)

where Cl is a cost image for the fitting of landmark l, Sb is the covariance matrix of
shape model parameters b, Mt is a threshold on the Mahalanobis distance, and rl is
a threshold on the residuals. Mt is chosen using the cumulative distribution function
(CDF) of the χ2 distribution so that 98% of samples from a multivariate Gaussian
of the appropriate dimension would fall within it. This ensures a plausible shape
by assuming a flat distribution for model parameters b constrained within hyper-
ellipsoidal bounds [2]. In the original work [2], Cl was provided by normalised
correlation with a globally constrained patch model.

RF Regression Voting in the CLM Framework. In RFRV-CLM, Cl in Eq.2 is
provided by voting with a Random-Forest (RF) regressor. To train the RF for a single
landmark, the shape model is used to assess the global pose, θ , of the object in each
image by minimising |Tθ (x̄) − x|2. Each image is resampled into a standardised
reference frame by applying the inverse of the estimated pose. The model is scaled
so that the width of the reference frame of the mean shape is a given value, wframe.
Sample patches of area w2

patch are then generated from the resampled images at a
set of random displacements from the true point positions. The displacements d j

are drawn from a flat distribution in the range [−dmax,+dmax] in x and y. Finally,
image features f j are extracted from the sample patches. Haar-like features [20] are
used, as they have proven effective for a range of applications and can be calculated
efficiently from integral images. To allow for inaccurate initial estimates of the pose
and to make the detector locally pose-invariant, the process is repeated with random
perturbations in scale and orientation of the pose estimate. A RF [1] is then trained,
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using a standard, greedy approach, with the feature vectors f j as inputs and the
displacements d j as regression targets. Each tree is trained on a bootstrap sample of
Ns pairs {(f j , d j )} from the training data. At each node, a random sub-set of n f eat

features are chosen from this sample, and a feature fi and threshold t that best split
the data into two compact groups are selected by minimising an entropy measure
[3]. Splitting terminates at either a maximum depth, Dmax, or a minimum number of
samples, Nmin. The process is repeated to generate a forest of size ntrees .

RFRV-CLM Fitting Fitting to a query image is initialised via an estimate of the pose
of the model e.g. from a small number of manual point annotations or a previous
model, providing initial estimates b and θ (see Sect. 3). Equation2 is then optimised
as follows. The image is resampled in the reference frame using the current pose. Cost
images Cl are then computed by evaluating a grid of points in the resampled images
over a region of interest around the current estimate of each point; the grid size is
defined by a search range [−dsearch,+dsearch], and the cost images are calculated for
all landmarks independently. At each point zl in the grid, the required feature values
are extracted and the RF regressor Rl applied. Rl then casts a vote into a cost image
Cl using Cl(zl + δ) → Cl(zl + δ) + c. Each leaf node of the RF contains the mean
d̄ and covariance Sd of the random displacements di from the true point position,
in the reference frame, of its training samples. This supports several voting styles
(c, δ); a single, unit vote at d̄, or probabilistic voting by weighting with |Sd |−0.5, or
by casting a Gaussian spread of votes N (d̄, Sd).

The point positions are re-estimated by finding the lowest cost point within a disk
of radius r of the current position in each cost image, applying the shape model and
moving b to nearest valid point on the limiting ellipsoid if the shape constraint in
Eq.2 is violated, updating all point positions using xl → Tθr (x̄l + Plb + rl), and
iterating whilst reducing r → krr . The initial disk radius rmax was set to the search
range dsearch , the search was terminated at rt = 1.5 pixels (in the reference image),
and kr was set to 0.7. The optimisation is described in full in Algorithm 1.

3 Evaluation

A series of experiments was performed to optimise the various free parameters and
options of the RFRV-CLM for application to the task of vertebral localisation in
DXA images, and to compare the results to those achieved in [17] using AAMs. To
facilitate this comparison, the same dataset and performance metrics were used. The
dataset consisted of 320 DXA VFA images scanned on various Hologic (Bedford
MA) scanners, obtained from: (a) 44patients fromaprevious study [14]; (b) 80 female
subjects in an epidemiological study of a UK cohort born in 1946; (c) 196 females
attending a local clinic for DXA BMD measurement, and for whom the referring
physician had also requested VFA (as approved by the local ethics committee).
Manual annotations of 405 landmarks were available for each image, covering the
thoracic vertebrae from T7 to T12 and the lumbar vertebrae from L1 to L4. Each of
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Algorithm 1 Iterative model matching procedure to estimate the shape and pose
parameters in the reference frame, given a set of feature point based cost images Cl .

SHAPE MODEL AND POSE PARAMETER OPTIMISATION

Input: rmax , rt , kr , xl and Cl ∀1 ≤ l ≤ n
1. Set r → rmax , θr → Identity, xl → x̄l + Pl b, rl = 0
2. While r ≥ rt

a. For every feature point l, find the best point ŷl in a disk of radius r around the current
estimate
ŷl → argmaxyl :|yl−xl |<r Cl (yl )

b. Fit the shape model to these best points to estimate shape and pose parameters {b, θr } by
solving
ŷl = Tθr (x̄l + Pl b)

c. If bT S−1
b b > Mt then move b to nearest valid point on limiting ellipsoid

d. Update all feature point positions using xl → Tθr (x̄l + Pl b + rl )

e. Set r → kr r with 0 < kr < 1

3. Transform the resulting feature point positions into the image frame using Tθ with θ → θ ◦ θr

these vertebrae in each image was also classified by an expert radiologist into one
of five groups (normal, deformed but not fractured, and grade 1, 2 and 3 fractures
according to the Genant definitions [10]; see Fig. 1).

Following [3, 13], 2-stage, coarse-to-fine RFRV-CLMs were used and, in com-
mon with [17], individual models were trained for each vertebra; each covered the
target vertebra and its two neighbours, or one neighbour for the top (T7) and bottom
(L4) vertebrae. Fitting of the first-stage model was initialised using the approximate
centre points of each of the vertebrae covered by the model, calculated from the
manual annotations as the centroid of the two central points on the upper and lower
vertebral end-plates. This approach was adopted to avoid the significant reduction
in random error, compared to individual manual annotations, that would occur if
the centre points were calculated as the centroids of all manual annotations on each
vertebra. Second-stage fitting was initialised using the results from the first stage. To
compensate for the aperture problem present when annotating points on an extended
edge, errors on automatic annotations were calculated as the mean, over each verte-
bra, of the minimum Euclidean distances between the automatic annotations and a
Bezier spline through the manual annotations. This was applied to the points on the
central vertebra in each model i.e. no use was made of the multiple fits for each point
(see Sect. 4).

RFRV-CLM Parameter Optimisation. The free parameters of the RFRV-CLM,
as described in Sect. 2, were divided into two sets; RF structure parameters (ntrees,
nfeat , Nmin and Dmax), and image parameters (wframe,wpatch, dmax and dsearch).1 These
were optimised empirically and, to limit processor time requirements, a sequential
approachwas applied across both parameters and stages i.e. eachfirst-stage parameter

1 Parameters wpatch, dmax and dsearch were defined in the reference image.
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Fig. 1 Example DXA spinal images. a–c 405-point manual annotations. d–f Automatic annotation
of the L2 vertebra (using the L1-L3model), using the fully optimised, 2-stageRFRV-CLM.Example
(a, d) shows grade 2 fractures on L2 and L3, (b, e) show a grade 3 fracture on L1, and (c, f) show
a grade 3 fracture on L1 and a grade 1 fracture on L2
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was optimised independently without applying the second-stage model; the optimal
values were then fixed, and each second-stage parameter was optimised indepen-
dently in a two-stage approach. Furthermore, the optimisation experiments were
performed only on the L2 vertebra (i.e. the L1-L3 triplet model). L2 was chosen as it
was the least obscured by confounding bony structures (ribs, scapulae, the iliac crest
etc.) and imaging artefacts, minimising the contamination of the results with fitting
failures. The optimisation results were then extended to the other vertebral levels by
scaling the optimised wframe using data on mean vertebral heights from [12], such
that all image-based parameters were scaled. The data set was divided randomly into
halves for training and testing. RF training includes a stochastic element, both in
the random selection of data used to train each tree, and the random sub-selection
from that data at each node. Therefore, each experiment was repeated five times to
evaluate random errors.

For the sake of brevity, complete results are reported only for wframe and wpatch,
the parameters showing the greatest effect on performance; these are shown in Fig. 2.
The graphs show the proportional area under the CDF of mean point-to-curve error
on the L2 vertebra across the 160 test images. Performance generally increased with
first-stage wframe; however, dsearch and wpatch are defined in the reference frame,
and so reducing wframe increases the capture range. Therefore, wframe was set using
the point at which the performance increase ceased to be significant, giving 40 and
110 pixels for the first and second stages. Varying wpatch had a smaller effect on
performance over most of the range tested, but showed more complex behaviour;
values of 18 and 21 pixels were selected for the first and second stages, respectively,
since these were close to optimal over large portions of the tested ranges of wframe.
The remaining parameterswere optimised similarly, giving (first stage, second stage):
ntrees = 2, 15; nfeat = 100, 200; Nmin = 1, 1; Dmax = 30, 30; wframe = 40, 110
pixels; wpatch = 18, 21 pixels; dmax = 15, 15 pixels; dsearch = 15, 10 pixels (all
pixel units except for wframe were defined in the reference frame). In general, the
dependence of performance on parameters was weak over large ranges.
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CLMs on the L2 vertebra. Performance was measured as the percentage area under the CDF of
mean point-to-curve error across 160 test images. Error bars are too small to be visible at this scale
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Effects of the Shape Model Constraint. A concern with the application of shape
models is that the shape constraint may introduce a bias towards the mean of the
training data; this is sub-optimal in clinical applications, where the pathological
(i.e. outlying) cases are of most interest. To evaluate the effect, experiments were
performed using the procedure and optimal parameters described above, both with
and without the application of the shape model constraint during the fitting of the
second stage of the RFRV-CLM, such that the shape constraint only aided in the
approximate location of the global optimum; the final result was based on image
information alone. The results are shown in Fig. 3 as the CDF of mean point-to-
curve error for the L2 vertebra over the 160 test images. The elimination of the
shape model constraint resulted in a small and statistically insignificant change in
performance, indicating that any shape model bias had an insignificant effect on the
results given the error measure used here.

Effects of the Voting Style. As described in Sect. 2, several methods for voting
into the cost images were available. These alternatives were evaluated using the
experimental procedure and optimised parameters described above, to determine
whether probabilistic voting provided performance enhancements. The results are
shown in Fig. 4 as the CDF of mean point-to-curve error for the L2 vertebra over the
160 test images.

The results show that probabilistic voting provided no performance advantage.
The performance ofGaussian votingwas almost identical to that of single, unit voting.
Single, weighted voting resulted in a small decrease in performance; however, these
differences were not statistically significant. Similar results have previously been
found when applying RFRV-CLMs to facial images [3].

Performance across Multiple Vertebrae. A set of leave-1/4-out experiments was
performed to evaluate the RFRV-CLM on all vertebrae between T7 and L4 in all
320 images. The optimised parameters were derived from the L2 vertebra; they
were adapted for the other vertebrae by scaling wframe according to the ratio of mean
vertebral heights in normal subjects from [12]. Shapemodel constraints were applied
in all stages and single, unit voting was used.
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Fig. 3 Evaluation of the effect of the shape constraint in the final fitting stage using the L2 vertebra.
Error bars are given as the standard deviation across five repeats; (b) is an expanded view of (a)
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The results are shown in Fig. 5, and example fits are shown in Fig. 1. Annotation
accuracy for T7 and L4 was lower than that for the other vertebrae, reflecting the
fact that the corresponding models covered only two vertebrae, rather than three.
The performance also decreased with increasing vertebral level; this may reflect the
smaller size of the higher vertebrae and the presence of confounding bony structures
(ribs, scapulae; see Fig. 1) in the thoracic region. However, mean errors of less than
2 and 4mm were achieved for 95 and 99% respectively of the vertebrae at all levels.
The results divided according to vertebral status show that, as expected, performance
decreased with increasing severity of fracture i.e. increasing deformation relative to
the mean shape. However, mean errors of <4mm were achieved for 95% of grade 3
fractures, and 100% of other classifications.

Table1 provides numerical performancemeasures for the RFRV-CLMs, and com-
pares them to the state-of-the-art results reported in [17], which applied AAMs to
the same task and dataset. The AAM achieves better performance at the lower end
of the CDF, as indicated by lower median errors, indicating smaller random errors
on individual points. However, the RFRV-CLM achieves better mean errors for the
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more severely fractured vertebrae, and substantially lower numbers of vertebrae with
mean errors >2mm regardless of classification, indicating better performance at the
higher end of the CDF i.e. a smaller number of fit failures (errors >2mm on 3.6%
of all vertebrae for AAMs versus 1.2% for RFRV-CLMs). The median and mean
errors across all 3,200 vertebrae were 0.60 and 0.65mm respectively, compared to
0.43 and 0.60mm from [17]. Mean search time was 366ms per triplet per image on
a Dell Precision workstation with 2 Intel Xeon 5670 processors and 24GB RAM,
running OpenSuse 11.3×64 (Linux kernel 2.6.34), using a single core. Mean search
time per image (i.e. for all ten triplets) was 3.7 s.

4 Discussion and Conclusions

This paper has compared the performance of multi-stage RFRV-CLMs to that of
AAMs in the task of vertebral landmark annotation on DXA spinal images. Several
preliminary experiments were performed to optimise the various free parameters and
options of the algorithm. In particular, no significant performance differences were
observed, for the error metrics used, either when implementing fully probabilistic
regression voting or when eliminating the shape model constraint in the final stage
of fitting, such that the result was driven by image information alone.

Comparison of the errors on automatic landmarks from AAMs and RFRV-CLMs
can be divided into two components; the random errors on landmarks from successful
fits, best represented by the median of the error distribution due to its non-Gaussian
shape, and the number of fit failures. Application of fully optimised models to ten
vertebral levels in 320 DXA spinal images showed that, whilst the AAM produced
smaller median errors, the differencewas small at less than 0.2mm regardless of clas-
sification. For comparison, the Genant method for vertebral fracture classification
[10] defines grade 1, 2 and 3 fractures as vertebral height reductions of 20–25, 25–
40, and >40%, respectively, and [12] measured mean vertebral heights varying from
22.97±1.52mm for T7 to 35.62±2.21mm for L4 in a sample of 108 normal women.
Therefore, vertebral fractures are defined via height reductions of �5mm regardless
of grade or level. The more significant difference between the two techniques is in
terms of the number of fit failures, since these represent cases where accurate diag-
nosis of the vertebral status using the automatic landmarks would not be possible.
Fit failures were identified using a threshold of 2mm, for ease of comparison to the
results presented in [17]. The RFRV-CLMproduced lower numbers of vertebrae with
errors >2mm for all classifications; a reduction of 68%. Therefore, in the region of
the CDF important for computer-aided VFA, RFRV-CLMs out-perform AAMs.

In this work, no use was made of the multiple fits to each vertebra provided by the
overlaps of the models; only the points on the central vertebra in each were used. In
future work, we intend to explore the combination of the multiple fits with goodness-
of-fit measures both to improve the accuracy of the automatic annotation, in terms
of random error, and to detect instances of fit failures i.e. systematic errors in indi-
vidual fits. Furthermore, we intend to extend the work to include both radiographs
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and mid-line sagittal CT images. Finally, we intend to investigate the use of auto-
matic landmarks for vertebral classification, comparing the accuracy of approaches
based on the Genant height ratios to classifiers applied both to the point locations
themselves, and to the shape parameters generated during fitting.
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Bone Profiles: Simple, Fast, and Reliable
Spine Localization in CT Scans

Jiří Hladůvka, David Major and Katja Bühler

Abstract Algorithms centered around spinal columns in CT data such as spinal
canal detection, disk and vertebra localization and segmentation are known to be
computationally intensive andmemory demanding. Themajority of these algorithms
need initialization and try to reduce the search space to a minimum. In this work we
introduce bone profiles as a simple means to compute a tight ROI containing the
spine and seed points within the spinal canal. Bone profiles rely on the distribution
of bone intensity values in axial slices. They are easy to understand, and parameters
guiding the ROI and seed point detection are straight forward to derive. The method
has been validated with two datasets containing 52 general and 242 spine-focused
CT scans. Average runtimes of 1.5 and 0.4 s are reported on a single core. Due to its
slice-wise nature, the method can be easily parallelized and fractions of the reported
runtimes can be further achieved. Our memory requirements are upper bounded by
a single CT slice.

1 Introduction

Image analysis methods focussing on spinal columns in CT scans such as detection,
localization and segmentation of disks, vertebrae and spinal canal need high com-
putational power and memory. This is particularly true for scans containing lower
extremities or even full body scans. In such cases it turns out that for any spine
related image processing task a significant portion of the CT data is unnecessary to
deal with. Slices containing legs, which often make up the half of the data, can be left
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out already during volume reconstruction from the DICOM input. Parts too far from
the spinal canal can be ignored during the search for vertebrae and intervertebral
disks.

In this work we present a fast, memory efficient and easy to implement method
to find bounding boxes around spinal columns and to propose reliable initialization
seeds for subsequent algorithms. We propose a one-pass, slice-wise method based
on simple bone distribution signatures. It is:

slice-wise, i.e. memory-efficient. Every DICOM slice is processed independently
of the others. Memory requirements shrink to allocation of one image.

one-pass, i.e. fast. Each slice needs to be processed only once. The runtime there-
fore scales linearly with the total number of slices and the slice resolution. Being
slice-wise the algorithm is furthermore suitable for parallelization, e.g. a map-
reduce paradigm.

easy to implement. Contrary to machine learning approaches, we propose sim-
ple, threshold-based, bone-distribution descriptors and map-reduce them into 1D
arrays referred to as bone profiles. The algorithm has 6 easy to understand para-
meters. We list them together with the values used for the validation.

The rest of this paper is organized as follows:Webriefly describe state-of-the-art in
Sect. 2. In Sect. 3 we propose simple bone distribution descriptors and introduce their
aggregation in bone profiles. In Sect. 4 we show how the profiles help localizing the
spine. The proposed method is evaluated in Sect. 5. This paper ends with discussion
and conclusions in Sect. 6.

2 Related Work

Spine ROI localization is conducted as an initial step in the literature in order to
accelerate the detection and segmentation of the spinal parts. The authors of [3] start
with a slice-wise detection of candidate positions located on bones and extend the
positions to regions where features are extracted. The features are then compared
to a sample set of previously annotated vertebra regions to find the best candidate
which surrounds the vertebra. The approach of [7] extracts disk clue points and
fits polynomials to them on every sagittal slice of an MR scan. Vertebra height
statistics are computed along the fitted polynomials and the polynomial with the
minimum vertebra height variance indicates the slice for further processing. Stern
et al. [8] work with 3D CT and MR scans. They extract the spinal centerline by
using gradient vectors of opposite pairs of vertebral body edge points. In [10] at first
spine regions are localized slice-wise through thresholding and connected component
analysis. The watershed algorithm is then used to extract spinal canal candidates.
Graph search helps to find the spinal canal. Klinder et al. [5] apply Generalized
Hough Transform using vertebral foramen meshes. The global maximum in the
Hough space corresponds to a position in the spinal cord. Kelm et al. [4] localize
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spine regions roughly as a first step such as we do. However, they apply the Marginal
Space Learning algorithm on machine learned position candidates in CT and MR
scans. In summary and in contrast to our work, the aforementioned algorithms for
spine localization use either more costly features, or more complex machine-learned
models, or a combination of both.

3 Bone Distribution Descriptors and Profiles

We assume sequences of axial CT slices with known z coordinate and pixel spacing,
both given in millimeters. We denote the pixel positions in the patient coordinates as
p = (px , py, pz). For sake of simplicity we also assume the feet-to-head, face-up
(supine) orientation of the patient. The pixel gray values will be denoted as g = g(p)

and we assume them to be in Hounsfield units.
Our approach is based on bone distribution signatures within slices. For a fixed

slice at location z we are therefore first interested in a rough segmentation Bz of
the bones. Given the Hounsfield intensities g, this can be achieved by an interval
threshold, i.e., using two constants:

Bz = {p = (px , py, pz) | pz = z ∧ g(p) ∈ [400, 1050]} (1)

3.1 Centroids and Deviations

The simplest features are based on the centroid of segmentations Bz

μz = 1

|Bz|
∑

p∈Bz

p = (μx
z , μ

y
z , z) (2)

and on the length σz of the associated standard deviation vector

σz =
√√√√ 1

|Bz| − 1

∑

p∈Bz

(px − μx
z )

2 + (py − μ
y
z )

2. (3)

Centroids μz correlate with the spine reliably in the lumbar slices where pelvis, ribs,
or head do not contribute to it.

The lumbar part can be characterized by deviation lengths σz related to size of a
vertebra seen in an axial slice [9]. Values of σz larger than 40mm indicate presence
of non-vertebra bones.
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Fig. 1 Examples showing centroids μz (square), a circle of radius σz , the 80×140mm refinement
window (rectangle), and refined center νz (star)

Centroid refinement. While reliable in the lumbar area, the centroids μz may drift
remarkably from the spine if the pelvis or ribs contribute by their pixels (cf. Fig. 1).

To avoid this we refine the centroidsμz within rectangular 80×140mmwindows,
asymmetrically spanned around them:

Wz = {p ∈ Bz | − 40 ≤ px − μx
z ≤ 40 ∧ −40 ≤ py − μ

y
z ≤ 100} (4)

The size of the windows is set to be sufficiently big to accommodate any vertebra in
an axial view [9] and to account for relative positions of the centroids and vertebrae
in pelvis slices. The centroids μz are refined to the center νz of bone pixels in this
window:

νz = 1

|Wz |
∑

p∈Wz

p (5)

3.2 Shape Histograms: AP Versus LR Distribution

To identify leg slices, we propose to discriminate slices with bone distributions
dominant in the left-to-right direction and zero contributions in the anterior-posterior
direction (see Fig. 2).

We construct 4-bin histograms located in the refined centers νz. Putting δ = p−νz
we define the following four quantities:

h A
z = |{p ∈ Bz | δy < −|δx | ≤ 0}| (6)

h P
z = |{p ∈ Bz | δy > |δx | ≥ 0}| (7)

h R
z = |{p ∈ Bz | δx < −|δy | < 0}| (8)

hL
z = |{p ∈ Bz | δx > |δy | > 0}| (9)
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Fig. 2 Right, left, ante, and poste histogram bins centered at νz overlaid over a negative of a CT
slice at position z showing legs and table

With the AP/LR histogramswe reformulate the leg detection as a search for slices,
where ante-poste bone contributions vanish. We introduce scalars λz and a threshold
to yield this:

0 ≤ λz = h A
z

hL
z + h R

z
< 0.04 (10)

Fig. 3 An example CT scan in a frontal maximum intensity projection (MIP) (a), its histogram
profile (b) and deviation profile (c)
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Note that we exclude the posterior voxels h P
z from (10) in order to ignore eventual

contribution of a CT table.

3.3 Bone Profiles

In the previous section we have introduced two bone distribution descriptors, i.e.
scalars λz and σz for every slice z. Next we aggregate them into two 1D arrays
indexed by z and refer to as the bone profiles. A symmetric plot of bone profiles
along the z-axis is shown in Fig. 3.

4 Applications to Spinal Column Localization

In this sectionwe show how the bone profiles and the refined centers νz can be used to
bound the spinal column and to identify a reliable initialization seed for subsequent
computations.

4.1 Discarding the Slices up to the Ischium

When dealing with spines, leg slices should be taken out of consideration. We
observed that the first occurrence of vanishing λz in the top-to-bottom order may
correspond either to the bottom of sacrum or the bottom of the pelvis—the ischium
(cf. Fig. 3b).

In order to have a security margin between the spine and the slices to drop we
suggest to identify ischium slices. We identify them by the first 65mm long segment
of zeros in the histogram profile, i.e. a sequence longer than the average distance
from ischium to bottom of sacrum.

4.2 Seeding a Spinal Canal Search

Algorithms using incremental/propagated search need to be initialized [5]. To obtain
a reliable seed point near the spinal canal we consider the refined center νz� in a slice
with minimal deviation σz (cf. Eq. 11). In this case no other bones except for vertebra
contribute to the signatures and the point νz� yields an estimate of the spinal canal.
Such slices are predominantly found either in the lumbar area between pelvis and
the first rib (cf. Fig. 3c) or in the neck area.

νz� | z� = argmin{σz} (11)
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4.3 Bounding the Spinal Column

Machine learning methods need to compute a vector of features at every voxel.
Reducing the amount of voxels to be classified to a minimum can therefore signif-
icantly speed up such algorithms. After the leg slices have been discarded we wish
to further prune the space by setting coronal and sagittal bounding planes.

For healthy spines the previously found seed νz� could be reused to set up a bound-
ing box of a predefined size. Such an approach would, however, fail for scolioses
and other spine curvature related disorders.

To deal with such cases we derive coronal and sagittal planes from the bounding
box of the 80× 140mm windows (cf. Eq. 4) spanned symmetrically around a subset
of centers νz. The refined centers νz are first sorted by a drift reliability Δz = ||νz−μz||
from the original centroids μz: the smaller the drift the more reliable the center. A
fraction of sorted νz involved in spanning bounding planes balances the tightness of
bounding around spinal column and the data reduction. It is the last and the only free
parameter in our method.

5 Results

Data and timing. All experiments were performed on two datasets. Dataset 1 con-
tained 52 diversely cropped CT scans from three different vendors including 18
instances with legs up to abdomen and 34 scans with torso and/or head with neck.
29 out of the 52 were CTA scans containing contrast-enhanced vessels. The pixel
sizes of the 512× 512 axial images range from 0.26 to 1mm, and the slice distances
vary from 0.1 to 3mm. The smallest and largest scan comprised of 103 and 5,966
slices respectively. Ground truth (ischium slice, spinal canal centers and vertebral
body centers) was generated by amedical expert. For Dataset 2we used the annotated
spine CT database for benchmarking of vertebrae localization and identification with
242 spine-focused CT scans containing varying pathologies [2] (publicly available
at http://spineweb.digitalimaginggroup.ca). Vertebral body centers were present for
this dataset, ischium and spinal canal centers were added. The time performance has
been measured single threaded on an Intel Core i7 2.6 GHz machine. The computa-
tion of both profiles took on average 1.5s for Dataset 1 and 0.4s for Dataset 2.
Discarding the leg slices. The ischium identification quality was measured in the 18
CT scans of Dataset 1 where legs were present. The mean error from the true ischium
slice was 16.5± 13.2mm which yields a sufficiently tall margin to the bottom of the
spine, i.e. no cropping of the spine was observed. The amount of voxels has been
reduced by a factor of 2.5 on average. For the remaining 276 scans without leg slices
we counted the false positive occurrence of an ischium slice which was 0.
Seed detection. To assess the quality of the seeds νz� we evaluated their distribution
w.r.t. the associated spinal canal centers (cf. Fig. 4). Table1 summarizes the seed
detection results: the average x- and y-deviations of νz� from spinal canal centers

http://spineweb.digitalimaginggroup.ca
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(a) (b)

Fig. 4 Distribution of seeds vz for all instances of Dataset 1 (a) and Dataset 2 (b) relative to the
ground truth spinal canal centers (located at origin) overlaid on an example slice (Color figure
online)

Table 1 x- and y-deviations of detected spinal canal seeds from ground truth annotations and spinal
canal identification rate (CIDR) for Dataset 1 and 2

x-deviation (mm) y-deviation (mm) CIDR (%)

Dataset 1 2.8 ± 2.4 6.8 ± 5.0 75

Dataset 2 4.0 ± 3.3 8.0 ± 5.6 79

and the spinal canal identification rates (CIDR) for both datasets. The spinal canal
identification rate indicates how often the seeds hit the spinal canal. For data where
the seed was not detected within the spinal canal (25% in Dataset 1 and 21% in
Dataset 2), it was placed either on the vertebral arch or on the vertebra body.

Bounding the spinal column. In order to evaluate the accuracy and utility of the
spinal column boundingwe analyzed howwell spine ground truthwas covered by the
planes and to what amount data was reduced. As for the spine coverage, all expert-
annotated vertebral body centers were contained within the coronal and sagittal
bounding planes. To see the accuracy of the spine coverage of whole vertebrae we
measured the minimum distances between the vertebral body center annotations and
the left/right sagittal planes (Δx), the anterior coronal plane (Δy A) and the posterior
coronal plane (Δy P ) for each scan. Two distinct distances in the y-direction were
necessary because of the sagittal asymmetry of vertebrae around the vertebral body
center. In order to see if our bounding planes crop into vertebrae, we compared
Δx to the half of the average midtransverse diameter (lx = 22.5mm) of lumbar
vertebrae [9],Δy A to the half of the average inferior width of lumbar vertebral bodies
(l A

y = 17mm) and Δy P to the average sagittal distance from vertebral body center
to spinous process (l P

y = 65mm) of lumbar vertebrae [1]. As higher percentages
of reliable seeds stretched the bounding planes away from body centers (Sect. 4.3
and Fig. 6b), we investigated two percentage values, 40 and 90%. For Dataset 1,
3%(0%) of the cases had slightly smaller Δx than lx when using 40%(90%) of the
most reliable seeds for bounding plane computation. lx was not completely covered
by 1.5%(1%) of the scans in Dataset 2 with 40%(90%) of the reliable seeds. These
outliers were due to scoliosis in both datasets. Examples are shown in Fig. 5a, b.
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(a) (b) (c) (d)

Fig. 5 MIPs of example data with bounding planes (green lines) generated by 40% of the most
reliable seeds. a, b Frontal MIPs of highly scoliotic spines. c, d Sagittal MIPs of cases where the
input volume is cropped either on the anterior or on the posterior side near to vertebral body center
annotations (Color figure online)

As for the Δy A values, all of the cases had larger Δy A values than l A
y for both

reliability percentages in Dataset 1. 1.6% of the cases had smaller Δy A values
than l A

y for both percentages in Dataset 2. These cases, however, were already too
tightly cropped scans where expert annotations of vertebra centers were too close
to the anterior volume border (see Fig. 5c) and our bounding planes did not further
crop into the volume. The Δy P values were in 5% of the cases smaller than l P

y
for both reliability percentages in Dataset 1 which was due to tightly cropped input
scans in the posterior direction with annotations close to the volume border (see
Fig. 5d). In Dataset 2, 27%(18%) of the scans had smaller Δy P values than l P

y for
40%(90%) of the most reliable seeds. 4 CT scans out of the 27% were slightly
cropped. The remaining scans out of the 27% and all cases out of the 18% were
handled correctly (full vertebra coverage) and either had annotations close to volume
borders or contained vertebrae with smaller sagittal vertebral lengths than those of
lumbar vertebrae (l P

y ).
To assess the utility of the spinal bounding planes, the average data reduction factor

(DRF) was measured for both datasets after discarding the leg slices. It was 4.5(3.3)
on average for Dataset 1 and 1.7(1.5) for Dataset 2 when considering 40%(90%) of
the most reliable seeds for bounding plane construction.

6 Discussion and Conclusion

To the best of our knowledge, this is the first time a machine-learning-free method
yields fast and reliable spine localization in such large (52 + 242) and diverse pop-
ulation of both normal and abnormal CT scans. Other machine-learning free related
works (such as [3, 5]) achieve results with comparable accuracy to ours but they are
slower and tested on much less data. Graf et al. [3] tested on 34 CT scans within an
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average time of approximately 1 minute per scan and Klinder et al. [5] needs 7.6s to
find an initial spine seed in a collection of 64 CT scans.

Machine-learning-based approaches [2, 4] are not only competitive enough based
on accuracy to the method we proposed, but they were tested with similarly high
amounts of data and achieved good time performances. Glocker et al. [2] used 242
spine CT scans (our Dataset 2) for testing and Kelm et al. [4] needed only 11.5s on
average for intervertebral disk detection and labeling. In the following we therefore
discuss our work from the perspective of machine learning methods.

First, setting-up a machine learning method requires ground truth annotations
which is a labor intensive and error-prone task.

Second, the state-of-the-art machine learning algorithms (i.e., decision trees, ran-
dom forests) combine image features in unintuitive and hard to interpret ways [6].
Potential algorithm failures are consequently impossible to explain and fix. On the
contrary we proposed six parameters with a clear interpretation and justification (see
Table2): two Hounsfield unit thresholds for rough bone segmentation (Eq.1), width
and height of the refinement and spanning rectangles (Eq. 4, Sect. 4.3) deduced from
morphometry of vertebrae and pelvis. The threshold to distinguish between legs and
the rest of the slices λz (Eq. 10) was set empirically and validated after plurality of
ground annotations was available (see Fig. 6a). The amount of reliable seeds involved
in bounding the spine (Sect. 4.3) yields a parameter to control the bounding tight-
ness (see Fig. 6b). Increasing this amount increases the overall minimal distance of
the planes to the vertebral body center annotations, i.e. it decreases the DRF (see
Sect. 5). This is the only free parameter of our method and users may tailor it to
own applications: 10% assures bounding of all vertebral body centers, 40% bounds
whole vertebrae but some cases may get slightly cropped, 90% contains only a small
set of vertebrae not covered completely and 100% guaranties full coverage of the
spinal column.

The six parameters make our method easy to implement. In contrast, parameters
inherent to machine learning based methods (e.g., tree depth, number of trees) need
to be found in a cross-validation scheme [6]. Such parameter setups pose difficulties
for researchers who desire to re-implement the algorithms for own purposes.

Finally, learning methods need to compute high dimensional feature vectors
at every voxel to yield a class or a regression value after the volume has been

Table 2 Summary of parameters and their values used within this work

Parameter name Parameter value

Bone segmentation threshold, low 400 HU

Bone segmentation threshold, high 1050 HU

Spanning rectangle, width 80 mm

Spanning rectangle, height 140 mm

Ischium detection threshold 0.04

Amount of most reliable seeds 10%,40%, 90%,100%
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Fig. 6 a Empirical selection of parameter values for λz based on average ischium detection errors of
Dataset 1. λz yields the least average error at 0.04. b Empirical parameter selection for the tightness
of bounding planes based on Dataset 1. The values are minima of the 52 minimal distances (Δx ,
Δy A and Δy P ).

reconstructed from the slices and loaded into memory. Moreover, data structures
often involved in feature extraction (e.g., pyramids or integral volumes) demand
additional memory. From perspective of machine learning methods, we thus intro-
duced a computationally inexpensive tool to prune the search space. It is not clear
howmachine learningmethodswould performwith really big data.While the biggest
of the currently available volumes of Dataset 2 is 256 MB, we were able to process
a 3 GB scan in Dataset 1 within a memory required by one axial slice. We agree that
the memory issue is irrelevant during research. It may, however, become a crucial
argument for radiological departments who often pose tight memory constraints.

We have shown that our method delivers reliable results for spine localization
within average times of 1.5 and 0.4 s for two sets of CT scans. It is faster compared
to other methods such as [3] taking 1min and [5] taking 7.6s.

Possibleweakness of our algorithm is related to the influence of artificialmaterials
and artifacts with Hounsfield values similar to bones (e.g., contrast agents, implants,
imaging artifacts). However, our results on CTA scans, pathological cases and scans
from multiple vendors showed that our method is able to handle data with abnor-
malities and different imaging parameter settings correctly. A detailed study on this
topic is left to future work.
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Area- and Angle-Preserving
Parameterization for Vertebra
Surface Mesh

Shoko Miyauchi, Ken’ichi Morooka, Tokuo Tsuji, Yasushi Miyagi,
Takaichi Fukuda and Ryo Kurazume

Abstract This paper proposes a parameterization method of vertebra models by
mapping them onto the parameterized surface of a torus. Our method is based on
a modified Self-organizing Deformable Model (mSDM) [1], which is a deformable
model guided by competitive learning and an energy minimization approach. Unlike
conventional mapping methods, the mSDM finds the one-to-one mapping between
arbitrary surface model and the target surface with the same genus as the model. At
the same time, the mSDM can preserve geometrical properties of the original model
before and after mapping. Moreover, users are able to control mapping positions
of the feature vertices in the model. Using the mSDM, the proposed method maps
the vertebra model onto a torus surface through an intermediate surface with the
approximated shape of the vertebra. The use of the intermediate surface results in
the stable mapping of the vertebra to a torus compared with the direct mapping from
the model to the torus.
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1 Introduction

Recent medical imaging devices provide high-resolution medical images. Computer
aided diagnosis and therapy systems have been developed that uses the tissue models
obtained by the images [2, 3]. To generate the model, the tissues are segmented from
the images. The variability of the tissue shapes makes it difficult to segment the
tissues automatically. One solution for this problem is to use Statistical ShapeModel
(SSM), which identifies the considerable natural variability and commonality of the
tissue by statistical analysis. Because of the prior information about the tissue shape
provided by SSM, the SSM-based techniques have obtained considerable success in
the tissue segmentation [4]. Here, in this paper, we focus on the 3D mesh model of
a tissue surface with triangular patches.

The fundamental process for building SSM is to establish the correspondence
between the tissue models of different individuals. Generally, the models have dif-
ferent number of vertices. This increases the difficulty of directly finding the relation-
ship between the models. One approach to the challenging correspondence problem
is to map the models onto a parametric target surface with simple shapes such as a
plane and a spherical surface. Since each vertex in the mapped model is assigned
to the parametric coordinate on the target surface, parameterization allows to easily
determine the model correspondences on the target surface. The mapping, called
parameterization, is a useful tool for applications using models, including morphing,
mesh-editing, remeshing, shape-analysis [5].

When applying the parameterization to vertebrae models with non-zero genus,
there are two patterns of the target surface, that is, a target surface with the different
or same genus of the vertebrae to be mapped. The former is a plane or a zero-genus
surface while the latter includes a torus surface. Almost all previous parameterization
methods have employed a different genus target surface of the vertebrae. Spherical
harmonic [6] and spherical Wavelets [7] are often used for building SSM. In these
methods, spherical mapping is applied to represent the model with polar coordinates.
To achieve such mapping, the topology of the vertebra model needs to be changed.
Becker et al. [8] solved the correspondence problem of the vertebrae models by
cutting approximately the models along the same anatomical paths, and mapping
them onto a plane. Like the method in [6–8], the vertebrae parameterization methods
using zero genus surface need to change the topology of the model. The topological
change process sometimes causes local distortions in the parameterization results.
Therefore, the quality of the correspondence depends on the cut paths. On the other
hand, the topological change process is not needed for the method using the target
surface with the same genus as vertebrae. However, there were few methods which
parameterize models by using the target surface with non-zero genus.

In this paper, we propose a new parameterization method of vertebrae bymapping
it onto a torus. We have developed a modified Self-organizing Deformable Model
(mSDM) [1], which finds the one-to-one mapping between arbitrary surface model
and the target surface with the same genus as themodel. At the same time, themSDM
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can both preserve geometrical properties of the original model before and after
mapping, and control mapping positions of the feature vertices in the model. Using
the mSDM, the proposed method maps the vertebra model onto a torus surface. It is
simple to map the vertebra to a torus directly. However, this direct mapping is diffi-
cult since the deformation of the shape is large. Such large deformation sometimes
results in the incomplete one-to-one mapping. To realize the stable mapping, we
map the vertebra onto a torus through an intermediate surface, which has the approx-
imated shape of the vertebra. Once a tissue model and its target surface are given,
our mSDM is performed automatically with no manual intervention. Additionally,
users can select feature vertices and their mapped positions.

2 Parameterization

The surface model M of a vertebra with one genus is represented by triangular
patches. For each vertex vi (i = 1, 2, . . . , NM ) in M , its 1-ring region Ri consists
of N (i)

R patches containing the vertex vi.

2.1 Modified Self-organizing Deformable Model

The mSDM is a deformable model whose shape is deformed by using a competitive
learning and an energy minimization approach. Regrading a tissue model as the
mSDM, the model is mapped onto a target surface by fitting the model to the target
surface. The overview of the mSDM algorithm is as follows.

Step. M-1 A vertebra model M is deformed to fit to the target surface by the
original SDM algorithm [9].

Step. M-2 The deformed model may contain foldovers. To realize the one-to-one
correspondence, the foldover is removed by moving the vertices to within their
1-ring region.

Step. M-3 After the Step. M-2, the feature vertices move away from their corre-
sponding points. Free-Form Deformation (FFD) [10] is applied to the mapped
model to correct the positions of the feature vertices.

Step. M-4 To compare with the models, it is desirable that the mapped model
preserves the original geometric properties as far as possible. Such deformation is
achieved by an area- and/or angle-preserving mapping Φ. Practically, the model
obtained after Step. M-3 is deformed by minimizing an objective function E(Φ)

that is a weighted linear combination of area error term Earea and angle error
term Eangle:

E(Φ) = μEarea + (1 − μ)Eangle �
∑

i

e(Φ); (1)
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e(Φ) = μψearea(Φ) + (1 − μ)eangle(Φ); (2)

earea(Φ) =
∑

p(i)
k ∈Ri

∣∣∣
Φ(A

p(i)
k

)
∑

p(i)
k ∈Ri

Φ(A
p(i)

k
)

−
A

p(i)
k∑

p(i)
k ∈Ri

A
p(i)

k

∣∣∣; (3)

eangle(Φ) =
∑

p(i)
k ∈Ri

3∑

d=0

|Φ(θd
p(i)

k

) − θd
p(i)

k

|, (4)

whereψ is a scaling factor to adjust the ranges of the two error terms. Ai,k and θd
i,k

are the area and one angle of the patch pi,k(k = 1, 2, . . . , N (i)
R ) included in the

1-ring region Ri of the vertex vi .Φ(A) andΦ(θ) is the area and angle of the patch
inΦ(M ). The area errors in Eq. (3) is obtained by the total difference between the
area ratio of a patch before and after the mapping. Here, the area ratio of the patch
p(i)

k is defined as the ratio of the area A
p(i)

k
of p(i)

k to the whole area of the 1-ring

region Ri of p(i)
k . In the same way, the angle error in Eq. (4) is obtained by the

total difference between the angles of the patch p(i)
k before and after the mapping.

Changing the weighting factor μ from 0 to 1, the mapping becomes from angle-
to area-preserving mapping. The setting ofμ determines the kinds of geometrical
features preserved after the mapping. The discussion about the setting ofμwill be
found in [1]. From Eqs. (1) and (2), the minimization of Eq. (1) is replaced as the
optimization problem of positioning the vertices in the 1-ring region by moving
them repeatedly. The optimal mapping is found by applying a greedy algorithm
with Eq. (2). Then, the vertices are not on the target surface completely. Therefore,
they are mapped onto the nearest patch of the target surface after the movement.

Once a tissue model and its target surface are given, our mSDM is performed
automatically with no users’ manual intervention. Moreover, the mSDM framework
controls the movement of several feature vertices of the model. Practically, when
users manually specify the feature vertices and their corresponding locations on the
target surface, the SDMalgorithmmaps the tissuemodel onto the target surfacewhile
moving the feature vertices toward their corresponding locations. This characteris-
tic of the mSDM makes it easy to find the correspondence between tissue models
by mapping the anatomical feature vertices of the tissue model onto their specific
locations on the target surface.

2.2 Vertebra Parameterization Using mSDM

Our parameterization method uses an intermediate surface I whose shape is close
to vertebrae shape. Here, the intermediate surface is determined as a surface model
which has intermediate shape between the vertebra and the torus. Figure1 shows
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Fig. 1 Vertebra parameterization using mSDM

the overview of the mapping a vertebra M onto a torus T . When the vertebra is
mapped directly onto the torus whose shape is far from the vertebra, users need to
tune the parameters in the mSDM algorithm and the scale of the torus. Especially,
the latter tuning is to change the size of the torus and its hole according to the
hole size of each individual vertebra. If the user fails the initial settings, we some-
times obtain the incomplete one-to-one mapping between the vertebra and the torus.
Figure2a, b show the examples of the vertebra models obtained by mapping the ver-
tebra onto the torus directly. As shown in Fig. 2, the accuracy of the direct mapping
depends on the parameters and the scale tuning heavily. On the other hand, through
our experiments, the use of the intermediate surface results in the stable mapping
of the vertebra models independent of the tuning for individual models. At first, we
find one-to-one mapping MΦI between M and I. Similarly, one-to-one mapping
I ΦT from I to T is found. Combining the two mappings MΦI and I ΦT , we
obtain the mapping MΦT from M to T.

Our parameterization method consists of four steps.

Step. P-1 Select an intermediate surface I.

Fig. 2 Mapped vertebra
models onto the torus by
applying direct mapping a
before and b after parameter
and scale tuning of the SDM
and the torus
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Step. P-2 Find a mapping I ΦT by mapping from I to T with mSDM.
Step. P-3 Find a mapping MΦI by mapping from M to I with mSDM.
Step. P-4 Obtain the direct mapping MΦT by combining MΦI and I ΦT .

The following describes the detail of Step. P-4. Let us denote as M (I ) =
MΦI (M ) the modelM mapped onto the intermediate surfaceI . For each vertex
v(I )

i = MΦI (vi ) in M (I ), we find a closest patch pIi in I to the vertex v(I )
i .

When, pIi consists of three vertices r i,1, r i,2, r i,3 (Fig. 1), the coordinate of v(I )
i is

represented by

v(I )
i = r i,1 + α1(r i,2 − r i,1) + α2(r i,3 − r i,1), (5)

where α1 and α2 (0 ≤ α1, α2 ≤ 1) are real number parameters. Similarly, using
the mapping I ΦT , the vertices r i,∗ in I are represented by r(T )

i,∗ = I ΦT (r i,∗).
Therefore, the vertices v̂(T )

i = M Φ̂T (vi ) of the model mapped on the torus are
obtained by replacing the coordinates of vertices inI with that inI (T ) in Eq. (5):

v̂(T )
i � I ΦT

MΦI (vi ) (6)

= r(T )
i,1 + α1(r(T )

i,2 − r(T )
i,1 ) + α2(r(T )

i,3 − r(T )
i,1 ).

The vertices obtained from Eq. (6) may not be located on the torus surface com-
pletely. Therefore, we project the vertices and estimate the vertices position v(T )

i =
MΦT (vi ) on the torus by

v(T )
i � O i + B

(v̂(T )
i − O i )

‖v̂(T )
i − O i‖

; (7)

O i = A√
v̂(T )2

i,x + v̂(T )2
i,y

⎡

⎢⎣
v̂(T )

i,x

v̂(T )
i,y
0

⎤

⎥⎦ , (8)

where A and B are major and small radius in the torus. v̂(T )
i,x and v̂(T )

i,y are x and y

coordinates of v̂(T )
i .

2.3 Remeshing of the Original Tissue Model

One application using the proposed method is to remesh the original tissue models
M by inversely mapping their target surfaceS = {I ,T } onto the original model.
By the back mapping, the original models are described by the mesh structure of
their target surfaces.
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First, each point r j of the target surface is mapped onto the nearest patch δ(S ) =
MΦS (δ) of the mapped tissue model on the target surface. Here, δ is a patch of the
original tissue model, and consists of v(S )

j,1 , v(S )
j,2 and v(S )

j,3 . The mapped point r̃ j of
r j is represented by

r̃ j = v(S )
j,1 + β1(v

(S )
j,2 − v(S )

j,1 ) + β2(v
(S )
j,3 − v(S )

j,1 ), (9)

where β1 and β2 (0 ≤ β1, β2 ≤ 1) are real number parameters. The coordinate
rMj = MΦ−1

S (r̃ j ) is calculated by using β1, β2 and the original model’s vertices

v j,1, v j,2, v j,3 which forming δ(S ):

rMj = v j,1 + β1(v j,2 − v j,1) + β2(v j,3 − v j,1). (10)

3 Experimental Results

3.1 Vertebra Model Parameterization

To verify the applicability of our proposed method, we made the experiments using
six vertebrae models: three thoracic and three lumbar vertebrae. These models are
generated from CT images of three healthy persons. Figure3a shows the examples of
the thoracic and lumbar models. The intermediate surfaces for thoracic and lumbar
have their simplified shapes (Fig. 3b).

Fig. 3 Models of thoracic (upper) and lumbar (lower) in each parameterization step: a original
models; b intermediate surfaces; c mapped models onto the intermediate surface; d final parameter-
ization results. Red and blue points are feature vertices and their target points. Green points denote
the feature vertices completely coincided with their corresponding points. Corresponding points
have same shape (Color figure online)
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The mSDM is applied to find the correspondence between each intermediate
surface and the torus surface (in Step. P-2). In the same way, the vertebra model is
mapped onto the intermediate surface by mSDM (in Step. P-3). In the experiment,
we use four and three feature vertices of thoracic and lumbar. The feature vertices
and their target points are manually selected from the vertebra, the intermediate
surface and the torus. In Fig. 3a, b, red and blue points are the feature vertices and
their target points of thoracic and lumbar. Corresponding points are represented by
the marks with same shapes including a circle, a triangle, a square and a plus. The
vertebra model mapped onto the intermediate surface I (Fig. 3c) has no foldovers.
In addition, green points in Fig. 3c means the feature vertices completely coincided
with their corresponding points. From the figures, feature vertices are located at their
target positions correctly.

As shown in Fig. 3d, the mapping from the vertebra to the torus is achieved by
combining the twomapped models described in Sect. 2.2. The final vertebrae models
mapped on the torus have no foldovers, and feature vertices of the vertebra are located
respectively at same positions. Themapping of the intermediate surface onto the torus
is independent of the vertebra models to be mapped. Therefore, once the feature
vertices are correctly mapped onto the target positions of the intermediate surface,
the feature vertices of the models are mapped onto the same position of the torus.
From the experimental results, our proposed method enables to represent vertebrae
with two parameters without changing the topology of the vertebrae.

mSDM realizes three types of the geometrical feature preserving mappings: the
area-, the angle-, and the area and angle-preserving mappings. Each mapping result
is evaluated by its specific error distributions. The functions earea (Eq. 3) and eangle

(Eq. 4) evaluate the quality of the area- or the angle- preserving mappings, respec-
tively. When both the areas and angles of the patches in the mapped model are
preserved simultaneously, the edge lengths of the patches are also preserved before
and after mapping [11]. In order to evaluate the area- and angle-preserving mapping,
the length error of the edge composed of two vertices vs and vt is defined by

eedge(vs, vt , Φ) =
∣∣∣∣

√ ∑
p∈M Ap∑

p∈M Φ(Ap)
|Φ(vt ) − Φ(vs)| − |vt − vs |

∣∣∣∣, (11)

where Φ(v) is the vertex obtained by applying the mapping Φ with the vertex v.
When the values of the error functions are close to zero, the mappings preserve their
corresponding geometrical features.

Figure4a–c show the distributions of earea , eangle and eedge in the parameteriza-
tion. The value of μ is set to real number ranging from 0 to 1. In this experiment,
we used three values of μ, that is, μ = 0, 0.5 and 1.0. In the figures, three lines
correspond to the cases of μ : μ = 0.0(red line), 0.5(blue line), and 1.0(green line).
Moreover, the black line in Fig. 4 shows the distribution of the mapped vertebra
model M− onto the torus by applying mSDM without Step. M-4. Compared with
M−, our proposed method reduces the errors on areas, angles and edges. In the case
of the area-preserving mapping (μ = 1), the distribution of earea has the highest
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Fig. 4 Error distributions of the mappedmodels of a vertebra to the torus thorough the intermediate
surface: a area; b angle; and c edge length. Each color line corresponds to each value of μ: red is
0.0; blue is 0.5; green is 1.0 (Color figure online)

peak at zero. The distribution of eangle becomes narrow with decreasing the value of
μ. In the case of the angle-preserving mapping (μ = 0), the distribution of eangle is
steep, and has the single peak at zero. In the case of the area- and angle-preserving
mapping (μ = 0.5), the distribution of eedge has the highest peak at zero. From these
results, our method can achieve the preservation of the geometrical features.

To verify geometrical properties in each parameterization step, we calculate a
rate of patches preserving geometrical properties (Table1). The ratio means the per-
centage of the amount of the patches whose each geometrical error is less than a
given threshold. When average angle and area of all patches in M is denoted as θ̄

and S̄, and average edge length in M as L̄ , the thresholds of eangle and earea in
the experiment are set to 0.3θ̄ , 0.3S̄ and 0.3L̄ . Table1 shows the average rate in the
mapped models of thoracic (“T” in Table1) and lumber (“L”). Comparing the model
M−, our method maps the model onto the intermediate surface and the torus while
keeping almost geometrical properties of the models. Moreover, the rate in Step. P-3
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Table 1 A rate of patches preserving geometrical properties in mapping results (T: Thoracic, L:
Lumber)

before the process μ = 0 μ = 0.5 μ = 1

eangle earea eedge eangle eedge earea

Target T 70.8 49.4 62.9 80.0 67.4 81.5

L 59.1 61.1 64.8 75.4 79.8 90.2

P-3 T 57.2 56.4 65.8 81.5 80.5 90.0

Average L 61.3 59.6 69.3 83.1 81.9 96.6

P-4 T 48.3 44.5 52.1 56.2 62.8 71.0

Average L 44.2 49.4 53.8 58.0 65.8 70.9

Direct mapping T 50.6 37.4 48.3 76.4 63.6 84.6

Average L 48.7 42.2 51.8 74.3 64.1 80.0

The ratio means the percentage of the amount of the patches whose each geometrical error is less
than a given threshold. When average angle and area of all patches in M is denoted as θ̄ and S̄,
and average edge length in M as L̄ , the thresholds of eangle and earea in the experiment are set to
0.3θ̄ , 0.3S̄ and 0.3L̄ . The values in P-3 and P-4 are average of three thoracic and lumber vertebrae
respectively

are higher than those in Step. P-4. This shows that the use of a target surface whose
shape is close to M enables to keep the geometrical informations of the original
vertebrae model. This is an advantage on using intermediate surface. On the other
hand, vertebrae are dealt with in simpler parametric space by mapping the vertebrae
onto a torus. Therefore, we had better select the two mapping results depending on
the purpose of using the mapping. In the experiment, the error ratios are used to com-
pare our mSDM with and without Step. M-4. The acceptance error ratios need to be
defined to evaluate the mapping result objectively. The definition of the acceptance
rate is one of our future works.

Moreover, we mapped the vertebrae onto the torus directly. The fourth row in
Table1 shows the average preserving rate of the directly mapped models of the
vertebrae to the torus. The rates of the directly mapped vertebrae are sometimes
higher than those of themapped vertebrae through the intermediate surface.However,
the direct mapping needs parameter tuning of the original SDM and scale tuning of
the torus for each vertebra before the mapping. As shown in Fig. 2a, the vertebra
model is not mapped onto the torus correctly without the scale tuning of the torus
for the model. The improvement of the preserving ratio is one of our future works.

3.2 Vertebra Model Remeshing

Figure5a–d show the remeshed models of the thoracic and the lumber obtained
by the mapped models in Step. P-3 and 4 respectively. The remeshed models
(Fig. 5a, c) with Step. P-3, using target surfaces whose shape is close to vertebrae
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Fig. 5 Remeshing results of a thoracic and a lumber vertebra: a, c with Step. P-3 results; b, d with
Step. P-4 results

Fig. 6 SSMs constructed by using the three remeshed thoracic models obtained in Step. P-3. The
shape parameter of the primary ingredient is a −1.0 and c 1.0. b is the average of the three models

shape, have more uniform vertex density compared with the models (Fig. 5b, d)
obtained by the mapping in Step. P-4.

These remeshed models enable to construct a vertebra SSM (Fig. 6) by the three
remeshed thoracic models obtained in Step. P-3. Figure6b show the average shape
of the three models. Figure6a, c show the SSM when the primary shape parameter
is set to −1.0 and 1.0. Since models have smooth shape, our mapping enables to find
the correspondence between the models correctly.

4 Conclusion

We proposed the method of parameterization vertebrae models onto torus. Our
method canmap themodels without foldovers while both controlling feature vertices
positions and keeping geometrical features. Vertebrae can be parametrized to torus
which has only two parameter without changing topology, so the parameterization
result has less distortion on the parameter space. Moreover, we confirmed that our
method can apply to remeshing of tissue models.
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Contour Models for Descriptive
Patient-Specific Neuro-Anatomical
Modeling: Towards a Digital Brainstem Atlas

Nirmal Patel, Sharmin Sultana and Michel A. Audette

Abstract This paper describes on-going work on the transposition to digital format
of 2D images of a printed atlas of the brainstem. In MRI-based anatomical mod-
eling for neurosurgery planning and simulation, the complexity of the functional
anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-
based approaches. However, there is an insufficiency of descriptive digital atlases,
in particular of the brainstem. Our approach proceeds from a series of numbered,
contour-based sketches coinciding with slices of the brainstem featuring both closed
and open contours. The closed contours coincide with functionally relevant regions,
in which case our objective is to fill in each corresponding label, which is analogous
to painting numbered regions in a paint-by-numbers kit. The open contours typically
coincide with cranial nerve tracts as well as symbols representing the medullary
pyramids. This 2D phase is needed in order to produce densely labeled regions that
can be stacked to produce 3D regions, as well as identifying embedded paths and
outer attachment points of cranial nerves. In future work, the stacked labeled regions
will be resampled and refined probabilistically, through active contour and surface
modeling based on MRI T1, T2 and tractographic data. The relevance to spine mod-
eling of this project is two-fold: (i) this atlas will fill a void left by the spine and brain
segmentation communities, as no digital atlas of the brainstem exist, and (ii) this
atlas is necessary to make explicit the attachment points of major nerves having both
cranial and spinal origin, specifically nerves X and XI, as well all the attachment
points of cranial nerves other than I and II.
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1 Introduction

1.1 Neuroanatomy

The brainstem is the point of attachment of ten of the twelve pairs of cranial nerves.
It is also the pathway for all fiber tracts passing up and down from peripheral nerves
and spinal cord to the upper areas of the brain. It consists of three components:
the medulla oblongata, the midbrain and the pons. The medulla oblongata acts as
a relay station for motor tracts crossing between the spinal cord and the brain. It
exerts control on the respiratory, motor and cardiac functions, as well as on several
mechanisms of reflex activities such as swallowing and vomiting. Themidbrain is the
neural pathway of the cerebral hemispheres and contains auditory and visual reflex
centers. The pons links different parts of the brain and is the relay station from the
medulla to the higher cortical structures of the brain; it also contains the respiratory
control center.

The relevance of the brainstem to the spinal anatomy is summarized in Fig. 1.
The brainstem consists of the midbrain, pons and medulla oblongata; while it lies
in the inferior part of the brain, the brainstem is structurally continuous with the
spinal cord. Also, surgery planning and simulation of the spine require adequate
modeling of critical tissues, the most important of which are spinal nerves, and in
the cervical portion of the spine, three of these major nerves, the glossopharyngeal
(IX), vagus (X) and accessory nerves (XI) run near spinal nerves, while nerve XI has
both a cranial and a spinal portion with roots in the brainstem and spine, as depicted
in Fig. 1.

Just as importantly, as seen in Fig. 2, the brainstem is extremely relevant to model-
ing the neuroanatomy of the skull base. In particular, the brainstem imbeds the nuclei
and tracts of ten pairs of cranial nerves, nerves III to XII, and can be thought of as a
twenty-legged spider. The olfactory (I) and ocular (II) nerves, emerge from the fore-
brain anteriorly and superiorly to the brainstem. So far, modeling that is conducive
to the minimally supervised segmentation of cranial nerves has been neglected by
the computer assisted surgery community.

1.2 Objectives and Clinical Motivation

The long-term clinical objective of this project is to provide a minimally supervised
segmentation tool for patient-specificmodeling of the brainstem. There are a number
of digital atlases of the brain in open source, but these atlases neglect the brainstem:
these atlases typically represent the whole brain, with little detail provided on the
brainstem, or they concentrate on subcortical structures or the cerebellum, or alter-
nately represent tractographic connectivity. The full-brain atlases include Harvard’s
Surgical Planning Laboratory (SPL) Atlas, atlases available with Oxford’s FMRIB
Software Library (FSL), which are listed on FSL’s wiki (FSL), and the Freesurfer
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Fig. 1 Relevance of brainstem to spinal anatomy. a Structure of brainstem, with medulla oblongata
adjacent and structurally similar to spinal cord [3]. b Proximity of cranial nerves X (green) and XI
(red) to spinal nerves (blue) [17] inset: structure of nerves IX, X and XI [29]
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Fig. 2 Relevance to intracranial neuroanatomy: cranial nerves, with nerves III (oculomotor) to
XII (hypoglossal) having nuclei within, and attachment points on, the brainstem; a inferior view;
b sagittal view with cranial nerve nuclei and tracts inside the brainstem shaded red (reproduced
from [9])

software package [11, 12]. To our knowledge, none of these digital atlases is dedi-
cated to the brainstem, which relates to the paucity of printed atlases that center on
the brainstem, with the exception of the Duvernoy [20]. The only competing option
is the Mai online atlas [19], but its brainstem is low-resolution and not as descriptive
as the Duvernoy, while the printed version of the Mai atlas [18] does not include the
brainstem.

The main clinical motivation for this minimally supervised segmentation tool of
the brainstem is two-fold, to enable the production of patient-specific models of the
cranial and spinal nerves in the torso, such as depicted in Fig. 1, and to produce
models of the neuroanatomy of the skull base, including the intracranial portion of
the cranial nerves depicted in Fig. 2. These models will fulfill an unmet requirement
of descriptive neuroanatomy for surgery planning and simulation for cervical spine
procedures aswell as skull base procedures such as radiotherapyof brainstemgliomas
and resection of pituitary adenomas and acoustic neuromas.

In particular, we plan on using probabilistic knowledge of the position of the tracts,
or attachment points, of the cranial nerve in the brainstem to enable model-based
identification of cranial nerves, in a manner analogous to the path of a clothesline
being constrained by the position of the two poles at each end of it. Each attachment
point on the brainstem equates with the inner pole of the clothesline, while the
position of the corresponding foramen will provide the other, outer pole. Shape
statistics of these nerves will provide information on the tortuosity of the clothesline.

The clinical importance of detailed, patient-specificmodeling of cranial and cervi-
cal spinal nerves is multi-faceted. First, several complications have arisen in the past
due to iatrogenic damage in the skull base and spine by surgery and radiotherapy,
which could have been prevented by more descriptive surgery planning as well as
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surgery simulation that would have penalized gestures deleterious to these structures.
Second, topological variability in the form of anastomoses, or unusual connections,
can occur between cervical spinal nerves and cranial nerves, and patient-specific
descriptive modeling of the anatomy for planning and simulation must cope with this
variability [27].

Iatrogenic complications in neuro- and head-and-neck surgery, alluded to in the
previous paragraph, still have an impact on patient outcome in a large number of
cases. We argue strongly that improved surgery planning for experts and surgery
simulation for residents would have probably improved patient outcome, at least in
terms of morbidity and mortality statistics. Iatrogenic complications in neuro- and
head-and-neck surgery include the following cases.

• The spinal accessory nerve (SAN), which is depicted in Fig. 1b, has been described
as susceptible to injury in head-and-neck surgery by several authors [5, 31]. Esti-
mates of SAN injury incidence in diagnostic lymph node biopsies of the posterior
triangle of the neck are 3–8%.

• In brain surgery procedures, a number of complications have been documented in
relation to iatrogenic damage or compression of cranial nerves.

– The susceptibility to injury of the optical and oculomotor nerves in pitu-
itary surgery was reported in [7]. Amongst 939 neuro-surgeons surveyed, 179
reported post-operative visual loss in one or more patients.

– The vulnerability of cranial nerves was noted in the case of an acoustic neuroma
patient [23]. Her bone-embedded tumor was resected with an ultrasonic surgical
aspirator at 80% power. The patient experienced right-sided palsies of the 5th,
6th, 7th, and 12th cranial nerves.

– As described in [4], oropharyngeal dysphagia, or swallowing disorder, can arise
due to neurological dysfunction related to surgical complications of posterior
fossa and skull base surgery.

As suggested above, in order to improve patient outcome in neuro- and head-
and-neck surgery, surgical planning and simulation must model cranial and cervical
nerves explicitly and on a patient-specific basis, which must exploit both modeling
that integrates shape priors, i.e. a probabilistic digital atlas, as well as tractographic
imaging of the nerves. MRI-based diffusion tensor imaging has been developed for
cranial, spinal and peripheral nerves [16, 24, 25], although tractographic reconstruc-
tion of these images is still in its infancy, in contrast with tractography of the brain
itself [2].

Moreover, to enable minimally supervised, highly descriptive, patient-specific
identification of cranial and cervical nerves, we believe that a digital atlas for their
most prevalent topology must first be developed, as a foundation for modeling vari-
ations such as those due to anastemoses [27]. One of the objectives of this brainstem
atlas is to serve as cornerstone for the development of a cranial and cervical nerve
atlas, which in turn will be used to stabilize the tractographic reconstruction of these
nerves from diffusion imaging data, irrespective of their patient-specific topology.
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Finally, treatment of brainstem tumors is still viewed as challenging, where
surgical treatment is usually not an option, and chemotherapy is of limited util-
ity. However, radiotherapy in the form of Gamma Knife radiosurgery (GKRS) has
emerged as a promising treatment [22]. We suggest that atlas-based functional par-
cellation of brainstem could have the same potentiating effect on brainstem radio-
surgery as the whole-brain functional atlas, further potentiated by fMRI, has had on
the sparing of functionally important, eloquent areas in neurosurgery of the brain
these past few years. As a result, it is not only the elaboration of cranial nerves that
is clinically important in this project, but also the parcellation of the brainstem itself
into functional regions.

1.3 Technical Motivation

This paper describes on-going work on the transposition to 3D digital format of
a unique printed atlas of the brainstem [20]. This atlas, unlike the Mai atlas of the
whole brain for example, does not offer intensity or color cues for regions that we can
exploit to facilitate the segmentation. It only features closed contours with numbers
imbedded in these regions, which are mostly without color. Moreover, the images
also feature open contours that can penetrate some of these regions; a number of
these contours coincide with embedded cranial nerves within the brainstem, while
others represent symbols of medullary pyramids. At aminimum, these open contours
must be purged from the closed contours to enable the labeling of the latter; however
in many cases, we must model the embedded cranial nerves to make explicit the
corresponding nucleus as well as the attachment point outside the brainstem.

Patient-specific anatomical modeling for neurosurgery planning and simulation
entails medical image segmentation, which ideally is minimally supervised and
describes the relationship between intensities in medical images, typically MRI or
CT data, to anatomically or functionally relevant tissues or structures. Minimally
supervisedmedical image segmentation generally falls under three categories: voxel,
boundary and atlas-based, with some overlap being possible. In general, an atlas-
based approach enables a functional or anatomical representation of tissues that is
far more descriptive than is feasible with the other two methodologies.

Voxel-based approaches involve algorithms based on local properties at each point
or voxel. Voxel-based methods tend to be limited to identifying a small number of
tissues that they can differentiate, and to be vulnerable to bleeding effects in low con-
trast, given their paucity of model-based safeguards. The boundary-based approach
exploits an active model featuring a trade-off between an internal representation of
the tissue boundary, which typically favors a smooth result as well as probabilistic
shape priors, and external influences based on intensity gradients or region homo-
geneity.

An atlas-based approach differs from the other two in that it favors a process inher-
ently based on non-rigid registration, while providing richly descriptive functional
information, namely a digital map of tissues or functional structures. This functional
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detail of an atlas approach can outstrip the other two, often making it the most clin-
ically relevant method of all, particularly for applications that target functionally
complex anatomy such as neurosurgery [21]. Despite such advances, there is an
insufficiency of descriptive digital atlases, particularly of the brainstem, while the
Duvernoy printed atlas can be leveraged to address this need.

Meanwhile, with the advent of active multi-surface models [15], it is now feasible
to reconcile the rich functional and anatomical description of digital atlases with
the advantages of a boundary-based approach: model-based continuity, probabilistic
shape priors [28], a robust multi-resolution non-rigid registration framework, and
static collision handling [15] of active surface models. The latter type of integration,
i.e. an active multi-surface functional atlas, which we are also developing for deep-
brain stimulation applications [1], represents the long-term technical objective of
this brainstem modeling project.

2 Purpose

As described above, there is a dire clinical need for a digital atlas of the brainstem,
from the standpoint of surgery planning and simulation of the spine and brain. In
general, neuroanatomical modeling for the planning of neurosurgery, which includes
radiosurgery, as well as for neurosurgery simulation, does not depict the brainstem
descriptively, given the traditional slice-by-slice, interactive segmentation approach
that relies onmanual voxel-based thresholding, which tends to be limited in the detail
that is achievable. As a result, existing methods produce anatomical models that are
extremely terse about the functional components of the brainstem.

This paper presents preliminary results of the 2Dprocessing stage of the brainstem
digital atlas development, which at first glance integrates a number of techniques that
appear unrelated, some of which may be incremental improvements on published
techniques. However, the clinical impetus for this digital atlas, described in the pre-
vious section, is irrefutable; moreover, the printed atlas that we are using imposes
limits on our design options. Our newer 2D methods as well as the 3D methodol-
ogy that will build on the resulting labeled images and explicit models of embedded
nerves, leading up to a descriptive 3D atlas, will feature significant improvements,
including a representation based on active multi-surface models [15] and 3D active
contour models. The final stage that produces a probabilistic brainstem atlas that will
also require significant innovations.

3 Methods

Our proximal objective is to semi-automatically process a series of input scanned
images from a textbook [20], in order to generate continuously labeled digital
images that are suitable for stacking and resampling, to ultimately produce a digital
volumetric atlas, featuring functional regions and embedded nerve tracts, suitable
for 3D registration with a given patient’s brainstem appearing in MRI data.
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3.1 Region Labeling by Paint-by-Numbers Level Sets

The printed atlas images typically have labeled regions where the labels are numbers
centered within them. A rectangle that covers an entire label while being inside the
boundaries of the corresponding region initializes the contour of the region. This
rectangular contour is used to initialize an outwardly moving level sets contour
model, whose objective is to propagate a user-supplied label, ostensibly the same
number, to boundaries of that region.

In order to reduce irregularities within regions, Anisotropic diffusion method was
utilized. Anisotropic diffusion tries to preserve the edges as opposed to isotropic dif-
fusion methods which blurs entire image indiscriminately. The Anisotropic function
used was modified curvature diffusion equation which is:

ft = |∇ f |∇ · c(|∇ f |) ∇ f

|∇ f |
where is the image and is the conductance function (Whitaker and Xue).

Both region-based and gradient-based level set methods were tested. The Chan-
Vese (Chan TF) region-basedmodel would typically bleed across the boundary of the
region, which prompted us to adopt a gradient-based method proposed by Caselles
[6], was found to be more reliable for most regions. The level set using Geodesic
Active Contours evolves according to the following equation:

Ct = g(I )(c + k)
−→N + (∇g · −→N )

−→N

where g(I) is the stopping function, k is the curvature, and �N is curve normal.
The initial level set function was generated using the Fast Marching method [26],

in order to produce a computationally efficient label propagation process. The Fast
Marching method also requires an initialization, coinciding with the rectangular
initialization contour at time t = 0 from which the level set model evolves. Our
labeling program sets the user-provided rectangular contour as a seed. After the
zero level set stabilizes at the region boundary, its propagation domain is colored
according to the user-supplied label. As a result, the pixels outside the level set are
white whereas the pixels inside the final level set result have the user-supplied value.

Finally, the atlases make the assumption of a vertical axis of symmetry. In our
labeling interface, the user supplies a few points that determine this axis. These points
determine a segment by regression, and in the event of a small difference rotation
with respected to the vertical axis, this rotation is corrected to ensure that the axis of
symmetry coincides with the y-axis. Amirror image is then generated by flipping the
rotated image about the y-axis. To generate the final image, the mirrored and rotated
images are arranged side-by-side such that the mirror image is on the negative side
of the x-axis and the rotated image is on the positive side of the x-axis.
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3.2 Nerve Identification by Minimal Path and 1-Simplex
Contour Modeling

The scanned atlases may contain curvilinear features, typically coinciding with
embedded nerves, which can intersect regions. These must be dealt with in two
ways. First, these features need to be purged from closed regions to keep the level
set evolution in these regions from being prematurely interrupted. Second, many
of these curves represent embedded nerves that must be modeled explicitly, which
we have begun implementing with 1-simplex active contour models, adapted from
2-simplex active surface modeling developed by Delingette [10].

To segment the nerves for exclusion from regions, the user supplies a start point,
an end point, and optionally midway points, which are used to determine a Minimal
Path (MP) [8] that extends from the start point to the end point while crossing the
mid points. In order to extract such a path, the FastMarchingminimal path extraction
method was used. This method requires a speed function of range between 0 and 1.
Ideally, the speed would be close to 0 outside a line and close to 1 inside the line. A
nerve-centered MP is achieved by generating the vesselness of the image [13], and
restricting the minimal path to high-vesselness pixels.

For modeling the nerves explicitly, which will be needed for 3D segmentation,
we are currently also implementing a 1-simplex model, which is the contour version
of Delingette’s 2-simplex surface model [10]. An n-simplex is a mesh where every
vertex is linked by an edge to n + 1 neighboring vertices: a 2-simplex implies 3
neighbors, which produces a surface mesh geometrically dual to a triangulated sur-
facemesh, while a 1-simplex produces a contourmodel where each vertex is linked to
2-neighbors. This implementation is still underway, with preliminary results depicted
in the next section. Our objective for this 1-simplex model is to produce explicit con-
tours in 2D, to which we will assign z-coordinates according to corresponding image
slices, and refine these 1-simplex imbedded nerve models with high-resolution his-
tological data.

4 Results

Figure3 shows the 2D slices of the printed brainstem atlas and corresponding seg-
mented images. The scanned images were cropped and rotated to correct the orien-
tation, as well as flipped about the y-axis to exploit symmetry. Figure4 illustrates the
elaboration of minimal path and simplex-based contour modeling of the embedded
nerves within the brainstem.
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Fig. 3 Paint-by-number level sets results—left five input scanned images (after rotation correction),
and right output of labeling and symmetry application
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(a) (b) (c)

Fig. 4 Modeling of cranial nerves: a,bMinimal Path-basedmodels of cranial nerves in two scanned
images; c 1-simplex contour mesh of first MP in (a)

5 Discussion

Segmenting a scanned brainstem atlas represents a challenge and doing so without
any user supervision is infeasible. Therefore, a limited amount of user assistance is a
reasonable trade-off, even if some the methods appear unrelated. Broadly speaking,
level set contour models lead to a usable set of user-driven methods for transposing
printed labeled regions to digitally labeled regions, in a manner that evokes paint-
by-numbers in closed regions. Similarly, the Minimal path and 1-simplex both can
be exploited to identify a curvilinear structure such as a nerve within a printed atlas.

Our justification for adding the 1-simplex to the Minimal Path is that an explicit
representation of such a structure has advantages over an implicit one, such as
the relative ease with which one can generalize a 2D contour, with knowledge of
the z-coordinate, into a fully 3D contour, and immunity to bleeding effects. Also,
the simplex model has used with explicit static collision detection [15], which will
be useful for modeling several nerves and blood vessels proximate to each other.

Finally, we recognize that the validation of this methodologywill pose a challenge
in itself. After all, how one quantifies success in transposing a printed atlas to a digital
atlas is still an open question, despite a number of research efforts in this area.
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6 Conclusion

This paper presented a method based on level set contour models and the Minimal
Path for converting a printed atlas into densely labeled slices of a digital volumetric
atlas, with a specific application to the brainstem. We have begun work on a
1-simplex-based explicit contour model as well. Our 2D algorithms are undergoing
further refinements, following which these slices will be interpolated and resampled
in 3D. One needed refinement is growing the regions until they abut one another.
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Segmentation Challenge



Atlas-Based Segmentation of the Thoracic
and Lumbar Vertebrae

Daniel Forsberg

Abstract Segmentation of the vertebrae in the spine is of relevance tomanymedical
applications. To this end, the 2ndMICCAIworkshop onComputationalMethods and
Clinical Applications for Spine Imaging organized a segmentation challenge. This
paper briefly presents one of the participating methods along with achieved results.
The employed method is based upon atlas-based segmentation, where a number of
atlases of the spine are registered to the target data set. The labels of the deformed
atlases are combined using label fusion to obtain the final segmentation of the target
data set. An average DICE score of 0.94 ± 0.03 was achieved on the training data
set.

1 Introduction

The spinal column forms an important support structure in the human body and
mainly consists of the vertebral bones. As such, the vertebrae form an important
part of the diagnosis, treatment planing and the understanding of various conditions
affecting the spine. Thus, an accurate segmentation of the vertebrae is of relevance
in several applications. The segmentation of the vertebrae is challenging, mainly due
to shape variation and neighboring structures of similar intensity (e.g. other verte-
brae, other bones and/or other tissues). To this end, the 2nd MICCAI workshop on
ComputationalMethods andClinical Applications for Spine Imaging has organized a
segmentation challenge. This paper briefly describes one of the contributingmethods
and the achieved results.
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2 Methods

The method used in this work for vertebra segmentation is inspired and to a large
extent based upon the work presented in [2, 3], although some components have been
changed and others have been added. This has been done to improve the performance
but also since the work in [2, 3] was targeted at scoliotic spines. The most notable
differences are the use of multiple gray-level atlases instead of a single binary model
in the registration step, and the subsequent use of label fusion. The employedmethod
consists of a preprocessing step, where an approximate position and rotation (pose)
of each vertebra in the spines of both the target data set and the atlases are estimated.
The preprocessing is followed by a registration step, where each atlas is registered
to the target data set. The labels of the registered atlases are merged to a single label
volume using label fusion to form the segmentation of the spine vertebrae in the
target data set.

2.1 Preprocessing

The preprocessing consists of the following sub-steps:

1. Spinal canal tracking—Seed points for the spinal canal are detected using the
Hough transform on a thresholded axial image in themiddle of the image volume.
A growing and moving circle is used to detect the center of the spinal canal, and
where the growing and moving circle process is repeated for each image as the
spinal canal is tracked in both the cranial and the caudal direction.

2. Disc detection—Given that the vertebrae are located anterior to the spinal canal,
an intensity profile, running through the vertebrae, is sampled. The distinctive
pattern of the intensity profile can be used to detect the position of the discs.

3. Initial vertebral rotation estimation—In an image slice located between the
detected discs, an initial axial vertebral rotation is estimated based upon mini-
mizing an error measure for assessing the lateral symmetry between two halves
of the image.

4. Vertebra pose estimation—The two previous steps provide an initial estimate
of the position and the orientation of each vertebra. To improve the pose estimate,
an error measure is defined with six parameters [x, y, z] and [θX , θY , θZ ], defin-
ing the vertebra center-point and the vertebral orientation. The error measure is
defined to assess the symmetry across various half-planes. The optimal parame-
ters are found using Powell’s method.1 This step is similar to the method used
in [5] for estimating the center-point and the orientation of the vertebrae in the
spine.

1 E. Farhi, The iFit data analysis library, ILL,Computing for Science (2011–2012) http://ifit.mccode.
org.

http://ifit.mccode.org
http://ifit.mccode.org
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The estimated pose is used for establishing an initial alignment between the ver-
tebrae of the atlases and the vertebrae of the spine to segment.

2.2 Atlas-Based Registration

Given an initial alignment between the vertebrae of the target data set and an atlas,
the vertebrae are then registered in groups of five, starting from the caudal end of the
spine, i.e. L5-L1, L1-T9, T9-T5, T5-T1. A sub-volume is extracted from both the tar-
get data set and the atlas at hand, containing the vertebrae to be registered along with
any surrounding vertebrae. After the initial alignment, a non-rigid registration step is
applied, minimizing the local phase-difference [4]. For computational performance,
an implementation of the non-rigid registration method on graphics processing units
was used [1]. The finally computed transformation is used to deform the atlas onto
the target data set, and, thus, the labels of the deformed atlas provide a segmentation
of the vertebrae in the target data set.

2.3 Label Fusion

The final step is to merge the labels of the different deformed atlases into a single
atlas volume. In this case, a straight forward majority voting has been employed for
label fusion.

3 Data

The data used for evaluation consists of tenCT data sets acquired during daily clinical
routine work in a trauma center, and is provided as training data for the 2ndMICCAI
Workshop on Computational Methods and Clinical Applications for Spine Imaging.
Information about the image data is found in [6]. Before processing, the image data
was resampled to an isotropic resolution of 1×1×1 mm3 using linear interpolation,
in order to allow the usage of quadrature filters with isotropic resolution in the non-
rigid registration step. Since ten data sets are available, each data set was segmented
using the remaining nine as atlases.

The ground truth data was compared with the segmentations obtained from the
atlas-based segmentation using the DICE coefficient, defined as

DICE = 2 ∗ |GT ∩ S|
|GT | + |S| (1)
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where GT and S refer to the ground truth and the computed segmentations respec-
tively, and where | . . . | denotes the volume in voxels.

4 Results

The results from the atlas-based segmentation of the ten CT data sets are provided
in Table1. In the results, it can be noted that lumbar vertebrae and the lower thoracic
vertebrae, in general, obtain a DICE coefficient of≥0.95, which has to be considered
as very good. Good scores are also achieved for the remaining thoracic vertebrae but
where there are some vertebrae that appear to fail for data set #4 and #8. In addi-
tion, vertebra T1 obtains, almost consistently, lower scores than the other vertebrae.
Example visualizations of the results are provided in Fig. 1. Note the failed segmen-
tation of vertebrae T5-T8 in Fig. 1c, d, which correspond to the segmentation results
for data set #8.

Table 1 DICE scores as estimated from the atlas-based segmentation of the ten data sets

Vertebra/data set #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 All

T1 0.93 0.78 0.91 0.78 0.93 0.91 0.65 0.92 0.94 0.87 0.86

T2 0.94 0.94 0.94 0.93 0.94 0.93 0.93 0.93 0.94 0.94 0.94

T3 0.94 0.94 0.94 0.85 0.93 0.94 0.93 0.92 0.95 0.95 0.93

T4 0.92 0.93 0.94 0.65 0.94 0.94 0.93 0.87 0.94 0.95 0.90

T5 0.91 0.93 0.93 0.62 0.92 0.94 0.93 0.72 0.94 0.95 0.88

T6 0.93 0.95 0.93 0.72 0.93 0.95 0.94 0.41 0.94 0.95 0.86

T7 0.94 0.94 0.94 0.86 0.94 0.94 0.94 0.42 0.94 0.95 0.88

T8 0.94 0.95 0.95 0.93 0.94 0.94 0.95 0.63 0.95 0.95 0.91

T9 0.95 0.95 0.96 0.94 0.95 0.95 0.95 0.81 0.95 0.96 0.94

T10 0.95 0.95 0.96 0.95 0.94 0.96 0.95 0.89 0.96 0.96 0.95

T11 0.95 0.95 0.96 0.95 0.95 0.96 0.96 0.94 0.96 0.96 0.95

T12 0.95 0.95 0.96 0.95 0.95 0.96 0.95 0.95 0.96 0.96 0.95

L1 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96

L2 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96

L3 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.96 0.97 0.96

L4 0.95 0.95 0.96 0.96 0.96 0.97 0.96 0.96 0.96 0.97 0.96

L5 0.95 0.94 0.96 0.94 0.96 0.96 0.96 0.95 0.94 0.95 0.95

All 0.95 0.94 0.95 0.91 0.95 0.96 0.95 0.87 0.95 0.96 0.94

Note that the final column contains the means of the respective rows
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Fig. 1 Example results of the atlas-based registration, where a and b depict the results for data set
#6 and c and d for data set #8, i.e. the data sets with the best respectively the worst results for the
DICE coefficient

5 Discussion

In this work, a method for segmentation of the thoracic and lumbar vertebrae has
been described and evaluated in relation to the segmentation challenge hosted by
the 2nd MICCAI workshop on Computational Methods and Clinical Applications
for Spine Imaging. The described method achieves a an average DICE coefficient of
0.94 ± 0.03 and is based upon atlas-based segmentation.
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Lumbar and Thoracic Spine Segmentation
Using a Statistical Multi-object Shape+Pose
Model

A. Seitel, A. Rasoulian, R. Rohling and P. Abolmaesumi

Abstract The vertebral column is of particular importance for many clinical
procedures such as anesthesia or anaelgesia. One of the main challenges for diagnos-
tic and interventional tasks at the spine is its robust and accurate segmentation. There
exist a number of segmentation approaches that mostly perform segmentation on the
individual vertebrae. We present a novel segmentation approach that uses statistical
multi-object shape+pose models and evaluate it on a standardized data set. We could
achieve a mean dice coefficient of 0.83 for the segmentation. The flexibility of our
approach let it become valuable for the specific segmentation challenges in clinical
routine.

1 Introduction

Segmentation of the spinal column is an important task for many computer-aided
diagnosis and intervention procedures. Despite the high contrast of bony structures
in CT volumes, it remains challenging due to the presence of unclear boundaries,
the complex structure of vertebrae, and substantial inter-subject variability of the
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anatomy. Most of the proposed methods for automatic or semi-automatic spine seg-
mentation rely on an initialization step of one or multiple vertebrae followed by a
separate segmentation of each vertebra [1–7]. Considering each vertebra separately,
however, may result in overlapping segmentations in areas where a clear boundary
is missing in the volume data. Although there exist approaches as the one of Klinder
et al. [2] that e.g. penalize overlapping areas, to our knowledge there is no method
that incorporates common shape variations among the vertebrae of one subject which
can be of great benefit for the segmenation quality. We thus propose an approach
for segmentation of the spine in CT data which is based on a statistical multi-object
model which incorporates both shape and pose information of the vertebral column.

2 Methods

Our segmentation technique is based on a statistical multi-vertebrae shape+pose
model which is registered to the bony edges of the spinal column as extracted from
the CT volume. The basic principles of this method have previously been presented
in [8, 9] and will be summarized in the following paragraphs.

2.1 Model Construction

For construction of the model the idea is to analyze the pose and shape statistics
separately as they are not necessarily correlated and are not formulated in the same
parameter space. The model training then results in the modes of variations for both
shape and pose, represented by vs and vp, respectively. Hence, a new instance of the
model can be calculated as follows

S = Φ
( Ns∑

k=1

ws
kvs

k,

Np∑

l=1

wp
l vp

l

)
. (1)

where Φ is a similarity transform, Ns and Np are the number of modes of variations
for shape and pose, and ws

k and wp
l are the corresponding weights.

Building a singlemodel for the entire vertebral columnwould require all vertebrae
to be present in the training images and the images to be segmented. This limits
the choice of volumes for the training data set and restricts the applicability of the
segmentation method to such “complete” volumes. To be able to cope with arbitrary
number of vertebrae present in the CT images and for segmentation of the whole
spinal column, we propose to construct and align small sub-models with limited
number of vertebrae. For this purpose, training data is collected for every vertebrae
(in this case T1 to L5) and is used to build individual sub-models each containing 3
vertebrae and the ensemble of all models covering the whole spinal column (Fig. 1).
The training step then results inmanymodels and their associatedmodes of variation.
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Fig. 1 Construction of the 3-vertebrae statistical shape+pose sub-models. Training data is available
for all vertebrae. The individual models are build as detailed in [9]
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Fig. 2 Workflow of the segmentation approach. Initially, the center of gravity of one vertebral
body is selected in the CT volume (cross). Next, the corresponding 3-vertebrae model is registered
and the middle vertebra is segmented. The last vertebra (superior iterations) or the first vertebra
(inferior iterations) of the registered model (arrow) is then used to initialize the next model. This
process continues until it reaches the extents of the CT volume or the first/last vertebra

2.2 Segmentation

Segmentation using a single statistical multi-object shape+pose model can be for-
mulated as a registration problem where the model is registered to the bone edge
point cloud extracted from the CT volume using a canny edge detection preceded
by a median filter (kernel radius 1). The transformation parameters as well as the
described weights are then optimized using the Expectation Maximization (EM)
algorithm such that the resulting model maximizes its likelihood of observing the
CT edge point data [9].

The workflow for segmentation of the whole spinal column is depicted in Fig. 2.
For initialization, the user has to specify the center of gravity of one specific vertebral
body. After registration of the model starting at this initial position, the resulting
registered instance is used to initialize the neighboringmodel either one level superior
or one level inferior. This iterative registration is repeated until the newmodels reach
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Table 1 Mean (μ) and standard deviation (σ ) of dice coefficient for segmentation of individual
vertebrae averaged over n = 10 cases

L5 L4 L3 L2 L1 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

μ 0.82 0.85 0.85 0.87 0.83 0.82 0.75 0.75 0.76 0.76 0.76 0.75 0.75 0.84 0.83 0.82 0.75

σ 0.10 0.05 0.05 0.02 0.06 0.06 0.06 0.07 0.07 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.05

the extent of the CT volume or the first/last vertebra covered. The segmentation is
then obtained from the registered models.

3 Results

Data from 87 CT volumes containing parts of the lumbar or thoracic spine were used
formodel construction. Evaluation and parameter optimizationwas performed on the
provided training data. The segmentation results for the training data of the MICCAI
challenge (leave-one-out approach) yielded a mean dice coefficient of 0.83 ± 0.04
(averaged over the ten cases) for the complete spine segmentation. The results for
the individual vertebrae are shown in Table1.

4 Discussion

Statistical multi-object models that incorporate both pose and shape statistics are
evaluated with respect to their applicability for segmentation of the whole spinal
column.We could achieve amean dice coefficient of the segmentations of 0.83±0.04
which is comparable with other approaches for spine segmentation. The usage of 3-
vertebrae sub-models for the segmentation task let our method become flexible in
terms of vertebrae covered by the input CT volume. This flexibility comes to price
of a possible segmentation overlap at the boundaries of the sub-models especially
for the closely spaced thoracic vertebrae. We are currently working on a generic
n-vertebrae model that is able to cope with this issue and also allows for automatic
model initialization. Further improvement is to be expected by consideration of
the CT intensity information e.g. by means of an appearance modeling approach.
We thus believe that the segmentation approach can be of great benefit for various
interventional and diagnostic applications.
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Vertebrae Segmentation in 3D CT Images
Based on a Variational Framework

Kerstin Hammernik, Thomas Ebner, Darko Stern, Martin Urschler
and Thomas Pock

Abstract Automatic segmentation of 3D vertebrae is a challenging task in medical
imaging. In this paper, we introduce a total variation (TV) based framework that
incorporates an a priori model, i.e., a vertebral mean shape, image intensity and edge
information. The algorithm was evaluated using leave-one-out cross validation on a
data set containing ten computed tomography scans and ground truth segmentations
provided for the CSI MICCAI 2014 spine and vertebrae segmentation challenge.
We achieve promising results in terms of the Dice Similarity Coefficient (DSC) of
0.93 ± 0.04 averaged over the whole data set.

1 Introduction

Due to reduced physical activity andmodern office jobs that require prolonged sitting
during work hours, pathological conditions affecting the spine have become a grow-
ing problem of modern society. As most spinal pathologies are related to vertebrae
conditions, the development of methods for accurate and objective vertebrae seg-
mentation in medical images represents an important and challenging research area.
While manual segmentation of vertebrae is tedious and too time consuming to be
used in clinical practice, automatic segmentation may provide means for a fast and
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objective analysis of vertebral condition. A current state of the art method for detect-
ing, identifying and segmenting vertebrae in computed tomography (CT) images is
proposed by Klinder et al. [5]. The method is based on a complex and computation-
ally demanding alignment of statistical shape models to the vertebrae in the image.
Using the deformable surface model and training an edge detector to bone structure,
Ma et al. [6] segment and identify the thoracic vertebrae in CT images. In the work
of Kadoury et al. [4], the global shape representation of individual vertebrae in the
image is captured with a non-linear low-dimensional manifold of its mesh repre-
sentation, while local vertebral appearance is captured from neighborhoods in the
manifold once the overall representation converges during the segmentation process.
Ibragimov et al. [3] used transportation theory to build their landmark-based shape
representations of vertebrae and game theory to align the model to a specific vertebra
in 3D CT images. In this paper, we propose a method for vertebrae segmentation in
3DCT images based on a convex variational framework. In contrast to the previously
proposed methods that use sophisticated vertebral models, our segmentation method
incorporates only a mean shape model of vertebrae initialized in the center of the
vertebral body.

2 Methods

Our vertebrae segmentation algorithm is based on two representations of a priori
information, a mean shape model and a bone probability map obtained from inten-
sity information of the input vertebra image. The main steps of our algorithm are
illustrated in Fig. 1. Firstly, an intensity based prior map of the bone is estimated
by comparing the intensity values to trained bone and soft tissue histograms. This
resembles our learned bone prior. The vertebral mean shape is then registered to the

Fig. 1 Overview of our proposed algorithm. Green boxes represent a priori information obtained
from training images. Bold arrows indicate parts that are included in the variational segmentation
algorithm (color in online)
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thresholded bone prior map to obtain the orientation of the individual vertebrae. This
information is used to formulate a total variation (TV) based active contour segmen-
tation problem, which combines the registered mean shape and the bone prior, and
additionally incorporates edge information.

2.1 Mean Shape Model

The vertebral mean shape model fs is calculated separately for three groups of
vertebrae to account for variation in shape along the spine: T01–T06, T07–T12,
L01–L05. Ground truth segmentations of vertebrae are registered to an arbitrary ref-
erence vertebra using an intensity-based registration with a similarity transformation
and normalized cross correlation as similarity measure. The vertebral mean shape
model is obtained by averaging the registered binary images of the ground truth seg-
mented vertebrae. This step leads to a voxelwise probability for being part of themean
shape. Tomeet the requirements of the TVoptimization framework [10], the obtained
values in the probability image are inverted such that negative values represent the
mean shape vertebral region and values close to one the non-vertebral region.

2.2 Bone Prior Map

The bone prior map fb(x) = log
(

pbg(x)

pfg(x)

)
is calculated as the log likelihood ratio

between the probability that a voxel x belongs to the bone distribution pfg and the
probability that it belongs to the soft tissue distribution pbg. The bone and soft tissue
distributions are obtained from the training data set by estimating normalized mean
foreground and background histograms of the intensity values using the ground truth
segmentations. A coarse segmentation of the bone in the input image is achieved by
thresholding the inverted bone map. We select a threshold value of −0.5 to ensure
that trabecular bones are included in the segmented bone region, since their image
intensities might be close to soft tissue.

2.3 Total Variation Segmentation

To obtain the segmented vertebra u, the following non-smooth energy functional
Eseg(u) is minimized using the first order primal-dual algorithm from[1]:

min
u∈[0,1] Eseg(u) = min

u∈[0,1]TVg, aniso + λ1

∫

Ω

u fs dx + λ2

∫

Ω

u fb dx (1)

whereΩ denotes the image domain. The trade-off between the vertebral mean shape
model, bone prior map and image edge influence is regularized by the parameters
λ1 and λ2. The term TVg, aniso(u) is the anisotropic g-weighted TV norm[7], using

a structure tensor D
1
2 (x) as proposed by [9], incorporating both edge magnitude and
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edge direction to be able to segment elongated structures:

TVg, aniso =
∫

Ω

|D 1
2 (x)∇u| dx =

∫

Ω

√
∇uT D(x)∇u dx (2)

D
1
2 (x) = g(x)nnT + n0n0

T + n1n1
T . (3)

Here, n = ∇ I
‖∇ I‖ is the normalized image gradient, n0 denotes an arbitrary vector

in the tangent plane defined by n, and n1 is the cross product between n and n0. The
edge function g(x) is defined as

g(x) = e−α‖∇ I (x)‖β

, α, β ∈ R
+. (4)

During minimization of the energy Eseg, the segmentation u tends to be fore-
ground, if fb, fs < 0 and background, if fb, fs > 0. If fb, fs equal zero, the pure
TV energy is minimized, thus seeking for a segmentation surface with minimal sur-
face area. The final segmentation is achieved by thresholding the segmentation u
between 0 and 1.

3 Experimental Setup

We evaluated our method on the volumetric CT data sets provided for the CSI spine
and vertebrae segmentation challenge [11]. The data consists of ten training images
and the corresponding ground truth segmentations. The performance of our algorithm
was evaluated by a leave-one-out cross validation, i.e.,we report average performance
over ten experiments.
We implemented the registration as well as the segmentation algorithm on the GPU
to exploit hardware parallelization of our algorithms using Nvidia CUDA. For edge
detection, we chose the parameters as α = 20 and β = 0.55. The regularization
parameters are set to λ1 = 0.04 and λ2 = 0.005 for all experiments. We achieved
the binary segmentations by thresholding the segmentation u with a value of 0.2.

4 Results

For quantitive evaluation, we used the Dice Similarity Coefficient (DSC) to evaluate
our segmentation algorithm. We achieved an average DSC of 0.93 ± 0.04 over all
vertebrae from the leave-one-out experiment. Our algorithmperformswell on lumbar
vertebrae (0.96 ± 0.02) and lower thoracic vertebrae T07–T12 (0.95 ± 0.02). The
DSC for thoracic vertebrae T01–T06 is 0.89 ± 0.05, which can be explained by the
influence of ribs and small intervertebral discs that are connected to the vertebrae.
The algorithm did not perform well on case 6 in terms of registration errors due to
confusing trabecular bone intensities with soft tissue. All estimatedDSC are depicted
in Table1 and 2. A qualitative result of a correctly segmented fifth lumbar vertebra is
illustrated in Fig. 2. In contrast to that, Fig. 3 shows an example for the sixth thoracic
vertebra where the segmentation is influenced by connected ribs.
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Table 1 Mean values and standard deviations for each vertebra resulting from the leave-one-out
cross validation experiment

DSC T01 T02 T03 T04 T05 T06

Mean ± std 0.87 ± 0.03 0.92 ± 0.04 0.93 ± 0.03 0.91 ± 0.04 0.87 ± 0.06 0.84 ± 0.08

DSC T07 T08 T09 T10 T11 T12

Mean ± std 0.94 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.96 ± 0.02 0.96 ± 0.00 0.95 ± 0.03

DSC L01 L02 L03 L04 L05 All

Mean ± std 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.95 ± 0.03 0.94 ± 0.04 0.93 ± 0.04

We achieved good performance for T07–T12 as well as L01–L05. Our segmentations of T01–T06
have a lower value due to connected ribs and small intervertebral discs that are classified as bone
in our pre-segmentation

Table 2 Evaluation in terms of mean values and standard deviations for all vertebrae in the indi-
vidual data sets

DSC case1 case2 case3 case4 case5

Mean ± std 0.93 ± 0.04 0.94 ± 0.05 0.92 ± 0.05 0.94 ± 0.03 0.94 ± 0.04

DSC case6 case7 case8 case9 case10

Mean ± std 0.81 ± 0.18 0.94 ± 0.03 0.93 ± 0.03 0.95 ± 0.03 0.94 ± 0.04

Fig. 2 The main steps of our proposed segmentation algorithm are bone prior estimation, mean
shape registration and the final segmentation. The top row shows mid-sagittal cross sections and
the bottom row axial cross sections of the lumbar vertebra L05. Dark regions in the bone prior (left
image) are likely to be bone. The registered mean shape (middle image) and the bone prior are used
as additional information for the segmentation algorithm. The final segmentation is depicted in the
right image where green regions are correctly segmented and red regions differ from the ground
truth result. The DSC for this example is 0.97 (color in online)
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Fig. 3 This example illustrates axial cross sections of T06 where we achieved a DSC of 0.84. The
bone prior shown in the left image classifies ribs as bone tissue. Therefore, the registered mean
shape (middle image) is wrongly aligned, as it is attracted by the ribs. The final segmentation (right
image) contains wrongly segmented ribs illustrated in red, while the yellow parts of the vertebra
are missing. The green area depicts the correctly segmented region (color in online)

5 Discussion

Our proposed method for vertebrae segmentation based on a variational framework
has been successfully applied to ten volumetric CT data sets provided for the CSI
spine and vertebrae segmentation challenge. A common problem in vertebrae seg-
mentation is that edges of the vertebrae are not clearly defined. Furthermore, tra-
becular bone intensities sometimes resemble soft tissue. These limitations could be
easily overcome with our approach by adding manual user constraints as proposed
in [8]. We see this as a great benefit of using our variational framework in vertebrae
segmentation. In contrast to other methods that do not guarantee the convergence
to an optimal solution, our proposed TV energy minimization (1) is convex, hence,
it yields a globally optimal solution given the successfully registered mean shape.
Initialized with a single point in the center of the vertebra, the proposed algorithm
can be considered fully automatic since various methods have already been proposed
for automatic detection and labeling of the center of the vertebral body [2]. While
other methods depend on the sophisticated shape models, whose generation usu-
ally requires a great amount of time consuming manual interaction, in our proposed
method we used coarse mean shape models built separately for all upper thoracic,
lower thoracic and lumbar vertebrae. The vertebral mean shape model is registered
to the thresholded bone prior map, which may lead to wrong alignment, if ribs are
present or if trabecular bone intensities are low, i.e., close to soft tissue values. The
overall result of 0.93 ± 0.04 in terms of the DSC is similar to other published
methods. The result in lumbar region (0.96 ± 0.02) is better than 0.95 presented
by Kadoury et al. [4] and the result of Ibragimov et al. [3] evaluated only on the
lumbar vertebrae (0.93 ± 0.02). In the lower thoracic part of the spine, our result
of 0.95 ± 0.02 exceeds the overall result for thoracic vertebrae (i.e. 0.93) presented
by Kadoury et al. [4]. However, these methods were evaluated on different data sets,
so results are not fully comparable. The lower DSC values for thoracic vertebrae
T01–T06 can be explained by the influence of ribs and small intervertebral discs that
mislead the segmentation.



Vertebrae Segmentation in 3D CT Images … 233

6 Conclusion

In thiswork, a fully automatic system for vertebrae segmentation fromCTwas shown.
It builds upon aTVbased convex active contour segmentation that incorporates shape
and intensity priors learned from training data and combines this prior information
with image edges to achieve a minimal surface segmentation. Our results on the data
of the MICCAI 2014 CSI challenge are promising and comparable to state of the art
methods.
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Interpolation-Based Shape-Constrained
Deformable Model Approach
for Segmentation of Vertebrae
from CT Spine Images

Robert Korez, Bulat Ibragimov, Boštjan Likar, Franjo Pernuš
and Tomaž Vrtovec

Abstract This paper presents a method for automatic vertebra segmentation. The
method consists of two parts: vertebra detection and vertebra segmentation. To detect
vertebrae in an unknown CT spine image, an interpolation-based optimization ap-
proach is first applied to detect the whole spine, then to detect the location of individ-
ual vertebrae, and finally to rigidly align shape models of individual vertebrae to the
detected vertebrae. Each optimization is performed using a spline-based interpolation
function on an equidistant sparse optimization grid to obtain the optimal combination
of translation, scaling and/or rotation parameters. The computational complexity in
examining the parameter space is reduced by a dimension-wise algorithm that itera-
tively takes into account only a subset of parameter space dimensions at the time. The
obtained vertebra detection results represent a robust and accurate initialization for
the subsequent segmentation of individual vertebrae, which is built upon the existing
shape-constrained deformable model approach. The proposed iterative segmentation
consists of two steps that are executed in each iteration. To find adequate boundaries
that are distinctive for the observed vertebra, the boundary detection step applies an
improved robust and accurate boundary detection using Canny edge operator and
random forest regression model that incorporates prior knowledge through image
intensities and intensity gradients. The mesh deformation step attracts the mesh of
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the vertebra shape model to vertebra boundaries and penalizes the deviations of the
mesh from the training repository while preserving shape topology.

1 Methodology

Let setT contain three-dimensional (3D) images of the thoracolumbar spine, where
each image is assigned a series of binarymasks representing reference segmentations
of each individual thoracolumbar vertebra from level T1 to L5, and let each vertebral
level be represented by a 3D face-vertex mesh M = {V ,F } of |V | vertices and
|F | faces (i.e. triangles). A chain of mean vertebra shape models represents the
mean shape model of the whole thoracolumbar spine used for spine detection, while
the mean shape models of individual vertebrae are used for vertebra detection and
segmentation in an unknown 3D image I .

1.1 Vertebra Detection

The detection of vertebrae in an unknown 3D image I was performed by a novel
optimization scheme based on interpolation theory [3], which consists of three steps:
spine detection, vertebra detection and vertebra alignment. To detect the spine in
image I , the poseof themean shapemodel of the thoracolumbar spineM is optimized
against three translations (i.e. coordinates x , y and z representing sagittal, coronal
and axial anatomical directions, respectively), and the resulting global maximum
represents the location of the spine in the 3D image, which is further used to initialize
the vertebra detection. To detect each vertebra, the pose of the corresponding mean
vertebra shape model M is optimized against three translations, however, in this
case all local maxima of the resulting interpolation are extracted, corresponding to
locations of the observed and neighboring vertebrae. The correct location of each
vertebra is determined by the optimal path that passes through a set of locations,
where each location corresponds to a local maximum at a different vertebral level.
Finally, a more accurate alignment of themean vertebra shapemodel is performed by
optimizing the pose of each model against three translations, one scaling (i.e. factor
s) and three rotations (i.e. angles ϕx , ϕy and ϕz about coordinate axes x , y and z,
respectively). The resulting alignment represents the final vertebra detection result.

1.2 Vertebra Segmentation

After the interpolation-based alignment [3], segmentation of each vertebra in the
unknown image I is performed by an improved mesh deformation technique [5]
that moves mesh vertices to their optimal locations while preserving the underlying
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vertebral shape [4, 6]. In this iterative procedure, the image object detection for mesh
face centroids that are represented by the centers of mass for mesh faces F ∈ M
and reconfiguration of mesh vertices V ∈ M are executed in each iteration.

1.2.1 Object Detection

By displacing each mesh face centroid ci ; i = 1, 2, . . . , |F | along its corresponding
mesh face normal n(ci ), a new candidate mesh face centroid c∗

i is found in each k-th
iteration:

c∗
i = ci + δ j∗i n(ci ), (1)

where δ is the length of the unit displacement, and j∗i is an element from set J ;
j∗i ∈ J . SetJ represents the search profile along n(ci ), called the sampling parcel:

J =
{

− j,− j + 1, . . . , j − 1, j
}
; j = J − k + 1, (2)

which is of size 2J +1 at initial iteration k = 1 and 2(J − K +1)+1 at final iteration
k = K . The element j∗i that defines the location of c∗

i is determined by detecting
vertebra boundaries:

j∗i = argmax
j∈J

{
F

(
ci , ci + δ j n(ci )

) − D δ2 j2
}
. (3)

where c′
i = ci + δ ji n(ci ) is the candidate location for c∗

i (Eq. 1), and parameter
D controls the tradeoff between the distance from ci to c′

i and the response of the
boundary detection operator F :

F(ci , c′
i ) = gmax

(
gmax + ∥∥gW (c′

i )
∥∥)

g2
max + ∥∥gW (c′

i )
∥∥2

〈
n(ci ), gW (c′

i )
〉
, (4)

where ‖·‖ denotes the vector norm, 〈·, ·〉 denotes the dot product, gmax is the estimated
mean amplitude of intensity gradients at vertebra boundaries that is used to suppresses
theweighted gradients, whichmay occur if the gradient magnitude at the boundary of
the object of interest is considerably smaller thanof another object in its neighborhood
(e.g. pedicle screws), and gW is the image apperance operator at candidate mesh
centroid location c′

i :

gW (c′
i ) = (

1 + αC(c′
i ) + (1 − α)R(c′

i )
)

g(c′
i ), (5)

where C(c′
i ) ∈ [0, 1] is the response to the Canny edge operator, R(c′

i ) ∈ [−1, 1] is
a random forest [1] regression model build upon an intensity-based descriptor and α

is the weighting parameter.
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1.2.2 Mesh Reconfiguration

Once the new candidate mesh face centroids c∗
i are detected, mesh M = {V ,F }

is reconfigured in each k-th iteration by minimizing the weighted sum E of energy
terms:

min
M

{
E

} = min
M

{
Eext + βEint

}
, (6)

whereβ is theweighting parameter. The external energy Eext attractsmeshM to new
face centroids c∗

i , i = 1, 2, . . . , |F | (Eq. 1), that are located on vertebra boundaries:

Eext =
|F |∑

i=1

w∗
i

〈
c∗

i − ci ,
gW (c∗

i )∥∥gW (c∗
i )

∥∥

〉2
(7)

where |F | is the number of mesh faces, gW is the image appearance operator (Eq.5),
and wi ; i = 1, 2, . . . , |F |, are weights that are defined according to the obtained j∗i
(Eq. 3) to give a greater influence to more promising centroid locations:

w∗
i = max

{
0, F(ci , c∗

i ) − D δ2 j∗i
2
}

(8)

The internal energy Eint restricts theflexibility ofmeshM bypenalizing the deviation
between deformation vertices V and mean vertices V m :

Eint =
|V |∑

i=1

∑

j∈Ni

∥∥∥
(

vi − v j

)
−

(
s R

(
vm

i − vm
j

)
+ t

)∥∥∥
2

(9)

where vi and vm
i are vertices from sets V and V m , respectively,Mm = {V m,Fm}

represents the mean shape model of the observed lumbar vertebra, andNi is the set
of vertices neighboring to vi (or vm

i , since the topology is preserved). The scaling
factor s, rotation matrix R and translation vector t that align mesh vertices vi to the
mean vertices vm

i are determined prior to calculation of Eq. (9) by using Procrustes
superimposition [2].

2 Results

The performance of the proposed framework was tested on a database1 [7] of 10
computed tomography (CT) images of the thoracolumbar spine and was evaluated
by the mean symmetric absolute surface distance (MSD), symmetric root-mean-

1 Publicly available through http://spineweb.digitalimaginggroup.ca.

http://spineweb.digitalimaginggroup.ca
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Table 1 Thoracolumbar vertebra segmentation results in terms of mean symmetric absolute sur-
face distance (MSD), symmetric root-mean-square surface distance (RMSSD), maximal symmetric
absolute surface distance (MaxSD) and Dice coefficient (DICE), reported as mean ± standard
deviation

Vertebral MSD RMSSD MaxSD DICE

level (mm) (mm) (mm) (%)

T1 0.40 ± 0.06 0.71 ± 0.13 5.07 ± 0.94 90.25 ± 1.03

T2 0.33 ± 0.06 0.61 ± 0.13 4.75 ± 1.14 92.07 ± 1.00

T3 0.32 ± 0.05 0.61 ± 0.14 6.36 ± 5.67 92.16 ± 1.09

T4 0.44 ± 0.18 0.82 ± 0.36 5.62 ± 2.60 90.55 ± 2.82

T5 0.51 ± 0.33 1.02 ± 0.78 6.64 ± 6.07 90.27 ± 4.22

T6 0.37 ± 0.13 0.71 ± 0.30 7.35 ± 6.60 92.32 ± 1.27

T7 0.33 ± 0.08 0.60 ± 0.16 5.48 ± 2.25 92.97 ± 1.23

T8 0.31 ± 0.06 0.56 ± 0.11 4.76 ± 1.64 93.52 ± 1.14

T9 0.33 ± 0.07 0.56 ± 0.14 4.17 ± 1.58 93.56 ± 0.93

T10 0.40 ± 0.11 0.78 ± 0.29 6.97 ± 2.73 93.04 ± 1.28

T11 0.33 ± 0.06 0.61 ± 0.15 5.53 ± 1.99 93.97 ± 0.91

T12 0.32 ± 0.08 0.56 ± 0.11 4.72 ± 0.97 94.33 ± 1.03

L1 0.31 ± 0.05 0.56 ± 0.10 5.02 ± 1.74 94.46 ± 0.63

L2 0.31 ± 0.04 0.55 ± 0.10 5.38 ± 2.22 94.53 ± 0.58

L3 0.34 ± 0.07 0.63 ± 0.17 6.45 ± 2.54 94.25 ± 0.68

L4 0.32 ± 0.07 0.60 ± 0.14 6.38 ± 1.42 94.68 ± 0.63

L5 0.34 ± 0.06 0.64 ± 0.15 6.42 ± 2.47 94.14 ± 1.11

All 0.35 ± 0.12 0.65 ± 0.28 5.73 ± 3.15 93.09 ± 2.05

square surface distance (RMSSD), maximal symmetric absolute surface distance
(MaxSD) and Dice coefficient (DICE),2 computed between the resulting 3D meshes
and corresponding reference segmentation binary masks. Detailed results for the
segmentation of individual vertebrae are presented in Table1.
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3D Vertebra Segmentation by Feature
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Abstract In this paper, a former method has been adapted to perform vertebra
segmentations for the 2ndWorkshop on Computational Methods and Clinical Appli-
cations for Spine Imaging (CSI 2014). A statistical Shape Models (SSM) of each
lumbar vertebra was created for the segmentation step. From manually placed inter-
vertebral discs centres, the similarity parameters are computed to initialise the verte-
bra shapes. The segmentation is performed by iteratively deforming amesh inside the
image intensity and then projecting it into the SSM space until convergence. After-
wards, a relaxation step based on B-spline is applied to overcome the SSM rigidity.
The deformation of the mesh, within the image intensity, is performed by displac-
ing each landmark along the normal direction of the surface mesh at the landmark
position seeking a minimum of a cost function based on a set of trained features.
The organisers tested the performance of our method with a dataset of five patients,
achieving a global mean Dice Similarity Index (DSI) of 93.4%. Results were con-
sistent and accurate along the lumbar spine 93.8, 93.9, 93.7, 93.4 and 92.1%, from
L1 to L5.
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1 Introduction

Statistical Shape Model (SSM) is a powerful tool to restrict shapes to a certain
population and they have been successfully applied to vertebra segmentation [1–3].
The main drawback of such models is the large dataset required for the training set,
which must be manually or semi-automatically segmented.

In this paper, we adapted our previous work on Intervertebral disc segmentation
[4] to handle vertebrae. Themethod employs an SSM in a similar manner as in Active
Shape Models (ASM) [5]. It also includes a relaxation step at the end of the process
to allow segmentations to be out of the SSM space achieving highly accurate results
even with a small training dataset.

2 Method

2.1 Initialization

In the training phase, the upper and lower endplate middle landmarks (la , lb) of our
template vertebra were selected. These two points allow to compute the centre of the
vertebral body (VB) as well as the direction from lb to la (û) of each initial vertebra.

In the segmentation step, the intervertebral discs (IVD) centres were manually
pinpointed. From these points, the new VB centres were computed as the mean point
between two consecutive IVD centres, with the exception of the L1, which was
extrapolated from the other points. The scaling factor (s) and the rotation matrix (R)
were computed as:

s = α
‖la − lb‖

‖v‖ and R = I + B + 1

1 + û · v̂
B2 with B = ûv̂T − v̂ûT (1)

where (v) is the vector that goes from the IVD below the vertebra to the IVD on the
top, u · v defines the dot product between u and v. α was set to 0.9 and it was used to
compensate the difference between the endplate landmarks and the distance between
two consecutive IVDs.

2.2 Vertebra Segmentation

The algorithm follows our previous work [4], where a set of features andweights (wi )
were trained. For this task, the training database (Sect. 2.3) was used. Vertebrae were
divided into two regions (see Fig. 1), the articular processes (AP) and the rest (RV).
Three features were trained for each region, for the RV: The oriented derivative from
high to low intensity, the intensity itself and the distance from the current position
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Fig. 1 The two vertebral
regions, the dark grey areas
in both figures are the AP
region, where the rest of the
vertebra, in beige, is the RV
region (Color figure online)

were used. For the AP, the same features were employed but the first one, which was
exchanged for a feature more adequate to the space between the articular processes.
This feature seeks a sudden decrease of intensity followed by an increase of it. Thus,
the cost functions are:

ERV = (w1 I (vi ) + w2(n̂(s) · ∇ I (vi )) + w3EU (vi , pi )) (2)

EAP = (w1 I (vi ) + w2mina(−Fa ∗ I (vi )) + w3EU (vi , pi )) (3)

where pi is the current position of the mesh point i , vi is a vector, whose values are
the intensity profile positions in the image along the normal direction of the mesh
surface at point pi , n̂ is the normal direction at pi from inside to outside of the mesh,
I is the image intensity, EU (a, b) represents the euclidean distance from a to b and
F ∗ I (vi ) represents the convolution of a set of filter F and the profile of intensities.
F is in the form of [1’s, 0’s, −1’s, 0’s, 1’s], where the length (a) of the components
are variable.

Having acquired the set of features, each mesh landmark is iteratively displaced,
along the normal direction of the mesh surface, seeking the minimum of the previous
cost function, and the resultant shape is projected into an SSM space. After the
convergence of this iterative process a relaxation step is employed. This step starts
with the same landmark displacement but the projection is performed over a B-spline
space, with higher degrees of freedom.

2.3 Evaluation of the Method

Five SSMswere constructed using a training database of 30Lumbar SpineCT images
with a resolution of 0.608 × 0.608 × 0.3mm3, collected at the National Center for
Spinal Disorders (Budapest, Hungary). Those patients were selected for participating
in the European MySpine project.

The testing dataset was composed of 10 CT scans and their ground-truth, both
provided by the organisers, of thoracic and lumbar spines with resolution 0.3125 ×
0.3125 × 1mm3.

Furthermore, a second testing set of 5 CT scans was used by the organiser to test
the performance of the algorithm. This second dataset was not available and only the
results were given.
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The segmentations were evaluated using the Dice Similarity Index (DSI), defined
as 2×(GT ∩SV )

GT +SV × 100%, between the segmented vertebrae (SV) and the ground
truth (GT).

3 Results and Discussion

The result of the Lumbar spine segmentations, of the first testing dataset, are shown
in Table1 and that of the second testing dataset in Table2. The method shows stable
performance and high accuracy along the different vertebrae, even when the training
step was performed in a dataset with different characteristics as that of the testing
(Sect. 2.3).Visual results (only for the first testing dataset) are presented in Fig. 2. This

Table 1 Mean and 2 standard deviations of Dice Similarity Index between the ground truth and
the automatic segmentations of the first testing dataset composed of 10 patients

DSI Lumbar spine: L1–L5 (%) Global (%)

Mean 88.9, 88.8, 89.1, 89.2, 88.4 88.8

2 × STD 1.7, 3.2, 3.0, 2.5 1.7 2.5

Table 2 Mean and 2 standard deviations of Dice Similarity Index between the ground truth and
the automatic segmentations of the second testing dataset composed of 5 patients

DSI Lumbar spine: L1–L5 (%) Global (%)

Mean 93.8, 93.9, 93.7, 93.4, 92.1 93.4

2 × STD 3.6, 0.9, 0.6, 1.7, 6.3 3.3

Fig. 2 Automatic segmentation results (white contours) and ground truth segmentations (red con-
tours) of three patients. The images manifest that although results are accurate, the automatic
algorithm under-segments the processes, and the ground truth was over-segmented and contains
some artefacts (blue contours) (Color figure online)
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figure shows that segmentation contours match the border of the vertebra proving
the good performance of the method. However, it also reveals an under-segmentation
issue in the processes. On the other hand, the ground-truth provided by the organisers
seem to be over-segmented, mainly on the vertebral bodies, and it also contains some
artefacts.

4 Conclusions

The proposed method employs the centre of the IVDs to compute the initial pose and
scaling of each lumbar vertebra, then an improved ASM that employs a trained set
of features and weights is used for the actual segmentation. The algorithm was tested
only on lumbar vertebrae where SSMs were available. Results show high accuracy
when comparing with the ground truth, which contains a high bias due to difficulty
of the images.

References

1. Roberts, M.G., Cootes, T.F., Pacheco, E., Oh, T., Adams, J.E.: Segmentation of lumbar vertebrae
using part-based graphs and active appearance models. In: Lecture notes in computer science
(MICCAI), pp. 1017–1024. Springer (2009)

2. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based
vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13(3), 471
(2009)

3. Weese, J., Kaus,M., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable
models for 3D medical image segmentation. Inf. Process. Med. Imaging pp. 380–387 (2001)

4. Castro-Mateos, I., Pozo, J.M., del Rio, L., Eltes, P., Lazary, A., Frangi, A.F.: 3D segmenta-
tion of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images.
Manuscript accepted for publication in Physics in Medicine and Biology (2014)

5. Cootes, T.F., Taylor, C.J., Graham, J.: Active shape models- their training and applications.
Comput. Vis. Image Under 61(1), 38–59 (1995)



Report of Vertebra Segmentation Challenge
in 2014 MICCAI Workshop on
Computational Spine Imaging

Jianhua Yao and Shuo Li

Abstract Segmentation is the fundamental step for most spine image analysis tasks.
The vertebra segmentation challenge held at the 2014 Computational Spine Imaging
Workshop (CSI2014) objectively evaluated the performance of several algorithms
segmenting vertebrae in spine CT scans. Five teams participated in the challenge.
Ten training data sets and Five test data sets with reference annotation were provided
for training and evaluation. Dice coefficient and absolute surface distances were
used as the evaluation metrics. The segmentations on both the whole vertebra and
its substructures were evaluated. The performances comparisons were assessed in
different aspects. The top performers in the challenge achieved Dice coefficient of
0.93 in the upper thoracic, 0.95 in the lower thoracic and 0.96 in the lumbar spine.
The strength and weakness of each method are discussed in this paper.

1 Introduction

The spinal column forms the central weight-bearing axis of the human body. Seg-
mentation is the fundamental step for most spinal image analysis tasks. The vertebra
segmentation is challenging due to the complex shape variation and inter-object
interaction between vertebrae and ribs.

A number of spine segmentation algorithms on computed tomography had been
proposed over recent years. Klinder et al. [1] proposed amethod thatmost researchers
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referred as the state of the art technique by integrating detection, identification and
segmentation of vertebrae in a framework. The method is based on spinal curve
extraction and statistical shape models. Ma et al. [2] proposed a method based upon
bone-structure edge detectors and coarse-to-fine registration of a deformable surface
model for thoracic spine. Lim et al. [3] included the Willmore flow in the level set
framework to guide the surface model evolution. Rasoulian et al. [4] incorporated
both shape and pose statistics in a multi-vertebrae model for the lumbar spine seg-
mentation. Kim and Kim[5] proposed a deformable fence model to separate lumbar
vertebrae and surrounding tissues. Kadoury et al. [6] modeled the individual vertebra
in an articulated spine model with a low-dimensional manifold representation and
inferred the model using high-order Markov Random Fields. Ibragimov et al. [7]
built landmark-based shape representations of vertebrae using transportation theory
and aligned the model to a specific vertebra in 3D CT images using game theory.
Roberts et al. [8] used part-based models and active shape models to divide the verte-
bra into several parts and conducted the segmentation collaboratively. Huang et al. [9]
combined edge- and region-based level set functions for the vertebra CT image seg-
mentation. Most of the published methods were based on certain type of vertebral
models and reported fairly good results. However, these algorithms were mostly
evaluated on self-prepared data set and their performances were not independently
verified.

It is necessary to establish standardized reference data and validation criteria to
objectively compare different segmentation algorithms. Challenge frameworks have
been developed in the past few years for several medical image analysis problems. A
dedicated website at http://www.grand-challenge.org has the most complete list of
organized challenges since 2007, including those focusing on liver, lung, brain and
heart etc. By far, there is no grand challenge exclusively for spine image analysis.

The objective to organize the vertebra segmentation challenge has three-folds.
First, we intend to construct an annotated reference data set for spine labeling and
segmentation; second, we will provide a platform to objectively evaluate the strength
and weakness of various spine segmentation algorithms; and third, we want to assess
the state of the art segmentation accuracy for vertebra and its substructures.

2 Data Sets

The data sets used in the challenge were acquired at the University of California,
Irvine, Medical Center, between March 2013 and May 2013. The data set was man-
ually selected by Dr. Joseph Burns according to the following selection criteria:
age between 18 and 35years; entire spine column scanned; and no obvious spine
abnormality or disease. All patients were scanned using a spine CT protocol where a
small field of view centered at the spine was reconstructed. The scanning parameters
included 0.7–1mm slice thickness, 120kVp, soft tissue reconstruction kernel, and
intravenous contrast.

http://www.grand-challenge.org
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There are several characteristics about this data set. It is from a young population
with dense bone structures. Complete thoracic and lumbar spines are presented in
the image. The spines are healthy. In all, we chose a relatively easy data set for the
first challenge in this topic since we want to assess the mechanism of the vertebra
segmentation algorithms and encourage participation.

We collected 15 data sets for the challenge, 10 for training and 5 for testing.
The training cases were provided before the participants entered the challenge (Jan,
2014). The test cases were provided after they entered the challenge (July, 2014). All
data were anonymized and made available in Meta format (MHD/raw). The data sets
are released on SpineWeb (http://spineweb.digitalimaginggroup.ca/spineweb/index.
php?n=Main.Datasets).

3 Reference Data Generation

The reference segmentation data was generated in two stages. First, the initial seg-
mentation was obtained using a fully automatic algorithm reported in [10]. The algo-
rithm was based on adaptive thresholding, watershed, directed graph search, and
connected component analysis. The segmentation was then manually corrected and
refined by a medical fellow and a research fellow. A customized software was devel-
oped for the manual correction. In the reference data, each vertebra is assigned a
unique label and the background (pixels other than vertebra) is assigned label 0. We
created reference segmentation for every vertebra for both thoracic (T1–T12) and
lumbar (L1–L5) spines. A reference segmentation file is saved in Meta data format
for each data set. The reference file has the same resolution as the original CT image
file. Figure1 shows an example of the reference label in the sagittal plane and the
3D surface model generated by the reference segmentation.

Fig. 1 Example of reference
Data. Each vertebra is
assigned a unique label
(color coded). Left Sagittal
view, right 3D view

http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets
http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets
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4 Participating Algorithms

There are over 60 requests or downloads of the training data from SpineWeb. Five
teams entered the challenge held at the Computational Spine Imaging workshop
(CSI2014). Among the participants, four teams segmented both thoracic and lumbar
spines, and one team only segmented the lumbar spine.

The five participating algorithms are dubbed as Method 1 [11], Method 2 [12],
Method 3 [13], Method 4 [14], andMethod 5 [15] in this paper according to the order
of the submission. The titles of the five methods are listed in the bibliography. The
technical comparisons of the five methods are conducted in six aspects: localization,
model, bundled model, registration/optimization, feature function and running time.
Method 1 and Method 4 comprise steps to automatically localize and initialize the
vertebrae. Method 2, 3, and 5 require manual initialization of the model, either at the
center of the vertebral body or at the endplates. All methods are based on certain type
of shape and intensity models. Method 1 uses multiple atlases directly derived from
the reference data.Method2uses statistical shape+posemodel built from87 training
models. Both Method 3 and Method 4 use mean shape models. Method 4 builds a
model for each vertebra level, whileMethod 3 builds onemodel for each spine section
(one for T1–T6, one for T7–T12, and one for L1–L5).Method 5 computes a statistical
shapemodel from30 trainingmodels for each vertebra level. InMethod 1 andMethod
2, adjacent vertebrae are bundled together (5 vertebrae inMethod 1 and 3 vertebrae in
Method 2) in the segmentation. Different registration/optimization frameworks were
adopted in the methods. Method 1 first applies a non-rigid registration for each atlas
and then performs a label fusion. Method 2 conducts an EM algorithm to optimize
the model. Method 3 adopts a total variation framework. Surface mesh deformation
and reconfiguration is performed in Method 4. Method 5 employs statistical shape
deformation plus b-spline relaxation for the surface optimization. Different feature
functions are used in the methods for the optimization. They are mostly based on
edge point and intensity model. The running time was reported by the participating
teams as follows. Method 1-5 takes approximately 12, 10, 60, 30 and 3 minutes per
case respectively. It can only be viewed as a reference since the algorithms were run
on different hardware and some have been optimized by GPU.

5 Evaluation

The performance on the training set was evaluated by participants and reported in
their submissions to the workshop. The performance of the test set was evaluated by
the challenge organizers.

After the test data was released in July, the participants were given 10days to
submit the segmentation results. Each segmented vertebra was assigned a unique
label. The resultswere submitted inMeta format (MHD/raw)with the same resolution
of the original CT data.
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Fig. 2 Partitioning of a vertebra into four substructures. Left Density map on vertebra surface,
hotter color: higher density. Right Partitioning a vertebra into four substructures. The substructures
are color-coded with different colors. The cutting planes lie at the border between two substructures

Two metrics were employed for evaluation: dice coefficient (DC) and absolute
surface distance (ASD). The evaluation was conducted on each individual vertebra.

By visual inspection, we notice that the segmentation performed differently at
different parts of the vertebra. Therefore we evaluate the segmentation performance
for both the whole vertebra and its four substructures: vertebra body, left transverse
process, right transverse process, and spinal process. We developed an automatic
method to partition the vertebra into anatomical substructures [16]. It is based on the
anatomical knowledge that pedicles and laminae are the densest parts of the vertebral
arch which forms the circle of bones around the spinal canal. We therefore search
for the four cutting planes at left pedicle, right pedicle, left lamina and right lamina
that go through the cross-sections with highest CT intensity around the spinal canal.
Symmetric constraints are also enforced to balance the left and right cutting planes.
The vertebra is then partitioned into four substructures (vertebral body, left transverse
process, right transverse process and spinal process depending on which side of the
cutting planes a pixel lies. Figure2 shows the partitioning of a vertebra into four
substructures.

6 Performance Comparison

The segmentation results were compared both visually and quantitatively. The seg-
mentation result was superimposed on the CT image for visual inspection. Dice
coefficient (DC) and absolute surface distance (ASD) were used for quantitative
analysis. In this paper, we mainly focus on the results on the test set.

Figure3 shows the visual comparison of submitted segmentation results for test
case 1. All methods achieve visually acceptable segmentation for the thoracolumbar
spine column. There is no overly leakage or under-segmentation from the sagittal
view. For a closer visual inspection, Fig. 4 shows the visual comparison of the seg-
mentation of the mid-axial slice for three representative vertebrae: T3, T9 and L3. In
T3 and T9, all methods successfully separate the vertebra and the ribs. The border
of segmented vertebra in Method 1is not smooth, which indicates further refinement
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Fig. 3 Visual comparison of segmentation results for test case

Fig. 4 Visual comparison of segmentation results for specific vertebrae in test case 5. Row 1 T3
vertebra; Row 2 T9 vertebra; Row 3 L3 vertebra Mid-axial slice for each vertebra is shown. The
segmentation is superimposed on the CT data

is necessary. The segmentation in Method 2 is off-mark although the location of
the vertebra and the overall shape are correct. Another stage of local segmentation
should be conducted. Method 3 and 4 both get pretty good segmentation results,
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but it is noted that the segmentation of the posterior substructures still have rooms
for improvement. The tips of the processes are not completely segmented and some
contrast-enhanced vessels are included in the segmentation. Method 5 only segments
the lumbar spine and the result is similar to that of Method 1 where the boundary is
slightly off.

Figure5 shows the average dice coefficient for all five methods from T1 to L5.
There is a general trend of better performance from upper spine to lower spine as the
vertebrae gradually increase the size and density. Both DC and ASD show the same
pattern. To further illustrate the pattern, we group the vertebrae into three sections:
upper thoracic from T1 to T6, lower thoracic from T7 to T12 and lumbar spine from
L1 to L5. TheDCgoes from 0.867 in the upper thoracic, to 0.909 in the lower thoracic
and to 0.933 in the lumbar spine.

Figure6 summarizes the performance on the sub-structures. It is noted that the
DC for the vertebral body segmentation is much higher than that for the posterior

Fig. 5 Mean performance of all methods at each vertebra level
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Fig. 6 Mean performance of all methods for substructures

substructures (left transverse process, right transverse process and spinal process).
The three processes have comparable performance. This further verifies the visual
comparison shown in Fig. 4.

Figure7 compares the performance on individual vertebra for all five methods.
Figure8 summarizes the comparison on the entire spine column. These comparisons

Fig. 7 Performance comparison on individual vertebra
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Fig. 8 Performance comparison on entire spinal column

Fig. 9 Comparison between the training and testing cases

show the differences in performance among the methods, in terms of both Dice coef-
ficient and surface distance. The two metrics show very similar difference patterns.
Statistical analysis was conducted to evaluate the significance of the performance
difference. Only two t-tests did not show statistically significant difference: the com-
parison between Method 3 and Method 4 (p = 0.85), and the one between Method
1 and Method 5 (p = 0.52). All other p-values are <10−3. Based on this analysis,
there are three tiers of performers among the five methods: Method 3 and Method
4 are in tier 1 (DC 0.946 and 0.947 respectively), Method 1 and Method 5 in tier 2
(DC 0.921 and 0.934 respectively), and Method 2 in tier 3 (DC 0.868).

Figure9 compares the performance between the training and the testing sets. All
methods show comparable or better performance in the test set. This comparison
shows that the methods are generalizable. The better performance in the test cases
may contribute to the quality of the reference data. The reference data for the test set
had been corrected and verified by two operators while the training set was verified
by only one operator.
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7 Discussion

The performance of the participating methods ranges from 0.868 to 0.947 in Dice
coefficient and 0.373 to 1.086mm in absolute surface distance. The best results
represent the state-of-the-art performance. However, it also indicates that there are
still rooms for improvement. The substructure assessment shows that the vertebral
body segmentation is generally excellent (0.94 on average, 0.97 in the best method).
However, for other substructures (left and right transverse processes, spinal process),
the dice coefficient is 0.85 on average and 0.92 in the best performer. A closer look
in Fig. 4 also shows that most segmentation errors occur at the tip of the processes.
Further refinement in the posterior substructures is possible and desirable.

The results also show that the segmentation results vary at different vertebra
levels. For instance, upper thoracic has DC of 0.87 on average and 0.93 in best,
lower thoracic 0.91 on average, 0.95 in best, and lumber 0.93 on average, 0.96 in
best. The performance difference is mainly due to two reasons: (1) the size and
density at the upper thoracic level is smaller and lower than that at the lumber level;
(2) the surrounding structures are more complex at the upper thoracic level, for
instance the costovertebral junctions that connecting the ribs and the vertebra. Further
investigation is necessary to improve the segmentation at upper spine column.

All participating methods used models computed from some training data to
segment the test data. Method 2 and Method 5 used their own training set to build
the model, which may contribute to their relative low performance. Method 1 used
multiple atlases from labels, Method 2 and Method 5 used statistical shape model
and Method 3 and Method 4 used mean shape models. The mean shape models
performed the best in this challenge. The possible reason is: the shape of a vertebra
is highly variable. A statistical model computed from a small training set may not
cover all the variants. More relaxation from the training models may be necessary
to accommodate the variations. The mean shape model with large flexibility for
deformation may work better especially for healthy and normal vertebra. However,
statistical models with stricter domain constraint may be necessary for disease cases
where the target shape is far from the mean shape and therefore severe under- or
over-segmentation may occur if without shape and domain constraints. In this case,
a large training set for a specific disease may be necessary.

Initial location of the model is essential for the accuracy of segmentation results.
Three methods in this challenge required manually placed model locations. Auto-
matic vertebra labeling and localization will be important for the methods to be
applied in a clinical setting or to a large number of data sets. Manually placed
seeds also have the issues of operator subjectivity. Methods based on spinal canal
tracking [10, 17] or based on random forest models [18, 19] have shown robust and
promising results to automatically locate the vertebrae.

Vertebra models are bundled in Method 1 and Method 2 so that the interaction
between adjacent vertebrae can be employed to assist the segmentation. Although
the results showed that the bundled models did not seem to improve the segmen-
tation accuracy, this may be due to the data in this challenge comes from healthy
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spines where the vertebrae are mostly intact. Therefore, individual vertebra model
can handle the segmentation. In the case of disease cases, especially for cases with
compression fractures, it would rely on the relatively healthy vertebrae in the neigh-
borhood to assist the segmentation of the damaged vertebra. Thus, the bundledmodel
is expected to be beneficial. Bundled model can also help prevent overlapping and
collision between adjacent vertebrae.

Vertebrae at different levels have different shape, size and intensity. Two vertebrae
far away in the spinal column such as between upper thoracic vertebrae and lumbar
vertebrae show great difference. Therefore, it would be difficult or too complex to
characterize all vertebrae in onemodel. Having noticed this, all participatingmethods
built different models for different vertebra levels or at lease for different vertebral
groups (Method 3). Vertebra specific models impose anatomical knowledge in the
modeling and would be necessary for a robust segmentation.

Model fitting or image registration is widely accepted as the reliable way to
segment complex objects such as a vertebra. Different frameworks for the registration
or optimization had been adopted by the participating methods. They all converged
to a solution however at different rates and running costs. The running time ranged
from a few minutes to more than one hour.

Since vertebral bone has relatively high contrast against its surrounding tissues.
Edge and gradient based feature functions were used in all methods. Those feature
functions could be sensitive to noise and compromised by surrounding bony tissues
(e.g. ribs). Recently machine learning techniques have been explored to classify
pixels based on structural information and the contextural features. Furthermore, the
image gradients vary at difference places due to different bone density and partial
volume effect. The feature function must be adaptive to local features.

Method 3 and Method 4 have comparably the best performance in this challenge.
Method 4 includes a component for automatic vertebra detection and localization,
which makes it a more complete system. The methods were evaluated on a relatively
easy data set. They may perform differently on more difficult data sets. To fully
assess the algorithms in a realistic clinical setting, disease cases such as osteoporosis,
fracture, degenerative change or bone lesions must be included. Nevertheless, the
challenge on this data set revealed the capability of current state-of-the-art vertebra
segmentation algorithms. It also identified a few areas that can be improved. The
basic mechanism of the vertebra segmentation algorithms presented in this challenge
should also work for more general clinical data sets. Through the comparison of
various algorithms, the reader should get a sense of the strength and weakness of
different vertebra segmentation algorithms and choose the appropriate one for their
applications.
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