
Ina Schaefer
Ioannis Stamelos (Eds.)

 123

LN
CS

 8
91

9

14th International Conference on Software Reuse, ICSR 2015
Miami, FL, USA, January 4–6, 2015
Proceedings

Software Reuse
for Dynamic Systems
in the Cloud and Beyond

Lecture Notes in Computer Science 8919
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ina Schaefer Ioannis Stamelos (Eds.)

Software Reuse
for Dynamic Systems
in the Cloud andBeyond

14th International Conference on Software Reuse, ICSR 2015
Miami, FL, USA, January 4-6, 2015
Proceedings

1 3

Volume Editors

Ina Schaefer
Technische Universität Braunschweig
Institut für Softwaretechnik und Fahrzeuginformatik
Mühlenpfordtstr. 23
38106 Braunschweig, Germany
E-mail: i.schaefer@tu-braunschweig.de

Ioannis Stamelos
Aristotle University of Thessaloniki
Department of Informatics
54124 Thessaloniki, Greece
E-mail: stamelos@csd.auth.gr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-14129-9 e-ISBN 978-3-319-14130-5
DOI 10.1007/978-3-319-14130-5
Springer Cham Heidelberg NewYork Dordrecht London

Library of Congress Control Number: : 2014956679

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of thework.Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 14th International Conference on Software Reuse took place in Miami,
Florida, USA, during January 4–6, and was hosted by the University of Mi-
ami. ICSR is the premier event in the field of software reuse research and tech-
nology. The main goal of ICSR is to present the most recent advances and
breakthroughs in the area of software reuse and to promote an intensive and
continuous exchange among researchers and practitioners.

The specific theme of the 2015 conference was “Reuse for Dynamic Systems
in the Cloud and Beyond.” Software applications are allowing desktop computers
and single servers to become more “mobile” and pervasive as required, for ex-
ample, for the Internet of Things and the cloud. This phenomenon increases the
demand for practical software reuse and generative approaches that avoid “re-
inventing the wheel” on different platforms over and over again. In this context,
non-functional aspects (such as performance and data security) are of special
importance to guarantee a satisfying experience for users of cloud-based and
other distributed systems.

Responding to the call for papers that was centered around the conference
theme, 60 papers were submitted by authors all around the world. All papers
went through a thorough review process, examined by three reviewers, all mem-
bers of the Program Committee. In several cases, a discussion followed the re-
views to consolidate the review results, steered by the Program Chairs. As a
result, 24 high-quality papers were selected, of which 21 were full and three were
short papers, with an acceptance ratio of 40%.

The accepted papers cover several software engineering areas where software
reuse is important, such as software product lines, domain analysis, open source,
components, cloud, quality. Both empirical and theoretical research works were
presented during the event. Overall, ICSR 2015 provided an overview of the re-
cent developments in software reuse to interested researchers and practitioners.
The program chairs wish to thank all authors for their contribution to a suc-
cessful conference. Special thanks go to Oliver Hummel, Conference Chair, and
all members of ICSR 2015 committes for their invaluable support.

November 2014 Ina Schaefer
Ioannis Stamelos

Organization

ICSR 2015 was organized by ISASE – the International Society for the Advance-
ment of Software Education.

Organizing Committee

General Chair

Oliver Hummel iQser (formerly KIT), Germany

Program Co-chairs

Ina Schaefer TU Braunschweig, Germany
Ioannis Stamelos Aristotle University of Thessaloniki, Greece

Workshops and Tutorials Chair

Eduardo Santana de Almeida Universidade Federal da Bahia, Brazil

Doctoral Symposium Co-chairs

Stan Jarzabek National University of Singapore
Hassan Gomaa George Mason University, USA

Tools and Demo Chair

Werner Janjic Fraunhofer Institute for Experimental Software
Engineering, Germany

Publicity Chair

Robert Walker University of Calgary, Canada

Local Arrangements Chair

Iman Saleh Moustafa University of Miami, USA

VIII Organization

Steering Committee

Ted J. Biggerstaff Software Generators, USA
John Favaro INTECS, Italy
William B. Frakes Virginia Tech, USA
Chuck Lillie ISASE, USA (Finances)

Sponsors

Software Generators, LLC
University of Miami Graduate School

Table of Contents

Software Product Lines

Evaluating Feature Change Impact on Multi-product Line
Configurations Using Partial Information . 1

Nicolas Dintzner, Uirá Kulesza, Arie van Deursen,
and Martin Pinzger

Recovering Architectural Variability of a Family of Product Variants . . . 17
Anas Shatnawi, Abdelhak Seriai, and Houari Sahraoui

A Feature-Similarity Model for Product Line Engineering 34
Hermann Kaindl and Mike Mannion

Evaluating Lehman’s Laws of Software Evolution within Software
Product Lines: A Preliminary Empirical Study . 42

Raphael Pereira de Oliveira, Eduardo Santana de Almeida,
and Gecynalda Soares da Silva Gomes

Experiences in System-of-Systems-Wide Architecture Evaluation over
Multiple Product Lines . 58

Juha Savolainen, Tomi Männistö, and Varvana Myllärniemi

A Systematic Literature Review of Software Product Line Management
Tools . 73

Juliana Alves Pereira, Kattiana Constantino,
and Eduardo Figueiredo

Solving Reuse Problems

Open Source License Violation Check for SPDX Files 90
Georgia M. Kapitsaki and Frederik Kramer

Automatically Solving Simultaneous Type Equations for Type
Difference Transformations That Redesign Code . 106

Ted J. Biggerstaff

Pragmatic Approach to Test Case Reuse - A Case Study in Android
OS BiDiTests Library . 122

Suriya Priya R. Asaithambi and Stan Jarzabek

X Table of Contents

Empirical and Industrial Studies

The Supportive Effect of Traceability Links in Change Impact Analysis
for Evolving Architectures – Two Controlled Experiments 139

Muhammad Atif Javed and Uwe Zdun

How Often Is Necessary Code Missing? — A Controlled
Experiment — . 156

Tomoya Ishihara, Yoshiki Higo, and Shinji Kusumoto

An Analysis of a Project Reuse Approach in an Industrial Setting 164
Marko Gasparic, Andrea Janes, Alberto Sillitti, and Giancarlo Succi

Reuse for the Web/Cloud

HadoopMutator: A Cloud-Based Mutation Testing Framework 172
Iman Saleh and Khaled Nagi

Template-Based Generation of Semantic Services . 188
Felix Mohr and Sven Walther

Automatic Color Modification for Web Page Based on Partitional Color
Transfer . 204

Xiangping Chen, Yonghao Long, and Xiaonan Luo

Reuse Based Software Development

Software Development Support for Shared Sensing Infrastructures:
A Generative and Dynamic Approach . 221

Cyril Cecchinel, Sébastien Mosser, and Philippe Collet

Flexible and Efficient Reuse of Multi-mode Components for Building
Multi-mode Systems . 237

Hang Yin and Hans Hansson

A Method to Generate Reusable Safety Case Fragments from
Compositional Safety Analysis . 253

Irfan Sljivo, Barbara Gallina, Jan Carlson, Hans Hansson,
and Stefano Puri

Reuse Metrics

A Comparison of Methods for Automatic Term Extraction
for Domain Analysis . 269

William B. Frakes, Gregory Kulczycki, and Jason Tilley

Table of Contents XI

Measures for Quality Evaluation of Feature Models 282
Carla I.M. Bezerra, Rossana M.C. Andrade,
and José Maria S. Monteiro

A Metric for Functional Reusability of Services . 298
Felix Mohr

Reuse in Object-Oriented

Revealing Purity and Side Effects on Functions for Reusing
Java Libraries . 314

Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto

Mining Software Components from Object-Oriented APIs 330
Anas Shatnawi, Abdelhak Seriai, Houari Sahraoui,
and Zakarea Al-Shara

Adapting Collections and Arrays: Another Step towards the Automated
Adaptation of Object Ensembles . 348

Dominic Seiffert and Oliver Hummel

Author Index . 365

Evaluating Feature Change Impact

on Multi-product Line Configurations
Using Partial Information

Nicolas Dintzner1, Uirá Kulesza2, Arie van Deursen1, and Martin Pinzger3

1 Software Engineering Research Group, Delft University of Technology,
Delft, The Netherlands

{N.J.R.Dintzner,Arie.vanDeursen}@tudelft.nl
2 Department of Informatics and Applied Mathematics,
Federal University of Rio Grande do Norte, Natal, Brazil

uira@dimap.ufrn.br
3 Software Engineering Research Group, University of Klagenfurt,

Klagenfurt, Austria
martin.pinzger@aau.at

Abstract. Evolving large-scale, complex and highly variable systems is
known to be a difficult task, where a single change can ripple through
various parts of the system with potentially undesirable effects. In the
case of product lines, and moreover multi-product lines, a change may
affect only certain variants or certain combinations of features, making
the evaluation of change effects more difficult.

In this paper, we present an approach for computing the impact of
a feature change on the existing configurations of a multi-product line,
using partial information regarding constraints between feature models.
Our approach identifies the configurations that can no longer be derived
in each individual feature model taking into account feature change im-
pact propagation across feature models. We demonstrate our approach
using an industrial problem and show that correct results can be ob-
tained even with partial information. We also provide the tool we built
for this purpose.

Keywords: software product line, variability, change impact, feature.

1 Introduction

Evolving large-scale, complex and variable systems is known to be a difficult
task, where a single change can ripple through various parts of the system with
potentially undesirable effects. If the components of this system are themselves
variable, or if the capabilities exposed by an interface depend on some exter-
nal constraint (i.e. configuration option), then engineers need extensive domain
knowledge on configuration options and component implementations to safely
improve their system [8]. In the domain of product line engineering (PLE), an
approach aiming at maximising asset reuse in different products [14], this type

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 1–16, 2014.
� Springer International Publishing Switzerland 2014

2 N. Dintzner et al.

of evolutionary challenge is the norm. Researchers and practitioners have looked
into what variability modeling - and feature modeling specifically - can bring
to change impact analysis on product lines (PLs). Existing methods can eval-
uate, given a change expressed in features, how a feature model (FM) and the
composition of features it allows (configurations) are impacted [13], [7], [19].
However, FMs grow over time in terms of number of features and constraints
and safe manual updates become unmanageable by humans [4]. Moreover, auto-
mated analysis methods do not scale well when the number of configurations or
feature increases [7].

To mitigate this, nested product lines, product populations, or multi-product
lines (MPL - a set of interdependent PLs) approaches recommend modularizing
FMs into smaller and more manageable pieces [11], [18], [12]. While this solves
part of the problem, known FM analysis methods are designed for single FMs.
A common approach is to recompose the FMs into a single one. To achieve
this, existing approaches suggest describing explicitly dependencies between FMs
using cross-FM constraints, or hierarchies [1] to facilitate model composition and
analysis. Such relationships act as vectors of potential change impact propagation
between FMs. However, in [9] Holl et al. noted that the knowledge of domain
experts about model constraints is likely to be only partial (both intra-FMs or
extra-FMs). For this reason, we cannot assume that such relationships will be
available as inputs to a change impact analysis.

In this context, we present and evaluate an approach to facilitate the assess-
ment of the impact of a feature change on existing configurations of the different
PLs of an MPL using partial information about inter-FMs relationships. After
giving background information regarding feature modelling and product lines
(Section 2), we present the industrial problem that motivated this work and
detail the goals and constraints of this study (Section 3). We then present our
approach to enrich the variability model of an MPL using existing configura-
tions of individual FMs, and the heuristic we apply when analyzing the effect of
a feature change on existing configurations of an MPL (Section 4). In Section 5,
we assess our approach in an industrial context. We present and discuss how we
built the appropriate models, the output of our prototype implementation and
the performance of the approach with its limitations. Finally, Section 6 presents
related work and we elaborate on possible future work in Section 7.

2 Background

In this paper, the definition of feature given by Czarnecki et al. in [5] is used:
“a feature may denote any functional or nonfunctional characteristic at the re-
quirement, architectural, component, platform or any other level”. A feature
model (FM) is a structured set of features with selection rules specifying the al-
lowed combinations of features. This is achieved through relationships (optional,
mandatory, part of an alternative or OR-type structures) and cross-tree con-
straints - arbitrary conditions on feature selection. The most common types of
cross-tree constraints are “excludes” (e.g. “feature A excludes feature B”) and

Evaluating Feature Change Impact on Multi-product Line Configurations 3

Valid configurations:
"Root", "A", "B", "D"
"Root", "B","C"

Cross-tree constraint(s):
"A" implies "D"

Cross-tree constraint(s):
"1" excludes ("3" or "4")

Valid configurations:
"Root_2", "1"
"Root_2", "1","2","5"
"Root_2","2","3"
"Root_2","2","4"

Feature Model 2Feature Model 1

Valid configurations:
"Root_2", "1", "Root","A","B","D"
"Root_2", "1","2","5","Root","A","B","D"
"Root_2","2","3","Root",B,C
"Root_2","2","4","Root",B,C

inter-FM constraint(s):
"1" implies "A"

Cross-tree constraint(s):
"A" implies "D"

Cross-tree constraint(s):
"1" excludes ("3" or "4")

Multi-product line view

Fig. 1. Example of FMs in a SPL and MPL context

“implies” [10]. With a FM, one can derive configurations: a set of features which
does not violate constraints established by the FM. An example of simple FMs
with their valid configurations are depicted on the left hand side of Figure 1.

In the context of a multi-product line, several inter-related FMs are used to
describe the variability of a single large system. This can be achieved by creating
“cross-feature model” constraints or through feature references [3] - where a
given feature appears in multiple FMs. The constraints between FMs can be
combination rules referring to features contained within different models. Those
constraints can also be derived from the hierarchy (or any imposed structure
[15], [3]) of the FMs involved in an MPL. In those cases, the combination rules
can refer to both features and FMs. A product configuration derived from an
MPL is a set of features which does not violate any constraints of individual
FMs nor the cross-FM constraints that have been put in place. An example of
combined FMs with a constraint between two FMs can be seen on the right hand
side of Figure 1.

3 Motivation: Change Impact in an Industrial Context

Our industrial partner builds and maintains high-end medical devices, among
which an x-ray machine. This x-ray machine comes in many variants, each dif-
fering in terms of hardware (e.g. tables, mechanical arms) and software (e.g.
firmware version, imaging system). Certified third party products can be inte-
grated through different types of external interfaces: mechanical (e.g. a module
placed on the operating table), electrical (inbuilt power supply), data related
(image transfer). As an example, three main subsystems of the x-ray machine
(data/video exchange, video chain, and display) and three main interfaces (dis-
play interface, video signal, and data/video exchange) are shown in Figure 2. The
two working modes of a given 3rd party product (“mode 1” and “mode 2”) use
the same interfaces in slightly different ways. In “mode 1”, the 3rd party prod-
uct reuses the x-ray machine display to show images (“shared display”) while in

4 N. Dintzner et al.

Ultra-sound
(mode 2)

X-ray system

Data/Video
exchange
interface

Video signal
transfer interface

Display interface

Data/Video exchange

Video chain

 Displays

Ultra-sound
(mode 1)

Receives data &
Sends video

High resolution

Medium resolution

Shared display

Dedicated display

<implements>

<implements>

<implements>

Interface

Legend:

3rd party
product Requirement

Interface usage
subsystem

signal
splitter

signal
splitter

DVI input

DVI input

signal
splitter

Example of shared components

DVI input

Fig. 2. X-ray machine system overview

“mode 2” a dedicated display is used. Sharing an existing display implies using
a signal splitter/merger in the display subsystem. But the splitter/merger also
plays a role in the video processing chain and is only available in certain of its
variants.

Following any update, engineers must validate if the new version of the sys-
tem can still provide what is necessary for 3rd party product integration. This
leads to the following type of questions: “Knowing that 3rd party product X uses
the video interface to export high resolution pictures and import patient data,
is X supported by the new version of the x-ray machine?”. Let us consider the
following scenario: a connection box, present in the video chain and data/video
exchange subsystems, is removed from the list of available hardware. Some spe-
cific configurations of the video chain and of the data/video exchange subsys-
tems can no longer be produced. The data/video exchange interface required
the removed configurations to provide specific capabilities. Following this, it is
no longer possible to export video and import data and the integration with the
3rd party product is compromised.

Currently, engineers validate changes manually by checking specification doc-
uments (either 3rd party products requirements or subsystem technical specifi-
cations) and rigorous testing practices. Despite this, it remains difficult to assess
which subsystem(s) and which of their variant(s) or composition of variants will
be influenced by a given change. Given the rapid evolution of their products, this
error-prone validation is increasingly time consuming. Our partner is exploring
model-driven approaches enabling early detection of such errors.

While this example is focused on the problems that our industrial partner is
facing, enabling analysis for very large PLs and MPLs is a key issue for many
companies. Recently, Schmid introduced the notion of variability-rich eco sys-
tems [17], highlighting the many sources of variability that may influence a
software product. This further emphasizes the need for change impact analysis
approaches on highly variable systems.

Evaluating Feature Change Impact on Multi-product Line Configurations 5

4 Feature-Change Impact Computation

Given the problem described in the previous section, we present here the ap-
proach we designed to assist domain engineers in evaluating the impact of a
change on their products. We first describe the main goal of our approach and
our contributions. Then, we detail the approach and illustrate it with a simple
example. Finally, we consider the scalability aspects of the approach and present
our prototype implementation.

4.1 Goals and Constraints

For our industrial partner, the main aim is to obtain insights on the potential
impacts of an update on external interfaces used by 3rd party products. However,
we have to take into account that domain engineers do not know the details of the
interactions of the major subsystems [9] nor all components included in each one
- only the ones relevant to support external interfaces. As an input, we rely on the
specifications of each major subsystem and their main components in isolation as
well as their existing configurations. Because of the large number of subsystem
variants and interface usages (choices of capabilities or options), we consider
each of them as a product line (PL) in its own right. Features then represent
hardware components, (non-)functional properties, software elements, or any
other relevant characteristic of a subsystem or interface. Using a simple feature
notation and cross-tree constraints [10], we formalize within each subsystem
the known features and constraints between them. By combining those PLs,
we obtain a multi-product line (MPL) representation of the variability of the
system.

With such representation, a change to a subsystem or interface can be ex-
pressed in terms of features: adding or removing features, adding, removing or
modifying intra-FM constraints. Once the change is known, we can apply it to
the relevant FM and evaluate if existing configurations are affected (no longer
valid with respect to the FM). Then, we determine how the change propagates
across the FMs of the MPL using a simple heuristic on configuration composi-
tion. As an ouput, we provide a tree of configuration changes, where nodes are
impacted FMs with their invalid configurations.

Our work brings the following main contributions. We present a novel ap-
proach to compute feature change impact on existing configurations of an MPL.
We provide a prototype tool supporting our approach, available for download.1

We demonstrate the applicability of the approach by applying it to a concrete
case-study executed in cooperation with our industrial partner.

4.2 Approach

We describe here first how the model is built. Then, we show how we enrich
the model with inferred information and finally the steps taken for simulating

1 The tool is available at
http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome

http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome

6 N. Dintzner et al.

Domain
expert

Specifications &
Requirements

Documents

Constraints identification
(automated)

creates

used in

provides

makes decisions
based on

generates

Enriched MPL variability model

Specifications &
Requirements

Documents

Input:
Feature change description

Output:
Impact report

Feature change impact computation
(automated)

Impact from shared feature
constraints to configurations

Impact from configurations to
shared feature constraints

3.1

3.2

2

3

4

MPL variability model 1

Legend:

Data

Operation

Fig. 3. Approach overview

the effects of a feature change on existing configurations. An overview of the
different steps are shown in Figure 3.

Step 1: Describe subsystem variability. The first step of our approach con-
sists in modelling the various subsystems using FM notation. This operation
is done by domain experts, using existing documentation. When a subsystem
uses a feature that has already been described in another subsystem, we refer-
ence it instead of creating a new one [1]. We associate with each FM its known
configurations.

Step 2: Enrich the model with inferred composition rules. Once all FMs and
configurations have been described, we use the configurations to infer how pairs
of subsystems can be combined. We identify, in FMs sharing features, which
features are shared and then create a list of existing partial configurations con-
taining only them. Partial configurations appearing in existing configurations of
both FMs constitute the whitelist of partial configurations enabling composition
of configurations between the involved FMs. For two given FMs, the number of
feature involved in shared feature constraints is equal to the number of features
shared between them. Those partial configurations are the shared feature con-
straints relating pairs of FMs: two configurations, from two different FMs sharing
features, are “compatible” if they contain exactly the same shared features. In
order to apply such heuristic, shared feature constraints must be generated be-
tween every pairs of FMs sharing features. An example of such constraints is
shown in Figure 4, where FMs 1 and 2 share features E and D.

Step 3: Compute the impact of a feature change. We use the enriched model
to perform feature change impact computation at the request of domain experts.
A feature change can be any modification of a FM (add/remove/move/modify
features and constraints) or a change in available configurations (add/remove).
We assess the impact of the change of the configurations of a modified FM
by re-validating them with respect to the updated FM, as suggested in [7].

Evaluating Feature Change Impact on Multi-product Line Configurations 7

This gives us a first set of invalid configurations that we use as a starting point
for the propagation heuristic.

Step 3.1: Compute impact of configuration changes on shared feature con-
straints. We evaluate how a change of configuration of a FM affects the shared
feature constraints attached to it. If a given shared feature constraint is not
satisfied by at least one configuration of the FM then it is invalidated by the
change. For each FM affected by a configuration change, we apply the reasoning
presented in Algorithm 1. In the case a change does not modify existing configu-
rations, this step will tell us that all existing constraints are still valid, but some
can be added. Otherwise, if all configurations matching a constraint have been
removed then that constraint is considered invalid (i.e. does not match a possible
combination of configurations). Given a list of invalid shared feature constraints
and the FMs to which it refers to, we can execute Step 3.2. If no shared feature
constraints are modified, the computation stops here.

Data: a FM fm with an updated set of configurations
Result: a list of invalidated shared feature constraints lInvalidConstraints

foreach shared feature constraint of fm: sfc do
allowedFeatures ← selected features of sfc;
forbiddenFeatures ← negated features of sfc;
foreach configuration of fm: c (list of feature names) do

if allowedFeatures ⊂ c then
if c ∩ forbiddenFeatures == ∅ then

c is compliant;
end

end

end
if no compliant configuration found then

add sfc to lInvalidConstraints;
end

end

Algorithm 1. Configuration change propagation

Step 3.2: Compute impact of shared feature constraint changes on configura-
tions. Given a set of invalid shared feature constraints obtained in the previous
step, we evaluate how this invalidates other FMs configurations. If a configura-
tion of an FM does not match any of the remaining shared feature constraints,
it can no longer be combined with configurations of other FMs and is considered
invalid. We apply the operations described in Algorithm 2. If any configuration
is invalidated, we use the output of this step to re-apply Step 3.1.

Step 4: Consolidate results. We capture the result of the computation as
a tree of changes. The first level of the tree is always a set of configuration
changes. If more than one FM is touched by the initial change (e.g. removal
of a shared feature) then we have a multi-root tree. Each configuration change
object describes the addition or removal of any number of configurations. If a

8 N. Dintzner et al.

Data: fm: a FM with updated shared feature constraints
Result: lInvalidConfs: a list of invalidated configurations of fm

foreach configuration of fm: c (list of feature names) do
foreach shared feature constraint of fm: sfc do

allowedFeatures ← selected features of sfc;
forbiddenFeatures ← negated features of sfc;
if allowedFeatures ⊂ c then

if c ∩ forbiddenFeatures == ∅ then
c is compliant;

end

end

end
if no compliant constraint found then

add c to lInvalidConfs;
end

end

Algorithm 2. Shared feature constraint change propagation

configuration change triggered a change in shared feature constraints, a shared
feature constraint change is added as its child. A shared feature constraint change
references the two FMs involved and any number of constraints that were added
or removed. The configuration changes following this shared feature constraint
modification are then added as a child “configuration change object”. This struc-
ture allows us to describe the path taken by the impact propagation through the
different FMs.

4.3 Example

Let us consider the example shown in Figure 4, where two FMs share two fea-
tures: D and E. The model is enriched with the “shared feature constraints”
deduced from existing configurations. Those constraints state that, for a con-
figuration of FM1 and FM2 to be combined, both of them need to have shared
features that are either (E,D), (D, not E) and (not E, not D). The resulting data
structure is shown on the left hand side of Figure 4.

We consider the following change: Configuration 1.2 is removed, operation
marked as 1 in Figure 4. We apply the algorithm described in Step 3.1, using
FM1 as a input, and with Configurations 1.1 and 1.3 (all of them except the
removed one) and the associated 3 shared feature constraints. For Constraint
1, the allowed features are “E” and “D”, and there are no forbidden features.
We search for existing configurations of FM1 containing both “E” and “D”
among Configurations 1.1 and 1.3. We find that Configuration 1.3 satisfies this
constraint. The Constraint 2 (allowing “D” and forbidding “E”) is not matched
by any configurations, since the only configuration containing “D” and not “E” is
Configuration 1.2 has been removed. Constraint 3 forbidding features “D” and

Evaluating Feature Change Impact on Multi-product Line Configurations 9

X

ED

Configuration 1.1: A, C

Configuration 1.2: A, B, C, D

Configuration 1.3: A, B, C, D, E

A

CB

ED

Configuration 2.1: X

Configuration 2.2: X, D, E

Configuration 2.3: X, D

Shared features: E,D

Constraint 1: E, D

Constraint 2: !E, D

Shared feature constraints

Feature model 1 Feature model 2

Configuration change: removal of configuration 1.2

Propagation 1: constraint 2 is no longer valid

Propagation 2: configuration 2.3 is no longer valid

1

2

3

1

2

3

Configuration change:
model : Feature model 1

removed configuration: 1.2

Shared feature configuration change:
from model : Feature model 1

to model : Feature model 2
removed constraints: 2

Configuration change:
model : Feature model 2

removed configuration: 2.3

"causes"

"causes"

Constraint 3: !E, !D

Change impact computation outcome

Fig. 4. Change impact propagation example

“E” is satisfied by Configuration 1.1. The resulting list of invalid constraints
contains only one element: Constraint 2 (marked as operation 2 in the diagram).

We then apply 2 presented in Step 3.2 to assess the effect of that change on
the configurations of other FMs (FM2 only in this case). With the remaining
Constraints 1 and 3, we run through the configurations of FM2 to identify which
configurations no longer satisfy any constraints. We find that Configuration 2.1
satisfies Constraint 3 (does not contain “D” nor “E”), and Configuration 2.2
satisfies Constraint 1 (contains both “E” and “D”). However, configuration 2.3
does not satisfy any of the remaining constraints and for this reason, is marked
as invalid (shown as operation 3 on the diagram).

On the right hand side of Figure 4, we present the resulting tree (a branch in
this case). The intial change (removal of configuration 1.2 of FM1) is captured by
the first “configuration change” object. Changes to shared features constraints
are directly attached to this configuration change: the “shared feature config-
uration change” object. Finally, the last node of the tree is the invalidation of
Configuration 2.3 of FM2.

4.4 Scalability Aspects

The initial step of our approach replicates what Heider suggests in [7]: rein-
stantiating existing configurations. Such approaches are known as product-based
approaches [20]. They have known drawbacks: as the number of configurations
and features increases, the solution does not scale. By placing ourselves in an

10 N. Dintzner et al.

MPL environment, we have small to medium size FMs to analyze and perform
this type of operation only on individual FMs.

Our composition heuristic focuses on composition of configurations (as op-
posed to composition of FMs). Once the local product-based approach is used,
we rely on it to identify broken compositions of configurations across the FMs
without having to revalidate any configurations against the FMs. This last step
can be viewed as a family-based analysis of our product line [20], where we val-
idate a property over all members of a PL. We store information relative to
shared feature constraints on the model itself. With this information, applying
the heuristic to an MPL amounts to searching specific character strings in an
array, which is much faster than merging models or validating complete config-
urations.

4.5 Prototype Implementation

We implemented a prototype allowing us to import FMs into a database, enrich
the model and run feature change impact computations. The choice of using a
database was motivated by potential integration with other datasources. Since
FMs are mostly hierarchical structures, we use Neo4j.2 Our Neo4j schema de-
scribes the concepts of feature model, feature, configuration and shared feature
constraint with their relationships as described in the previous section. This
representation is very similar to other FM representations such as [21] with one
exception. The mandatory, optional or alternative nature of a feature is deter-
mined by its relationship with its parent; as opposed to be a characteristic of
the feature itself. This allows to have an optional feature in a FM, referenced by
another FM as part of an alternative.

We leverage the Neo4j Cypher query language to retrieve relevant data: shared
features, configurations containing certain features as well as interconnected fea-
ture models and the features which links them. We use FeatureIDE [21] as a fea-
ture model editor tool. We import models in their xml format into our database
using a custom java application. A basic user interface allows us to give the name
of a feature to remove, run the simulation, and view the result.

5 Industrial Case Study

As mentioned in Section 3, this paper is motivated by an industrial case study
proposed by our partner. The end-goal of this case study is to assess the ap-
plicability of our approach in an industrial context. To do so, we reproduce a
past situation where a change modified the behaviour of some products of their
product line on which a 3rd party product was relying, and where the impact
was detected late in the development process. We present and discuss the main
steps of our approach and their limitations when applied in an industrial context:
the construction of the model, the feature change impact computation with its
result, and the performance of our prototype implementation.

2 http://www.neo4j.org

http://www.neo4j.org

Evaluating Feature Change Impact on Multi-product Line Configurations 11

5.1 Modelling a X-Ray MPL

We start by gathering specification documents of the main subsystems identified
in Section 3, as well as 3rd party product compatibility specifications. With the
domain experts, we identify relevant components and existing configurations of
each subsystem. Using this information, we model the three interfaces and three
subsystems presented in Figure 2 as six distinct feature models (FMs). The three
interfaces are (i) the video/data transfer interface (data and video transfer capa-
bilities), (ii) the video export interface specifying possible resolutions and refresh
rates, and finally (iii) the display interface representing a choice in monitor and
display modes. 3rd party product interface usages are modeled as the configura-
tions associated to those FMs. The three subsystems of the x-ray machine are (i)
the data/video transfer subsystem, (ii) the video chain used to transport images
from a source to a display, and finally (iii) display subsystem. Configurations of
those subsystems are the concrete products available to customers (between 4
and 11 configurations per FM). Each FM contains between 10 and 25 features,
with at most 5 cross-tree constraints. The “data transfer”, “video chain”, and
“screen” FMs share features relating to hardware components, and reuse features
from interface FMs. We use FeatureIDE to create FMs and configurations. We
then import them into a Neo4J database and use our prototype implementation
to generate the necessary shared feature constraints as described in Section 4.

The main challenge of this phase is to ensure that shared features represent
the same concept in all FMs. For instance, a feature “cable” refers to one specific
cable, in a specific context, and must be understood as such in all FMs including
it. Misreferencing features will lead to incorrect shared feature constraints and
incorrect change impact analysis results. We mitigated this effect by carefully
reviewing FMs and shared features with domain expert.

5.2 Simulating the Change

We studied the effect of the removal of a hardware component used to import
video into the system. To simulate this with our prototype, we provide our tool
with the name of the feature to remove (“Connection box 1”). “Connection box
1” is included in both the “data/video transfer” and “video chain” FMs, so its
removal directly impacts those two FMs. The tool re-instantiates all configu-
rations of those two FMs and find that 6 configurations of the “video chain”
FM, and 1 from the “data transfer” FM are invalid. Then, the prototype exe-
cutes the propagation heuristic. A shared feature constraint between the “data
transfer” and “data transfer interface” FMs is no longer satisfied by any con-
figuration of the “data transfer” FM, and is now invalid. Without this shared
feature constraint, one configuration of the “data transfer interface” FM can no
longer be combined with the “data transfer” FM and is considered as invalid.
The removal of a configuration in an interface FM tells us that the compatibility
with one 3rd party product is no longer possible. The modifications of the “data
transfer” FM also invalidated a shared feature constraint existing between the
“data transfer” and “video chain” FMs. However, the change of “shared feature

12 N. Dintzner et al.

Data transfer configuration changes
1 configuration invalidated

Video chain configuration changes
6 configurations invalidated

Feature removal

Data transfer interface configuration
changes:

1 configurations invalidated
(3rd party Product X)

Shared feature configuration change
from: data transfer

to: data transfer interface
1 configuration invalidated

Shared feature configuration change
from: data transfer

to: video chain
1 configuration invalidated

Fig. 5. Output of the feature removal simulation

constraint” did not propagate further; the configurations that it should have
impacted had already been invalidated by a previous change.

The result of this impact analysis, reviewed with 3 domain experts, showed
the impact of interfaces that had been problematic in the past. We ran several
other simulations on this model (removal of features, removal of configurations).
On each occasion, the result matched the expectations of domain experts - given
the data included in the model. In this context, the approach proved to be
both simple and successful. This being said, by using information from existing
configurations, we over-constrain inter-FMs relationships. If a shared optional
feature is present in all configurations of a given FM, it will be seen as mandatory
during impact computation. However, if a feature is present in all of existing
configurations, it is mandatory with respect to what is available - as opposed
to mandatory in the variability model. As long as we reason about existing
configurations only, using inferred shared feature constraints should not influence
negatively the result of the simulation.

5.3 Performance Analysis

We provide here a qualitative overview of performance measurements that were
performed during this case study. For our main scenario, our approach checked
all configurations of 2 of the FMs, and the change propagated to 2 others. 2 of the
6 FMs did not have to be analyzed. In this specific context, our implementation
provided results in less than a few seconds, regardless of the scenario that was
ran. We then artificially increased the size of the models (number of features and
number of configurations) to evaluate how it influences the computation time
of the propagation algorithm. Given a set of invalid configurations, we measure
how long it takes to assess the impact on one connected FM. For 2 FMs with
20 features each and 20 configurations each, sharing 2 features, the propagation
from 1 FM to the other and impact its configurations takes approximately 450ms.

Evaluating Feature Change Impact on Multi-product Line Configurations 13

With 200 configurations in each FMs, the same operation takes 1.5s; and up to
2.5s for 300 configurations.

During the industrial case study, the performance of the prototype tool was
sufficient to provide almost real-time feedback to domain engineers. The size
of the models and the number of configurations affect negatively the computa-
tion time of the change impact analysis, because the first step of our approach
is product-based: we do check all configurations of the initially impacted FMs.
However, using an MPL approach, individual FMs are meant, by design, to be
relatively small. Then, computing the propagation of those changes, if any, de-
pends on the number of affected FMs as defined by our propagation heuristic.
The heuristic itself is the validation of a property over all members of the prod-
uct family (“family-based” approach), so its performance is less influenced by
model size [20]. This operation consists in searching for strings in an array, which
should remain manageable even for large models. Our naive implementation, us-
ing Neo4j, already provided satisfactory performance.

5.4 Threats to Validity

With respect to internal validity, the main threat relates to the construction of
the models used for the industrial case study. We built the different FMs and
configurations of the case study using existing documentation while devising the
approach. To avoid any bias in the model construction, we reviewed the models
several times with domain experts, ensuring their representativeness.

Threats to external validity concern the generalisation of our findings. For this
study, we used only the most basic FM notation [10]. Our approach should be
applicable using more complex notations as long as those notation do not change
the representation of the configurations (list of feature names, where each name
appear once). If, for instance, we use a cardinality-based notation, the heuristic
will have to be adapted to take this cardinality into account. The extracted
information from existing configurations was sufficient for this case study, but
more complex relationships between FMs might not have been encountered.
Applying our approach on a different PL would confirm or infirm this.

6 Related Work

The representation of variability in very large systems, using multiple FMs, has
been studied extensively during the past few years. Several composition tech-
niques have been devised. Composition rules can be defined at an FM level,
specifying how the models should be recombined for analysis. Otherwise, cross-
FM constraints can be defined. Examples can be found in the work of Schirmeier
[16] and Acher [1,2]. In our context, we chose not to follow those approaches as
we do not know a priori the over-arching relationships between FMs, nor can we
define cross-FM constraints since we work with partial information. Moreover,
those techniques would then require us to re-compose models before validat-
ing the various configurations which, as noted in [6], is complex to automate.

14 N. Dintzner et al.

Recent work on MPLs showed that there is a need to specialise feature mod-
els to segregate concerns in MPL variability models. Reiser et al. [15] propose
the concept of “context variability model” for multi-product lines, which de-
scribes the variability of the environment in which the end product resides. In
our study, we classified our FMs as either interface or subsystem. This classifi-
cation also allows us to qualify the configurations (as interface usage or product
implementation), which proved to be sufficient for our application. Schröter et
al. present the idea of interface FMs where specific FMs involved in an MPL
act as interfaces between other FMs [18]. They propose a classification of the
characteristics that can be captured by such models (syntactic, behavioral, and
non-functional). While we did not use this approach directly, we noted that for
non-interface FMs, we used specific branches of the model to organize reused
shared features. It is interesting to note that the designs of (non-interface) FMs
share a common structure. We used specific branches of their respective FM to
organise features shared with interface FMs. Doing so, we specialized a branch
of a FM instead of creating dedicated FMs and we do not restrict the type of
features it contains (functional and non-functional alike).

Heider et al. proposed to assess the effect of a change on a variability model
by re-instantiating previously configured products [7], and thus validating non-
regression. Our approach applies similar principles, as we will consider a change
safe as long as the existing products can be re-derived. We apply those concepts
in a multi-product line environment, where change propagation is paramount.
Thüm et al. [19] proposed to classify changes occurring on feature models based
on their effect on existing product configurations. The change is considered as a
“generalisation” if the set of valid products has been extended, “specialisation”
if it has been reduced, “refactoring” if it has not changed, and “arbitrary edit”
in all other cases (when some configurations were removed and others added).
This initial classification gave us some insight into the potential impact of a
change, but only for a single FM. Their methodology could be applied during
the initial step of our approach to identify changes that do not affect existing
configurations, avoiding extra computation later on.

7 Conclusion

Understanding the full extent of the impact of a change on a complex and highly
variable product is a difficult task. The main goal of this research is to facili-
tate the evolution of such systems by assisting domain experts in assessing the
effects of changes on multi-product line variability models. In this paper, we
presented an approach to compute the impact of a feature change on a multi-
product line for non-regression purposes, leveraging information contained in
existing product configurations to infer feature model composition constraints.
We described how our modelling approach can be used in a practical context,
using an industrial case and provide a qualitative review of the performance of
our prototype tool. With partial information, we were able to accurately identify
which configurations of an MPL were rendered invalid by a feature change.

Evaluating Feature Change Impact on Multi-product Line Configurations 15

As industrial products grow more complex and become more variable, manag-
ing their evolution becomes increasingly difficult. Approaches supporting domain
experts’ activities will have to be adapted to meet new challenges. As a step in
that direction, we released our implementation as an open source project3 as
well as the dataset we used for the performance evaluation. We then plan to in-
tegrate it into existing feature modelling tools. We intend to explore how we can
make the best use of the promising graph database technologies such as Neo4J
for feature model checking. With such technology, we will be in a position to
consider more complex models, with potentially more complex FM composition
constraints, further facilitating the design, analysis and maintenance of highly
variable systems.

Acknowledgements. This publication was supported by the Dutch national
program COMMIT and carried out as part of the Allegio project under the
responsibility of the Embedded Systems Innovation group of TNO in partnership
with Philips Healthcare.

References

1. Acher, M., Collet, P., Lahire, P., France, R.: Comparing approaches to implement
feature model composition. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F.
(eds.) ECMFA 2010. LNCS, vol. 6138, pp. 3–19. Springer, Heidelberg (2010)

2. Acher, M., Collet, P., Lahire, P., France, R.: Managing multiple software product
lines using merging techniques. Research report, Laboratoire d’Informatique de
Signaux et Systèmes de Sophia Antipolis - UNSA-CNRS (2010)

3. Acher, M., Collet, P., Lahire, P., France, R.: Managing variability in workflow with
feature model composition operators. In: Baudry, B., Wohlstadter, E. (eds.) SC
2010. LNCS, vol. 6144, pp. 17–33. Springer, Heidelberg (2010)

4. Bagheri, E., Gasevic, D.: Assessing the maintainability of software product line
feature models using structural metrics. Software Quality Journal 19(3), 579–612
(2011)

5. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specializa-
tion and multilevel configuration of feature models. Software Process: Improvement
and Practice 10(2), 143–169 (2005)

6. Hartmann, H., Trew, T.: Using feature diagrams with context variability to model
multiple product lines for software supply chains. In: 12th International Software
Product Line Conference, pp. 12–21. IEEE Computer Society, Washington (2008)

7. Heider, W., Rabiser, R., Grünbacher, P., Lettner, D.: Using regression testing to
analyze the impact of changes to variability models on products. In: 16th Interna-
tional Software Product Line Conference, pp. 196–205. ACM, New York (2012)

8. Heider, W., Vierhauser, M., Lettner, D., Grunbacher, P.: A case study on the
evolution of a component-based product line. In: 2012 Joint Working IEEE/IFIP
Conference on Software Architecture (WICSA) and European Conference on Soft-
ware Architecture (ECSA), pp. 1–10. IEEE Computer Society, Washington (2012)

3 The tool is available at
http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome

http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome

16 N. Dintzner et al.

9. Holl, G., Thaller, D., Grünbacher, P., Elsner, C.: Managing emerging configuration
dependencies in multi product lines. In: 6th International Workshop on Variability
Modeling of Software-Intensive Systems, pp. 3–10. ACM, New York (2012)

10. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Tech. rep., Software Engineering Insti-
tute, Carnegie Mellon University (1990)

11. Krueger, C.: New methods in software product line development. In: 10th Inter-
national Software Product Line Conference, pp. 95–99. IEEE Computer Society,
Washington (2006)

12. van Ommering, R., Bosch, J.: Widening the scope of software product lines - from
variation to composition. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp.
328–347. Springer, Heidelberg (2002)

13. Paskevicius, P., Damasevicius, R., Štuikys, V.: Change impact analysis of fea-
ture models. In: Skersys, T., Butleris, R., Butkiene, R. (eds.) ICIST 2012. CCIS,
vol. 319, pp. 108–122. Springer, Heidelberg (2012)

14. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Secaucus (2005)

15. Reiser, M.O., Weber, M.: Multi-level feature trees: A pragmatic approach to man-
aging highly complex product families. Requirements Engineering 12(2), 57–75
(2007)

16. Schirmeier, H., Spinczyk, O.: Challenges in software product line composition. In:
42nd Hawaii International Conference on System Sciences. IEEE Computer Society,
Washington (2009)

17. Schmid, K.: Variability support for variability-rich software ecosystems. In: 4th
International Workshop on Product Line Approaches in Software Engineering, pp.
5–8. IEEE Computer Society, Washington (2013)

18. Schröter, R., Siegmund, N., Thüm, T.: Towards modular analysis of multi product
lines. In: Proc. of the 17th International Software Product Line Conference Co-
located Workshops, pp. 96–99. ACM, New York (2013)

19. Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In:
31st International Conference on Software Engineering, pp. 254–264. IEEE Com-
puter Society, Washington (2009)

20. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Computing Surveys 47(1),
1–45 (2014)

21. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Fea-
tureIDE: An extensible framework for feature-oriented software development. Sci-
ence of Computer Programming 79, 70–85 (2014)

Recovering Architectural Variability
of a Family of Product Variants

Anas Shatnawi1, Abdelhak Seriai1, and Houari Sahraoui2

1 UMR CNRS 5506, LIRMM, University of Montpellier II, Montpellier, France
{shatnawi,seriai}@lirmm.fr

2 DIRO, University of Montreal, Montreal, Canada
sahraoui@iro.umontreal.ca

Abstract. A Software Product Line (SPL) aims at applying a pre-
planned systematic reuse of large-grained software artifacts to increase
the software productivity and reduce the development cost. The idea of
SPL is to analyze the business domain of a family of products to identify
the common and the variable parts between the products. However, it
is common for companies to develop, in an ad-hoc manner (e.g. clone
and own), a set of products that share common functionalities and differ
in terms of others. Thus, many recent research contributions are pro-
posed to re-engineer existing product variants to a SPL. Nevertheless,
these contributions are mostly focused on managing the variability at
the requirement level. Very few contributions address the variability at
the architectural level despite its major importance. Starting from this
observation, we propose, in this paper, an approach to reverse engineer
the architecture of a set of product variants. Our goal is to identify the
variability and dependencies among architectural-element variants at the
architectural level. Our work relies on Formal Concept Analysis (FCA)
to analyze the variability. To validate the proposed approach, we exper-
imented on two families of open-source product variants; Mobile Media
and Health Watcher. The results show that our approach is able to iden-
tify the architectural variability and the dependencies.

Keywords: Product line architecture, architecture variability, architec-
ture recovery, product variants, reverse engineering, source code, object-
oriented.

1 Introduction

A Software Product Line (SPL) aims at applying a pre-planned systematic reuse
of large-grained software artifacts (e.g. components) to increase the software pro-
ductivity and reduce the development cost [1–3]. The main idea behind SPL is
to analyze the business domain of a family of products in order to identify the
common and the variable parts between these products [1, 2]. In SPL, the vari-
ability is realized at different levels of abstraction (e.g. requirement and design).
At the requirement level, it is originated starting from the differences in users’

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 17–33, 2014.
c© Springer International Publishing Switzerland 2014

18 A. Shatnawi, A. Seriai, and H. Sahraoui

wishes, and does not carry any technical sense [2] (e.g. the user needs camera and
WIFI features in the phone). At the design level, the variability starts to have
more details related to technical senses to form the product architectures. These
technical senses are described via Software Product Line Architecture (SPLA).
Such technical senses are related to which components compose the product (e.g.
video recorder, and photo capture components), how these components interact
through their interfaces (e.g. video recorder provides a video stream interface to
media store), and what topology forms the architectural configuration (i.e. how
components are composited and linked) [2].

Developing a SPL from scratch is a highly costly task since this means the
development of the domain software artifacts [1]. In addition, it is common for
companies to develop a set of software product variants that share common
functionalities and differ in terms of other ones. These products are usually
developed in an ad-hoc manner (e.g. clone and own) by adding or/and removing
some functionalities to an existing software product to meet the requirement
of a new need [4]. Nevertheless, when the number of product variants grows,
managing the reuse and maintenance processes becomes a severe problem [4].
As a consequence, it is necessary to identify and manage variability between
product variants as a SPL. The goal is to reduce the cost of SPL development by
first starting it from existing products and then being able to manage the reuse
and maintenance tasks in product variants using a SPL. Thus, many research
contributions have been proposed to re-engineer existing product variants into
a SPL [5, 6]. Nevertheless, existing works are mostly focused on recovering the
variability in terms of features defined at the requirement level. Despite the
major importance of the SPLA, there is only two works aiming at recovering
the variability at the architectural level [7, 8]. These approaches are not fully-
automated and rely on the domain knowledge which is not always available. Also,
they do not identify dependencies among the architectural elements. To address
this limitation, we propose in this paper an approach to automatically recover the
architecture of a set of software product variants by capturing the variability at
the architectural level and the dependencies between the architectural elements.
We rely on Formal Concept Analysis (FCA) to analyze the variability. In order to
validate the proposed approach, we experimented on two families of open-source
product variants; Mobile Media and Health Watcher. The evaluation shows that
our approach is able to identify the architectural variability and the dependencies
as well.

The rest of this paper is organized as follows. Section 2 presents the back-
ground needed to understand our proposal. Then, in Section 3, we present the
recovery process of SPLA. Section 4 presents the identification of architecture
variability. Then, Section 5 presents the identification of dependencies among
architectural-element variants. Experimental evaluation of our approach is dis-
cussed in section 6. Then, the related work is discussed in Section 7. Finally,
concluding remarks and future directions are presented in section 8.

Recovering Architectural Variability of a Family of Product Variants 19

2 Background

2.1 Component-Based Architecture Recovery from Single Software:
ROMANTIC Approach

In our previous work [9, 10], ROMANTIC 1 approach has been proposed to
automatically recover a component-based architecture from the source code of
an existing object-oriented software. Components are obtained by partitioning
classes of the software. Thus each class is assigned to a unique subset forming a
component. ROMANTIC is based on two main models. The first concerns the
object-to-component mapping model which allows to link object-oriented con-
cepts (e.g. package, class) to component-based ones (e.g. component, interface).
A component consists of two parts; internal and external structures. The internal
structure is implemented by a set of classes that have direct links only to classes
that belong to the component itself. The external structure is implemented by
the set of classes that have direct links to other components’ classes. Classes
that form the external structure of a component define the component inter-
face. Fig. 1 shows the object-to-component mapping model. The second main
model proposed in ROMANTIC is used to evaluate the quality of recovered ar-
chitectures and their architectural-element. For example, the quality-model of
recovered components is based on three characteristics; composability, autonomy
and specificity. These refer respectively to the ability of the component to be
composed without any modification, to the possibility to reuse the component
in an autonomous way, and to the fact that the component implements a limited
number of closed functionalities. Based on these models, ROMANTIC defines a
fitness function applied in a hierarchical clustering algorithm [9, 10] as well as in
search-based algorithms [11] to partition the object-oriented classes into groups,
where each group represents a component. In this paper, ROMANTIC is used
to recover the architecture of a single object oriented software product.

Fig. 1. Object-to-component mapping model

2.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical data analysis technique de-
veloped based on lattice theory [12]. It allows the analysis of the relationships
1 ROMANTIC : Re-engineering of Object-oriented systeMs by Architecture extractioN

and migraTIon to Component based ones.

20 A. Shatnawi, A. Seriai, and H. Sahraoui

between a set of objects described by a set of attributes. In this context, maximal
groups of objects sharing the same attributes are called formal concepts. These
are extracted and then hierarchically organized into a graph called a concept
lattice. Each formal concept consists of two parts. The first allows the represen-
tation of the objects covered by the concepts called the extent of the concept.
The second allows the representation of the set of attributes shared by the ob-
jects belonging to the extent. This is called the intent of the concept. Concepts
can be linked through sub-concept and super-concept relationship [12] where
the lattice defines a partially ordered structure. A concept A is a sub-concept of
the super-concept B, if the extent of the concept B includes the extent of the
concept A and the intent of the concept A includes the intent of the concept B.

Table 1. Formal context

N
atural

A
rtificial

Stagnant
R

unning
Inland
M

aritim
e

C
onstant

River X X X X
Sea X X X X

Reservoir X X X X
Channel X X X

Lake X X X X

Fig. 2. Lattice of formal context in Table 1

The input of FCA is called a formal context. A formal context is defined as a
triple K = (O,A,R) where O refers to a set of objects, A refers to a set of
attributes and R is a binary relation between objects and attributes. This bi-
nary relation indicates to a set of attributes that are held by each object (i.e.
R ⊆ OXA). Table 1 shows an example of a formal context for a set of bodies of
waters and their attributes. An X refers to that an object holds an attribute.

As stated before, a formal concept consists of extent E and intent I, with E
a subset of objects O (E ⊆ O) and I a subset of attributes A (I ⊆ A). A pair of
extent and intent (E, I) is considered a formal concept, if and only, if E consists
of only objects that shared all attributes in I and I consists of only attributes
that are shared by all objects in E. The pair ("river, lake", "inland, natural,
constant") is an example of a formal concept of the formal context in Table 1.
Fig. 2 shows the concept lattice of the formal context presented in Table 1.

3 Process of Recovering Architectural Variability

The goal of our approach is at recovering the architectural variability of a set of
product variants by statically analyzing their object-oriented source code. This
is obtained by identifying variability among architectures respectively recovered

Recovering Architectural Variability of a Family of Product Variants 21

from each single product. We rely on ROMANTIC approach to extract the ar-
chitecture of a single product. This constitutes the first step of the recovery
process. Architecture variability is related to architectural-elements variability,
i.e. component, connector and configuration variability. In our approach, we fo-
cus only on component and configuration variability2. Fig. 3 shows an example
of architecture variability based on component and configuration variability. In
this example, there are three product variants, where each one diverges in the
set of component constituting its architecture as well as the links between the
components. Component variability refers to the existence of many variants of
one component. CD Reader and CD Reader / Writer represent variants of one
component. We identify component variants based on the identification of com-
ponents providing similar functionalities. This is the role of the second step of
the recovery process. Configuration variability is represented in terms of pres-
ence/absence of components on the one hand (e.g. Purchase Reminder), and
presence/absence of component-to-component links on the other hand (e.g. the
link between MP3 Decoder / Encoder and CD Reader / Writer). We identify
configuration variability based on both the identification of core (e.g. Sound
Source) and optional components (e.g. Purchase Reminder) and links between
these components. In addition, we capture the dependencies and constraints
among components. This includes, for example, require constraints between op-
tional components. We rely on FCA to identify these dependencies. These are
mined in the fourth step of the recovery process. Fig. 4 shows these steps.

4 Identifying the Architecture Variability

The architecture variability is mainly materialized either through the existence
of variants of the same architectural element (i.e. component variants) or through
the configuration variability. In this section, we show how component variants
and configuration variability are identified.

4.1 Identifying Component Variants

The selection of a component to be used in an architecture is based on its pro-
vided and required services. The provided services define the role of the compo-
nent. However, other components may provide the same, or similar, core services.
Each may also provide other specific services in addition to the core ones. Con-
sidering these components, either as completely different or as the same, does not
allow the variability related to components to be captured. Thus, we consider
them as component variants. We define component variants as a set of compo-
nents providing the same core services and differ concerning few secondary ones.
In Fig. 3, MP3 Decoder and MP3 Decoder / Encoder are component variants.

We identify component variants based on their similarity. Similar compo-
nents are those sharing the majority of their classes and differing in relation to
2 Most of architectural description languages do not consider connector as a first class

concept.

22 A. Shatnawi, A. Seriai, and H. Sahraoui

Fig. 3. An example of archi-
tecture variability

Fig. 4. The process of architectural variabil-
ity recovery

some others. Components are identified as similar based on the strength of sim-
ilarity links between their implementing classes. For this purpose, we use cosine
similarity metric [13] where each component is considered as a text document
composed of the names of its classes. We use a hierarchical clustering algorithm
[13] to gather similar components into clusters. It starts by considering compo-
nents as initial leaf nodes in a binary tree. Next, the two most similar nodes
are grouped into a new one that forms their parent. This grouping process is
repeated until all nodes are grouped into a binary tree. All nodes in this tree
are considered as candidates to be selected as groups of similar components. To
identify the best nodes, we use a depth first search algorithm. Starting from
the tree root to find the cut-off points, we compare the similarity of the current
node with its children. If the current node has a similarity value exceeding the
average similarity value of its children, then the cut-off point is in the current
node. Otherwise, the algorithm continues through its children. The results of this
algorithm are clusters where each one is composed of a set of similar components
that represent variants of one component.

4.2 Identifying Configuration Variants

The architectural configuration is defined based on the list of components com-
posing the architecture, as well as the topology of the links existing between
these components. Thus the configuration variability is related to these two as-
pects; the lists of core (mandatory) and optional components and the list of core
and optional links between the selected components.

Identification of Component Variability: To identify mandatory and op-
tional components, we use Formal Concept Analysis (FCA) to analyze archi-
tecture configurations. We present each software architecture as an object and

Recovering Architectural Variability of a Family of Product Variants 23

each member component as an attribute in the formal context. In the concept
lattice, common attributes are grouped into the root while the variable ones are
hierarchically distributed among the non-root concepts.

Fig. 5. A lattice example of similar configurations

Fig. 5 shows an example of a lattice for three similar architecture configura-
tions. The common components (the core ones) are grouped together at the root
concept of the lattice (the top). In Fig. 5 Com1 and Com4 are the core compo-
nents present in the three architectures. By contrast, optional components are
represented in all lattice concepts except the root. e.g., according to the lattice
of Fig. 5,Com2 and Com5 present in Arch1 and Arch2 but not in Arch3.

Identification of Component-Link Variability: A component-link is de-
fined as a connection between two components where each connection is the
abstraction of a group of method invocation, access attribute or inheritance
links between classes composing these components. In the context of configura-
tion variability, a component may be linked with different sets of components. A
component may have links with a set of components in one product, and it may
have other links with a different set of components in another product. Thus the
component-link variability is related to the component variability. This means
that the identification of the link variability is based on the identified component
variability. For instance, the existence of a link A-B is related to the selection
of a component A and a component B in the architecture. Thus considering a
core link (mandatory link) is based on the occurrence of the linked components,
but not on the occurrence in the architecture of products. According to that,
a core link is defined as a link occurring in the architecture configuration as
well the linked components are selected. To identify the component-link vari-
ability, we proceed as follows. For each architectural component, we collect the
set of components that are connected to it in each product. The intersection of
the sets extracted from all the products determines all core links for the given
component. The other links are optional ones.

24 A. Shatnawi, A. Seriai, and H. Sahraoui

5 Identifying Architecture Dependencies

The identification of component and component-link variability is not enough
to define a valid architectural configuration. This also depends on the set of
dependencies (i.e. constraints) that may exist between all the elements of the
architecture. For instance, components providing antagonism functionalities have
an exclude relationship. Furthermore, a component may need other components
to perform its services. Dependencies can be of five kinds: alternative, OR, AND,
require, and exclude dependencies. To identify them we rely on the same concept
lattice generated in the previous section.

In the lattice, each node groups a set of components representing the intent
and a set of architectural configurations representing the extent. The configura-
tions are represented by paths starting from their concepts to the lattice concept
root. The idea is that each object is generated starting from its node up going
to the top. This is based on sub-concept to super-concept relationships (c.f. Sec-
tion 2.2). This process generates a path for each object. A path contains an
ordered list of nodes based on their hierarchical distribution; i.e. sub-concept
to super-concept relationships). According to that, we propose extracting the
dependencies between each pair of nodes as follows:

– Required dependency. This constraint refers to the obligation selection
of a component to select another one; i.e. component B is required to select
component A. Based on the generated lattice, we analyze all its nodes by
identifying parent-to-child relation (i.e. top to down). Thus node A requires
node B if node B appears before node A in the lattice, i.e., node A is a sub-
concept of the super-concept corresponding to node B. In other words, to
reach node A in the lattice, it is necessary to traverse node B. For example,
if we consider lattice of the Fig. 5, Com6 requires Com2 and Com5 since
Com2 and Com5 are traversed before Com6 in all paths including Com6
and linking root node to object nodes.

– Exclude and alternative dependencies. Exclude dependency refers to
the antagonistic relationship; i.e. components A and B cannot occur in the
same architecture. This relation is extracted by checking all paths linking
root to all leaf nodes in the lattice. A node is excluded with respect to another
node if they never appear together in any of the existing paths; i.e. there
is no sub-concept to super-concept relationship between them. This means
that there exists no object exists containing both nodes. For example, if we
consider lattice of Fig. 5, Com6 and Com7 are exclusives since they never
appear together in any of the lattice paths.
Alternative dependency generalizes the exclude one by exclusively selecting
only one component from a set of components. It can be identified based on
the exclude dependencies. Indeed, a set of nodes in the lattice having each
an exclude constraint with all other nodes forms an alternative situation.

– AND dependency. This is the bidirectional version of the REQUIRE con-
straint; i.e. component A requires component B and vice versa. More gen-
erally, the selection of one component among a set of components requires

Recovering Architectural Variability of a Family of Product Variants 25

the selection of all the other components. According to the built lattice, this
relation is found when a group of components is grouped in the same con-
cept node in the lattice; i.e. the whole node should be selected and not only
a part of its components. For example if we consider lattice of the Fig. 5,
Com2 and Com5 are concerned with an AND dependency.

– OR dependency. When some components are concerned by an OR de-
pendency, this means that at least one of them should be selected; i.e. the
configuration may contain any combination of the components. Thus, in the
case of absence of other constraints any pair of components is concerned by
an OR dependency. Thus pairs concerned by required, exclude, alternative,
or AND dependencies are ignored as well as those concerned by transitive re-
quire constraints; e.g. Com6 and Com7 are ignored since they are exclusives.
Algorithm 1 shows the procedure of identifying groups of OR dependency.

Input: all pairs (ap), require dependencies (rd), exclude dependencies (ed) and
alternative dependencies (ad)

Output: sets of nodes having OR dependencies (orGroups)
OrDep = ap.exclusionPairs(rd, ed, ad);
OrDep = orDep.removeTransitiveRequire(rd);
ORPairsSharingNode = orDep.getPairsSharingNode();
for each pairs p in ORPairsSharingNode do

if otherNodes.getDependency() == require then
orDep.removePair(childNode);

else if otherNodes.getDependency()= exclude || alternative then
orDep.removeAllPairs(p);

end
orGroups = orDep.getpairssharingOrDep();
return orGroups

Algorithm 1. Identifying OR-Groups

6 Experimentation and Results

Our experimentation aims at showing how the proposed approach is applied to
identify the architectural variability and validating the obtained results. To this
end, we applied it on two case studies. We select two sets of product variants.
These sets are Mobile Media3 (MM) and Health Watcher4 (HW). We select these
products because they were used in many research papers aiming at addressing
the problem of migrating product variants into a SPL. Our study considers 8
variants of MM and 10 variants of HW. MM variants manipulate music, video
and photo on mobile phones. They are developed starting from the core imple-
mentation of MM. Then, the other features are added incrementally for each
variant. HW variants are web-based applications that aim at managing health
3 Available at: http://ptolemy.cs.iastate.edu/design-study/#mobilemedia
4 Available at: http://ptolemy.cs.iastate.edu/design-study/#healthwatcher

http://ptolemy.cs.iastate.edu/design-study/#mobilemedia
http://ptolemy.cs.iastate.edu/design-study/#healthwatcher

26 A. Shatnawi, A. Seriai, and H. Sahraoui

records and customer complaints. The size of each variant of MM and HW, in
terms of classes, is shown in Table 2. We utilize ROMANTIC approach [9] to
extract architectural components from each variant independently. Then, the
components derived from all variants are the input of the clustering algorithm
to identify component variants. Next, we identify the architecture configurations
of the products. These are used as a formal context to extract a concept lattice.
Then, we extract the core (mandatory) and optional components as well as the
dependencies among optional-component.

In order to evaluate the resulted architecture variability, we study the follow-
ing research questions:

– RQ1: Are the identified dependencies correct? This research question
goals at measuring the correctness of the identified component dependencies.

– RQ2: What is the precision of the recovered architectural vari-
ability? This research question focuses on measuring the precision of the
resulting architecture variability. This is done by comparing it with a pre-
existed architecture variability model.

Table 2. Size of MM variants and HW ones

Name 1 2 3 4 5 6 7 8 9 10 Avg.
MM 25 34 36 36 41 50 60 64 X X 43.25
HW 115 120 132 134 136 140 144 148 160 167 136.9

Fig. 6. The concept lattice of HW architecture configurations

6.1 Results

Table 3 shows the results of component extraction from each variant indepen-
dently, in terms of the number of components, for each variant of MM and HW.

Recovering Architectural Variability of a Family of Product Variants 27

The results show that classes related to the same functionality are grouped into
the same component. The difference in the numbers of the identified compo-
nents in each variant has resulted from the fact that each variant has a different
set of user’s requirements. On average, a variant contains 6.25 and 7.7 main
functionalities respectively for MM and HW.

Table 3. Comp. extraction results

Name 1 2 3 4 5 6 7 8 9 10 Avg. Total
MM 3 5 5 5 7 7 9 9 X X 6.25 50
HW 6 7 9 10 7 9 8 8 7 6 7.7 77

Table 4. Comp. variants identification

Name NOCV ANVC MXCV MNCV
MM 14 3.57 8 1
HW 18 4.72 10 1

Table 4 summarizes the results of component variants in terms of the number
of components having variants (NOCV), the average number of variants of a
component (ANVC), the maximum number of component variants (MXCV)
and the minimum number of component variants (MNCS). The results show
that there are many sets of components sharing the most of their classes. Each
set of components mostly provides the same functionality. Thus, they represent
variants of the same architectural component. Table 5 presents an instance of 6
component variants identified from HW, where X means that the corresponding
class is a member in the variant. By analyzing these variants, it is clear that
these components represent the same architectural component. In addition to
that, we noticed that there are some component variants having the same set of
classes in multiple product variants.

Table 5. Instance of 6 component variants

Class Name Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6
BufferedReader X X X X X X

ComplaintRepositoryArray X X X X X X
ConcreteIterator X X X X X X
DiseaseRecord X

IIteratorRMITargetAdapter X X X X X X
IteratorRMITargetAdapter X X X X X X

DiseaseType X
InputStreamReader X X X X X X

Employee X X
InvalidDateException X X X X

IteratorDsk X X X X X X
PrintWriter X X X X X

ObjectNotValidException X X X
RemoteException X X X

PrintStream X X X
RepositoryException X X

Statement X X X X X X
Throwable X X X
HWServlet X
Connection X X

The architecture configurations are identified based on the above results. Table
6 shows the configuration of MM variants, where X means that the component
is a part of the product variants. The results show that the products are similar

28 A. Shatnawi, A. Seriai, and H. Sahraoui

in their architectural configurations and differ considering other ones. The rea-
son behind the similarity and the difference is the fact that these products are
common in some of their user’s requirements and variable in some others. These
architecture configurations are used as a formal context to extract the concept
lattice. We use the Concept Explorer5 tool to generate the concept lattice. Due
to limited space, we only give the concept lattice of HW (c.f. Fig. 6). In Table
7, the numbers of core (mandatory) and optional components are given for MM
and HW. The results show that there are some components that represent the
core architecture, while some others represent delta (optional) components.

Table 6. Arch. configuration for all
MM variants

Variant No. C
om

1
C

om
2

C
om

3
C

om
4

C
om

5
C

om
6

C
om

7
C

om
8

C
om

9
C

om
10

C
om

11
C

om
12

C
om

13
C

om
14

1 X X X
2 X X X X X
3 X X X X X
4 X X X X X
5 X X X X X X X
6 X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X

Table 7. Mandatory and optional
components

Product Name MM HW
Mandatory 1 2
Optional 13 16

The results of the identification of optional-component dependencies are given
in Table 8 (Com 5 is excluded since it is a mandatory component). For concise-
ness, the detailed dependencies among components are only shown for MM only.
The dependencies are represented between all pairs of components in MM (where
R= Require, E= Exclude, O= OR, RB = Required By, TR = Transitive Re-
quire, TRB = Transitive Require By, and A = AND). Table 9 shows a summary
of MM and HW dependencies between all pairs of components. This includes the
number of direct require constrains (NRC), the number of exclude ones (NE),
the number of AND groups (NOA), and the number of OR groups (NO). Al-
ternative constrains is represented as exclude ones. The results show that there
are dependencies among components that help the architect to avoid creating
invalid configuration. For instance, a design decision of AND components indi-
cates that these components depend on each other, thus, they should be selected
all together.

To the best our knowledge, there is no architecture description language sup-
porting all kinds of the identified variability. The existing languages are mainly
focused on modeling component variants, links and interfaces, while they do not
support dependencies among components such as AND-group, OR-group, and
require. Thus, on the first hand, we use some notation presented in [15] to repre-
sent the concept of component variants and links variability. On the other hand,
we propose some notation inspired from feature modeling languages to model the
5 Presentation of the Concept Explorer tool is available in [14].

Recovering Architectural Variability of a Family of Product Variants 29

Table 8. Component dependencies

C1 C2 C3 C4 C6 C7 C8 C9 C10 C11 C12 C13 C14
Com1 X R E E O E E E
Com2 X E A RB R TR A RB RB
Com3 RB E X E E O E E E
Com4 A E X RB R TR A RB RB
Com6 E R E R X TR TR E R E E A A
Com7 E RB RB TRB X R O RB TRB TRB
Com8 TRB O TRB TRB RB X RB TRB TRB TRB TRB TRB
Com9 E O R X RB TRB E E
Com10 A E A RB R TR X RB RB
Com11 O E TR R X RB E E
Com12 E E TR TR R X E E
Com13 E R E R A TR TR E R E E X A
Com14 E R E R A TR TR E R E E A X

Table 9. Summarization of
MM and HW dependencies

Name NDR NE NA NO
MM 17 20 6 3
HW 18 62 3 11

dependencies among components. For the purpose of understandability, we doc-
ument the resulting components by assigning a name based on the most frequent
tokens in their classes’ names. Figure 7 shows the architectural variability model
identified for MM variants, where the large boxes denote to design decisions
(constraints). For instance, core architecture refers to components that should
be selected to create any concrete product architecture. In MM, there is one core
components manipulating the base controller of the product. This component
has two variants. A group of Multi Media Stream, Video Screen Controller, and
Multi Screen Music components represents an AND design decision.

RQ1: Are the Identified Dependencies Correct? The identification of
component dependencies is based on the occurrence of components. e.g., if two
components never selected to be included in a concrete product architecture, we
consider that they hold an exclude relation. However, this method could provide
correct or incorrect dependencies. To evaluate the accuracy of this method, we
manually validate the identified dependencies. This is based on the function-
alities provided by the components. For instance, we check if the component
functionality requires the functionality of the required component and so on.
The results show that 79% of the required dependencies are correct. As an ex-
ample of a correct relation is that SMS Controller requires Invalid Exception as
it performs an input/output operations. On the other hand, it seems that Image
Util does not require Image Album Vector Stream. Also, 63% of the exclude con-
strains are correct. For AND and OR dependencies, we find that 88% of AND
groups are correct, while 42% of OR groups are correct. Thus, the precision of
identifying dependencies is 68% in average.

RQ2: What is the Precision of the Recovered Architectural Variabil-
ity? In our case studies, MM is the only case study that has an available ar-
chitecture model containing some variability information. In [16], the authors
presented the aspect oriented architecture for MM variants. This contains in-
formation about which products had added components, as well as in which
product a component implementation was changed (i.e. component variants).
We manually compare both models to validate the resulting model. Fig. 8 shows

30 A. Shatnawi, A. Seriai, and H. Sahraoui

Fig. 7. Architectural variability model for MM

the comparison results in terms of the total number of components in the ar-
chitecture model (TNOC), the number of components having variants (NCHV),
the number of mapped components in the other model (NC), the number of
unmapped components in the other model (NUMC), the number of optional
components (NOC) and the number of mandatory ones (NOM). The results
show that there are some variation between the results of our approach and the
pre-existed model. The reason behind this variation is the idea of compositional
components. For instance, our approach identifies only one core component com-
pared to 4 core components in the other model. Our approach grouped all classes
related to the controller components together in one core components. On the
other hand, the other model divided the controller component into Abstract Con-
troller, Album Data, Media Controller, and Photo View Controller components.
In addition, the component related to handling exceptions is not mentioned in
the pre-existed model at all.

Recovering Architectural Variability of a Family of Product Variants 31

Fig. 8. The results of the MM validation

7 Related Work

In this section, we discuss the contributions that have been proposed in two re-
search directions; recovering the software architecture of a set of product variants
and variability management.

In [7], an approach aiming at recovering SPLA was presented. It identifies
component variants based on the detection of cloned code among the products.
However, the limitation of this approach is that it is a semi-automated, while our
approach is fully automated. Also, it does not identify dependencies among the
components. In [8], the authors presented an approach to reconstruct Home Ser-
vice Robots (HSR) products into a SPL. Although this approach identifies some
architectural variability, but it has some limitation compared to our approach.
For instance, it is specialized on the domain of HSR as the authors classified,
at earlier step, the architectural units based on three categories related to HSR.
These categories guide the identification process. In addition, the use of fea-
ture modeling language (hierarchical trees) to realize the identified variability
is not efficient as it is not able to represent the configuration of architectures.
Domain knowledge plays the main role to identify the architecture of each sin-
gle product and the dependencies among components. In some cases, domain
knowledge is not always available. The authors in [6] proposed an approach to
reverse engineering architectural feature model. This is based on the software ar-
chitect’s knowledge, the architecture dependencies, and the feature model that
is extracted based on a reverse engineering approach presented in [5]. The idea,
in [6], is to take the software architect’s variability point of view in the extracted
feature model (i.e. still at the requirement level); this is why it is named ar-
chitecture feature model. However, the major limitations of this approach are
firstly that the software architect is not available in most cases of legacy soft-
ware, and secondly that the architecture dependencies are generally missing as
well. In [5], the authors proposed an approach to extract the feature model. The
input of the extraction process is feature names, feature descriptions and de-
pendencies among features. Based on this information, they recover ontological

32 A. Shatnawi, A. Seriai, and H. Sahraoui

constraints (e.g. feature groups) and cross tree constrains. A strong assumption
behind this approach is that feature names, feature descriptions, and depen-
dencies among features are available. In [17], the authors use FCA to generate
a feature model. The input of their approach is a set of feature configurations.
However, the extraction of the feature model elements is based on NP-hard prob-
lems (e.g. set cover to identify or groups). Furthermore, architecture variability
is not taken into account in this approach. In [18], an approach was presented
to visually analyze the distribution of variability and commonality among the
source code of product variants. The analysis includes multi-level of abstractions
(e.g. line of code, method, class, etc.). This aims to facilitate the interpretation
of variability distribution, to support identifying reusable entities. In [19], the
authors presented an approach to extract reusable software components from a
set of similar software products. This is based on identifying similarity between
components identified independently from each software. This approach can be
related only to the first step of our approach.

8 Conclusion

In SPLA, the variability is mainly represented in terms of components and con-
figurations. In the case of migrating product variants to a SPL, identifying the
architecture variability among the product variants is necessary to facilitate
the software architect’s tasks. Thus, in this paper, we proposed an approach
to recover the architecture variability of a set of product variants. The recov-
ered variability includes mandatory and optional components, the dependencies
among components (e.g. require, etc.), the variability of component-links, and
component variants. We rely on FCA to analyze the variability. Then, we pro-
pose two heuristics. The former is to identify the architecture variability. The
latter is to identify the architecture dependencies. The proposed approach is
validated through two sets of product variants derived from Mobile Media and
Health Watcher. The results show that our approach is able to identify the ar-
chitectural variability and the dependencies as well.

There are three aspects to be considered regarding the hypothesis of our
approach. Firstly, we identify component variants based on the similarity be-
tween the name of classes composing the components, i.e., classes that have
the same name should have the same implementation. While in some situa-
tions, components may have very similar set of classes, but they are completely
unrelated. Secondly, dependencies among components are identified based on
component occurrences in the product architectures. Thus, the identified de-
pendencies maybe correct or incorrect. Finally, the input of our approach is the
components independently identified form each product variants using ROMAN-
TIC approach. Thus. the accuracy of the obtained variability depends on the
accuracy of ROMANTIC approach.

Our future research will focus on migrating product variants into component
based software product line, the mapping between the requirements’ variability
(i.e. features) and the architectures’ variability, and mapping between compo-
nents’ variability and component-links’ variability.

Recovering Architectural Variability of a Family of Product Variants 33

References

1. Clements, P., Northrop, L.: Software product lines: practices and patterns.
Addison-Wesley, Reading (2002)

2. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering.
Springer, Heidelberg (2005)

3. Tan, L., Lin, Y., Ye, H.: Quality-oriented software product line architecture design.
Journal of Software Engineering & Applications 5(7), 472–476 (2012)

4. Rubin, J., Chechik, M.: Locating distinguishing features using diff sets. In:
IEEE/ACM 27th Inter. Conf. on ASE, pp. 242–245 (2012)

5. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: Proc. of 33rd ICSE, pp. 461–470 (2011)

6. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Reverse engi-
neering architectural feature models. In: Crnkovic, I., Gruhn, V., Book, M. (eds.)
ECSA 2011. LNCS, vol. 6903, pp. 220–235. Springer, Heidelberg (2011)

7. Koschke, R., Frenzel, P., Breu, A.P., Angstmann, K.: Extending the reflexion
method for consolidating software variants into product lines. Software Quality
Journal 17(4), 331–366 (2009)

8. Kang, K.C., Kim, M., Lee, J.J., Kim, B.-K.: Feature-oriented re-engineering of
legacy systems into product line assets - a case study. In: Obbink, H., Pohl, K.
(eds.) SPLC 2005. LNCS, vol. 3714, pp. 45–56. Springer, Heidelberg (2005)

9. Kebir, S., Seriai, A.D., Chardigny, S., Chaoui, A.: Quality-centric approach
for software component identification from object-oriented code. In: Proc. of
WICSA/ECSA, pp. 181–190 (2012)

10. Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D.: Extraction of component
based architecture from object-oriented systems. In: Proc. of 7th WICSA, pp.
285–288 (2008)

11. Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D.: Search-based extraction of
component-based architecture from object-oriented systems. In: Morrison, R., Bal-
asubramaniam, D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 322–325.
Springer, Heidelberg (2008)

12. Ganter, B., Wille, R.: Formal concept analysis. Wissenschaftliche Zeitschrift-
Technischen Universitat Dresden 47, 8–13 (1996)

13. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques. Morgan Kauf-
mann (2006)

14. Yevtushenko, A.S.: System of data analysis “concept explorer". In: Proc. of the
7th National Conf. on Artificial Intelligence (KII), vol. 79, pp. 127–134 (2000) (in
Russian)

15. Hendrickson, S.A., van der Hoek, A.: Modeling product line architectures through
change sets and relationships. In: Proc. of the 29th ICSE, pp. 189–198 (2007)

16. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A.,
Soares, S., Ferrari, F., Khan, S., et al.: Evolving software product lines with aspects.
In: Proc. of 30th ICSE, pp. 261–270 (2008)

17. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal
contexts. In: Proc. of 15th SPLC, pp. 1–4 (2011)

18. Duszynski, S., Knodel, J., Becker, M.: Analyzing the source code of multiple soft-
ware variants for reuse potential. In: Proc. of WCRE, pp. 303–307 (2011)

19. Shatnawi, A., Seriai, A.D.: Mining reusable software components from objecto-
riented source code of a set of similar software. In: IEEE 14th Inter. Conf. on
Information Reuse and Integration (IRI), pp. 193–200 (2013)

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 34–41, 2014.
© Springer International Publishing Switzerland 2014

A Feature-Similarity Model
for Product Line Engineering

Hermann Kaindl1 and Mike Mannion2

1 Institute of Computer Technology, Vienna University of Technology, Vienna, Austria
kaindl@ict.tuwien.ac.at

2 Executive Group, Glasgow Caledonian University, Glasgow, UK
m.a.g.mannion@gcu.ac.uk

Abstract. Search, retrieval and comparison of products in a product line are
common tasks during product line evolution. Feature modeling approaches do
not easily support these tasks. This vision paper sets out a proposal for a
feature-similarity model in which similarity metrics as used for example in
case-based reasoning (CBR) are integrated with feature models. We describe
potential applications for Product Line Scoping, Domain Engineering and
Application Engineering.

Keywords: Product line engineering, feature-based representation, case-based
reasoning, similarity metric, feature-similarity model.

1 Introduction

Software Product Line Engineering (SPLE) consists of: Product Line Scoping, Do-
main Engineering and Application Engineering (though in some frameworks [1]
Product Line Scoping and Domain Engineering are both considered a part of a single
core asset development activity). During these activities, we are interested in compar-
ing the similarity of:

• a target product specification against existing product specifications;
• two or more existing product specifications against each other;
• how close an existing product matches the target market.

The information structure and content of feature models (regardless of notation)
does not readily lend itself to compare similarity. Understanding what features are
similar across different products, or what products are similar to other products, be-
comes very difficult as a product line evolves into tens, hundreds, maybe even thou-
sands of products each with many features.

Case-based reasoning (CBR) is a development approach in which software cases
are stored in a repository and new product development involves retrieving the most
similar previous case(s) to the problem to be solved and then adapting it (them). Si-
milarity matching, e.g. [2], is achieved by comparing some combination of surface
features i.e. those provided as part of its description, derived features (obtained from a

 A Feature-Similarity Model for Product Line Engineering 35

product’s description by inference based on domain knowledge) and structural fea-
tures (represented by complex structures such as graphs or first-order terms). An
overall similarity measure is computed from the weighted similarity measures of dif-
ferent elements. Efficient implementations for commonly used similarity metrics are
readily available, so that the computational effort for search and retrieval of similar
products has little impact on the efficiency of this approach. The key issue is the
(manual) effort for adapting similar cases found and retrieved.

This vision paper sets out a proposal for a feature-similarity model in which simi-
larity metrics as used in case-based reasoning (CBR), information retrieval or service
discovery are integrated with feature models. We describe potential applications for
Product Line Scoping, Domain Engineering and Application Engineering.

2 Related Work

Much work on feature models (see [3]) has focused on modelling representations and
traversal algorithms that lend themselves to automation, and there has been little work
on the relationships between product line feature models and similarity metrics.

The ReDSeeDS project (http://www.redseeds.eu) developed a specific
similarity metric including textual, semantic and graph-based components [4]. Re-
quirements representations are compared (e.g. requirements specifications or models)
rather than requirements [5]. Reuse can be based on a partial requirements specifica-
tion rather than a “complete” requirements specification [6]. The specification of new
requirements can be facilitated by reusing related requirements from a retrieved soft-
ware product, and the implementation information (models and code) of (one of)
similar problems can be taken for reuse and adapted to the newly specified require-
ments. There are well-defined reuse processes, tightly connected with tool support (in
parts) [7].

Similarity-based (Web) service discovery and (Web) service retrieval are also
based on similarity metrics, see e.g. [8, 9]. (Web) service matchmaking uses addition-
al heuristics [10], which may be adopted for whole software cases, and semantic ser-
vice annotations and the use of ontologies allow for metrics apart from those based on
text similarity [11]. Some approaches for an automated construction of feature mod-
els, based on similarity metrics, have been proposed [12, 13].

3 Contrasting SPLE and CBR

SPLE and CBR both support software product line engineering but address it diffe-
rently. Table 1 summarizes these differences. In SPLE, the premise underlying fea-
ture model construction is that the rigour and consistency of the model structure can
be used to derive new products from existing product elements. Model construction
and maintenance costs (structure and content) are large but significantly reduce the
costs of new product development and thus have large benefits for reuse. In CBR, the
premise is that each product is constructed by retrieving and adapting similar cases
already built. Product description construction costs are small whilst the cost of

36 H. Kaindl and M. Mannion

adapting an existing case can vary. So, SPLE and CBR have differences in the costs
of making software assets reusable and the benefits for reusing them. More details on
this comparison can be found in [14].

Table 1. Costs vs. Benefits

 SPLE CBR
Costs of Making Reusable Substantial Negligible

Benefits for Reuse Facilitates automated
product derivation

Facilitates finding similar
cases for reuse

4 A Feature-Similarity Model

A feature-similarity model combines a feature model for managing and deriving new
products and provides similarity values for several purposes. Figure 1 shows a small
feature model for a mobile phone in which the ability to make a call and the ability to
display are mandatory features. To make a call there are one or more alternatives and
the display can be in black and white or in colour. Figure 1 also shows four products
that contain different combinations of these features, and whilst the model shows only
examples of functional features, it can be extended to include non-functional features.

Fig. 1. Integrated Model of a Mobile Phone Worked Example

 A Feature-Similarity Model for Product Line Engineering 37

The scores attached to the bidirectional links between the ellipses signify similarity
scores between products e.g. Phone 1 has 2 features for making a call, using numeric
digits or from a phone book, and a black and white display. Phone 2 has one way of
making a call, using numeric digits, and a black and white (BW) display. Phone 3 has
three ways of making a call and has a colour display. Intuitively Phone 1 and Phone 2
are more similar to each other than Phone 1 and Phone 3, or Phone 2 and Phone 3.
This is played out in the similarity values Phone 1/Phone 2 (.9), Phone 1/Phone 3 (.3),
Phone 2/Phone3 (.2). New Phone 4 is not yet fully specified, but similarity scores
compared to the other phones can be determined (cf. [5]) independently of whether
this new product is derived from the given feature model or not.

The solid lines of the (standard) feature model are explicit, while the bidirectional
links between the product ellipses are implicit i.e. they are computed on demand, not
necessarily stored, especially not upfront. The dotted lines to the product ellipses
should be stored, to enhance traceability during product derivation from the feature
model thus clarifying which features are in which product.

A feature-similarity model (i) combines features and similarities (ii) provides direct
similarity values between features (iii) facilitates comparing feature combinations in
different products) (iv) facilitates comparing entire product specifications. The added
value of an integrated model is the influence it will have during feature model con-
struction on an engineer’s deeper thinking about the extent to which one product is
different to another, particularly when the overall similarity differences are small,
why that is, and whether it is necessary or not. Each product line specification be-
comes a searchable asset and the similarity metrics enhance the search function.

The construction process for a feature-similarity model is (i) construct a feature
model (ii) allocate features to products (iii) calculate similarity values between fea-
tures (iv) calculate similarity values between specific feature combinations in
different product specifications (v) calculate similarity values between entire product
specifications. In practice these steps might be used iteratively to help with the con-
struction of a product line to ensure that derivable products are sufficiently distinctive.

4.1 Product Line Scoping

Product Line Scoping is the process of identifying and bounding capabilities (prod-
ucts, features) and areas (subdomains, existing assets) of the product line where in-
vestment into reuse is economically useful and beneficial to product development
[15]. The output is a scope definition, which can be seen as part of the specification
the product line engineering project must eventually satisfy.

A feature-similarity model for product line scoping will focus on the features that
represent the distinguishing characteristics of the product line, which are important for
the market that is being targeted and which represent the product line boundary. That
information will come from a variety of sources e.g. industry forecasts, sales and mar-
keting intelligence, customer feedback, technology advances. Feature description de-
tail and the complexity of the corresponding feature model structure will depend on the
niche of the target market. For example in the fashion mobile phone market, the em-
phasis is on the shape, size and colour of the casing to reflect the values of a fashion

38 H. Kaindl and M. Mannion

brand name, rather than the phone’s functionality (often an existing model with minor
modifications). By calculating the similarity value of the casing feature compared to a
new target casing feature (step (iii) in the process above) we can inform the judgment
about whether the product should be in the product line or not and how it might be best
positioned in a market where look-and-feel govern distinctiveness.

When the number of target market characteristics and the number of products is
small, product line scoping is tractable without much need for tool support. When the
size or the level of complexity significantly increase, an automated similarity match-
ing tool can become very valuable. Whilst scoping is normally an activity undertaken
at the start of product line development it should continue as a product line evolves.

4.2 Domain Engineering

Domain Engineering encompasses domain requirements definition, domain analysis,
domain design, domain implementation. Our focus here is domain requirements defi-
nition. Finding domain requirements can be difficult because existing requirements
specifications (where they exist) can be written in different ways. A tool implement-
ing a feature-similarity model (step (v)) can provide some support for identifying
similarity between concepts across requirements specifications.

A feature-similarity model for Domain Engineering sets out all the features of the
product line model. Adding new variability to an existing product line model can be
difficult, and may not be required if there is already an existing alternative that seems
close enough. Finding this alternative quickly in a large model can be very difficult
and time-consuming. Making a judgment about the level of similarity of an existing
alternative can help with making a commercial judgment on whether to proceed or not
with including a new alternative. For example mobile phone product lines are becom-
ing increasingly feature-rich and complex: the number of different ways of making a
call is rapidly increasing beyond those set out in Figure 1. The ability to scan a num-
ber from a Quick Response code and the ability to scan a number from a jpeg image is
similar. However if one of these alternatives is already available then a decision may
be made not to include the other. Here we are calculating the similarity value of two
alternative features (step (iii)), such as different ways of making a phone call. In
practice it is highly unlikely that this approach would be adopted for all alternatives
across all features, but rather, effort will be targeted on features that are valued by the
customer but expensive to produce, and similar cheaper alternatives are available.

Feature-based SPLE most often lacks explicit representation of non-functional cha-
racteristics (e.g. performance, security, safety). In CBR, specific (text) searches based
on similarity metrics can be an effective approach to uncovering such cross-cutting
concerns.

4.3 Application Engineering

Application Engineering is the construction of a new product drawing on the assets
that were developed during Domain Engineering. If a new product cannot be derived
from a given product line model then often the model needs to be adapted so that

 A Feature-Similarity Model for Product Line Engineering 39

derivation can follow a defined process. Exceptionally, if the “new” features required
are not going to be required in any other product, they can be added solely to the new
product, and the product line model is not adapted. A feature-similarity model for
Application Engineering sets out the features of the product line model that have been
derived, through a selection process, for the new product.

In large-scale product lines a challenge is to know whether a new product being de-
rived is similar to an existing one. The overall difference can be small but for a par-
ticular feature or feature combination it can be significant. Knowing the degrees of
similarity can help with commercial judgments e.g. whether to introduce a new prod-
uct into the market, use an existing product, or remove a product. Suppose there is a
mobile phone product line targeted at teenagers, where the feature focus is the ability
to make a call, the ability to display, the ability to take pictures and the ability to play
music but the product line manager has decided to add a multi-person video-
conferencing feature to the feature model. It will be sensible to know if this combina-
tion of features exists already in a different product line. By calculating the similarity
value of the entire product specification (step (v)) against phones targeted at small-to-
medium business enterprises (SMEs) that have all of these features, and by calculat-
ing the similarity values of a feature combination (step (iv)) of playing music and
making multi-person video conference calls, we may discover that in the product line
targeted at SMEs the phone we want already exists, albeit that the quality of the abili-
ty to play music is a little lower than desired but the quality of the multi-person video-
conference facility is a little higher than desired.

In practice, there may not always be enough time for adapting a product line model
so that the product derivation can take place, or there is insufficient time to complete
the detailed selection process from the model. Then, the most similar products may
be looked up to see whether the new product may be adapted directly based on them
(so one attribute of a search tool for Application Engineering is to enable search by
similarity threshold either for individual features and/or for entire products). In ef-
fect, this can lead to CBR reuse instead of working with feature models.

5 Discussion and Open-ended Questions

We do not prescribe here which set of specific similarity metrics to be used or how
those metrics should be computed. Commonly-used general-purpose similarity metrics
could be enhanced by other approaches e.g. it is possible to indicate whether a feature
is a distinguishing characteristic of a product (e.g. display size) or not (e.g. number of
default screen savers). We can distinguish between alignable differences and non-
alignable differences [16] where alignable differences have the larger impact on
people's judgments of similarity. Electronic Tablets and Mobile Phones have memory,
processing power and a display (albeit of different sizes) which are recognized as
alignable differences because they are characteristics defining computers. However,
Mobile Phones provide the ability to make a telephone call without accessing the In-
ternet, which Electronic Tablets usually do not, making this a non-alignable difference.

40 H. Kaindl and M. Mannion

Placing a numerical value on the significance of alignable and non-alignable differenc-
es could be factored into the overall similarity metric.

Another approach is structural similarity i.e. a syntactic approach to matching
normally based on the structure of a feature model. For example products having
mutually exclusive features such as BW and colour display, respectively, e.g. Phone 2
and Phone 3, may be considered less similar than products with the same feature,
such as BW, e.g. Phone 1 and Phone 2. Mutually exclusive features will make more
of a difference in this regard than having one more feature of a kind where all the
others are shared, e.g. Phone 1 can make a call from a phone book, while Phone 2
cannot.

We envisage that such similarity metrics of a feature-similarity model may also
serve as objective functions for automated search in the space of systems defined by
its feature model. Depending on what is to be optimised in terms of similarity, these
may serve as cost functions or utility functions, respectively. Such approaches would
fit into search-based software engineering, see [17].

A set of open ended questions includes:

• What are the thresholds for “similar” and for “different”?
• Which combination of similarity approaches might be suitable and when?
• What similarity metrics are worth computing and how should they be calculated ?
• How can similarity metrics be factored into existing process models for Product

Line Scoping, Domain Engineering, and Application Engineering?

The deployment of similarity metrics for SPLE requires a degree of caution and
prudence as with the use of any other software development metrics. Metrics provide
a data reference point and will best serve managers and engineers when they are used
in conjunction with data from other reference points. Be clear on what you are using
the metric for, get general agreement in the organization on which metrics to use, and
focus on only a few metrics – less is more.

6 Conclusion

A feature model does not facilitate search, retrieval or comparison of products in a
product line, common tasks during product line evolution. To address this, we have
set out ideas for enhancing feature models with similarity metrics in a new feature-
similarity model. However we recognize that whatever metrics are used there will
always be a need to map these numerical values on to an organisation’s collective
conceptual understanding of what similar and difference means in each context in
which the metrics are being used.

References

1. A Framework for Software Product Line Practice, Version 5.0, http://www.sei.
cmu.edu/productlines/frame_report (last accessed October 6, 2014)

 A Feature-Similarity Model for Product Line Engineering 41

2. Cover, T.M., Hart, P.E.: Nearest Neighbour Pattern Classification. IEEE Trans. on Infor-
mation Theory 13, 21–27 (1967)

3. Benavides, D., Felfernig, A., Galindo, J.A., Reinfrank, F.: Automated Analysis in Feature
Modelling and Product Configuration. In: Favaro, J., Morisio, M. (eds.) ICSR 2013.
LNCS, vol. 7925, pp. 160–175. Springer, Heidelberg (2013)

4. Bildhauer, D., Horn, T., Ebert, J.: Similarity-driven software reuse. In: Proceedings of
CVSM 2009, pp. 31–36. IEEE (2010)

5. Kaindl, H., Svetinovic, D.: On confusion between requirements and their representations.
Requirements Engineering 15, 307–311 (2010)

6. Kaindl, H., Smialek, M., Nowakowski, W.: Case-based Reuse with Partial Requirements
Specifications. In: 18th IEEE International Requirements Engineering Conference (RE
2010), pp. 399–400 (2010)

7. Kaindl, H., Falb, J., Melbinger, S., Bruckmayer, T.: An Approach to Method-Tool Coupl-
ing for Software Development. In: Fifth International Conference on Software Engineering
Advances (ICSEA 2010), pp. 101–106. IEEE (2010)

8. Botelho, L., Fernández, A., Fires, B., Klusch, M., Pereira, L., Santos, T., Pais, P., Vasirani,
M.: Service Discovery. In: Schumacher, M., Helin, H., Schuldt, H. (eds.) CASCOM: Intel-
ligent Service Coordination in the Semantic Web, ch. 10, pp. 205–234. Birkhäuser, Basel
(2008)

9. Czyszczoń, A., Zgrzywa, A.: The MapReduce Approach to Web Service Retrieval. In:
Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 517–
526. Springer, Heidelberg (2013)

10. Klusch, M.: Semantic Web Service Coordination. In: Schumacher, M., Helin, H., Schuldt,
H. (eds.) CASCOM: Intelligent Service Coordination in the Semantic Web, ch. 4, pp. 59–
104. Birkhäuser, Basel (2008)

11. Becker, J., Oliver Müller, O., Woditsch, M.: An Ontology-Based Natural Language Ser-
vice Discovery Engine – Design and Experimental Evaluation. In: 18th European Confe-
rence on Information Systems (ECIS 2010) (2010)

12. Itzik, N., Reinhartz-Berger, I.: Generating Feature Models from Requirements: Structural
vs. Functional Perspectives. In: REVE 2014. SPLC Proceedings – Volume 2: Workshops,
Demonstrations, and Tools, pp. 44–51 (2014)

13. Weston, N., Chitchyan, R., Rashid, A.: A framework for constructing semantically com-
posable feature models from natural language requirements. In: 13th International Soft-
ware Product Line Conference (SPLC 2009), pp. 211–220 (2009)

14. Mannion, M., Kaindl, H.: Using Similarity Metrics for Mining Variability from Software
Metrics. In: REVE 2014. SPLC Proceedings – Volume 2: Workshops, Demonstrations,
and Tools, pp. 32–35 (2014)

15. John, I., Eisenbarth, M.: A Decade of Scoping: A Survey. In: 13th International Software
Product Line Conference (SPLC 2009), pp. 31–40 (2009)

16. McGill, A.L.: Alignable and nonalignable differences in causal explanations. Memory
Cognition 30(3), 456–468 (2002)

17. Harman, M., Jia, Y., Krinke, J., Langdon, W., Petke, J., Zhang, Y.: Keynote: Search based
software engineering for software product line engineering: a survey and directions for fu-
ture work. In: 18th International Software Product Line Conference (SPLC 2014),
pp. 5–18 (2014)

Evaluating Lehman’s Laws of Software Evolution

within Software Product Lines: A Preliminary
Empirical Study

Raphael Pereira de Oliveira1,2, Eduardo Santana de Almeida1,
and Gecynalda Soares da Silva Gomes1

1 Federal University of Bahia, Campus Ondina
Av. Adhemar de Barros, s/n, 40.170-110, Salvador - Bahia, Brazil

2 Federal Institute of Sergipe, Campus Estância
Rua Presidente João Café Filho, S/N, Estância - Sergipe, Brazil
{raphaeloliveira,esa}@dcc.ufba.br, gecynalda@yahoo.com

Abstract. The evolution of a single system is a task where we deal with
the modification of a single product. Lehman’s laws of software evolution
were broadly evaluated within this type of systems and the results shown
that these single systems evolve according to his stated laws over time.
However, when dealing with Software Product Lines (SPL), we need to
deal with the modification of several products which include common,
variable and product specific assets. Because of the several assets within
SPL, each stated law may have a different behavior for each asset kind.
Nonetheless, we do not know if the stated laws are still valid for SPL since
they were not yet evaluated in this context. Thus, this paper details an
empirical investigation where four of the Lehman’s Laws (LL) of Software
Evolution were used in an SPL industrial project to understand how the
SPL assets evolve over time. This project relates to an application in
the medical domain developed in a medium-size company in Brazil. It
contains 45 modules and a total of 70.652 bug requests in the tracking
system, gathered along the past 10 years. We employed two techniques -
the KPSS Test and linear regression analysis, to assess the relationship
between LL and SPL assets. Finally, results showed that three laws were
supported based on the data employed (continuous change, increasing
complexity, and declining quality). The other law (continuing growth)
was partly supported, depending on the SPL evaluated asset (common,
variable or product-specific).

Keywords: Software Product Lines, Software Evolution, Lehman’s
Laws of Software Evolution, Empirical Study.

1 Introduction

Software evolution is a very important activity where the software must have
the ability to adapt according to the environment or user needs, to keep its
satisfactory performance, [1] given that if a system does not support changes, it
will gradually lapse into uselessness [2].

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 42–57, 2014.
c© Springer International Publishing Switzerland 2014

Evaluating Lehman’s Laws of Software Evolution 43

Back in the 1970s, Meir Lehman started to formulate his laws of software
evolution, after realizing the need for software systems to evolve. These laws,
shown in Table 1, stressed that a system needed to evolve due to its requirement
to operate in or address a problem or activity in the real world, what Lehman
called E-type Software.

According to Barry et al. [3], these laws can be ordered into three broad
categories: (i) laws about the evolution of software system characteristics; (ii)
laws referring to organizational or economic constraints on software evolution;
and (iii) meta-laws of software evolution. However, the laws were evaluated in
the context of single systems.

Table 1. Lehman’s Laws of Software Evolution [4]

Software Evolution Laws Description

Evolution of Software System Characteristics (ESSC)
(1974) Continuous change E-type systems must be continually adapted else

they become progressively less satisfactory.
(1980) Continuing growth The functional content of an E-type system must

be continually increased to maintain user satisfac-
tion with the system over its lifetime.

(1974) Increasing complexity As an E-type system evolves, its complexity in-
creases unless work is done to maintain or reduce
it.

(1996) Declining quality Stakeholders will perceive an E-type system to
have declining quality unless it is rigorously main-
tained and adapted to its changing operational
environment.

Organizational/Economic Resource Constraints (OERC)
(1980) Conservation of familiarity During the active life of an evolving E-type sys-

tem, the average content of successive releases is
invariant.

(1980) Conservation of organiza-
tional stability

The average effective global activity rate in an
evolving E-type system is invariant over a prod-
ucts lifetime.

Meta-Laws (ML)
(1974) Self regulation The evolution process of E-type systems is self

regulating, with a distribution of product and pro-
cess measures over time that is close to normal.

(1996) Feedback System The evolution processes in E-type systems consti-
tute multi-level, multi-loop, multi-agent feedback
systems and must be treated as such to achieve
significant improvement over any reasonable base-
line.

44 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

In contrast to single systems, a Software Product Line (SPL) represents a set
of systems sharing a common, managed set of features that satisfy the specific
needs of a particular market or mission. The products which compose an SPL
are developed from a common set of core assets in a prescribed way [5], aiming
to achieve benefits such as large scale reuse, reduced time to market, improved
quality and minimized costs, large-scale productivity, maintain market presence,
enable mass customization, and so on [5] [6].

In order to achieve the above mentioned benefits, an SPL’s evolution needs
special attention, since the sources of SPL changes can be targeted to the entire
product line (affecting common assets), targeted to some products (affecting
variable assets), or targeted to an individual product (affecting product-specific
assets) [7] [8] [9].

In this study, our objective is to examine whether Lehman’s Laws (LL) are
reflected in the development of SPLs, where common, variable and product spe-
cific assets are built. The hypothesis we put forward is that there is a relationship
between LL of Software Evolution and the software evolution in SPL environ-
ments. In this context, in order to understand whether there is a relationship
between the LL of software evolution and the SPL evolution process, we carried
out an empirical investigation in an industrial software product line project. As
a preliminary study, we selected the first group of laws (Evolution of Software
System Characteristics - ESSC, which includes the Continuous change, Contin-
uing growth, Increasing complexity and Declining quality laws) to perform our
evaluation. We evaluated each one of the laws from the ESSC group for common,
variable and product-specific assets in the context of an industrial SPL. To the
best of our knowledge, this is the first study stating that most of evaluated LL
of software evolution can be applied in the context of SPL. Thus, results of this
study can help in understanding and improving SPL evolution process.

The remainder of this paper is organized as follows: Section 2 presents related
work and uses it as context to position this work. Section 3 describes the empir-
ical investigation, followed by the discussion of key findings and contributions
from our preliminary empirical study in Section 4. Finally, Section 5 presents
the conclusions and future directions.

2 Related Work

Since the publication of Lehman’s work on software changes, other researchers
have investigated his laws within the context of open source and industrial
projects. Israeli and Feitelson [10] examined Lehman’s Laws (LL) within the
context of the Linux kernel. They selected the Linux kernel because of its 14
years data recording history about the system’s evolution, which includes 810
versions. Only two out of the eight laws were not supported in this experiment
(i.e., self-regulation and feedback system). Barry et al. [3] also investigated LL;
however within the context of industrial projects. They proposed some metrics
as dependent variables, which were also related to six LL (the self-regulation and
the feedback system laws were not investigated in this study). We have adapted

Evaluating Lehman’s Laws of Software Evolution 45

some of the metrics proposed by Barry et al. [3] to support and evaluate the LL
in an industrial SPL project.

Lotufo et al. [11] studied the evolution of the Linux kernel variability model.
This model is responsible for describing features and configurations from the
Linux kernel. They found that the feature model grows together with the code.
Besides the growth of the number of features, the complexity still remains the
same. Most of the evolution activity is related to adding new features and there is
a necessity for tool support, mainly regarding constraints. Their results showed
that evolving large variability models is feasible and does not necessarily deteri-
orate the quality of the model. Godfrey and Tu [12] found a similar conclusion
after studying the evolution of the Linux kernel. They explored the evolution
of the Linux kernel both at the system level and within the major subsystems
and found out that the Linux has been growing in a super-linear rate over the
years. However, as will be detailed later, within the context of our study we
found a different behavior. The complexity within the assets has grown over the
years and the quality has decreased. It is important to notice that the number of
maintainers in a private context is smaller compared to maintainers of the Linux
kernel and also the time-to-market pressure in a private context influences the
overall software product quality.

Xie et al. [13] also investigated LL by studying 7 open source applications
written in C and several laws were confirmed in their experiment. Their analysis
covered 653 releases in total and sum 69 years of software evolution including
the 7 applications. According to the authors, the definition of the increasing
complexity and declining quality laws may lead to misinterpretations, and the
laws could be supported or rejected, depending on the interpretation of the law
definition. In our study, to avoid this misinterpretation, we consider that the
increasing of complexity and the declining of quality must happen to support
these laws.

The investigations assessing LL available in the literature are related to sin-
gle systems and not to SPL. In our empirical study, we evaluated four laws of
software evolution (ESSC group of laws) in an SPL industrial project, which can
be considered as a first work in this direction. This project has a long history of
data with more than 10 years of evolution records, as many of the related work.
Nevertheless, it is a private system developed using the SPL paradigm, allowing
the evaluation of the laws for the common, variable and product-specific assets.

3 Empirical Study

This empirical study focuses on investigating the relationship between LL (ESSC
group of laws) of software evolution and the common, variable and product-
specific assets, based on data from an industrial SPL project.

The industrial SPL project, used as basis for the investigation described
herein, has been conducted in partnership with a company located in Brazil,
which develops for more than 10 years strategic and operational solutions for
hospitals, clinics, labs and private doctor offices. This company has ∼ 50

46 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

employees, of which six are SPL developers with a range of 4 to 19 years of
experience in software development.

The company builds products within the scope of four main areas (hospi-
tals, clinics, labs and private doctor offices). Such products comprise 45 modules
altogether, targeting at specific functions (e.g., financial, inventory control, nu-
tritional control, home care, nursing, and medical assistance). Market trends,
technical constraints and competitiveness motivated the company to migrate
their products from a single-system development to an SPL approach. Within
SPL, the company was able to deliver its common, variable and product-specific
assets. To keep the company name confidential, it will be called Medical Com-
pany (MC). During the investigation, MC allowed full access to its code and bug
tracking system.

Regarding the bug tracking system, we collected a total of 70.652 requests over
10 years, allowing an in-depth statistical data analysis. MC uses a bug tracking
system called Customer Interaction Center (CIC), which was internally devel-
oped. CIC allows MC’s users to register requests for adaptations, enhancements,
corrections and also requests for the creation of new modules.

The empirical study presented herein was planned and executed according to
Jedlitschka et al.’s guidelines [14].

3.1 Planning

All the products at MC have some assets (called modules) in common (com-
monalities), some variable assets (variabilities) and also some specific assets
(product-specific), enabling the creation of specific products depending on the
combination of the selected assets.

Figure 1 shows the division of modules between the areas supported by MC.
Four (4) modules represent the commonalities of the MC SPL, twenty-nine (29)
modules represent the variabilities of the MC SPL and, twelve (12) modules
represent the product-specific assets, totaling forty-five (45) modules in the MC
SPL.

Based on those modules, some of the laws could be evaluated with the records
from CIC. However, other ones required the LOC of these modules. From CIC
and LOC, we collected data since 1997. Nevertheless, data related to the three
types of maintenance (adaptive, corrective and perfective) just started to appear
in 2003.

The GQM approach [15] was used to state the goal of this empirical study, as
follows: the goal of this empirical study is to analyze Lehman’s Laws of Software
Evolution (ESSC group of laws) for the purpose of evaluation with respect to
its validity from the point of view of the researcher in the context of an SPL
industrial project. Based on the stated Goal, the following research questions
were defined:

RQ1.) Is there a relationship between the Continuous Change law and the evo-
lution of common, variable and product-specific assets?

RQ2.) Is there a relationship between the Continuous Growth law and the evo-
lution of common, variable and product-specific assets?

Evaluating Lehman’s Laws of Software Evolution 47

Fig. 1. Modules (assets) per Areas Supported by MC

RQ3.) Is there a relationship between the Increasing Complexity law and the
evolution of common, variable and product-specific assets?

RQ4.) Is there a relationship between the Declining Quality law and the evolu-
tion of common, variable and product-specific assets?

The term relationship used in the RQs seeks for evidences of each evaluated
law in the SPL common, variable, and product specific assets. In order to answer
those questions, some metrics were defined. Since the SPL literature does not
provide clear metrics directly associated to the laws, the metrics extracted from
Barry et al. [3], Xie et a. [13], Kemerer and Slaughter [16], and Lehman et al.
[17] were used herein. Barry et al. defined some dependent variables and some
metrics for measuring each dependent variable. Based on their work, in order
to evaluate each LL of software evolution, we have adapted the relationship
among laws, dependent variables and the measurements (as shown in Table 2),
according to the available data in the private industrial environment. Moreover,
instead of using the Cyclomatic Complexity [18] as in Barry’s work, we decided
to use the LOC metric, since LOC and Cyclomatic Complexity are found to be
strongly correlated [19].

For each one of the dependent variables, we have stated one null and one
alternative hypothesis. The hypotheses for the empirical study are shown next:

H0 : There is no growth trend in the data during the years (Stationary);
H1 : There is a growth trend in the data during the years (Trend);

To corroborate Lehman’s Laws of Software Evolution, Continuous Change,
Continuous Growth, Increasing Complexity and Declining Quality, we must re-
ject H0. Thus, if there is a trend of growth in the data during the years, there
is evidence to support these four laws.

The next subsection describes how the data were collected and grouped to
allow the evaluation of the defined hypotheses.

48 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

Table 2. Relationship among Laws, Dependent Variables and Measurement

Law Dependent
Variable

Acronym Measurement

Continuous
change

Number of
Activities

NA Count of corrective, adaptive and perfective re-
quests per year [3]

Continuous
growth

Lines Of
Code

LOC Number of lines of code of modules per year
[13]

Increasing
complexity

Number of
Corrections
per LOC

NCLOC Total of correction requests divided by LOC
of modules per year (adapted from [16])

Declining
quality

Number of
Corrections
per Module

NCM Total correction requests divided by the num-
ber of modules per year [3]

3.2 Execution

The object of this study was the MC SPL. To collect the necessary data (from
source code and the bug tracking system), we defined an approach composed
of three steps. In the first step, we were able to collect data from Customer
Interaction Center (CIC), in the second one we collected LOC data and at the
third step, MC clarified some doubts, through interviews, that we had about the
collected data.

After collecting all the data, we started to group them according to an CIC
filed. When registering a new request at CIC, the user must fill a field called
request type. Based on this request type, the records from CIC were grouped
according to the types of maintenance [20] [21]. The records were grouped in
three types of maintenance, according to Table 3.

It was possible to relate each request from the bug tracking system to either
adaptive, corrective or perfective maintenance since each request has a field
for its type, and each type is related to a maintenance type. The preventive
maintenance type was not used because none of the records corresponded to this
type. We also show other records not related to maintenance types from CIC,
since MC also use CIC to register management information. These other records
had a null request type field or their request type field was related to commercial
proposals, visiting requests or training requests. Thus, they were not used in the
analysis. We found a total of 70.652 requests in the CIC system.

Based on this classification and the LOC, we were able to investigate each
dependent variable and also perform the statistical analysis as discussed in the
next section.

3.3 Data Analysis and Discussion

For analyzing the evolution at MC, in the first step, we collected data re-
lated to all assets and we did not distinguish common, variable and product-
specific records. This step can be seen in each graph from Appendix A as the

Evaluating Lehman’s Laws of Software Evolution 49

Table 3. Maintenance Types Groups

Maintenance
Type

Request Type in CIC Total of
Records

Adaptive Reports and System Adaptation Request 22,005

Corrective System Error, Database Error, Operating System Error,
Error Message of type General Fail in the System, Error
Message (Text in English) and System Locking / Freezing

14,980

Perfective Comments, Suggestions and Slow System 2,366

Other Doubts, Marketing - Shipping Material, Marketing Pre-
sentation, Marketing Proposal, Marketing Negotiation,
Training and Visit Request

31,301

Total line. As our objective was to evaluate the evolution in software prod-
uct lines, we grouped the records into commonalities, variabilities and product-
specific, facilitating the understanding of the evolution at MC.

The period in which the data were collected was not the same to evaluated
the laws. The continuous growth law was evaluated using data from the period
between 1997 and 2011. The other laws (continuous change, increasing complex-
ity, and declining quality) were evaluated using data from the period between
2003 and 2011.

In order to evaluate the hypotheses we applied the KPSS Test [22]. This test
is used to test a null hypothesis for an observable time series. If the series is
stationary, then we do not reject the null hypothesis. Otherwise, if the series has
a trend, we reject the null hypothesis. In this study, the level of confidence used
was 5% (p-value). We could evaluate all assets (common, variable and product-
specific) for all the laws using this statistical test.

We applied also a linear regression analysis [23] to the collected data to evalu-
ate the variance between the assets of the SPL at MC (see Appendix B). Through
this variance, we could understand which assets evolve more and should receive
more attention. We have checked the variance (Y = β0+β1X) for each dependent
variable and for each asset (Common = comm, Variable = var, Product-Specific
= ps) of the SPL.

The descriptive statistics analysis and the discussion of the empirical study
results are shown next grouped by each research question.

RQ1.) Is there a relationship between the Continuous Change law and the evo-
lution of common, variable and product-specific assets?

For this law, the number of activities (adaptive, corrective and perfective) regis-
tered in CIC from January 2003 up to December 2011 were used, corresponding
to the Number of Activities dependent variable as shown on Appendix A(a).
The plot shows a growth for the commonalities and variabilities, however, for
the product-specific activities a small decrease can be noticed for the last years.
The number of activities related to the variabilities are greater than the activi-
ties related to the commonalities. For the product-specific activities, as expected,

50 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

there is a smaller number of activities, since it corresponds to the small group
of assets from the MC SPL.

Besides the small decrease for product-specific assets activities for the last
years, we could identify a trend of growing in the number of activities for all as-
sets (common, variable and product-specific) by applying the KPSS Test. Based
on the confidence intervals analysis, Appendix B(a) indicates that the different
assets from the SPL have different amounts of activities. The number of activ-
ities related to the variabilities are bigger in the SPL because “variability has
to undergo continual and timely change, or a product family will risk losing the
ability to effectively exploit the similarities of its members” [24].

RQ2.) Is there a relationship between the Continuous Growth law and the evo-
lution of common, variable and product-specific assets?

Regarding this law, it was possible to identify similar behaviors for each of
the SPL assets. Appendix A(b) shows the lines of code from 1997 up to 2011,
corresponding to the Lines Of Code dependent variable. For common, variable
and product-specific assets, we can observe a tendency to stabilization over the
years. They grow at a high level in the first years, but they tend to stabilize over
the next years.

Due to the growth in the number of activities for common and variable assets
according to the Continuous Change law, these activities had an impact on the
LOCs. By using the KPSS Test, the commonalities and variabilities showed a
trend of increasing. Despite the continuous change observed for the commonali-
ties and variabilities in the SPL, MC does not worry about keeping the size of its
common and variable assets stable, contributing with the increase of complexity.

For the product-specific assets, the KPSS Test showed a stationary behavior.
Therefore, the Continuos Growth law to the product-specific assets is rejected.
This happens because similar functions among the product-specific assets are
moved to the core asset of the SPL [25].

Moreover, through the confidence intervals analysis, Appendix B(b) shows
that the variabilities from the SPL have more LOC than other assets. This
could be one of the reasons why variabilities have more activities (Continuous
Change).

RQ3.) Is there a relationship between the Increasing Complexity law and the
evolution of common, variable and product-specific assets?

The total number of corrections per line of code, corresponding to the Number
of Corrections per LOC dependent variable is shown in Appendix A(c). As it
can be seen, the complexity for commonalities, variabilities and product-specific
assets is increasing up to 2007. This increase was bigger for the commonalities
because at that time MC had to evolve the SPL to support new government
laws. However, variable and product-specific assets have also grown up to 2007,
since modifications within common assets also had an impact on variable and
product-specific assets [7] [8] [9]. After 2007, MC started to try to reduce the
complexity and prevent the system from breaking down.

Evaluating Lehman’s Laws of Software Evolution 51

However, we could also identify a trend of growing in the complexity for the
commonalities, variabilities and product-specific assets by applying the KPSS
Test in the Increasing Complexity law. Hence, considering that the complexity
is always growing, the Increasing Complexity law is supported for all the assets
in the SPL at MC.

Confidence intervals analysis (see Appendix B(c)) indicates that the com-
plexity inside the commonalities raises more than inside other assets. It happens
because the commonalities have to support all the common assets from the prod-
ucts of the SPL and any change can affect the entire product line [7] [8] [9] [26].

RQ4.) Is there a relationship between the Declining Quality law and the evolu-
tion of common, variable and product-specific assets?

The number of corrections per total of modules in the year, corresponding to
the Number of Corrections per Module dependent variable, is shown in Appendix
A(d). The number of corrections for the variabilities and for the specific assets
follow almost the same pattern. However, for the common assets of the product
line, we can notice a higher number of corrections per module in 2007, also caused
by the adaptation of the system to the government laws. A small increase in the
variabilities and in the specific assets also can be observed in the same year.
From 2007, the number of corrections per module starts to decrease because of
the feedback from users and corrections of problems related to the evolution to
deal with the new government laws.

Besides the decrease after 2007, a trend of growing in the number of corrections
per modules could be identified for the commonalities, variabilities and product-
specific assets by using the KPSS Test. Hence, considering that the number of
corrections per module is always growing, the Declining Quality law is supported
for all the assets in the SPL at MC.

Based on the confidence intervals analysis, Appendix B(d), we could conclude
that the number of corrections per module inside the commonalities is bigger
than the other assets. As stated for commonalities the increasing complexity law,
this happens because the commonalities have to support all the common assets
from the products of the SPL and any change can affect the entire product line
[7] [8] [9] [26].

The results of the KPSS test are shown in Appendix C. The next section
discusses the threats to validity of the empirical study.

3.4 Threats to Validity

There are some threats to the validity of our study. They are described and
detailed as follows.

External Validity threats concern the generalization of our findings. In the
analyzed medical domain, government laws are published constantly. This may
affect the generalizability of the study since those laws affect both common,
variable and product-specific assets. Hence, it is not possible to generalize the
results to other domains, however, the results maybe considered to be valid in
the medical domain.

52 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

This empirical study was performed in just one company and only one SPL
was analysed. Thus, it needs a broader evaluation in order to try to generalize
the results. However, this was the first study in this direction evaluating each of
the four laws of software evolution (ESSC group of laws) in an SPL industrial
company with more than 10 years of historical data, which is not always available
for researchers.

Internal Validity threats concern factors that can influence our observa-
tions. The period in which the data were collected was not the same. We evalu-
ated some laws using the period between 1997 and 2011. Others were evaluated
using the period between 2003 and 2011. Also, the requests from the bug track-
ing system were used in the same way no matter of their quality, duplication or
rejected requests. Nevertheless, the available data period is meaningful because
it is an industrial SPL project and both periods can be considered long periods,
where statistical methods could be successfully applied.

Construct Validity threats concern the relationship between theory and
observation. The metrics used in this study may not be the best ones to evaluate
some of the laws, considering that there is no baseline for those metrics applied
to SPL. However, metrics used to evaluate Lehman’s laws of software evolution
in previous studies were the basis for our work. For some metrics, we based
on LOC. Even though LOC can be considered a simplistic method, LOC and
Cyclomatic Complexity are found to be strongly correlated [19], thus we decided
to use LOC since MC had this information previously available.

4 Key Findings and Contributions for SPL Community

In this section, we present the key findings and also discuss what is the impact
of each finding for industrial SPL practitioners, according to each law.

a. Continuous Change Law. Finding: Variable assets are responsible for the
greater number of activities performed in the SPL project. Practitioners
should be aware of making modifications within those assets, since there
are several constraints among them. Also we could realize that the number
of product-specific activities decreases starting 2007 while the number of
activities on common and variable assets increases. It could be that there
are so many activities on the variable and common assets (compared to the
product-specific assets) because their scope has not been chosen well (or has
changed significantly in 2007), implying that more and more specifics assets
have to be integrated into commonalities. This would be a typical product
line behavior. Also, another reason for increasing the number of activities on
common and variable assets is that in SPL more attention is by definition
given to the commonalities and variabilities for the sake of reuse.

b. Continuous Growth Law. Finding:Variable assets had also the biggest growth
in LOCs during the years. Practitioners should search, among the variable
assets, those that share behavior and can be transformed into common assets.
Transforming variable assets into common assets will reduce the total growth

Evaluating Lehman’s Laws of Software Evolution 53

of variable assets and also it will reduce their complexity. However, within
this study, the transition from variability to commonality does not happen
at all, however, it should happen. For example, when a variability is been
used in almost all the products of the SPL.

c. Increasing Complexity Law. Finding: Complexity within common assets is
bigger that for other assets. Practitioners should be aware of complexity in
common assets since they have to support all the products from the SPL
[26]. This makes any kind of change in common assets to be considered as
critical, since they may affect the whole SPL.

d. Declining Quality Law. Findings : The number of corrections per modules
were higher for common assets. In fact, for this empirical study we also have
to consider the number of maintainers at MC, which was a small number
and maybe they were overload with work and left behind quality issues. In a
further study, we will check if there is any relationship between complexity
and quality, because in this study, higher complexity is related with poor
quality.

Based on the results of this empirical study, we propose the following initial
items to improve the evolution within SPLs:

. Creation of guidelines for evolving each SPL artifact. Guidelines supporting
evolution steps for SPL artifact should exist to systematize the evolution
of common, variable and product-specific assets. These guidelines should
consider why, when, where and how the SPL assets evolve.

. For each evolution task, keep constant or better the quality of the SPL. Mea-
surements within the SPL common, variable and product-specific assets (in-
cluding requirements, architecture, code, and so on) should be part of the
SPL evolution process.

. For each evolution task, try to decrease the complexity of the SPL. After
evolving the SPL code, measurements should be applied to check if the new
change in the code increases or not the complexity of the SPL;

These are some improvements that can be followed according to the findings
of the empirical study at MC. Next Section presents our conclusions and future
work.

5 Conclusions and Future Work

Lehman’s Laws of Software Evolution were published in the seventies and still are
evaluated in recent environments, such as the one used in this empirical study.
From this empirical study, commonalities, variabilities and product-specific as-
sets seems to behave differently regarding evolution. Three laws were completely
supported (continuous change, increasing complexity and declining quality) in
this empirical study. The other law (continuous growth) was partly supported,
depending on the SPL asset in question.

54 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

According to this study, all assets from the SPL industrial project are chang-
ing over the time. However, there is an increasing of complexity and a decrease
of quality during the years. Changes in all assets will always happen, therefore,
dealing with the complexity and quality in evolving an SPL needs special atten-
tion. To deal with the declining quality and increase complexity during the SPL
evolution, we intend to propose guidelines. These guidelines will help during the
whole SPL evolution starting from the SPL requirements up to the SPL tests.

This empirical study within an industrial SPL project was important to reveal
findings not confirmed within open source projects where the complexity keeps
the same, the quality is not deteriorated [11] and system grows in a super-linear
rate [12].

As future work, we would like to confirm if those laws (Continuous Change,
Increasing Complexity, Declining Quality) also happen for other industrial SPL
projects. Moreover, we would like to have more insights about the reason why
continuous growth law is not supported to product-specific assets. In our opinion,
we believe that the LL are also applicable in the SPL context, since most of the
laws could be confirmed for most of the SPL assets (eleven at the total).

In addition, we would like to confirm some findings from this empirical study,
such as: to confirm if the number of activities and LOC for variable assets are big-
ger than for other assets; investigate if the commonalities have a higher number
of corrections related to other assets and; check if there is any relationship be-
tween complexity and quality, because in this study, higher complexity is related
with poor quality. Hence, we intend to replicate this study in another company
using SPL. For replicating this empirical study, any kind of bug tracking sys-
tem can be used, since the replicated empirical study can use the same research
questions, metrics, hypotheses and statistical methods. After synthesizing the re-
sults from both empirical studies, we will try to elaborate some insights of how
Lehman’s laws of software evolution occur in the SPL environment and pro-
pose some guidelines to the SPL evolution process. Based on these guidelines, it
will be possible to evolve each SPL asset (common, variable or product-specific)
according to its level of complexity, growth and desired quality.

Acknowledgement. This work was partially supported by the National In-
stitute of Science and Technology for Software Engineering (INES1), funded by
CNPq and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08 and CNPq
grants 305968/2010-6, 559997/2010-8, 474766/2010-1 and FAPESB. The authors
also appreciate the value-adding work of all reviewers of this paper and some
colleagues: Silvia Abrahão, Emilio Insfrán, and Emilia Mendes who made great
contributions to the current work.

1 INES - http://www.ines.org.br

http://www.ines.org.br

Evaluating Lehman’s Laws of Software Evolution 55

Appendix A. Plotted Graphs from CIC data and LOC

(a) Number of Activities (b) Lines of Code per Year

(c) Corrections / LOC per Year (d) Number of Corrections per
Module

Appendix B. Confidence Intervals (Regression Coefficients)

(a) NA (b) LOC

(c) NCLOC (d) NCM

56 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

Appendix C. KPSS Test and Hypotheses Results

Variable Commonalities Variabilities Product-Specific
KPSS Test p-value Decision KPSS Test p-value Decision KPSS Test p-value Decision

NA 0.1651 0.0341 Reject H0 0.2187 0.0100 Reject H0 0.1979 0.0168 Reject H0

LOC 0.2125 0.0113 Reject H0 0.2400 0.0100 Reject H0 0.1354 0.0697 Do Not Reject H0

NCLOC 0.1856 0.0214 Reject H0 0.2252 0.0100 Reject H0 0.1764 0.0249 Reject H0

NCM 0.1856 0.0214 Reject H0 0.2274 0.0100 Reject H0 0.1799 0.0236 Reject H0

H0: Stationary; H1: Trend. The gray shading represents the supported laws/assets for
this empirical study.

References

1. Mens, T., Demeyer, S.: Software Evolution. Springer (2008)
2. Lehman, M.: Programs, life cycles, and laws of software evolution. Journal Pro-

ceedings of the IEEE 68, 1060–1076 (1980)
3. Barry, E.J., Kemerer, C.F., Slaughter, S.A.: How software process automation af-

fects software evolution: A longitudinal empirical analysis: Research articles. Jour-
nal of Software Maintenance and Evolution: Research and Practice 19, 1–31 (2007)

4. Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Evolution in software systems:
foundations of the SPE classification scheme. Journal of Software Maintenance 18,
1–35 (2006)

5. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. In:
SEI Series in Software Engineering. Addison-Wesley (2001)

6. Schmid, K.: A comprehensive product line scoping approach and its validation. In:
Proceedings of the 24th International Conference on Software Engineering (ICSE),
pp. 593–603. ACM, New York (2002)

7. Ajila, S., Kaba, A.: Using traceability mechanisms to support software product line
evolution. In: Proceedings of the IEEE International Conference on Information
Reuse and Integration (IRI), pp. 157–162. IEEE (2004)

8. Bailetti, A., Ajila, S., Dumitrescu, R.: Experience report on the effect of market
reposition on product line evolution. In: Proceedings of the IEEE International
Conference on Information Reuse and Integration (IRI), pp. 151–156. IEEE (2004)

9. Svahnberg, M., Bosch, J.: Evolution in software product lines: Two cases. Journal
of Software Maintenance and Evolution: Research and Practice 11, 391–422 (1999)

10. Israeli, A., Feitelson, D.G.: The linux kernel as a case study in software evolution.
Journal of Systems and Software 83, 485–501 (2010)

11. Lotufo, R., She, S., Berger, T., Czarnecki, K., W ↪asowski, A.: Evolution of the linux
kernel variability model. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287,
pp. 136–150. Springer, Heidelberg (2010)

12. Godfrey, M.W., Tu, Q.: Evolution in open source software: A case study. In: IEEE
International Conference on Software Maintenance (ICSM), pp. 131–142. IEEE
Computer Society, Washington (2000)

13. Xie, G., Chen, J., Neamtiu, I.: Towards a better understanding of software evolu-
tion: An empirical study on open source software. In: IEEE International Confer-
ence on Software Maintenance (ICSM), pp. 51–60. IEEE (2009)

Evaluating Lehman’s Laws of Software Evolution 57

14. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software en-
gineering. In: Shull, F., Singer, J., Sjboerg, D.I.K. (eds.) Guide to Advanced Em-
pirical Software Engineering, pp. 201–228. Springer, London (2008)

15. Marciniak, J.J.: Encyclopedia of Software Engineering. In: Basili, V.R., Caldiera,
G., Rombach, H.D. (eds.) Goal Question Metric Approach 2, pp. 528–532. Wiley-
Interscience, Hoboken (1994)

16. Kemerer, C., Slaughter, S.: An empirical approach to studying software evolution.
Journal IEEE Transactions on Software Engineering (TSE) 25, 493–509 (1999)

17. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics
and laws of software evolution - the nineties view. In: Proceedings of the 4th In-
ternational Symposium on Software Metrics, pp. 20–32. IEEE Computer Society,
Washington (1997)

18. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering
(TSE) 2, 308–320 (1976)

19. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley,
Boston (2002)

20. Gupta, A., Cruzes, D., Shull, F., Conradi, R., Rønneberg, H., Landre, E.: An exam-
ination of change profiles in reusable and non-reusable software systems. Journal
of Software Maintenance and Evolution: Research and Practice 22, 359–380 (2010)

21. Lientz, B.P., Swanson, B.E.: Software Maintenance Management: A Study of the
Maintenance of Computer Application Software in 487 Data Processing Organiza-
tions. Addison-Wesley (1980)

22. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y.: Testing the null hypothesis
of stationarity against the alternative of a unit root: How sure are we that economic
time series have a unit root? Journal of Econometrics 54, 159–178 (1992)

23. Yan, X., Su, X.G.: Linear Regression Analysis: Theory and Computing. World
Scientific Publishing, River Edge (2009)

24. Deelstra, S., Sinnema, M., Nijhuis, J., Bosch, J.: Cosvam: a technique for assess-
ing software variability in software product families. In: 20th IEEE International
Conference on Software Maintenance (ICSM), pp. 458–462. IEEE (2004)

25. Mende, T., Beckwermert, F., Koschke, R., Meier, G.: Supporting the grow-
and-prune model in software product lines evolution using clone detection. In:
12th European Conference on Software Maintenance and Reengineering (CSMR),
pp. 163–172. IEEE (2008)

26. McGregor, J.D.: The evolution of product line assets. Technical Report, Software
Engineering Institute, CMU/SEI-2003-TR-005 (2003)

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 58–72, 2014.
© Springer International Publishing Switzerland 2014

Experiences in System-of-Systems-Wide Architecture
Evaluation over Multiple Product Lines

Juha Savolainen1, Tomi Männistö2, and Varvana Myllärniemi3

1 Danfoss Power Electronics A/S, Global Research and Development, Graasten, Denmark
JuhaErik.Savolainen@danfoss.com

2 Department of Computer Science, University of Helsinki, Helsinki, Finland
tomi.mannisto@cs.helsinki.fi

3 School of Science, Aalto University, Espoo, Finland
varvana.myllarniemi@aalto.fi

Abstract. Software architecture evaluation, both for software products and
software product lines, has become a mainstream activity in industry. Signifi-
cant amount of practical experience exists in applying architecture evaluation in
real projects. However, most of the methods and practices focus on evaluating
individual products or product lines. In this paper, we study how to evaluate a
system-of-systems consisting of several cooperating software product lines. In
particular, the intent is to evaluate the system-of-systems-wide architecture for
the ability to satisfy a new set of crosscutting requirements. We describe the
experiences and practices of performing a system-of-systems-wide architecture
evaluation in industry: the system-of-systems in question is a set of product
lines whose products are used to create the All-IP 3G telecommunications net-
work. The results indicate there are significant differences in evaluating the ar-
chitecture of system-of-systems compared with traditional evaluations targeting
single systems. The two main differences affecting architecture evaluation were
the heterogeneity in the maturity levels of the individual systems, i.e., product
lines, and the option that instead of simply evaluating each product line indivi-
dually, responsibilities can be moved from one product line to another to satisfy
the system-of-systems level requirements.

Keywords: Architecture evaluation, System-of-systems, Industrial Experience.

1 Introduction

Architecture evaluations are typically used when there is a need to evaluate the quali-
ties of an existing product against future requirements. The intent of the evaluation
process is to understand the suitability of the current architecture to the future needs
and estimate the cost of the changes needed to the architecture. Alternatively architec-
ture assessments can be used during a development project to identify and analyze
architectural risks so that they can be managed for that particular product. In both
cases, the focus is on evaluating single products or product lines.

However, there are situations in which an architectural evaluation should
encompass several products and product lines, that is, the evaluation should cover

 Experiences in System-of-Systems-Wide Architecture Evaluation 59

system-of-systems. In the telecommunication domain, the vendors avoid commoditiza-
tion and competition from other manufacturers by introducing various services and
features that crosscut the whole telecommunication network. Such features can diffe-
rentiate manufacturers and encourage their customers to buy all network equipment
from the same manufacturer to get the new features deployed easily. However, the
ability to create new telecommunication system-of-systems-wide features is difficult,
as it requires a collaboration of many network elements to realize the functionality. At
the same time a manufacturer must guarantee that none of the functionality covered
by the standards is jeopardized. All this requires the ability to conduct a system-of-
system-wide architectural evaluation.

Therefore, instead of just evaluating single products or product lines separately,
there is a need to evaluate the entire systems of systems, which consists of several
software-intensive product lines. The aim of such evaluation is to ensure that new
system-of-systems-wide features can be realized. We report the experiences of con-
ducting a system-of-systems-wide architecture evaluation in the telecommunication
industry. In particular, we address the following research questions:

RQ1: What practices to use in system-of-systems-wide evaluation over multiple
product lines?
RQ2: How does the system-of-systems-wide architecture evaluation differ from the
architecture evaluation of a single product line?

We conducted an experience-based case study on the system-of-systems-wide archi-
tecture evaluation that took place in Nokia Networks during the first six months
of year 2002. The evaluation studied the All-IP 3G network, which can be considered
as a system-of-systems consisting of cooperating products from several product
lines.

The results indicate there are significant differences in making an architecture
evaluation to a system-of-systems compared with architecture evaluations targeting a
single product. When evaluating a system-of-systems, the individual systems are typi-
cally in a different phase of their lifecycle. That is, some systems have existed as
products for a long time and their capabilities can be exactly determined. Others may
be under development and their exact capabilities can thus only be estimated. Another
significant difference is that in a system-of-systems-wide architecture evaluation one
can change the roles of the individual systems to satisfy the capabilities of the whole.
From the evaluation perspective, this means that not only does an evaluator try to find
if a single system can satisfy its requirements, but may also try to come up with dif-
ferent scenarios how the system-of-systems-wide requirements could be satisfied
by changing the way the different systems participate in achieving the overall
functionality.

This paper is organized as follows: Section 2 presents related work on architecture
evaluation methods, particularly for different levels of maturity, and how architecture
evaluation is relevant across the lifecycle of a product. Section 3 describes the case
study research method used. Section 4 describes the results to the research questions,
whereas Section 5 discusses and Section 6 concludes.

60 J. Savolainen, T. Männistö, and V. Myllärniemi

2 Previous Work on Architecture Evaluation Methods

Architecture evaluations can be divided into early and late methods based on at which
stage in the design process they are suitable for evaluating the architecture or architec-
ture decisions [1]. An early architecture evaluation need not rely on the existence of
architecture documentation, but can utilize other sources of information, such as in-
terviews of architects.

For early architecture evaluation methods it is typical that the design, or making
the design decisions, is intertwined with the evaluation [2]. As at the early design
stages of the commitment to the decisions is still at least partly open, it is natural for
the evaluation to be suggestive and discussing rather than formally assessing. An
early architecture evaluation method, such as Global Analysis [3], may thus be partly
or even more clearly about architecture design than evaluation per se.

Svanhberg [2] have classified the scenario-based methods, such as Software Archi-
tecture Analysis Method [4] and Architecture Trade-Off Analysis Method (ATAM)
[5], as early evaluation methods, as they are typically conducted without tangible
artifacts suitable, for example, for simulation. Nord and Tomayako [6] addressed the
use of architecture evaluation methods ATAM and Cost-Benefit Analysis Method
(CBAM) within agile software development and argued for their usefulness and ap-
plicability as early architecture evaluation methods.

Tyree and Akerman [7] have proposed an architecture description template for cap-
turing the important early design decisions. One particular benefit of concentrating on
decision by means of the template comes from more effective reviewing when the
reviewers can easily see the decision’s status and rationale more effectively than from
the descriptions of architecture structure. In addition, the decisions can be discussed
earlier within the team.

Along similar lines of thought, the early evaluation can be alleviated by architec-
ture documentation that better supports the essential decision making process. One
idea is to collect and represent the crosscutting concerns from multiple architecture
views in perspectives [8]. One more step further is to create specific conflict-centric
views with the purpose of concentrating on the conflicts between stakeholders’ con-
cerns [9].

As many architecture evaluation methods concentrate on evaluating a given archi-
tecture, there are also those aimed towards making a selection from a set of architec-
ture candidates [2,10]. Instead of trying to evaluate the architecture in absolute means,
such a method is based on relative evaluation of the candidates under discussion. One
aim of the discussions is to increase and share understanding among the participants
on the architecture and design choices related to it [2].

Moreover, architecture evaluation in the context of software product lines may have
its implications. For software product lines, two levels of evaluation of can distin-
guished: evaluation of the product line architecture and evaluation of the product archi-
tecture [12]. Although it is possible to evaluate product line architectures with methods
meant for single products, it has been argued that this is difficult to do for large, com-
plex product lines where the products differ from each other significantly [13].

 Experiences in System-of-Systems-Wide Architecture Evaluation 61

Therefore, a number of product-line specific evaluation methods have been proposed:
a survey of methods is given in [12]. Several methods utilize scenarios in the evalua-
tion process, for example, in the method that adapts ATAM to the product line con-
text [13].

3 Research Method

This study was conducted as a light-weight qualitative case study [14] based mainly
on first-hand experiences. We selected qualitative case study approach, since we
wanted to gain in-depth understanding on systems-of-systems-wide architecture eval-
uation. The unit of analysis in the case study was the system consisting of several
product lines. Data collection took mainly place via the first author participating in
the evaluation of the case study, thus drawing participant observation and first-hand
experiences. Additionally, documentation about the evaluation results was used as
additional data source. The data was analyzed in an informal and light-weight way
with the intention of providing a rich narrative on how the actual evaluation was con-
ducted and seeking specific characteristics that differentiate the system-of-systems-
wide evaluation from single product line evaluation.

The case covers an All-IP 3G telecommunication network in Nokia Networks, and
in particular, the evaluation project that focused on studying how to realize crosscut-
ting software features. The case organization is a large company providing network-
ing solutions globally. The unit of analysis was purposefully selected as being
information rich with non-trivial system-of-systems characteristics spanning multiple
product lines.

4 Results

To answer RQ1, the following describes the practices and the process of performing a
system-of-systems-wide architecture evaluation over multiple product lines. Thereaf-
ter, we highlight the differences to evaluating single product lines to answer RQ2.

Background of the Evaluation Project

Right after 2000, many of the telecommunication manufacturers realized that selling
only products, would in the long run lead into commoditization of the basic network
equipment. This was true especially for those products being pursued heavily by
competition from China and other emerging economies. Therefore, it was seen that
most opportunities were arising from services, such as operating the networks for the
customers and by selling software features.

This strategic need was seen by the management of the Nokia Networks. To under-
stand how selling new software features could be facilitated, the management initiated
an effort to run a software architecture evaluation over all of the network elements
that participated to the All-IP radio access network, which is a complex system-of-
systems shown in Fig. 1. This case study focused on the architecture evaluation of this
system-of-systems.

62 J. Savolainen, T. Männistö, and V. Myllärniemi

Fig. 1. The network elements in the All-IP 3G network that comprise the system-of-systems in
this case study. One software product line produces each element, yet many e-business features
cross-cut over several network elements.

The need to perform a system-of-systems-wide architecture evaluation was born
out of a need to understand how to realize e-business model, that is, “software as
business” business model. As historically network sales have been focusing on large
contracts selling hardware, the ability to sell individual system-of-systems-wide soft-
ware features was seen to allow finer granularity of monetizing the software and tai-
loring the offering towards clients’ different needs.

Before the actual evaluation project started, a short survey of architecture evalua-
tion methods was conducted to guarantee that the team was aware of the recent
software architecture evaluation methods. As the team found no guidance on the sys-
tem-of-systems-wide evaluation from the literature, the original intent was to treat the
evaluation as a series of single system or singe product line evaluations and simply
combine the evaluated architecture solutions later.

Staffing and Roles in the Evaluation

To investigate the feasibility of e-business model and to conduct architecture evalua-
tion, a project manager from Nokia Networks was appointed to lead the investigation.
Thereafter, two persons from the Software Architecture group of Nokia Research
Center (NRC) were allocated to the project as primary and secondary investigators.
The investigators had significant previous experiences in performing architecture
evaluations for single systems and individual product lines, and thus acted as architec-
ture evaluation experts. Together, the project manager and primary and secondary
investigators formed the core team for the evaluation.

 Experiences in System-of-Systems-Wide Architecture Evaluation 63

Table 1. Roles and responsibilities in the system-of-systems-wide architecture evaluation
project

Role Org. Responsibilities
Project manager NET Define the system-of-systems-level requirements as

use cases. Define the initial view on how the use cases
could be realized by the coordinated behavior of net-
work elements.

Primary Investiga-
tor (architecture
evaluation expert)

NRC Lead the architecture evaluations. Pursue on the con-
sensus of the evaluation results. Help in technical
communication towards the stakeholders.

Secondary Investi-
gator (architecture
evaluation expert)

NRC Perform the initial survey of architecture evaluation
methods. Document the evaluation sessions. Support
the primary investigator in architecture evaluation
process.

Experts (for quali-
ty attributes)

NRC Participate to the architecture review and provide sup-
port for the particular area of expertise.

SW architects (for
product lines)

NET Describe the capabilities of the system. Provide an-
swers to the questions and agree on the evaluation
results.

In addition to the core team, a number of software architects for each product line

participated in the evaluation. Their main function was to give details about the capa-
bilities and design of the product lines.

Finally, a number of additional experts from NRC were utilized during the evalua-
tion. There was intent to do as much as possible preparation by the core team and
additional experts to reduce the time required from the persons representing the prod-
uct lines. The NRC experts were highly competent in understanding and analyzing a
particular quality attribute. In particular, the core team used experts of telecommuni-
cation network performance and dependability. While most the e-business use cases
targeted flexibility and extendibility characteristics, it was crucial to see that the
proposed solutions did not negatively affect the primary characteristics of the tele-
communication networks, i.e., performance (throughput) and dependability (high
availability). The intent of the specific experts was to investigate the documentation
and participate in the relevant reviews to see that the primary characteristics were not
violated.

Step 1: Select and Refine the Use Cases to be Evaluated, Identify the Involved
Product Lines

Firstly, the core team discussed and iterated the requirements that would enable the
ideal e-business being used by the Nokia Networks. The project manager created
initial system-of-systems-level use cases for the whole system behavior, which de-
scribed the needs for the e-business. The main intent was to allow developing, selling,
and deploying new system-of-systems-wide network features during the system oper-
ations. Some of the features were new functionalities, such as advanced analytics of

64 J. Savolainen, T. Männistö, and V. Myllärniemi

the data usage across the network, while others, such as capacity increases, were
based on the license keys that the customer could buy [15].

Thereafter, the core team identified all network elements that participated in se-
lected the e-business scenarios. As a result, four different product lines (PL1-4)
needed to be involved into the evaluation, and respective organizations were
identified.

Step 2: Decompose the System-of-Systems-Level Use Cases

The system-of-systems-level use cases were broken down into collaboration diagrams
that described how the identified product lines were envisioned to participate in the
system-of-systems-level use case realizations. This process required considerable
insight into the telecommunications system design and the roles in which the product
lines participate in it. An experienced project manager performed this work. Initial
system-of-systems-level use case realizations were then discussed with the respective
experts to confirm assumptions made during this step.

As a result, each system-of-systems-level use case was decomposed into product
line specific use cases.

The initial breakdown of system-of-systems-level use cases into product line spe-
cific ones was developed over the email and the plan for an architecture evaluation
process was created. The plan provided the overview of the process use cases that
apply to each particular network element.

Additionally, explicit assessment questions were derived from the use cases for
each product line. A question could be, for example, “Please explain how your net-
work element can support runtime upgrade of the SW without hindering the normal
operations of the system?”

Step 3: Collect Initial Evaluation from the Product Lines, Identify the Product
Line Maturity

After the initial breakdown of the use cases, the product line organizations were con-
tacted, and the product line specific use cases were given along with the explicit as-
sessment questions. The architects were encouraged to provide any documentation
that would further explain how their system supports the identified use cases. The
architects responsible for each of the network elements would provide the answers
back to the core team.

After receiving the answers, it became apparent that the maturity levels of the sys-
tems were highly varied. Some provided detailed a complete SW feature description
that fully described the design of the use case, whereas others did not provide any-
thing that an evaluator could use. The core team then decided to represent the product
line maturity as its own characteristics to emphasize the risk involved in dealing with
unfinished specifications.

Based on the answers the core team categorized the different levels of maturity of
the product line. The following levels were identified:

A mature product line that is designed, implemented and deployed to customers. Dur-
ing the evaluation, one of the product lines (PL2) was well established and had been
released to the customers. Thus the evaluators could have a clear idea of the

 Experiences in System-of-Systems-Wide Architecture Evaluation 65

main characteristics. In these cases, making an architecture evaluation was fairly
straightforward and resembled making an architecture evaluation for any imple-
mented product line against some change cases, that is, making a late architecture
evaluation.

A product line that is at an advanced level of maturity, but not yet delivered to the
customers. Another product line had been released (PL3), but the actual release cov-
ered only partially the functionality described in the use cases. In this case, one
needed to evaluate for one part the existing implementation and for another part the
plan for the future iterations of the product line.

A product line that has design, but not significant implementation. In the evaluation,
one of the product lines was in fairly early maturity stage (PL4) and only some initial
descriptions and ideas how to address the requirements were available.

A product line that is in very early maturity stage. Finally, one of the product lines
(PL1) was in an early maturity stage, thus many of the requirements had not yet been
specifically considered. This meant that part of the architecture evaluation session
concentrated on idea generation rather than architecture evaluation. The evaluation
commonly tried to find ways and approach how the system could fulfill the require-
ments. This process resembled an early architecture evaluation.

Step 4: Classify the Product Line Use Cases Based on the Uncertainty of the
Design

In addition to recording the maturity of the product line, also the uncertainty related
to a specific product-line use case and its design was recorded. As the evaluations
were performed when many of the design choices especially for e-business use cases
remained open, it was important to also document if the evaluation for a particular
product line specific use case was based on very early information of the architectural
ideas or on decisions implemented on a customer deployed software. To capture this
information a classification was created as described in Table 2.

Table 2. Source information classification for the product line use cases and related design

Tag Rationale
CURRENT The answer and the description are based on the current de-

sign and implementation of the architecture.
PLAN The answer and the description are based on the chosen strat-

egy address the question in context. But the implementation
does not exist yet.

IDEA The current answer and the description are based on the cur-
rent proposal to address this concern but it has not been yet
chosen as a solution. (Note that it is possible to provide alter-
native ways to solve a problem.)

NONE The topic has not been addressed by the architecture and no
solution idea exists.

66 J. Savolainen, T. Männistö, and V. Myllärniemi

Documenting uncertainty information was a good choice. We realized that there is
no direct mapping between the maturity of a product line and the uncertainty classifi-
cation of a use case. Even for PL2 many of the evaluations were defined to be in the
level of IDEA. This was because many of the e-business use cases were out of the
scope of the current release of the PL2.

Step 5: Conduct Evaluation Sessions for Each Product Line

For each product line (PL1-4), one face-to-face meeting was organized as a three hour
session. Between 3-9 representatives from each network participated to meeting with
two to four evaluators. The number of product line software architects from Nokia
Networks (NET) and evaluators (NRC) are shown in Fig. 2 for each meeting of the
different product line (PL1-PL4).

Fig. 2. Participants of the architecture evaluation meetings

As described in Fig. 2, the number of participants in the meetings varied between 6
and 13. PL2 was a platform project for creating a basis for a number of network ele-
ments each of which would form their own product lines. This made the PL2 very
complex with a need to cover many different quality attributes. Therefore, no single
person was able to answer all evaluation questions and a large number of participants
were needed from the business side. This also meant that all specific experts from
NRC (see Table 1) participated in the evaluation. Other product lines were simpler
and could thus be successfully evaluated by a smaller group. PL1 and PL2 projects
were based in Finland, which made it easier to meet in the same location. PL3 and
PL4 were distributed globally and in both cases one remote participant took part in
the evaluation over a phone conference.

 Experiences in System-of-Systems-Wide Architecture Evaluation 67

All evaluation meeting followed the same overall plan. After the introduction to
the e-business requirements and use cases, the primary evaluator went through all of
the questions derived from the product line specific use cases. The architects ex-
plained briefly their answers to each question (they had provided initial answers in the
pre-documentation to the evaluation team). The primary evaluator then investigated
the answers also based on the insight generated by the documentation previously pro-
vided to the evaluators.

Thereafter, any comments or disagreements about the requirements were identi-
fied. While the evaluation team had asked comments already when the product line
use cases were initially provided - it became obvious that typically the product line
representatives would raise concerns only during this initial overview of the require-
ments. This happened partially because the way how the requirements were recorded.
As the splitting of the system-of-systems-level use cases were done by the project
core team – sometimes the product line had different view on how responsibilities
among the network elements should be distributed.

The disagreements about the product line use cases happened for three main rea-
sons. First, for certain aspects the product line representatives had significantly more
insight into the solutions and based on this insight they would see a different way how
to distribute the system-of-systems-level functionality into their system. Second, in
other cases the product line representatives had so little knowledge on the emerging e-
business requirements that they misunderstood the requirements. Third, in some cases
the product line representatives had not taken sufficient time to familiarize with the
use cases so they were then discussed during the face-to-face meeting more extensive-
ly than originally predicted.

After agreeing on the product line use cases, the intent was to reach a common un-
derstanding on the extent to which the current product line architecture fulfilled the
PL-specific use cases. We used an existing results classification scheme from [11],
shown in Table 3.

Table 3. Evaluation result classification [11]

Tag Rationale
IDEAL Subject is explicitly addressed, and receives best possible

treatment.
GOOD Sound treatment of the subject relative to the expectations.
MARGINAL Treatment of the subject meets minimal expectations.
UNACCEPTABLE Treatment of subject does not meet minimal expectations.
INCOMPLETE Treatment of subject exhibits a level of detail, which is

insufficient to make a judgment.
NON-
APPLICABLE

This measure is not applicable to the subject of interest.

By combining the source information classification in Table 2 and the evaluation

results classification in Table 3 it was possible to get a reasonable understanding on
the proposed solutions. This classification was done for each product line for every
use case.

68 J. Savolainen, T. Männistö, and V. Myllärniemi

The approach made it also possible to have more than one solution described. For
example, an implemented solution in an established system could be classified as
CURRENT and UNACCEPTABLE, but at the same time as an IDEA level solution
to how to address the use case at a MARGINAL level. After the product line level
evaluations were all collected, a summary was done to explain how well the system-
of-systems-wide requirements were fulfilled by the combination of the product lines.

During the product line evaluation sessions, one goal was to avoid the design for
any use case to remain in stage NONE (see Table 2). Thus, the meetings were also
used for idea creation. In the meetings, the core team pushed for creating at least some
ideas to address the use cases, even if some of the architects were initially reluctant to
do so. The ability to record multiple ways to address the requirements at the IDEA
level made it easier to generate discussions and better reflected the uncertainty that
was contained in these envisioned design decisions. The strong emphasis on idea
creation had the consequence that the roles of the architects and the evaluators be-
come mixed during the meetings. However, the mixing of roles was found beneficial,
because the intent of the e-business evaluation was to find out if the uses cases can be
implemented across the network elements. Therefore, generating even initial ideas
that might support the requirements was needed to understand, if indeed the imple-
mentation was possible for the network element in question.

Step 6: Collect the Results at the System-of-Systems-Level

After each meeting, the results were collected and the summary was send to the whole
team to guarantee that everyone agrees on the results.

After the of the evaluations were done and verified with the architects, the primary
investigator created the final report that collected the results in the level of the e-
business use cases. There the ability to implement the use cases was described togeth-
er with high level estimates what was needed to realize the requirements. This was
then communicated towards the top management by the project manager on behalf of
the core team.

The classification of the design uncertainty in Table 2 was also important when
considering the conclusions of the overall evaluation. If the most of the material is in
the level of ideas of possible design choices, then the evaluation is mostly based on
verbal explanation and changes to the chosen solutions is likely. However, analyzing
software architectures in the early phase of the lifecycle can be very useful, since no
large investments have been made and the suggested changes can be often fairly easi-
ly accepted.

Changing and Adding New Responsibilities during the Evaluation

Additionally, the case revealed an issue that was specific for the system-of-systems-
wide architecture evaluations: it is possible to change the responsibilities among
product lines to facilitate achieving system-of-systems-wide requirements, or even to
add completely new responsibilities to certain product lines.

 Experiences in System-of-Systems-Wide Architecture Evaluation 69

As a concrete example, one of the system-of-systems-level uses cases was to make
a system-of-systems-wide software update that would deliver a new feature. This
would require a collaboration of many of the product lines implementing this new
system functionality. As the telecommunications network needs to be functioning
continuously, it is important to deploy software updates during the runtime of the
products without disconnecting calls or preventing access to the telecommunications
network.

This use case was initially decomposed into a set of product line specific use cases
requiring runtime upgradeability of all of the products that create the telecommunica-
tions network. For most of the telecommunication servers facilitating this requirements
was easy. Most of these systems employ high reliability hot-standby configuration,
which is realized through duplicated hardware that can take over in a matter of millise-
conds if a hardware failure occurs. This allows continuing the operation of the system
without disconnecting current calls.

Realizing the need for runtime upgrade for these kinds of systems is easy. One can
first update the software in the backup hardware card. Then verify the correctness of
the update by comparing its output to the currently operational card running the old
software release. After the correctness is verified, the updated backup is switched to
become the operational card and so the system is running the new software. Thereaf-
ter, the still old software on the other card is updated as well.

However, soon after starting the architecture evaluation for the base station, it be-
came apparent that this strategy was not applicable to base stations. Because of the
price constraints base stations tend not to have duplicate hardware for all parts of the
system. This required another approach to be envisioned, and consequently, a number
of ideas were generated during the software architecture evaluation meeting. One of
the possible solutions relied on the change of responsibilities among the product lines
and therefore changing the product line specific use case of another product line.

To upgrade the software of a base station one could rely on the functionality of a
radio network controller (RNC) depicted in Figure 1. A typical telecommunications
network is designed in such a way that there are significant overlaps among the cov-
erage of the base stations. Some overlap is simply needed for the network to function,
as a mobile device must be able to move geographically. A moving mobile device
will eventually reach the limit of the coverage of one base station and a handover to
another base station needs to happen.

To prevent dropping calls, there needs to be an overlap of coverage areas of the
base stations. That is, at any given point a mobile device can receive calls and data
from multiple base stations. In practice, the overlaps in modern networks are much
more than what is required for the handovers. This is because the distance to the base
station has a significant effect on the speed of the data transmission, power consump-
tion of the mobile devices, and to the overall capacity and the reliability of the tele-
communications network.

These observations were used to create a new idea how to address the base station
upgrade problem. One could shut down one base station at the time and use the RNC
to transfer all calls to the adjacent base stations. This would allow, during low traffic
situations (e.g. during the night), to upgrade all base stations.

70 J. Savolainen, T. Männistö, and V. Myllärniemi

This basically created a new requirements and a use case for the RNC without
needing the base station to change any implementation. Later it was evaluated with
the RNC team that creating this functionality would be easy and straightforward.

Identified Differences of the System-of-Systems-Wide Evaluation

To address RQ2, we summarize the differences of the system-of-systems-wide archi-
tecture evaluation to the architecture evaluation of a single product line highlighted in
the utilized practices.

First, when evaluating a system (over multiple product lines), then the product
lines are typically in a different phases of their lifecycle. Some product lines have
existed for a long time and their capabilities can be exactly determined. It is more
costly to change the design or responsibilities of these product lines. Other product
lines are under development and their exact capabilities can only be estimated. Their
design and capabilities are easier to change. Second, when evaluating a system over
multiple product lines), not just the design, but also the responsibilities and require-
ments of those product lines can be changed.

The benefit of this kind of evaluation is the openness across teams and organiza-
tions: it is easier to convince open dialog in system-of-systems-wide evaluations.
Further, reliance on the openness limits the effort needed for all parties.

5 Discussion

The architecture evaluations were performed at the product line level. None of the
product specific software was investigated. Many recent research results argue that
the evaluations may need to be done in both product line and product level [12].

We believe that there were a number of reasons that contributed to the fact that we
found it feasible to perform the evaluation only on the product line level. First and
foremost, the use cases represented aspects that need to be supported by all products.
Therefore, they naturally should be implemented as part of the platform functionality.
Thus evaluating only the platform architecture is sufficient to understand how well
the architecture supports realizing the use cases.

Second, the traditional way to create network system product lines was to utilize
the platform approach where the shared product characteristics were implemented in
the pre-integrated platform. Typically a separate platform existed for different types
of system. Switching system requiring extreme performance and highly reliable beha-
vior would be implemented on top of a different software platform than a network
management system that would have requirements for flexibility and extensibility.
In this way nearly all of the quality attribute requirements of the product line were
implemented by the common reference architecture and platform components. This
again supported observation that one can evaluate architectures by focusing on the
product line part and ignoring product specific details. Even the required performance
variability was implemented using a common platform derived mechanism [15].

 Experiences in System-of-Systems-Wide Architecture Evaluation 71

These two factors were the main reasons why in this case we could perform archi-
tecture evaluations only at the product line level using techniques that were initially
created to evaluate individual products without variability. We believe that these ob-
servations are also valid outside the telecommunication domain. Therefore, when
considering architecture evaluations for a product line one should consider whether
the requirements needed are required by some or all products of the product line and
to what extent quality attribute requirements of the product line are implemented by
the reference architecture and common infrastructure or are, at least partially, realized
by the product architectures.

6 Conclusions

In this paper, we presented experiences in performing system-of-systems-wide archi-
tecture evaluation over a number of product lines. We identified characteristics that
make system-of-systems-wide architecture evaluations different from the traditional
ones.

First, in a system-of-systems, the individual systems, particularly if they are prod-
ucts, are likely to differ in maturity and therefore one needs to be able to perform both
early and late evaluations of architectures. As the techniques for these evaluations are
partially different, it is important that the evaluators use correct methods and ap-
proaches to perform the evaluation. In order to make the differences in maturity ex-
plicit, we proposed using two different classifications. One is to classify the source
material of the evaluation in order to distinguish whether to perform an early or late
architecture evaluation. Combining this with the evaluation results (the second classi-
fication) one can communicate the reliability of the assessment to the outside stake-
holders.

Second, one needs to pursue opportunities to satisfy the requirements also through
changing the responsibilities of the individual systems realizing the system-of-
systems-wide functionality. This requires an ability to think beyond the capabilities of
a single system and encouraging the architects to do the same. If such opportunities
are identified further iterations are needed to confirm the feasibility of the ideas with
other architects of other systems.

While the whole evaluation process was geared towards understanding whether the
set of products could meet the wanted system-of-systems-wide requirements, a num-
ber of other benefits where observed during the system-of-systems-wide architecture
evaluation.

The process helped to communicate the key system-of-systems-wide requirements
to product line organizations. This was especially important in the case, as many of
the product lines had not considered the requirements of the whole system-of-systems
in which their product were to be the individual systems.

The evaluations also assisted to communicate and agree upon the intended division
of system-of-systems-wide requirements among the key stakeholders. This allowed
unifying towards a common view of how the system-of-systems-wide requirements
will be realized as collaboration between all participating product lines.

72 J. Savolainen, T. Männistö, and V. Myllärniemi

We believe that this paper helps practitioners to understand how to apply architec-
ture evaluation techniques for evaluating system-of-systems-wide characteristics. We
hope that the experiences will be valuable for researchers for finding new ways to
combine early and late architecture evaluation methods into a cohesive catalogue of
architecture evaluation methods.

References

1. Lindvall, M., Tvedt, R.T., Costa, P.: An empirically-based process for software architec-
ture evaluation. Empirical Software Engineering 8(1), 83–108 (2003)

2. Svahnberg, M.: An industrial study on building consensus around software architectures
and quality attributes. Information and Software Technology (46), 818–850 (2004)

3. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley,
Reading (2000)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley (2003)

5. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures—Methods and
Case Studies. Addison-Wesley, Boston (2002)

6. Nord, R., Tomayko, J.: Software architecture-centric methods and agile development.
IEEE Software (2006)

7. Tyree, J., Akerman, A., Financial, C.: Architecture decisions: Demystifying architecture.
IEEE Software (2005)

8. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stakeholders Us-
ing Viewpoints and Perspectives. Addison-Wesley (2005)

9. Savolainen, J., Männistö, T.: Conflict-Centric Software Architectural Views: Exposing
Trade-Offs in Quality Requirements. IEEE Software 27(6), 33–37 (2010)

10. Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.: A method for understanding qual-
ity attributes in software architecture structures. In: Proceedings of the 14th International
Conference on Software Engineering and Knowledge Engineering (SEKE 2002), pp. 819–
826. ACM Press, New York (2002)

11. Hillard, R., Kurland, M., Litvintchouk, S., Rice, T., Schwarm, S.: Architecture Quality
12. Assessment, version 2.0, MITRE Corporation (August 7, 1996)
13. Etxeberria, L., Sagardui, G.: Product-line architecture: New issues for evaluation. In: Ob-

bink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 174–185. Springer, Heidelberg
(2005)

14. Olumofin, F.G., Mišić, V.B.: A holistic architecture assessment method for software prod-
uct lines. Information and Software Technology 49(4), 309–323 (2007)

15. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

16. Myllärniemi, V., Savolainen, J., Männistö, T.: Performance variability in software
product lines: A case study in the telecommunication domain. In: Software Product Line
Conference, pp. 32–41 (2013)

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 73–89, 2014.
© Springer International Publishing Switzerland 2014

A Systematic Literature Review of Software Product Line
Management Tools

Juliana Alves Pereira, Kattiana Constantino, and Eduardo Figueiredo

Computer Science Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
{juliana.pereira,kattiana,figueiredo}@dcc.ufmg.br

Abstract. Software Product Line (SPL) management is a key activity for soft-
ware product line engineering. The idea behind SPL management is to focus on
artifacts that are shared in order to support software reuse and adaptation. Gains
are expected in terms of time to market, consistency across products, costs re-
duction, better flexibility, and better management of change requirements. In
this context, there are many available options of SPL variability management
tools. This paper presents and discusses the findings from a Systematic Litera-
ture Review (SLR) of SPL management tools. Our research method aimed at
analyzing the available literature on SPL management tools and the involved
experts in the field. This review provides insights (i) to support companies in-
terested to choose a tool for SPL variability management that best fits their
needs; (ii) to point out attributes and requirements relevant to those interested in
developing new tools; and (iii) to help the improvement of the tools already
available. As a direct result of this SLR, we identify gaps, such as the lack of
industrial support during product configuration.

Keywords: Systematic Literature Review, Software Product Lines, Variability
Management, Tools.

1 Introduction

The growing need for developing larger and more complex software systems demands
better support for reusable software artifacts [46]. In order to address these demands,
software product line (SPL) has been increasingly adopted in software industry [15,
60, 52]. SPL is a set of software systems that share a common and variable set of
features satisfying the specific needs of a particular market segment [46]. It is built
around a set of common software components with points of variability that allow
different product configurations [15, 60]. SPL adoption brings significant improve-
ments to the software development process [46, 48]. Experience already shows that
SPL can allow companies to realize order-of-magnitude improvements in time to
market, cost, productivity, quality, and flexibility [15]. Large companies, such as
Hewlett-Packard, Nokia, Motorola, and Dell have already adopted SPL practices [52].

An important concept of an SPL is the feature model. Feature models are used to
represent the common and variable features in SPL [30]. A feature represents an
increment in functionality or a system property relevant to some stakeholders [30].

74 J.A. Pereira, K. Constantino, and E. Figueiredo

It may refer to functional or non-functional requirements, architecture decisions, or
design patterns [4]. The potential benefits of SPLs are achieved through a software
architecture designed to increase the reuse of features in several SPL products.

In practice, developing an SPL involves feature modeling to represent different
viewpoints, sub-systems, or concerns of the software products [5]. Therefore, it is
necessary to have tool support to aid the companies during the SPL variability man-
agement. Supporting tools provide the companies a guide for the development of
SPLs, as well as, a development and maintenance environment of the SPL. However,
the choice of one tool that best meets the companies SPL development goals is far
from trivial. In particular, this is a critical activity due to a sharp increase in the num-
ber of SPL management tools available in the last years. Furthermore, tool support
should assist the complete SPL development process, and not just some activities. In
this context, this paper contributes with a systematic literature review (SLR) aiming to
identify and classify tools that support the SPL management, including the stages
from conception until products derivation.

SLR is one secondary study method that has gotten much attention lately in soft-
ware engineering [32]. An SLR reduces researchers’ bias through pre-defined data
forms and criteria that limit the room for interpretation [64]. Briefly, an SLR goes
through existing primary reports, reviews them in-depth, and describes their metho-
dology and results [45]. Therefore, our SLR represents a significant step forward in
the state-of-the-art by deeply examining many relevant tools for feature modeling and
management. The general propose of this study is to give a visual summary, by cate-
gorizing existing tools. Results are extracted from searching for evidences in journals
and conference proceedings since 2000, by the fact that visibility provided by SPL in
recent years has produced a higher concentration of research [37].

This study is based on a systematic search of publications from various data
sources and it follows a pre-defined protocol during the whole process. Our results
contributes specifically with relevant information (i) to support practitioners choosing
appropriate tools that best fits their needs in a specific context of SPL, (ii) to point out
attributes and requirements relevant to those interested in developing new tools, and
(iii) to help with the improvement/extension of existing tools. We expect that both
researchers and practitioners can benefit from the results of this SLR.

The rest of this paper is organized as follow. Section 2 presents the steps carried
out in this SLR, presenting the research protocol, conduction, and process of data
extraction. Section 3 presents the summary and analysis of observed data in the se-
lected studies, answering three research questions. Section 4 presents the threats to
validity related to this SLR and how they were addressed prior of the study to minim-
ize their impact. Finally, Section 5 concludes the paper and provides directions for
future work.

2 Literature Systematic Review (SLR)

This study has been carried out according to the guideline for SLR proposed by Kit-
chenham and Charters [32]. We have adapted and applied such techniques in order to

 A Systematic Literature Review of Software Product Line Management Tools 75

identify and classify existing tools to support SPL management. The guidelines [32]
are structured according a three-step process for Planning, Conducting, and Reporting
the review. Fig. 1 depicts an overview of our research process comprising each step
and its stages sequence. The execution of the overall process involves iteration, feed-
back, and refinement of the defined process [32]. The SLR steps and protocol are
detailed below.

Fig. 1. Overview research process

2.1 Planning the Review

This step has the goal of developing a protocol that specifies the plan that the SLR
will follow to identify, assess, and collate evidence [32]. To plan an SLR includes
several actions:

Identification of the Need for a Review. The need for an SLR originates from in-
crease in the number of SPL management tools made available. In this context, the
choice of one tool that best fits the researchers and practitioners needs in a specific
context of SPL is far from trivial. Therefore, this SLR aims to give an overall picture
of the tools available in the literature for SPL management, in order to find out how
they support the variability management process.

Specifying the Research Questions. The focus of the research questions (RQs) is to
identify and analyze SPL management tools. The RQs are formulated with the help of
Population, Intervention, Comparison, Outcome, and Context (PICOC) criteria [28].
The population is composed of studies that cite SPL management tools. The interven-
tion includes search for indications that the SPL conception, development, and main-
tenance can be fully supported. The comparison goal is to find evidences on the
characteristics and functionalities that differ each tool. The outcome of this study
represents how tools support the variability management process. It supports practi-
tioners and researchers not only choosing appropriate tools, but also in the develop-
ment of new tools and improvement of existing tools. The context is within the
domains of SPL management with a focus on tools and their application domain.

The main research question (RQ) of this study is: How do the available tools for
SPL support the variability management process? To answer this question, a set of

76 J.A. Pereira, K. Constantino, and E. Figueiredo

sub-questions was derived from the main RQ to identify and analyze the relevant
literature discussions. More specifically, we investigate three RQs:

• RQ1. How many SPL management tools have been cited in the literature since
2000?

• RQ2. What are the main characteristics of the tools?
• RQ3. What are the main functionalities of the tools?

To address RQ1, we identified tools that are cited in the literature since 2000. With
respect to RQ2, we identify the types of tools that have been developments and where
the tools were developed. Through these descriptions, it is possible to map the current
adoption of tools for SPL. Finally, with respect to RQ3, we are concerned with how
the tool supports each stage of the development process, since the SPL conception, to
its development, and maintenance. In particular, what SPL topics, contributions, and
novelty they constitute to. Hence, it is possible to map how tools are supporting the
SPL management process and if the process is not fully supported, i.e., if there are
gaps in the existing tools, or if there is a need of developing functionalities that are
not available in existing tools. Therefore, this SLR was conducted to identify, ana-
lyze, and interpret all available evidence related to specific RQs.

Developing a Review Protocol. We conducted an SLR in journals and conferences
proceedings published from January 1st 2000 to December 31th 2013, by the fact that
visibility provided by SPL in recent years has produced a higher concentration of
research [37]. Three researchers were involved in this process and all of them
continuously discussed and refined the RQs, search strings, inclusion, and exclusion
criteria.

2.2 Conducting the Review

Conducting the review means executing the protocol planned in the previous phase.
The conduction of this SLR includes several actions:

Identification of Research. Based on the RQs, the keywords were extracted and used
to search the primary study sources. The search string used was constructed using the
strategy proposed by Chen et al. [13]. Note that, we check preliminarily the keywords
in all relevant papers already known [35, 40, 55]. Based on this strategy, this study
relies on the following search string.

(“tool”) AND (“product line” OR “product family” OR “system family”) AND
(“management” OR “modeling” OR “configuration”)

The term “tool” ensures that the research is conducted in order to find tools. In
addition, the terms “product line”, “product family” or “system family” restrict
the search by SPL tools. Finally, the terms “management”, “modeling” or “configu-
ration” refers to the main functions for the development of SPL tools. Note that
management is a generic term that includes both the modeling management and the
configuration management in SPL. The primary studies were identified by applying

 A Systematic Literature Review of Software Product Line Management Tools 77

the search strings to three scientific databases, namely ACM Digital Library1, IEEE
Xplore2, and ScienceDirect3. These libraries were chosen because they are some of
the most relevant ones in the software engineering literature [58]. The search was
performed using the specific syntax of each database and considering only the title,
abstract, and keywords. The results in each digital library are detailed in the Web
supplementary material [2]. In addition to the search in digital libraries, the references
of the primary studies were also read in order to identify other relevant primary stu-
dies (this technique is called “snowballing”) [64].

Selection of Primary Studies. The basis for the selection of primary studies is the
inclusion and exclusion criteria [32]. The following two inclusion criteria (IC) were
used to include studies that are relevant to answer the RQs.

• IC1. The publications should be "journal" or "conference" and only papers written
in English were considered.

• IC2. We included only primary studies that present tools to support the SPL man-
agement process (including one or more phases of the development cycle and
maintenance of SPLs, from conception until products derivation). Therefore, the
title, abstract, and keywords should explicitly mentions that the focus of the paper
contributes with tools to support SPL variability management.

The following three exclusion criteria (EC) were used to exclude studies that we do
not consider relevant to answer the RQs.

• EC1. We exclude technical reports presenting lessons learned, theses/dissertations,
studies that describe events, and studies that are indexes or programming.

• EC2. We exclude duplicate papers. If a primary study is published in more than
one venue, for example, if a conference paper is extended in a journal version, only
the latter instance should be counted as a primary study. The journal version is pre-
ferred since it is expected to be the most complete report.

• EC3. Papers that do not focus on SPL management tools. Approaches, methods,
and other techniques for SPL by itself should be excluded.

After papers inclusion, during the tools selection, we apply the following two EC.

• EC4. Tools that are currently discontinued.
• EC5. Tools without executable and/or documentation describing its functionalities

available. Moreover, the tools with written documentation that does not have usa-
ble description about their functionalities were excluded because it would not be
possible to understand how the tool works.

Data Extraction and Monitoring. As in the study of Petersen et al. [45], the
reviewers first read abstracts and look for keywords and concepts that reflect the con-
tribution of the paper. When abstracts are insufficient to allow meaningful keywords

1 http://dl.acm.org/
2 http://ieeexplore.ieee.org/
3 http://www.sciencedirect.com/

78 J.A. Pereira, K. Constantino, and E. Figueiredo

to be chosen, reviewers choose to also scan the introduction or conclusion sections of
the paper. As in the study of Kitchenham et al. [32], each journal and conference pa-
per was reviewed by one of three different researchers (i.e. Pereira, Constantino and
Figueiredo). Pereira coordinated the allocation of researchers to tasks based on the
availability of each researcher and their ability to access the specific journals and
conference proceedings. The researcher responsible for searching the specific journal
or conference applied the detailed inclusion and exclusion criteria to the relevant pa-
pers. When the reviewers decided that a paper is not relevant, they provided a short
rationale why paper should not be included in the study (for instance, because the
paper does not cite a tool that support the SPL management process). In addition,
another researcher checked any papers included and excluded at this stage. This step
was done in order to check that all relevant papers were selected.

Once the list of primary studies is decided, the data from the tools cited by the pa-
pers are extracted. The phase of data extraction aims to summarize the data from the
selected studies for further analysis. All available tool documentation served as data
sources, such as tutorials, technical reports, industry magazines, dissertations/theses,
websites, as well as the communication with authors (e.g., emails exchanged). The
data extracted from each tool selected were: (i) date of data extraction; (ii) references
to primary studies; (iii) tool name; (iv) main references of the tool; (v) release year;
(vi) website tool (if available); (vii) main tools characteristics (graphical user inter-
face, prototype, online, plugin, free for use, open-source, user guide, example solu-
tions, and where the tool was developed); and (viii) main functionalities of each tool.

The data extraction phase involved all authors of this paper. We use Google's
search engine to collect the data from the tools. The researcher Pereira extracted the
data and the other researchers checked the extraction. Note that, during the data ex-
traction the exclusion criteria (EC4 and EC5) were verified. As in Kitchenham [32]
when there was a disagreement, we discussed the issues until we reach an agreement.
In this step, we used an Excel table to document the data extraction process. It was
done in order to assess the quality of the extraction procedure. The data extraction can
be found in the Web supplementary material [2].

2.3 Reporting the Review

The reporting step follows to publish the detailed results in the project website [2] and
to write this paper. Its goal is to make it clear to others how the search was, and how
they can find the same results. The project website also provides detailed information
about the results and the search protocol.

3 Results and Analyses

The primary studies identified by the inclusion criteria were selected individually and
summarized in the results. After the selection and data extraction of the tools cited by
these papers, we discuss the answers to our RQs.

 A Systematic Literature Review of Software Product Line Management Tools 79

3.1 SPL Management Tools

Table 1 summarizes the number of papers found in our SLR. Note that, for this analy-
sis, relevant studies (total included) more than doubled after 2007. In the first stage,
after applying the inclusion and exclusion criteria, 46 papers were included and 103
papers were excluded (4 are duplicated papers). In the second stage, for each refer-
ence of primary studies included, we analyze the title and we included more 6 papers
[1, 6, 25, 26, 29, 37] that present additional tools to support the SPL management
process (technique called “snowballing”). This technique was necessary in order to
have a more complete set of tools. At the end of the search phase, 52 papers were
included. Specifically, we included 16 papers of the ACM Digital Library (from 48
papers returned), 19 papers of IEEE Xplore (from 71 papers returned), and 11 papers
of Science Direct (from 30 papers returned).

Table 1. Number searched for years 2000-2013

Year

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

A
ll

Total 1 4 1 3 7 4 6 13 13 9 15 22 30 21 149

Total Selected 0 0 1 1 2 1 3 4 6 2 4 7 6 9 46

Total Snowballing 0 0 0 0 1 0 1 0 1 1 1 0 0 1 6

Total Included 0 0 1 1 3 1 4 4 7 3 5 7 6 10 52

After the papers inclusion process, 60 potentially relevant tools were selected for
extracting and analyzing the data. Another search was performed on Google search
engine with the particular information of every tool cited by the papers, in order to
find out more documentation about these tools. There are two major artifacts analyzed
in this review. The first is concerned with the executable, through which the reviewers
could test the functionalities of the tool; and the second involves the written documen-
tation found, i.e. websites, tutorials, technical reports, papers, industry magazines and
dissertations/theses for data extraction.

During data extraction, 19 relevant tools were excluded as a result of applying the
detailed exclusion criteria EC4 and EC5. Two tools was excluded because the project
is currently discontinued (EC4), and the remaining tools were not possible to charac-
terize how they work due to the lack of information (EC5). The 41 tools included are
listed in Table 2 in chronological order. Data in this table show that the number of
released tools increased in the years 2005, 2007, 2009 and 2012.

3.2 Main Characteristics of the Tools

After a careful selection of documentation about the included tools, we identify their
main characteristics. Table 2 shows which characteristics each tool implements. The
following characteristics were considered: graphical user interface (GUI), prototype
(PRT), online (ONL), plugin (PLG), free for use (FRE), open-source (OPS), user
guide available (USG), example solutions available (EXS), and where the tool was
developed (DEV). We use "n/a" for information not available. These characteristic
was selected inspired by [13, 37, 59].

80 J.A. Pereira, K. Constantino, and E. Figueiredo

Table 2. Characteristics each SPL management tool supports

Tool [Ref.] Year GUI PRT ONL PLG FRE OPS USG EXS DEV
LISA toolkit [25] 2013 ● ● n/a n/a n/a n/a B

ISMT4SPL [43] 2012 ● n/a n/a n/a n/a A

Sysiphus-IVMM [56] 2012 ● ● ● ● n/a n/a A

VariaMos [39] 2012 ● ● ● n/a ● n/a A

VULCAN [36] 2012 ● ● ● ● n/a n/a A

Pacogen [27] 2011 ● ● n/a n/a A
Invar [19] 2010 ● ● ● ● n/a n/a ● A

FMT [35] 2009 ● ● ● n/a ● n/a A

Hephaestus [6] 2009 ● ● ● n/a n/a A

Hydra [47] 2009 ● ● ● ● ● n/a B

SPLOT [40] 2009 ● ● ● ● n/a ● A

S2T2 [7] 2009 ● ● ● n/a n/a ● B
FeatureMapper [26] 2008 ● ● ● ● ● n/a A

MoSPL [54] 2008 ● ● n/a n/a n/a n/a A

VISIT-FC [12] 2008 ● ● n/a n/a n/a n/a A

DecisionKing [17] 2007 ● ● n/a n/a n/a n/a B

DOPLER [18] 2007 ● ● n/a n/a n/a ● B

FaMa [3] 2007 ● ● ● ● ● ● A

GenArch [14] 2007 ● ● ● ● n/a n/a A

REMAP-tool [49] 2006 ● ● ● n/a n/a n/a ● A

YaM [29] 2006 ● ● n/a n/a n/a n/a B

AORA [61] 2005 ● n/a ● n/a ● A

DOORS Extension [9] 2005 ● ● n/a A

FeatureIDE [55] 2005 ● ● ● ● ● ● A

Kumbang [41] 2005 ● ● ● ● ● ● B
PLUSS toolkit [21] 2005 ● n/a n/a B

VARMOD [62] 2005 ● ● n/a n/a ● A

XFeature [63] 2005 ● ● ● ● ● ● B

COVAMOF-VS [50] 2004 ● ● ● n/a A

DREAM [42] 2004 ● n/a n/a n/a n/a A

ASADAL [31] 2003 ● ● n/a n/a n/a A
Pure::Variants [51] 2003 ● ● ● ● I

Captain Feature [11] 2002 ● ● ● ● n/a A

DECIMAL [16] 2002 ● n/a n/a n/a n/a A

Odyssey [8] 2002 ● ● ● ● A

GEARS [33] 2001 ● ● n/a n/a I

WeCoTin [1] 2000 ● ● ● n/a ● I

Holmes [53] 1999 ● ● n/a n/a n/a n/a A

DARE [23] 1998 ● ● n/a n/a I

Metadoc FM [57] 1998 ● ● ● ● I

001 [34] 1993 ● n/a n/a A

In this analysis, we identified that only one tool (Pacogen) has no graphical user in-

terface. Most tools are neither prototypes (83%) nor online (90%). Furthermore, we
found out that 51% of the tools are plugins. Plugins provide the extension of tools
already established and known. Additionally, 46% are free for use and only 34% are
open-source projects. However, we highlight that the increased development of free

 A Systematic Literature Review of Software Product Line Management Tools 81

and open source tools could increase the community's interest in adopting the concept
of SPL, and promote knowledge sharing and extension. A drawback in this case is
that several developers do not make the source code available.

User guide (USG) and example solutions (EXS) are not available for most tools
analyzed. User guide and example solutions are mainly important for users that do not
have any kind of previous training before the tool usage, because these documents
show how the user can start from. They enable novice users to use the tool according
to the planned process and the result to be correctly interpreted. Little documentation
available and lack of supporting examples are some of the reasons that may end up
discouraging the adoption and wide use of these tools since it would requires users to
study and guess the tool behavior. Finally, we extract information about where the
tool was developed (last column in Table 2). We found out that 66% of the selected
tools were developed exclusively in the academic environment (A), while only 12%
were developed exclusively in the industry (I), and the remaining 22% tools were
developed in both academic and industrial environments (B).

3.3 Main Functionalities of the Tools

Our next analyses in this section extend an existing classification of research ap-
proaches by Lisboa et al. [37], summarized in Table 3. This classification schema

Table 3. Explanation functionalities evaluated extended from Lisboa et al. [37]

Functionalities Explanation

Planning It is responsible for collecting the data needed to define domain scope

(1) Pre-analysis documentation Stores and retrieves the information

(2) Matrix of the domain It is represented using rows and columns (features and applications)

(3) Scope definition Identifies the features that should be part of the reuse infrastructure

Modeling It represents the domain scope (commonality, variability and constraint)

(4) Domain representation Represents the defined scope

(5) Variability Represents the variability a feature can have (optional, alternative and or)

(6) Mandatory features Represent the features that will always be in the products

(7) Composition rule Create restrictions for representing and relating the features

(8) Relationship types Provides different types of relationships between the features

(9) Feature attributes Permits the inclusion of specific information for each feature

(10) Source code generator Responsible for generating source code based on model

Validation This group refers to functionalities responsible to validate the domain

(11) Domain documentation Provides documentation about the domain

(12) Manage requirements Provides support for inclusion of requirements or use cases in the tool

(13) Relationship Relates the existing features of a domain to the requirements

(14) Reports Generates reports about the information available in the domain

(15) Consistency check Verifies if the generated domain follows the composition rules created
Product Configuration and
Integration

Product configuration is built from a common set of reusable asset, and
Integration allows the interoperability between other applications.

(16) Product derivation Identifies the features that belong to a product

(17) Import/export Provides the function of Import/export from/to other applications

82 J.A. Pereira, K. Constantino, and E. Figueiredo

present a practical approach for analysis based on a well-defined set of guidelines and
metrics. We extend the previous classification [37] by analyzing new functionalities,
such as source code generation and support for integration. Based on Table 3, Table 4
shows which functionalities each tool offers support to. The numbers refer to the
functionalities described in Table 3 and the columns separate each group of functio-
nalities: Planning, Modeling, Validation, and Product Configuration and Integration
(PCI), respectively. The analysis of the results focuses on presenting the frequencies
of publications for each functionality. This result facilitates the identification of which
functionalities have been emphasized in past research and, thus, to identify gaps and
possibilities for future research. In addition, it can help to discover which tool best
satisfies the need of a user in a given context.

In Table 4, there is an evident lack of tools to support all stages of SPL develop-
ment and evolution. In this classification, the majority of the analyzed tools have
similar functionalities. Most of the tools available both commercially and freely sup-
port the first four functionalities in group Modeling, the last functionality in the
Validation group, and the two functionalities in the Product Configuration and Inte-
gration group. Therefore, this result identified that the largest gap in the analyzed
tools is support the Planning group. In the Planning group, the identified functionali-
ties were available only in fourteen tools, and only six tools implement all functionali-
ties in this group. The results of this systematic review reveal that 66% of the selected
tools stress the need for planning support. A much smaller number of tools (34%)
describe concrete support. This seems to indicate that, despite increasing interest and
importance, planning is not yet the main focus of the product line research communi-
ty. Particularly, in Modeling group, thirty-five tools (85%) support at least four of the
functionalities of this group. Regarding the Validation group, only one tool (YaM)
does not support any functionality. Note that twenty tools (49%) support at least three
of the functionalities of this group. In the Product Configuration and Integration
group, thirty-four tools (83%) support the product derivation functionality, and the
import/export from/to other applications functionality is exploited for twenty-nine
tools (71%). Integration is a desirable functionality since it allows the interoperability
between other applications. The lack of this functionality could hinder the adoption of
the tool, as it hampers their integration with other existing tools. Therefore, although
the results highlight the lack of tools to fully support SPL management; e.g., much of
the analyzed tools do not support the Planning group. On the other hand, we found
that the tools offer interoperability between other applications. This fact maximizes
the reuse within the solution itself and externally, for instance, allowing users to mi-
grate from on technology (e.g., conditional compilation [22]) to another (e.g., feature
oriented programming [24]).

4 Threats to Validity

A key issue when performing of the SLR is the validity of the results. Questions we
need to answer include: was the study designed and performed in a sound and con-
trolled manner? To which domain can the results generalize? This section presents the

 A Systematic Literature Review of Software Product Line Management Tools 83

Table 4. Functionalities each SPL management tool supports

Tool
Planning Modeling Validation PCI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
LISA toolkit ● ● ● ● ● ● ● ● ● ● ● ● ●

ISMT4SPL ● ● ● ● ● ● ● ● ● ● ●

Sysiphus-IVMM ● ● ● ● ● ● ● ● ● ● ●

VariaMos ● ● ● ● ● ● ● ●

VULCAN ● ● ● ● ● ● ● ● ● ●

Pacogen ● ● ●

Invar ● ● ● ●

FMT ● ● ● ● ● ● ● ●

Hephaestus ● ● ● ● ● ●

Hydra ● ● ● ● ● ● ● ●

SPLOT ● ● ● ● ● ● ● ● ● ●

S2T2 ● ● ● ● ● ● ● ●

FeatureMapper ● ● ● ● ● ● ● ● ● ● ●

MoSPL ● ● ● ● ● ● ● ● ● ● ●

VISIT-FC ● ● ● ● ● ●

DecisionKing ● ● ● ● ● ● ● ● ● ● ● ● ●

DOPLER ● ● ● ● ● ● ● ● ● ● ● ● ● ●

FaMa ● ● ● ● ● ● ● ● ● ● ●

GenArch ● ● ● ● ● ● ● ● ●

REMAP-tool ● ● ● ● ● ● ● ● ● ● ● ● ●

YaM ● ●

AORA ● ● ● ● ● ● ● ● ● ● ● ● ●

DOORS Extens. ● ● ● ● ● ● ● ●

FeatureIDE ● ● ● ● ● ● ● ● ● ●

Kumbang ● ● ● ● ● ● ● ● ● ● ● ●

PLUSS toolkit ● ● ● ● ● ● ● ●

VARMOD ● ● ● ● ● ● ● ● ● ● ●

XFeature ● ● ● ● ● ● ● ● ● ● ●

COVAMOF-VS ● ● ● ● ● ● ●

DREAM ● ● ● ● ● ● ● ● ●

ASADAL ● ● ● ● ● ● ● ● ●

Pure::Variants ● ● ● ● ● ● ● ● ● ● ● ●

Captain Feature ● ● ● ● ● ●

DECIMAL ● ● ● ● ● ●

Odyssey ● ● ● ● ● ●

GEARS ● ● ● ● ● ● ● ● ● ●

WeCoTin ● ● ● ● ● ● ● ●

Holmes ● ● ● ● ● ● ● ● ● ● ●

DARE ● ● ● ● ● ● ●

Metadoc FM ● ● ● ● ● ● ● ● ● ● ●

001 ● ● ● ● ● ● ● ● ● ●

different validity threats related to SLR. We presented how the threats were addressed
to minimize the likelihood of their realization and impact. We discussed the SLR
validity with respect to the four groups of common threats to validity: internal validi-
ty, external validity, construct validity, and conclusion validity [64].

84 J.A. Pereira, K. Constantino, and E. Figueiredo

External Validity. External validity concerns the ability to generalize the results to
other environments, such as to industry practices [64]. A major external validity to
this study was during the identified primary studies. The search for the tools was con-
ducted in three relevant scientific databases in order to capture as much as possible
the available tools and avoid all sorts of bias. However, the quality of search engines
could have influenced the completeness of the identified primary studies. That means
our search may have missed those studies whose authors would have used other terms
to specify the SPL management tool or would not have used the keywords that we
used for searches in the title, abstract, and keywords of their papers.

Internal Validity. Internal validity concerns the question whether the effect is caused
by the independent variables (e.g. reviewers) or by other factors [64]. In this sense, a
limitation of this study concerns the reliability. The reliability has been addressed as
far as possible by involving three researchers, and by having a protocol which was
piloted and hence evaluated. If the study is replicated by another set of researchers, it
is possible that some studies that were removed in this review could be included and
other studies could be excluded. However, in general we believe that the internal va-
lidity of the SLR is high given the use of a systematic procedure, consultation with
the researchers in the field, involvement, and discussion between three researchers.

Construct Validity. Construct validity reflects to what extent the operational meas-
ures that are studied really represent what the researcher have in mind and what is
investigated according to the RQs [64]. The three reviewers of this study are re-
searchers in the software engineering field, focused in SPL, and none of the tools was
written/developed by us. Therefore, we are not aware of any bias we may have intro-
duced during the analyses. However, from the reviewers perspective, a construct va-
lidity threat could be biased judgment. In this study, the decision of which studies to
include or to exclude and how to categorize the studies could be biased and thus pose
a threat. A possible threat in such review is to exclude some relevant tool. To minim-
ize this threat both the processes of inclusion and exclusion were piloted by the three
reviewers. Furthermore, potentially relevant studies that were excluded were docu-
mented. Therefore, we believe that we do not have omitted any relevant tool.

Conclusion Validity. Threats to conclusion validity are related with issues that affect
the ability to draw the correct conclusions from the study [64]. From the reviewers’
perspective, a potential threat to conclusion validity is the reliability of the data ex-
traction categories from the tools, since not all information was obvious to answer the
RQ and some data had to be interpreted. Therefore, in order to ensure the validity,
multiple sources of data were analyzed, i.e. papers, websites, technical reports, indus-
try magazines manuals, and executable. Furthermore, in the event of a disagreement
between the two primary reviewers, the third reviewer acted as an arbitrator to ensure
agreement was reached.

5 Conclusion and Future Work

In industry, the development of large software systems requires an enormous effort
for modeling and configuring multiple products. To face this problem, several tools

 A Systematic Literature Review of Software Product Line Management Tools 85

have been proposed and used for representing and managing the variations of a sys-
tem. There are many available options of variability management tools. Therefore,
this paper aims to identify and evaluate existing tools in the literature to support the
SPL management. To this end, we conducted a SLR, where we follow a guide of
systematic review proposed by Kitchenham [32]. To substantiate the findings of the
paper, the working group has set up a website [2] where interested people can verify
detailed results of the SLR.

Although analysis of existing SPL management tools has been performed in pre-
vious studies [5, 10, 20, 59, 44], the purpose of these studies in a general way was to
facilitate tool selection in the context of SPL. However, they were aimed at studying
only tools very specifics or a small group of tools. Our study differs from others by
the fact of being an SLR. In addition, with regard to SLR presented by Lisboa et al.
[37], the results confirm that our study analyzes a relatively number higher of tool.
Finally, our resulted have impact due to the SLR period, search string, processes of
inclusion/exclusion and data extraction.

Our SLR identified 41 tools existing in the literature that provide support to at least
one SPL management phase. It provides an overview of tools where it is possible to
see which characteristics and functionalities each tool implemented. The contribution
of this research covers both the academic and the professional segment. In the aca-
demic environment, this research helps to highlight the lack of complete tools in this
area, identifying gaps in current research to provide a background for new research
activities. In the professional context, this research helps to find possible tools that
will assist SPL developers or even help them manage existing SPL.

Through the results obtained, it is clear that the little documentation available and
the complexity and/or the unavailability of existing support tools are some of the rea-
sons that may end up discouraging the adoption and wide use of these tools in organi-
zations and academia. Therefore, we intend to use our knowledge to conduct courses
in both academia and industry, in order to encourage adoption of these tools. In addi-
tion, there are still gaps in the complete process support in all the tools we investi-
gated. Although most of the tools offer interoperability between other applications,
such gaps in functionality can make it difficult for industry to adopt a tool, because it
would hinder the use of several tools and traceability of information among them.
Therefore, our review suggests that there are opportunities for the extension of the
existing tools. One of the gaps that we identify with the SLR is that manual method
for product configuration adopted by the tools may not be sufficient to support indus-
tries during SPL managing. The manual process makes product configuration into a
complex, time-consuming, and error-prone task. Therefore, we are working on an
extension of a tool with the new functionality [38]. Moreover, as future work, we aim
to evaluate (i) notations used in each tool; (ii) tools that can be used together in a
complementary way; (iii) some criteria to analyze the tools comparatively, for exam-
ple, GUI complexity and visualization support; and (vi) characteristics and functional-
ities relevant for the practitioners and researchers.

Acknowledgements. This work was partially supported by CNPq (grant Universal
485907/2013-5) and FAPEMIG (grants APQ-02532-12 and PPM-00382-14).

86 J.A. Pereira, K. Constantino, and E. Figueiredo

References

1. Asikainen, T., et al.: Using a Configurator for Modelling and Configuring Software Prod-
uct Lines based on Feature Models. In: Workshop on Software Variability Management
for Product Derivation, Software Product Line Conference (SPLC), pp. 24–35 (2004)

2. A Systematic Literature Review of Software Product Line Management Tools,
http://homepages.dcc.ufmg.br/~juliana.pereira/SLR

3. Benavides, D., et al.: Fama: Tooling a Framework for the Automated Analysis of Feature
Models. In: 1st International Workshop on Variability Modelling of Software Intensive
Systems (VaMoS), pp. 129–134 (2007)

4. Bernardo, M., et al.: Architecting Families of Software Systems with Process Algebras.
ACM Transactions on Software Engineering and Methodology 11(4), 386–426 (2002)

5. Beuche, D., et al.: Variability Management with Feature Models. Journal Science of Com-
puter Programming 53(3), 333–352 (2004)

6. Bonifácio, R., et al.: Hephaestus: A Tool for Managing SPL Variabilities. In: Brazilian
Symposium on Components, Architectures and Reuse Software (SBCARS), pp. 26–34
(2009)

7. Botterweck, G., et al.: A Design of a Configurable Feature Model Configurator. In: 3rd In-
ternational Workshop on Variability Modelling of Software Intensive Systems (VaMoS),
pp. 165–168 (2009)

8. Braga, R., et al.: Odyssey: A Reuse Environment based on Domain Models. In: IEEE
Symposium on Application-Specific Systems and Software Engineering and Technology
(ASSET), pp. 50–57 (1999)

9. Buhne, S., et al.: Modelling Requirements Variability across Product Lines. In: 13th Inter-
national Conference on Requirements Engineering (RE), pp. 41–50 (2005)

10. Capilla, R., et al.: An Analysis of Variability Modeling and Management Tools for Product
Line Development. In: Software and Service Variability Management Workshop - Con-
cepts, Models, and Tools, pp. 32–47 (2007)

11. Captain Feature Tool,
http://sourceforge.net/projects/captainfeature

12. Cawley, C., et al.: Interactive Visualisation to Support Product Configuration in Software
Product Lines. In: 2nd International Workshop on Variability Modeling of Software-
Intensive Systems (VaMoS), pp. 7–16 (2008)

13. Chen, L., Babar, M.A.: A Systematic Review of Evaluation of Variability Management
Approaches in Software Product Lines. Journal Information and Software Technolo-
gy 53(4), 344–362 (2011)

14. Cirilo, E., et al.: A product Derivation Tool based on Model-Driven Techniques and Anno-
tations. Journal of Universal Computer Science 14(8), 1344–1367 (2008)

15. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley (2001)

16. Dehlinger, J., et al.: Decimal and PLFaultCAT: From Product-Line Requirements to Prod-
uct-Line Member Software Fault Trees. In: 29th International Conference on Software En-
gineering (ICSE), pp. 49–50 (2007)

17. Dhungana, D., et al.: Decisionking: A Flexible and Extensible Tool for Integrated Varia-
bility Modeling. In: 1st International Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), pp. 119–128 (2007)

18. Dhungana, D., et al.: The Dopler Meta-Tool for Decision-Oriented Variability Modeling:
A Multiple Case Study. Journal Automated Software Engineering 18(1), 77–114 (2011)

 A Systematic Literature Review of Software Product Line Management Tools 87

19. Dhungana, D., et al.: Integrating Heterogeneous Variability Modeling Approaches with
Invar. In: 7th International Workshop on Variability Modelling of Software-intensive Sys-
tems, VaMoS (2013)

20. Djebbi, O., et al.: Industry Survey of Product Lines Management Tools: Requirements,
Qualities and Open Issues. In: 15th IEEE International Requirements Engineering Confe-
rence (IREC), pp. 301–306 (2007)

21. Eriksson, M., et al.: The Pluss Toolkit: Extending Telelogic Doors and IBM-Rational Rose
to Support Product Line Use Case Modeling. In: 20th International Conference on Auto-
mated Software Engineering (ASE), pp. 300–304 (2005)

22. Figueiredo, E., et al.: Evolving Software Product Lines with Aspects: An Empirical Study
on Design Stability. In: 30th International Conf. on Soft. Eng. (ICSE), pp. 261-270 (2008)

23. Frakes, W.B., et al.: Dare-cots: A Domain Analysis Support tool. In: International Confe-
rence of the Chilean Computer Science Society, pp. 73–77 (1997)

24. Gaia, F., et al.: A Quantitative and Qualitative Assessment of Aspectual Feature
Modules for Evolving Software Product Lines. In: Science of Computer Programming
(SCP), pp. 1–24 (2014)

25. Groher, I., Weinreich, R.: Supporting Variability Management in Architecture Design and
Implementation. In: 46th Hawaii International Conference on System Sciences (HICSS),
pp. 4995–5004 (2013)

26. Heidenreich, F., et al.: FeatureMapper: Mapping Features to Models. In: International
Conference on Software Engineering (ICSE), pp. 943–944 (2008)

27. Hervieu, A., et al.: Pacogen: Automatic Generation of Pairwise Test Configurations from
feature models. In: 22nd International Symposium on Software Reliability Engineering
(ISSRE), pp. 120–129 (2011)

28. Higgins, J., et al.: Cochrane Handbook for Systematic Reviews of Interventions, vol. 5.
Wiley Online Library (2008)

29. Jain, A., Biesiadecki, J.: Yam: A Framework for Rapid Software Development. In: 2nd
IEEE International Conference on Space Mission Challenges for Information Technology
(SMC-IT), pp. 182–194 (2006)

30. Kang, K., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study (1990),
http://www.sei.cmu.edu/reports/90tr021.pdf/

31. Kim, K. et al.: Asadal: A Tool System for Co-Development of Software and Test Envi-
ronment based on Product Line Engineering. In: 28th International Conference on Soft-
ware Engineering (ICSE), pp. 783–786 (2006)

32. Kitchenham, B., et al.: Systematic Literature Reviews in Software Engineering: A syste-
matic Literature Review. Journal Information and Software Technology 51(1), 7–15
(2009)

33. Krueger, C.: Biglever Software Gears and the 3-tiered SPL Methodology. In: 22nd Confe-
rence on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pp. 844–845 (2007)

34. Krut, J.R.W.: Integrating 001 Tool Support in the Feature-Oriented Domain Analysis me-
thodology. Technical Report, Software Engineering Institute (SEI) (1993),
http://repository.cmu.edu/cgi/viewcontent.cgi?
article=1166&context=sei

35. Laguna, M., Hernández, C.: A Software Product Line Approach for Ecommerce Systems.
In: 7th International Conference on e-Business Engineering (ICEBE), pp. 230–235 (2010)

36. Lee, H., et al.: VULCAN: Architecture-Model-Based Workbench for Product Line Engi-
neering. In: 16th International Software Product Line Conference (SPLC), pp. 260–264
(2012)

88 J.A. Pereira, K. Constantino, and E. Figueiredo

37. Lisboa, L.B., et al.: A Systematic Review of Domain Analysis Tools. Journal Information
and Software Technology 52(1), 1–13 (2010)

38. Machado, L., et al.: SPLConfig: Product Configuration in Software Product Line. In: Bra-
zilian Congress on Software (CBSoft), Tools Session, pp. 1–8 (2014)

39. Mazo, R., et al.: Variamos: A Tool for Product Line Driven Systems Engineering with a
Constraint Based Approach. In: 24th International Conference on Advanced Information
Systems Engineering (CAiSE), pp. 1–8 (2012)

40. Mendonça, M. et al.: S.P.L.O.T.: Software Product Lines Online Tools. In: 24th Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pp. 761–762 (2009)

41. Myllärniemi, V., et al.: Kumbang tools. In: 11th Software Product Line Conference
(SPLC), pp. 135–136 (2007)

42. Park, J., et al.: Dream: Domain Requirement Asset Manager in Product Lines. In: Interna-
tional Symposium on Future Software Technology (ISFST) (2004)

43. Park, K., et al.: An Integrated Software Management Tool for Adopting Software Product
Lines. In: 11th International Conference on Computation and Information Science (ICIS),
pp. 553–558 (2012)

44. Pereira, J., et al.: Software Variability Management: An Exploratory Study with Two Fea-
ture Modeling Tools. In: Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS), vol. 1, pp. 1–10 (2013)

45. Petersen, K., et al.: Systematic Mapping Studies in Software Engineering. In: 12th Interna-
tional Conference on Evaluation and Assessment in Software Engineering (EASE), pp.
68–77 (2008)

46. Pohl, K., et al.: Software Product Line Engineering: Foundations, Principles and Tech-
niques. Springer (2005)

47. Salazar, J.R.: Herramienta para el Modelado y Configuración de Modelos de Característi-
cas. PhD Thesis, Dpto. Lenguajes y Ciencias de la Comp. Universidad de Málaga (2009)

48. Santos, A., et al.: Test-based SPL Extraction: An Exploratory Study. In: 28th ACM Sym-
posium on Applied Computing (SAC), Software Engineering Track, pp. 1031–1036 (2013)

49. Schmid, K., et al.: Requirements Management for Product Lines: Extending Professional
Tools. In: 10th International Software Product Line Conference (SPLC), pp. 113–122
(2006)

50. Sinnema, M., Deelstra, S., Nijhuis, J., Dannenberg, R.B.: COVAMOF: A Framework for
Modeling Variability in Software Product Families. In: Nord, R.L. (ed.) SPLC 2004.
LNCS, vol. 3154, pp. 197–213. Springer, Heidelberg (2004)

51. Spinczyk, O., Beuche, D.: Modeling and Building Software Product Lines with Eclipse.
In: 19th Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), pp. 18–19 (2004)

52. SPL Hall of Fame, http://splc.net/fame.html
53. Succi, G., et al.: Holmes: An Intelligent System to Support Software Product Line Devel-

opment. In: 23rd International Conference on Software Engineering (ICSE), pp. 829–830
(2001)

54. Thao, C., et al.: Software Configuration Management for Product Derivation in Software
Product Families. In: 15th International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS), pp. 265–274 (2008)

55. Thüm, T., et al.: FeatureIDE: An Extensible Framework for Feature-Oriented Software
Development. Journal Science of Computer Programming 79, 70–85 (2014)

56. Thurimella, A.K., Bruegge, B.: Issue-Based Variability Management Information and
Software Technology. Journal Information and Soft. Technology 54(9), 933–950 (2012)

 A Systematic Literature Review of Software Product Line Management Tools 89

57. Thurimella, A.K., Janzen, D.: Metadoc Feature Modeler: A Plug-in for IBM Rational
Doors. In: International Software Product Line Conference (SPLC), pp. 313–322 (2011)

58. Travassos, G.H., Biolchini, J.: Systematic Review Applied to Software Engineering. In:
Brazilian Symposium on Software Engineering (SBES), Tutorials, p. 436 (2007)

59. Unphon, H.: A Comparison of Variability Modeling and Configuration Tools for Product
Line Architecture (2008),
http://www.itu.dk/people/unphon/technical_notes/
CVC_v2008-06-30.pdf

60. Van der Linden, F., et al.: Software Product Lines in Action: The Best Industrial Practice
in Product Line Engineering. Springer (2007)

61. Varela, P., et al.: Aspect-Oriented Analysis for Software Product Lines Requirements En-
gineering. In: Proceedings of the 2011 ACM Symposium on Applied Computing (2011)

62. Varmod-Prime Tool. Software Systems Engineering Research Group/University of Duis-
burg-Essen, http://paluno.uni-due.de/en/varmod-prime

63. XFeature Modeling Tool, http://www.pnp-software.com/XFeature
64. Wohlin, C. et al.: Experimentation in Software Engineering: An Introduction. Kluwer

Academic Publishers (2012)

Open Source License Violation Check

for SPDX Files

Georgia M. Kapitsaki1 and Frederik Kramer2

1 Department of Computer Science, University of Cyprus,
1 University Avenue, Nicosia, Cyprus

gkapi@cs.ucy.ac.cy
2 Otto von Guericke University, Universitaetsplatz 2, D-39106, Magdeburg, Germany

frederik.kramer@ovgu.de

Abstract. The Open Source Software development model has gained a
lot of momentum in the latest years providing organizations and soft-
ware engineers with a variety of software, components and libraries that
can be exploited in the construction of larger application systems. Open
Source Software is accompanied by licenses that state the conditions un-
der which the intellectual property can be used. Since not all licenses
are governed by the same conditions of use, the correct combination of
licenses is vital, when different libraries are exploited in newly developed
application systems. If this is not adequately handled, license violations
might be a consequence of incompatibilities. In this paper we present our
work on license violation checking in the framework of Software Package
Data Exchange (SPDX). Starting from the modelling of license compat-
ibilities our approach examines potential violations in software package
information formatted using the SPDX specification. At the same time
alternative solutions in the form of applicable licenses for the software
package are proposed. This approach can be a valuable asset for Open
Source practitioners in the license decision process assisting in detecting
possible violations and in making suggestions on license use.

Keywords: Free Open Source Software, Licensing, License compatibil-
ity, Software Package Data Exchange.

1 Introduction

The popularity of Free and Open Source Software (FOSS) among software en-
gineers and enterprises is constantly growing as organizations try to integrate
openness in their procedures [5]. FOSS provides new possibilities for engineers
to incorporate third party software into their implementations and for organiza-
tions to distribute their products as open source embracing open ICT models. In
open source software, licenses express how the software can be exploited by the
potential users differentiating between user rights and obligations [13]. An open
source software license contains the terms under which the software is made
available and under which conditions it can be used, integrated, modified and
redistributed.

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 90–105, 2014.
c© Springer International Publishing Switzerland 2014

Open Source License Violation Check for SPDX Files 91

The problem that many software vendors often face is how to incorporate third
party software in their implementations correctly without causing any license
violations; remaining hence legally compliant. License violations are a complex
issue in FOSS due to the variety of licenses that state different and often contra-
dicting conditions of use referring mainly to conditions for software modification
and re-distribution. When software libraries licensed under different terms are
jointly used, this license diversity may lead to license incompatibilities. Licenses
cover a range from very permissive licenses, such as the MIT license and the
Academic Free License (AFL), to highly restrictive licenses, such as the GNU
General Public License (GPL) and the Open Source License (OSL). Licenses
are categorised as either permissive or copyleft. Permissive licensing allows the
software to be part of a larger product under almost any other license. Copyleft
licenses are posing more restrictions. Copyleft is further divided into weak and
strong copyleft. If the software used is weak copyleft-licensed, the created work
can be distributed under another license as long as no changes are made in this
weak copyleft-licensed software used. Strong copyleft requires all derivative work
that uses strong copyleft-licensed software to be distributed with the very same
license.

The Software Package Data Exchange (SPDX) specification addresses the
issue of integrating license information into the distribution of software packages
that can be formatted according to SPDX [12]. As such it is vital to examine
whether the information contained in the SPDX file regarding the license applied
on the software package is correct.

In this work we are addressing license violation detection by using SPDX files.
Specifically, we have designed and implemented a compatibility tool that assists
in: 1) verifying that the information on the license applied on the software pack-
age is correct, 2) identifying any license incompatibilities among the licenses of
the software package, and 3) making suggestions for licenses that can be applied
without causing violations. A side contribution of our work, that is evolving,
lies in the modelling of license compatibilities for a popular license set captured
in a license graph. This is the first work that approaches license violations in
a specification setting that can offer a global solution for license compatibility
enforcement. We hope that it will trigger more research on license compatibil-
ity and further promote the use of SPDX, as well as contribute to the tools
accompanying the specification.

The rest of the paper is structured as follows. Section 2 briefly presents the
Software Package Data Exchange specification focusing on parts that are rel-
evant to our work, whereas section 3 is dedicated to the modelling of license
compatibilities presenting the license compatibility graph. Section 4 analyses the
SPDX tool. This is further demonstrated in section 5 through a proof-of-concept
evaluation on existing open source projects. Section 6 gives a brief overview of
related work on open source licensing and compatibilities and, finally, section 7
concludes the paper.

92 G.M. Kapitsaki and F. Kramer

2 Describing Software Packages with SPDX

The Software Package Data Exchange specification with 1.2 being its latest for-
mal version can be used in distributing information on the licenses of software
packages [10]. According to the specification, it is ”a standard format for com-
municating the components, licenses, and copyrights associated with a software
package.” SPDX has been initiated by the Linux foundation and its contributors
include commercial companies such as BlackDuck, Fujitsu, HP, Siemens, amongst
others, as well as non-profit organizations such as the Eclipse and the Mozilla
foundations. SPDX covers over 200 licenses including the ones approved by the
Open Source Initiative (OSI), an organization dedicated to promoting open-
source software. This latter information on whether a license is OSI-approved is
also indicated in the SPDX file itself.

The SPDX consortium has introduced a number of tools that assist in the
manipulation of SPDX files including file converters and comparators (i.e., SPDX
Compare Utility). However, more elaborated tools are missing. Novel tools could
collaborate with SPDX files in order to assist software engineers, managers and
legal departments in drawing useful conclusions on the use of software licenses
in cases, where complicated software architectures prevail. For instance, when a
software package contains components with over 10 different licenses it is vital to
examine if these are treated correctly from a legal perspective. This is the case
addressed in the current work that examines license violation and compliance in
SPDX files.

SPDX files appear in various formats. These include RDF (Resource Descrip-
tion Framework) files, a textual key-value pair format referred to as tag format
and a spreadsheet format. The latter is provided for better readability and man-
ual changes. With respect to license compatibility and potential conflicts that
may appear in an existing SPDX file, we are mostly interested in the content of
the following RDF flavour fields:

– licenseDeclared (or tag key name PackageLicenseDeclared in tag format):
indicates the license that has been asserted for the package.

– licenseConcluded (or tag key name PackageLicenseConcluded in tag format):
indicates the license that the creator of the SPDX file concluded. This may
differ from the declared license.

– licenseInfoFromFiles (or tag key name PackageLicenseInfoFromFiles in tag
format): indicates the list of all licenses found in the files of the software
package.

3 Modelling License Compatibilities

In order to model license compatibility, we need to define what makes two FOSS
licenses compatible: we can consider license V1 to be ”one-way compatible” with
license V2, if software that contains components from both licenses can be li-
censed under license V2. As an example we assume two artefacts: One smaller

Open Source License Violation Check for SPDX Files 93

artifact licensed under any of the BSD-type licenses and a larger artefact li-
censed under any of the LGPL licenses. The merged code could than be licensed
under any of the LGPL licenses (see also 1). Or: anyone who conforms to license
V1 would also conform to license V2. Following this rationale, we can represent
known licenses and their compatibilities using a directed graph G(V,E) with
each vertex V representing a specific license with its version and each edge E
connecting two compatible licenses V1 and V2 (with direction from V1 to V2).

Although in the ideal case the complete set of licenses recognized by the OSI
and the Free Software Foundation (FSF) should be examined for compatibility,
this is not feasible in practice due to their very large number and the big dif-
ferences in the respective licenses text. If one considers different license versions
the OSI covers 70, the FSF 88 licenses and the SPDX specification maintains
as much as 215 licenses. As a starting point we selected the most popular li-
censes. We considered a license popular, if it were amongst the topmost selected
in relevant online repositories, such as SourceForge and the KnowledgeBase orig-
inating from BlackDuck. The most popular license in these repositories is the
GPL version 2.0 that is used in 58% of the projects hosted at SourceForge and
in 33% of the projects hosted on BlackDuck’s KnowledgeBase. Following this
selection process the license list depicted in Table 1 has derived with 20 licenses
from different categories. All have been approved both by OSI and FSF.

We have created a license compatibility graph (Figure 1) based on these li-
censes. The hard task of compatibility analysis for the construction of the graph
was based on various sources. These include Wikipedia article entries on licenses,
information from the license texts and forums, as well as the GNU hosted page
on license compatibilities with GPL that contains valuable information on the
rights and obligations of many FOSS licenses. The license graph that we obtained
from this process is directed and acyclic. Directionality is apparent due to the
”one way compatibility” between licenses. The second attribute derives from the
fact that usually compatibility stems from a less restrictive to a more restrictive
license. For instance, although the MIT and the BSD licenses seem equivalent,
software that contains both licenses should be licensed entirely under the more
restrictive license. In this case this would be the BSD license. Hence, it is not
feasible to return to the less restrictive license again through edge reachability.

Public domain appears also on the graph and is connected to the less restric-
tive permissive license, i.e., MIT/X11. Public domain is applied on work whose
intellectual property rights have expired and cannot be claimed anymore [3].
However there is no equivalent for public domain in the European Union. Note
that there are cases of ambiguities in license compatibility. This is based on the
fact that different organizations provide different interpretations of the license
text placing a license in different categories. For instance, the Eclipse Public Li-
cense 1.0 (EPL-1.0) is generally considered a weak copyleft one, but the German
institute for legal issues regarding free and open source software IfrOSS1 places
the license under the strong copyleft category.

1 http://www.ifross.com/

http://www.ifross.com/

94 G.M. Kapitsaki and F. Kramer

Table 1. Chosen license set

License name Abbreviation Category

Academic Free License version 3.0 AFL-3.0 Permissive

Apache License version 2.0 Apache-2.0 Permissive

Artistic License version 2.0 Artistic-2.0 Weak copyleft

BSD 2-clause or ”Simplified” or ”FreeBSD” BSD-2-clause Permissive

BSD 3-clause or BSD New” or ”BSD Simplified” BSD-3-clause Permissive

Common Development and Distribution License CDDL-1.0 Weak copyleft

Common Public License CPL-1.0 Weak copyleft

Eclipse Public License EPL-1.0 Weak copyleft

GNU Affero GPL version 3.0 AGPL-3.0 Strong copyleft

GNU General Public License version 2.0 GPL-2.0 Strong copyleft

GNU General Public License version 3.0 GPL-3.0 Strong copyleft

GNU Lesser General Public License version 2.1 LGPL-2.1 Weak copyleft

GNU Lesser General Public License version 3.0 LGPL-3.0 Weak copyleft

Microsoft Public License MS-PL Weak copyleft

Microsoft Reciprocal License MS-RL Weak copyleft

MIT License (X11 is treated similarly) MIT/X11 Permissive

Mozilla Public License version 1.1 MPL-1.1 Weak copyleft

Mozilla Public License version 2.0 MPL-2.0 Weak copyleft

Open Software License version 3.0 OSL-3.0 Strong copyleft

zlib/libpng License Zlib/Libpng Permissive

The rationale behind the use of the license graph is the same as in Wheeler’s
slide that provide the only available license graph [16], i.e., it can be used to see
if different software products licensed under two or more distinctive licenses can
be combined in a new application under another license. This can be performed
by following the edges coming out of these licenses to see whether they reach the
same license at some point or if one of them is reachable from all other licenses
of the distinctive set. In comparison to this earlier slide, our work covers a wider
range of licenses including licenses that were potentially less popular or did not
exist in 2007 (e.g., MPL-2.0), when Wheeler’s slide was created.

The compatibility evaluation of FOSS licenses can be really complex. For ex-
ample the MPL-1.1 and all versions of the GPL are incompatible [13] and cannot
be shipped jointly in one single software artefact. However, the problem can be
solved by proceeding from MPL-1.1 to MPL-2.0 and subsequent shipping under
GPL-2.0 terms for instance. In order to visualise this incompatibility as well as
the incompatibility between Apache-2.0 and GPL-2.0 in the graph dashed edges
have been used (between MPL-1.1 and MPL-2.0, and between Apache-2.0 and
MPL-2.0 that appear in grey). Those denote that transitivity is not applicable

Open Source License Violation Check for SPDX Files 95

Fig. 1. The current license compatibility graph

when a path contains any of those two edges; hence, license compatibility does
not apply for licenses that reach the same node, if the path contains one of the
dashed edges. The above does not apply when the dashed edge is the last edge
on the path.

Moreover, the type of combination of software artefacts needs to be consid-
ered. If, for example, the LGPL library A is dynamically linked to another piece
of software B, B is not required to be LGPLed. The same applies to plug-in
architectures, since they are considered a type of dynamic linking. If component
A is statically linked to B in turn, B is required to be LGPLed as well. For
different programming languages, such as Java, C /C++ or PHP, and different
scenarios, such as embedded device or web application, development popularity
of static and dynamic linking differs. We are not considering these architec-
ture/integration aspects in our prototypical implementation yet. However this
extension is of utmost practical relevance and will therefore be considered an
important future extension.

4 The SPDX Violation Checker

As aforementioned the main contribution of this work is the SPDX violation
checker, a tool that examines the content of a SPDX file in order to verify that
the license information contained is accurate and make appropriate suggestions,
if necessary. The major design objectives of the SPDX violation checker are to:

– verify whether the correct declared license(s) is/are indicated for the package
in the SPDX file by the creator of the software package as indicated in the
licenseDeclared field,

– check whether any adjustments are feasible in these declared license(s) in
case of found violations,

96 G.M. Kapitsaki and F. Kramer

– when adjustments are feasible, determine the adjustments that are feasible
as a subset of the set of licenses already present in the SPDX file as declared
licenses,

– propose a number of alternate licenses that can be used for the package
using the license information encountered in the different files of the package
captured in the licenseInfoFromFiles fields of the SPDX file (these licenses
are subsequently referred to in the paper as info licenses).

All aspects examined by the checker exploit the license graph of Figure 1 and
are all linked with the problem of deciding whether one license can be combined
with another or whether two licenses can be combined in a new package under
one of those two licenses or under a different one. This is also the main question
asked when deciding on the set of applicable package licenses based on the various
licenses present in the package files. This basically resolves into the following
graph problem: given two vertices V1 and V2 in a graph G find whether paths
p1 from V1 to Vx and p2 from V2 to Vx both exist:

comp(V1, V2) = true if V1
p1−→ Vx AND V2

p2−→ Vx (1)

comp shows the ability to combine licenses V1 and V2. In that case Vx would
be the applicable license for the info licenses. The above rationale is generalized
for the case of more vertices, e.g., when deciding whether three info licenses are
compatible or when choosing the applicable license using three info licenses.

This problem falls into graph multiple-source reachability that refers to deter-
mining where we can get to in a directed graph. In order to solve this problem
assuming that updates (insertions and deletions) are not required on the license
graph and that there are no storage restrictions for execution performance pur-
poses it is more convenient to calculate the transitive closure G∗ = (V,E∗) of
the license graph once and then store this graph and use it for every subsequent
query on license compatibility. For the transitive closure creation we are using a
variant of the Floyd-Warshall algorithm present in many approaches concerning
reachability [15]. Specifically, we have modified the algorithm so that at each
step 1) a new edge is added between two nodes for two consecutive edges only if
the first edge allows transitivity (covering the transitivity exceptions explained
for the license graph), and 2) the new edges contain also the number of licenses
that are found on the ’path’ of the new edge (helpful in finding the closest com-
patible license). Moreover, regarding the first change if the second edge does not
allow transitivity the new edge added also does not allow it. The Floyd-Warshall
algorithm requires in the worst case O

(
n3

)
time for the computation giving the

possibility to check after this computation the existence of compatibility between
two vertices and hence two licenses in constant time O

(
1
)
.

With n being the number of vertices in the license graph the worst case hy-
pothesis is to consider having n incoming vertices that need to be checked. If
these are connected with all remaining n − 1 vertices, then the execution time
would rise to:

O
(
(n− 1) ∗ n) = O

(
n2

)
(2)

Open Source License Violation Check for SPDX Files 97

However, in practice this complexity would reach O
(
n
)
, since no license vertex

is connected to all other vertices. This execution time is also maintained even
though the compatibility between each pair of info licenses also needs to be
examined using the same transitive closure graph. This is crucial to guarantee
the combination of the info licenses in a common software package. Please note
that if in the future updates are expected on the graph (i.e., by adding support
for more licenses at frequent intervals), this procedure needs to be improved.

A parameter that is taken into account in the violation checker when more
than one licenses are indicated as declared is whether these are mentioned in the
SPDX file as disjunctive (any of these licenses can be applied) or as conjunctive
(multiple licenses that all need to be applied). In the former case potential license
conflicts need to be examined for each declared license. If one or more declared
licenses pose no problems for the info licenses, then these licenses Xi can be
applied on the package. If these Xi licenses are only a subset of the license
in the declared set (Xi ⊆ Xdeclared), this indicates a necessary adjustment to
the software package and is handled as such by the SPDX violation checker
proposing to the user the necessary adjustments (i.e., informing the user that
only a specific subset of the declared licenses can be used without violations). In
case of a conjunctively declared license again all licenses need to be examined,
but all need to adhere to license compatibility principles, i.e., all info licenses
need to be compatible with all declared licenses; otherwise, a violation occurs.

Following the above procedure the SPDX violation checker proposes a compat-
ible license or alternate compatible licenses that can be applied on the package.
Note that in the current version this does not include the proposal of multiple
licenses (i.e., dual licensing or tri-licensing). In the current implementation we
also neglect licenses with exceptions; for instance, the GPL linking exception
that was found in some projects was treated as a GPL license. According to
Wikipedia ”a GPL linking exception modifies the GPL in a way that enables
software projects which provide library code to be ”inked to” the programs that
use them, without applying the full terms of the GPL to the using program.” This
is also related with the aforementioned architecture aspects that require further
investigation, but are outside the scope of the current work.

Regarding the tool implementation the violation checker has been imple-
mented in Java as a new tool to complement the available list of SPDX tools2

listed on the website of the specification. The violation checker is using as input
the RDF versions of SPDX in order to guarantee the compliance with ontology
standards. To this end the following existing SPDX workgroup tools have been
exploited: the Tag to RDF Translator that converts a tag file to its respective
RDF format and the RDF parser that parses the information in a RDF file. This
violation check can be used along with a license extraction tool that identifies
licenses from software packages in source or binary format, such as FOSSology
[8] or ASLA [14]. Regarding license information extraction from the source code
distribution of the software package we have chosen to use FOSSology and ex-
ploit the existing FOSSology+SPDX community tool that allows to create a tag

2 https://spdx.org/tools/

https://spdx.org/tools/

98 G.M. Kapitsaki and F. Kramer

SPDX file out of the results of the license analysis performed by the Nomos
license scanner of FOSSology. The whole set of transformations performed until
the software packages reach the SPDX violation checker are depicted in Fig-
ure 2. For the implementation of the algorithms related to the license graph the
JGraphT graph library for Java was used.

Fig. 2. Main transformations in the violation assessment process

5 Experiments and Discussion

5.1 Testing Set

For evaluating our prototype implementation of the violation checker we created
a small testing set with open source projects hosted on SourceForge under the
prerequisite that the project should contain an open source license (or more). Not
all SPDX licenses are covered in the current implementation; hence, we randomly
selected from the repository 15 projects that are distributed under widely used
licenses and downloaded their latest version. The majority of chosen projects
carry a GPL license, whereas some multi-licensing schemes also appear. More
packages will be tested in the future as the license compatibility graph expands.

At the current state of the spread of SPDX it is not possible to find existing
SPDX descriptions online, although SPDX has been adopted by some companies
internally (e.g., Texas Instruments, Alcatel-Lucent) as indicated also in the Wiki
of SPDX. Hence, the software projects are uploaded on a FOSSology repository3

that we created for this purpose and these are subsequently analysed for license
information. The license analysis results performed by the Nomos analyser of
FOSSology are initially transformed to a Tag format for SPDX 1.1 using the
FOSSology+SPDX tool provided by SPDX and subsequently to an RDF format
using the TAG to RDF translator. This RDF format is used as input for the im-
plemented violation checker. The FOSSology+SPDX tool would use the licenses
found in the various files of the software package to insert the information on
the declared package license (as a conjunctive license set) instead of using the
license under which the software package was published by its creator. For this
reason we add the declared license information manually in the SPDX files as
retrieved from the corresponding software package website or as declared inside
the package itself (e.g., in a license.txt or copying file).

3 http://metis.initos.com/repo/

http://metis.initos.com/repo/

Open Source License Violation Check for SPDX Files 99

The testing set is shown in Table 2. In the list of projects the applied licenses
for the project version we employed in our experiments is indicated. In most
cases this was identical to the version of the package hosted on SourceForge.
The license list modelled in the graph was augmented by LGPL-2.0 and LGPL-
2.0+, since the former was encountered as license applied on two of the projects
in the testing set. Although not displayed on the graph, licenses compatible
with LGPL-2.1 and LGPL-2.1+ are also compatible with LGPL-2.0+, whereas
LGPL-2.0+ is compatible with LGPL-2.0. In essence LGPL-2.1was derived from
LGPL-2.0 with minor changes.

Table 2. Testing set for the SPDX violation checker

Software package Version Size Official license

1 Anomos 0.9.5 824.2 KB GPL-3.0

2 AresGalaxy 2.2.6 (Beta) 1.05 MB GPL-2.0

3 CuteFlow 2.11.2 3.8 MB BSD 3-Clause

4 FCKEditor 4.3 985.39 KB GPL-3.0, LGPL-3.0, MPL-1.1

5 Fraqtive 0.4.6 342.85 KB GPL-3.0

6 HandBrake 0.9.9 8.88 MB GPL-2.0

7 Hunspell 1.3.2 20.84 KB LGPL-2.0, MPL-1.1

8 Jexcelapi 2.6.12 1.82 MB LGPL-2.0

9 Joda-Time 2.3 1.23 MB Apache-2.0

10 Mlpy 3.5.0 1.87 MB GPL-3.0

11 MrBayes 3.2.2 2.44 MB GPL-2.0

12 opencsv 2.3 273.93 KB Apache-2.0

13 Open Programmer 0.8.1 100.25 KB GPL-2.0

14 py2exe 0.6.9 146.17 KB MIT

15 VirtualDub 1.10.4 2.1 MB GPL-2.0

5.2 Main Results

The results of the violation checker are shown in Table 3 and are addition-
ally summarized in percentages in Figure 3. The results indicate the licenses
encountered by FOSSology in the different files of the package containing also
some license names that were neglected by the violation checker because they do
not contain any license-specific information, such as ”Same-license-as”, ”Dual-
license”, ”See-doc(OTHER).” Note also that some licenses encountered by FOS-
Sology state the license name, but do not contain the exact license (i.e., the li-
cense version). Such examples can be found in GPL and MIT-style. These license
cases were neglected when a specific license indication of the same type existed
in the software package; for instance for the GPL case, if GPL-2.0 was found in
another file of the software package, then the extraction of GPL by FOSSology

100 G.M. Kapitsaki and F. Kramer

would be neglected. For the remaining cases, the license name with no version
was replaced by the ”closest” license, i.e., the license of the most representative
version. For instance, LGPL would be substituted with version 2.1 of the LGPL.

The column referring to adjustment contains information on whether a subset
of the existing declared licenses can be used to correct any violations that exist
(as explained in the previous section). Proposed licenses column shows the al-
ternate licenses that can be applied on the package based on the examination of
its info licenses. For packages without violations these proposed licenses should
contain the already declared licenses. When the violation is due to an incompat-
ibility among the info licenses this is also indicated in the Table. No applicable
licenses are found in this case.

Fig. 3. Evaluation results summary

The results indicate that a significant number of projects contain violations
(9 out of 15 packages or 60%) and adjustments in the present licenses are not
feasible for any of them. The main violation is encountered in projects that
contain the MPL-1.1 license that is incompatible to GPL. No applicable license
can be proposed for projects containing both MPL-1.1 and any version of the
GPL showing that the licenses from the independent packages used in the ap-
plication cannot be combined to a new software product. This is the case for
AresGalaxy, CuteFlow, FCKEditor, HandBrake and Hunspell. Also other rea-
sons for violations appear, such as in CuteFlow and MrBayes where the presence
of GPL-2.0 makes it impossible to propose any applicable license. Conflicts with
no possibility for applicable licenses are also found.

Performing a manual investigation of the graph to verify our results we found
a case of a false indication in py2exe. No applicable license is indicated for
py2exe due to the lack of transitivity on the edge between MPL-1.1 and MPL-
2.0, although LGPL-2.1+, LGPL-3.0 or LGPL-3.0+ can be used. To overcome
such issues, we intend to consider also the license category in the actions on
the license graph. As a general note the fact that many existing open source
projects appear to have violations based on the analysis using the implemented
tool is not necessarily generalizable. The SPDX input to the violation checker is
based on the license identification by FOSSology that might contain false positive

Open Source License Violation Check for SPDX Files 101

Table 3. Results of violation checker per project

Licenses found in files Violation Adjustment Info licenses Proposed licenses

(FOSSology results) found feasible combinable

1 Same-license-as, GPL-3.0+, x � GPL-3.0, GPL-3.0+,

Public-domain-ref, LGPL- AGPL-3.0

3.0+, GPL-3.0

2 GPL-2.0+, LGPL-2.1, � x x NONE

Artistic-1.0, BSD-3-Clause,

Dual-license, MPL-1.1

3 LGPL-2.0+, BSD-3-Clause, � x x NONE

GPL-3.0+, GPL-2.0, GPL-

2.0+, LGPL-2.1+, MIT, BSD

4 UnclassifiedLicense, � x x NONE

Trademark-ref, LGPL-2.1+,

Microsoft-possibility, GPL-

2.0+, MPL-1.1

5 GPL-3.0+, GPL-3.0, BSD-3- x � GPL-3.0, GPL-3.0+,

Clause AGPL-3.0

6 LGPL-2.0+, MIT, See-doc � x x NONE

(OTHER), Trademark-ref,

MPL-1.1, LGPL-2.1+, FSF,

UnclassifiedLicense, GPL2.0+,

GPL-2.0, GPL-exception,

BSD-3-Clause, BSD-2-Clause

7 GPL-2.0+, Dual-license, � x x NONE

MPL-1.1, LGPL-2.1+

8 LGPL-2.1+, BSD-style � x � LGPL-2.1, LGPL-2.1+,

LGPL-3.0, LGPL-3.0+,

GPL-2.0+, GPL-2.0, GPL-

3.0, GPL-3.0+, AGPL-3.0

9 Apache-possibility, BSD, � x x NONE

Apache-2.0, Public-domain,

Apache-1.0

10 GPL-3.0, BSD-3-Clause, x � GPL-3.0, GPL-3.0+,

GPL-3.0+ AGPL-3.0

11 GPL-2.0+, GPL-3.0+, GPL- � x x NONE

2.0

12 BSD-3-Clause, Apache-2.0 x � Apache-2.0, MPL-2.0, LGPL

-3.0, LGPL-3.0+, GPL-3.0,

GPL-3.0+, AGPL-3.0

13 GPL-2.0, GPL-2.0+ x � GPL-2.0

14 MPL, MIT-style, See- � x x NONE

doc(OTHER), LGPL, MPL-

1.1, UnclassifiedLicense

15 UnclassifiedLicense, GPL-2.0 x � GPL-2.0

102 G.M. Kapitsaki and F. Kramer

cases in license identification. For instance, in the case of Joda-Time Apache-
1.0 is encountered in some files as indicated in the SPDX file produced by the
SPDX tools, although this was not clearly indicated on the FOSSology repository
(Apache-1.0 did not appear on the license list of the package in FOSSology). We
opted not to remove Apache-1.0 despite this fact. Apache-1.0 is not compatible
with Apache-2.0, since the former is more restrictive than the latter and in
essence is no longer used (Apache-1.0 does not appear on the license graph).

An additional disadvantage of using a separate license extraction tool like
FOSSology is that it is not possible to know whether a license in the package
is mentioned by FOSSology because there is a third party library used in the
package that carries this license or because this is the license the creators of the
package have decided to apply on the package. The above problem appeared for
instance in the FCKEditor project that carries the tri-license MPL-1.1, LGPL-
3.0, GPL-3.0. All these licenses were identified in different files by FOSSology.
Steps towards this direction that will be considered as future work include taking
into account the location of the file, where a license was found by FOSSology,
in order to conclude whether this refers to a third party library or to the source
code of the software package, and examining in more detail the software directory
structure as performed in a previous work for binary packages of the Fedora-12
GNU/Linux distribution [6].

6 Related Work

Although the open source phenomenon is relatively new, a wide body of litera-
ture exists. Aksulu and Wade identified 618 peer-reviewed papers in published
journals and created from those a classification taxonomy [1]. 54 of these arti-
cles dealt with FOSS licensing out of which 11 are related to our research. For
instance, Madanmohan [11] shows that commercial companies already consider
intellectual property and license compatibility issues within their technology
adoption procedures. Other scholars, such as Lerner and Tirole [9], and Colazo
and Fang [4], obtained quantitative measures on the impact of license selection
on project success and contribution rates. License compatibility poses one of
the major challenges on the future adoption of FOSS. License compatibility en-
forcement is one of the most prevailing, yet, not sufficiently solved challenges
in open-source-based and collaborative software development. This is especially
intuitive as this type of software development is more and more spread across
proprietary software companies such as SAP, IBM, HP and Fujitsu to name a
few. However, the vast amount of licenses, license terms and license artifacts in
source files renders an automated detection and conflict analysis difficult.

A metamodel on open source licenses in order to address this problem is
provided in [2]. The construction of the metamodel was based on an empiri-
cal analysis of the license texts in order to extract meaningful terms leading to
an informed classification of natural language patterns. As open source licenses
usually do not contain extensive compatibility rules, such as ”.. this license is
not compatible with...”, and since the metamodel was based on empirical anal-
ysis of the existing body of licenses it does not contain compatibility modeling

Open Source License Violation Check for SPDX Files 103

components. The FSF and several other semi-scientific bodies provide license
compatibility information based on manual interpretation of the license terms.
Wheeler [16] proposed a first compatibility graph that pulls together various
information sources. Our work extends prior work with more and recently con-
tributed additional information sources.

Apart from the modeling problem a standardization problem exists. License
texts may either form part of the source file or may be missing completely. Even
in cases where license information is put at the beginning of a source file, it does
not follow a standard or convention. As already mentioned the SPDX format
addresses this standardization problem. There are various tools that perform
license information extraction from a given source file or repository to address
this challenge including OSSLI4, the Open Source License Checker (OSLC5)
[17], the Automated Software License Analyzer (ASLA6) [14], Ninka [7] and the
Nomos project.

Whereas OSSLI is a rather model-centric approach that is implemented as
an extension to the Papyrus graphical modeling framework of the Eclipse plat-
form, OSLC, ASLA and Nomos are all standalone tools partly with alternative
graphical and command line clients. ASLA was proposed as a result of a fea-
ture and performance analysis done on Nomos and OSLC [14]. The authors
concluded that ASLA covers all of the 12 elaborated user needs (6 more than
FOSSology/Nomos). The authors also claim, that ASLA has several advantages
over FOSSology, such as the ability to define license compatibility rules and the
identification of licensing problems. This license compatibility map and the abil-
ity to maintain those licenses within a graphical user interface are doubtlessly
strengths of ALSA. Yet, OSLC provides similar capabilities as it apart from the
license texts itself, stores and allows to maintain metadata files that contain
compatibility information with other licenses. Ninka has also been exploited in
various settings [6].

Nevertheless, only OSSLI and FOSSology+SPDX are using SPDX files. OSSLI
does not really do license checking on source code level but only performs com-
patibility analysis on architectural level. OSSLI can, hence, be better understood
as an extension of the UML package model type and a help to construct license
compatible architectures than a compatibility analysis tool for a given source
code repository or serveral of those repositories. FOSSology through its integra-
tion of Nomos and the use of the SPDX standard seems to be the only tool with
strong and continuing industry sponsorship and development effort. Most of the
other tools are being discontinued for quite some years now.

In the framework of the evaluation of the current work we did not encounter
the long runtime of the licenses checker (Nomos) mentioned in [14]. Some of
the limitations of FOSSology reported in the same work, such as the manual
detection of licenses, have been addressed in the latest version of FOSSology.
Furthermore, FOSSology is the only tool that enables the regular scan of repos-

4 http://ossli.cs.tut.fi/
5 http://sourceforge.net/projects/oslc/
6 http://sourceforge.net/projects/asla/

http://ossli.cs.tut.fi/
http://sourceforge.net/projects/oslc/
http://sourceforge.net/projects/asla/

104 G.M. Kapitsaki and F. Kramer

itories and source code folders and integrates a web-based dashboard. Overall,
FOSSology was the most convincing and better documented basis for our re-
search especially with respect to real scenario applicability.

To the best of our knowledge this is the first work that proposes license vi-
olations check in the framework of SPDX. In contrast to existing tools that
focus mainly on license information extraction the current work provides the
opportunity to standardize license compatibility-relevant activities in a global
specifications setting. However, the combination of the automation framework
with an augmented license compatibility graph has not yet been covered and is
the main direction of our future work.

7 Conclusions

Finding the right licenses associated with a software resource and choosing the
appropriate - hence, correct - license for each software product are important
issues for any software engineer and organization that employs open source soft-
ware for various purposes. In this work we have addressed the latter by handling
the problem of license compatibilities for open source software packages format-
ted using the SPDX specification descriptions. Our violation checker is able to
identify whether violations exist in the package description and propose correc-
tions on those (if feasible) and suggestions for applicable licenses. These sug-
gestions are based on the constructed license graph that contains compatibility
information for commonly used open source licenses.

The initial evaluation performed on the prototype implementation of our ap-
proach using existing open source projects showcases that open source license
compliance is not treated correctly in many cases. Although there are some
disadvantages that make the applied scheme not universally reliable, the imple-
mented tool constitutes important progress towards the automation on license
checks and decisions for software systems in the standardized setting of SPDX.
Note that whenever it comes to relevant business decisions on licensing issues
or detecting flaws, our proposed approach provides guidance but still requires
legal expertise to guide a final decision on the licensing matter. As future work
we intend to expand the license compatibility graph covering the majority of
SPDX supported licenses and considering the complexities of software architec-
tures, make our tool more robust introducing a more detailed software package
analysis, and publish it to the community as part of the SPDX tool set. The
above will be combined with a more detailed representation of the rights and
obligations of the licenses that are now not captured in the license graph.

References

[1] Aksulu, A., Wade, M.: A comprehensive review and synthesis of open source re-
search. Journal of the Association for Information Systems 11(11) (2010)

[2] Alspaugh, T.A., Scacchi, W., Asuncion, H.U.: Software licenses in context: The
challenge of heterogeneously-licensed systems. Journal of the Association for In-
formation Systems 11(11) (2010)

Open Source License Violation Check for SPDX Files 105

[3] Boyle, J.: The public domain: Enclosing the commons of the mind. Yale University
Press (2009)

[4] Colazo, J., Fang, Y.: Impact of license choice on open source software development
activity. Journal of the American Society for Information Science and Technol-
ogy 60(5), 997–1011 (2009)

[5] Feller, J., Fitzgerald, B., et al.: Understanding open source software development.
Addison-Wesley, London (2002)

[6] German, D.M., Di Penta, M., Davies, J.: Understanding and auditing the licensing
of open source software distributions. In: 2010 IEEE 18th International Conference
on Program Comprehension (ICPC), pp. 84–93. IEEE (2010)

[7] German, D.M., Manabe, Y., Inoue, K.: A sentence-matching method for auto-
matic license identification of source code files. In: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, pp. 437–446. ACM
(2010)

[8] Gobeille, R.: The fossology project. In: Proceedings of the 2008 International
Working Conference on Mining Software Repositories, pp. 47–50. ACM (2008)

[9] Lerner, J., Tirole, J.: The scope of open source licensing. Journal of Law, Eco-
nomics, and Organization 21(1), 20–56 (2005)

[10] Linux Foundation and its Contributors: A Common Software Package Data Ex-
change Format, version 1.2 (2013), http://spdx.org/sites/spdx/files/spdx-1

[11] Madanmohan, T., et al.: Notice of violation of IEEE publication principles open
source reuse in commercial firms. IEEE Software 21(6), 62–69 (2004)

[12] Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the complexity of large free and open source package-
based software distributions. In: 21st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2006, pp. 199–208. IEEE (2006)

[13] Rosen, L.: Open source licensing: Software Freedom and Intellectual Property
Law. Prentice Hall PTR (2004)

[14] Tuunanen, T., Koskinen, J., Kärkkäinen, T.: Automated software license analysis.
Automated Software Engineering 16(3-4), 455–490 (2009)

[15] Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph
reachability queries in constant time. In: Proceedings of the 22nd International
Conference on Data Engineering, ICDE 2006, pp. 75–75. IEEE (2006)

[16] Wheeler, D.A.: The free-libre/open source software (floss) license slide (2007),
http://www.dwheeler.com/essays/floss-license-slide.pdf

[17] Xu, H., Yang, H., Wan, D., Wan, J.: The design and implement of open source
license tracking system. In: 2010 International Conference on Computational In-
telligence and Software Engineering (CiSE), pp. 1–4. IEEE (2010)

http://spdx.org/sites/spdx/files/spdx-1
http://www.dwheeler.com/essays/floss-license-slide.pdf

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 106–121, 2014.
© Springer International Publishing Switzerland 2014

Automatically Solving Simultaneous Type Equations for
Type Difference Transformations That Redesign Code*

Ted J. Biggerstaff

Software Generators, LLC, Austin, Texas, USA
dslgen@softwaregenerators.com

Abstract. This paper introduces a generalization of programming data types
called Context Qualified Types (or CQ Types for short). CQ Types are a superset
of programming language data types. They incorporate design features or con-
texts that fall outside of the programming data type domain (e.g., a planned
program scope). CQ Types are functionally related to other CQ Types (and even-
tually to conventional data types) such that a differencing operation defined on
two related types will produce a program transformation that will convert a com-
putational instance (i.e., code) of the first type into a computational instance of
the second type. Large grain abstract relationships between design contexts may
be expressed as simultaneous type equations. Solving these equations, given
some starting code instances, produces transformations that redesign the code
from one design context (e.g., a payload context) to a different design context
(e.g., a “hole” within a design framework from a reusable library).

Keywords: Type differencing, Context qualified types, CQ Types, Design
frameworks, Design features, Functionally related types, Transformations,
Domain driven instantiation, Simultaneous type equations.

1 Overview

1.1 The Problem

This paper addresses the problem of automatically integrating two separately derived
pieces of code that are potentially compatible but differ in a few design details that
will have to be synchronized to achieve compatibility1. These design differences arise
from slightly differing requirements for the differing specifications. For example,
consider a code/design framework (i.e., a combination of skeletal code plus holes
designed to accept insertion of foreign, target computation code, e.g., Ref.2 1-01) as

* Patent 8,713,515 [7] and separate patent pending.

1 This work is a part of the DSLGen™ program generation system, the details of which are

beyond the scope of this paper. A more complete discussion of DSLGen™ can be found in
[6], as well as other documentation available at www.softwaregenerators.com.

2 Ref. will be use to designate callouts in figures. Ref. n-mm will be the mm callout in Fig. n.

 Automatically Solving Simultaneous Type Equations 107

one of those pieces of code. Let’s call this framework the “Thread Design Frame-
work” (or TDF for short). The TDF framework example expresses a pattern of paral-
lel computation using threads to implement parallel execution but knows virtually
nothing about the code to be executed within those threads (i.e., the code in the
“framework holes”). Its design might be constrained by the requirements of the thread
package used. For example, a planned user (or generator) written routine for initiating
a thread might only allow one user data parameter to be passed to the application
programmer’s thread routine (along with the thread specific parameters, of course). If
that thread routine needs more than a single item of user data to operate (e.g., matric-
es, the dimensions of the matrices, and perhaps some start and end indexes specific to
the algorithm), then the programmer (or generator) may have to formulate some cus-
tom “glue” code to connect the target computation data to the holes in TDF. For ex-
ample, he could setup global variables to communicate that data to the thread routine.
Alternatively, the programmer could write some “glue” code to package up the set of
needed data into a structure (for example) before calling the thread routine, send a
pointer to the structure to the thread routine as the single user argument and then un-
pack the data items within the application’s thread routine. In this latter case, he will
also have to adapt (i.e., redesign) elements of his “vanilla” payload computation to fit
the details of this glue code.

Fig. 1. Skeletal design framework and a code payload

Given those requirements on the thread based code framework (TDF), consider the
nature of the target code payload (e.g., Ref. 1-02) that is to be merged into the TDF.
That target computation payload might benefit from parallel computation but will
require design modifications to execute correctly with the TDF framework (Ref. 1-
01). For example, among the modifications that will have to be made to synchronize it
with the code in the TDF framework is the redesign of the references to its data

108 T.J. Biggerstaff

(e.g., the matrices, etc.) so that they synchronize with the design implicit in TDF’s
(skeletally defined) thread routine (Ref. 1-01). As mentioned earlier, direct reference
via global variables to the matrices and related data (e.g., indexes) is one possible
solution but that may require some scope adaptation to both the payload and the
framework to allow sharing of the same scope. However, such changes can be daunt-
ing for an automatic generation system because a generator has to first model the
global scoping structure, which can be challenging. If the framework design cannot be
changed (e.g., it is a reusable library component or it calls unchangeable library rou-
tines), then the design of the payload will have to be altered by writing some glue
code that packages up references to the payload variables and modifies the payload
code to connect through the glue code. The glue code option has the benefit of greater
localization of the changes thereby making them easier for an automated generation
system. This invention provides an automated method for the class of redesign
process that allows the payload code to be redesigned so that it can be relocated into
the context of a framework (e.g., TDF). For some background on alternative concepts
that are similar to but not exactly the same as design frameworks, see [10, 13].

To create the redesign machinery, this work extends the conventional notion of da-
ta types by incorporating into the type specification, design features and contexts
(e.g., generator-time design features) that fall outside the domain of programming
language data types. Thereby the generator is able to define and work directly with
features and contexts of an evolving design abstraction (i.e., an abstraction not based
on programming language structures or abstractions thereof). The extended types are
called Context Qualified Types or CQ Types. Additionally, the machinery provides a
key mechanism for defining composite CQ Types such that there is an explicit func-
tional relationship between pairs of CQ Types as well as between programming lan-
guage data types (e.g., BWImage) and related CQ types (i.e. a pointer to BWImage).
This explicit functional relationship determines how to automatically generate type
difference transformations that can convert an instance (e.g., “B” as in Ref. 1-06) of
one of the types (e.g., BWImage) into an instance (e.g., “(& B)”) of the other type
(e.g., Pointer to BWImage), where “&” is the “address” operator. Also, any two func-
tionally related CQ Types allow the automatic generation of an inverse transforma-
tion3. The inverse transform will convert an instance of a pointer to a BWImage (e.g.,
a structure field named “BP”) into the BWImage itself (e.g., “(* BP)”). BP might be
within a different scope altogether from B (e.g., the “*BP” field in the framework
scope shown as Ref. 1-05). The automatically generated type difference transforma-
tions as a class are called redesign transformations or redesigners for short. This
machinery will be used to redesign instances of generated code (e.g., an expression

3 Many difference transformations are not “pure” functions and may therefore introduce exis-

tential variables. For example, an instance of a 2D matrix being transformed into a reference
to an item in that matrix may introduce one or more programming language index variables
such as ?Idx1 and ?Idx2 whose eventual target program identities (e.g., i and j) may not yet
be determined. The mechanisms for dealing with such existential variables and their bindings
are beyond the scope of this paper but suffice it to say, DSLGen deals with these problems
using domain specific knowledge (see the description of the ARPS protocol below) to stand
in for those identities until they can be concretely determined later in the generation process.

 Automatically Solving Simultaneous Type Equations 109

to compute a convolution of an image) so that they can be used to instantiate a partial-
ly complete code framework such as TDF (i.e., a pattern of some code and some
receptacles for foreign code). Since the framework may need to use data items that are
decorated with design features (e.g., a field containing a pointer to the data) that are
not a part of the original data item, the original data item will need to be redesigned to
synchronize with the requirements of the framework before it can be used in a context
of the framework.

Using code components developed independently in one context (e.g., payload
scope) without knowledge of their potential use in and connections to elements of a
disparate context (e.g., framework scope) presents a key problem. There is no feasible
way to directly connect the elements of the one context (e.g., a payload context) to the
conceptually corresponding elements of the other context (e.g., a framework context)
without negating the independence of the two contexts and thereby negating the com-
binatorial reuse value of combining many independent contexts. Identifying the cor-
respondences between disparate code components by explicit names is not feasible
because the two contexts are developed independently and likely, at different times.
Parameter connections are not feasible because like explicit naming, this would re-
quire some a priori coordination of the structure of the two disparate code compo-
nents, which is not desirable. What the two contexts may know about each other is
indirect. It is their domain specific entities, features and topology, which opens the
door to a reference protocol that is based on one context searching for known or ex-
pected domain specific entities, features and relationships within the other context.
This is a key mechanism of this invention. It provides the machinery for expressing
“anaphoric” references (i.e., references that are implied) in one code entity (e.g., the
framework) to data items (e.g., an image data item that is being used as the output
data item for a computation) in a separate, disparate and as yet undefined code entity
(e.g., a computational payload to be used within the framework). This mechanism is
called the Anaphoric Reference Protocol for Synchronization (ARPS). (See [7].) The
anaphoric reference mechanism expresses references in terms of semantic (and large-
ly domain specific) abstractions rather than in programming language structural forms
or patterns (e.g., loops, code blocks, operators, etc.) or abstractions thereof. For ex-
ample, a structure field within a framework may need a value from some as yet to be
defined computational payload. Semantically, the framework knows only that that
value will be an image that is being used as the input image of the payload computa-
tion. ARPS provides a domain specific notation whereby that relationship can be ex-
pressed in the definition of the field within the framework. ARPS provides machinery
such that when a candidate computational payload is eventually identified, that ARPS
reference will be used like a search query and will automatically resolve to the specif-
ic data item needed by the framework.

Once the ARPS expressions in a framework determine the conceptually corres-
ponding items in the payload, the automated redesigners are invoked to redesign
those payload items so that they are consistent with the framework design. Then the
payload code (suitably redesigned to synchronize with the framework design) can be
directly inserted into the holes of the framework.

110 T.J. Biggerstaff

2 CQ Types, Their Relationships and Type Differencing

2.1 Overview

A CQ type is a programming language type (e.g., a grayscale image matrix type des-
ignated as “BWImage”) that has additional Qualifying Properties specific to another
context (e.g., a design feature, such as the payload scope “ScopeP”). CQ Types allow
the generator to express concepts that transcend the strictly programming language
domain. That is, the CQ type concepts include generation entities, contexts and opera-
tions rather than being strictly limited to programming language entities, contexts and
operations. Qualifiers can represent design features that do not yet have any program
structure manifestation (e.g., an anticipated but not yet created program scope).

A CQ type is designed to have an explicit functional relationship to other CQ
types. Fig. 2 shows the conceptual form of relationships between a programming
language type (Ref. 2-07) and a number of abstract CQ types (Refs. 2-08a through 2-
10), where the CQ property for this example is the name of a payload or framework
scope (e.g., ScopeP or ScopeF). In Fig. 2, CQ Types are shown as ovals and instances
of those types as boxes. The type to type relationships are implemented via either
subtype/supertype relationships (e.g., Refs. 2-08a and 2-09a) or a cross context map-
ping relationship (Ref. 2-18) that defines some elective transformational mapping
between (in the example) an instance of the payload context and a related instance in
the framework context. The transformations between instances of CQ subtypes and
supertypes (i.e., type differences) are automatically derived from the two CQ types.
Cross context mapping transforms (i.e., those between CQ Types that do not have a
subtype or supertype interrelationship) are elective and therefore are custom written
by a design engineer at the time the related design framework (e.g., TDF) is created.
They are designed only once for a specific reusable design framework (e.g., TDF) but
will be used/instantiated many times to generate many different concrete, target
programs. In the example of this paper, the mapping relationship is computational
equivalence between the end points of the type chain (i.e., between instance P2 and
instance F2). That is, execution of the initial computational form (P2) in the payload
scope will produce the same result as the execution of a different but operationally
equivalent computational form (F2) in the framework scope.

Furthermore, each pair of connected CQ Types (i.e., type/supertype or cross con-
nection) implies two, directionally specific Redesign Transformations that will con-
vert an instance of one of the types into an instance of the other that is one step farther
along on the path to computational equivalence. The type/subtype transformations are
automatically derivable via so called type differencing operations. The form of the
type differencing transformations is deterministically implied by the type constructor
operators. By contrast, cross connection transforms are custom created by a domain
engineer. Example cross context mappings include, computational equivalence (as in
the example presented), data type casts, design translation options, etc. Because all
relationships define explicit functional relationships, the generator can use type diffe-
rencing to harvest a set of Redesign Transformations (i.e., transformations X1 through
X5 in Fig. 2) that carry a payload instance P1 of a programming language type used in

 Automatically Solving Simultaneous Type Equations 111

the payload context into a computationally equivalent instance F1 of a type used in
the framework context. X1 and X6 map between the domain of programming lan-
guage data types and the CQ Types within the design domain.

Fig. 2. Chain of CQ Types relating two different design contexts

Fig. 3 provides a concrete example that may be used to solve part of the problem
illustrated in Fig. 1. As a debugging aid, CQ Type names are designed to expose both
the base programming data type (e.g., “BWImage” or “int”) as well as their qualifying
property pairs (e.g., “:myscope ScopeF”). The implementation machinery necessitates
some special syntax within the type names, specifically, underscores to bind the name
parts together and vertical bars to delineate the beginning and ending of the type
name. All CQ Types will have “tags” that uniquely identify them (E.g., BWi7, Ptr1 or
Field1). These tags may be used in a CQ Type name to reference another CQ Type
(e.g., tag “BWi7” in type Ref. 3-02a references its super type Ref. 3-01a).

The instance to instance transformations of Fig. 3 make it clear that subtyping
within CQ Types is used to capture subpart/superpart relationships (among others)
between design constructs, and thereby it may also imply the construc-
tion/deconstruction operations required to achieve transitions between design views
and/or design contexts. For example, “B” from the computation specification context
(Ref. 3-04) represents the same entity as “B” within the payload scope context (Ref.
3-05) but “(& B)” (Ref. 3-06) is a computational form that represents one step on the
pathway to the full computational equivalence finally realized in Ref. 3-09.

Harvesting the transformations implied in Fig. 3 (i.e., X2 through X5) by differenc-
ing the CQ Types and applying those transforms to a payload oriented expression like

 PartialAns = (B[idx13+(p29 -1)][idx14+(q30 -1)] * w[p29] [q30]) ; (1)

will convert (1) into a design framework context expression like

112 T.J. Biggerstaff

PartialAns = ((*(rsparms9.BP))[idx13+(p29 -1)][idx14+(q30 -1)]
 * w[p29] [q30]); (2)

thereby allowing it to be relocated into a hole in the TDF design framework (e.g., Ref.
1-03). Such relocation assumes, of course, that other payload specific entities (e.g.,
the start, increment and end values of indexes such as“idx13”, “idx14”, “p29”, etc.)
will have to be similarly redesigned.

Fig. 3. A concrete example relating framework and payload design contexts

The computational domain of the PartialAns example is the convolution of 2D dig-
ital images (where “B” is the image from the example). The deeper programming
language design context (i.e., problem specific domain knowledge) for these expres-
sions is as follows: idx13 and idx14 are variables that index over some image matrix
B; p29 and p30 are offsets for pixels in a neighborhood around the current pixel
“B[idx13, idx14]”; and w is an array of multiplicative coefficients defining the rela-
tive contribution of a neighborhood pixel to the overall magnitude of the PartialAns
value. In a complete description of the required redesign operations for this example,
analogous CQ Type chains would exist for the start, increment and end values of the
indexes idx13, idx14, p29, p30, and possibly other needed data entities. And these
would engender analogous conversions for these data entities.

While the example in this paper uses the names B, idx13, idx14, p29 and p30 for
concreteness, DSLGen uses an abstract domain specific model for the computation it
is operating on. That is to say, it models a convolution in terms of image matrix ab-
stractions, matrix index abstractions, neighborhood abstractions and neighborhood

 Automatically Solving Simultaneous Type Equations 113

loop index abstractions none of which map into concrete programming language
names and entities until very late in the generation process. That is, mapping
DSLGen’s domain abstractions (e.g., neighborhood loop index abstractions) into con-
crete names like idx13 and idx14 is deferred until the overall design is complete and
the design has stopped evolving, because during that evolution process, the associa-
tions between domain abstractions and concrete target names will change to accom-
modate the evolution of the design. That being said, the author believes that the use of
concrete names for this description will aid the reader’s understanding of the process
and therefore, this paper will continue to use concrete names.

Next, we will define the machinery required to construct Fig. 3 and unlimited
numbers of similar constructions from (reusable) parameterized type specifications.
Then we will use these constructions to redesign code.

2.2 Solving Simultaneous Parameterized Type Equations

The CQ types of Fig. 3 contain design elements that are custom formulated to produce
one set of redesign transformations that are specific to the data entity “B” (because of
the concrete field names in type 3-03) within a specific target computation that is to
be transformed from a specific payload context to a specific framework context. In
order to solve the more general problem that is described in Section 1, other analog-
ous QC Type chains and redesign transformations will have to be developed for other
specific data entities in that target computation (e.g., other image variables along with
loops’ start, end and increment values for indexes such as “Idx14”). That is, Fig. 3
must be abstracted and the instantiation of that abstraction automated. It would be a
serious impediment to full automation of the generation process to require a human to
custom build of each of the individual type structure analogs of Fig. 3 for all of the
data entities within a specific computation. Hence, there needs to be a single (reusa-
ble) precursor abstraction or abstractions from which all Fig. 3 analogs and the type
difference transformation analogs associated with them can be automatically derived
for other computations. That single precursor abstraction comprises: 1) a set of para-
meterized type equations (expressions (3)-(7) below) that capture, in a more abstract
and reusable sense, the relationships (i.e., type chains) illustrated in Fig. 3 and 2) two
special parameterized type difference transformations specific to the TDF framework
that express the cross connection mapping between the two type subtrees. One of
these TDF framework supplied difference transformations is shown as expression (9)
below. The cross connection transformations are identified in Fig. 3 as Ref. 3-13 (la-
beled X3). Ref. 3-13 represents both mappings to and from instances of the types 3-
02a and 3-03.

The remainder of this section will describe that parameterized precursor specifica-
tion. It is expressed as a set of simultaneous type equations (expressions (3)-(7) be-
low). This section will further describe the process by which those type equations are
incrementally solved to produce concrete CQ Types (Refs. 3-01a & b, 3-02a & b, and
3-03) and simultaneously to produce type difference transformations (Ref. 3-12
through 3-15 in Fig. 3), which are represented more concretely, as expressions (8)-
(11) below. In the course of these steps, the type difference transformations are

114 T.J. Biggerstaff

incrementally applied to a starting instance of one of those types (Ref. 3-05) and then
to its derivatives (3-06 through 3-08) to derive the correspondence between “B” in
scopeP and the equivalent glue code “(* (● BP rsparms9))” in scopeF, which will
eventually become the C language code “(*(rsparms9.BP))”.

The simultaneous parameterized type equations that will generate Fig. 3 (and all of
its analogs for similarly structured problems) are expressions (3)-(7):

(?t1 = (?itype :myscope ?Pscope :Instname '?StartInst)) ;;spec for type 3-01a (3)

(?t2 = (DSDefPtr ?t1 :Instname ‘?PPtrinst)) ;;spec for type 3-02a (4)

(?t5 = (?itype :myscope ?Fscope)) ;; spec for type3-01b (5)

(?t4 = (DSDefPtr ?t5 :Instname ‘?FPtrinst)) ;; spec for type 3-02b (6)

(?t3 = (DSDefFieldOp (?Fldname ?Structname :dsvalue ?PPtrinst
 :myscope ?Fscope :Instname ‘?Fldinst)

 ?t4)) ;; spec for type 3-03 (7)

The type constructor functions used in these expressions (i.e., DSDefPtr, DSDef-

FieldOp as well as the qualified programming language data types of the form
“(<atype> <qualifiers>…)) will be described here informally. This description in
combination with the contextual intuition provided by Fig. 3 and the sampling of
formal definitional forms of section 3 of this paper should provide sufficient insight to
understand the essence of them and the associated process. However, the full set of
type constructors available in DSLGen (e.g., DSDef… constructors for Ptr, Field,
Struct, Bit, Enum, Union, Function, Array and qualified programming language data
types) is described more completely and formally in [7] (Patent No. 8,713,515). Any
additional user defined type constructors will follow the same patterns.

Basically, each equation’s right hand side is a type constructor expression of the
form (operator …arguments …), which specifies a composite CQ Type. Implied func-
tionally related types within these forms are expressed via the variables ?t1, ?t2, etc.,
and represent recursively related CQ types (often related via type/supertype relation-
ships). For example, the equation (4) of the form “(DSDefPtr ?t1 …)” is a pointer
type (which will eventually become type 3-02a). The referenced supertype is
represented by the variable ?t1, which is bound to the “(?itype :myscope ?Pscope
:Instname '?StartInst)” type specification from equation (3). ?t1 will become the type
3-01a in Fig. 3. The “:name value” pairs in these expressions (e.g., “:myscope
?Pscope”) are qualifying information used to describe generator design contexts or
features that fall outside of the strict domain of conventional data types. Explanatory
comments appear to the right of the double semicolons. The “:Instname ‘<?vbl>”
pairs (omitted in Fig. 3 to save space) provide (quoted) simultaneous variable names
to the type differencing routines that harvest the ReDesign transformations associated
with type pairs. These variables provide global relationships among the individual
type equations, the related type difference transformations and the instances upon
which those difference transformation operate. For example, difference transforma-
tion (9) that relates types 3-01a and 3-02a will bind the instance of type 3-02a (e.g.,
“(& B)”) to the transformation variable name “?PPtrinst.” That value of ?PPtrinst is

 Automatically Solving Simultaneous Type Equations 115

later used in the value slot of the field instance (i.e., 3-07) being constructed for the
field type 3-03. Expression (9) also contains some embedded Lisp code that will
create a human friendly name for the pointer field thereby making the generated code
a bit easier to understand. It concatenates ?Pinst’s value (e.g., “B”) with the letter “P”
resulting in the pointer field being named “BP” in the Fscope context (i.e., “BP” in
Fig. 3). It then calls “DSRuntimeDeclare” to declare “BP” to be an instance of type
?t1. The C language code generated to reference the BWimage B within the Fscope
will be something like “(rsparms9.BP)” (see expression (2)). The results for other
needed variables from Pscope (e.g., “Incr-Idx14) will acquire analogous names (e.g.,
“Incr-Idx14P”).

To solve these type equations, we will need to use the type differencing transforms
implied by these type relationships since they express the relationships of these CQ
Types to legitimate instances of them and thereby, they recursively constrain subse-
quent CQ Types and instances. For example, consider the type differencing transfor-
mation from ?t1 to ?t2, which is symbolically expressed as “(delta ?t1 ?t2)” and which
is nominally defined by the transformation expression to the right of the “=” sign in
expression (8) below. Within that transformation expression, the sub-expression to the
left of the “=>” is the pattern of the (delta ?t1 ?t2) transformation. That pattern is an
“AND” pattern (operationally the Lisp expression “$(PAND ..)”). An AND pattern
requires that all of its constituent sub-patterns successfully match some instance of
type ?t1. That is, its first pattern element “?inst01” will succeed (because it is initially
unbound) by matching an instance of type ?t1 (e.g., “B”) and binding that instance to
a pattern variable (i.e., “?inst01”) where the variable name is uniquely generated by
the machinery that generates the type difference transformation. The second pattern
element of the AND operator, i.e., “?StartInst”, will succeed by binding that same
instance to the pattern variable (i.e., “?StartInst”), where “?StartInst” was supplied by
the property pair “:Instname '?StartInst” from the specification of type ?t1 shown in
expression (3). If the pattern match is successful, then the right hand side of the trans-
formation (i.e., the expression to the right of “=>”, which is “(& ?inst01)”) will
convert ?inst01 to an instance of ?t2 (i.e., “(& B)”). Subsequently, the next type dif-
ference (i.e., “(delta ?t2 ?t3)” defined in expression (8)) will bind that newly created
instance (i.e., “(& B)”) to the variable ?PPtrinst, which will eventually be used in the
dsvalue slot of ?t5.

The transformational essences that are the results of differencing the functionally
related types in equations (3)-(7) are shown in the expressions (8)-(11). Difference (8)
executes the operation that is defined by the DSDefPtr constructor of type equation
(4). Similarly, the differences (10) and (11) just express the implied inverses of the
type constructors DSDefFieldOP and DSDefPtr of type equations (7) and (6). Differ-
ence (9) is the cross context mapping relationship and is supplied by the design
framework TDF in the generator’s library. The TDF framework is built specifically
for generating the adaptive “glue code” that we have been discussing up to this point.

((Delta ?t1 ?t2) ~ ($(pand ?inst01 ?StartInst) =>

 (& ?inst01))) ;; ?inst01 is globally unique name (8)

116 T.J. Biggerstaff

((Delta ?t2 ?t3) ~ ;; Cross Connection written by a Design Engineer for TDF
 ($(pand ?PPtrInst $(plisp (MakeBinding '?Fldname

(DSRuntimeDeclare (quote ?t1) (symb ?StartInst 'P))))))
 => (?Fldname ?Structname :dsvalue ?PPtrInst))) ;;Field Def. form (9)

 ((Delta ?t3 ?t4) ~ ;; Field def. form to dot operator

 ($(pand ?Fldinst (?fld ?struct :dsvalue ?PPtrInst)) => (● ?fld ?struct))) (10)

 ((Delta ?t4 ?t5) ~ ;; Dereference pointer result of dot operation
 ($(pand ?inst02 ?FPtrinst) => (* ?inst02))) (11)

Operationally, these type Delta transformations are implemented by ReDesign

multi-methods4 that are uniquely determined by the method name (“ReDesign”) plus
their first two arguments, type1 and type2. ReDesign methods also take additional
arguments: 1) an instance of type1, and 2) an initial set of bindings. The initial bind-
ings include bindings determined by the TDF framework context (e.g., the bindings
“(?itype bwimage)” and “(?structname rsparms9)”) ; bindings that arose during type
equation solution process (e.g., “(?t5 |(bwimage_bwi8_:myscope_scopef)|)”) ; and
bindings created by previously processed ReDesign steps (e.g., “(?startinst B)”).

So, what does a ReDesigner look like? Expression (12) is some CommonLisp like
pseudo-code that specifies the essence of a ReDesigner’s processing.

(ReDesign type1 type2 instance bindings) ::=

(let ((newinstance nil))
 (multiple-value-bind (success postmatchbindings)

(match (LHS (Delta type1 type2)) instance bindings)
(if success (setf newinstance

 (applysubstitution (RHS (Delta type1 type2))
 postmatchbindings)))

 (values success postmatchbindings newinstance)))
(12)

In (12), the CommonLisp multiple-value-bind operator defines a scope with two

local Lisp variables (i.e., success and postmatchbindings) to receive the multiple val-
ues returned from the match routine, which matches the left hand side (LHS) pattern
of the specific type Delta transformation against the instance argument. The match
starts using the existing bindings in the variable “bindings”. If the match is successful
(i.e., success equals t on match’s exit), then the new instance will be the right hand
side (RHS) of the Delta instantiated with the bindings returned from match, i.e.,

4 These multi-methods are expressed in the CLOS (CommonLisp Object System) language

embedded in CommonLisp. They are automatically generated during the process that solves
the type equations for concrete types. The single exceptions to automatic generation are any
cross type differencing methods (e.g., expression (9)), which are written by the Design Engi-
neer at the time the design framework (e.g., TDF) is created and entered into the reusable
library of frameworks. They express elective design mappings between CQ types.

 Automatically Solving Simultaneous Type Equations 117

postmatchbindings, which are the initial bindings extended by any new bindings
created by the match routine (e.g., “(?startinst B)”). The ReDesigner returns three
values: 1) the success flag, 2) the postmatchbindings and 3) the newinstance, where
the latter two variables will have legitimate values only if success equals t.

Before the type equations are solved, a typical set of initial bindings supplied by
the TDF setup code might be:

((?itype bwimage) (?pscope scopep) (?fscope scopef) (?structname rsparms9)) (13)

After the type equations are solved creating a set of types like those shown in Fig. 3,
the binding list (13) will be extended with bindings of concrete types for the variables
?t1, ?t2, ?t3,?t4 and ?t5. Following that process, all of the difference expressions (8-
11) will be processed, resulting in a set of final bindings, for example:

((?fptrinst (● bp rsparms9)) (?inst02 (● bp rsparms9)) (?fldname bp)
 (?pptrinst (& b)) (?inst01 b) (?startinst b) (?fldinst (bp rsparms9 :dsvalue (& b)))
 (?struct rsparms9) (?itype bwimage) (?pscope scopep) (?fscope scopef)
 (?structname rsparms9)
 (?t3 |(dsdeffieldop_field1_(?fldname_rsparms9_:dsvalue_ ?pptrinst_:myscope
 scopef:instname_'?fldinst)_ptr2)|)
 (?t4 |(dsdefptr_ptr2_bwi8_:myscope_scopef_:instname_'?fptrinst)|)
 (?t5 |(bwimage_bwi8_:myscope_scopef)|)
 (?t2 |(dsdefptr_ptr1_bwi7_:myscope_scopep_:instname_'?pptrinst)|)
 (?t1 |(bwimage_bwi7_:myscope_scopep_:instname_'?startinst)|)
… …) (14)

The chain of instances produced by this process is shown in expression (15):

b, (& b), (bp rsparms9 :dsvalue (& b)), (● bp rsparms9), (* (● bp rsparms9))

(15)

Thus, “b” from expression (1) in scopep will map into the expression “(* (● bp
rsparms9))” within expression (2), which is in scopef. At code generation time, when
the C language surface syntax is added to the internal form, it will be re-expressed as
the C language form “(* (rsparms9.bp))”.

3 Recursive Type Constructors

The machinery used to synchronize payloads and frameworks uses the CQ Type sys-
tem to simultaneously define a conventional data type and a design context point of
view for that conventional data type. It accomplishes this by defining types as recur-
sive expressions of other types that capture both the data type and the design point of
view within some recursive design space. The pattern of types and subtypes will reca-
pitulate the pattern of recursion. That is, a type is some functional composition of its
subtypes. For example, a pointer to a BWImage type is a subtype of a BWImage.

118 T.J. Biggerstaff

Thus, type/subtype structures mimic the specialization and generalization of a design
space. However, not all design space relations are specialization or generalizations.
Some relations are bridges between design spaces that neither specialize nor general-
ize design context. They transform design contexts. That is, they establish a transfor-
mation or a mapping between design contexts. The cross connection transformation
(Ref. 3-09) is just such a bridge. In this case, the design point of view for the BWI-
mage entity has transitioned from a simple design context (i.e., the payload) to a
different design context (i.e., the framework context containing the “glue” code man-
ufactured by the generator to synchronize the computational contexts). Within the
framework context, the BWImage data entity must have the computational form of a
value within a field of the struct manufactured by the generator. That is, in the payl-
oad context, the BWImage entity might have the computational form “b” whereas in
the related framework context, that data entity might have the related computational
form “(*(csparm9.bp))”. The computational forms both refer to the same entity but
from different design context points of view.

In general, transitions within a design space, be they generalizations, specializa-
tions or bridge transformations, represent a transition of design point of view. And
this transition may or may not require a transformation of the computational form for
a data entity. So, how do we build such a design space?

The system that implements this machinery is defined by a few basic type con-
structor elements. A sampling of these constructor elements is expressed below in
extended BNF, where non-terminals are enclosed in angle brackets and terminals are
enclosed in double quotes. Square brackets indicate optionality, braces indicate
grouping, and double bars indicate alternation. Parentheses indicate CommonLisp like
list and sublist structures that express the form of an instance. Finally, “::=” means “is
defined as.”

The following sampling of definitions illustrates the form of some typical CQ Type
constructor expressions and includes examples, some drawn from expression (14):

<ArrayType>::=(“DSDefArray”[<tag>](<D1><D2>...)<atype> <keyword parms>)
Example CQ Type: |(dsdefarray_array4_(m_n)_colorimage_:instname_'?foo)|

<FieldType> ::= (“DSDefFieldOP” [<ftag>]
 (<fieldname> <structtag> <keyword parms>)
 <resulttype>)

Example CQ Type: |(dsdeffieldop_field1_(?fldname_rsparms9_:dsvalue
 _ ?pptrinst_:myscope_scopef_:instname_'?fldinst)_ptr2)|

<StructType> ::= (“DSDefStruct” [<stag>]
 ((<ptype1> <name1> <keyword parms>)
 (<ptype2> <name2> <keyword parms>)...))

<PointerType> ::= (“DSDefPtr” [<ptag>] <supertype> <keyword parms>)
Example CQ Type: |(dsdefptr_ptr1_bwi7_:myscope_scopep_:instname_'?pptrinst)|

 Automatically Solving Simultaneous Type Equations 119

<C-type-specs> ::= { [<storageclass>] || [<typequalifiers>] || [<type-spec>] }
<PLType> ::= (<type> [<ttag>] [<C-type-specs>] [<keyword parms>)])
Example CQ Type: |(bwimage_bwi7_:myscope_scopep_:instname_'?startinst)|

Beyond the CommonLisp syntactic framework in which these type specifications

are embedded, these CQ type expressions also borrow from the C programming lan-
guage, which is the default language emitted by the generation system. As with their
C counterparts, the optional “tag” fields provide a handle for the composite type. The
<keyword parms> (e.g., the keyword “:myscope” paired with the value “ScopeF”)
provide the mechanism for qualifying types with design features, design contexts or
other qualifications specific to the generation process. Keyword based qualifications
are “meta-qualifications,” which is to say that they are “meta” to data types that are
specific to the programming language domain. The list of <ptype n> groups within
StructType definition is shorthand for a list of <FieldType> types.

In addition to program generation qualifiers, the qualifiers used in the <PLType>
definition may also include vanilla programming language data types and type qua-
lifiers, e.g., C type qualifiers from <C-type-specs>. For example, <storageclass> may
include auto, extern, register, static and typedef; <typequalifiers> may include const,
restrict, and volatile; and <type-spec> may include short, long, signed, and unsigned.

Declarations are defined using a CQ type specification (e.g., <CQ Type Expres-
sion>) in place of a simple programming language data type, for example:

<Declaration> ::= (DSDeclare <CQ Type Expression> [<Instance>])

4 Related Research

From the most general perspective, the purpose of this research is program genera-
tion. For general background, see [1-5] and for the DSLGen umbrella research con-
text of this paper, see [6]. However, the details of the machinery in this paper are
most closely related Programming Data Type research. Therefore, this section will
focus largely on the relationships and differences between the CQ Type research area
the programming date type research area. (See [8-9] and [11-12]). Broadly speaking,
data types have been used in the pursuit of several different but related objectives:

• Type checking and inference to reduce errors in the context of strongly

typed programming languages,
• Program language design for enhancing reusability of code (e.g., through

abstract data types, object oriented programming and polymorphism),
• Program language design to simplify programming and enhance the ability

to write correct programs (e.g., via functional and applicative languages
where types may play a significant role in specification and compilation),

• Writing correct programs from formal specifications (e.g., stepwise
refinement),

120 T.J. Biggerstaff

• Formal specification of the “meaning” (i.e., semantics) of computer pro-
gramming elements (e.g., denotational semantics and models like the Z lan-
guage or the VDM method).

The main difference between the CQ Types research and previous data type re-

search is that CQ Types research is operating in the design domain space whereas
previous work was to a greater or lesser extent operating in the programming lan-
guage domain space. That is, previous conceptions of types did not provide a way to
express design concepts except to the degree that those design concepts were express-
ible in terms of programming language constructs or abstractions thereof.

To choose a concrete example, consider the Liskov substitution principle. This
principle “seems” to bear some cosmetic relationship to CQ Types and their asso-
ciated operations in the sense that the work is characterizing the situation in which a
subtype is computationally substitutable for its super type in a piece of code. That is,
the Liskov substitution principle is superficially similar to the CQ Type work in the
sense it deals with mapping one form of programming language code to a related
form. However, it is different it two obvious and important ways. The Liskov substi-
tution principle works strictly within the domain of programming types and the
type/subtype relationship depends on an implicit property of both. CQ Types are de-
fined specifically to work within and capture knowledge about the design space (as
opposed to the programming language space) and thereby involve entities (e.g., de-
sign features and design contexts) that are not explicit elements of the programming
language domain. Furthermore, the relationships among CQ Types are explicit rather
than implicit and they explicitly capture differences in computational structure that
are due to implicit relationships within the design and generation domains (i.e., out-
side of programming language domain).

5 Summary and Conclusions

CQ Types provide a mechanism for expressing abstract relationships between entities
within a conceptual design space and thereby for specifying plans for adapting and
relocating code from one design context to another. What constitutes a context is
completely open. A context might represent a simple design feature, a locale or scope,
a set of computational states, an abstract design for code, a computational partition,
etc. This expressive freedom allows the generator to evolve logical designs for a
computation by adding elective design features (e.g., threaded parallelism) to pede-
strian and perhaps inefficient designs of a computation while still having the capabili-
ty to automatically convert from one design form to another.

Furthermore, CQ Types and their associated type difference transformations can be
abstracted to precursor equations that parameterize the concrete entities and relation-
ships, which will become concrete via instantiation from some future concrete code
within some future payload instance. This allows design frameworks to factor out and
express only those design elements and relationships that are determined by
the framework, e.g., the relationship between a yet-to-be-determined variable in a

 Automatically Solving Simultaneous Type Equations 121

payload and its yet-to-be-determined field representation within a structure that con-
nects the payload data to the framework operations. Once such a concrete future payl-
oad has been identified to the generator, the yet-to-be-determined elements can be
computed by the generator to complete a fully integrated design for the target
program.

References

1. Biggerstaff, T.J.: A perspective of generative reuse. Annals of Software Engineering, 169–
226 (1998)

2. Biggerstaff, T.J.: A new architecture of transformation-based generators. IEEE Transac-
tions on Software Engineering 30(12), 1036–1054 (2004)

3. Biggerstaff, T.J.: Automated partitioning of a computation for parallel or other high capa-
bility architecture. Patent no. 8,060,857, United States Patent and Trademark Office (2011)

4. Biggerstaff, T.J.: Non-localized constraints for automated program generation. Patent no.
8,225,277, United States Patent and Trademark Office (2012)

5. Biggerstaff, T.J.: Synthetic partitioning for imposing implementation design patterns onto
logical architectures of computations. Patent no. 8,327,321, United States Patent and
Trademark Office (2012)

6. Biggerstaff, T.J.: Reuse: Right Idea, Wrong Representation? Invited paper. In: DReMeR
2013 – International Workshop on Designing Reusable Components and Measuring Reu-
sability, Pisa, Italy (2013)

7. Biggerstaff, T.J.: Automated Synchronization of Design Features in Disparate Code Com-
ponents Using Type Differencing. Patent no. 8,713,515, United States Patent and Trade-
mark Office (2014)

8. Cardelli, L., Wegner, P.: On Understanding Types, Data Abstractions, and Polymorphism.
ACM Computing Surveys 17(4) (1985)

9. Cardelli, L.: Type Systems. In: CRC Handbook of Computer Science and Engineering,
2nd edn., ch. 97 (2004)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley (1995)
11. Liskov, B., Wing, J.: A Behavioral Notion of Subtyping. ACM Transactions on Program-

ming Languages and Systems (1994)
12. Liskov, B., Wing, J.: A Behavioral Subtyping Using Invariants and Constraints. Carnegie

Mellon Report CMU-CS-99-156 (1999)
13. Mattson, T. G., Sanders, B. A., Massingill, B. L.: Patterns for Parallel Programming.

Addison Wesley (2008)

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 122–138, 2014.
© Springer International Publishing Switzerland 2014

Pragmatic Approach to Test Case Reuse -
A Case Study in Android OS BiDiTests Library

Suriya Priya R. Asaithambi1 and Stan Jarzabek1,2

1 School of Computing,
National University, Singapore

suria@nus.edu.sg, stan@comp.nus.edu.sg
2 Faculty of Computer Science,

Bialystok University of Technology

Abstract. Test libraries explode in size, but both practitioners and researchers
report much redundancy among test cases. Similar functions require similar test
cases. Redundancy may be particularly overwhelming in test libraries for mo-
bile computing, where we need to test the same functionality implemented on
various models/brands of mobile phones. Redundancies create reuse opportuni-
ties. We propose a generic adaptive test template (GATT) approach to contain
explosion of test libraries by reusing common recurring test patterns instead of
enumerating the same test case in many variant forms. The objective is to ease
the test development and maintenance effort. The process starts with automated
detection of test clones. We represent a group of similar test cases by a test
template along with specifications for automated generation of test cases in a
group. We illustrate GATT with examples from Android OS test libraries, and
evaluate its benefits and trade-offs. The approach scales to large test libraries
and is oblivious to application domains or programming languages. GATT is
practical as it focuses on managing test libraries without affecting the follow up
test execution. Therefore, it smoothly blends with any other existing techniques
and tools used for testing.

Keywords: Reusability, Test Libraries, Test Clones, Software Testing, Mobile
Platform, Android Platform Test Libraries, Test Construction Approach.

1 Introduction

Today mobile devices are important in both personal and enterprise computing. With
rapid proliferation of mobile devices comes an expectation of equally rapid rollouts
for platform improvements and bug fixes. Android is the largest open source mobile
OS platform for creating apps and games, since its inception in 2003. Android thus far
has more than ~11,000 device models1, ~120 unique brands and a total of 19 OS ver-
sions. Vendors have to verify (test) Android OS platform compatibility for individual

1
 http://opensignal.com/reports/fragmentation-2013/

 Last Retrieved April 2014

 Pragmatic Approach to Test Case Reuse 123

devices and also systematically incorporate device specific variations into multiple
releases of test libraries in order to sustain themselves in the market.

The challenge in testing these releases of Android OS is caused by the complexi-
ties of feature variations and device diversity. Platform features include any general
computing characteristics such as messaging, web browser, voice based features,
multi-touch facilities, application multitasking, screen capture, video calls, multiple
language support and other accessibilities. These platform features have slightly dif-
ferent implementation on different mobile phone brands/models. Android OS device
diversity is caused by variations among vendor specific hardware, context & location
aware features, multiple connectivity protocols, media streaming, handset layouts,
storage and sensors (e.g., cameras, gyroscopes, barometers and magnetometers).
These two testing challenges create lots of “copy-paste-modify” code among test
cases leading to the test libraries explosion, meaning vast increase in the number of
test cases needed to verify the correctness of the Android OS platform. Testers must
ensure proper functioning of features on various device models, OS versions, and
vendor specific firmware versions. Our previous study [1; 2]with Android OS
test libraries has confirmed presence of substantial redundancies in Android OS test
libraries.

In this paper, we propose the Generic Adaptive Test Templates (GATT) approach to
tackle the problem of test redundancies and turn them into productivity gains. The
approach works as follows: Each group of test clones (redundancies) is represented by
a test template written in Adaptive Reuse Technique (ART)2. This template embodies
what’s common to test cases in a group. A template is complemented by specifica-
tions of how to generate all test cases in that group from the template. The generation
is automated by template processor by using the specifications composed of commo-
nalities and variations based on the test designer’s inputs. Further, any development
or maintenance to these test libraries take place at the level of non-redundant, smaller
and easier to comprehend test templates, while the usual testing execution processes
remain unaffected by the GATT method.

We demonstrate GATT approach using BiDiTests test library (BiDiTests can test
the bi-directional orientation of any display device) from the Android OS platform.
We selected three consecutive versions of the BiDiTests. Then we quantitatively and
qualitatively evaluate the results to analyze the benefits in terms testing productivity,
as well as trade-offs in integrating the GATT into conventional testing processes. For
example, BiDiTests libraries forming three subsequent API versions amounted to
≈18EKLOC (Executable Kilo Lines of Code). With GATT, we were able to recon-
struct these test libraries from ≈ 4KLOC of generic test templates. Effectively the
process has eliminated more than 77% of the redundancy among the executable test
libraries, improving maintainability as well as reduce the efforts needed to develop
new test cases.

The paper is organized as following: section 2 presents motivation and brief sketch
of the solution, section 3 describes the proposed GATT method, section 4 discusses
the case study – BiDiTests test library, section 5 presents various test clones pertinent

2 ART – Adaptive Reuse Technique (http://art.comp.nus.edu.sg/)

124 S.P.R. Asaithambi and S. Jarzabek

to BiDiTests, section 6 discusses the test template construction using GATT ap-
proach, section 7 presents GATT evaluation and threats to validity, section 8 dis-
cusses related work and finally section 9 concludes the paper.

2 Motivation and Sketch of the Solution

A typical test case consists of test inputs, test programs and the assertion of expected
results. A common observation is that test cases to test the same feature on different
versions of Android OS are similar one to each other. Our analysis also shows that
sometimes it is not uncommon to find a fair amount of similarity even among test
cases of a single version of test library. To understand the nature of such test clones
and visualize how to unify them, consider two fragments from the test files Bitmap-
MeshActivity.java and BitmapMeshLayerActivity.java shown in
Fig. 1. As the name suggests these methods test the graphical activity of Bit-Map-
Mesh in the Android platform. We see test clone onCreate()in the left and the
right columns of Fig. 1.

Fig. 1. Similar Test Code Fragments

Common code is shown in regular font in Fig. 1, while variations are either shown
as underlined or in bold text. The underlined text indicate parametric variations that
can be handled using traditional programming constructs, whereas the bold text indi-
cate complex variations such as different API/method calls, partial names and other
gapped test clones whose handling may fall beyond the purview of traditional pro-
gramming constructs.

Fig. 2 shows how GATT works. T1 refers to the BitmapMeshActivity test
clone in the left hand side of as Fig. 1, and T2 refers to the BitmapMeshLayerAc-
tivity test clone in the right hand side of Fig. 1. GATT represents test clones T1
and T2 as a generic test template T. ΔT1 and ΔT2 are specifications of parametric and

 Pragmatic Approach to Test Case Reuse 125

other variations indicated by the test designer in order to generate T1 and T2 from the
template T respectively. Thus when the template T is processed via the Template
Processor, it generates test cases (T1 and T2) in their original form. Thus GATT’s
template constructs promote reuse with only modest extensions to existing test
libraries.

Fig. 2. GATT Template Specification

A sample template for the above test code fragment is shown in Fig. 3Error! Ref-
erence source not found. (BitMapActivity.art). Both ΔT1 and ΔT2 are in
BitMapActivity.spc specification file called SPC for short. Template processor
interprets and generates the original test files BitmapMeshActivity.java and
BitmapMeshActivity.java.

Fig. 3. Representation of motivational example

An ART template is parameterized with ART commands as shown in bold fonts.
These parameters are defined in SPC along with their respective values. The template
processor propagates the values from template to generate test cases. The motivation
of our solution is to simplify testing by promoting reuse and improving abstraction.

126 S.P.R. Asaithambi and S. Jarzabek

3 Overview of Generic Adaptive Test Template (GATT)

Software testing process (shown in Fig. 4) comprises four stages namely, test plan-
ning, test preparation, test execution and result analysis. During test planning activi-
ties such as identification of tasks, resource estimation, financial and effort budgets
are handled. Test preparation involves test case design, preparation and implementa-
tion of test data, test cases and design of fixtures. Both test planning and preparation
activities are termed as test construction. Test execution involves selection of appro-
priate test cases for situation under test, test execution and recording of outcomes
either manually or by automation depending on the context. Result analysis uses these
test outcomes to decide on coverage and need for further testing.

Fig. 4. Software Testing Process

Fig. 5. GATT Approach for Test Libraries

 Pragmatic Approach to Test Case Reuse 127

GATT fits into the Test Preparation stage and aligns closely with the test library
repository. The GATT approach usually starts with identification of test case similari-
ties (clones), selection of test cases for unification, creation of templates and finally
maintenance of the same. Fig. 5 illustrates how GATT approach works during test
construction (planning and design of test cases) and test execution. GATT involves
two key roles, namely Test Designer who is a domain expert contributing towards test
case design and development, and Tester who executes tests on a targeted system.

As test cases are maintained at template level, testers work with the representation
that is smaller in size than the actual test library and may hence find it easier to under-
stand due to non-redundant structure. We build test templates in steps shown in
Fig. 5:

1. Step 1: Identify Test Clones. Input for this step is the existing test library codes.
Using automated clone detection tools followed by manual analysis we zoom into
test clones whose elimination is likely to boost testing productivity.

2. Step 2: Select Test Cases for Unification. Second step assesses the feasibility of
unifying the identified test clone groups. Some of these test clone groups can be
handled using either the object oriented programming language constructs or de-
pendency injection constructs. These test clone groups are named as Reducible test
clones. In spite of such implementation mechanism, we still observe presence of
complex test clones. These complex test clone groups that cannot be handled by
the traditional testing mechanism and named as Non-reducible test clones.

3. Step 3: Create Test Templates. Once it has been decided to use template ap-
proach, the third step focuses on designing and developing GATT representation
for identified test clone groups.

4. Step 4: Maintain Test Templates. Maintaining the harvested generic adaptive test
templates as a regular configured software artifacts help in sustaining the quality of
the test library in the long term.

4 Overview of BiDiTests

We demonstrate GATT with test clones found in the BiDiTests test library of the
Android OS API version 17. BiDiTests comprises 5325 ELOC (has 41 Java test
files and 37 XML configuration files). We chose BiDiTests since it exhibits test
clones of different type and granularity which allows us to properly illustrate GATT.
The BiDiTests test library is a typical example of the traditional graphical inter-
face testing in the Android OS. Additionally, we have used information from the An-
droid developer forum and API documentation to understand the underlying domain
and maintenance aspects.
BiDiTests is composed of functional test cases designed to test the bi-

directional layout of the device’s screen orientation. The layout usually defines the
visual structure for a user interface as a basis to design further UI components, events,
activities and widgets. BiDiTests test cases validate UI components of the System
API such as View, Widget and Canvas. The View is the rectangular canvas

128 S.P.R. Asaithambi and S. Jarzabek

component that is responsible for drawing further components and handling its re-
spective events. BiDiTests test cases verifies various layout setting (left-to-right,
right-to-left and locale layouts) for the three types of graphical entities namely, View,
Layout and Gallery. Each of these entities have unique properties such as size,
color, appearance, position, visibility and other associated behavioral properties. Fur-
ther, the test library verifies different layouts such as LinearLayout, Frame-
Layout, GridLayout, TableLayout and RelativeLayout. For brevity,
Fig. 6 only shows the participating java class names of the BiDiTests test library
under the TableLayout.

Fig. 6. BiDiTests files for verifying bi-directional layouts

The BiDiTests also allow for declarative definition of layout using XML voca-
bulary enabling better separation of presentation logic from rest of the platform beha-
vior. Test cases verifying a particular graphical layout exhibit similarity in terms of
test fixtures, test data, events tested and action lifecycle. Analyzing from such test
variation perspective, BiDiTests classes are organized into three levels (as shown
in Fig. 6).

1. At the top level, testing focuses on graphical type Canvas as the basic UI entity.
All other graphical components are laid over the canvas component. This apart,
Activity, utility and other constants classes forms the top level. The Activi-
ty initializes a logical test suite and executes all connected test cases present.

2. In the second level, Canvas is further divided into sub-types (example: various
layouts) or specialties (example: text view is a special type of view). For example,
let us consider the Layout subtype, this is further divided into five kinds name-
ly, frame, grid, linear, relative and table. Another example is that the
View entity is further specialized into sub-class TextView. Thus test attributes
related to the View are not sufficient to describe the special attributes for Text-
View and hence additional tests are designed.

 Pragmatic Approach to Test Case Reuse 129

3. In the third level, each graphical entity has to be tested for various orientations
namely, left-to-right (ltr), right-to-left (rtl) and locale.

Class naming conventions helps in identifying groups of similar test cases. For ex-
ample, a graphical entity Layout and subtype Table with three orientations are named
as BiDTestTableLayoutLtr, BiDTestTableLayoutRtl & BiDTest-
TableLayoutLocale (as shown in Fig. 6). Similarly, a test file named Bi-
DiTestRelativeLayoutRtl.java would verify the graphic canvas for relative
layout and right-to-left orientation. BiDiTestTextViewLtr.java would test
the graphic canvas for Text View UI and left-to-right orientation. Thus in the BiDi-
Tests test files, feature variant layers are explicitly declared in the file names in order.

5 Test Clones in BiDiTests Library

We used Clone Miner and Clone Visualizer [3-5] along with CCFinder to detect test
clones in BiDiTests. Subsequently we carried out manual test case analysis to
determine the nature of redundancies. We chose a sample of BiDiTests test library
with 6733 TLOC (Total Lines of Code) and 5325 ELOC (excluding comments) from
a repository of forty over test libraries. The BiDiTests consists of 41 java and 37
XML configuration files (78 files) representing ~53 test cases. These test cases show
presence of 83 test clone groups of varying token sizes and types. The summary of the
test clone groups are shown in Table 1. TC refers to test clones in short, TCG refers
to the test clone groups, each test clone group can have two or more test clone in-
stances (TCI) and LOC refers to the average lines of code for the test clone groups.

Table 1. Summary of test clone groups in BiDiTests

Granularity Fragments TC Method Level TC File Level TC

T
ot

al
 T

C
G

R
ed

uc
ib

le
 T

C
G

N
on

-R
ed

uc
ib

le

T
C

G

Type

T
C

G

T
C

I

L
O

C

T
C

G

T
C

I

L
O

C

T
C

G

T
C

I

L
O

C

Simple Test Clones 4 8 7 6 12 6 0 0 0 10 2 8
Structural Test Clones 4 10 12 25 50 10 34 87 6 63 4 59
Heterogeneous Test Clones 0 0 0 0 0 0 10 24 35 10 0 10
Total 8 31 44 83 6 77

The Simple Test Clones are test code fragments that meet certain (as set by Test

Designer) threshold of similarity. Simple test clones are often the result of copying a
code fragment and pasting it into another location. This includes identical test code
fragments, parametric test code fragments with variations in identifiers, literals, types,
parameters and variables and gapped test code fragments that have additional varia-
tions in terms of added, modified and removed statements. Structural Test Clones are
similar program structures such as test classes, files or directories. Heterogeneous
Test Clones comprise of test code fragments containing multiple programming
languages.

130 S.P.R. Asaithambi and S. Jarzabek

Key reasons why test clones appear in BiDiTests are due to the similarities
among the layouts, event handling, action lifecycle, screen layout configuration and
orientation features. By default all events raised by the same component (example
button or drop down list) are similar and thus the related test cases have similar codes.
In summary, test clones are generally caused by the similarities among graphical
components. In this case study, we have managed such non-reducible test clone
groups using the proposed GATT approach.

5.1 Test Clone Examples

Consider the following piece of gapped test code fragment extracted from two differ-
ent java test files namely BitmapMeshLayerActivity.java and BitmapMe-
shActivity.java as illustrated in Fig. 7. An analysis of these test clones reveal
that the two classes are contiguous segments of redundant test scripts that have inter-
vened code portions that are not parametric.

Fig. 7. Gapped Test Clone Example

Consider the following piece of test code fragment (Fig. 8) extracted from the on-
CreateView() method of two different java test files namely BiDiTestRela-
tiveLayoutLtr.java and BiDiTestRelativeLayout2Ltr.java.
The test clones are syntactically identical fragments of test codes or test methods ex-
cept for non-parametric variations in class names and inflate() method calls.

5.2 Non-reducible Test Clone Groups in BiDiTests

For the ease of comprehension we grouped the java and xml files as separate tem-
plates. GATT approach works equally well when multiple programming language
files are combined into same template specification since it works with individual
level parsing and not at the programming language syntactical constructs, thus test
clone file grouping is purely a test designer’s preference. It is easier to logically group
the non-reducible test clones based on the test functionality and component under test
before translating into test templates. We logically grouped BiDiTests into the
following constructs:

 Pragmatic Approach to Test Case Reuse 131

Fig. 8. Structural (non-parametric) test clone instances

1. BiDiCanvas[T].java: This group refers to tests that verify proper functioning
of display orientation in an embedded graphical canvas. T refers to the canvas
instances.

2. BiDiTest[U]Layout[V].java: This group refers to tests that verify the
layout graphical entities. U refers to the particular layout under test such as frame,
grid, linear, relative and table layouts. V refers to one of the display orientation
choices such as Ltr, Rtl and Locale. Similarly, [U]_layout_[V].xml refers
to the configuration of the various layout options.

3. BiDiTestGallery[W].java: This group refers to tests that verifies the gal-
lery based graphical entities. W refers to one of display orientation choices such as
Ltr, Rtl and Images in gallery. Similarly, Gallery_[W].xml refers to the confi-
guration of the various gallery components.

4. BiDiTestTextView[X][Y].java & BiDiTestTextView[V].java:
This group refers to tests that verifies view based graphical entities. X refers
to one of display directions or UI component drawn, Y refers to one of display
orientation choices such as Ltr or Rtl. V refers to padding, padding mixed,
group margin, text and display orientation choices such as Ltr, Rtl and Locale.
Test_view_[X]_[Y].xml & Text_view_[V].xml refers to the configu-
ration of the various view options.

5. Rest of the smaller test files (both java and configuration) inclusive can be drafted
into miscellaneous templates with test clone groups of lesser granularity.

6 GATT Representation for BiDiTests

In this case study we have built the test templates for an existing test library (mainten-
ance scenario). However, the GATT approach can be applied equally well to test case
creation scenarios where new test case are developed with inputs from test designer

132 S.P.R. Asaithambi and S. Jarzabek

regarding possible similarities from the test case design. GATT templates contain
common parts of test cases in test clone group marked with provision for variation
points at which template processor can customize to derive specific variations. The
BiDiTests test library is translated into template hierarchy and SPC built using
ART. For API version 17 of BiDiTests, we built ~30 templates (details provided
later in Table 3). We also built templates for three subsequent versions BiDiTests
test cases (namely versions 16, 17 & 18). This case study shows the use of GATT as
test libraries evolve together with the Android OS from one release to another. It also
provides additional contextual interpretations, refinements related to evolutionary
changes, tactics for change propagation visibility and assistance for managing mul-
tiple version releases. Finally, versions of Android OS test library can also benefit
from the variability management mechanism from a maintenance perspective.

6.1 Selected BiDiTests GATT Examples

In this section we present few representative templates for test clones to showcase our
solution. We focus on non-parametric and heterogeneous test clones as they cannot be
handled by conventional programming techniques. Consider the first example drawn
from BiDiTests to illustrate how GATT handles non-parametric variation amoung
test cases (as shown in Fig. 9).

Fig. 9. GATT example for structural test clone group

The variations between the test clones are being highlighted in bold text in the fig-
ure. We observe the presence of test clones due to non-parametric variations occur in
the form of gapped test codes. Such test clones are reconstructed into templates pre-
serving the common text (in this example BiDiTestCanvas.art). The variations
are then managed using adaptation commands. The template processor reads and
interprets the art commands and generates the test files BiDiTestCanvas.java
and BiDiTestCanvas2.java yielding two different test cases for the canvas
component.

 Pragmatic Approach to Test Case Reuse 133

Consider the heterogeneous test clone group files (BiDiTestView and Bi-
DiTestViewDrawText java and XML layout files) consisting of test codes writ-
ten in two programming languages to verify View graphic item and its respective
layout as shown in Fig. 10. When the graphical entities under test are similar, the
test cases contain semantically equivalent constructs. In this example, one tester has
chosen to define text size as int while another tester chose float. In addition, we
can also observe that the test codes differ in the way variables are scoped and memory
managed (final and static). In such non-type based variations, java
generics <T> are inadequate. The GATT solution for this heterogeneous test clone
(composed of both xml and java files) example is constructed. Fig. 10 also shows
relevant skeletal code fragments for the templates (BiDiTextView.art and
XML_textview.art). Also in this case study, we have designed and constructed
GATT representation in three iterations. The first iteration named BiDiTestsSimple
is based on one-to-one translation of test files into templates, with little attention to
minimizing redundancies. In the second iteration BiDiTestsOptimized, redundancies
are unified by understanding test smells, refactoring non-parametric and non-type
variants. Finally in BiDiTestsUnified iteration, we further refined and normalized
the test clone group across three subsequent Android OS versions.

Fig. 10. GATT for heterogeneous test clones (Java + XML) files

7 GATT Evaluation

We used the case study BiDiTests as a representative slice of Android OS test
repository, to demonstrate the GATT representation is feasible and beneficial. We
evaluated GATT using measures such as: (1) Lossless-translation of test libraries into
templates (2) Quantitative Evaluation (3) Qualitative Analysis (4) Scalability and (5)
Assessment of the non-intrusiveness. Finally this section also briefly points threats to
validity.

134 S.P.R. Asaithambi and S. Jarzabek

7.1 Lossless Translation of Test Libraries into GATT Representation

It is essential to verify if the templates generate original test libraries without any loss
of information. We validated the template construction by generating test cases from
templates and comparing them with originals using file and directory comparator
tools.

7.2 Quantitative Evaluation

In this case study, we built GATT representation for an existing test library (BiDi-
Tests) with an intention of reducing test clones and providing effective reuse solu-
tions. Summary of the GATT representations are shown in Table 2 and Table 3.
Table 2 summarizes quantitative statistics of GATT representation across the three
test library versions. Table 3 summarizes the improvements achieved through the
iterative re-construction process.

Table 2. BiDiTests Project Consecutive Three Version Statistics

Description API16 API 17 API 18

of Java Test Files 34 41 39
of Java Test Methods 61 72 59
of XML Configuration Files 31 37 36
Total Files 65 78 75
Files Containing Test clones 46 59 56
% Files Containing Test Clones 71% 76% 74%
File Size (Kbytes) 416 528 512

Lines Of Code 6556 8422 8102

of Executable Lines Of Code 4877 6393 6191
ART Templates 29 29 29
Each Versions (Executable LOC) 3924 4024 4063
ART (%) as compared to Original ELOC 80% 63% 66%
Merged Templates (Executable LOC) 4063
ART(%) compared to Original ELOC 23%

Table 3. Template Files Metrics accross Iterations

Description BiDiTestsSimple BiDiTestsOptimized BiDiTestsUnified

Canvas Related Testing Files 4 2 2
Layout Related Testing Files 37 14 8
Gallery Related Testing Files 5 3 3
View Related Testing Files 26 12 10
Miscellaneous + SPC 6 7 7
Total 78 38 30

As observed from the above data, there is a significant drop in the size of test code
to be maintained from original test libraries to BiDiTestsUnified. Also in the BiDiTest-
sOptimized, there is 80%, 63% and 66% reduction in test library size (ELOC) for API 16,
17 and 18 versions respectively. BiDiTestsUnified has been compressed to 23% of its
original size largely due to unification of three API kernel versions to one. From orig-
inal code base of approximately 218 files (both Java and XML inclusive), the generic
templates where compacted into just 30 template files.

 Pragmatic Approach to Test Case Reuse 135

7.3 Qualitative Analysis - Change Propagation

In addition to reducing the size of the test library, GATT also reduces the cognitive
complexity, and simplifies test case maintenance. This is due to exposing program
relations that matter in maintenance such as change propagation discussed here. We
conducted an experiment to verify the hypothesis that test templates improve produc-
tivity and reduce update anomalies. We analyzed the impact of change requests,
namely Grid Change, Text View Change and Drop Extra Canvas. We compared the
number of modifications needed to implement the change requests (in subsequent
versions) using the GATT approach to that of the normal approach. From kernel API
version 16 to 17 seven files were added to satisfy change requests CR1 & CR2 shown
in Table 4. Likewise, from versions API 17 to 18 two files were deleted to satisfy the
CR3. #F denotes the number of files affected by the change request while #L denotes
the number of modified locations. The number of files affected was further sub-
classified as newly added files (#A), Deleted (removed) files (#D) and modified files
(#M) as observed from the distribution of impact recorded in Table 5.

Table 4. Change Request List

Grid Change (CR1) Update BiDiTests app for adding ‘Grid Layout’ unit tests

Text View Change (CR2) Add tests to view text alignment

Drop Extra Canvas (CR3)
Clean up code for Test View, ‘Canvas Layout’ and related code
flags

Table 5. Comparison of change propogation

C
R

#F

#L
 Original Test Library GATT based Test Library

Single Version Three Versions Single Version Three Versions

#A

#D

#M

#A

#D

#M

#A

#D

#M

#A

#D

#M

CR1 8 9 7 0 1 21 0 3 2 0 1 1 0 1
CR2 5 5 4 0 1 12 0 3 2 0 1 2 0 1
CR3 4 4 0 3 1 0 9 3 0 2 1 0 2 1

The number of modifications that are needed in order to implement these change
requests have decreased from original test library to GATT representation of the same
slice of the test library. With reduction of modification points also comes smaller
number of change propagation paths which together contribute to ease of navigating
in the non-redundant template representation to trace the impact of changes. While we
have not conducted yet a controlled experiment to measure the actual impact of
GATT on test case maintenance effort, we think the above arguments provide a com-
pelling reasons to think that maintenance effort will be also reduced.

7.4 Scalability

GATT provides a template representation for both test data-structures as well as test
case algorithms in its meta-layer. GATT also addresses concept of hierarchy and

136 S.P.R. Asaithambi and S. Jarzabek

vertical parameters (i.e. layered components) which are essential ingredients for any
scalable test library. The GATT related control constructs work as pre-generators and
offers support to building of test library in a hierarchical fashion at the level of meta-
layer, thereby guaranteeing scalability.

7.5 Non-intrusiveness

Preliminary evidence presented thus far shows that GATT prototype does not com-
promise productivity and performance of the generated test libraries. Test designers
work with test case code wrapped in ART directives as templates. Template processor
then expands these directives to generate the actual test cases from templates in the
similar way that the C pre-processor generates code by expanding cpp directives.
When the templates are instantiated, the implementation details of the test case are
resolved by compile time binding values to the parameters from the template.

7.6 Threats to Validity

There are few threats to validity such as (1) the choice of BiDiTests project over oth-
ers in repository, (2) the nature of interpretation performed by the tool, and (3) use of
text token based comparison. Our work does not claim to have generalized all possi-
ble GATT representation. Our estimates on efforts/change metrics for change requests
are based on GIT repository information. While we believe that GATT approach can
be smoothly accommodated into existing software testing, this hypothesis needs cer-
tainly be verified in industrial project settings.

8 Related Work

Antonia Bertolino [7] summarizes the many outstanding research challenges for soft-
ware testing into a consistent roadmap. From the literature it is observed that in test
case construction strategies such as model based testing, combinatorial testing and
domain driven tools are popular. Several researchers have proposed different ways of
adopting or implementing Model Based Testing (MBT). MBT is extensively dis-
cussed in books by Beizer et al [6] and Utting et al [15]. UML diagrams such as state-
chart diagrams, use-case diagrams, sequence diagrams, etc. can assist to generate test
cases. Research proposals [13; 14] utilize UML profiles and test constraints in form of
directives in their generation approach. Combinatorial testing (CT) is another active
area of test case generation. Four main groups of methods have been proposed: gree-
dy algorithm, heuristic search, mathematic method and random method [8-10].
Among the different variability management techniques, use of compile-time test case
generation is proposed by Mc.Gregor in [12]. Also approaches that work with hetero-
geneous platforms and polyglot programming languages are sparse. NA Kraft et al
[11] describe an approach for cross-language clone detection. The work has been
implemented in .Net platform and proved to detect clones from C# and VB codes.
While published literature thus far focuses on test generation and selection challenges,

 Pragmatic Approach to Test Case Reuse 137

Android being a recent platform, has received less attention particularly in variability
management techniques. As long as regular programming language constructs are
able to unify the test clones, it remains a traditional solution. But when the complexity
of variations cannot be handled, the test designer may resort to the use of GATT ap-
proach. As the name suggests, generic adaptive test templates complement than com-
pete with traditional techniques. While the GATT approach proposes that test libraries
are handled through reusable and adaptable templates, after generation only test libra-
ries and compiled and executed. Thus at runtime, there is no difference between tradi-
tional and GATT generated test libraries.

9 Conclusion

Test libraries of Android OS explode because of the need to test Android OS features
on many brands and models of mobile devices. We addressed the problem by
representing groups of similar test cases with templates. We demonstrated our tem-
plate approach with slice of Android OS test library and evaluated engineering merits
of the approach. In evaluation, we pointed to reduction of size and cognitive complex-
ity of test library size, and to ease of adoption of our approach due to seamless injec-
tion into existing testing processes. In future work, we will extent the scope of our
study covering bigger slice of Android OS test library and will conduct a controlled
experiment to assess productivity gains due to adoption of our approach. We also plan
to conduct similar studies of Android app test libraries where test clones are expected
to be more pervasive.

References

1. Asaithambi, S.P.R., Jarzabek, S.: Generic adaptable test cases for software product line
testing: Software product line. In: Proceedings of the 3rd Annual Conference on Systems,
Programming, and Applications: Software for Humanity, pp. 33–36. ACM (2012)

2. Asaithambi, S.P.R., Jarzabek, S.: Towards Test Case Reuse: A Study of Redundancies in
Android Platform Test Libraries. In: Favaro, J., Morisio, M. (eds.) ICSR 2013. LNCS,
vol. 7925, pp. 49–64. Springer, Heidelberg (2013)

3. Basit, H.A., Ali, U., Haque, S., Jarzabek, S.: Things structural clones tell that simple
clones don’t. In: 28th IEEE International Conference on Software Maintenance (ICSM),
pp. 275–284. IEEE (2012)

4. Basit, H.A., Jarzabek, S.: A case for structural clones. In: Proc. Int. Workshop on Software
Clones (IWSC 2009) (2009)

5. Basit, H.A., Jarzabek, S.: A data mining approach for detecting higher-level clones in
software. IEEE Transactions on Software Engineering 35(4), 497–514 (2009)

6. Beizer, B.: Software testing techniques. Dreamtech Press (2003)
7. Bertolino, A.: Software testing research: Achievements, challenges, dreams. In: 2007 Fu-

ture of Software Engineering, pp. 85–103. IEEE Computer Society (2007)
8. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: An approach

to testing based on combinatorial design. IEEE Transactions on Software Engineer-
ing 23(7), 437–444 (1997)

138 S.P.R. Asaithambi and S. Jarzabek

9. Gnesi, S., Latella, D., Massink, M.: Formal test-case generation for UML statecharts. In:
Proceedings of the Ninth IEEE International Conference on Engineering Complex Com-
puter Systems, pp. 75–84 (2004)

10. Hartman, A.: Software and hardware testing using combinatorial covering suites. In:
Graph Theory, Combinatorics and Algorithms, pp. 237–266. Springer (2005)

11. Kraft, N., Bonds, B., And Smith, R.: Cross-language clone detection. In: Proceedings of
the 20th International Conference on Software Engineering and Knowledge Engineering,
SEKE (2008)

12. McGregor, J.D.: Testing a software product line. In: Borba, P., Cavalcanti, A., Sampaio,
A., Woodcook, J. (eds.) PSSE 2007. LNCS, vol. 6153, pp. 104–140. Springer, Heidelberg
(2010)

13. Offutt, J., Abdurazik, A.: Generating tests from UML specifications. In: France, R.B. (ed.)
UML 1999. LNCS, vol. 1723, pp. 416–429. Springer, Heidelberg (1999)

14. Riebisch, M., Philippow, I., Götze, M.: UML-based statistical test case generation. In:
Akşit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 394–411.
Springer, Heidelberg (2003)

15. Utting, M., Legeard, B.: Practical model-based testing: A tools approach. Morgan Kauf-
mann (2010) 0080466486

The Supportive Effect of Traceability Links in Change
Impact Analysis for Evolving Architectures

– Two Controlled Experiments

Muhammad Atif Javed and Uwe Zdun

Software Architecture Research Group
University of Vienna, Austria

{muhammad.atif.javed,uwe.zdun}@univie.ac.at

Abstract. The documentation of software architecture relations as a kind of
traceability information is considered important to help people understand the
consequences or ripple-effects of architecture evolution. Traceability infor-
mation provides a basis for analysing and evaluating software evolution, and
consequently, it can be used for tasks like reuse evaluation and improvement
throughout the evolution of software. To date, however, none of the published
empirical studies on software architecture traceability have examined the validity
of these propositions. In this paper, we hypothesize that impact analysis of
changes in software architecture can be more efficient when supported by trace-
ability links. To test this hypothesis, we designed two controlled experiments that
were conducted to investigate the influence of traceability links on the quantity
and quality of retrieved assets during architecture evolution analysis. The results
provide statistical evidence that a focus on architecture traceability significantly
reduces the quantity of missing and incorrect assets, and increases the overall
quality of architecture impact analysis for evolution.

Keywords: Software architecture traceability, Architecture evolution, Change
impact analysis, Empirical software engineering, Controlled experiment.

1 Introduction

During the last four decades, many investigations on software change impact analysis
techniques and its applications have been performed [16][18]. Change impact analy-
sis is about determining the consequences or ripple-effects of proposed changes in the
software system. To support software evolution, architectural change impact analysis
is considered of great importance as understanding the architecture and its changes is
a foundation of software evolution analysis at the architectural level [12]. The archi-
tectural level is well suited for software evolution analysis, as the software architecture
allows (early) reasoning on the quality attributes of the system [4] and the software ar-
chitecture not only describes the high-level structure and behaviour of the system, but
also incorporates principles and decisions that determine the system’s development and
its evolution [2].

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 139–155, 2014.
c© Springer International Publishing Switzerland 2014

140 M.A. Javed and U. Zdun

Software change impact analysis techniques and their applications are based on ei-
ther traceability information or dependence relationships. These techniques do not only
provide a basis for analysing and evaluating software evolution, but can also be used for
tasks such as reuse evaluation and improvement. For example, the identified impacts of
specific software assets from architecture evolution analysis can be used as a basis to
examine the level of reuse of those assets throughout a number of evolution steps. It is
also pointed out by Selby [13] that, in general, software assets reused without or with
limited revisions have fewer faults than software assets reused with major revisions.
Hence, understanding change impact provides the means to control reuse and evolution
of software assets.

Traceability links between the software architecture and other software assets, such
as the source code or the requirements, are considered important to determine the po-
tential evolution impacts at the architectural level [8]. However, none of the published
empirical studies on software architecture traceability provide quantitative evidence of
the added value of traceability links in the evolution of software architectures. To date,
two empirical studies on architecture traceability have been published [7][14]. These
studies mainly concern the understanding of architecture designs. The lack of published
empirical data on the benefits of architecture traceability is one of the reasons that pre-
vents the wide adoption of traceability approaches in industrial settings [7][14]. It is
crucial to conduct more empirical studies on the usefulness of architecture traceabil-
ity to find out whether the use of architecture traceability can significantly support the
development activities in order to justify its costs.

The goal of this paper is to empirically validate whether change impact analysis
is more efficient regarding the software architecture evolution activities, if the impact
analysis is supported by traceability links. In particular, we intend to answer the follow-
ing research question: Are the quality and quantity of retrieved assets during software
architecture change impact analysis higher for change impact analysis that is supported
by traceability links than for change impact analysis without traceability links? Note
that the assets to be retrieved during our experiments are source code classes and com-
ponents in a component model that are affected by a change.

To answer the research question, we conducted two controlled experiments at the
University of Vienna, Austria, in May 2014. The first experiment was carried out with
51 students, whereas the other 56 students participated in the second experiment. They
were asked to perform seven impact understanding activities that concern the evolution
at the architectural level. In both experiments, half of the students were asked to perform
the impact analysis of changes in software architecture by using the information from
the architectural documentation and the source code of the system, while the other
half performed the same tasks with the same provided information and additionally
received traceability links between the architectural models and the source code. The
former group is referred to as the control group, the latter as the experiment group. The
data from the experiments was analysed, and the quantity of missing and erroneous
retrieved assets during the architecture evolution analysis and their overall quality were
compared. The results of the experiments provide strong evidence for the benefits of
using traceability links concerning the quantity and quality of the assets retrieved during
change impact analysis activities for evolving software architectures.

Effects of Traceability Links in Evolving Architectures 141

The rest of this paper is organized as follows: Section 2 describes the related work.
Section 3 discusses the design of the controlled experiments including the introduction
of variables and hypotheses, while the subsequent Section 4 explains the details con-
cerning the execution of the experiments. Section 5 presents the hypotheses tested and
the analysis of the results of the study. Section 6 contains the interpretation of the find-
ings and a discussion of threats to validity. Section 7 concludes the study and discusses
future work.

2 Related Work

As mentioned in the introduction, there exist only two earlier studies, one performed by
our research group [7] and one by Shahin et al. [14], that provide quantitative evidence
of the added value of traceability links in understanding of architecture designs.

In our own previous study [7] we conducted a controlled experiment and its replica-
tion to evaluate the support provided by traceability links between architectural models
and the source code. The experiments were conducted with 108 participants. The partic-
ipants were asked to answer twelve typical questions aimed at gaining an architecture-
level understanding of a representative subject system, with and without traceability
information. Our findings show that the use of traceability links significantly increases
the correctness of the answers of the participants, whereas no conclusive evidence con-
cerning the influence of the experience of the participants are observed.

The work by Shahin et al. [14] analyse the support provided by Compendium tool, a
tool to visualize architectural design decisions and their rationale, as a kind of traceabil-
ity information. The experiment was carried out with 10 participants. The participants
were asked to understand the existing design and to make the new design according
the new requirement, with and without Compendium tool. The results show that Com-
pendium significantly improves the correctness of understanding architecture design in
architecting process, and does not increase the total time for reading software architec-
ture documentations and performing design task.

The contribution of this study is novel for two main reasons. First, there exist no
published evidence related to the added value of traceability links in software architec-
ture evolution. Second, most of the earlier works are based on some specific traceabil-
ity tools, which do not enable a distinction between tool support and the usefulness of
traceability links. In our experiments, for practical reasons and to study the foundational
concepts rather than a specific tool, the participants were provided with hyperlink-based
access of traceability links and the source code, to investigate the support provided by
traceability links between architectural models and the source code in evolution of soft-
ware system architectures, rather than the support provided by a specific tool.

3 Design of the Experiment

For the study design, the guidelines for experiments’ conduct by Kitchenham et al. [10]
and Wohlin et al. [17], and reporting by Jedlitschka and Pfahl [9] were used. Kitchen-
ham et al. present preliminary guidelines for experimentation in software engineering

142 M.A. Javed and U. Zdun

and give some instructions regarding the context, design, data collection, analysis, pre-
sentation, and interpretation of empirical studies without going into detail. Wohlin et
al. present the experiment phases in more detail, and also discuss statistical tests and
their suitability for different kinds of studies. The former guidelines were primarily
used in the planning phase of our experiments, while the latter was used as a reference
for the analysis and interpretation of the results. Jedlitschka’s and Pfahl’s guidelines
for reporting controlled experiments are used to describe the experiments in this paper.
Please note that the following subsections of the reporting template were omitted, be-
cause they were either not applicable, or their content was already mentioned in other
sections: Relation to existing evidence is presented in Section 2; inferences and lessons
learned are discussed in Section 6; interpretation and general limitations of the study
are described in Section 6.2.

3.1 Goal, Hypotheses, Parameters, and Variables

The goal of the experiments is to empirically investigate, if change impact analysis that
is based on traceability links significantly reduces the quantity of missing and incorrect
retrieved assets, and increases their overall quality during the architecture evolution
analysis. The experiments goal led to the following null hypotheses and corresponding
alternative hypotheses:

H01: The use of traceability links does not significantly increase the quantity of cor-
rectly retrieved assets during architecture evolution analysis.

H1: The use of traceability links significantly increases the quantity of correctly re-
trieved assets during architecture evolution analysis.

H02: The use of traceability links does not significantly reduce the quantity of incor-
rectly retrieved assets during architecture evolution analysis.

H2: The use of traceability links significantly reduces the quantity of incorrectly re-
trieved assets during architecture evolution analysis.

H03: The use of traceability links does not significantly increase the overall quality of
retrieved assets during architecture evolution analysis.

H3: The use of traceability links significantly increases the overall quality of retrieved
assets during architecture evolution analysis.

Table 1. Dependent Variables

Description Scale Type Unit Range
Quantity of correctly retrieved assets Interval Points [0 - 1]
Quantity of incorrectly retrieved assets Interval Points [0 - 1]
Overall quality of the retrieved assets Interval Points [0 - 1]

Dependent Variables. Three dependent variables were observed during the experi-
ments, as shown in Table 1: the quantity of correctly and incorrectly retrieved assets,
and their overall quality, in the architecture evolution analysis. They were accessed
by using the standard information retrieval metrics, in particular, recall, precision, and

Effects of Traceability Links in Evolving Architectures 143

f-measure, respectively [1][6]. Because impact analysis of changes in software archi-
tecture consists of a list of system assets, two aspects were specifically taken into con-
sideration to measure the recall and precision of the retrieved assets:

– The set of correct assets expected in the solution to activity a (Ca).
– The set of assets retrieved in the solution to activity a by participant p (Rp,a).

Recallp,a =
| Ca ∩Rp,a |

Ca
Precisionp,a =

| Ca ∩Rp,a |
Rp,a

Recall is the percentage of correct matches retrieved by an experiment subject, while
precision is the percentage of retrieved matches that are actually correct. Because recall
and precision measure two different concepts, it can be difficult to balance between
them. Therefore, f-measure, a standard combination of recall and precision, defined
as their harmonic mean, is used to measure the overall quality of architecture change
impact analysis activities from the experiments’ participants.

Table 2. Independent Variables

Time Ordinal Minutes 90 minutes (Max)
Group Affiliation Nominal N/A Control group, Experiment group
Programming experience Ordinal Years 4 classes: 0-1, 1–3, 3–7, >8
Architecture experience Ordinal Years 4 classes: 0-1, 1–3, 3–7, >8
Affiliation Nominal N/A Academia, Industry, Other

Description Scale Type Unit Range/Possible Values

Independent Variables. Five independent variables were observed during the exper-
iments, as shown in Table 2. They relate to the personal information (programming
experience, architecture experience, affiliation), group affiliation (control group or ex-
periment group) and time spent in the experiments. These variables could have an in-
fluence on the dependent variables, which is eliminated by balancing the characteristics
between the control groups and the experiment groups in the same way, in particular,
through random assignment to the two groups in both experiments.

3.2 Experiment Design

To test the hypotheses, we conducted two controlled experiments [3] at the University
of Vienna, Austria, in May 2014. The experiments were conducted as practical sessions
on architecture evolution analysis.

Participants. The participants in the experiments were 107 individual students of the
software architecture course held at University of Vienna. The first experiment was
conducted with 51 students, while the other 56 students had participated in the second
experiment.

144 M.A. Javed and U. Zdun

Objects. The basis for the architecture impact recovery was UltraESB1 Version 2.3.0
and PetalsESB2 Version 4.2.0. Both systems belong to the enterprise service bus (ESB)
domain, which provides an connectivity infrastructure to integrate the services within a
service-oriented architecture.

Blocking. To be able to explicitly analyse the influence of traceability links in change
impact analysis of software architecture evolution, the participants in both experiments
were randomly assigned to the two balanced groups. For each experiment, one group
of participants was asked to determine the impact of architecture evolution activities by
using the information from the architectural documentation and the source code of the
system, whereas the other group performed the same tasks, but additionally received
the traceability links between architectural models and the source code. The first group
is referred to as control group, the latter as experiment group.

Instrumentation. To obtain the necessary data related to the influence of traceabil-
ity links in architecture evolution analysis, the instruments discussed in the following
paragraphs were used to carry out the experiments.

Three pages of architectural documentation about the used objects: The participants
in the first experiment were provided with the documentation for UltraESB, while the
participants of the second experiment received the documentation for PetalsESB. The
documentation describes the conceptual architecture and lists technologies and frame-
works used in the implementation. Besides text, a UML component diagram is used to
illustrate the components, and their inter-relationships in parts of the architecture.

Web-based access for the source code: The participants in the first and second ex-
periment were provided with the web-based access of syntax-highlighted source code
for the UltraESB and PetalsESB, respectively. The cover page alphabetically lists the
source code package names and their enclosed code classes, and provides a hyperlink-
based support to ‘jump’ to specific assets (code classes or packages) located in the
Git repository3. The participants in the experiment groups were also provided with the
similar support for traceability links, represented as lists: Each entry in a list contains
information about architectural components and their realized code classes, which rep-
resent individual traceability link.

A questionnaire to be filled-in by the experiments’ participants: At the first page of the
questionnaire, the participants had to rate their programming experience, architecture
experience and affiliation, while the subsequent pages contains the seven architecture
impact analysis activities, as shown in Table 3. In the context of these activities, two
important criteria are applied: (i) the activities should be representative for key archi-
tecture impact analysis and evolution contexts for both UltraESB and PetalsESB, and

1
http://adroitlogic.org/products/ultraesb.html

2
http://petals.ow2.org

3
http://git-scm.com

http://adroitlogic.org/products/ultraesb.html
http://petals.ow2.org
http://git-scm.com

Effects of Traceability Links in Evolving Architectures 145

(ii) they should be imaginatively constructed to measure the deeper impact understand-
ing from participant groups. Note that the same impact evaluation activities listed in
Table 3 were used for both UltraESB and PetalsESB, which was possible as different
ESBs share many similar architectural concerns. The results expected from participants
for each activity were sets of retrieved asset names (i.e., names of source code classes
and components from the provided component models).

Table 3. Impact evaluation activities at the architectural-level (used for both UltraESB and
PetalsESB)

A1 Investigate the impact of extensions in the transport senders and listeners
A2 Investigate the consequences of extensions in the traffic monitoring
A3 Determine the ripple-effects of changes in the ESB configuration
A4 Investigate the impact of changes in the message interception
A5 Evaluate the effects of high availability and capacity of ESB server
A6 Investigate the consequences of new message endpoints
A7 Determine the impact of new deployment aspect implementation

ID Description

Blinding. To eliminate subjective bias on the part of both experiments’ participants
and the experimenters, double blinding was applied in the experiments. Although, par-
ticipants perceived that there are two different groups for each experiment, they were
not aware about the purpose of group division and their group affiliation.

The results of the experiments were handed over to two independent researchers
who did not know the real identity of the participants. This was done to prevent the
experiments from being biased. To be able to compute the results of the change impact
analysis of retrieved assets, the researchers were asked to compute the information re-
trieval statistics by matching the participants’ answers with the original solution model.
This allows us to objectively evaluate the quantity and quality of the retrieved assets
rather than by intuitive or ad-hoc human measures.

Data Collection Procedure. After introduction and grouping, the participants received
the instruments, mentioned in Section 3.2. The provided instruments had to be used to
perform the impact analysis of architecture evolution activities. The participants were
distributed over separate rooms according to their group membership. At least one ex-
perimenter was present in each room to answer the questions related to the instructions
and to restrict the participants from consulting others and using forbidden material.
The participants were given 90 minutes to determine the ripple effects of architecture
evolution activities. After completion of the session, the filled-in questionnaires were
collected by the experimenters and finally a discussion in the wrap-up phase was ar-
ranged to gather further information from the participant groups. All the participants
were present during the discussion.

146 M.A. Javed and U. Zdun

0

5

10

15

20

25

30

35

Control Group Experiment Group

Experiment 1 Experiment 2
0-

1
Y

ea
rs

1-
3

Y
ea

rs
 3-
7-

Y
ea

rs

7+
 Y

ea
rs

0-
1

Y
ea

rs

1-
3

Y
ea

rs
 3-

7-
Y

ea
rs

7+
 Y

ea
rs

(a) Programming Experience

0

5

10

15

20

25

30

35

Control Group Experiment Group

Experiment 1 Experiment 2

0-
1

Y
ea

rs

1-
3

Y
ea

rs

3-
7-

Y
ea

rs

7+
 Y

ea
rs

0-
1

Y
ea

rs

1-
3

Y
ea

rs

3-
7-

Y
ea

rs

7+
 Y

ea
rs

(b) Architecture Experience

0

5

10

15

20

25

30

Control Group Experiment Group

Experiment 2 Experiment 1

In
du

st
ry

In
du

st
ry

 A
ca

da
m

ia

A
ca

da
m

ia

O
th

er

O
th

er

(c) Affiliation

Fig. 1. Distribution of participants

4 Execution

4.1 Sample and Preparation

As described in Section 3.2, the experiments were conducted in two practical sessions
on architecture evolution analysis at the University of Vienna, Austria. The first ex-
periment took place with 51 students of the software architecture course; the second
experiment was conducted with another 56 students of the same course.

Figure 1 shows the distribution of the participants based on their previous experience
and affiliation, as assigned to the control group and the experiment group. The data pre-
sented in the figures was accumulated from all the participants in the two experiments,
but also shows the separate data of the experiments. The Sub-figures (a) and (b) show
the previous experience of the participants concerning programming and software ar-
chitecture, while Sub-figure (c) shows the affiliation of the participants. Note that the
previous experiences in the control groups is slightly better both regarding program-
ming and architecture. In the experiment groups slightly more people with an academic
affiliation and slightly less with an industry affiliation are present. However, overall the
experiences and affiliations are rather well balanced in the two experiments.

4.2 Data Collection Performed

The data collection procedure was performed as planned in the study design. There were
no participants who dropped out and no deviations from the study design occurred.

4.3 Validity Procedure

The experiments were conducted in a controlled environment. The participants in both
experiments were assigned to different rooms according to their group membership

Effects of Traceability Links in Evolving Architectures 147

(control group or experiment group). The participants in each rooms were supervised by
at least one experimenter during the whole duration, enabling them to ask clarification
questions and restrict them from talking to each other or using forbidden material. All
the participants had to return the questionnaire before leaving the room. The filled-
in questionnaire were collected from the remaining participants after completion of
experiments’ sessions. No unexpected situation occurred during the experiments.

5 Analysis

5.1 Descriptive Statistics

The descriptive statistics shows the results of the experiments as a first step in the analy-
sis. The first two subsections concern the quantity of correctly and incorrectly retrieved
assets respectively. The last subsection presents an analysis of the overall quality of
retrieved assets during architecture evolution analysis.

Quantity of Correctly Retrieved Assets. The descriptive statistics for the quantity
of correctly retrieved assets for the control groups and the experiment groups from the
two experiments are shown in Table 4 and Figure 2. The data in the table is based on
the sum of the recall of the experiments’ activities for each participant, while the figure
concerns the recall for each experiment activity.

Table 4. Descriptive analysis of the quantity of correct retrieved assets

Experiment 1 Control Group 2.701009 (0.3858584 %) 2.565584 (0.3665121 %) 1.808094 (0.2582992 %)
Experiment Group 4.439981 (0.634283 %) 4.868956 (0.6955651 %) 1.708463 (0.2440661 %)

Experiment 2 Control Group 2.04751 (0.2925014 %) 1.908818 (0.2726883 %) 1.023914 (0.1462735 %)
Experiment Group 4.114883 (0.5878404 %) 4.491484 (0.6416406 %) 1.421371 (0.203053 %)

Execution Group Affiliation Mean Median Std. Dev.

As we see from Table 4, the total quantity of correctly retrieved assets is higher in
the experiment groups than in the control groups. The results in Figure 2 show that the
participants of the experiment group belonging to the first experiment have a higher
number of correctly retrieved assets for all impact analysis activities than the control
group. However, the participants of the control group of the second experiment have
outperformed the participants of the experiment group in Activity 4.

0

0,2

0,4

0,6

0,8

1

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Activity 6 Activity 7

Control Group - Mean Experiment Group - Mean
Control Group - Median Experiment Group - Median

(a) Experiment 1

0

0,2

0,4

0,6

0,8

1

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Activity 6 Activity 7

Control Group - Mean Experiment Group - Mean
Control Group - Median Experiment Group - Median

(b) Experiment 2

Fig. 2. Quantity of correctly retrieved assets for each experiment activity

148 M.A. Javed and U. Zdun

Quantity of Incorrectly Retrieved Assets. Table 5 and Figure 3 show the comparisons
for the quantity of retrieved assets that are actually correct for the control groups and
the experiment groups in the two experiments. The data in the table is based on the sum
of the precision values of the experiments’ activities for each participant. In total, the
quantity of retrieved assets that are actually correct is higher in the experiment groups
than the control groups. As a consequence, this means that the quantity of incorrectly
retrieved assets is lower in the experiment groups compared to control groups.

Table 5. Descriptive analysis of the quantity of actually correctly retrieved assets

Experiment 1 Control Group 3.774333 (0.5391905 %) 3.208333 (0.4583333 %) 1.779565 (0.2542236 %)
Experiment Group 4.826603 (0.6895147 %) 4.6875 (0.6696429 %) 1.865917 (0.2665595 %)

Experiment 2 Control Group 2.278481 (0.3254973 %) 2.242929 (0.3204185 %) 1.191005 (0.1701435 %)
Experiment Group 4.454726 (0.6363894 %) 4.523485 (0.6462121 %) 1.593693 (0.2276704 %)

Execution Group Affiliation Mean Median Std. Dev.

0

0,2

0,4

0,6

0,8

1

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Activity 6 Activity 7

Control Group - Mean Experiment Group - Mean
Control Group - Median Experiment Group - Median

(a) Experiment 1

0

0,2

0,4

0,6

0,8

1

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Activity 6 Activity 7

Control Group - Mean Experiment Group - Mean
Control Group - Median Experiment Group - Median

(b) Experiment 2

Fig. 3. Quantity of actually correctly retrieved assets for each experiment activity

The results in the Figure 3 concern the precision for each experiment activity, in
which the participants of the control group only outperformed the participants of the
experiment group in Activity 5 of the first experiment.

Overall Quality of Retrieved Assets. The descriptive statistics for the overall quality
of retrieved assets for the control groups and the experiment groups from the two exper-
iments is shown in Table 6 and Figure 4. The results in the table are based on the sum of
the overall quality of retrieved assets (i.e., the f-measure) of the experiments’ activities
for each participant, while the figure shows the f-measure results for each experiment
activity. The data in the table and figure show that the average quality of retrieved assets
in the experiment groups seems to be higher than the average quality of retrieved assets
in the control groups.

Table 6. Descriptive analysis for the overall quality of retrieved assets

Experiment 1 Control Group 2.767399 (0.3953427 %) 2.516986 (0.3595694 %) 1.624837 (0.2321195 %)
Experiment Group 4.377607 (0.6253725 %) 4.275092 (0.6107274 %) 1.722879 (0.2461256 %)

Experiment 2 Control Group 1.755936 (0.2508479 %) 1.769355 (0.252765 %) 0.7923499 (0.1131928 %)
Experiment Group 3.66901 (0.5241442 %) 3.608125 (0.5154464 %) 1.617311 (0.2310445 %)

Execution Group Affiliation Mean Median Std. Dev.

Effects of Traceability Links in Evolving Architectures 149

0

0,2

0,4

0,6

0,8

1

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Activity 6 Activity 7

Control Group - Mean Experiment Group - Mean
Control Group - Median Experiment Group - Median

(a) Experiment 1

0

0,2

0,4

0,6

0,8

1

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Activity 6 Activity 7

Control Group - Mean Experiment Group - Mean
Control Group - Median Experiment Group - Median

(b) Experiment 2

Fig. 4. Overall quality of retrieved assets for each experiment activity

Dataset Reduction. Outliers in the dataset, i.e., data points that are either much lower
or much higher than other data points, are potential candidates for dataset reduction.
Thirteen of the participants from the two experiments did not perform all the activities.
This results in nineteen missing data points in the experiments. As it seems that these
participants have spend sufficiently longer time in exploring the source code, we have
not excluded these data points from the study.

To find potential outliers, we also calculated the quantity and quality of the archi-
tecture evolution activities for each participant. Note that four of the participants from
the experiment groups reached a considerable lower quantity and quality of architecture
evolution analysis activities than the other members of these groups. A closer analysis
showed that they could not properly make use of traceability links to perform the ar-
chitecture impact understanding activities. However, their results were not excluded as
outliers, because the difference to the other participants is not strong enough. Excluding
these data points would have introduced a potential vulnerability of the study results.

5.2 Analysis of the Opinion of Participants

This subsection summarizes the results of the wrap-up discussion phase which was ar-
ranged after each experiment session to gather further information from the participant
groups.

The participants in the experiment groups from the two experiments and the control
group of the first experiment have acknowledged that they had enough time to perform
the architecture evolution analysis activities. However, the participants in the control
group of the second experiment showed concerns related to the provided time for per-
forming the activities. This is probably because the second experiment was conducted
with a rather large system (PetalsESB) compared to first experiment (UltraESB). The
same happened also for the experience and difficulties of the participants: The partic-
ipants of the control groups experienced more difficulties in performing the activities
than the participants of the experiment groups, in addition, the participants with ‘0-
1 years’ of experience encountered more difficulties than the participants with ‘1-8+
years’ of experience.

The participants were also asked about their familiarity with the application domain.
The answers imply that enterprise service bus, which is the application domain of the

150 M.A. Javed and U. Zdun

UltraESB and PetalsESB, is well-known to the participants from previous lectures of
the software architecture course.

The next two questions concerned the usage and helpfulness of traceability links for
architecture evolution analysis. First, the participants were asked whether traceability
links are useful in impact analysis of changes in software architecture. The answers
reflect that the participants had knowledge about traceability links. The members of
both groups generally consider traceability links as useful in architecture-level impact
understanding of the software system. In the next question the participants were asked
whether they used traceability links before. The answers show that only a very few
participants have previously used traceability links for understanding of software assets
outside of the lecture in which the experiments took place.

Finally, the participants were asked to briefly describe how the architecture evolution
analysis was performed. This was primarily done to confirm that the experiment groups
used the traceability links and to find out if the control groups used any other systematic
way to perform architecture evolution analysis. The answers of the control groups re-
veal a focus on an intuitive approach, which was mainly driven by personal experience
or judgements. The respondents stated that they performed the activities by reading
the textual description in the architecture document and intuitively exploring the code
classes. They acknowledged that it is hard to find the correct links between architecture
and implementation artefacts. This might stem from the fact that software architecture
is not explicitly represented in the code classes, e.g. as packages and classes or simi-
lar code-level abstractions. The answers of the experiment groups show a focus on the
traceability links. The respondents of experiment groups stated that they used trace-
ability links to identify the ripple-effects of architecture artefacts in the code classes
and vice versa. They confirmed that they primarily used this additional knowledge for
performing architecture impact analysis for evolution.

5.3 Hypothesis Testing and Results

Quantity of Correctly Retrieved Assets. To be able to test the first null hypothesis
Ho1, the influence of traceability links on the quantity of correctly retrieved assets is
measured. In the analysis of the experiments, the Shapiro-Wilk normality test [15] and
Wilcoxon Rank-Sum test [11] are used. First, the Shapiro-Wilk normality test is used to
find out whether equal variances of the level of correctness can be assumed. Second, as
a consequence of non-normal distributions, the corresponding non-parametric statistical
test, Wilcoxon Rank-Sum test, is used to test the significance of the found results. Note
that the results of tests were interpreted as statistically significant at α = 0.05 (i.e., the
level of confidence is 95%).

Table 7. Wilcoxon-test for quantity of correct retrieved assets

Experiment1 Control Group vs. Experiment Group W = 492, p-value = 0.001332
Experiment 2 Control Group vs. Experiment Group W = 686.5, p-value = 0.000001451

Execution Factor Wilcoxon Rank-Sum Test

Effects of Traceability Links in Evolving Architectures 151

Table 7 shows the results of the Wilcoxon rank-sum test for the control groups and
the experiment groups. The table shows that both experiments (Experiment 1 and Ex-
periment 2) provide strong evidence that Ho1 can be rejected. This means that in our two
experiments the use of traceability links significantly improved the quantity of correctly
retrieved assets during the architecture evolution analysis.

Quantity of Incorrectly Retrieved Assets. Hypothesis Ho2 was also evaluated with
a Wilcoxon rank-sum test. The results are shown in Table 8. The table shows that the
both experiments (Experiment 1 and Experiment 2) provide strong evidence that Ho2

can be rejected. This means that in our two experiments the use of traceability links
significantly reduces the quantity of incorrectly retrieved assets in the architecture im-
pact analysis for evolution. Note that there is a noticeable difference in the p-values
between the two experiments. The main reason behind this difference probably is the
varying sizes and complexity of the objects (software systems) in the first and second
experiment.

Table 8. Wilcoxon-test for quantity of incorrect retrieved assets

Experiment 1 Control Group vs. Experiment Group W = 437.5, p-value = 0.03446
Experiment 2 Control Group vs. Experiment Group W = 661, p-value = 0.00001083

Execution Factor Wilcoxon Rank-Sum Test

Overall Quality of Retrieved Assets. The Wilcoxon rank-sum test is also used to
evaluate the Hypothesis Ho3. The results are shown in Table 9. The table shows that
the both experiments provide strong evidence that Ho3 can be rejected. This means that
in our two experiments the use of traceability links significantly improved the overall
quality of the retrieved assets for architecture evolution analysis.

Table 9. Wilcoxon-test for overall quality of retrieved assets

Execution 1 Control Group vs. Experiment Group W = 497, p-value = 0.0009243
Execution 2 Control Group vs. Experiment Group W = 659, p-value = 0.000004097

Execution Factor Wilcoxon Rank-Sum Test

6 Interpretation

6.1 Evaluation of Results and Implications

As discussed in the previous section, all three null hypotheses can be rejected and hence
we can deduce the following implications:

– As Ho1 can be rejected, according to our experiments, there is evidence that the
quantity of correctly retrieved assets during the architecture evolution analysis is
higher if traceability links are used.

152 M.A. Javed and U. Zdun

– As Ho2 can be rejected, according to our experiments, there is evidence that the
quantity of incorrectly retrieved assets during the architecture evolution analysis is
lower if traceability links are used.

– As Ho3 can be rejected, according to our experiments, there is evidence that the
quality of retrieved assets for architecture evolution analysis is higher if traceability
links are used.

6.2 Threads to Validity and Limitations of the Study

Multiple levels of validity threats have to be considered in the experiments. We have
considered the classification scheme for validity in experiments by Cook and Campbell
[5]. The internal validity concerns the cause effect inferences between the treatment
and the dependent variables measured in the experiments. External validity refers to
the generalizability of the results for a larger population. Construct validity is about the
suitability of the study design for the theory behind the experiments. Finally, conclusion
validity focuses on the relationship between treatment and outcome and on the ability
to draw conclusions from this relationship. All validity threats in the experiments are
categorized based on this classification.

Internal Validity

– The architecture evolution analysis activities could have been biased towards the
experiment groups. The threat, however, is mitigated by considering many charac-
teristics of software architecture evolution. As a result, the change impact analysis
activities concerned both architecture recovery and evolution contexts. Therefore,
we do not consider it a highly relevant threat to validity.

– The analysts in the experiments could have graded the retrieved assets incorrectly.
We tried to mitigate this risk by providing the original solution model to the
analysts. The analysts were asked to apply the solution model to the recovered
participants’ solutions. The solution model clearly states the correct assets for each
architecture evolution analysis activity. Furthermore, the results have also been
verified by the authors of this paper.

– Finally, the analysts could have been biased towards the experiment groups. We
tried to exclude this threat to validity by not revealing the identity of the participants
or in which of the two groups they have participated to the analysts. Hence, it is
rather unlikely that this threat occurred.

External Validity

– As discussed in Section 3.2, the experiments were conducted with rather inexperi-
enced participants, the students of a software architecture course. Nevertheless, the
results of our previous study, where we compared the results from two controlled
experiments with students and professionals, imply that the participants’ experience
does not have a significant influence on the external validity of results [7]. There-
fore, we conclude that it is likely the limited level of experience of the participants
in the two experiments does not distort the study results.

Effects of Traceability Links in Evolving Architectures 153

– The instrumentation in the experiments might have been unrealistic or old-
fashioned. In this case, the architecture evolution analysis was based on the
hyperlinks. In practice, different tools would be used to support evolution analysis.
These tools are primarily used to formulate and maintain the traceability or
dependence relationships between the related software assets. In our experiments,
for practical reasons and to study the foundational concepts rather than a specific
tool, the source code of the software systems and traceability links were readily
provided in a web-based format. We assume that the measured effect of the
experiment groups during traceability recovery is independent of the way in which
a tool would visualize the traceability links, but a threat to validity remains that our
results cannot be 1:1 translated to all existing tools and visualizations.

Construct Validity

– The use of one object in the experiment introduces the risk that the cause construct
is under-represented. In this case, the experiments were conducted with different
objects, in particular, the UltraESB and PetalsESB, although the objects belong to
the same domain but represent software systems, of significantly different size (in
terms of number of source code classes). The threat, however, cannot totally be
ignored.

– Another potential threat to validity is the number of measures used to evaluate the
quantity and quality of retrieved assets. In our case we only used standard infor-
mation retrieval metrics, in particular, recall, precision, and f-measure, to measure
the quantity of correctly and incorrectly retrieved assets, and their overall quality,
respectively. This does not allow for cross-checking the results with different mea-
sures.

Conclusion Validity

– A threat to validity might result from the interpretation of the architecture evolution
analysis activities because impact of these activities consists of a list of system as-
sets (e.g., architectural components, source code classes). We mitigated this risk by
calculating the standard information retrieval metrics for retrieved assets from all
architecture evolution analysis activities. We argue that information retrieval mea-
sures allow analysts to objectively evaluate the correctness of architecture evolution
analysis activities rather than intuitive or ad-hoc human measures. We conclude that
this potential threat is mitigated to large degree.

– Finally, the violation of assumptions made by statistical tests could distort the re-
sults of the experiments. In the analysis of the experiments, the Shapiro-Wilk nor-
mality test and Wilcoxon Rank-Sum test are used. First, Shapiro-Wilk normality
test is used to find out whether equal variances of the level of correctness can be
assumed. Second, as a consequence of non-normal distributions, the corresponding
non-parametric statistical test, the Wilcoxon Rank-Sum test, is used to test the sig-
nificance of the found results. Note that the results of the tests were interpreted as
statistically significant at α = 0.05 (i.e., the level of confidence is 95%). Thus, this
factor is not seen as a threat to validity.

154 M.A. Javed and U. Zdun

7 Conclusions and Future Work

In this paper, we describe the results of two controlled experiments that were conducted
to find out if traceability links are beneficial for change impact analysis of evolving
architectures. Three aspects were specifically taken into consideration: the quantity of
correctly and incorrectly retrieved assets, and their overall quality. The evaluation of the
experiments shows that using traceability links leads to significantly lower quantity of
missing and incorrect assets, and overall, a higher quality of architecture evolution anal-
ysis. Because the calculation procedure for architecture-centric reuse evaluation, with
the focus on traceability links, is carried out in a similar manner to the calculation of the
architecture evolution analysis, it is likely that the results can be generally applicable
for architecture-centric reuse of the software systems making use of traceability links.

As it is usual for empirical studies, replications in different contexts, with different
objects and participants, are good ways to corroborate our findings. Comparing the
results of the different objects (software systems) in terms of their sizes and complexity
is part of our future work agenda. Another direction for future work is to replicate the
experiments with our evoluation and reusability evaluation tool that is currently under
development.

Acknowledgements. This work is supported by the Austrian Science Fund (FWF),
under project P24345-N23. We also thank to all the participants for taking part in the
experiments.

References

[1] Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

[2] Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability analysis
(alma). J. Syst. Softw. 69(1-2), 129–147 (2004)

[3] Boehm, B., Rombach, H.D., Zelkowitz, M.V.: Foundations of Empirical Software Engi-
neering: The Legacy of Victor R. Basili. Springer-Verlag New York, Inc., Secaucus (2005)

[4] Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case
Studies. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

[5] Cook, T.D., Campbell, D.T.: Quasi-experimentation: Design & analysis issues for field set-
tings. Houghton Mifflin Harcourt, Boston (1979)

[6] Harman, D.: Ranking algorithms. In: Frakes, W.B., Baeza-Yates, R. (eds.) Information Re-
trieval: Data Structures & Algorithms, pp. 363–392. Prentice-Hall, Inc., Upper Saddle River
(1992)

[7] Javed, M.A., Zdun, U.: The supportive effect of traceability links in architecture-level soft-
ware understanding: Two controlled experiments. In: Proceedings of the 11th Working
IEEE/IFIP Conference on Software Architecture, WICSA 2014, pp. 215–224. IEEE (2014)

[8] Javed, M.A., Zdun, U.: A systematic literature review of traceability approaches between
software architecture and source code. In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, EASE 2014, pp. 16:1–16:10. ACM
(2014)

[9] Jedlitschka, A., Pfahl, D.: Reporting guidelines for controlled experiments in software en-
gineering. In: 2005 International Symposium on Empirical Software Engineering, ISESE
2005, pp. 95–104. IEEE (2005)

Effects of Traceability Links in Evolving Architectures 155

[10] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K.,
Rosenberg, J.: Preliminary guidelines for empirical research in software engineering. IEEE
Transactions on Software Engineering 28(8), 721–734 (2002)

[11] Mann, H., Whitney, D.: On a test of whether one of two random variables is stochastically
larger than the other, vol. 18, pp. 50–60. Institute of Mathematical Statistics (1947)

[12] Mens, T., Magee, J., Rumpe, B.: Evolving software architecture descriptions of critical
systems. IEEE Computer 43(5), 42–48 (2010)

[13] Selby, R.W.: Enabling reuse-based software development of large-scale systems. IEEE
Transactions on Software Engineering 31(6), 495–510 (2005)

[14] Shahin, M., Liang, P., Li, Z.: Architectural design decision visualization for architecture
design: Preliminary results of a controlled experiment. In: Proceedings of the 5th European
Conference on Software Architecture: Companion Volume, ECSA 2011, pp. 2:1–2:8. ACM
(2011)

[15] Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 52(3/4), 591–611 (1965)

[16] Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design. IBM Syst. J. 13(2), 115–
139 (1974)

[17] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimen-
tation in Software Engineering: An Introduction. Kluwer Academic Publishers, Norwell
(2000)

[18] Yau, S., Collofello, J., MacGregor, T.: Ripple effect analysis of software maintenance. In:
The IEEE Computer Society’s Second International on Computer Software and Applica-
tions Conference, COMPSAC 1978, pp. 60–65. IEEE (1978)

How Often Is Necessary Code Missing?

— A Controlled Experiment —

Tomoya Ishihara, Yoshiki Higo, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University,
1-5, Yamadaoka, Suita, Osaka, Japan

{t-ishihr,higo,kusumoto}@ist.osaka-u.ac.jp

Abstract. Code completion is one of the techniques used for realizing
efficient code implementations. Code completion means adding the lack-
ing code required for finishing a given task. Recently, some researchers
have proposed code completion techniques that are intended to support
code reuse. However, these existing techniques are designed to support
the following programming steps. They cannot add necessary code in
already-implemented code lines. In this research, we first investigate how
often developers forget to write the necessary code in their programming
tasks. We also investigate the extent to which opportunities of code reuse
are increased by considering middle code completion. To investigate mid-
dle code completion, we propose a new technique that leverages type-3
clone detection techniques. We conducted a controlled experiment with
nine research participants. As a result, we found that the participants
had forgotten to write the necessary code in 41 of 51 (80%) programming
tasks. We also found that the proposed technique was able to suggest use-
ful code by middle code completion in 10 of 41 (24%) programming tasks
for which the participants had forgotten to write the necessary code.

Keywords: Code completion, Clone detection, Static analysis.

1 Introduction

Code completion is one of the techniques that promote efficient code implemen-
tation. Code completion adds the code that developers are going to implement
by acting on their triggers. Developers do not need to write all the code they
need if they use the code completion functions in their integrated development
environments (IDEs). Consequently, the cost of code implementation can be re-
duced by using code completion appropriately. Currently, IDEs generally have
their own code completion functions [1,2,3]. Many developers actually use code
completion functions in software development [13].

Recently, several techniques have shown that code completion is useful for pro-
moting code reuse [7,8,14]. If we use existing code completion techniques for code
reuse, we can obtain code following the half-written code that we have. How-
ever, existing techniques do not consider complementing already-implemented
code lines with the necessary code. It often happens that developers forget to

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 156–163, 2014.
c© Springer International Publishing Switzerland 2014

How Often Is Necessary Code Missing? — A Controlled Experiment — 157

(a) Half-written method (b) Code completion for following code

(c) Code completion for middle and fol-
lowing code

(d) Base method for suggesting candi-
date statements to the method

Fig. 1. Examples of code completion

write the necessary code in their tasks. Consequently, if we consider the mid-
dle code in code completion, the opportunities of code completion should be
increased and developers can implement more reliable code more efficiently.

In this research, we examine how often developers forget to write the neces-
sary code in their implementations. We also investigate the extent that comple-
menting with middle code increases code reuse. Then, we propose a new code
completion technique, which can add both the middle and the following code.
The proposed technique leverages type-3 clone detection techniques to identify
code to be used to complement.

The aforementioned items were investigated by conducting a controlled ex-
periment with research participants. In the experiment, all the participants were
given tasks of code implementations, and their PC screens were captured as
video. By using the videos, we found that the developers had forgotten to write
the necessary code in 80% (41/51) tasks. We also found that the proposed tech-
nique was able to suggest reusable code in 63% (32/51) tasks and 31% (10/32)
of them were for the middle code.

The remainder of this paper is organized as follows. Section 2 shows a mo-
tivating example of this research, introduces two research questions (RQs) for
investigation, and explains some terms used in this paper. Section 3 explains our
proposed technique. Section 4 describes the experiment conducted for answering
the RQs. Lastly, Section 5 concludes this paper.

2 Preliminaries

This section plays a preliminary role in this paper. First, we explain the moti-
vation of this research. Then, we introduce some terms used in this paper.

2.1 Motivating Example

Figure 1(a) shows a half-written method. In this case, the developer is writing
code to obtain the X-Y coordinates of the upper left and lower right corners of

158 T. Ishihara, Y. Higo, and S. Kusumoto

a given rectangle and to return them in the determined form. If she/he uses ex-
isting code completion techniques (e.g., [15]), the code following the half-written
code complements it as shown in Fig. 1(b). As a result, she/he can obtain two
program statements that retrieve the lower right corner and another statement
that translates the coordinates into the String form. She/he can avoid writing
all the statements in the method by applying the code completion technique.

However, complementing with code following the half-written code is not suf-
ficient to implement reliable code efficiently because it is possible that developers
occasionally forget to write some necessary code. For example, developers often
notice that they forgot to write error-checking code for the formal parameters
of methods when they see NullPointerException. If code completion techniques
consider not only the code following the half-written code but also the middle
code in the half-written code, developers can implement more reliable code more
efficiently. Figure 1(c) shows an example. If code completion techniques consider
the middle code, too, we obtain null checking code for the formal parameter.

In this research, we investigate the following research questions related to code
completion for the middle code.

RQ1. How often do developers forget to write the necessary code?
RQ2. To what extent is code reuse promoted by middle code completion?

2.2 Terms

In this paper, a half-written method where code completion is performed is
called a target method, program statements suggested as completion candi-
dates are called candidate statements and methods used to identify candidate
statements are called base methods.

If we apply the definitions to Fig. 1, the method getRectCoords is a target
method. In Figs. 1(b) and 1(c), some program statements, which are in the bal-
loons, are suggested to the developers. These are called candidate statements. To
suggest candidate statements to the developers, the proposed technique lever-
ages the information of the other methods. In the example, the method shown
in Fig. 1(d) was used. Thus, this method is called a base method.

As shown in Figs. 1(a) and 1(d), base methods include all the program state-
ments in the half-written method. In other words, half-written code is a type-3
clone1 of the base methods and some extra statements are in the base meth-
ods. In this research, base methods are called the super-clones of the target
method. The proposed technique complements half-written code with both the
middle and following code by detecting its super-clones.

3 Code Completion for Middle Code

In this research, we propose a new code completion technique that complements
with both the middle and the following code. Figure 2 shows an overview of

1 Bellon et al. defined type-3 clones as follows: “type-3 is a copy with further modifi-
cations; statements were changed, added, or removed.” [4]

How Often Is Necessary Code Missing? — A Controlled Experiment — 159

Fig. 2. Overview of the proposed technique

the proposed technique. The proposed technique extracts methods from given
source files and the information obtained by analyzing the methods is stored in a
database. Once the database is created, the proposed technique can suggest can-
didate statements for every completion position in a given half-written method.
When a developer chooses a candidate statement, the statement is added at the
suggested position in the half-written method. The proposed technique continues
to suggest candidate statements as long as not all of the candidate statements
are chosen by the developer.

As shown in Fig. 2, the proposed technique consists of the following three
procedures. PROCEDURE-A extracts methods from a target set of source files
and converts each of the methods into a list of statements. Next, it generates
information such as a hash value from each statement and stores the information
in a database. The information is used to detect super-clones.

PROCEDURE-B first obtains the information of statements included in a given
target method by analyzing it. Second, it detects super-clones from the database.
Third, it finds candidate statements in the super-clones (base methods). State-
ments of a base method are classified into two types: one is a set of statements
that are common to the statements in the target method; the other is a set of
statements that do not correspond to any statement in the target method. The
latter statements are regarded as candidate statements. Finally, these candidate
statements are ranked and suggested to the developers in the order of their rank.

PROCEDURE-C inserts a candidate statement selected by the developer. After
inserting the statement, the proposed technique continues to suggest other can-
didate statements in the target methods. This allows developers to continue to
insert multiple candidate statements as long as they want. If they do operations
other than selecting suggested candidate statements, the proposed technique
stops suggesting candidate statements.

To perform PROCEDURE-B based on the developer’s demands, the database
needs to be created by performing PROCEDURE-A in advance. PROCEDURE-A

160 T. Ishihara, Y. Higo, and S. Kusumoto

is performed only once to create the database. In contrast, PROCEDURE-B is per-
formed every time a developer looks for candidate statements. Similarly,
PROCEDURE-C is performed every time a candidate statement is selected.

4 Experiment

To provide answers to the RQs, we conducted a controlled experiment with nine
research participants. In this experiment, we used UCI source code data set2

for creating a database for code completion. The UCI dataset is a collection
of open source software that is open to the public on the Web. The size of the
UCI dataset is huge: it includes 13,192 projects, 2,127,877 Java source files, and
20,449,896 methods.

We need to identify the code that the research participants forgot to write
to answer the RQs. In this experiment, forgotten code was defined as follows:
a chunk of program statements written into the front or the middle of already-
written program statements.

Research participants were one research associate, two PhD candidates, and
six master’s course students. All of them belonged to the same department as the
authors. All of them had at least a half-year experience in Java programming.
Their Java experiences were gained from their classes and research activities.

Each research participant was provided six tasks and she/he implemented a
Java method to meet the specification. For each task, the participants were given
a method signature and Javadoc comments. The method signature consisted of
modifiers, a return type, a method name, parameters, and a throws clause. The
Javadoc comments contained descriptions on the specification of the method.

4.1 Procedure

Firstly, the authors performed PROCEDURE-A of the proposed technique to
create a database for code completion. It took approximately 2 hours to complete
these operations.

Secondly, the research participants implemented Java methods according to
the specifications of given tasks. They used a workstation equipped with an en-
vironment for recording motion captures. We used CamStudio3 for recording the
participants’ screens. Windows Server 2008 R2 was installed in the workstation,
and each participant logged in by using the Remote Desktop function.

We imposed no restrictions for the participants’ implementations. They im-
plemented Java methods as always. Some test cases had been prepared for each
task. If a participant’s implementation passed all the test cases, we judged that
the implementation met the specification.

Thirdly, we investigated the motion pictures. In the investigation for RQ1,
we watched all of each motion picture to check the order of program statement
implementations. In the investigation of RQ2, we obtained the half-written code

2 http://www.ics.uci.edu/~lopes/datasets/
3 http://camstudio.org

http://www.ics.uci.edu/~lopes/datasets/
http://camstudio.org

How Often Is Necessary Code Missing? — A Controlled Experiment — 161

from the motion pictures. Then, we input the obtained half-written code into our
tool for checking whether the tool was able to suggest any code for completion
and compared the suggested code and the participants’ full-written code. In the
investigation, half-written code was obtained every time that a new program
statement was implemented.

4.2 Investigation for RQ1

Table 1 shows the participants who forgot to write the necessary code on their
tasks. Each circle (“◦”) means there were one or more program statements that
the participant forgot to write, and a hyphen (“-”) means the recording of the
motion picture failed for that the participant’s task. The number of total tasks
was 54 (6 tasks × 9 participants) but the recording motion pictures of three
participant’s tasks failed. We were not able to obtain any data from the failed
tasks.

Table 1 shows that the participants forgot to write the necessary code in 41
out of 51 tasks. Such tasks are approximately 80% of the total number of tasks.
In addition, we found the following phenomena.

– All the participants forgot to write the necessary code on at least two tasks.
– At least four participants forgot to write the necessary code on all the tasks.

Consequently, our answer to RQ1 is as follows: research participants forgot to
write the necessary code in approximately 80% of the implemented methods.

4.3 Investigation for RQ2

Table 2 shows the participants and tasks for which the proposed technique was
able to suggest code equal to each participant’s final implementations. We judged

Table 1. Tasks and participants having
forgotten code (“◦” means one or more
program statements were forgotten, and
“-” means recording of the motion pic-
ture failed)

T1 T2 T3 T4 T5 T6 Total

P1 - ◦ ◦ ◦ 3
P2 ◦ ◦ ◦ ◦ ◦ ◦ 6
P3 - ◦ ◦ ◦ ◦ 4
P4 ◦ ◦ ◦ ◦ ◦ ◦ 6
P5 - ◦ ◦ ◦ ◦ 4
P6 ◦ ◦ ◦ ◦ ◦ ◦ 6
P7 ◦ ◦ ◦ ◦ ◦ ◦ 6
P8 ◦ ◦ ◦ ◦ 4
P9 ◦ ◦ 2

Total 5 8 7 9 4 8 41

Table 2. Tasks and participants for
which the tool was able to suggest cor-
rect candidates (“◦” and “•” mean cor-
rect following code and correct middle
code were suggested, respectively.)

T1 T2 T3 T4 T5 T6 Total

P1 - ◦ ◦ ◦ •◦ 4
P2 •◦ •◦ •◦ ◦ •◦ 5
P3 - ◦ • 2
P4 ◦ ◦ •◦ •◦ 4
P5 - ◦ ◦ 2
P6 ◦ ◦ 2
P7 •◦ •◦ ◦ ◦ ◦ ◦ 6
P8 ◦ ◦ 2
P9 ◦ ◦ ◦ ◦ ◦ 5

Total 6 4 4 5 4 9 32

162 T. Ishihara, Y. Higo, and S. Kusumoto

the semantically equal code to also be correct. “Semantically equal” means sug-
gested code that has different syntax from the participant’s final code but has
the same semantics. For example, if the tool suggests “if(i - 1 > j)” and
the participant’s final code is “if(i > j + 1)”, their semantics are the same.
White circles (“◦”) and black circles (“•”) mean the tool was able to suggest
correct code following the half-written code or correct code in the middle of the
half-written code, respectively.

The table shows that the tool was able to suggest correct code for 32 tasks.
Those tasks are 63% (32/51) of all the participants’ tasks. In addition, the tool
was able to suggest correct code in the middle of the half-written code for 10
participants’ tasks, which are 24% (10/41) of the tasks where participants forgot
to write the necessary code. The tasks where the tool suggested the correct
middle code are 31% (10/32) of the tasks where the tool suggested the correct
code.

We can see that the tool was able to suggest the correct code for at least two
tasks for all of the participants. Especially, for participant P7, correct candidates
were suggested for all tasks. Also, for task T6, the tool was able to suggest the
correct code for all of the participants.

Our answer to RQ2 is as follows: for 24% (10/41) of the users’ tasks, the
proposed method was able to suggest correct code for the forgotten code.

4.4 Discussion

The proposed technique suggests code included in the database, which means
that code completion by the proposed technique makes code clones between
the code in the database and the user’s development system. The presence of
code clones is said to be one of the factors that makes software maintenance
more difficult. Some research studies have shown that code clones are harmless
[6,10,12]. On the other hand, other studies report that only a small part of code
clones are harmful to software maintenance [5,9,11]. In the proposed technique,
the source code used for creating the database is very important. If we make
reliable code that is well tested or executed for a long time for creating the
database, the proposed technique can suggest code based on such reliable code.
Clones of reliable code are not harmful because clones only become harmful when
they require simultaneous modifications. Identifying all the code fragments to
be modified simultaneously is a costly and error-prone task, and unintentional
inconsistencies occur if we forget to modify some of these code fragments [6].

Consequently, we can say that the proposed technique promotes the gener-
ation of code clones without problems if we use reliable code for creating the
database.

5 Conclusion

In this paper, we investigated the following: (RQ1) How often developers forget to
write the necessary code in their implementation tasks and (RQ2) To what extent

How Often Is Necessary Code Missing? — A Controlled Experiment — 163

code completion for such forgotten code is useful. To conduct the investigation,
we developed a new technique that can complement half-written code with the
following code and the middle code. The investigation was conducted with nine
research participants. Each participant performed six implementation tasks and
their PC screens were recorded as motion pictures. By using the motion pictures,
we investigated the RQs. As a result, we provided these answers: participants
forgot to write the necessary code in 80% (41/51) of their tasks and the proposed
technique was able to suggest correct statements in 24% (10/41) of such tasks.

Acknowledgments. This work was supported by JSPS KAKENHI Grant
Numbers 25220003, 24650011, and 24680002.

References

1. Eclipse, http://www.eclipse.org
2. Intellij idea, http://www.jetbrains.com/idea/
3. Intellisense, http://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
4. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and Eval-

uation of Clone Detection Tools. IEEE TSE 33(9), 577–591 (2007)
5. Göde, N., Koschke, R.: Frequency and risks of changes to clones. In: Proc. of ICSE,

pp. 311–320 (2011)
6. Higo, Y., Kusumoto, S.: How Often Do Unintended Inconsistencies Happened? –

Deriving Modification Patterns and Detecting Overlooked Code Fragments–. In:
Proc. of ICSM, pp. 222–231 (2012)

7. Hill, R., Rideout, J.: Automatic method completion. In: Proc. of ASE, pp. 228–235
(2004)

8. Holmes, R., Walker, R.J.: Systematizing pragmatic software reuse. ACM
TOSEM 21(4), 1–44 (2012)

9. Hotta, K., Sano, Y., Higo, Y., Kusumoto, S.: Is duplicate code more frequently
modified than non-duplicate code in software evolution?: An empirical study on
open source software. In: Proc. of ERCIM/IWPSE, pp. 73–82 (2010)

10. Inoue, K., Higo, Y., Yoshida, N., Choi, E., Kusumoto, S., Kim, K., Park, W.,
Lee, E.: Experience of finding inconsistently-changed bugs in code clones of mobile
software. In: Proc. of IWSC, pp. 94–95 (2012)

11. Kapser, C.J., Godfrey, M.W.: “cloning considered harmful” considered harmful:
Patterns of cloning in software. ESE 13(6), 645–692 (2008)

12. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-Miner: Finding Copy-Paste and Related
Bugs in Large-Scale Software Code. IEEE TSE, 176–192 (2006)

13. Murphy, G.C., Kersten, M., Findlater, L.: How Are Java Software Developers Using
the Eclipse IDE? IEEE Software 23(4), 76–83 (2006)

14. Nguyen, A.T., Nguyen, T.T., Nguyen, H.A., Tamrawi, A., Nguyen, H.V., Al-
Kofahi, J., Nguyen, T.N.: Graph-based pattern-oriented, context-sensitive source
code completion. In: Proc. of ICSE, pp. 69–79 (2012)

15. Yamamoto, T., Yoshida, N., Higo, Y.: Seamless Code Reuse Using Source Code
Corpus. In: Proc. of IWESEP, pp. 31–36 (2013)

http://www.eclipse.org
http://www.jetbrains.com/idea/
http://msdn.microsoft.com/en-us/library/hcw1s69b.aspx

An Analysis of a Project Reuse Approach

in an Industrial Setting

Marko Gasparic, Andrea Janes, Alberto Sillitti, and Giancarlo Succi

Center for Applied Software Engineering
Free University of Bolzano-Bozen

Piazza Domenicani, 3
I-39100 Bolzano-Bozen, Bolzano-Bozen, Italy

marko.gasparic@stud-inf.unibz.it,

{andrea.janes,alberto.sillitti,giancarlo.succi}@unibz.it

Abstract. We performed an industrial exploratory case study to ana-
lyze the software reuse process of a medium size company which is a tech-
nology leader in a niche market. Two unstructured interviews and code
duplication analyses of four SVN dumps report about a development
practice that resulted in more efficient maintenance, due to archiving
complete versions of every shipped software, and more efficient develop-
ment, due to duplication and modification of the most similar program,
instead of implementing a new program from scratch.

Keywords: reuse, case study, software product line.

1 Introduction

Software engineering research often aims to investigate how development, opera-
tion, and maintenance are conducted by software engineers and other stakehold-
ers under different conditions [26]. That is why collaboration between industry
and academia is an important part of scientific research.

In the last two years we have collaborated with a medium size company that
aims to improve the development process and the quality of its high cost prod-
ucts, which consist of proprietary hardware and software. The company has more
than 20 years of experience and is a technology leader in a niche market. The
entire company has more than 100 employees, and more than 20 engineers are
working in research and development.

Hardware evolution triggers new software projects, while customer require-
ments trigger maintenance and customization of already installed software prod-
ucts. The development team has created its own (undocumented) process and
good practice.

We started to work with the team to help them to improve the maintain-
ability of their code base. The project started in June 2012 and ended in June
2014, as planned. During the project we realized that the development team is
following a (for us) unusual software development process, which could be de-
scribed as ad-hoc software product line development or “copy-paste and modify”,

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 164–171, 2014.
c© Springer International Publishing Switzerland 2014

An Analysis of a Project Reuse Approach in an Industrial Setting 165

a practice usually considered harmful by the software development community.
Nevertheless, in this specific context, the team was assuring us that it supported
reuse.

The contribution of this paper is to report about this practice in this particular
case and to describe the motivations of the team to choose this development
method.

The paper is structured as follows: section 2 presents related work on software
reuse, software product lines, and source code libraries; section 3 presents used
methodology; section 4 contains results of the interviews and the analysis; in
section 5 validity threats are discussed; and in the last section the conclusions
are presented together with future plans.

2 Related Work

The process of creating new software products from existing products was intro-
duced in 1968, at the NATO Software Engineering Conference, where McIlroy
proposed the usage of standard catalogues of routines that can be applied to any
of large classes of different machines, without extensive effort [14].

Industrial studies have shown that more reuse results in a better quality [8]
and in higher customer satisfaction [25]. Common advantages of software reuse
are: reduced time and effort to build new software systems, higher quality of
the system, when high quality software artifacts are reused, and reduced time
and effort to maintain an existing system. However, concise and expressive ab-
stractions are essential for development of reusable software artifacts, and useful
abstractions of large and complex artifacts are complex as well. Software devel-
opers have to be familiar with abstractions or they have to study and understand
them, if they want to successfully reuse such artifacts. In some cases this can
defeat the gains of reuse [11].

The ultimate goal of systematic software reuse is to maximize profit, but
it requires initial investment. Proactive investment, reactive investment, and
extractive model are three reuse approaches in a corporate environment [7]: the
most costly and risky is proactive investment, since it requires a large investment
at the beginning for analyses and planning, but the returns can be seen only
when products are developed. Reactive approach is more incremental; reusable
assets are developed when they are identified during project development [7]. The
extractive model is effective in quick transitions from conventional engineering
to product line development; an initial baseline are existing products that do
not require substantial re-engineering effort to be reused [13].

A software product line is a set of software systems that have a managed set
of features in common. These features are developed in a prescribed way from
a common core assets. Successfully implemented software product lines improve
productivity, increase quality, decrease costs and labor needs, and decrease time
to market [24]. The majority of the engineering effort in the life of a single
software system and in the life of a software product line in practice is spent at
the source code level. Success of a software product line deployment is therefore
dependent on the quality of support of implementation activities [12].

166 M. Gasparic et al.

Another common reuse approach is to save reusable components into a source
code library. The probability of reusing a component increases if the compo-
nent was already reused many times [18]. Obstacles to reuse libraries are poor
documentation associated with them [1] and lack of component libraries [20].

Dunn and Knight [5] performed an industrial case study to analyze the prob-
lems that limit reuse; they built two subsystems from a reusable library. Do-
main analysis to design blocks for large-scale reuse from which new products
are composed with minimum effort was found beneficial in an industrial setting
by Ramachandrm and Fleischer [17]. Baldassarre et. al. [2] showed that reuse
oriented development lead to higher quality of the developed software and im-
proved effectiveness of the development process in two industrial projects. In
the following sections we present an industrial case study of an ad-hoc software
product line development.

3 Research Methodology

As said already above, the goal of this project was to improve the maintainability
of the source code developed by the company. We operationalized this goal using
three questions:

– How much code is repeated from one project to another?
– How reusable is the code?
– What are the changed parts between the most similar classes?

We had regular meetings with the chief technology officer (CTO), where we
defined these questions, presented intermediate results, collected feedback, and
defined goals for next iteration. During the project we realized that the develop-
ment team is following a (for us) uncommon software development process. We
decided to perform a case study to explore the process more in detail with the
goal to understand how the company is developing (and reusing) software.

3.1 Case and Subject Selection

Our case was the company’s software development process followed during the
development of new software, during the maintenance of old software, and dur-
ing the adaptation of old software to a new hardware. We included four soft-
ware projects in our study because these projects were the ones currently under
development and therefore representing the projects of most relevance for the
company.

3.2 Data Collection Procedure

The company gave us access to their SVN1 dumps of four projects. Each project
is structured according to a predefined folder structure. The source code of a

1 https://subversion.apache.org

An Analysis of a Project Reuse Approach in an Industrial Setting 167

product is stored in a project. A project consists of several solutions. Solutions
are special versions of a product that have similar or the same functionality, but
are customized for a specific customer to better meet his or her requirements.
Solution specific source code files are placed in a folder named src. Source code
that is common for all solutions is stored in a folder named Common, which
also contains a folder named classlib. Classlib contains libraries that are shared
between projects.

In February and March 2014 we also conducted two unstructured interviews
in which we interviewed the CTO. We presented the results of our analyses
and discussed the correctness and relevancy of our findings with him. We also
encouraged him to present more details about the software development process
and we took notes of the presented information. We focused on discussing our
findings that were based on SVN analyses.

3.3 Analysis Procedure

To analyze a software development process, one can collect [6]: process, product,
or resource metrics. To collect these metrics we used PROM [4, 9, 10, 15, 16,
19, 21–23], a measurement framework, developed in our department. All the
source code we received was written in C++, that is why we used the Eclipse
CDT library to extract the source code into an abstract syntax tree (AST). We
analyzed the ASTs and calculated the similarity levels of clone pairs with our
implementation of Baxter’s clone detection algorithm [3].

Similarity = 2× S ÷ (2 × S + L+R) (1)

where:
S = number of shared nodes
L = number of different nodes in method 1
R = number of different nodes in method 2

We agreed with the company that it is not reasonable to count method pairs
which have similarity lower than 70%, since it is more likely that they are dif-
ferent methods with different functionality than true code clones. We counted
different methods that were cloned, and we calculated a custom metric, which we
named uniqueness, to estimate whether methods were duplicated once or several
times. If the uniqueness value is 1, it means that every method is duplicated ex-
actly once; the closer the value is to 0, the more methods are duplicated several
times. The formula of uniqueness is:

Uniqueness = 2× number of clones ÷ number of different methods (2)

Additionally, we counted the logical lines of code (LLOC)2 of the four projects.
We used the existing plugins of the PROM framework to perform the calcula-
tions.
2 The number of lines from the beginning to the end of a certain artifact, e.g., project,
file, class, method, excluding commentary lines and whitespaces.

168 M. Gasparic et al.

4 Results

The projects’ revisions date between September 16th 2009 and February 20th
2014. All first revisions are very large: between 19,000 and 46,000 LLOCs. It is
hard to assess the size of project specific source code in Project 1, because the
structure of Project 1 does not meet current company’s standards and there are
no folders that can be recognized as Common or classlib. Projects 2, 3, and 4 all
contain common libraries, which constitute the major part of the source code;
however, all three projects also contain substantial amount of project specific
source code.

Projects 1, 2, and 3 contain also branches. When we observed the difference in
numbers of clones between the first trunk revision and the first branch revision,
we noticed that the majority of methods stayed the same, but also more than
100 methods changed in every project. We classified methods with less than 6
statements as short3; if we exclude them, the uniqueness values become high
(between 0.8 and 1), which implies that cloned methods from the trunk have
only one match in a branch, and vice-versa. Comparison of first and last revision
of trunk showed that the initial code was modified even further in projects 1,
2, and 3, and that Project 4 is implemented according to the same pattern as
other three.

The majority of the clones in the last revisions originate from methods imple-
mented in different folders. However, the differences between projects are large,
e.g., even though the Project 1 branch has a similar size as the Project 3 trunk,
according to LLOCs, between folders the Project 1 branch contains 969 code
clones with 100% similarity and 2539 code clones with similarity higher than
70%, while the Project 3 trunk does not contain clones. Low uniqueness values
(less than 0.4) at Project 1 suggest that the same methods were duplicated sev-
eral times. The inspection of a file hierarchy showed that the Project 1 branch
contains several solutions, in this case there are five. We detected much less code
clones inside folders than between folders, e.g., on a folder level the Project 1
branch and the Project 3 trunk are very similar.

Interviews with the CTO provided the reasoning behind the process identi-
fied by SVN analyses. When creating a new version for a product for a specific
customer, the folders Common and classlib are always fully copied into the new
solution (the only exception is Project 1, which is the oldest of all four projects
and is implemented according to deprecated practice). Neither Common nor
classlib folders are maintained in a centralized way. The latest version of the
folder is reused in a new project or solution, and older versions are not up-
dated even if the libraries evolve; the only exception is bug fixing. The CTO is
aware that bug fixing tasks are very costly due to this approach, but, based on
the past experience, the company decided to use it because they are shipping
their software together with their hardware and they have to be able to main-
tain software that is older than a decade. Newer versions of Common and classlib

3 A statement is either a variable or an execution command, e.g., “return 0;” consists
of two statements: “return” and “0”.

An Analysis of a Project Reuse Approach in an Industrial Setting 169

libraries would not work on old hardware anymore, that is why they have to
package and permanently store each solution that was ever shipped to a cus-
tomer. The practice was developed before the company started to use revision
control system, and even though the company is using SVN now, they decided
to keep this kind of configuration management.

The company is using this “copy-paste and modify” approach also for the
development of a new product. Instead of implementing products from scratch,
they modify a duplicate of the most similar project. The CTO claims that code
duplication and project reuse have improved development team’s productivity.

In summary, the study of the observed practice to branch projects to develop
a customer specific version, results in the following findings:

– Archiving complete versions of every shipped software improves maintenance
efficiency, and it seems that it outweighs benefits of centralized maintenance
of common system libraries, e.g., easier debugging,

– Regardless of the previous finding, it is beneficial to treat and mark solution
specific, project specific, and universal source code blocks differently, i.e.,
the creation of common libraries is advantageous even if they are always
“copy-pasted” between projects and solutions,

– In specific settings, it can be more efficient to always duplicate and modify
the most similar program than to implement a new program from scratch.

5 Validity Threats

Validity of a case study consists of four aspects: construct, internal, and external
validity and reliability [26]. Construct validity reflects how well studied opera-
tional measures represent an investigated research question. Internal validity of
a case study is of concern when causal relations are examined. External validity
deals with possibility of generalizations of findings and how interesting are find-
ings to people outside investigated case. Reliability of a case study is high if the
data and the analyses are independent on a specific researcher.

The performed interviews and the SVN analyses are exposed to construct
validity and reliability threats. It is possible that an interviewee does not know
all the data or that he provided wrong information. We interviewed the CTO,
who is also actively participating in development, and knows the software de-
velopment process best; however, the reliability is lower, since we were not able
to interview other developers, due to access restrictions. Construct validity and
reliability can also be lowered by inaccurate collection and interpretation of the
data collected during interviews or by bugs in implementation of Baxter’s al-
gorithm. We addressed these threats with triangulation of interviews and SVN
analyses; we used them both to answer the same research question.

6 Conclusions and Future Work

This paper reports about a development practice in medium size company that
resulted in more efficient maintenance, due to archiving complete versions of

170 M. Gasparic et al.

every shipped software, and more efficient development, due to duplication and
modification of the most similar program, instead of implementing a new pro-
gram from scratch.

Two unstructured interviews and analyses of four SVN dumps show that the
company initiates a new project with duplication of the most similar project; first
revisions, which already contain between 19,000 and 46,000 LLOCs, clearly show
that. Many methods stayed the same and around hundred were modified; high
uniqueness values and many close-duplicates indicate that methods were reused
on a large scale, but they had to be adopted, since they were not implemented to
be reused.

The company has built one library on a company level. Its policies require
the storage of methods that are common for different project solutions inside a
separate folder. SVN analyses showed that common libraries are “copy-pasted”
between solutions, while source code duplication inside folders is uncommon.

The company has developed an ad-hoc software product line development
process mixed with a use of component libraries. They want to achieve the same
goals as are achieved by successful implementation of software product lines:
improved quality and reduced costs. The company implemented a set of software
systems with common features, however, they were not developed in a prescribed
way from common core assets. The approach is similar to the extractive model;
the baseline are projects that are reused without extensive re-engineering effort.

Nevertheless, source code duplications are breaking software engineering prin-
ciple of encapsulation, lowering reusability of components, and increasing mainte-
nance costs.We would strongly advise the company to improve their development
process with documenting it and enforcing process rules to all projects.

The CTO claims that code duplication and project reuse have already im-
proved development team’s productivity, and they want to improve it further.
Unfortunately, the company is not in favour of big process changes, which is
paradoxical, since they are all aware that their development process is not opti-
mal. If the company decides to change some practices, we would like to analyze
whether the shift was beneficial or not. We will further analyze the data col-
lected during the project and report other findings. We also plan to compare the
effectiveness of this company’s development team with the effectiveness of other
teams we are collaborating with.

References
1. Alnusair, A., Zhao, T., Bodden, E.: Effective api navigation and reuse. In: IEEE

International Conference on Information Reuse and Integration (2010)
2. Baldassarre, M.T., Bianchi, A., Caivano, D., Visaggio, G.: An industrial case study

on reuse oriented development. In: IEEE International Conference on Software
Maintenance (2005)

3. Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: IEEE International Conference on Software Maintenance
(1998)

4. Coman, I., Sillitti, A., Succi, G.: A case-study on using an automated in-process
software engineering measurement and analysis system in an industrial environ-
ment. In: IEEE International Conference on Software Engineering (2009)

An Analysis of a Project Reuse Approach in an Industrial Setting 171

5. Dunn, M., Knight, J.: Software reuse in an industrial setting: A case study. In:
IEEE International Conference on Software Engineering (1991)

6. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach,
2nd edn. Course Technology (1998)

7. Frakes, W., Kang, K.: Software reuse research: Status and future. IEEE Transac-
tions on Software Engineering, 529–536 (2005)

8. Frakes, W.B., Succi, G.: An industrial study of reuse, quality, and productivity.
The Journal of Systems and Software, 99–106 (2001)

9. Janes, A., Piatov, D., Sillitti, A., Succi, G.: How to calculate software metrics
for multiple languages using open source parsers. In: Petrinja, E., Succi, G., El
Ioini, N., Sillitti, A. (eds.) OSS 2013. IFIP AICT, vol. 404, pp. 264–270. Springer,
Heidelberg (2013)

10. Janes, A., Sillitti, A., Succi, G.: Non-invasive software process data collection for
expert identification. In: International Conference on Software Engineering and
Knowledge Engineering (2008)

11. Krueger, C.: Software reuse. ACM Computing Surveys, 131–183 (1992)
12. Krueger, C.: Software product line reuse in practice. In: IEEE Symposium on

Application-Specific Systems and Software Engineering Technology (2000)
13. Krueger, C.: Eliminating the adoption barrier. IEEE Software, 29–31 (2002)
14. McIlroy, D.: Mass-produced software components. In: NATO Software Engineering

Conference (1968)
15. Moser, R., Janes, A., Russo, B., Sillitti, A., Succi, G.: Prom: taking an echography

of your software process. In: Congresso Annuale AICA. AGILE Publications (2005)
16. Piatov, D., Janes, A., Sillitti, A., Succi, G.: Using the eclipse C/C++ development

tooling as a robust, fully functional, actively maintained, open source C++ parser.
In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.) OSS 2012. IFIP
AICT, vol. 378, pp. 399–399. Springer, Heidelberg (2012)

17. Ramachandran, M., Fleischer, W.: Design for large scale software reuse: An indus-
trial case study. In: International Conference on Software Reuse (1996)

18. Sametinger, J.: Software Engineering with Reusable Components. Springer (1997)
19. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product

metrics collection. Journal of Systems Architecture, 668–675 (2006)
20. Shatnawi, A., Seriai, A.D.: Mining reusable software components from object-

oriented source code of a set of similar software. In: IEEE International Conference
on Information Reuse and Integration (2013)

21. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, integrating and analyzing
software metrics and personal software process data. In: Euromicro Conference
(2003)

22. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Non-invasive Measurement of the
Software Development Process. In: International Workshop on Remote Analysis
and Measurement of Software Systems (2003)

23. Sillitti, A., Succi, G., Panfilis, S.D.: Managing non-invasive measurement tools.
Journal of Systems Architecture, 676–683 (2006)

24. Software Engineering Institute, Carnegie Mellon University: Software product lines
overview, http://www.sei.cmu.edu/productlines/

25. Succi, G., Benedicenti, L., Vernazza, T.: Analysis of the effects of software reuse
on customer satisfaction in an rpg environment. IEEE Transactions on Software
Engineering, 473–479 (2001)

26. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.: Experimentation
in Software Engineering. Springer (2012)

http://www.sei.cmu.edu/productlines/

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 172–187, 2014.
© Springer International Publishing Switzerland 2014

HadoopMutator: A Cloud-Based Mutation Testing
Framework

Iman Saleh1 and Khaled Nagi2

1 Graduate School, University of Miami, Coral Gables, Florida
2 Dept. of Computer and Systems Engineering, Faculty of Engineering,

Alexandria University, Egypt
iman@miami.edu, khaled.nagi@alexu.edu.eg

Abstract. Mutation testing is a software engineering methodology where code
mutation is used to assess the quality of a testing technique. Mutation testing is
carried out by injecting errors in the code and measuring the ability of a testing
tool to detect these errors. However, it is a time-consuming process, as tests
need to be run on many variants of the code, called mutants. Each mutant
represents a version of the code under test, with an injected error. In this paper,
we propose HadoopMutator; a cloud-based mutation testing framework that
reuses the MapReduce programming model in order to speed up the generation
and testing of mutants. We show, through experimentation, that we can
significantly enhance the performance of automated mutation testing and
provide a scalable solution that is applicable for large-scale software projects.
Based on two use cases, we show that the performance can be enhanced 10
folds, on average, using our proposed framework. By treating source code as
data, our work paves the way for new reuse opportunities of the novel data-
centric frameworks.

Keywords: Hadoop, MapReduce, Mutation Testing, Experimentation.

1 Introduction

Mutation testing [25][27] is a software engineering methodology where code
mutation is used to assess the quality of a testing technique. It is carried out by
injecting errors in the code and measuring the ability of a testing tool to detect these
errors. The main assumption with this methodology is that the number of mutation
errors detected by a tool is an indication of number of errors that this tool can detect
in the future when unknown bugs are present in the code. However, mutation testing
is a time-consuming process as tests need to be run on many mutants of the code.
Each mutant represents a version of the code under test, with an injected error. A
recent study [16] concludes that mutation testing is not suitable for real-world
software projects. The problems mostly encountered with this technique are the
complexity to derive the process as the higher the number of generated mutants, the
higher the computation time [16].

We believe that low-cost parallel computing is an ideal candidate to execute unit
tests on the different mutants during nightly builds as part of the regression testing

 HadoopMutator: A Cloud-Based Mutation Testing Framework 173

within common Continuous Integration frameworks [12]; such as Jenkins [32],
CruiseControl [30], and Bamboo [29]. In this paper, we propose HadoopMutator; a
cloud-based mutation testing framework that reuses the MapReduce programming
model [2] in order to speed up the generation and testing of software mutants. Our
experimentation shows that we can significantly enhance the performance of
automated mutation testing by implementing it as a cloud-based service. We use
Hadoop® [22][26] in our experimentation as the de-facto standard implementation of
the MapReduce model. The Hadoop® project is part of the open-source Apache™
foundation [35]. Hadoop® is designed to scale up from a single server to thousands of
nodes. Each node offers local computation and storage and relies on the Hadoop®
Java libraries to deliver high-availability. Hadoop® detects and handles failures at the
application layer thus delivering a highly-available services on top of a cluster of low-
cost commodity machines.

The typical usage for Hadoop® and other MapReduce frameworks is to employ the
cluster to run the same code on several nodes in parallel with different data sets and
then aggregate the results. However, the novelty of our framework is that we use the
cluster to run mutants (i.e., same code but with different injected defects), each on a
separate node and use the same data set - the input data to the tests – across all nodes.
During the reduce phase, the report on success or failure of the tests is aggregated.
Two arguments support our theses:

• While dealing with mutants, it is reasonable to assume that their execution
time would be similar, thus making them a perfect candidate for running
them in parallel and optimally consuming the available computation
resources.

• Running unit-tests in general is a typical batch operation, which fits the
offline batch nature of the MapReduce paradigm.

The rest of the paper is organized as follows. Section 2 contains a brief overview
about Mutation testing, the tool we employ in our proposed system and the typical
operators supported in our implementation. In Section 3, the MapReduce paradigm
together with Hadoop® are explained. In Section 4, the architecture of our proposed
HadoopMutator is explained. Additionally, the steps to run test suites on our framework
are briefly stated. Section 5 contains the results of our experimentation on the new
framework highlighting the gain in speed. We present a brief overview on related work
done on testing using Hadoop in Section 6 before concluding the paper in Section 7.

2 Mutation Testing

Since its introduction in the 70’s, mutation testing has been extensively studied as an
effective technique to enhance software quality. A comprehensive survey of mutation
testing research can be found in [27]. One of the earliest set of mutation operators are
defined by the Mothra mutation testing system [3]. Mothra defines a set of operators
derived from studies of programmers’ errors and correspond to mistakes that
programmers typically make. This set of operators represents more than ten years of
refinement through several mutation systems. The authors of [4] further extend these

174 I. Saleh and K. Nagi

operators to support C# object orientation and syntax. They also present in [5] an
empirical study that evaluates the quality of these mutation operators and establish
their relationship to actual programmers’ errors.

Using mutation testing, a test suite is evaluated by calculating its mutation score.
The mutation score is a ratio value capturing the percentage of errors detected to the
total number of errors injected into the code. i.e.,

Table 1. Mutation Operators Supported by HadoopMutator

Mutator Description and Example
Conditionals Boundary Replacing the relational operators <, <=, >, >= with their

boundary counterpart. For example:
if (a < b) is mutated to if (a <= b)

Negate Conditionals Replacing a condition by its negation. For example:
if (a == b) is mutated to if (a != b)

Math Replacing binary arithmetic operations with another
operation. For example:
a = b + c is mutated to a = b – c

Increments Replacing increments with decrements and vice versa.
For example:
i++ is mutated to i--

Return Values Mutating the return values of method calls. For
example:
public Object foo(){
 return new Object();
}
is mutated to
public Object foo(){
 new Object();
 return null;
}

Void Method Calls Removing method calls to void methods. For example:
public int foo(){
 int i = 5;
 doSomething(i);
 return i;
}
is mutated to
public int foo(){
 int i = 5;
 return i;}

The main assumption of mutation testing is that the number of mutation errors
detected by a tool is an indication of number of errors that this tool can detect in the

 HadoopMutator: A Cloud-Based Mutation Testing Framework 175

future when unknown bugs are present in the code [25]. In our implementation of
HadoopMutator, we employed the Pitest mutation framework [34]. Pitest is an open-
source mutation testing tool for Java that supports a range of frequently-used mutation
operators. Pitest seems to be the most active open-source mutation testing tool. Other
research effort, e.g., µJava [13] and Javalanche [21][20][6] seem to be present but do
not enjoy a large user base. For demonstration, some of the mutation operators used
by the Pitest tool are listed in Table 1. The complete list of mutators can be found
under [33].

By using Pitest, mutations are automatically induced into the Java Virtual Machine
(JVM) byte-code. If a single test fails upon execution of the test suite, the mutation is
said to be KILLED. If all tests succeed then the mutation is called to be SURVIVED.
Other outcomes include TIME OUT if the mutant causes an infinite loop, such as the
case of removing the increment from a counter in a for-loop; or runtime errors
such as mutant leading to the consumption of memory heap. Generally, if the unit test
does not fail on the mutant, this usually indicates an issue with the test suite. By
running tests on mutant, the quality of the tests can be enhanced since traditional test
coverage (e.g., line, and code blocks) only measures which code is executed by the
tests. It does not check that the tests are able to detect faults in the executed code. The
downside of using Pitest is the tremendous increase in the execution time taken for
running the same test suite on the different variants of the code.

Fig. 1. Example snippet taken from coverage report of Wicket Core

176 I. Saleh and K. Nagi

Fig. 1 illustrates the reports produced by Pitest. It combines line coverage and
mutation coverage information. Light green highlights in lines 829, 833 and 845 show
line test coverage. Dark green highlight in line 827 shows a mutation coverage in
which a Math mutator is applied where the integer subtraction is replaced by addition
and the mutation was killed by at least one test case. The light pink of line 847 shows
lack of line coverage, whereas dark pink highlighting line 823 shows a lack of
mutation coverage for another Math mutation similar to the one at line 827.

3 The Map/Reduce Programming Model

MapReduce is a programming model used for batch processing of large amounts of data
and solving large-scale computing problems. The MapReduce abstraction is inspired by
the Map and Reduce functions, which are commonly used in functional languages such
as Lisp. The MapReduce system allows users to easily express their computation as map
and reduce functions. The following discussion of MapReduce model is based on [2]
This paper describes how Google split, processed, and aggregated their humongous data
set. The reader can also refer to [1] and [14] for more details.

The map function, written by the user, processes a key/value pair to generate a set
of intermediate key/value pairs:

map (key1, value1) list (key2, value2)

The reduce function, also written by the user, merges all intermediate values
associated with the same intermediate key:

reduce (key2, list (value2)) list (value2)

The simplest and most common example for MapReduce is the problem of counting
the number of occurrences of each word in a large collection of documents [31].

map(String key, String value){
// key: document name
// value: document contents
for each word w in value{

EmitIntermediate(w, "1");
}

}

reduce(String key, Iterator values){
// key: a word
// values: a list of counts
int result = 0;
for each v in values{

result += ParseInt(v);
}
Emit(AsString(result));

}

 HadoopMutator: A Cloud-Based Mutation Testing Framework 177

The user writes code to fill in a mapreduce specification object with the names of
the input and output files, and optional tuning parameters. The user then invokes the
MapReduce function, passing it the specification object.

More examples include a distributed Grep function, a count of URL access
frequency, a reverse web-link graph, and several other examples found in literature.
The rapid emergence of MapReduce implementation for parallelizable batch-oriented
programs motivated the authors of [15] to group them in reusable MapReduce
software design patterns.

After the release of [2], Doug Cutting worked on a Java-based MapReduce
implementation to solve scalability issues on Nutch [8]; which is the core of an open
source search engine based on Lucene [7]. This was the base for the Hadoop® open
source project; which became a top-level Apache Foundation project. Several
complementary open source projects have been built with Hadoop at their core. Some
of the more popular ones include Pig, Hive, HBase, Mahout, and ZooKeeper.
Currently, the project includes these modules:

• Hadoop Common: The common utilities that support the other Hadoop
modules.

• Hadoop Distributed File System (HDFS™): A distributed file system that
provides high-throughput access to application data.

• Hadoop YARN: A framework for job scheduling and cluster resource
management.

• Hadoop MapReduce: A YARN-based system for parallel processing of large
data sets.

Each Hadoop® (Map or Reduce) task works on the small subset of the data it has
been assigned so that the load is spread across the cluster. The map tasks generally
load, parse, transform, and filter data. Each reduce task is responsible for handling a
subset of the map task output. Intermediate data is then copied from mapper tasks by
the reducer tasks in order to group and aggregate the data. The input to a MapReduce
job is a set of files in the data store that are spread out over the Hadoop Distributed
File System (HDFS). In Hadoop, these files are split with an input format, which
defines how to separate a file into input splits. Each map task in Hadoop is broken
into the following phases: record reader, mapper, combiner, and partitioner. The
record reader parses the data into records and passes them to the mapper in the form
of a key/value pair. The mapper, in-turn, executes user-provided code on each
key/value pair to produce zero or more new key/value pairs, called the intermediate
pairs. Typically, the key is what the data is grouped on and the value is the
information to be analyzed later on by the reducer. The combiner is an optional
localized reducer. It groups data during the mapping phase. In many situations, this
optional step significantly reduces the amount of data that has to be transferred over
the network. The partitioner splits the key/value pairs into shards, one shard per
reducer. By default, the reducer uses the hash code of the intermediate object to
randomly distribute the shards evenly over the available reducers.

During the Reduce phase, the task starts with the shuffle and sort. Here, the output
files are transferred to the local machine that runs the reducer. The data is sorted by

178 I. Saleh and K. Nagi

key into one large data list. The purpose of this sort is to group equivalent keys
together so that their values can be iterated over easily in the reduce task. The reducer
task then runs a user-provided reduce function once for each key grouping. Here, data
is typically filtered and aggregated. The output of the reduce function is sent to the
output format that translates the final key/value pair from the reduce function and
writes it out to a file by a record writer. In the end, the data is written out to HDFS.

4 HadoopMutator

Our HadoopMutator logically consists of two parts: the generation parts of mutants
and the testing part of the mutants. While the generation part heavily depends on
Pitest testing framework, the testing part is totally built on top of Hadoop®.

The generation part consists of the following four steps:

• Mutant generation: in which the classes are analyzed and the mutants are
created.

• Test selection: in which tests are selected to run against the mutants.
• Mutant insertion: in which mutants are loaded into a JVM.
• Mutant detection: in which the selected tests are run against the loaded

mutant.

Fig. 2. The HadoopMutator Architecture

 HadoopMutator: A Cloud-Based Mutation Testing Framework 179

All these four steps are done within the Map phase in Hadoop, while the Reduce
phase aggregates the results. Each Map node is assigned to a mutation operator. This
way, we can assume that:

• the jobs are distributed evenly over the nodes,
• the variance between the execution times of the jobs would be small, and
• the number of nodes can be fixed a-priori.

The processing steps within HadoopMutator are illustrated in Fig. 2.
The record reader of the Map phase uses the Enumerator of the mutation operator

as the key and the byte-code of the code under test to the mapper. Each map node
uses the Hadoop® streaming utility that allows the creation and execution of Map
jobs with any executable or script as the mapper. The HadoopMutator utility is
invoked from a command line as follows:

> HadoopMutator <code under test> <Hadoop master node path>

The utility code is shown in Listing 1.

#!/bin/bash

#Read code directory name
tested_code="$1"
Hadoop_path="$2"

#Create path to the code under test
code_path=$Hadoop_path
code_path+=$tested_code
code_path+=".jar#inputdirsl"

#Print out a timestamp
echo "***** HadoopMutator started for $tested_code *****"
date

hadoop jar /usr/lib/hadoop-0.20-
mapreduce/contrib/streaming/hadoop-streaming.jar \
-input hminput \
-output hmoutput \
-mapper hmmap.sh \
-reducer hmreduce.sh \
-file hmmap.sh \
-file hmreduce.sh \
-cmdenv CODE_UNDER_TEST="$tested_code" \
-cacheArchive $code_path \
-cacheArchive '$Hadoop_path/apache-maven-3.2.1.jar#mvndirsl' \
-verbose

date
echo "***** HadoopMutator ended *****"

Listing 1. The HadoopMutator Script

180 I. Saleh and K. Nagi

The mapper executes the complete test suite on all the packages of the code under test
using Pitest and applying the mutation operator assigned to that mapper node. The
results of the Pitest are transformed into the intermediate pair objects. The
intermediate object has as key the fully qualified classname concatenated to the line
number for each line. The value is an ordered list containing the outcome of the Pitest
on this operation. Possible items of the list are KILLED, SURVIVED,
NO_COVERAGE or TIMED_OUT. The KILLED and NO_COVERAGE outcomes are
logically the same as they both represent a surviving mutant. NO_COVERAGE status is
however used to identify mutants that have no test coverage. In HadoopMutator, we
use local combiner step since one line of code can be replaced by several mutations as
in line 63; as illustrated in Fig. 3. Finally, the Hadoop® default partitioner would
direct the intermediate key/value pairs to the reducer.

Fig. 3. Example of a line resulting in four mutations of the same type, drawn from a Java class
of the Hadoop® source code

Since we use only one reducer, the shuffle and sort step is relatively simple, the
output files are collected from the map nodes and sent to the reducer node. The
reducer has now a list of execution outcomes KILLED, NO_COVERAGE,
SURVIVED, ERROR for each single line of the source code under test. The reducer’s
sorting phase results in grouping the mutation testing results for each line of code.
The final state of a line of code is then decided according to state transition table
listed in Table 2. Light green highlights normal non-mutated line coverage. Dark
green highlights a successful mutation coverage of that line. The light pink shows
lack of line coverage; whereas dark pink shows lack of mutation coverage. Grey
indicates an internal error such as memory error or timeout. Line numbers missing
from the key of the intermediate object point to non-executed code such as comments,
variable declarations, method and class names, etc. Additionally, the reducer updates
statistical counters for the number of KILLED, NO_COVERAGE, SURVIVED,
ERRORS together with the total number of injected errors through mutations in order
to calculate the Mutation Score for each Java package and for the whole code under
test. Therefore, the output of the reducer is logically another key/value pair in the
form of:

 HadoopMutator: A Cloud-Based Mutation Testing Framework 181

Key: fully qualified classname + line number
Value:Object consisting of {
 Boolean isEmpty;
 List<Comments> commentsForKilled;
 List<Comments> commentsForNoCoverage;
 List<Comments> commentsForSurvived;
 List<Comments> commentsForError;
 Statistics mutationScore
 }

Table 2. State transition for each mutated line while iterating over its comments

 KILLED SURVIVED NO_COVERAGE ERROR

KILLED KILLED SURVIVED NO_COVERAGE KILLED
SURVIVED SURVIVED SURVIVED SURVIVED SURVIVED
NO_COVERAGE NO_COVERAGE SURVIVED NO_COVERAGE ERROR
ERROR KILLED SURVIVED ERROR ERROR

These key/value pairs are sent to the final step, which is the output format, to

produce a package report as illustrated in Fig. 4 and a report for each class as
illustrated in Fig. 5.

Fig. 4. Mutation coverage on package level

As can be seen from Fig. 4, the Recorder.java class has a relatively high code
coverage (92%). However, the tests fail to detect the injected errors leading to a
mutation coverage of 0%. Fig 5. Shows an example where at lines 201 and 207, two
Math mutations that replace the subtraction with addition survive the tests despite the
fact that these lines are covered by at least one test case. This example illustrates the
role of mutation testing in assessing the effectiveness of the implemented tests and
the inadequacy of depending solely on code coverage in that assessment.

182 I. Saleh and K. Nagi

Fig. 5. Mutation coverage on class level

5 Experimentation

In our experimentation, we apply our HadoopMutator in two use cases: In the first use
case, we run HadoopMutator on the publicly available test suite of the Hadoop® code
base itself and in the second use case, we run it on the test suite of Apache Wicket
[28] which is referenced in the Pitest website. For both uses cases, we first execute the
Pitest on a one-node server [8 Quad-Core AMD OpteronTM Processor, 64-bit
instruction set, and a total of 32 GB RAM] and on a cluster of nodes running Hadoop
using our HadoopMutator framework. The cluster used in our experimentation is
comprised of 13 nodes where each node is an IBM System x3550, with 32GB of
memory, 1.8TB of storage, CPU Intel Xeon, 2.33GHz, 8 cores and running Centos
6.3 64-bit operating system. Our current implementation of the reducer does not
generate the mutation score field as it can be easily calculated offline from the
aggregated results.

During our validation experiments, we measure the execution time of running
Pitest tool both in serial mode and using our HadoopMutator scripts. Fig. 6 and 7
display boxplots of the execution time for our two use cases: the Apache Wicket and

 HadoopMutator: A Cloud-Based Mutation Testing Framework 183

the Hadoop code, respectively. A boxplot [24] is a graphical way for depicting a set of
data values. The bottom of the box is the 25th percentile and the top of the box the 75th
percentile. The line across the middle of the box is the median or 50th percentile. The
plot also displays outliers, which is a value that is significantly distant from the rest of
the data. The plot is used to visualize the differences/similarities between data sets.

As shown in Fig. 6, the running time for the Wicket code ranges from 1.161 to
1.637 sec/mutation in the serial case, with mean value equal to 1.374 sec/mutation.
Using HadoopMutator, the running time ranges from 0.075 to 0.211 sec/mutation with
mean equal to 0.13 sec/mutation.

Serial HadoopMutator

0.
5

1.
0

1.
5

Execution Method

T
im

e
pe

r
M

ut
at

io
n

(s
ec

)

Fig. 6. Execution time for the Apache Wicket use case

In case of the Apache Hadoop use case, shown in Fig. 7, the running time ranges
from 0.07 to 0.09 sec/mutation in the serial case, with mean value equal to 0.08
sec/mutation. Using HadoopMutator, the running time ranges from 0.004 to 0.013
sec/mutation with mean equal to 0.006 sec/mutation.

Table 3 summarizes the average gain in speed. The first column contains the
execution time in seconds while running in a serial mode on a server. The second
column lists the execution time and the increase in percentage when using
HadoopMutator. The speed is largely increased more than 12 and 9 times for the
Hadoop® and the Apache Wicket® code bases, respectively, when we use
HadoopMutator on our Hadoop cluster.

184 I. Saleh and K. Nagi

Serial HadoopMutator

0.
02

0.
04

0.
06

0.
08

Execution Method

T
im

e
pe

r
M

ut
at

io
n

(s
ec

)

Fig. 7. Execution time for the Apache Hadoop use case

Table 3. Speed gain while using HadoopMutator

Test suite for Serial HadoopMutator Speed Gain
 (seconds) (seconds) (%)
Hadoop® 0.083 0.006 1283%
Apache Wicket® 1.374 0.130 957%

It is worth noting here that the expected performance gain is around 13 times as

HadoopMutator distributes the generation of mutants and the execution of tests over
13 nodes. The results demonstrate that we get closer to the expected performance gain
as the size of the code and tests increases. This can be seen with the Apache Hadoop
use case for which the Pitest tool generates over 300K different mutants.

For a relatively smaller code base such as the Apache Wicket, the tool generates
around 32K mutants. In that case, the overhead of running Hadoop on the compute
nodes becomes significant relative to the time needed to generate and executes the
tests and hence the optimal performance gain is not attained. While the gain in speed
is still significant in both cases, our approach is most useful with large projects that
exhibit a significant code testing time. HadoopMutator can significantly decrease the
running time from the order of hours to minutes and hence enabling mutation testing
to be efficiently applied to projects in industrial settings as part of the continuous
integration tests.

 HadoopMutator: A Cloud-Based Mutation Testing Framework 185

6 Related Work

The literature is scarce about research using the MapReduce programming model to
perform tests. HadoopTest [9] is a test harness solution for MapReduce-based
systems. It is based on the control of distributed workers to coordinate the execution
of test case actions on different workers in parallel. HadoopTest allows the
combination of fault injection and functional tests to build complex test cases. Test
cases are written in Java and annotations are used to mark test action methods. Similar
to our approach, the authors in [9] validate their solution and measure the overhead of
the HadoopTest. Nevertheless, their system is used to test MapReduce-based systems
against bugs, hardware problems, and outages. They inject the failures typical to the
cluster operation and define them to be their mutant. In our HadoopMutator, we use
mutation testing on normal code and do not restrict ourselves to MapReduce-based
systems. We use the cloud-based Hadoop MapReduce to execute in parallel the test
suite on the different mutants, which are variations of the original code under test.

HadoopUnit [17] and [23] is a distributed execution framework for JUnit test cases
that is developed as a Hadoop MapReduce job. A tester uploads the production code
and the test code and any other libraries that are needed for test cases to execute. An
Ant task generates the Java commands to execute all the test cases. It writes the
commands in a text file in the form: <testcase name><java, TestRunner, classpath,
libraries, testcase name, testcase properties>. The Hadoop framework splits this text
file and sends each line of text to each mapper. On each node, the command gets
executed as a process. At the end of the map task, the intermediate values are
generated on the form of <key, value> -> <test name, test result>. The Reducer
combines all these <test name, test result> pairs and outputs them to a file. The
primary motivation behind developing HadoopUnit is to test the Hadoop production
code using the Hadoop platform itself. Similar to our HadoopMutator, the authors
validate their approach by testing the Hadoop production code. Nevertheless, they use
the normal JUnit test suite and their approach does not support mutation testing.
Furthermore, HadoopTest does not produce coverage reports.

Furthermore, research has recognized the importance of parallelizing mutation
testing to overcome the performance barrier. The work recently presented in [10][11]
is an example of a Java mutation testing framework that supports parallel execution.
In contrast, we propose reusing existing technologies, specifically Big Data
frameworks, to achieve the same goal. Finally, in previous work, mutation testing has
been used to evaluate the effectiveness of formal code specification [19][18].

7 Conclusion and Future Work

In this paper, we provided a scalable solution for applying mutation testing on real-
life software projects. We reuse the MapReduce programming model to efficiently
generate and test mutants of large-scale software projects. We hence provide a useful
tool to enhance the quality of software in real-life settings using the mutation testing
technique. We also encourage research in reusing the state-of-the-art data-centric

186 I. Saleh and K. Nagi

architectures to speed up the software engineering processes by treating source code
as data. Using two use cases, we show the huge increase in speed when executing
tests on mutants using our HadoopMutator framework.

In the sequel of this paper, we plan to apply the MapReduce programming model
to different code profiling functions and to use the same model to formally specify
and verify code correctness. Formal code verification remains largely another
impractical technique due to its complexity and the large space that a code verifier
needs to examine to prove correctness. By implementing verifiers as cloud-based
services, we anticipate a significant enhancement in performance. On the
implementation level, we plan to integrate HadoopMutator with the common
Continuous Integration environments such as Jenkins [32].

References

1. Buyya, R., et al.: Cloud computing: Principles and paradigms. John Wiley & Sons (2010)
2. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.

Communications of the ACM, 51(1), 107–113 (2008)
3. DeMillo, R.A., et al.: An extended overview of the Mothra software testing environment.

Presented at the Proceedings of the Second Workshop on Software Testing, Verification,
and Analysis (1988)

4. Derezińska, A.: Advanced Mutation Operators Applicable in C# Programs. In: Sacha, K.
(ed.) Software Engineering Techniques: Design for Quality. IFIP, vol. 227, pp. 283–288.
Springer, Boston (2007)

5. Derezinska, A., Szustek, A.: Tool-Supported Advanced Mutation Approach for
Verification of C# Programs. In: 3rd International Conference on Dependability of
Computer Systems (2008)

6. Fraser, G., Zeller, A.: Mutation-Driven Generation of Unit Tests and Oracles. IEEE
Transactions on Software Engineering 38(2), 278–292 (2012)

7. Gospodnetic, O., Hatcher, E.: Lucene. Manning (2005)
8. Khare, R., et al.: Nutch: A flexible and scalable open-source web search engine. Oregon

State University 1, 32 (2004)
9. Marynowski, J.E., et al.: Testing MapReduce-Based Systems. arXiv preprint

arXiv:1209.6580 (2012)
10. Mateo, P.R., Usaola, M.P.: Bacterio: Java Mutation Testing Tool: A Framework to

Evaluate Quality of Tests Cases. In: 28th IEEE International Conference on Software
Maintenance (ICSM). IEEE (2012)

11. Mateo, P.R., Usaola, M.P.: Parallel Mutation Testing. Software Testing, Verification and
Reliability 23(4), 315–350 (2013)

12. Matyas, S., et al.: Continuous Integration: Improving Software Quality and Reducing Risk.
Addison-Wesley (2007)

13. Ma, Y.-S., et al.: MuJava: An Automated Class Mutation System. Software Testing,
Verification and Reliability 15(2), 97–133 (2005)

14. Miller, M.: Cloud Computing: Web-Based Applications that Change the Way you Work
and Collaborate Online. Que Publishing (2008)

15. Miner, D., Shook, A.: MapReduce Design Patterns: Building Effective Algorithms and
Analytics for Hadoop and Other Systems. O’Reilly Media, Inc. (2012)

 HadoopMutator: A Cloud-Based Mutation Testing Framework 187

16. Nica, S., et al.: Is Mutation Testing Scalable for Real-World Software Projects?. In: The
3rd International Conference on Advances in System Testing and Validation Lifecycle,
VALID 2011, pp. 40–45 (2011)

17. Parveen, T., et al.: Towards a Distributed Execution Framework for JUnit Test Cases. In:
IEEE International Conference on Software Maintenance (ICSM 2009), pp. 425–428.
IEEE (2009)

18. Saleh, I., et al.: Formal Methods for Data-Centric Web Services: From Model to
Implementation. In: Proceedings of the IEEE International Conference on Web Services
(ICWS 2013), pp. 332–339 (2013)

19. Saleh, I.: Formal Specification and Verification of Data-Centric Web Services. Virginia
Polytechnic Institute and State University (2012)

20. Schuler, D., et al.: Efficient Mutation Testing by Checking Invariant Violations.
In: Proceedings of the Eighteenth International Symposium on Software Testing and
Analysis, pp. 69–80. ACM (2009)

21. Schuler, D., Zeller, A.: Javalanche: Efficient Mutation Testing for Java. In: Proceedings of
the 7th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, pp. 297–298. ACM
(2009)

22. Shvachko, K., et al.: The Hadoop Distributed File System. In: 26th IEEE Symposium on
Mass Storage Systems and Technologies (MSST 2010), pp. 1–10. IEEE (2010)

23. Tilley, S., Parveen, T.: HadoopUnit: Test Execution in the Cloud. In: Software Testing in
the Cloud, 37–53. Springer (2012)

24. Tukey, J.W.: Exploratory Data Analysis. Addison Wesley (1977)
25. Voas, J.M., McGraw, G.: Software Fault Injection: Inoculating Programs Against Errors.

John Wiley & Sons (1998)
26. White, T.: Hadoop: The definitive guide: The definitive guide. O’Reilly Media, Inc. (2009)
27. Jia, Y., Harman, M.: An Analysis and Survey of the Development of Mutation Testing.

IEEE Transactions on Software Engineering 37(5), 649–678 (2011)
28. Apache Wicket, http://wicket.apache.org
29. Bamboo, https://www.atlassian.com/software/bamboo
30. CruiseControl, http://cruisecontrol.sourceforge.net/
31. Hadoop Word Count Problem, http://wiki.apache.org/hadoop/WordCount
32. Jenkins, http://jenkins-ci.org/
33. Pitest Mutation Operators, http://Pitest.org/quickstart/mutators/
34. Pitest Mutation Testing Framework, http://pitest.org/
35. The Apache Software Foundation, http://www.apache.org/

Template-Based Generation of Semantic Services

Felix Mohr and Sven Walther

Department of Computer Science
University of Paderborn, Germany

{felix.mohr,sven.walther}@upb.de

Abstract. There are many technologies for the automation of processes
that deal with services; examples are service discovery and composition.
Automation of these processes requires that the services are described se-
mantically. However, semantically described services are currently not or
only rarely available, which limits the applicability of discovery and com-
position approaches. The systematic support for creating new semantic
services usable by automated technologies is an open problem.

We tackle this problem with a template based approach: Domain in-
dependent templates are instantiated with domain specific services and
boolean expressions. This process yields both the description and the
implementation of new services whose correctness directly follows from
the correctness of the template. Besides the theory, we present a pre-
liminary evaluation for service repositories in which 85% of the services
were generated automatically in efficient time and explain why these are
indeed useful.

Keywords: services, templates, correctness, semantic descriptions,
automation, composition.

1 Introduction

We are currently witnessing an enormous interest in technologies that deal with
semantic services; that is, services with machine readable descriptions of the task
they carry out. Two examples are the discovery [6,7,13] and the composition [2,
3,9,14] of semantic services. The semantic service descriptions, which are usually
given by logical preconditions and effects with vocabulary from an ontology, are
necessary for the automation of these technologies.

Unfortunately, it is not only laborious but also error-prone to develop semantic
services by hand, and there are very few such services available today. The
descriptions must be coherent with the used ontology, and proving correctness
is often omitted. The absence of semantically described services, which is also
documented in [8], is a strong concern for the above mentioned techniques.

To the best of our knowledge, there are no approaches that support the de-
velopment process in this regard through automation. There are, of course, code
generators, but these do not support semantic descriptions of the generated
code. Automated service composition itself addresses this problem but is lim-
ited in two ways. First, classical composition solves particular tasks, so we can

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 188–203, 2014.
c© Springer International Publishing Switzerland 2014

Template-Based Generation of Semantic Services 189

Fig. 1. Template-Based Generation of Semantic Software Services

only use it if we have a specification for a concrete required service. However, it
would be helpful to compose services in advance that solve problems that can
be reasonably expected to occur. Second, service composition is either based on
highly domain specific templates [14] or is limited to sequential compositions.
We are not aware of any approach that can compose a service with conditional
statements and loops without the help of a template that is specific for the task.

This paper shows how semantically described services can be generated by au-
tomatically instantiating domain independent templates. The idea is captured
in Fig. 1. Our templates are workflows that are semantically described through
preconditions and effects and that contain placeholders for service calls and log-
ical expressions. The instantiation of a template replaces its placeholders with
existing services and logical expressions from a domain specific ontology. Instan-
tiation produces both the implementation of the new services and their domain
specific semantic description whose correctness directly follows from the cor-
rectness of the template. Hence, exploiting the semantic description of existing
services enables us to generate new semantic, correct, and useful services.

Our evaluation shows that the presented approach can significantly increase
reuse and that it is technically efficient. We conducted an evaluation for different
repository sizes with two templates. The ratio of automatically created services
to the number of all services in our scenario is over 85%, while the generation
process is efficient and the artificially derived services can be considered useful. In
other words, for every service written by the developer, our approach generates
6 new and presumably useful semantically described services.

Summarizing, the contribution is that we significantly increase the number of
useful, semantically described, and correct services in an efficient way.

The rest of this paper is structured as follows. Section 2 discusses related
work. Section 3 introduces templates and their syntax, and Section 4 explains
how their correctness can be shown. The instantiation mechanism is described
in Section 5, and Section 6 shows the validation of our approach.

2 Related Work

The approach in this paper is different from what is usually understood by code
generation in that the generated software has semantic descriptions. Classical
code generation as known from model driven development does not exhibit this
kind of performance. To the best of our knowledge, the only field where software

190 F. Mohr and S. Walther

artifacts with semantic descriptions are obtained at all is the composition of
semantically describe software components; that is, automated software compo-
sition through the notion of service composition. In the following, we focus on
the difference to those approaches.

Automated service composition has similarities to what we do but tackles a
different problem. Automated service composition tries, given the description of
a desired service as a state transition system [3], preconditions and effects [2],
or a workflow [14], to find a correct implementation. That is, automated service
composition asks whether a goal can be achieved with a given set of services. In
contrast, we address the question of what can be achieved with a given set of
services. This is somewhat analogous to backward chaining and forward chaining
in logic. The trade-off is in the complexity of the composed artifacts; service
composition aims for composing complex services, while we aim at composing
rather simple services that are expected to have high reuse potential.

In our previous work [10], we combined these two ideas of composition to over-
come the limitation to sequential compositions. For example, none of the above
mentioned approaches supports compositions with loops. In [10], code blocks
are computed in a preprocessing step and are then arranged by a composition
algorithm. The approach presented in this paper differs from the previous work
in that templates are now specified explicitly and not, as in the above work,
hidden in generator implementations.

A similar concept of composing template instances is persued in PROPHETS
[12]. The basis for the composition are so called service independent building
blocks (SIBs), which are templates. Likewise as in our paper, templates can be
equipped with logical expressions in order to constrain their instantiation. How-
ever, templates in PROPHETS are different in that they are domain specific.
Even though they are not bound to specific services, templates are not indepen-
dent as opposed to the ones in this paper; their semantics is fixed a priori.

Program synthesis based on preconditions and effects generates algorithms to
solve a domain specific task [15]. It does not allow for complex, domain indepen-
dent algorithmic descriptions that have to be instantiated in different domains.

Compositional verification is part of the large field of program verification.
Automatic composition and verification of services is proposed, e.g., in [4], where
it relies on linear programming, but service specifications are very simple and
not based on ontologies. [11] analyzes (Web) service compositions using Petri
nets; [14] automatically creates compositions, but does not focus on verification.
ESC/Java2 checks pre-/postconditions of Java methods annotated in JML [5],
utilizing a theorem prover, but without relation to ontological knowledge.

3 The Service and Template Model

This section formally defines services and templates. Services are described
through inputs, outputs, preconditions, and effects. Templates are workflows
with placeholders, a black box description, and instantiation constraints.

Template-Based Generation of Semantic Services 191

3.1 Service and Knowledge Model

We describe services like atomic services in OWL-S as black boxes through in-
puts, outputs, precondition, and effect. We do not treat stateful services as used
in [3] specially, because these can be also encoded through IOPE if necessary.1

Definition 1. A service description is a tuple (I ,O ,P ,E). I and O are dis-
joint sets of input and output variables. P and E describe the precondition and
effect of the service in first-order logic formulas without existence quantifiers or
functions. Free variables in P must be in I; free variables in E must be in I ∪O.

Consider our exemplary service getAvailability , which determines the avail-
ability of a book. The service has one input b for the ISBN of a book and one
output a for the availability info; we have I={b} and O={a}. The precondition
is P = Book(b) and requires that the object passed to the input b is known
to belong to the ontological concept Book (which is the same as requiring b to
have the type Book). The effect is E = HasAvInfo(b, a) and assures that the
object where the output a is stored contains the info whether b is available. An
exemplary rule of Ω would be HasAvInfo(x , y) ∧ y =‘yes’⇒ isAvailable(x).

A knowledge base Ω captures relations among the predicates that are used
in the service descriptions. Ω is an ontology (e.g. OWL) together with a set of
implications (rules) of the form a1 ∧ . . . ∧ an ⇒ an+1 where a1, . . . , an+1 are
predicates whose arguments are universally quantified variables. A set of such
rules is called Horn formula. For simplicity, we assume the ontological part of
Ω , which could be expressed e.g. in description logic, to be axiomatized through
implications such that we simply consider Ω as a set of logical implications.
Note that the satisfiability problem is guaranteed to be decidable for Ω unless
the ontological part contains existential quantifiers.

3.2 The Template Model

A template is a generic workflow together with a generic black box description
and constraints for instantiation. The generic workflow describes a control and
data flow between service calls and serves as a blueprint for the implementation
of the derived services. The black box description of the template is a blueprint
for the description of the derived services and is expressed according to Def. 1.
Constraints define conditions that template instantiation must satisfy to be con-
sidered valid and are encoded as a first-order logic Horn formula.

There is one placeholder type for service calls, boolean expressions, and helper
predicates respectively. The syntax of placeholders for service calls is explained
in Def. 2; we refer to these placeholders as generic service calls. Placeholders
for boolean expressions and helper predicates are predicates themselves. While
placeholders for boolean expression occur in the workflow, the description, or
the constraints of a template, the helper predicates only occur in its description
and the constraints.

1 This is easily achieved by using fluents to capture the state of the session.

192 F. Mohr and S. Walther

Predicates in a template description must be disjoint with predicates in the
knowledge base Ω by convention. For example, we specify a placeholder for a
boolean expression in the control flow through F (x) instead of IsAvailable(x).
To distinguish the two predicate types, we call the predicates of Ω the domain
specific predicates and all others the abstract predicates. Template descriptions
contain only abstract predicates. The abstract predicates Ps and Es are reserved
and represent the precondition and effect of the service that will replace the
generic service call with the name s.

In this paper, we write the generic workflow of a template in a simple impera-
tive language (Def. 2)2. We allow variables to be of either some scalar type (like
Boolean, integer, custom data types), or a (finite) set type; the types correspond
to concepts of the ontology encoded in Ω . We allow the basic set operations
union, intersection, and difference.

Definition 2. Assuming the usual semantics of these programs, a generic work-
flow can be written as a product of these rules:

W ::= skip | u := t | W ;W | (u1, . . . , un) := s(i1, . . . , im) (1)

| if B then W else W end (2)

| while B do W end | foreach a ∈ A do W end (3)

where u, u1, . . . , un, i1, . . . , im with m,n ≥ 0 are variables, t is a basic workflow
term (variable or arithmetic/set expression), (u1, . . . , un) := s(i, . . . , im) is a
generic service call, B is an abstract predicate, and A is a set.

We can then formally define a template as follows:

Definition 3. A template is a tuple t = (D ,W ,C) where D is a description
as in Def. 1, W is a workflow as in Def. 2, and C are constraints as a Horn
formula. This specification implicitly defines a set Gt of generic service calls, a
set Bt of generic boolean expressions, and a set Ht of abstract helper predicates.

As an example, consider the filter template in Fig. 2. This template de-
scribes workflows that compute a subset A′ ⊆ A. For every a ∈ A, the (still
undetermined) service s is invoked and determines the value of some (still un-
determined) property of a. The obtained value is compared to some value or
constant using the (still undetermined) filter predicate F . The item a is added
to A′ if this comparison has a positive result. Placeholders are the service place-
holder s, the abstract predicate F for the boolean expression, and the abstract
helper predicate R. The constraint requires that the predicate that replaces R
must logically follow from the effect of the service used for s and the positive
test of the predicate that replaces F .

Note that, although we call the predicates in the template description “ab-
stract”, the approach is completely based on first-order logic. The distinction
between abstract (domain-independent) and domain specific predicate is only
relevant for the design task; to our verification (Section 4) and instantiation
(Section 5), they both are standard first-order logic predicates.

2 This language captures core concepts of workflow descriptions. For real-world appli-
cations, it has to be mapped to desired languages like OWL-S or BPEL.

Template-Based Generation of Semantic Services 193

Name : Filter
Inputs : A
Outputs : A′

Precondition: {∀a ∈ A : Ps(a)}
Effect : {∀a ∈ A′ : R(a)}
Constraints : {∀a, y : Es(a, y) ∧ F (y) ⇒ R(a)}

1 A′ := ∅
2 foreach a ∈ A do
3 (y) := s(a)
4 if F (y) then A′ := A′ ∪ {a} end

5 end

Fig. 2. Generic list filter template

3.3 Template Instantiation

A template instantiation substitutes the placeholders of the templates by con-
crete service calls, boolean expressions and domain specific predicates. Generic
service calls are substituted by existing services and a binding between the in-
puts and outputs of the services and the variables in the service calls. Boolean
expressions are substituted by evaluable domain specific predicates; that is, pred-
icates for which a programmatic implementation is known, such as the predicate
≤ over the domain of integers. Helper predicates in the precondition, effect,
or constraints are substituted by a domain specific predicate from Ω . A set of
placeholder substitutions is a template instantiation or simply instantiation.

Definition 4. Let t = (D ,W ,C) be a template with Gt, Bt, and Ht as in Def. 3;
S be a set of services; P (Ω) be the domain specific predicates; and Peval(Ω) ⊆
P (Ω) be the evaluable predicates. An instantiation σ = mG ∪ mB ∪ mH is
the union of (partial) mappings mG : Gt � S, mB : Bt � Peval(Ω), and
mH : Ht � P (Ω) from placeholders to the respective domain specific elements.

A complete instantiation yields a new service (composition) with semantic
descriptions. A template instantiation is complete if each of the three mappings is
complete; that is, if there is a substitution for every placeholder in the template.
Fig. 3 is an example for a complete instantiation. The result is a new service
with its description and its implementation, and the implementation can be
considered a service composition.

Note that Def. 4 is somewhat sloppy in that the real mappings also cover a
data flow mapping. That is, we not only map an abstract helper predicate R to
a domain specific predicate isAvailable , but also define the mapping between the
arguments of those predicates. In the case of generic service calls, the mapping
mG also defines which inputs and outputs of the placeholder correspond to which
input and output of the concrete service. However, such a specification would
add an unnecessary level of detail at this point, which is why we neglected this
aspect in the formal definition.

194 F. Mohr and S. Walther

Based on the idea of a template and its instantiation given in this section, we
now explain how we prove the correctness of the services obtained by template
instantiation.

4 Correctness of Services by Correctness of Templates

The eventual goal of verification here is to show that the template instantiations
are correct. A service, a template, or a template instantiation is correct, if the
following property holds: Under the assumption that its precondition is true for
its input data, its effect is also guaranteed for its output data after calling it.
The generated service compositions are the result of template instantiation, so
verifying these compositions means to verify template instantiations.

The advantage of our approach is that we can show that a template instanti-
ation is correct by construction if the constraints of the template are implied by
the domain knowledge for the particular instantiation. In the following, we give
a high level sketch of this idea. We already elaborated the technical aspect of
the mechanism in our previous work [17], so we refer to that work for details.

Every substitution of placeholders defines a logical relationship between ab-
stract predicates of the template on one side and domain specific predicates
on the other side. For example, the effect of the template in Fig. 2 contains
an abstract helper predicate R. Replacing R with a domain specific predi-
cate, say IsAvailable , means to define the equivalence of the predicates, that
is ∀x : R(x) ⇔ IsAvailable(x). The same holds for generic service calls and
generic boolean expressions. In this way, every template instantiation i defines a
set of such equivalences between abstract and domain specific predicates, which
we denote as Ψi.

We use these relationships to check whether the domain knowledge Ω entails
the constraints of a template for a particular instantiation. The equivalences Ψi

defined by an instantiation i connect the domain specific predicates, which only
occur in Ω , and the abstract predicates, which only occur in the constraints
C of template. One could say that the instantiation knowledge Ψi grounds the
predicates in C to the domain specific predicates in Ω . Hence, this grounding
enables the check of the validity of the constraints, which implies the correctness
of the service defined by the instantiation. We say that an instantiation is valid
if this condition holds.

Definition 5. Let Ω be the domain knowledge, inst be a template instantiation,
C be the constraints of that template, and Ψinst be the equivalences defined by
inst. inst is a valid instantiation if the formula Ω ∧Ψinst ⇒ C is always true.

A template instantiation is correct if it is valid and if the template and the
services used for instantiations are correct. Since the existing services are black
boxes, we must assume them to be correct. Verifying the correctness of the
template must be performed by an expert and can be achieved in different ways,
e.g., manually using proof outlines [1], or encoding correctness as satisfiability
problem based on the control flow [16]. In our implementation, we used the latter
one. This yields the following theorem, which we proved in [17].

Template-Based Generation of Semantic Services 195

Name : FilterBooks
Inputs : A
Outputs : A′

Precondition: {∀a ∈ A : Book(a)}
Effect : {∀a ∈ A′ : IsAvailable(a)}
Constraints : {∀a, y : HasAvInfo(a, y) ∧ y =‘yes’⇒ IsAvailable(a)}

1 A′ := ∅
2 foreach a ∈ A do
3 (y) := getAvailabilty(a)
4 if y = ‘yes’ then A′ := A′ ∪ {a} end

5 end

Fig. 3. Instantiation of the filter template that filters available books

Theorem 1. Let t be a correct template, S be a set of correct services over
domain knowledge Ω, and i be a valid instantiation of t using only services
from S. Then i is correct with respect to the preconditions and effects of t where
predicates have been mapped to the predicates in Ω according to Ψi.

In the following, we assume that both templates and existing services are
correct. The correctness of the instantiations then follows by Theorem 1 and the
check on validity of instantiations.

5 Systematic Template Instantiation

This section describes how new services are generated through the systematic
instantiation of templates. A possible template instantiation for the above filter
template is depicted in Fig. 3. We present a basic instantiation mechanism to
explain the rough idea and an enhanced instantiation mechanism that tackles
complexity issues.

5.1 The Basic Instantiation Mechanism

Our instantiation mechanism replaces placeholders in three steps, which corre-
spond to the placeholder types. First, the generic service calls are replaced by
basic service calls. We obtain one new template instantiation for every substi-
tution of a service placeholder by a basic service for every possible mapping
between the input and output variables of the basic service and the placeholder
service call. Second, the boolean expression placeholders are mapped to domain
specific evaluable predicates. As explained above, we only allow for substitutions
to predicates that have an implementation such as ≤ over the domain of inte-
gers. Third, the instantiation mechanism replaces the abstract helper predicates.
Fig. 4 depicts the idea of the instantiation mechanism.

After each substitution of a placeholder, the validity of the resulting instan-
tiation i is checked. That is, the algorithm checks the validity of the formula

196 F. Mohr and S. Walther

Fig. 4. The Basic Instantiation Mechanism

Ω ∧Ψi ⇒ C . Depending on the structure of the domain knowledge, this is step
must be performed by an SMT solver. This step can be guaranteed to be de-
cidable unless the ontological part of the domain knowledge contains existential
quantifiers. If the check is positive, the instantiation is valid and is added to
the set of solutions. Note that, theoretically, also incomplete instantiations can
be valid; in this case, every further instantiation is a valid and, hence, correct
instantiation.

Since the set of possible instantiations is finite, the routine eventually termi-
nates. However, this number may be very high, so we examine the complexity
of the set of possible instantiations in more detail.

5.2 No Serious Combinatorial Explosion

In general, the number of possible instantiations of a template is notoriously high;
in fact, it grows exponentially in several parameters. The number of possible
instantiations depends on the number of generic service calls of the template (u)
and their maximum number of inputs (i1) and outputs (o1); the number of basic
services (n) and their maximum number of inputs (i2) and outputs (o2); and
the number of abstract predicates (v), the maximum arity among the abstract
predicates (a1), the number of domain specific predicates (m), and the maximum
arity of the domain specific predicates (a2). It can be easily checked that the
number of possible instantiations is then limited inO((i1

i2 ·o2 o1 ·n)u ·(a1 a2 ·m)v).
In common settings, however, the exponents in this term are relatively small

constants. In fact, we may reasonably require that the number of placeholders,
the arity of abstract predicates, and the maximum number of inputs and outputs
of both generic service calls and services can be bound to a small constant,
say i1 , i2 , o2 , o1 , u, v , a1 ≤ 5 (according to our observations). Equally, we have
a2 = 2 because common ontologies, e.g. ontologies based on description logics,
only allow binary predicates 3. This polynomially limits the number of possible
instantiations in O(n5 ·m5); in fact, the above filter template imposes a bound
in O(n ·m2).

Of course, the possible instantiations are, even within this bound, still numer-
ous. Therefore, we enhanced the basic instantiation mechanism as described in
Section 5.1 in order to cope with a relatively high number of concrete services
and predicates.

3 It is possible to simulate predicates with higher arity by introducing supporting
concepts, but the concrete predicates that are encoded in an ontology are only binary.

Template-Based Generation of Semantic Services 197

5.3 An Enhanced Instantiation Mechanism

We increase the efficiency of the instantiation mechanism in three steps.
First, we reduce the effort for the validity check of instantiations. To this

end, the instantiation mechanism maintains a reduced list of constraints C ′ for
every template instantiation. For every such instantiation σ, the instantiation
mechanism stores a set of remaining constraints C ′

σ. Whenever the mechanism
replaces a placeholder in σ, it computes the reduced constraint set C ′

σ′ of the
resulting instantiation σ′ as follows: The knowledge that was added to Ψσ′ by the
instantiation step is used to eliminate those constraints in C ′

σ whose conclusion
can be shown; that is, a constraint a1 ∧ · · · ∧ an → b is in C ′

σ′ if it is in C ′
σ and

if Ψσ′ ∧Ω ∧ a1 ∧ . . . an |= b is not true. We can then say that an instantiation σ
is valid if C ′

σ is empty.
Second, we prune instantiations for which we can prove that the validity check

must fail. This is the case whenever there is an constraint where all placeholders
have been replaced but where the conclusion of the constraint cannot be shown.
In accordance with the first optimization, this happens if there is a constraint
in C ′ that has no more placeholders to be substituted.

Third, we limit the substitutions for abstract predicates in the third phase
of the instantiation mechanism. When replacing the abstract predicates of the
template, the generic service calls and the boolean expressions have already been
replaced. By these replacements, the constraints have been partially connected
to the domain specific level through the respective instantiation knowledge Ψ .
For each partially mapped constraint that has only one placeholder open, we
determine the concrete predicates that may be candidates to replace the abstract
ones. The concrete predicates are determined either through forward chaining
(if the placeholder is in the conclusion of the constraint) or backward chaining
(if it is in the premise of the constraint). Other predicates are not considered,
because they would fail on this constraint.

6 Preliminary Practical Evaluation

This paper addresses the question if we can efficiently generate semantically de-
scribed and correct components that can be considered useful. The correctness
and the theoretical efficiency were discussed in Section 4 and Section 5. This
section analyzes the remaining questions of practical efficiency of the instantia-
tion mechanism and usefulness of the obtained services. We used two templates
and instantiated them for different service repository and knowledge base sizes.
On one hand, we see that the presented approach can be also applied for rather
large service repositories. On the other hand, the usefulness of the obtained ser-
vices directly follows from the usefulness of the services used for instantiation
themselves.

6.1 Evaluation Setting

Our evaluation is based on two templates. The first template is the filter that is
depicted in Fig. 2, which we used as a running example of this paper. The second

198 F. Mohr and S. Walther

Name : PeakFinder
Inputs : A
Outputs : a∗

Precondition: {∀a ∈ A : PC(a)}
Effect : {∀a ∈ A : R(a∗, a)}
Constraints : {∀a, y, a′, y′ : EC(a, y) ∧EC(a

′, y′) ∧ F (y, y′) ⇒ R(a, a′),
∀x, y, z : F (x, y) ∧ F (y, z) ⇒ F (x, z)}

1 begin
2 a∗ := nil
3 tmp := nil
4 for a ∈ A do
5 (y) := C(a)
6 if F (y, tmp) then
7 a∗ := a
8 tmp := y

9 end

10 end
11 return a∗

12 end

Fig. 5. Template for finding the item of a set that is maximal or minimal with respect
to a property. The constraints define that the test must be transitive.

template is shown in Fig. 5 and is blueprint for workflows that determine, for a
given set A, the element a∗ that has the maximum (or minimum) value of a par-
ticular property among all the elements of the set. This property is determined
by a generic service call and compared in a generic boolean expression, which is
usually resolved to ≤. For example, it determines the object with the maximum
(or minimum) price in a given set. The correctness of both templates has been
proven with the methodology described in Section 4.

The services and boolean expressions that we use to replace the placeholders
stem from an environment of reading comparable object properties. Similar to
getter methods in object oriented languages, our basic services determine prop-
erties of objects. For example, one service determines the price of a flight ticket,
another service determines the time within which a book will be available, and
a third one may determine the revenue of a client. The property values can be
compared to other values through the four operators =, �=,≤, and <, which are
the concrete boolean expressions; note that these operators are transitive except
�=, which is important for the second template.

For each property, we introduce a predicate to declare the relation between a
variable that holds an object and a variable that holds the value of the property
of the object. Formally, we use the predicate P i(x, y) to denote that the variable
y contains the value for property i of the object represented by variable x; that
is, P price(x, y) means that y holds the value of the price of x. There is one service
for each property i with one input x and output y and with P i(x, y) as effect.

Template-Based Generation of Semantic Services 199

In order to express relations of property values, we introduce four more pred-
icates for each property. Formally, we use Qi

=(x, v), Qi
�=(x, v), Qi

<(x, v), and

Qi
≤(x, v) to express how the value of property i of object x relates to some value

v. For example, Qprice
≤ (x, v) means that the price of object x is lower than v.

In the knowledge base Ω , we define the rules that associate the P predicate of
a property and the operators with the respective Q properties. For example,
P price(x, y)∧ y ≤ z ⇒ Qprice

≤ (x, z) contains the knowledge that, if the price of x
is y and y is at most z, than the price of x is at most z. The special case that z
is a constant, like yes in Fig. 3, is not treated specially in the evaluation. This
knowledge enables instantiations of the filter template.

Finally, we add a predicate that compares two objects according to a property
value. That is, for every property i, we use the predicate Ri(x, y) to express that
the object x can be (totally) ordered before object y according to property i. For
example, Rprice(x, y) means that x is at least as cheap as y. In the knowledge
base Ω , we add the respective rule that allows us to determine this predicate.
For property i, this rule is P i(x1, y1) ∧P i(x2, y2) ∧ y1 ≤ y2 ⇒ Ri(x1, x2). These
rules intuitively satisfy the constraints of the second template depicted in Fig. 5
and, in this way, enables its instantiation.

The knowledge base contains no more rules than the mentioned ones. In par-
ticular, there is no knowledge about relationships between different properties.

We measured the time that was required to find all valid instantiations for
different numbers of properties. In accordance with the above explanations, we
used one service, six predicates, and five rules for each of i properties to in-
stantiate the two templates. The instantiation was performed as described in
Section 5. Our algorithm is implemented in Java and was performed on an In-
tel(R) Core(TM) i7-2600 with 3.4 GHz CPU and 8.0 GB memory in a 64 bit
environment.

6.2 Quantitative Evaluation: The Efficiency of the Approach

Table 1 summarizes the results of the efficiency evaluation. The actual results
are the number of effectively found valid instantiations and the runtime; the
other columns are merely additional information to get a rough idea of the
conditions in the respective scenario. The first four columns contain the number
of properties (problem size), services, predicates, and rules respectively. The
columns “Tree Size”, “Explored”, and “% Pruned” reflect the number of possible
(complete) substitutions of the placeholders, the number of actually considered
instantiations that were visited during the run, and the corresponding prune rate
respectively. Note that all valid instantiations were found; there were no valid
instantiations that could not be found e.g. due to memory overflow.

The synthetic design of the service repository and the knowledge base of course
directly implies that the number of valid instantiations is 6 times the number of
properties. The first template can be used to derive four new services for every
basic service. The second template can be used to derive two new services; one
determines the element with the maximum value and one the element with the
minimum value for the property that is computed by the basic service.

200 F. Mohr and S. Walther

Table 1. Runtime for template instantiation when maximal knowledge is available

Services Predicates Rules Tree Size Explored % Pruned Valid Time(s)

100 100 600 500 2.902k 16.802 0,9884 600 30

200 200 1.200 1.000 11.563k 33.602 0,9942 1.200 109

500 500 3.000 2.500 72.108k 84.002 0,9977 3.000 874

1000 1000 6.000 5.000 288.216k 168.002 0,9988 6.000 3378

1500 1500 9.000 7.500 648.324k 252.002 0,9992 9.000 7801

2000 2000 12.000 10.000 1.152.432k 336.002 0,9994 12.000 14623

The pruning techniques explained in Section 5.3 help solve also relatively large
problems. The number of possible instantiations increases very fast even though
only quadratically (Section 5.2). The critical part is the instantiation of helper
predicates, because there are so many possibilities to replace them. The pruning
techniques allow us to avoid the great majority of the invalid instantiations. In
fact, we can prune up to over 99% of the possible instantiations.

Summarizing, the results show us that we can efficiently generate a large num-
ber of semantically described services on the basis of templates. If we use the two
templates as presented in this paper in an arbitrary domain, we can efficiently
increase the repository size such that up to more than 85% of its services have
been implemented and proven to be correct by the fully automatized instantia-
tion algorithm. Of course, this requires that the respective knowledge has been
formalized.

6.3 Qualitative Evaluation: Usefulnes of Generated Services

When software is written automatically, it is paramount to discuss the usefulness
of the obtained artifacts. For example, we could think of a generated service that
always returns the boolean value false. Even if we have a correct description
for this service, it would never be used in practice. In contrast to efficiency, the
usefulness of the obtained artifacts cannot be quantified with a metric, so we
argue verbally why the generated services are useful in our setting.

In the case of the two evaluated templates, all produced services can be con-
sidered useful in the sense that there may be a situation in which they will be
needed. We discuss each of the templates separately.

Services created with the first template compute subsets of the form A′ =
{a | a ∈ A ∧ P (a)}, where P models some property that objects in A may
or may not have. Such a service is only created through instantiation if there
already exists a (basic) service s that determines whether P (a) holds for a single
object a4. Therefore, this property must be of some interest; otherwise s would
not exist. There is no reason to assume that computing a subset of items that
have property P is irrelevant if determining P for a single object is relevant
enough to have a service for it.

4 It is not the basic service itself that determines the truth of P (a) but an if-statement
that tests the result of the service.

Template-Based Generation of Semantic Services 201

A variant of this argument also works for the second template. If we know that
the values of a particular property can be compared, it is reasonable to assume
that there could be a situation where we want to determine the object with the
minimum or maximum value of that property among a set of objects. Conse-
quently, for every service produced by the instantiation of one of the templates,
we can easily give a reasonable task where this service would be used.

6.4 Discussion

On one hand, this paper presents a sufficient technical evaluation of the approach
introduced. That is, the technical evaluation consists of the theoretical part on
one hand and the practical part on the other hand. The theoretical part, which
addresses the correctness of templates and the services obtained by instantiation
(Section 4 and Section 5), can be considered complete. The practical part, which
addresses the efficiency and the (expected) usefulness of generated services, has
just been shown and discussed (Section 6). Hence, we consider the technical
evaluation of our approach sufficient.

On the other hand, we acknowledge that our evaluation only demonstrates
that the presented approach technically works, and that its practically utility
has not been analyzed at all. Due to the synthetic character of the services used
in our evaluation, the results presented here are only a proof of concept. Also,
writing domain independent templates is a demanding intellectual task, and it
is not completely clear how many of such templates can be found.

However, we think that the evaluation given is the most reasonable one at
this point of time. The interesting question is, of course, how strong the impact
of the approach on every day development is. But establishing an evaluation
for practical utility is not at all a trivial issue; in particular, it would not be
sufficient to address this question by a small case study. We do not claim that
such an evaluation cannot be performed but certainly not as a side product
of presenting the approach itself. In other words, we conducted the evaluation
that was important for this stage of research, and the evaluation of the practical
utility remains future work.

7 Conclusion and Future Work

This paper describes an approach that allows to automatically produce services
consisting of a semantic description and an implementation that is correct with
respect to the description. Templates as language and domain independent con-
trol and data flow specifications with placeholders are verified on a generic level
and then automatically instantiated with basic services from a domain. The cor-
rectness of the generated services directly follows from the correctness of the
template and the adherence of the instantiation process to the template con-
straints. Our experimental evaluation supports the theoretical elaboration and
shows that over 85% of the services in the final repository are produced auto-
matically and efficiently; all of them can be considered useful. The presented

202 F. Mohr and S. Walther

mechanism is flexible in that it can be applied to all programming or workflow
languages that have the semantics like the language used in this paper.

As a final remark, we would like to add that the presented approach is also
relevant for development environments that do not visibly rely on semantic de-
scriptions. For example, one could see the getter methods of classes in Java or
.Net as services for getting the properties whose semantic descriptions are auto-
matically derived by naming conventions. The generation of new methods can
then be performed on the basis of the techniques shown in this paper. The fact
that the obtained code is also semantically described adds significant autom-
atization power to the development environment, even though the (common)
developer does not even know that there are semantics involved.

A great deal of possible future work remains in finding more templates, re-
fining the verification technique, improving the instantiation mechanism, and
creating tool support. Currently, we use three templates, two of which were
explained in this paper. The approach strongly benefits from the number of
templates, so it is a natural interest to identify more of them and make them
available. The verification technique can be refined by attempts to (semi-) auto-
matically find the constraints for a template. The instantiation mechanism can
still be improved by more sophisticated pruning techniques or a generally dif-
ferent instantiation strategy. Also, due to the fact that the tools that were used
to obtain the results in this paper are isolated, we are planning to provide a
tool that supports the development, verification, and instantiation of semantic
templates in an integrated application.

Acknowledgments. This work was partially supported by the German Re-
search Foundation (DFG) within the Collaborative Research Centre “On-The-
Fly Computing” (SFB 901).

References

1. Apt, K., de Boer, F., Olderog, E.R.: Verification of sequential and concurrent pro-
grams. Springer (2009)

2. Bartalos, P., Bieliková, M.: Automatic dynamic web service composition: A survey
and problem formalization. Computing and Informatics 30(4), 793–827 (2012)

3. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via
planning in asynchronous domains. Artificial Intelligence 174(3), 316–361 (2010)

4. Cavallaro, L., Nitto, E.D., Furia, C.A., Pradella, M.: A tile-based approach for self-
assembling service compositions. In: Proceedings of 15th International Conference
on Engineering of Complex Computer Systems, pp. 43–52 (2010)

5. Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

6. Junghans, M., Agarwal, S., Studer, R.: Towards practical semantic web service
discovery. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt,
H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp.
15–29. Springer, Heidelberg (2010)

7. Klusch, M., Kaufer, F.: WSMO-MX: A hybrid semantic web service matchmaker.
Web Intelligence and Agent Systems 7(1), 23–42 (2009)

Template-Based Generation of Semantic Services 203

8. Klusch, M., Zhing, X.: Deployed semantic services for the common user of the
web: A reality check. In: Proceedings of the 2nd IEEE International Conference on
Semantic Computing. pp. 347–353. IEEE (2008)

9. Lécué, F., Silva, E., Pires, L.F.: A framework for dynamic web services composition.
In: Emerging Web Services Technology, vol. II, pp. 59–75. Springer (2008)

10. Mohr, F., Kleine Büning, H.: Semi-automated software composition through gen-
erated components. In: Proceedings of the 15th International Conference on Infor-
mation Integration and Web-based Applications & Services. ACM (2013)

11. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition
of web services. In: Proceedings of the 11th International World Wide Web Con-
ference (WWW 2011), pp. 77–88. ACM (2002)

12. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose programming with PROPHETS.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 94–98. Springer,
Heidelberg (2012)

13. Schulte, S., Lampe, U., Eckert, J., Steinmetz, R.: LOG4SWS. KOM: self-adapting
semantic web service discovery for SAWSDL. In: Proceedings of the 6th World
Congress on Services, pp. 511–518. IEEE (2010)

14. Sohrabi, S., McIlraith, S.A.: Preference-based web service composition: A middle
ground between execution and search. In: Patel-Schneider, P.F., Pan, Y., Hitzler,
P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part
I. LNCS, vol. 6496, pp. 713–729. Springer, Heidelberg (2010)

15. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program syn-
thesis. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010, pp. 313–326. ACM, New
York (2010)

16. Walther, S., Wehrheim, H.: Knowledge-based verification of service compositions
– An SMT approach. In: Proceedings of the 18th International Conference on
Engineering of Complex Computer Systems, pp. 24–32 (2013)

17. Walther, S., Wehrheim, H.: Verified service compositions by template-based con-
struction. In: Formal Aspects of Component Software. LNCS. Springer, Heidelberg
(2014)

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 204–220, 2014.
© Springer International Publishing Switzerland 2014

Automatic Color Modification for Web Page
Based on Partitional Color Transfer

Xiangping Chen1,3, Yonghao Long2,3, and Xiaonan Luo2,3

1 Institute of Advanced Technology, Sun Yat-sen University, Guangzhou, China
2 School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China

3 Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
{Chenxp8,lnslxn}@mail.sysu.edu.cn, longyh3@mail2.sysu.edu.cn

Abstract. Designing or modifying the color of a website is a time-consuming
and difficult task for most software engineers. The idea of this paper is inspired
by the color transfer methods proposed for automatically alter an image’s color
during image processing. The color of a web page can be modified by reusing
color characteristic of a reference page. However, a web page cannot be simply
viewed as an image because it has structure and constraints for color modifying.
In this paper, we propose an approach for automatic color modification of web
page based on partitional color transfer. Our approach starts from the clustering
of visible UI elements for page partition. And then, elements in the source page
are color transferred with their matched elements in the reference page. Our ap-
proach automatically modifies the color of web pages based on the color trans-
fer result. We generate 72 modified web pages to evaluate the page structure
preserving and color characteristic transformation result of our approach.

Keywords: color modification, user interface design, color transfer.

1 Introduction

In a website, color is one of the most notable features to invoke an emotional reaction
[12]. Color has been shown to influence perceived trustworthiness, users’ loyalty,
purchase intention [12, 14] and also the energy cost in the research field of web engi-
neering. The choice of color is important for a website.

For most low-cost web applications developed for small companies or intuitions,
the applications are developed without an UI design expert. Designing or modifying
the color of a website is a time-consuming and difficult task for most software engi-
neers, even with lots of websites in the internet. The hardest part of the task is to de-
cide which colors the elements should be changed to. However, directly reusing the
colors from a good looking reference webpage rarely works out well because features
of the page beyond color (e.g., physical structure, grouping and intra-page relation-
ships) may affect the overall result and can lead to problems such as color distortion.
(See the discussion of Fig.1 below).

This paper describes an approach based on reusing domain specific knowledge, ab-
stractions and methods from the color transfer domain[1,2,3,4,5] to automatically

 Automatic Color Modification for Web Page Based on Partitional Color Transfer 205

build an abstract model of one image’s features that are critical to successful color
transfer and then use that model to automatically revise the color characteristics of a
different page.

Figure 1 illustrates the problems of direct transfer. In Figure 1, (a) is the source
page; (b) is the reference page. We apply statistical transfer method [1] in the source
page using the reference page. (c) is the resulting page. We can see that: (1) the colors
of the header and footer in the reference page are not transferred to the resulting page;
(2) the colors of an image are changed; (3) some texts in the result page seem unclear.

(a) Source Page

(b) Reference Page

(c) Result

(d) Problems

Fig. 1. An Example of Color Transfer

The color distortion problem occurs because a web page cannot be simply viewed
as an image. A web page can be divided into several sub-parts. Each sub-part can be
viewed as a standalone image. Modification of its color should be guided by the color
characteristics of a corresponding sub-part in the reference page. Second, the content,
both image and text in the web page is not clear in the output page. Colors are trans-
ferred without consideration for user interaction. Because the color contrast ratio be-
tween text and its background colors is relatively low, the text seems unclear.

In this paper, we propose an approach for automatic color modification of web
page based on partitional color transfer. Our approach starts from the clustering of
visible UI elements for page partition. And then, elements in the source page are color
transferred with their matched elements in the reference page. Our approach automat-
ically modifies the color of web pages based on the color transfer results. We generate
72 modified web pages to evaluate the page structure preserving and color characte-
ristic transformation result of our approach.

The remainder of the paper is organized as follows: Section 2 gives an overview of
our approach; Section 3 introduces how to segment page according the page structure
and matching each sub-part for color transfer; Section 4 introduce how to modify
color based on color transfer result. Section 5 presents the experiments for evaluating
the web structure and color characteristic change during color transfer. Finally, Sec-
tion 6 discusses some related works before Section 7 concludes our work.

206 X. Chen, Y. Long, and X. Luo

2 Approach Overview

The structure of a web page affects the color characteristic of different parts of the
page. A web page can be divided into several sub-parts according to its structure. And
two sub-parts with different color characteristic should be color transferred with dif-
ferent reference images. As a result, our approach applies color transfer in different
parts of a web page and combines the results for modifying the color of web pages.

The approach overview is shown in Fig 2. Our approach starts from the partition of
both source page and reference page by clustering UI elements. For an element of the
source page, our approach searches in the reference page to find a matched element as
candidate for color transfer. The snapshots of the reference element are used to color
transfer the UI element. The color transfer results are combined based on their origi-
nal positions. The combined page is used for modifying the color of source page.

Fig. 2. Approach Overview

In order for the automatic color modification, the main problems are:
(1) How to divide a page into sub-parts? From the source code of a web page, we can

find out all the UI elements and their relationships. Which criterions are impor-
tant to decide whether two elements belong to the same cluster?

(2) How to match elements in different pages for color transfer? The web pages may
be of different programming styles. The matching of elements should consider
more about the appearance, and less about the implementation detail.

(3) How to modify the color of a web page based on an image? The color transfer
result is an image. The color of an image may be very complex and hard to be
implemented by revising CSS definition in the page.

3 Partitional Color Transfer

Regardless of the granularity for divided a web page into sub-part, the requirement for
partitional color transfer includes two aspects: (1) for a visible UI element in the
source page, it can be matched to another element in the reference page. (2) for two

 Automatic Color Modification for Web Page Based on Partitional Color Transfer 207

visible UI elements, if they are supposed to be transferred to the same color characte-
ristic, their reference elements are supposed to be of the same color characteristic.

Our approach first clusters the UI element in both source page and reference page.
Elements in the same cluster are required to be transferred with the same color cha-
racteristic. And then, we propose an algorithm to search a reference element for each
UI element in the source page.

3.1 Dimensions for UI Element Comparison

A UI element e can be abstracted as <type, size, position, color, structure>. We eva-
luate how similar two UI elements are considering following dimensions:

(1) Types: For the elements of different types, they are considered to be of different
color characteristic. An element type can be implemented using different tag in
HTML. We group the visible element types. The definition of element type is re-
lated to granularity for divided a web page into sub-part. We choose 15 HTML
tags used for implementing visible UI elements. These tags are <button>,
<link>, <div>, , <nav>, <section>, <aside>, <list>, , ,
<form>, <table>, <header>, <footer>, . If an element defined using
one of these tags and its inner structure does not include any of these tags, it is an
atom element. Atom element is considered as basic unit during element clustering
and matching.

(2) Size: A UI element is a rectangle in the web page. Its size is decided by the width
and height of the rectangle. If the sizes of two elements are the same, the possi-
bility that they are related is higher.

(3) Position: The coordinates of a UI element is the coordinates of the upper left
pixels of the UI element. The position is decided by its coordinates. If the X-
coordinates or Y-coordinates of two elements are the same, they are in the same
vertical axis or horizontal axis.

(4) Color: A UI element can be viewed as an image. The colors characteristic of an
UI element is decided by the number of color types and distribution of colors.

(5) Structure: In the DOM tree, a UI element is a node. The distance between two
nodes indicates possible relationship between two elements. For example, two
nodes with the same parent are possibly very similar elements.

3.2 Web Page Partition Based on Cluster of UI Elements

Our approach first partitions web page into parts. The division considers the UI ele-
ments which are visible in the user interface. It first filters the elements which are not
suitable to be changed. Images used to provide content are required to preserve its
original color. When we screen capture an UI element, its background image are also
included in the image. As a result, our approach do not consider image.

And then, our approach clusters elements. The color of the elements in the same
cluster should be changed in the same way. The rules are defined according to the
dimensions for the comparison of UI element. The rules for clustering and filtering

208 X. Chen, Y. Long, and X. Luo

are used to decide whether two elements are in the same cluster or not. The rules for
comparison are used to evaluate the relationship between two elements.

Table 1. Rules for Clustering of UI Elements

 Rules Description Usage

1 CSS Elements share the same CSS class are belong to the same cluster Clustering

2 Type Elements of different types are belonging to different clusters. Filtering

3 Color 1. How similar the background colors of two elements are?

2. The difference between numbers of colors in two elements

Comparison

4 Size How similar the width and height of two elements are? Comparison

5 Position 1. Whether two elements are neighbors?

2. Whether two elements are in the same vertical or horizontal axis?

Comparison

6 Structure The relationship between the nodes of two elements? Comparison

7 Neighbor Whether there are neighbors of these two elements are in the cluster? Comparison

The distance between two element ei and ej in a web page is defined as:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

++

++=

other),(),(

),(),(),(

fulfillednot is 1 rule and fulfilled is 2 rule if 0

fulfilled is 1 rule if 1

),(

54

321

jineighborjistructure

jipositionjisizejicolor
ji

eeceec

eeceeceec
eedist

λλ
λλλ

(1)

(1) Color: We generate the number of colors and the RGB of the background color.
The description for the color of an element is defined as e.color = (number,
RGB). The RGB color model is an additive color model in which red, green, and
blue light are added together in various ways to reproduce a broad array
of colors. We compare the RGB values of their background colors using Eucli-
dean distance.

%50
|..|

|..||..|

%50
)()()(1

1
),(

222

×
+

−−+
+

×
−+−+−+

=

numberenumbere

numberenumberenumberenumbere

bbggrr
eec

ji

jiji

jijiji

jicolor

 (2)

(2) Size: In a list or a table, related elements are usually of the same size. In some
condition, these elements may be of different width/ height with the same height
/width because of space limit. We define a threshold α to determine whether the
two elements’ sizes are the same: if the difference of the two elements’ widths or
heights is higher than α pixels, we think their sizes are not the same. Usually we
assign α as 3. For two element ei and ej, ei.size = (wi, hi), ej.size = (wj, hj),

⎪⎩

⎪
⎨
⎧

≤−≤∧≤−≤
−−−−

=
other 0

))||0()||0(()
||

,
||

max(
),(

αα
α

α
α

α
jiji

jiji

jisize

hhww
hhww

eec
 (3)

 Automatic Color Modification for Web Page Based on Partitional Color Transfer 209

(3) Position: Two types of relationship are defined based on the positions of ele-
ments: neighbor and in the same axis. Similarly, we define a threshold β to avoid
the deviation produced in the designing phase, in this paper, we assign β as 3.
For two element ei and ej, ei.position = (xi, yi), ej.position = (xj, yj).

The neighbor relationship is defined as:

),()))}..()..(|{

))}..()..(|{))()(((

jiijji

ijjijiji

eeneighborxxpositionexxxpositionexe

yypositioneyyypositioneyeyyxx

→=<<∨<<∧

=<<∨<<∧=∨=

φ
φ

(4)

Then we can calculate the similarity of the two elements’ positions:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∧≤−≤∨≤−≤

×
−−−−

=

other 0

)),(!))||0()||0((

%90)
||

,
||

max(

),(1

),(

jijiji

jiji

ji

jiposition

eeneighboryyxx

yyxx

eeneighbor

eec

（ββ
β

β
β

β
(5)

(4) Structure: the structure of an element e is defined as estructure=<p, n, hasTxt, ha-
sImg>, where p is the parent of e, n is the number of the element’s children, the
hasTxt and hasImg are Boolean parameters which describe whether the element
has txt children or image children.

The similarity of the two element’s structures can be described as:

⎪
⎪
⎩

⎪⎪
⎨

⎧

∧+∧+

≤−∧+∧++

=

=

otherghasghashasTxthasTxtpcomp

nnghasghashasTxthasTxtpcomp

parentparent

eeC

jiji

jijiji

ji

jistructure

),ImIm()()(

3),ImIm()()(

,1

),(

431

4321

λλλ
λλλλ

(6)

(5) Neighbor: an element has four neighbors at most: the left neighbor, the right neigh-
bor, the upper neighbor, the bottom neighbor. If the neighbors of two elements ei
and ej exist, we compare their neighbors’ distance; if one of the neighbors of the
same kind does not exist, the distance between these two neighbors is 0.

)/()),(),(

),(),((),(

432143

21

λλλλλλ
λλ

+++++

+=

jistructurejiposition

jisizejicolorjineighbor

neighborneighborcneighborneighborc

neighborneighborcneighborneighborcneighborneighbordist

 (7)

)),(

(8)),,(),,(

),,(max(),(

jineighbor

jineighborjineighbor

jineighborjineighbor

hborbottomneighborbottomneigdist

borupperneighborupperneighdistborrightneighborrightneighdist

orleftneighborleftneighbdisteec =

We use an open source tool CSSBox to generate the information of color, size, po-

sition, and HTML node for each UI element. Fig 3 shows the results of clustering UI
elements using the setting of λ1=0.2, λ2=0.3, λ3=0.3, λ4 =0.1, λ5=0.1. The elements
with black frame are images which are filtered. Elements with the same color of
frame are in the same cluster.

210 X. Chen, Y. Long, an

F

3.3 Matching UI Eleme

The matching can be view
source page Psource to all th
ment eref. The distance betw

(sourcedist

The calculation of distan
pose in 3.2. However, ther
tance between elements in
between elements in differe
required to be the same fo
possibility for the elements
related to CSS definition, th

Tab

 Rules

1 Type How si

2 Size How si

3 Position How si

4 Html Structure How si

During matching, all the

between two elements. Bas
ej , ei in the source page Pso

,(),(1 jitypeji eeceedist λ=

(1) Type: In HTML, diffe
which are similar in th
developers may have

nd X. Luo

Fig. 3. Example of Clustering Results

ents

wed as the comparison between an element esource in
he elements ei in the reference page Pref to find out an e
ween the elements esource and eref is the minimum.

)),((min), isource
Pe

refce eediste
refi ∈

=

nce between two elements is similar to the method we p
re are differences between method for calculating the d
n the same page and method for calculating the dista
ent pages. The relation of CSS definition and color are
or elements belonging to different pages. In addition,
s have similar neighbors is very low. As a result, the ru
he color and the neighbor of element are not considered.

ble 2. Rules for Matching UI Elements

Description Usage

milarity of the two elements’ types Compariso

milar the shapes of two elements are? Compariso

milar the positions of two elements in their page? Compariso

milar the structures of the nodes of two elements are? Compariso

 rules listed in Table 2 are used to evaluate the relations
sed on these rules, the distance between two element ei

urce, ej in the reference page Pref, is defined as:

),(),(),() 432 jistructurejipositionjisizej eeceeceec λλλ +++ (

erent tags of HTML can be used to implement UI eleme
he user interface. Since the pages implemented by differ
e different programming styles. We group the tags i

the
ele-

(9)

pro-
dis-

ance
not
the

ules
.

on

on

on

on

ship
and

(10)

ents
rent
into

 Automatic Color Modification for Web Page Based on Partitional Color Transfer 211

different types in Table 3 based on our implementation experiments. If two
elements are implemented using the same tag or tags of the same type, their
types are the same. Ctype(ei,ej) is 1 when ei and ej are of the same type.

Table 3. Types of UI Elements

Cluster Types TAG

Function <button>,<link>

Container <div>,,<nav>，<section>,<aside>

List <list>,,

Table <form>,<table>

Other <header>,<footer>

(2) Size: it is hard to find two elements belonging to different pages with the same

size. As a result, we do not compare the size using the evaluation method in
clustering stage. We use the quotients of element’s width and height to see
whether two elements’ sizes are match with each other. If there is more than one
element which has the same quotient with the element in the target page, we
choose the one which have the minimum deviation of widths and heights. For
two element ei and ej, ei.size = (wi, hi), ej.size = (wj, hj).

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<×
−

−×
−

+×

≥×
−

−×
−

+×

=

iijj
j

ji

j

ji

ii

jj

iijj
j

ji

j

ji

jj

ii

size

hwhw
h

h

w

w

hw

hw

hwhw
h

h

w

w

hw

hw

C

// %01|
h

|%01|
w

|20%-%08
/

/

// %01|
h

|%01|
w

|20%-%08
/

/

(11)

(3) Position: Because users’ reading habits are considered by developers when im-
plementing the web page, elements of the same kinds are usually placed in simi-
lar relative positions. For two element ei and ej, ei.position = (xi, yi), ej.position
= (xj, yj) and the two pages’ widths and heights are wi, wj, hi, hj.

⎪
⎪

⎩

⎪
⎪

⎨

⎧
<−+−

−+−+=

others

h

y

h

y

w

x

w

x

h

y

h

y

w

x

w

x
C

j

j

i

i

j

j

i

i

j

j

i

i

j

j

i

i
position

0

)1)()(

)()(1

1 22

22

.

(12)

(4) Unlike the judgment in clustering step, it’s hard to find two elements from dif-
ferent pages which have same number of children or siblings. Instead we just see
whether the two elements contain same types of children: we think the two ele-
ments’ structure are same if half of the children’s types in the source page are
same as the children’s types in the reference page, otherwise they’re not same.

Figure 4 shows the results of matching UI elements from source page to reference
page using the setting of λ1 =0.1, λ2 =0.5, λ3 =0.3, λ4 =0.1.

212 X. Chen, Y. Long, and X. Luo

Fig. 4. Example of Matching UI Elements

3.4 Color Transfer between UI Elements

Web page partition results are clusters of elements which should be transferred with
the same color characteristic. All the visible UI elements in a web page are clus-
tered. For a web page P, it contains one or more clusters of UI elements. The results
of matching UI elements from source page to reference page are the matching rela-
tionship between elements. For each element in the source page, there exist a match-
ing element ej in the reference page:

jireferencejjsourcei eentmatchElemePetsePe =∧∈∃∈∀)(..,, (14)

 Our algorithm takes the matching element as candidate element for color transfer.
For a cluster clusteri in Psource, all the elements in the cluster should be matched with t
he elements belong to the same cluster in the reference page:

jireferencej clusterclustereentmatchElemePcluster ⊆∈∈∃ }|)({, (15)

In this case,)()(ii entmatchElemeerefElement = (16)

If the matched elements do not belong to the same cluster in the reference page,
our algorithm searches all the clusters in the reference page to find a cluster which
contains the most matched elements of elements in clusteri. If there is more than one
cluster in which the numbers of matched elements are the same, we randomly select
one cluster. In this case, if a matched element of an element does not belong to clus-
terj, we randomly choose an element in the clusterj as its reference element.

)(e random

)()(
)(

⎪⎩

⎪
⎨
⎧

∉∈

∈
=

jij

jii

i clusterentmatchElemecluster

clusterentmatchElemeentmatchEleme
erefElement

(17)

The color transfer is carried out between two images: two snapshots containing ei
and ej. The choice of color transfer method is based on the following considerations.

(1) Color distortion: In some cases, the elements expected to be of the same colors
become not uniform; in some cases, the element is changed to colors which are not
similar to reference colors or original colors. We consider color distortion problem
when choosing the to-be colors. Color transfer method with less color distortion can
improve our approach.

 Automatic Color Modific

(2) Grain effect: The gr
noise level of the picture un
noises or irregular blocks
decreasing readability of tex

(3) Time cost: Since the
transfer algorithm should ru
include a lot of iterations to

Fig. 5

With these consideration
This algorithm runs very q
transfering every UI eleme
based on their original pos
page based on the clustering

4 Color Modificat

After color transfer, an ima
source page. Since the res
modification considers the c

For an element ei in the
finition, this CSS definition
CSS definition for the refer
ground and text by random
color transfer result are used

In the implementation, a
The to-be changed color of
by revising the CSS color
mentation. Because the CSS
modification of color is don

cation for Web Page Based on Partitional Color Transfer

rain effect is a phenomenon appears due to enhancing
nder the stretched mapping. Commonly, it looks like so
[15]. The grain effect influences the user experience
xt or making image unclear.
e webpage contains a great number of elements, the co
un quickly and effectively. Some color transfer algorith

o generate result; they are not suitable to our method.

5. Color Transfer and Modification Result

ns, we choose Reinhard et al.’s color transfer algorithm
quickly and its results satisfy our requirement. After co
ent of source page, the color transfer results are combi
sitions in the source page. Figure 5(a) shows the result
g result in Fig.3 and the matching result in Fig 4.

tion Based on Color Transfer Result

age is generated to guide the modification of color of
ult of color transfer may have color distortion, the co
colors in both reference page and color transfer result.
source page, if its reference element ej has a CSS color
n is preferred to be used to change ei ’s color. If there is
rence element ej , our algorithm extracts ej’s color of ba

m sampling. The colors of randomly selected pixels in
d to extract an average color as the to-be color.

all the information of UI elements is saved in the data ba
f each element is recorded. The color modification is d
definition for each element. We use jQuery in the imp

S selector names of elements are saved in the data base,
ne using the following methods:

213

the
ome
e by

olor
hms

[1].
olor
ined
ting

the
olor

de-
s no
ack-
the

ase.
done
ple-
 the

214 X. Chen, Y. Long, and X. Luo

// for class selector
$(".className").css("background-color","resultColor");
// for id selector
$("#idName").css("background-color","resultColor");
// for special elements (e.g. words)
$(".className a").css("color","resultColor")

Figure 5(b) shows the web page generated after color modification. Some colors
used during color modification are colors used in the reference pages. As a result,
there is less color distortion. In addition, we can see that the colors of the logos of Sun
Yat-sen University are not changed because images are not color transferred.

5 Experiments

The goal of our approach is to modify the color of a web page based on a reference
page automatically. The requirements of the color transfer are:

(1) The structure of a web page can be kept. In a web page, the structure of a web
page is expressed as different color characteristic of different sub-part of the
page. In order to keep the page structure, the number of color types and the dis-
tribution of colors of both source page and resulting page should be similar.

(2) The color characteristic of the reference page and the resulting page are similar.

We choose 9 web pages, as list in Table 4. We use our tool to automatically modify
the color of each web page using the other 8 web pages as reference pages. The eval-
uation considers the keeping of structure and color characteristic.

Table 4. Web Pages

ID Address Number of

element

Number of

cluster
Page1 http://www.sysu.edu.cn/2012/en/index.htm 166 11
Page2 http://library.sysu.edu.cn/web/guest/index 108 12
Page3 http://www.ccf.org.cn/sites/ccf/paiming.jsp 21 4
Page4 http://www.yale.edu/ 75 7
Page5 http://www.xmu.edu.cn/ 125 8
Page6 http://www.alexa.com/tools 62 19
Page7 http://www.ask.com/answers/browse?qsrc=321&qo=chann

elNavigation&o=0&l=dir

73 9

Page8 http://www.bojistudio.org/ 172 12
Page9 http://academic.research.microsoft.com/ 53 6

 Automatic Color Modification for Web Page Based on Partitional Color Transfer 215

5.1 Web Structure Preserving

In order to evaluate whether the structure of a web page is preserving during color
modification, we compare the change of color types and the distribution of colors
between source page and the resulting page.
In order to compare the change of color types for each page, we evaluate the change
of numbers of color as

|scolor type spage' source|

|scolor type spage' resulting| . Figure 6(a) shows how the numbers

of color changed in the resulting pages with different source page and reference page.
We can see that the numbers of added/reduced colors in most pages are less than
20%. Because the structure of page3 is relatively simple, the choice of reference page
has little effect on the numbers of color.

Fig. 6. Comparison Results

For each page, we extract its color distribution status using color histograms. We
traverse all the pixels to count the pixel number of for each color. When comparing
the source page and resulting page, the distribution of the same color are not required
to be similar in these two pages. Instead, a color in the source page is expected to be
changed to another color in the resulting page. As a result, we group the color accord-
ing to its distribution descending. Figure 7 shows the color histograms for the page4
and its resulting pages.

Fig. 7. Color Histograms of Page 4 and Its Color Transfer Results

216 X. Chen, Y. Long, and X. Luo

The similarity between the source page and the resulting page are evaluated using
the Euclidean distance between their color distributions. Fig 6(b) shows the Euclidean
distances between source pages and the result generated with different reference pag-
es. All the distances are less than 0.15. We can see that the change of color distribu-
tions of page 2 with any reference page is more than change in average. In Fig 10,
we can see that page2 is different from other pages. In page2, a color is usually
distributed in scattered sub-parts. In addition, the pages generated using page2 as
reference page also suffer from a relatively high value of change in the color
distribution.

5.2 Color Characteristic Preserving

The result page is required to preserve the color characteristic of the reference page.
We choose to extract main colors in the reference pages and resulting pages, to vali-
date the similarity of their color characteristics. For each page, we extract 10 main
colors. Figure 8(a) shows the main colors in the source page page4, the reference
pages for page4, and the resulting pages.

For a source page, how the color characteristic of a reference page is transferred to
the resulting page is evaluated by the Euclidean distance between the main colors of
the reference page and resulting page. Figure 8(b) shows the comparison results. The
reason for the change of main colors is caused by the difference between the struc-
tures of reference page and result page.

Fig. 8. Comparison of Main Colors After Color Transfer

5.3 Examples

Our approach includes four steps：(1) Clustering visible elements for page partition;
(2) matching UI elements for color transfer; (3) Color transferring between
images generated for matched elements; (4) Color modification based on color
transfer result.

 Automatic Color Modific

 Element clustering

Setting 1 ×

Setting 2 ×

Setting 3 √

Setting 4 √

We use different settings

the web pages we used as e
of web page using a sub-set

Fig. 9. C

The result is shown in
ments improve the preserv
modification stage reduces

Figure 10 shows the resu
as reference page. For the r
ture preserving feature eval
ture is changed. In the resul
see that the color characte
the color characteristic of
the resulting page and the
among the values of dista
example.

cation for Web Page Based on Partitional Color Transfer

Table 5. Experiment Settings

Element matching Color transfer Color Modification

× × ×

√ √ √

√ √ ×

√ √ √

s in Table 5 to see how each step improves the result us
examples in this paper. In each setting, we modify the co
t of our approach.

Color Transfer Result with Different Settings

Figure 9. We can see that clustering and matching e
ving of page structure. The revision of color in the co
color distortion.
ults generated using Page4 as source page, and other pa
resulting page generated using page8 as reference, its str
luated in 5.1 is the worst. We can see that the page str
lting page generated using page6 as reference page, we
eristic of the resulting page is completely different fr
the reference page. In Figure 6(a), the distance betw

e reference page page6 is 0.67, which is the max va
ances between reference pages and their results in

217

sing
olor

ele-
olor

ages
ruc-
ruc-
can
rom

ween
alue
this

218 X. Chen, Y. Long, an

Fig. 10. Color Modif

6 Related Work

Color Transfer
Color transfer is a way to m
given “example” image. Th
appearance in the image ed
nessed in the field of color
togram matching, statistica
transfer [2], gradient-preser
[4], progressive transfer [5]

The statistical transfer m
the mean from the data poi
age by factors determined
result page by adding the av
efficient when the target im

nd X. Luo

fication Result of Page4 with Different Reference Pages

make the target image have the color appearance from
his method can help artists do less manually adjust co

diting. In the last decade, rapid development has been w
r transfer. Representative approaches include classical h
al transfer [1], N-dimensional probability density funct
rving transfer [3], non-rigid dense correspondence tran
 and so on.

method proposed by Reinhard et al. just needs to subtr
ints, and scale the data points comprising the synthetic
by the respective standard deviations, and we can get
verages computed for the photograph. This method is qu

mage and the reference image are quite similar and simpl

the
olor
wit-
his-
tion
sfer

ract
im-
the

uite
le.

 Automatic Color Modification for Web Page Based on Partitional Color Transfer 219

The N-dimensional probability density function transfer can be regarded as finding
a one-to-one color mapping that transfers the palette of a target picture to the refer-
ence picture, but it will cost a lot of time when the two images are very big, and the
grain effect is very seriously. The histogram matching is able to specify the shape of
the referred histogram that we expect the target image to have, but the grain effect or
the color distortion is very serious.

Web Page Refactoring
With the development of Internet, traditional web pages on the computer monitors are
moved to numbers of screens with different sizes, such as the mobile display, the
touch screen etc. One of the important questions is making a plan about how the tradi-
tional designed web page should be re-designed in order to suit the current display’s
size. An intuitive method is cutting the page into many pieces, and each piece is suit-
able to the display [6]. The touch screen is different from the traditional mobile screen
[7]; it’s bigger and more flexible for interacting [8, 9]. The method proposed in [9]
developed a plug-in which can do the page segmentation; it collects user performance
data for different device characteristics in order to help them identify potential design
problems for touch interaction.

Flatla et al. proposed a webpage’s color refactoring method for CVD users [10, 11],
they have developed a new simulation approach that is based on a specific empirical
model of the actual color perception abilities of a person with CVD. They subtract the
colors defined in the CSS files, and find a replacement color on the dichromat-
Trichromat equivalency plane (DTEP) to replace it, and then optimize the result and
rewrite the CSS files to finish the refactoring. The resulting simulation is therefore a
more exact representation of what a particular person with CVD actually sees.

Some works focus on the color refactoring of the smartphones’ web pages in order
to save the cell phones’ energy. Ding et al. [16] proposed a technique for automatical-
ly transforming the color scheme of a mobile web application. Their method replaced
the large, light colored background areas with dark colors to reduce the energy con-
sumed by OLED screens. Mian et al. [17] also proposed a similar web pages’ color
refactoring method, they kept the difference of transformed colors by keeping the
Euclidean distance in CIELAB color space of each related colors.

7 Conclusion

In this paper, we propose an approach for automatically generating color modification
solution with different color characteristic. Software developers just need to choose
some reference pages they like and they can get numerous refactoring pages generat-
ing by our methods. This method can be used for reusing existing web pages’ color
schemes in order to shorten the development cycle especially the developers are not
familiar with color designing.

Acknowledgments. This research is supported by the National Natural Science
Foundation of China (61100002), NSFC-Guangdong Joint Fund (No. U1201252), the
Fundamental Research Funds for the Central Universities and the Projects for Interna-
tional Cooperation of Guangzhou (No. 2013J4500004).

220 X. Chen, Y. Long, and X. Luo

References

1. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color Transfer Between Images.
IEEE Computer Graphics and Applications 21, 34–41 (2001)

2. Pitié, F., Kokaram, A.C., Dahyot, R.: N-dimensional Probability Density Function Trans-
fer and Its Application to Colour Transfer. In: 10th IEEE International Conference on
Computer Vision, pp. 1434–1439. IEEE Press, New York (2005)

3. Xiao, X., Ma, L.: Gradient-Preserving Color Transfer. Computer Graphics Forum 28,
1879–1886 (2009)

4. HaCohen, Y., Shechtman, E., Goldman, D.B., Lischinski, D.: Non-rigid Dense Correspon-
dence With Applications for Image Enhancement. ACM Transactions on Graphics 30,
70:1–70:10 (2011)

5. Pouli, T., Reinhard, E.: Progressive Color Transfer for Images of Arbitrary Dynamic
Range. Computers & Graphics 35, 67–80 (2011)

6. Furche, T., Grasso, G., Kravchenko, A., Schallhart, C.: Turn the Page: Automated Traver-
sal of Paginated Websites. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012.
LNCS, vol. 7387, pp. 332–346. Springer, Heidelberg (2012)

7. Dubroy, P., Balakrishnan, R.: A Study of Tabbed Browsing Among Mozilla Firefox Users.
In: Proc. CHI 2010, pp. 673–682. ACM Press, New York (2010)

8. Holz, C., Baudisch, P.: Understanding Touch. In: Proc. CHI 2011, pp. 2501–2510. ACM
Press, New York (2011)

9. Warr, A., Chi, E.H.: Swipe vs. Scroll: Web Page Switching On Mobile Browsers. In: Proc.
CHI 2013, pp. 2171–2174. ACM Press, New York (2013)

10. Flatla, D.R., Reinecke, K., Gutwin, C., Gajos, K.Z.: SPRWeb: Preserving Subjective Res-
ponses to Website Colour Schemes through Automatic Recolouring. In: Proc. CHI 2013,
pp. 2069–2078. ACM Press, New York (2013)

11. Flatla, D.R., Gutwin, C.: “So that’s what you see": Building Understanding With Persona-
lized Simulations of Colour Vision Deficiency. In: 14th International ACM SIGACCESS
Conference on Computers and Accessibility, pp. 167–174. ACM Press, New York (2012)

12. Cyr, D., Head, M., Larios, H.: Colour Appeal in Website Design within and Across Cul-
tures: A Multi-method Evaluation. International Journal of Human-Computer Studies 68,
1–21 (2010)

13. Lavie, T., Tractinsky, N.: Assessing Dimensions of Perceived Visual Aesthetics of Web
Sites. International Journal of Human-Computer Studies 60, 269–298 (2004)

14. Cyr, D.: Modeling Website Design across Cultures: Relationships to Trust, Satisfaction
and E-loyalty. Journal of Management Information Systems 24, 47–72 (2008)

15. Su, Z., Zeng, K., Liu, L., Li, B., Luo, X.: Corruptive Artifacts Suppression for Example-
based Color Transfer. IEEE Transactions on Multimedia 11, 1–12 (2013)

16. Ding, L., Tran, A.H., Halfond, W.G.J.: Making Web Applications More Energy Efficient
for OLED Smartphones. In: 36th International Conference on Software Engineering, pp.
527–538. ACM Press, New York (2014)

17. Mian, D., Zhong, L.: Chameleon: A Color-Adaptive Web Browser for Mobile OLED Dis-
plays. IEEE Transactions on Mobile Computing 11, 724–738 (2012)

Software Development Support
for Shared Sensing Infrastructures:

A Generative and Dynamic Approach

Cyril Cecchinel1,2, Sébastien Mosser1,2, and Philippe Collet1,2

1Université Nice Sophia Antipolis, I3S, UMR 7271, 06900 Sophia Antipolis, France
2CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

{cecchine,mosser,collet}@i3s.unice.fr

Abstract. Sensors networks are the backbone of large sensing infras-
tructures such as Smart Cities or Smart Buildings. Classical approaches
suffer from several limitations hampering developers’ work (e.g., lack of
sensor sharing, lack of dynamicity in data collection policies, need to
dig inside big data sets, absence of reuse between implementation plat-
forms). This paper presents a tooled approach that tackles these issues.
It couples (i) an abstract model of developers’ requirements in a given
infrastructure to (ii) timed automata and code generation techniques,
to support the efficient deployment of reusable data collection policies
on different infrastructures. The approach has been validated on sev-
eral real-world scenarios and is currently experimented on an academic
campus.

Keywords: Sensor Network, Software Composition, Modeling.

1 Introduction

The Internet of Things [13] relies on physical objects interconnected between
each others, creating a mesh of devices producing information flow. The Gartner
group predicts up to 26 billions of things connected to the Internet by 2020.
These things are organized into sensor networks deployed in Large-scale Sensing
Infrastructures (LSIs), e.g., Smart Cities or Smart Buildings, which continu-
ously collect data about our environment. These LSIs implement Cyber Physical
Systems (CPSs) that monitor ambiant environments.

Facing the problem of managing tremendous amounts of data, a commonly
used approach is to rely on sensor pooling [9], [19] and to push data collected
by sensors in a central cloud-based platform [15]. Consequently, sensors cannot
be exploited at the same time and one needs to rely on data mining solutions
to extract and exploit relevant data according to usage scenarios [1], [17]. This
approach is adapted for many scenarios where data mining techniques are re-
quired, and has the advantage of separating concerns of data collection from
data exploitation. Nevertheless, there are many real-life case studies and sce-
narios where developers need to exploit shared LSIs and implement a diversity
of applications that do not need data mining expertise [4]. In this context, the
cloud servers create de facto silos that isolate datasets from each others and

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 221–236, 2014.
� Springer International Publishing Switzerland 2014

222 C. Cecchinel, S. Mosser, and P. Collet

act as a centralized bottleneck. In addition, the computation capabilities of the
other layers of the LSI (e.g., the micro-controllers used to pilot the sensors at
the hardware level, or the nano-computers acting as network bridges to connect
a local sensor infrastructure to the Internet) are under-exploited [10].

To develop software that fully exploits a LSI, the infrastructure must be con-
sidered as a white box. But the developer tasks is then more complex as they
have to deal with tedious low-level details of implementation out of their main
business concerns. This assumes a deep knowledge of micro-controller (sensor
platforms) and nano-computer (bridges) programming [4], while a diversity of
technological platforms must be handled. In such a situation, programming at
the higher level of abstraction and reusing as much code as possible between
scenarios and LSIs is of crucial importance. Moreover developers also have to
deal with the sharing aspects. It is hard for them as new requirements must be
enacted on the LSI and may easily interfere with the other ones.

In this paper, we propose a tooled approach that tackles all these problems
and aims at improving reuse, supporting sharing and dynamic data collection
policies. A software framework enables developers to specify and program at an
appropriate level their sensor exploitation code. It relies on an abstract model of
developers’ requirements in a given infrastructure so that timed automata and
code generation techniques can be combined to support the efficient deployment
of data collection policies into a LSI. As a result, several applications can rely
on the same sensors, and thus share them. A given code can be reused, trans-
lated and deployed on different infrastructures. The framework also ensures that
multiple policies can be dynamically composed, so that the generated code auto-
matically handle all requirements and get only relevant data to each consumer.

The remainder of this paper is organized as follows. In Sec. 2, we describe
the motivations of our work by introducing a real-life case study and organizing
requirements. We present in Sec. 3 the foundations of our framework. In Sec. 4
we assess our approach, providing an illustration, discussing current applications
and validating the identified requirements. Sec. 5 discusses related work while
Sec. 6 concludes this paper and describes future work.

2 Motivations

In this section, we motivate our work by first introducing the SmartCampus
project, then by defining requirements for a development support for shared LSIs.
SmartCampus has been deployed on the SophiaTech campus1 of the University
of Nice, located in the Sophia Antipolis technology park. We also introduce a
running example extracted from SmartCampus.

2.1 The SmartCampus Project

The SmartCampus project is a prototypical example of an LSI [4]. It acts as an
open platform to enable final users (i.e., students, teaching and administrative
staff) to build their own innovative services on top of the collected (open) data.

1 http://campus.sophiatech.fr/en/index.php

http://campus.sophiatech.fr/en/index.php

Software Development Support for Shared Sensing Infrastructures 223

This project is exactly the class of LSI this work is addressing as it faces the follow-
ing issues : (i) it is not possible to store all the collected data in a big data approach
and (ii) even if one can afford to store all these data, the targeted developers do not
master data mining techniques to properly exploit it. Typically, pieces of software
deployed in SmartCampus are driven by functional requirements (e.g., “where
to park my car?”) and leverage a subset of the available sensors (here the park-
ing lot occupation sensors) to address these requirements. Contrarily to classical
systems that use sensor pooling [9,19], different applications, such as the parking
place locator and an emergency system assessing the availability of fire brigade
access in the parking lots, rely on the same set of sensors at the very same time.
Moreover, developers do not know the kind of hardware deployed physically in
the buildings. To support software reuse across different architectures, there is a
need to abstract the complexity of using such heterogeneous sensor networks at
the proper level of abstraction.

2.2 Supporting Shared Sensing Infrastructure

From the functional analysis of the SmartCampus project (ended in December
2013), we highlighted four requirements with respect to software reuse [4]. These
requirements are not only project specific, but also do apply to any IoT-based
platform needing to share its sensors on a large scale, e.g., LSIs. This class of
system include upcoming smart-building or smart cities wishing to aggregate
communities of users to leverage sensors-based system and produce innovative
services based on citizen needs.

Pooling and Sharing (R1). Classical systems rely on sensor polling, with corre-
sponding booking policies. Typical examples of such systems are, for example,
the IoT lab platform in France, containing 2,700 sensors deployed in 5 research
centers across the country for experiments [9], or the Santander smart city with
a closed set of IoT based scenarios [19]. Users book a subset of sensors, work
with it and release it afterwards. This setup does not match what is expected
in the SmartCampus context. Moreover sensors available in an LSI are clas-
sically available through pooling mechanisms [12], [21]. On the one hand, this
mechanism is useful when sensors are installed to match a particular setup and
deliver a single service. But on the other hand, it is completely irrelevant to
the set of scenarios defined by our class of application. Providing a system that
only support sharing is also irrelevant, as one needs to deploy critical pieces of
software to sensors and be assured that such a critical process will be isolated
from other processes (this is similar to the virtual machine isolation requirement
in cloud computing).

Yield only relevant data (R2). To support sharing, classical architectures actually
collect data at the minimal available frequency, and store the complete dataset in
a cloud-based system, like in Xively [15]. Then, data mining techniques are used
to recompute the relevant data from this complete dataset [1], [17]. This faked
sharing leads to two type of issues: (i) application developers must be aware of
the data mining paradigm instead of focusing on their system and (ii) as their is

224 C. Cecchinel, S. Mosser, and P. Collet

no model of what data was expected by the application, it is impossible to reuse
the code written for a given LSI into another one. It is worth to note that by
yielding only relevant data, developers who want to express mining scenarios will
simply define as relevant a wider set of data than classical developers, making
the two approaches non-exclusive.

Dynamically support data collection policies (R3). There is a need to model what
kind of data are expected by a given application, in a data collection policy.
From a developer perspective, this requirement is critical as it is not reasonable
to program specifically for each LSI addressed by the same application, utterly
preventing software reuse. In addition applications exploiting the sensors require
to change their policies, for example by temporarily increasing some collection
frequency during a short period of time. These policies must be enacted dynam-
ically on the LSI to support such changes. Working with a formal definition of
what data are expected by the different consumers is the entry point to apply
verification and validation techniques on LSIs.

Handling the infrastructure diversity (R4). As the state of the art relies on
artifacts defined at the code level, it is difficult if not impossible to support soft-
ware reuse across different LSIs. Several approaches leverage operating systems
techniques to provide a standard way to program sensors (e.g., TinyOS [14],
Contiki [8]). However, these operating systems must be supported by the avail-
able sensors. If not, it is up to the developer to manually translate the code from
one system to another. In addition, even in the same LSI, hardware obsolescence
requires to replace old sensors by new one, often with new hardware due to sen-
sor production life cycle [3]. Thus, it is critical to operate at a code-independent
level to express data collection policies.

Summary. Classical approaches are deporting all the sensing intelligence to a
cloud-based solution, under-exploiting the computation capabilities of the other
layers of the LSI [10]. This also floods the cloud storage with irrelevant data.
Even with the help of data mining solutions, the resulting architectures are
either centralized with important overhead, or distributed, but still based on an
inflexible mining pipeline with identified bottlenecks [17]. Thus, based on the
analysis made in the SmartCampus, there is no solution covering all the four
requirements expressed by the project. To some extent, this is not surprising.
These approaches rely on a strong hypothesis of single consumer and very limited
access to the sensors. Thus, only half of R1 (i.e., pooling) and half of R2 (i.e.,
mining) are covered. The two last requirements R3 & R4 are covered at the
code level, preventing reuse and making maintenance and evolution complex.
Considering the emerging class of system that targets communities of developers
such as the Fireball project2, the previous assumptions does not hold anymore.

2.3 Running Example

We introduce here a running example to illustrate the approach. It is a simplifi-
cation of the use cases identified in the SmartCampus’s experimental LSI [4].

2 http://www.fireball4smartcities.eu/

http://www.fireball4smartcities.eu/

Software Development Support for Shared Sensing Infrastructures 225

The SmartCampus implementation defines a CPS based on two layers: micro-
controllers (sensors and sensor boards) and nano-computer (bridging the sensor
network and the Internet). Sensor measurements are sent to a sensor board,
which aggregates sensors physically connected to it. The board is usually imple-
mented by a micro-controller that collects data and send them to its associated
bridge. A bridge aggregates data coming from multiple sensor boards (thanks
to radio or wire-based protocols) and broadcasts on the Internet the received
streams to a data collection API, using classical Ethernet connection.

In our example we consider two users, Alice and Bob, who need to use the
same sensors to build their own application. Alice develops an application ex-
ploiting the associated LSI by collecting data from a temperature sensor every
couple of second. Without any specific support, she has to write (i) code to be
enacted on the different micro-controllers linked to temperature sensors (an in-
finite loop measuring the temperature every 2 seconds), (ii) code to aggregates
these data at the bridge level (reading the data sent by the micro-controllers
in proprietary representations, and sending it to the cloud-based collector, after
having performed data translation from micro-controller format to the collector
one), and finally (iii) the code that exploits the collected data to implement her
application. We claim here that only the latter should be Alice’s concern. On his
side, Bob develops an application exploiting a temperature sensor each second
and a humidity sensor every three seconds. He needs to perform the same kinds
of actions as Alice : (i) writing the code that reads temperature sensors each
second and humidity sensors every 3 seconds, (ii) aggregating these data at the
bridge level and (iii) implementing his application exploiting the collected data.

As simple as this example is, it illustrates the identified requirements. Both
users will need to use the same temperature sensor (R1), and as they have
different usages of this sensor, we do not want them to be flooded with non-
desirable data (R2). As the sensor network evolves and has to support new
users (i.e., the arrival of Bob), it needs to dynamically adapt the data collection
policies (R3). Finally, as the sensor networks is going to be heterogeneous and
composed of different layers (i.e., collection and network), the produced code
must automatically fit the infrastructure (R4).

3 Contribution: The COSmIC Framework

To address the four identified requirements, we propose the COSmIC frame-
work, a set of Composition Operators for Sensing InfrastruCtures. This section
describes the foundations underlying the framework.

3.1 Data Collection Policies as Timed Automata

In sensor networks, automata are commonly used for protocol modeling, and
component model approaches [23] are used to develop embedded applications,
focusing on the definition of Interface Automaton between each components.
These automaton-based interfaces enable the different components. We propose
to leverage this representation to (i) model the data collection policy expressed

226 C. Cecchinel, S. Mosser, and P. Collet

by the developer, implementing what she expects from an LSI through code
generation (ii) compose and decompose (dynamically) these policies to handle
sharing and infrastructure diversity.

We define a data collection policy p = 〈Q, δ, q0〉 as a simplification of a classical
timed automaton. Q is the set of states defined by the automaton, δ : Q → Q, its
(deterministic) transition function from a given state to another one and finally
q0 its initial state. In real LSIs, tick period is rarely lesser than one second, thus
our model assumes a single logical clock that triggers a transition each second.
As a policy aims to be indefinitely executed on an LSI, it must be cyclic, and
the length of the cycle represents the period of p, denoted as Pp. A given state
q ∈ Q contains an ordered set of actions A implementing the way the developer
interacts with the LSI.

In our example, the corresponding policy for Alice pa is represented by an
automaton (depicted in Fig. 1) with two states {a1, a2}.

As a policy needs to be enacted on different platforms, user requirements are
translated into a set of basic operations:

– read: Read the value of a sensor, e.g., for actions used in our temperature
and humidity example.

– emit: Send a value to an external endpoint, which is usually implemented
as a Web service exposing a destination URL for the collected data.

According to this representation and the associated actions, a software devel-
oper is able to model what she expects from the LSI for her given use case. The
key point is that the developer is completely unaware of the internal implemen-
tation of the LSI, and only focuses on reading sensor values and sending data
over communication interfaces.

3.2 The Generator Operator (γ)

The designed models are useless if not coupled to code generation algorithms that
transform these logical representations into executable code. One of the main
issues to tackle here is the variability existing between the different hardware
elements that compose an LSI (R4). For example, at the micro-controller level,
a plain Arduino board does not support the emit action, whereas an Arduino
coupled to an Ethernet communication shield supports it.

We thus define a code generator γ as a couple of functions (pre, do), each
consuming as input a policy p. The pre function checks a set of preconditions on

a1 a2

1s

1s

read(temp, t) emit(t, "http://alice:8080")

actions(a1) = {read(temp, t)}
actions(a2) = {emit(t, “http://alice:8080”)}

δa(x) �→ (x = a1 ⇒ a2) ∨ (x = a2 ⇒ a1)

pa = ({a1, a2}, δa, a1)

Fig. 1. Excerpt of a data collection policy

Software Development Support for Shared Sensing Infrastructures 227

p to ensure that this policy can be projected to the hardware platform targeted
by p. The do function takes as input the policy to transform, as well as additional
parameters given by the environment. These parameters map logical names to
physical elements when relevant (e.g., sensors on an Arduino platform are only
identified by the pin number they are plugged in). In a production environment,
the generators are not executed by the developer herself. She will only express
her needs, and will enact them on the LSI which actually knows its internal
infrastructure.

For example, we consider here the policy pa defined in the previous section,
and an Arduino platform as generation target. The corresponding precondition
checker assesses the absence of emit actions in the following way:

predard(p) �→ ∀q ∈ Qb, �emit(,) ∈ actions(q) (1)

In this case, the checker detects that this policy cannot be deployed on an
infrastructure based solely on Arduino, as this hardware does not match the
requirements expressed in the policy, i.e., emiting a data to the Internet.

Considering a policy p valid for the Arduino platform (the decomposition
operator described in the next section shows how to make pa valid), the doard
function then visits p to produce the code to be executed on the board, using
the Wiring3 language as target. It also takes as input a map acting as a registry
(stored in the LSI environment) binding a sensor name to the physical pin that
connects it to the board. Lst. 1.1 shows the resulting code for a board coupled
to temperature sensor temp on pin 9 and an humidity one hum on pin 10.
The generator maps actions such as read(temp, t) into Wiring code like v t =

analogRead(9).

1 void setup() { // Initialization
2 pinMode (9,INPUT); pinMode (10,INPUT);
3 }
4 void a1() {
5 v_t = analogRead(9); v_h = analogRead(10);
6 delay (1000); return a2();
7 }
8 void a2() {
9 v_t = analogRead(9);

10 delay (1000); return a1();
11 }
12 void loop() { return a1(); } // Entry point

Listing 1.1. Generated code example: doard(p)

Code generators also allow users to reuse their policy for different sensing
infrastructures as a given COSmIC policy can be translated to many targets.

3.3 The Decomposition Operator (δ)

Considering a given policy, it has to be decomposed into software artifacts that
make sense on the different layers of the LSI, i.e., the micro-controller and bridge
layers. For each layer, there may be actions that are incompatible with the hard-
ware. Consequently, a given policy p must be decomposed into n layer-specific
sub-policies p′layer (where n is the number of layers) that communicate together

3 Wiring is an open-source framework for micro-controllers (http://wiring.org.co/).

http://wiring.org.co/

228 C. Cecchinel, S. Mosser, and P. Collet

and where incompatible actions are substituted by internal communication [20].
This decomposition is performed thanks to a compatibility table T . A function
fT (a, P) applied on this table returns a boolean value reflecting the compatibil-
ity of an action a on the platform P 4. This decomposition process is defined as
follows:

δ(p) ≡ ∀a ∈ p, ∀P ∈ layers, fT (a, P) ⇒ a ∈ p′a (2)

If we consider micro-controllers implemented by Arduino boards and bridges
implemented by Raspberry nano-computers, the micro-controller level will not
support the emission of data to external endpoints, due to a lack of proper
communication interface. In our example, Alice’s policy will be decomposed by
the operator into two sub-policies: δ(pa) = {p′mic, p

′
bri}. Consequently, the pmic

will read the sensor value and send it to an internal endpoint (substitution of the
emit action) thanks to the serial communication that links the sensor board to
its bridge. This policy is accepted by the predard function defined in the Arduino
code generator, meaning that pmic can be deployed on such hardware. The pbri
policy is executed on the bridge to read the internal communication port and
emit the received data to the external endpoint.

3.4 The Composition Operator (⊕)

On a shared LSI, policies designed by different developers will be executed on
the very same piece of hardware COSmIC provides a composition operator de-
noted as ⊕ at the automaton level. It composes two given policies and produces
a single policy containing an automaton corresponding strictly to the parallel
composition of the two inputs.

The ⊕-operator assimilates a timed automaton implementing a policy p with
a period Pp as a periodic function. The composition of two periodic functions f1
and f2 is a periodic function f = f1 ◦f2 where its period Pf is the least common
multiple of Pf1 and Pf2 . Applied to policies, this means that the composition
of two policies p1 and p2, denoted as p = p1 ⊕ p2 is a policy with a period
Pp = lcm(Pp1 , Pp2), where each actions of p1 (respectively p2) are executed
according to Pp1 (respectively Pp2). As this ⊕-operator is endogenous, it allows
a software developer to dynamically reuse a policy by composing it with new
incoming policies.

In our example, the policies defined by Alice in pa and Bob in pb will exploit
the same temperature sensor on the same micro-controller and use the same
bridge to emit their values. More details on the composition and decomposition
processes are given in Sec. 4.2.

4 Assessment

In this section, we describe the current implementation and its application to
our prototypical LSI. Then, we show how COSmIC can be used to model and
deploy the running example. We validate our identified requirements through
some acceptance criteria and finally discuss threats to validity.

4 An example of such a table is given in Sec. 4.2.

Software Development Support for Shared Sensing Infrastructures 229

4.1 Implementation and Application

The initial prototype of the COSmIC framework is available on GitHub5. It is im-
plemented with the Scala language (∼ 3500 lines of code) and covers all the con-
cepts presented in Sec. 3. We are currently experimenting COSmIC on Arduino,
RaspberryPi andCubieboardplatforms as part of theSmartCampus project.We
also used the FIT IoT-lab platform6, featuring a pool of over 2700 sensors nodes
spread across France, to experiment on the ARM Cortex M3 platform.

To experiment and demonstrate the abstraction of platforms, code generation
capabilities, sharing and reuse, we have modeled four identified SmartCampus
scenarios and then generated code for each platform type we experiment with:

– S1 - Late worker detection: at night, occupied offices are detected by checking
if the light is on (light sensor) and if there is someone in the office (presence
sensor);

– S2 - Fire prevention: a warning signal on a temperature threshold (temper-
ature sensor);

– S3 - Heat monitoring: air-conditioning and heating are controlled by check-
ing the ambient air in buildings (temperature sensor);

– S4 - Energy wasting: To comply with environmental standards, the quality
manager wants to monitor light kept on when the building is empty (light
sensor and presence sensor).

Table 1 presents the number of lines of code (LoC) generated for each plat-
form. Every code generator includes a static overhead (template code), specific
to the targeted platform. This template provides the implementation of meth-
ods called by the COSmIC code generation. The corresponding LoC (italic row
on TAB. 1) vary between platforms as some of them are providing more fea-
tures. The Raspberry Pi template contains only 85 LoC, corresponding to serial
reading and value emission on the Internet (a Raspberry Pi cannot read values
directly from sensors in the SmartCampus infrastructure). On the other hand,
the ARM Cortex M3 template comprises 169 LoC to handle its sensor and net-
work interface. Using a template is efficient as we target low-level platforms, and
those functions encapsulate a part of their complexity. For example, a method
provided in the ARM Cortex M3 template handles the IPv6 retrieval of sensor
measures from a border-router.

We can first observe that without considering the boilerplate code defined
in the templates, there is no real difference in terms of LoC between COSmIC
and the underlying programming languages. This is not surprising as the design
choice of using templates hides low-level details to raise the level of abstraction
of each platform. But the key point is that the code written with the COS-
mIC framework is not a single-target code but actually a model, which can be
verified, composed automatically and projected to multiple platforms. Another
interesting property is that users do not need to know the underlying platform.
For example, if a policy relies only on digital sensors, one can use the Contiki
operating system [8] to use a thread-based implementation of this policy. If a new

5 http://ace-design.github.io/cosmic/
6 https://www.iot-lab.info/

http://ace-design.github.io/ cosmic/
https://www.iot-lab.info/

230 C. Cecchinel, S. Mosser, and P. Collet

Table 1. LoC resulting from scenario generation

Arduino Arduino Raspberry ARM Cortex COSmIC
native contiki / Python M3 / Python source

Template 13 22 85 169 0
S1 6 14 13 11 7
S2 5 13 11 10 5
S3 5 13 11 10 7
S4 6 14 13 11 7

S = S1 ⊕ S2 ⊕ S3 ⊕ S4 63 51 45 39 27
Deployed: S + Template 76 73 160 208 N/A

Bob's composed policy

A Ø

B

A1 Ø

A2 Ø

C

Ø

Ø
B
C

B B
σ

B2
C2

B2 B2

B1
C1

B1 B1

A2
B2
C2

B2
A2
B2

B2
C2

A2
B2

B2

σ

Alice's policy

Sensor platform

Bridge

⊕

⊕

A1
B1
C1

B2
A1
B1

B2
C2

A2
B2

B2

⊕ Source
code

Source
code

Operation
1s Transition
Code generation

Ø IDLE State

x

Express a policy

Fig. 2. COSmIC processes on the running example

requirement including values coming from analog sensors needs to be enacted
on the same board, Contiki cannot be used anymore and the implementation
must be completely rebuilt using only native operations. This is not the case
with COSmIC: the two policies will be automatically composed, and it simply
implies to change the call to the code generator as the Contiki one will reject
the composed policy.

4.2 Illustration

We illustrate the application of the COSmIC operators from policy definition
to code generation on the Alice and Bob example (see Sec. 2.3), on the top
of the SmartCampus infrastructure7. Fig. 2 gives an overview of the different
activities.

7 More details can be found on a companion web page:
https://github.com/ace-design/cosmic/blob/master/publications/ICSR15.md

https://github.com/ace-design/cosmic/blob/master/publications/ICSR15.md

Software Development Support for Shared Sensing Infrastructures 231

❶ Policies definition. In a first step, both users have to define their data
collection policies in terms of timed automaton. The Alice’s timed automaton pa
is already presented in Sec. 3.1. Bob has to express two policies: (i) temperature
collection policy (pbt) and (ii) humidity collection policy (pbh). Bob uses the ⊕-
operator to build a single policy pb containing both temperature collection and
humidity collection policies.

❷ Decomposition process. The next step is related to the decomposition pro-
cess thanks to the δ-operator. Policies pa and pb are global policies that contain
incompatible actions for the Arduino micro-controller (e.g. the emit action) plat-
form and for the Raspberry nano-computer (e.g. the read sensor action). The
appropriate compatibility table (Tab. 2) drives the decomposition process, reify-
ing the compatibility of actions per platform.

As presented in Sec. 3.3, incompatible actions are substituted by internal
communications. After this decomposition process, four layer specific sub-policies
are obtained:

δ(pa) = {pamic; pabri} δ(pb) = {pbmic; pbbri} (3)

❸ Composition process. These four sub-policies will be then deployed on the
shared infrastructure. The ⊕-operator will compose those policies and allow Alice
and Bob to exploit the same piece of hardware. pamic is composed with pbmic,
and pabri is composed with pbbri:

pamic ⊕ pbmic = pSensor platform pabri ⊕ pbbri = pBridge (4)

The composition process is an endogenous operation returning a policy that
can be reused to be composed, possibly in a dynamic way, with future poli-
cies. pSensor platform and pBridge are the policies that will be instantiated on the
infrastructure.

❹ Code generation. The final step of the deployment process is handled by
code generators working directly on the two latter policies. The generated codes
are then flashed on the appropriate micro-controllers and bridges using classical
LSI deployment tools. At runtime, Alice and Bob will receive sensor values for
their application according to their respective needs, although the same sensor
is used for both of them.

4.3 Validation

To validate the four requirements presented in Sec. 2, we define an acceptance
criterion for each of them and discuss how they are met.

Table 2. Excerpt of the COSmIC compatibility table

Arduino Uno Raspberry Pi ARM Cortex M3
read ✓ ✗ ✓

emit ✗ ✓ ✓

232 C. Cecchinel, S. Mosser, and P. Collet

R1: Pooling and Sharing - More than one application can rely on a given sensor.
The illustration in Sec. 4.2 shows that different policies can be enacted on the
sensing infrastructure to feed different applications. We performed also this val-
idation on the SmartCampus infrastructure with four scenarios (cf. Sec. 4.1).
In this context Table 3 illustrates that the same sensor will be used for different
scenarios, validating requirement R1.

R2: Yield only relevant data - A given application is only fed with what it ex-
pects. As shown in our illustration (Sec. 4.2), a COSmIC user models her data
collection policies with timed automaton and triggering of emit actions with
requested data periodically. The composition operator also maintains this prop-
erty by construction. It handles two policies p1 and p2 respectively T1 and T2

periodic, and produces a new lcm(T1,T2)-periodic policy. This process is trans-
parent for COSmIC users as her expressed policy will not be modified while she
will only receive data as specified in her initial policy. This validates requirement
R2.

R3: Dynamically support data collection policies - Multiple policies can be dy-
namically composed. The ⊕-operator allows the composition of data collection
policies on a sensor network. In the illustration (Sec. 4.2), Bob’s policies have
been composed into a single one using the ⊕-operator. The resulting policy can
be used by other operators. Therefore, when a new policy needs to be added to
the sensor network, one has just to compose it with the already deployed policy.
This endogenous property validates requirement R3.

R4: Handling the infrastructure diversity - A given code can be deployed on

more than one infrastructure. The infrastructure hardware variability is handled
with code generators. These code generators handle a COSmIC DSL input code
and produce the code for a given platform. We have successfully modeled and
deployed the SmartCampus scenarios on Arduino, Raspberry Pi and ARM
Cortex M3 platforms, validating requirement R4.

4.4 Threats to Validity

Scenarios. Our approach is only applied to the SmartCampus context. Even if
the corresponding scenarios have been validated through questionnaires and are
close to other case studies such as SmartSantander [19], we are aware that we

Table 3. Sensor sharing

Light Temperature Presence
Scenario 1 - Late worker detection ✓ ✓

Scenario 2 - Fire prevention ✓

Scenario 3 - Heat monitoring ✓
Scenario 4 - Energy wasting ✓ ✓

Software Development Support for Shared Sensing Infrastructures 233

need to step back and introduce more complex scenarios to benchmark COSmIC
on a larger scale.

Timed automata. Our data collection policies are represented by timed au-
tomata. If this approach fits the SmartCampus use case, the combination of
different scenarios can lead to a combinatorial explosion, (e.g., collections on a
shared sensor at frequencies of one second and one hour would lead to a 3600
states automaton with only two relevant states). The code generation process
is impacted by such automata. We currently reduce the size of such automata
thanks to a factorization process, but this optimization does not scale with a
large number of concurrent scenarios. The use of such automata also impacts
the resources. Platforms have to be always powered on, to the detriment of the
battery autonomy, to maintain a running clock delivering periodic clock tick.
Devising better techniques to handle such cases and providing resource manage-
ment is part of our future work.

Action execution duration. Our automata represent clocks with a 1 Hz fre-
quency. If the execution of an action is longer than one second, it might be
overlapped and aborted by the state transition leading the policy into an in-
consistent state. In the future, we plan to use languages based on the formal
Clock Constraint Specification Language (CCSL) [6] to determine the duration
of action execution and to ensure the temporal correctness of policies.

Deployment of new policies. Our approach handles the dynamic composition
of data collection policies and code generation for a given platform. However,
we do not support dynamic deployment as some sensor platforms need to be re-
flashed with a new firmware. When the platform support it, we rely on operating
systems (e.g., Contiki) to support this feature.

5 Related Work

Programming sensor networks with specific OS. Several operating systems have
been specifically designed for sensing infrastructures, e.g., TinyOS [14] or Con-
tiki [8]. TinyOS is based on a component architecture and comes with its pro-
gramming language NesC. A developer can create new components or reuse
components from the TinyOS’s component library to build her own application.
Contiki is adapted for networked and resource-constrained devices. Contiki ap-
plications can be written and compiled using a specific C compiler. Those OS ab-
stract some complexities of application development, such as memory or energy
optimization, but the developer has to be aware of what kind of sensor platforms
she is using, directly dealing with their implementation details at a lower level.
This leads to a lack of reusability, whereas our approach introduces a generic
way to program sensor network. The COSmIC code is written independently
from a sensing infrastructure and code generators handle the transformation to
a targeted platform.

Sensor network as a database. On top of operating systems deployed on sens-
ing infrastructure, several approaches consider the sensor network itself as a
database [7]. Storing the data as close as possible to the sensor producing it in-
stead of pushing everything to the Cloud was demonstrated as cost-efficient and

234 C. Cecchinel, S. Mosser, and P. Collet

energy saving [22]. The TinyDB system [16] (not maintained since 2005) pro-
vides processing mechanisms for sensor querying and data retrieval. It considers
a sensor as a micro-database storing their collected data, and allows develop-
ers to query sensors according to different criteria (e.g., location). The Cougar
system [24] also considers data collected by sensors, and supports users by only
expressing queries that are automatically propagated to the sensors. This system
does not support sharing (as queries cannot be composed easily), and relies on
a centralized engine that computes a collection planning and collects data. On
the contrary, COSmIC fully distributes the policies to the different sensors and
the infrastructure layers, and supports multiple endpoints for each application.

Model-driven and generative approaches. The model-driven development para-
digm has been notably used to design dynamically adaptive systems and to
evolve them at runtime [18]. In this approach, the current context model is ana-
lyzed at runtime and, if an adaptation needs to be performed, a suitable configu-
ration is built thanks to reference models. The approach can fit lightweight nodes
in a sensor network [11]. Our work differs as we do not perform adaptiveness
according to the context but design sensor network applications with policies
based on a composition equation that can be reused for other compositions or
for verification purposes. Exploiting runtime composition is a perspective of our
work. The way we generate code is close to the Scalaness approach [5]. It is a
type-safe language used to wirelessly program embedded networks running un-
der TinyOS. Two stages are required to program these networks: (i) one writes
a Scalaness program, which is then (ii) translated into Java bytecode. We differ
from this approach as we use behavior models to generate code and we do not
always have the same destination platforms as we target heterogeneous sensor
networks.

6 Conclusions and Perspectives

In this paper we have presented the COSmIC Framework used for supporting
different developers’ collect policies on a shared LSI, generating code deployed
at the approriate layer of the LSI. It addresses several limitations of classical
approaches, focusing on the sharing of the infrastructure and the production of
relevant-only datasets, and allowing software developers to focus on their con-
cerns instead of LSI implementation details. The framework is implemented us-
ing the Scala language and preliminary experiments have been conducted on top
of the SmartCampus platform [4]. The COSmIC framework is a first step for
composing policies on an LSI, with a focus on policy definition and composition
operators.

Future work aims at extending the approach and making it scale to very large
LSIs. First, we will extend this set of operators to build a complete composition
algebra, with a formal definition of operator properties (e.g., commutativity, as-
sociativity, idempotency), conflict detection mechanisms to prevent inconsistent
states (i.e., sending a value before reading it) and a formal support to attach
constraints to actions. We also plan to extend these constraints to timed ones,
using the TimeSquare toolkit [6] to specify and analyze constraints based on

Software Development Support for Shared Sensing Infrastructures 235

its logical time model and to check them also at runtime. We also plan to en-
large the set of interactions with the LSI by introducing new actions allowing
a developer to perform some data computation within the sensor network (e.g.,
Compute the average value of data coming from different sensors.

For those developers, we will improve the available abstractions by providing
a higher level DSL. It will notably hide the creation and management of states
and transitions, providing a real focus on what data are collected, processed and
used in applications.

The decomposition operator also triggers interesting challenges with respect to
the variability of hardware (i.e., Arduino, Phidgets platforms) and facilities (i.e.,
Supported programming language, resources available) available in the context of
LSIs. We plan to use a feature modeling [2] approach to capture this variability,
and to bind these models to the generation mechanisms, providing a variable
code generation according to the available hardware in a given LSI. Finally, we
also plan to support policy composition and variability reasoning at runtime
to handle dynamic adaptiveness. We expect the resulting tooled approach to
provide an end-to-end support for developers of the massively under-deployment
sensing infrastructures.

References

1. Aggarwal, C.C. (ed.): Managing and Mining Sensor Data. Springer (2013)
2. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product

Lines - Concepts and Implementation. Springer (2013)
3. Buratti, C., Conti, A., Dardari, D., Verdone, R.: An overview on wireless sensor

networks technology and evolution. Sensors 9(9), 6869–6896 (2009),
http://www.mdpi.com/1424-8220/9/9/6869

4. Cecchinel, C., Jimenez, M., Mosser, S., Riveill, M.: An Architecture to Support
the Collection of Big Data in the Internet of Things. In: International Workshop
on Ubiquitous Mobile Cloud (UMC 2014, Co-located with SERVICES 2014), pp.
1–8. IEEE, Anchorage (2014)

5. Chapin, P.C., Skalka, C., Smith, S.F., Watson, M.: Scalaness/nesT: Type Special-
ized Staged Programming for Sensor Networks. In: Järvi, J., Kästner, C. (eds.)
GPCE, pp. 135–144. ACM (2013)

6. DeAntoni, J., Mallet, F.: TimeSquare: Treat your Models with Logical Time. In:
Furia, C.A., Nanz, S. (eds.) TOOLS Europe 2012. LNCS, vol. 7304, pp. 34–41.
Springer, Heidelberg (2012)

7. Diao, Y., Ganesan, D., Mathur, G., Shenoy, P.J.: Rethinking data management
for storage-centric sensor networks. In: Third Biennial Conference on Innovative
Data Systems Research, CIDR 2007, Asilomar, CA, USA, January 7-10, pp. 22–31
(2007)

8. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - A lightweight and flexible operating
system for tiny networked sensors. In: 29th Annual IEEE International Conference
on Local Computer Networks, pp. 455–462 (November 2004)

9. Fambon, O., Fleury, E., Harter, G., Pissard-Gibollet, R., Saint-Marcel, F.: Fit iot-
lab tutorial: Hands-on practice with a very large scale testbed tool for the internet
of things. In: 10èmes Journées Francophones Mobilité et Ubiquité (UbiMob), pp.
1–5 (June 2014)

http://www.mdpi.com/1424-8220/9/9/6869

236 C. Cecchinel, S. Mosser, and P. Collet

10. Fleurey, F., Morin, B., Solberg, A.: A Model-Driven Approach to Develop Adaptive
Firmwares. In: Giese, H., Cheng, B.H.C. (eds.) SEAMS, pp. 168–177. ACM (2011)

11. Fouquet, F., Morin, B., Fleurey, F., Barais, O., Plouzeau, N., Jezequel, J.M.: A Dy-
namic Component Model for Cyber Physical Systems. In: Proceedings of the 15th
ACM SIGSOFT Symposium on Component Based Software Engineering, CBSE
2012, pp. 135–144. ACM, New York (2012)

12. Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., Razafindralambo, T.: A
Survey on Facilities for Experimental Internet of Things Research. IEEE Commu-
nications Magazine 49(11), 58–67 (2011), http://hal.inria.fr/inria-00630092

13. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A
Vision, Architectural Elements, and Future Directions. Future Generation Comp.
Syst. 29(7), 1645–1660 (2013)

14. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Woo, A., Gay, D., Hill, J., Welsh,
M., Brewer, E., Culler, D.: Tinyos: An operating system for sensor networks. In:
Ambient Intelligence. Springer (2004)

15. LogMeIn: Xively (May 2014), http://xively.com/
16. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: An acqui-

sitional query processing system for sensor networks. ACM Trans. Database
Syst. 30(1), 122–173 (2005), http://doi.acm.org/10.1145/1061318.1061322

17. Mahmood, A., Ke, S., Khatoon, S., Xiao, M.: Data mining techniques for wireless
sensor networks: A survey. IJDSN 2013 (2013)

18. Morin, B., Barais, O., Jezequel, J., Fleurey, F., Solberg, A.: Models@run.time to
Support Dynamic Adaptation. Computer 42(10), 44–51 (2009)

19. Sanchez, L., Galache, J., Gutierrez, V., Hernandez, J., Bernat, J., Gluhak, A.,
Garcia, T.: Smartsantander: The meeting point between future internet research
and experimentation and the smart cities. In: Future Network Mobile Summit
(FutureNetw), pp. 1–8 (June 2011)

20. Stickel, M.E.: A Unification Algorithm for Associative-Commutative Functions. J.
ACM 28(3), 423–434 (1981)

21. Tonneau, A.S., Mitton, N., Vandaele, J.: A Survey on (mobile) wireless sensor
network experimentation testbeds. In: DCOSS - IEEE International Conference
on Distributed Computing in Sensor Systems, Marina Del Rey, California, États-
Unis (May 2014), http://hal.inria.fr/hal-00988776

22. Tsiftes, N., Dunkels, A.: A database in every sensor. In: Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems, SenSys 2011, pp. 316–
332. ACM, New York (2011), http://doi.acm.org/10.1145/2070942.2070974

23. Völgyesi, P., Maróti, M., Dóra, S., Osses, E., Lédeczi, Á.: Software Composition and
Verification for Sensor Networks. Sci. Comput. Program. 56(1-2), 191–210 (2005)

24. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor
networks. SIGMOD Rec. 31(3), 9–18 (2002),
http://doi.acm.org/10.1145/601858.601861

http://hal.inria.fr/inria-00630092
http://xively.com/
http://doi.acm.org/10.1145/1061318.1061322
http://hal.inria.fr/hal-00988776
http://doi.acm.org/10.1145/2070942.2070974
http://doi.acm.org/10.1145/601858.601861

Flexible and Efficient Reuse of Multi-mode

Components for Building Multi-mode Systems

Hang Yin and Hans Hansson

Mälardalen Real-Time Research Centre,
Mälardalen University, Väster̊as, Sweden
{young.hang.yin,hans.hansson}@mdh.se

Abstract. Software component reuse is deemed as an effective tech-
nique for managing the growing software complexity of large systems.
Software complexity can also be reduced by partitioning the system be-
havior into different modes. Such a multi-mode system can change behav-
ior by switching between modes under certain circumstances. Integrating
component reuse and the multi-mode approach, we have developed the
Mode Switch Logic (MSL), a framework dedicated to the development
of multi-mode systems composed by reusable multi-mode components,
i.e. components which can run in different modes. The mode switch han-
dling of MSL is based on a fully distributed architecture in the sense
that a system mode switch is achieved by the joint mode switches of dif-
ferent independently developed components. In this paper, we propose
a mode transformation technique as a supplement to MSL for convert-
ing the distributed mode switch handling of MSL to a centralized mode
switch handling. The goal is to enhance the run-time mode switch effi-
ciency when components are deployed on a single hardware platform and
global mode information is available. We demonstrate this technique by
an example and reveal its potential industrial value.

Keywords: component reuse, mode switch, mode transformation.

1 Introduction

The growing software complexity is posing a challenge to the software develop-
ment of complex systems. Component-Based Software Engineering (CBSE) [4] is
a promising design paradigm for managing software complexity at design time,
characterized by the reuse of independently developed software components. The
success of CBSE has been evidenced by a number of component models [5,19]. As
a complementary approach, software complexity can be reduced at both design
time and runtime by partitioning the system behavior into different operational
modes. Such a multi-mode system is able to change its run-time behavior by
switching modes under certain conditions. For instance, the control software of
an airplane could run in the modes taxi, taking off, flight and landing.

Building on the advantages of both CBSE and multi-mode systems, we aim at
exploring theoretical foundations for developing multi-mode systems by reusing

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 237–252, 2014.
c© Springer International Publishing Switzerland 2014

238 H. Yin and H. Hansson

multi-mode components, i.e. components which can run in different modes.
Figure 1 illustrates the component hierarchy of a component-based system. The
system, i.e. Component a, consists of components b, c and d. Component c is
composed by e and f, while d is composed by g and h. Among these components,
b, e, f, g, and h are primitive components which are directly implemented by code,
while a, c, and d are composite components composed by other components. The
tree structure of the component hierarchy implies a parent-and-children relation-
ship between each composite component and the components directly composing
it. For instance, a is the parent of b, c, d which in turn are the subcomponents
or children of a. What makes this system distinctive compared with traditional
component-based systems is that some of its components may run in multiple
modes. For example, depicted in Fig. 1, a is a multi-mode component which can
run in two modes: m1

a and m2
a, with each mode being represented by a unique lo-

cal configuration. When a runs in mode m1
a, d is deactivated (represented by the

dimmed color); when a runs in m2
a, d becomes activated and extra connections

are established within a. In addition, b exhibits different mode-specific behaviors
(distinguished by black and grey colors) when a is running in different modes.
Similar to a, the other components may also support multiple modes. All the
components in Fig. 1 can be reused together with their supported modes.

Fig. 1. A multi-mode system built by reusable multi-mode components

The key challenges of reusing multi-mode components are the seamless compo-
sition of multi-mode components and mode switch handling. To overcome these
challenges, we have developed a framework—the Mode Switch Logic (MSL) [7].
In MSL, each component has its own mode switch run-time mechanism (MSRM)
controlling its behavior and how it communicates with other components during
a mode switch at runtime. Since we only allow a component to exchange mode
information with its parent and subcomponents, a mode switch can be jointly
handled by a number of components without any component knowing the global
information.

A practical issue that MSL has not addressed is mode switch run-time effi-
ciency. For a system where all the components are deployed onto the same phys-
ical hardware platform and the mode information of all components is globally
accessible, it is more efficient to use a global mode switch manager to handle
mode switch. Then there will be no need for each component to run its own
MSRM and communicate with other components, thus reducing mode switch

Flexible and Efficient Reuse of Multi-mode Components 239

time and run-time mode switch overhead. As the contribution of this paper,
we provide a mode transformation technique that improves the run-time mode
switch efficiency of MSL by transforming component modes to system modes to
be handled by the global mode switch manager. After mode transformation, a
mode switch process is facilitated as the system can directly switch from one
mode to another mode without intercommunication between components.

The remainder of the paper is organized as follows: Section 2 gives a brief
introduction of MSL. Section 3 presents our mode transformation technique
which is further demonstrated in Section 4. Section 5 discusses the industrial
value and verification of our approach, as well as some other practical issues.
Related work is reviewed in Section 6. Finally, Section 7 concludes the paper
and envisions some future work.

2 The Mode Switch Logic (MSL)

MSL includes three major elements: a mode-aware component model, a mode
mapping mechanism, and a mode switch run-time mechanism (MSRM).

The mode-aware component model is not a full-fledged component model.
Instead it captures the essential elements of any component model compatible
with MSL, i.e. it specifies the fundamental features of a multi-mode component.
Illustrated in Fig. 2, a multi-mode component can support multiple modes, with
each mode being associated with a unique configuration. A mode switch is per-
formed by reconfiguration, i.e. by changing its configuration in the current mode
to another configuration in the new mode. The mode switch behavior of a multi-
mode component is controlled by its MSRM. Each multi-mode component can
exchange mode-related information with its parent and subcomponents via ded-
icated mode switch ports (marked in solid squares in Fig. 2).

Fig. 2. A multi-mode component

Shown in Fig. 2, each composite multi-mode component has a mode mapping
mechanism that interacts with its MSRM. This mechanism maps its modes to the
modes of its subcomponents. Given the mode mapping, a composite component

240 H. Yin and H. Hansson

should know the current modes of its subcomponents for each of its current
mode. Figure 3 lists the mode mappings of a, c, and d of the system in Fig. 1.
Modes of the same column in the same table are mapped. For instance, indicated
in Fig. 3(a), when a runs in mode m1

a, b must run in m1
b , c may run in either m1

c

or m3
c , and d is deactivated (denoted as D). Besides, if a composite component

or one of its subcomponents switches mode, the composite component should
know how this mode switch affects the modes of the other components among
them. This is beyond the expression of the tables in Fig. 3, yet can be described
by Mode Mapping Automata (MMAs) [7].

Fig. 3. The mode mappings of a, c, and d

In general, a mode switch can be either event-triggered or time-triggered. MSL
considers event-triggered mode switch, where a mode switch is triggered by a
mode switch event (e.g. when a sensor value reaches a pre-defined threshold).
Time-triggered mode switch can be considered as a special case of event-triggered
mode switch since timeouts resulting from the advancement of time are events. A
mode switch event can be detected by any component (primitive or composite),
called the Mode Switch Source (MSS). An MSS may initiate a mode switch by
triggering a mode switch scenario, or simply scenario, denoted as ci : m

1
ci → m2

ci ,
where ci is the MSS, m1

ci is the mode of ci when it triggers the scenario, and
m2

ci is the mode that ci wants to switch to. A scenario may imply the mode
switch of some other components. For each scenario k, a component cj is called
a Type A component for k if k implies the mode switch of cj . Otherwise, cj is
called a Type B component for k. Type A and Type B components for k can be
identified by the mode mappings of the composite components of a system. It
is the responsibility of the MSRM of each component to coordinate the mode
switches of Type A components without disturbing Type B components.

Figure 4 depicts a mode switch process based on the example in Fig. 1. Com-
ponent e is the MSS which triggers a scenario k, implying the mode switches of
Type A components a, b, c, and f, while d, g, and h are Type B components for
k. All components follow the same MSRM. Scenario k is propagated stepwise by
a primitive msrk (mode switch request) from e to Type A components. Upon
receiving the msrk, each component starts its reconfiguration, represented by
the black bars in Fig. 4. After reconfiguration, each component except a sends
another primitive msck (mode switch completion) to its parent. As composite
components, a and c complete their mode switches only when their reconfigu-
rations are completed and they have received all the expected msck primitives

Flexible and Efficient Reuse of Multi-mode Components 241

from their subcomponents. This explains the white bar in Fig. 4 which implies
that a is still waiting for the msck from b and c after its reconfiguration.

Fig. 4. A mode switch process following the MSRM

In Fig. 4, each component runs a simple MSRM, however, different MSRMs
may be required depending on the system requirement. For instance, sometimes
a mode switch may be taken only when all Type A components are ready to
switch mode [9], or the MSRM may need to consider the concurrent triggering
of different scenarios from different MSSs [8].

3 Mode Transformation

The value of MSL is mostly attributed to its support for the reuse of multi-mode
components as it brings more flexible design choices for the software develop-
ment of multi-mode components while preserving the benefits of CBSE. The
distributed nature of the mode switch handling of MSL makes it possible to
replace/add/remove components on the fly without reconfiguring the entire sys-
tem. However, the mode switch process in Fig. 4 implies that the mode switch
time could be rather long due to inter-component communication. This moti-
vated us to develop the mode transformation technique, the main contribution
of this paper, for transforming a system built by multi-mode components into
a monolithic system. Given a system, the mode mappings of all its composite
components, and the specification of all scenarios, the mode transformation tech-
nique is able to derive a mode transition graph of the entire system, including all
the possible system modes and mode switches between them. Then the stepwise
communication between components as illustrated in Fig. 4 will no longer be
needed. Instead, a mode switch can be completed by a single transition between
system modes, thereby enhancing run-time mode switch efficiency.

3.1 Overview

The purpose of mode transformation is to replace the distributed mode switch
handling of MSL with a centralized solution which yields better run-time per-
formance. Illustrated in Fig. 5, mode transformation transfers the responsibility

242 H. Yin and H. Hansson

of mode switch handling from the MSRM of each component to a single mode
switch manager for the system. Figure 5 also showcases the internal overall struc-
ture of the mode switch manager. When a scenario is triggered, it is first stored in
an input buffer of the mode switch manager. This buffer caters to the concurrent
triggering of multiple scenarios. The mode switch manager periodically checks
the input buffer. If no mode switch is in progress, the mode switch manager
will perform a mode switch based on the first scenario in the input buffer. The
mode switch manager can use appropriate arbitration mechanisms and mode
switch protocols [21] to handle each scenario, ensuring that a mode switch does
not violate any functional and timing requirements. These protocols are assisted
by a mode transition graph that guides the mode switch manager to switch to
the right mode for each scenario. Designing or finding the suitable mode switch
protocols is out of the scope of this paper. Instead, our mode transformation
technique focuses on the construction of the mode transition graph.

Fig. 5. Overview of the mode switch manager after mode transformation

Figure 6 presents the mode transformation process, including two sequential
steps. First, given the mode mappings of all composite components, we construct
an intermediate representation, a Mode Combination Tree (MCT) where all the
possible system modes are identified. In the second step, the mode transition
graph is constructed by adding all the possible transitions between the identified
system modes according to the scenario specification. Next we shed light on the
two transformation steps separately.

Fig. 6. The mode transformation process

3.2 Construction of the Mode Combination Tree

The purpose of constructing the MCT is to identify all the system modes:

Definition 1. For a system composed by a set of components C =
{c1, c2, · · · , cn} (n ∈ N), a system mode m = {(ci,mci)|i = [1, n]} is the mode
combination of all components.

Flexible and Efficient Reuse of Multi-mode Components 243

Let Top be the component at the top of the component hierarchy. Let dci
denote the depth level of ci in the component hierarchy, with dTop = 0. Let Mci

denote the set of supported modes of ci. Moreover, let D denote the current
mode of a deactivated component. Then the MCT is defined as follows:

Definition 2. A Mode Combination Tree (MCT) is a tree with a set of nodes
N = {N0,N1, · · · ,Nn} (n ∈ N), where N0 = ∅ is the root node, and each other
node Ni = {(cj ,mcj)|j = [1, k], k ∈ N}, where for all j, mcj ∈ Mcj ∪ {D} and
all cj have the same depth level.

Definition 2 implies that each node of an MCT, except for the root node,
provides a mode combination of components with the same depth level. For
instance, Fig. 7 shows an MCT based on the example in Fig. 1. Section 4 will
demonstrate how this MCT is constructed.

To formally present the construction of the MCT, we need to introduce a
number of additional notations and concepts. Let PC and CC be the set of prim-
itive components and composite components of a system, respectively. Let SCci

be the set of subcomponents of ci. For ci ∈ CC, a valid local mode combination
(LMC) is defined as follows:

Definition 3. For ci ∈ CC with SCci = {c1j , · · · , cnj } (n ∈ N), we call the set

Vci = {(ci,mci), (c
1
j ,mc1j

), · · · , (cnj ,mcnj
)} a valid local mode combination (LMC)

of ci, if (1) mci ∈ Mci ∪ {D} and ∀k = [1, n], mk
cj ∈ Mckj

∪ {D}; and (2) mci

and all mckj
(k = [1, n]) can be simultaneously executed by the corresponding

components, i.e. conforming to the mode mapping of ci.
When ci is running in mci , if ∀ckj ∈ SCci (k = [1, n]), ∃mckj

s.t.

{(ci,mci), (c
1
j ,mc1j

), · · · , (cnj ,mcnj
)} is a valid LMC of ci, then the set Vci,mci

=

{(c1j ,mc1j
), · · · , (cnj ,mcnj

)} is a valid LMC of ci for mci .

Note that each element in Vci or Vci,mci
is a pair (x, y) where x ∈ SCci ∪{ci}

for Vci and x ∈ SCci for Vci,mci
, and y ∈ Mx ∪ {D}. A better illus-

tration can be found in Fig. 3(c) where both {(d,m1
d), (g,m

1
g), (h,m

1
h)} and

{(d,m1
d), (g,m

2
g), (h,m

2
h)} are valid LMCs of d. Additionally, {(g,m1

g), (h,m
1
h)}

and {(g,m2
g), (h,m

2
h)} are the valid LMCs of d for m1

d.
Depending on the mode mapping of ci, multiple valid LMCs of ci may exist

for mci . Let Wci,mci
be the set of all valid LMCs of ci ∈ CC for mci . Each

element in Wci,mci
is a set Vci,mci

. The total number of all valid LMCs of ci for

mci is |Wci,mci
|. For instance, according to Fig. 3(b), Wc,m2

c
= {V1

c,m2
c
,V1

c,m2
c
},

where V1
c,m2

c
= {(e,m2

e), (f,m
1
f)} and V2

c,m2
c
= {(e,m3

e), (f,m
1
f)}. It is easy to

automatically generate Wci,mci
based on the mode mapping of ci.

Note that when a composite component ci with SCci = {c1j , · · · , cnj } (n ∈
N) is deactivated, all its enclosed components must also be deactivated. Hence
Vci,D ≡ {(c1j , D), · · · , (cnj , D)} and |Wci,D| = 1.

Next we introduce an important operator for combining different valid LMCs:

244 H. Yin and H. Hansson

Definition 4. Let W1 = {V1,V2, · · · ,Vm} and W2 = {Vk+1,Vk+2, · · · ,Vk+n},
where m,n, k ∈ N. Then let ⊕ be an operator s.t. W1 ⊕ W2 = {Vi ∪ Vk+j |i =
[1,m], j = [1, n]}. In addition, for each l ∈ N, W1 ⊕ W2 ⊕ · · · ⊕ Wl can be
represented as

⊕

o=[1,l]

Wo.

Given the component hierarchy and the mode mappings of all composite com-
ponents in the component hierarchy, the MCT of the system can be constructed
by creating nodes top-down from the root node. For each node N of an MCT,
let dN be its depth level, and λN be the number of new nodes created from this
node. We use Ni 	 Nj to denote that a new node Ni is created from an old

node Nj . Moreover, let MTop = {m1
T ,m

2
T , · · · ,m|MTop |

T } be the set of supported
modes of Top. The MCT is constructed by the following steps:

1. From N0, create λN0 = |MTop | new nodes, s.t. for each new node Ni 	 N0,
Ni = {(Top,mi

T)} (i = [1, |MTop|]).
2. From each Ni = {(Top,mi

T)} (i = [1, |MTop |]), create λNi = |WTop,mi
T
| new

nodes, s.t. for each N ′ 	 Ni, N ′ ∈ WTop,mi
T
. Moreover, if λNi > 1, then for

each N ′,N ′′ 	 Ni, N ′
= N ′′.
3. From each nodeN = {(c1,mc1), (c2,mc2), · · · , (cn,mcn)} (n ∈ N) with dN ≥

2, if ∀i = [1, n], ci ∈ PC, then N is marked as a leaf node and no new
node is created from N . Otherwise, if ∃i = [1, n] s.t. ci ∈ CC, then create
λN =

∏

i=[1,n],
ci∈CC

|Wci,mci
| new nodes, s.t. for eachN ′ 	 N , N ′ ∈ ⊕

i=[1,n],
ci∈CC

Wci,mci
.

Moreover, if λN > 1, then for each N ′,N ′′ 	 N , N ′
= N ′′.
4. Repeat Step 3 until all branches of the MCT have reached the leaf node.

A remarkable property of an MCT is that all leaf nodes have the same depth
level. Once the MCT is constructed, the system modes can be derived as a path
from the root node to a leaf node of the MCT. Let N k be the set of nodes of an
MCT with depth level k. Then,

Theorem 1. Given an MCT, a system mode is represented by a valid mode

combination
δ⋃

i=0

Ni where Ni ∈ N i, and δ is the maximum depth level of the

MCT, i.e. Nδ is a leaf node. The total number of system modes is equal to the
total number of leaf nodes of the MCT.

The proof of Theorem 1 can be found in [10]. Among the system modes, the
initial system mode can be recognized based on the specification of the initial
modes of all components.

3.3 Deriving the Mode Transition Graph

Let M = {m1,m2, · · · ,mn} (n ∈ N) be the set of identified system modes.
The next step is to derive the (system) mode transition graph. A mode switch
is a transition from mold to mnew, where mold,mnew ∈ M and mold
= mnew.

Flexible and Efficient Reuse of Multi-mode Components 245

A mode transition graph contains all the possible transitions between these sys-
tem modes and associates each transition with the corresponding scenario. Here
we provide the formal definition of a mode transition graph:

Definition 5. A mode transition graph is a tuple:

< S, s0,K, T >

where S is a set of states, with each state s ∈ S corresponding to a system mode;
s0 ∈ S is the initial state, corresponding to the initial system mode; K is a set
of scenarios specified for the system; T = S ×K×S is a set of state transitions,
each state transition representing a system mode switch.

Each state of a mode transition graph is graphically represented as a location
with a circle, with the initial state being marked by a double circle. Each state

transition with scenario k ∈ K from s1 to s2 (s1, s2 ∈ S) is denoted as s1
k−→ s2

and graphically represented by an arrow starting from s1 to s2 with the label k.
Figure 9 illustrates the mode transition graph of the example in Fig. 1.

The key issue of deriving the mode transition graph is to identify the system

modes mold and mnew for each scenario k such that mold
k−→ mnew is possible.

Mentioned in Section 2, a scenario k can be represented as c : m1
c → m2

c . Hence
the only condition satisfying the triggering of k is that the MSS c is currently
running in m1

c . For each k, mold can be easily identified as long as (c,m1
c) ∈ mold.

Note that more than one system modes could be identified as mold, i.e. the same
scenario may enable different transitions depending on the current system mode.

Unlike mold, only one system mode can be the mnew for each scenario k. The
identification of mnew for k is more difficult because it depends not only on m2

c ,
but also on the target modes of the other components. We identify the mnew for
each scenario by a Component Target Mode (CTM) table which tells the target
modes of all Type A components for all scenarios. Figure 9 also includes the
CTM table for the same example. For example, it tells that the target mode of a
for k1 is m2

a. In contrast, since f is a Type B component for k1, its target mode
is independent of k1, denoted as X in Fig. 9. A CTM table can be automatically
constructed offline based on the scenario specification and the mode mapping of
each composite component. Let mk

ci be the target mode of ci for k, then with
the assistance of the CTM table, the mnew for each scenario k can be identified
as follows: For each system mode m = {(ci,mci)|i = [1, n], n ∈ N}, if ∀i where
mk

ci
= X , we have mci = mk
ci , then m is the mnew for k.

The mode transition graph is stored in a global mode switch manager (Fig.
5 in Section 3.1) which keeps track of the current system mode and makes the
system switches to the right target mode upon the triggering of a scenario.

We have developed algorithms implementing our mode transformation tech-
nique that can be found in the technical report [10].

246 H. Yin and H. Hansson

4 An Example Illustrating the Transformation

To ease the apprehension of our mode transformation technique, we demon-
strate mode transformation by the example in Fig. 1 together with the mode
mappings in Fig. 3. The construction of the MCT exactly follows the procedures
in Section 3.2:

1. From the root node N0 = ∅, create λN0 = |Ma| = 2 nodes: N1 = {(a,m1
a)}

and N2 = {(a,m2
a)}.

2. From N1, create λN1 = |Wa,m1
a
| nodes. According to Fig. 3(a), there are

in total two valid LMCs of a for m1
a: N3 = {(b,m1

b), (c,m
1
c), (d,D)} and

N4 = {(b,m1
b), (c,m

3
c), (d,D)}. Hence, λN1 = 2. The same procedure is

applied to N2, i.e. by creating λN2 = |Wa,m2
a
| nodes from N2. Figure 3(a)

indicates that there is only one valid LMC of a for m2
a. Therefore, λN2 = 1

and the new node N5 = {(b,m2
b), (c,m

2
c), (d,m

1
d)}.

3. Now there are three nodes with depth level 2: N3, N4, and N5. Let’s first
look at N3 = {(b,m1

b), (c,m
1
c), (d,D)}. Among b, c and d, there are two

composite components: c and d. Hence N3 is not a leaf node and λN3 =
|Wc,m1

c
| ∗ |Wd,D| new nodes are supposed to be created. Figure 3(b) implies

that |Wc,m1
c
| = 1 and Wc,m1

c
= {{(e,m1

e), (f,m
1
f)}}. Meanwhile, |Wd,D =

1| and Wd,D = {{(g,D), (h,D)}}. Hence, λN3 = 1. In addition, Wc,m1
c
⊕

Wd,D = {{(e,m1
e), (f,m

1
f), (g,D), (h,D)}}. Let N6 be the new node created

from N3. Since N6 ∈ Wc,m1
c
⊕Wd,D, N6 = {(e,m1

e), (f,m
1
f), (g,D), (h,D)}.

4. Repeat Step 3 for N4. Create λN4 nodes from N4. Since λN4 = 1, let N7 be
the new node created from N4, and N7 = {(e,D), (f,m1

f), (g,D), (h,D)}.
5. Repeat Step 3 for N5. We need to create λN5 = |Wc,m2

c
| ∗ |Wd,m1

d
| new

nodes from N5. Figure 3(b) implies that |Wc,m2
c
| = 2 and Wc,m2

c
=

{{(e,m2
e), (f,m

1
f)}, {(e,m3

e), (f,m
1
f)}}. Figure 3(c) implies that |Wd,m1

d
| = 2

and Wd,m1
d
= {{(g,m1

g), (h,m
1
h)}, {(g,m2

g), (h,m
2
h)}}. Hence, λN5 = 4 and

Wc,m2
c
⊕Wd,m1

d
={{(e,m2

e), (f,m
1
f), (g,m

1
g), (h,m

1
h)},

{(e,m3
e), (f,m

1
f), (g,m

1
g), (h,m

1
h)},

{(e,m2
e), (f,m

1
f), (g,m

2
g), (h,m

2
h)},

{(e,m3
e), (f,m

1
f), (g,m

2
g), (h,m

2
h)}}

where each element of this set is a new node created from N5. This corre-
sponds to N8, N9, N10, and N11 in Fig. 7.

6. The nodes with depth level 3 areN6–N11. Since all these nodes are associated
with e, f, g, and h, all of which are primitive components, N6–N11 are all
identified as leaf nodes, thus terminating the construction of the MCT.

The constructed MCT is presented in Fig. 7. The MCT consists of 12 nodes,
including one root node N0, two nodes with depth level 1, three nodes with
depth level 2, and 6 nodes with depth level 3.

By Theorem 1, six system modes m1–m6 are identified. For instance, m1 cor-
responds to the leftmost path of the MCT in Fig. 7, i.e.m1 = N0∪N1∪N3∪N6 =

Flexible and Efficient Reuse of Multi-mode Components 247

Fig. 7. Demonstration of the Mode Combination Tree

{(a,m1
a), (b,m

1
b), (c,m

1
c), (d,D), (e,m1

e), (f,m
1
f), (g,D), (h,D)}. The other five

modes can be identified in the same way. Here we assume that the initial mode of
a ism1

a and the initial modes of the other components can be derived accordingly.
Then m1 will be the initial system mode. Each system mode has a unique global
configuration that is characterized by factors such as activated components and
their connections at all nested levels, or the mode-specific behaviors of certain
primitive components. Figure 8 illustrates a possible set of global configurations
for the six system modes. To simplify the view, composite components c and d
are removed in Fig. 8. Similar to Fig. 1, deactivated components are dimmed
while black and grey colors represent different mode-specific behaviors.

Fig. 8. The global configurations of different system modes

After the identification of system modes, the next step is to derive the mode
transition graph. A key intermediate step is to construct the CTM table. This
requires the complete mode mappings of all composite components represented
by Mode Mapping Automata (MMAs) [7]. Due to limited space, we shall not
present the MMAs here which yet can be found in [10]. Shown by Fig. 9, this
example consists of six scenarios. The mode mapping and scenario specification
enable the construction of the CTM table presented in Fig. 9.

Finally, using the CTM table, the mode transition graph (depicted in Fig.
9) can be either manually derived or automatically generated by means of a

248 H. Yin and H. Hansson

thorough analysis of the possible transitions between different system modes for
each scenario. Since we have already identified six system modes in the mode
transition graph, withm1 being the initial system mode, the remaining work is to
add transitions between these modes. For instance, since the triggering condition
of k1 is that a must run in m1

a, we need to identify system modes which include
(a,m1

a). In this case, both m1 and m2 meet the triggering condition of k1. Hence
k1 can lead to an outgoing transition from either m1 or m2. The target system
mode for k1 is identified by comparing each system mode with the target modes
of all Type A components for k1 provided by the CTM table. Apparently, m3

is the only target mode for k1. Therefore, k1 can enable two transitions, either
from m1 to m3 or from m2 to m3. The mode transition graph is completed by
repeating the same logic for all scenarios.

Fig. 9. Deriving the mode transition graph

In [10] we compared the mode switch time for k1 before and after mode
transformation, showing that the mode switch time was significantly reduced
by mode transformation. This improvement will become even more conspicuous
when the depth level of the component hierarchy is increased, or when each
component runs a more complex MSRM.

5 Discussion

This section begins with a discussion on the industrial value and verification
of our mode transformation technique, followed by some practical issues which
need to be considered during mode transformation.

Flexible and Efficient Reuse of Multi-mode Components 249

5.1 Industrial Value

Our mode transformation technique adds significant potential industrial value
to MSL since it allows more efficient reuse of multi-mode components.
The applicability of MSL has been initially evaluated by a proof-of-concept
implementation—an Adaptive Cruise Control system [9]. Our ongoing work is
to investigate the usability of MSL for Rubus [12], an industrial component
model developed by Arcticus1 for the software development of ground vehicles.
In Rubus, a system running on an ECU (Electronic Control Unit) can support
multiple modes while each mode is associated with a unique global configuration
represented by factors such as activated components and activated component
connections. Mode switch is guided by a transition diagram similar to our mode
transition graph. Therefore, mode in Rubus is treated in the same way as our
mode switch handling after mode transformation.

Rubus does not support multi-mode components, however, MSL is able to
improve the design time flexibility by allowing Rubus to reuse multi-mode com-
ponents. For each ECU, mode transformation can derive the system modes, the
global configurations for each mode, and the mode transition graph, all of which
are consistent with the original mode switch handling of Rubus.

Apart from Rubus, we have previously established the theoretical founda-
tion [11] for integrating MSL in the ProCom component model [22]. In addition,
we believe that MSL also conduces to some other component-based frameworks
with mode switch support such as AUTOSAR [23].

5.2 Verification

Figure 6 indicates that our mode transformation is conducted in two sequential
steps: the construction of the MCT and then the derivation of the mode transi-
tion graph. The correctness of these two steps can be verified separately. First,
we should ensure that the correct set of system modes is identified based on the
constructed MCT. Then in the subsequent step, it should be proved that the
correct set of transitions is added between the system modes. We refer to [10]
for the details on the verification of our mode transformation technique that are
omitted here due to lack of space.

5.3 Merging System Modes

Using mode transformation, the number of identified system modes is sensitive
to the number of modes of each single component and the mode mapping of
each composite component. Consequently, our mode transformation may end
up with a huge number of system modes. Nonetheless, it only makes sense to
distinguish one mode from another mode when the system behaviors are notice-
ably different in these modes. Depending on the application, it is more efficient
to merge several modes with similar global configurations into one mode. For

1 http://www.arcticus-systems.com/

250 H. Yin and H. Hansson

instance, in Fig. 8, m5 and m6 can be merged since the only difference between
their global configurations is the behaviors of Component e, which can be sim-
ply distinguished by an ”IF...ELSE...” expression. Following this principle, the
number of system modes will be dramatically reduced. The criteria for merging
system modes are application-dependent and out of the scope of this paper.

5.4 Partial Mode Transformation

Mode transformation does not have to be applied to an entire system. Some-
times it might be recommended or necessary to conduct mode transformation
partially, i.e. on a composite component instead of the top component. There are
at least two motivating reasons for partial mode transformation. Firstly, when a
system consists of a third-party composite component whose internal informa-
tion is unavailable, it will be impossible to derive the system modes represented
by the modes of all components. Secondly, for a distributed system, separate
mode transformation for each node would be preferred. For instance, suppose
the example in Fig. 1 is a distributed system with three nodes b, c, and d. Then
mode transformation can be locally performed on c and d.

6 Related Work

The most closely related work is the Oracle-based approach [20] which abstracts
component behaviors into a global property network. The value change of a
property of one component can potentially change the values of some properties
of the other components. Mode switch is handled by a global manager called
Oracle which can derive different architecture variants that resemble our sys-
tem mode. The Oracle-based approach differs from our mode transformation
technique in that a component mode in [20] depends on the property network,
while we explicitly map component modes by the mode mapping mechanism.
Since the construction of the property network highly relies on the specification
of application-specific properties, our approach is less application-dependent.
Moreover, the Oracle-based approach does not have any local mode switch man-
ager in each component that can be compared with our MSRM, thus unable to
support distributed mode switch handling.

Another interesting work related to MSL is the extended MECHATRONICUML
(EUML) [14] that supports the reconfiguration of hierarchical components. Re-
configuration requests can be triggered by an EUML component and propagated
to other relevant components via the reconfiguration ports of each component
akin to the dedicated mode switch ports of our multi-mode component. Each
composite EUML component executes its reconfiguration by two dedicated sub-
components which play the same role as the MSRM of MSL. EUML assumes
a fully distributed execution of reconfiguration. No works of EUML have been
reported on improving run-time reconfiguration efficiency.

Apart from Rubus (Section 5.1), mode switch has also been addressed in
a number of other component models, e.g. SaveCCM [13], Koala [18], and

Flexible and Efficient Reuse of Multi-mode Components 251

MyCCM-HI [3]. In Koala and SaveCCM, a special switch connector is intro-
duced to achieve the structural diversity of a component. Depending on the
input data, switch can select one of multiple outgoing connections. In MyCCM-
HI, each component is associated with a mode automaton which implements
its mode switch mechanism. In addition, Fractal [2] is a component model sup-
porting component reconfiguration. Each Fractal component has a membrane
(a container for local controllers) that is able to control the reconfiguration of
the component. There are also numerous existing languages taking mode into
account. For instance, AADL [6] uses a state machine to represent the mode
switch behavior of a component. An internal/external event may trigger the
state transitions (i.e. mode switch) of the state machine. Mode is also supported
by some other languages such as Giotto [15], and mode automata [17] used in
SCADE [16]. However, they only treat mode as a system-wide property without
considering components. Unfortunately, none of the aforementioned component
models and languages provides any systematic strategy to coordinate the mode
switches of different components.

More generally, mode switch can be considered as a specific software variabil-
ity technique [1]. Compared with most other existing software variability tech-
niques, MSL is the only work supporting the reuse of multi-mode components
and providing mode switch handling at both component and system levels.

7 Conclusion

In this paper we have presented a mode transformation technique for more effi-
cient reuse of multi-mode components. This technique is based on our previous
work, the Mode Switch Logic (MSL), which provides the seamless composition
of multi-mode components with a fully distributed mode switch handling mech-
anism. The mode transformation technique is able to replace the distributed
mechanism of MSL with a centralized mechanism by transforming component
modes to system modes. After mode transformation, a mode switch is performed
directly between system modes without inter-component communication, thus
enhancing its efficiency at runtime [10]. We have demonstrated our approach by
an example and revealed its potential industrial value.

Concerning the future work, we intend to integrate our mode transformation
technique and MSL into the Rubus component model [12]. It is also our ambition
to evaluate MSL in a real-world system.

Acknowledgment. This work is supported by the Swedish Research Council
via the ARROWS project at Mälardalen University.

References

1. Bachmann, F., Bass, L.: Managing variability in software architectures. In: Pro-
ceedings of SSR, pp. 126–132 (2001)

2. Bennour, B., Henrio, L., Rivera, M.: A reconfiguration framework for distributed
components. In: Proceedings of SINTER, pp. 49–56 (2009)

252 H. Yin and H. Hansson

3. Borde, E., Häık, G., Pautet, L.: Mode-based reconfiguration of critical software
component architectures. In: Proc. DATE (2009)

4. Crnković, I., Larsson, M.: Building reliable component-based software systems.
Artech House (2002)

5. Crnković, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.V.: A classification frame-
work for software component models. IEEE Transactions on Software Engineer-
ing 37(5) (2011)

6. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language
(AADL): An introduction. Tech. Rep. CMU/SEI-2006-TN-011, Software engineer-
ing institute, MA (February 2006)

7. Hang, Y.: Mode switch for component-based multi-mode systems. Licentiate thesis,
Mälardalen University, Sweden (December 2012)

8. Hang, Y., Hansson, H.: Handling multiple mode switch scenarios in component-
based multi-mode systems. In: Proc. APSEC (2013)

9. Hang, Y., Hansson, H.: Mode switch timing analysis for component-based multi-
mode systems. Journal of Systems Architecture 59(10, Part D), 1299–1318 (2013)

10. Hang, Y., Hansson, H.: Flexible and efficient reuse of multi-mode components
for building multi-mode systems—An extended report. Tech. Rep. MDH-MRTC-
288/2014-1-SE, Mälardalen University (August 2014)

11. Hang, Y., Qin, H., Carlson, J., Hansson, H.: Mode switch handling for the ProCom
component model. In: Proc. CBSE (2013)

12. Hänninen, K., Mäki-Turja, J., Nolin, M., Lindberg, M., Lundbäck, J., Lundbäck,
K.: The Rubus component model for resource constrained real-time systems. In:
Proc. SIES (2008)

13. Hansson, H., Åkerholm, M., Crnković, I., Törngren, M.: SaveCCM - A component
model for safety-critical real-time systems. In: Proc. Euromicro Conference (2004)

14. Heinzemann, C., Becker, S.: Executing reconfigurations in hierarchical component
architectures. In: Proc. CBSE (2013)

15. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for
embedded programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001.
LNCS, vol. 2211, pp. 166–184. Springer, Heidelberg (2001)

16. Labbani, O., Dekeyser, J.-L., Boulet, P.: Mode-automata based methodology for
Scade. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 386–401.
Springer, Heidelberg (2005)

17. Maraninchi, F., Rémond, Y.: Mode-automata: About modes and states for reac-
tive systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, p. 185. Springer,
Heidelberg (1998)

18. Ommering, R.V., Linden, F.V.D., Kramer, J., Magee, J.: The Koala component
model for consumer electronics software. Computer 33(3) (2000)

19. Pop, T., Hnětynka, P., Hošek, P., Malohlava, M., Bureš, T.: Comparison of com-
ponent frameworks for real-time embedded systems. Knowledge and Information
Systems, 1–44 (2013)

20. Pop, T., Plasil, F., Outly, M., Malohlava, M.: Bureš, T.: Property networks allowing
oracle-based mode-change propagation in hierarchical components. In: Proc. CBSE
(2012)

21. Real, J., Crespo, A.: Mode change protocols for real-time systems: A survey and a
new proposal. Real-Time Systems 26(2), 161–197 (2004)

22. Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J., Crnkovic, I.: A component
model for control-intensive distributed embedded systems. In: Proc. CBSE (2008)

23. Warschofsky, R.: AUTOSAR software architecture. Tech. rep., Hasso-Plattner-
Institute for IT-Systems Engineering (2009)

A Method to Generate Reusable Safety Case

Fragments from Compositional Safety Analysis

Irfan Sljivo1, Barbara Gallina1, Jan Carlson1,
Hans Hansson1, and Stefano Puri2

1 Mälardalen Real-Time Research Centre, Mälardalen University,
Väster̊as, Sweden

{irfan.sljivo,barbara.gallina,jan.carlson,hans.hansson}@mdh.se
2 Intecs, SpA,
Pisa, Italy

stefano.puri@intecs.it

Abstract. Safety-critical systems usually need to be accompanied by
an explained and well-founded body of evidence to show that the system
is acceptably safe. While reuse within such systems covers mainly code,
reusing accompanying safety artefacts is limited due to a wide range
of context dependencies that need to be satisfied for safety evidence
to be valid in a different context. Currently the most commonly used
approaches that facilitate reuse lack support for reuse of safety artefacts.

To facilitate reuse of safety artefacts we provide a method to gen-
erate reusable safety case argument-fragments that include supporting
evidence related to safety analysis. The generation is performed from
safety contracts that capture safety-relevant behaviour of components
within assumption/guarantee pairs backed up by the supporting evi-
dence. We illustrate our approach by applying it to an airplane wheel
braking system example.

Keywords: Component- and contract-based architectures, Composi-
tional safety analysis and argumentation, Safety argumentation reuse.

1 Introduction

A recent study within the US Aerospace Industry shows that reuse is more
present when developing embedded systems than non-embedded systems [16].
The study reports that code is reused most of the time, followed by requirements
and architectures in significantly smaller scale than code. Aerospace industry,
as most other safety-critical industries, needs to follow a domain specific safety
standard that requires additional artefacts to be provided alongside the code to
show that the code is acceptably safe to operate in a given context. The costs
of producing the verification artefacts are estimated at more than 100 USD per
code line, while for highly critical applications the costs can reach up to 1000
USD [4]. In most cases, as part of the certification efforts an additional time-
consuming and expensive task of providing a safety case is required. A safety case

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 253–268, 2014.
c© Springer International Publishing Switzerland 2014

254 I. Sljivo et al.

is documented in form of an explained and well-founded structured argument
to clearly communicate that the system is acceptably safe to operate in a given
context [13].

Most safety standards are starting to acknowledge the need for reuse, hence
the latest versions of both aerospace (DO178-C) and automotive (ISO 26262)
industry standards explicitly support techniques for reuse, e.g., the notion of
Safety Element out of Context (SEooC) within automotive [12] and Reusable
Software Components (RSC) within aerospace industry [1]. This allows for easier
integration of reusable components, such as Commercial of the shelf (COTS),
but it also means that some safety artefacts of the reused components should
be reused as well if we are to fully benefit from the reuse and safely integrate
the reused component into the new system. The difficulty that hinders reuse
is that safety is a system property. This means that hazard analysis and risk
assessment used to analyse what can go wrong at system level, as required by
the standards, can only be performed in a context of the specific system. To
overcome this difficulty compositional approaches are needed. CHESS-FLA [7]
is a plugin within the CHESS toolset [6] that supports execution of Failure
Logic Analysis (FLA) such as Fault Propagation and Transformation Calculus
(FPTC). FPTC allows us to calculate system level behaviour given the behaviour
of the individual components established in isolation. Such compositional failure
analyses enable reuse of safety artefacts within safety-critical systems.

Component-based Development (CBD) is the most commonly used approach
to achieve reuse within embedded systems of the aerospace industry [16]. While
CBD is successfully used to support reuse of software components, it lacks means
to support reuse of additional artefacts, alongside the software components, in
form of argument-fragments and supporting evidence. As a part of an overall
system safety argument, argument-fragments for software components present
safety reasoning used to develop a particular component and its safety-relevant
behaviour, e.g., failure behaviour.

In our previous work we developed the notion of safety contracts related to
software components to promote reuse of the components together with their
certification data and we have proposed a (semi)automatic method to generate
argument-fragments for the software components from their associated safety
contracts [14]. In this work we propose a method called FLAR2SAF that uses
failure logic analysis results (FLAR) to generate safety case argument-fragments
(SAF). More specifically, we derive safety contracts for a component from FLAR.
Then, we adapt our method for generation of argument-fragments to provide bet-
ter support for reuse of the argument-fragments and the evidence they contain.

In particular, the input/output behaviour of a component developed out-
of-context can be specified by FPTC rules. For example, in case of omission
failure on the input I1 of the component, the component can have a safety
mechanism to still provide the output O1 but with additional delay. In that
case FPTC rule describing such behaviour can be specified as: I1.omission →
O1.late. We can use these behaviours obtained by FPTC analysis to derive safety
contracts that can be further supported by evidence and used to form clear

A Method to Generate Reusable Safety Case Fragments 255

and comprehensive argument-fragments. For example, if the late failure on the
output of the component can cause a hazardous event, then the corresponding
argument-fragment should argue that the late failure is sufficiently handled in
the context of the particular system and attach supporting evidence for that
claim. For generating argument-fragments associated to the failure behaviour of
the components we use an established argument pattern [18].

The main contribution of this paper is a method for the design and prepara-
tion for certification of reusable COTS-based safety-critical architectures. More
specifically, we provide a conceptual mapping of FPTC rules to safety contracts.
Moreover, we extend the argument-fragment generation method to generate
reusable argument-fragments based on an existing argumentation pattern.

The rest of the paper is organised as follows: In Section 2 we provide back-
ground information. In Section 3 we present the rationale behind our approach
and methods to derive safety contracts from FPTC analysis and generate cor-
responding argument-fragments. In Section 4 we illustrate our approach by ap-
plying it to a wheel-braking system. We present the related work in Section 5,
and conclusions and future work in Section 6.

2 Background

In this section we briefly provide some background information on COTS-based
safety-critical architectures and safety contracts. Furthermore, we recall essen-
tial information concerning the CHESS-FLA plugin within the CHESS toolset.
Finally, we provide brief information on safety cases and safety case modelling.

2.1 COTS-Based Safety-Critical Architectures

In the context of safety critical systems, COTS-driven development is becom-
ing more and more appealing. The typical V model that constitutes the ref-
erence model for various safety standards is being combined with the typical
component-based development. As Fig.1 depicts, the top-down and bottom-up
approach meet in the gray zone. Initially a top-down approach is carried out. The
typical safety process starts with hazards identification which is conducted by
analysing (brainstorming on) failure propagation, based on an initial description
of the system and its possible functional architecture. If a failure at system level
may lead to intolerable hazards, safety requirements are formulated, decomposed
onto the architectural components, and mitigation means have to be designed.
Safety requirements are assigned with Safety Integrity Levels (SILs) as a measure
of quantifying risk reduction. Iteratively and incrementally the system architec-
ture is changed until a satisfying result is achieved (i.e. no intolerable behaviour
at system level). More specifically, once the safety requirements are decomposed
onto components (hardware/software), COTS (developed via a bottom-up ap-
proach) can be selected to meet those requirements. If the selected components
do not fully meet the requirements, some adaptations can be introduced.

To ease the selection of components, contracts play a crucial role. In our
previous work, we have proposed a contract-based formalism with strong 〈A,G〉

256 I. Sljivo et al.

Fig. 1. Safety-critical system development/COTS-driven development

Fig. 2. Component and safety contract meta-model [14]

and weak 〈B,H〉 contracts to distinguish between context-specific properties and
those that must hold for all contexts [15]. A traditional component contract C =
〈A,G〉 is composed of assumptions (A) on the environment of the component and
guarantees (G) that are offered by the component if the assumptions are met.
The strong contract assumptions (A) are required to be satisfied in all contexts
in which the component is used, hence the corresponding strong guarantees (G)
are offered in all contexts in which the component can be used. For example, a
strong assumption could be minimum amount of memory a component requires
to operate. The weak contract guarantees (H) are offered only in those contexts
where besides the strong assumptions, the corresponding weak assumptions (B)
are satisfied as well. This makes the weak contracts context specific, e.g., a timing
behaviour of a component on a specific platform is captured by a weak contract.

We denote a contract capturing safety-relevant behaviour as a safety con-
tract. In [14] we introduced a component meta-model (Fig. 2) that connects
safety contracts with supporting evidence, which provides a base for evidence
artefact reuse together with the contracts. The component meta-model specifies
a component in an out-of-context setting composed of safety-contracts, evidence
and the assumed safety requirements. Each safety requirement is satisfied by at
least one safety contract, and each contract can be supported by one or more ev-
idence. For example, if we assume that late output failure of the component can
be hazardous, then we define an assumed safety requirement that specifies that

A Method to Generate Reusable Safety Case Fragments 257

late failure should be appropriately handled. This requirement is addressed by
a contract that captures in its assumptions the identified properties that need
to hold for the component to guarantee that the late failure is appropriately
handled. The evidence that supports the contract includes contract consistency
report and analyses results used to derive the contract.

2.2 CHESS-FLA within the CHESS Toolset

CHESS-FLA [7] is a plugin within the CHESS toolset [6] that includes two FLA
techniques: (1) FPTC [17] - a compositional technique to qualitatively assess
the dependability of component-based systems, and (2) FI4FA [9] - FPTC ex-
tension that allows for analysis of mitigation behaviour. In this paper we limit
our attention to FPTC that allows users to calculate the behaviour at system-
level, based on the specification of the behaviour of individual components. In
the CHESS toolset components can be modelled as component types or compo-
nent implementations. Component types are more abstract and can be realised
by system-specific component implementations. Component implementations in-
herit all behaviours of the corresponding component type.

The behaviour of the individual components is established by studying the
components in isolation. This behaviour is expressed by a set of logical expres-
sions (FPTC rules) that relate output failures (occurring on output ports) to
combinations of input failures (occurring on input ports). These behaviours can
be classified as: (1) a source (e.g., a component generates a failure due to internal
faults), (2) a sink (e.g., a component is capable to detect and correct a failure
received on the input), (3) propagational (e.g., a component propagates a failure
it received on the input), and (4) transformational (e.g., a component generates
a different type of failure from the input failure). Input failures are assumed to
be propagated or transformed deterministically, i.e., for a combination of failures
on the input, there can be only one combination of failures on the output.

The syntax supported in CHESS-FLA to specify the FPTC rules is shown in
Fig. 3. An example of a compliant expression that demonstrates the transforma-
tional behaviour of a component is “R1.late → P1.valueCoarse”, which should
be read as follows: if the component receives on its port R1 a late failure, it
generates on its output port P1 a coarse (i.e. clearly detectable) value failure (a
failure that manifests itself as a failure mode by exceeding the allowed range).

behaviour = expression + expression = LHS ’→’ RHS
LHS = portname’.’ bL | portname ’.’ bL (’,’ portname ’.’ bL) +
RHS = portname’.’ bR | portname ’.’ bR (’,’ portname ’.’ bR) +
failure = ’early’ | ’late’ | ’commission’ | ’omission’ | ’valueSubtle’ | ’valueCoarse’
bL = ’wildcard’ | bR
bR = ’noFailure’ | failure

Fig. 3. FPTC syntax supported in CHESS-FLA

258 I. Sljivo et al.

Fig. 4. Hazardous Software Failure Mode absence pattern for type late failure

2.3 Safety Cases and Safety Case Modelling

A Safety case in form of an explained (argued about) and well-founded (evidence-
based) structured argument is often required to show that the system is accept-
ably safe to operate in a given context [13]. Goal Structuring Notation (GSN) is
a graphical argumentation notation for documenting the safety case [10]. GSN
can be used to represent the individual elements of any safety argument and
the relationships between these elements. The argument usually starts with a
top-level claim/goal stating absence of a failure, as in Fig. 4 the argument starts
with a goal that has AbsHSFMLate identifier. The goals can be further decom-
posed to sub-goals with supportedBy relations denoting inference between goals
or connecting supporting evidence with a goal. The decomposition can be de-
scribed using strategy elements e.g., ArgFailureMech in Fig. 4. To define the
scope and context of a goal or provide its rationale, elements such as context
and justification are attached to a goal with inContextOf relations. For exam-
ple, context CauseLateHaz is used to clarify the AbsHSFMLate goal by providing
the list of known causes of the late failure mode. The undeveloped element sym-
bol indicates elements that need further development. For more details on GSN
see [10].

GSN was initially used to communicate a specific argument for a particu-
lar system. Since similar rationale exists behind specific argument-fragments in
different contexts, argument patterns of reusable reasoning are defined by gen-
eralising the specific details of a specific argument [10]. In this work we use
the argument pattern for Handling of Software Failure Modes (HSFM) [18],
a portion of which is shown in Fig. 4, to structure the generated argument-
fragments related to late timing failure modes. To build an argument, HSFM
pattern requires information about known causes of the failure mode and fail-
ure mechanisms that address those causes. Moreover, the failure mechanisms
can be classified into three categories: (1) Primary failures within Contributory
Software Functionality (CSF) that can cause the failure; (2) Secondary failures
relating to other components within the system on which CSF is dependent;
and (3) Failures caused by items controlling CSF e.g., in case of late hazardous
failure mode the controlling item is the scheduling policy.

A Method to Generate Reusable Safety Case Fragments 259

3 FLAR2SAF

In this section we present FLAR2SAF, a method to generate reusable safety
case argument-fragments. We first provide the rationale of the approach in Sec-
tion 3.1. We provide a method to translate FPTC rules into safety contracts in
Section 3.2, and we adapt and extend the method for semi-automatic generation
of argument-fragments from safety contracts in Section 3.3.

3.1 Rationale

In our work we use safety contracts to facilitate reuse of safety-relevant software
components. The method to semi-automatically generate argument-fragments
from safety contracts, mentioned in Section 2.1, can be used to support the
reuse of certification-relevant artefacts from previously specified contracts. Just
as evidence needs to be provided with a reusable component to increase confi-
dence in the component itself, similarly in some cases the trustworthiness of the
evidence should be backed up as well [11]. To reuse evidence-related artefacts to-
gether with the argument fragments, additional information about the rationale
linking the artefacts and the safety contracts they support should be provided.
Furthermore, the issue of trustworthiness of such evidence needs to be addressed.
For example, we might need to describe the competence of the engineers that
performed a particular analysis or even qualification of the analysis tool.

To capture the additional information related to evidence we enrich the com-
ponent meta-model presented in Section 2.1. We enrich the connection between
a contract and evidence by adding optional descriptive attribute capturing the
rationale for how the particular evidence, or set of evidence, supports the goal.
This information is used to provide additional clarification on the connection
between the evidence and the claims made by the contract. Clarification of con-
fidence in the evidence itself can be made in two different ways: either by directly
including or referencing supporting information in the context of the evidence
(e.g., competence of person performing the failure analysis can be found in doc-
ument x); or to point to an already developed goal, called an away goal [10],
presenting the supporting information (we could have a repository of generic
argument-fragments related to staff competence and tool-qualification [8]). In
the presented component meta-model we append attributes to the evidence to
capture supporting information related to the evidence, including a set of refer-
ences to the supporting away goals.

FLAR2SAF based on FPTC analysis can be performed by the following steps:

– Model the component architecture in CHESS-FLA;
– Specify failure behaviour of a component in isolation using FPTC rules;
– Translate the FPTC rules into corresponding safety contracts and attach

FPTC analysis results as initial evidence;
– Support the contracts with additional V&V evidence and enrich the contract

assumptions accordingly;
– Upon component selection, depicted in Fig. 1 in Section 2.1:

260 I. Sljivo et al.

Fig. 5. Composite component example with FPTC rules

• Perform FPTC analysis and calculate system-level failure behaviour;
• Translate the results of FPTC analysis to system-level safety contracts;
• Support and enrich the contracts with additional V&V evidence;

– Use the approach to semi-automatically generate an argument-fragment
based on the argument pattern presented in Section 2.3.

The generated argument-fragment is tailored for the specific system so that
only contracts satisfied in the particular system are used to form the argument,
and accordingly only evidence associated to such contracts is reused to support
confidence in the contracts. Particular evidence can only be reused if all the
captured assumptions within the associated contract are met by the system.

3.2 Contractual Interpretation of FPTC Rules

In this section we focus on the step of translating the FPTC rules to safety
contracts. We use the simple example in Fig. 5 to explain the translation process
and provide a set of steps that can be used to perform the translation

In Fig. 5 we have FPTC rules specified for a composite component C and its
subcomponents C1 and C2. When both inputs I1 and I2 exhibit late or coarse
failure, component C1 acts as a propagator and outputs late/coarse failure on O1
output. Component C2 acts as a sink in case of a late failure and transforms it to
no failure (e.g., a watchdog timer expires and triggers a satisfactory response),
while it transforms coarse to late failure (e.g., due to additional filtering).

Safety contracts for these components can be made based on the FPTC rules.
When translating the rules into contracts we consider two types of rules with
respect to each failure mode: rules that describe when a failure happens (e.g.,
C1.R1) and rules that describe behaviours that mitigate a failure (e.g., C2.R1).
We translate the first type of rules by guaranteeing with the contract that the
failure described by the rule will not happen, under assumptions that the be-
haviour that causes the failure does not happen. The contract 〈B,H〉C1 for
component C1, shown in Table 1, guarantees that O1 will not be late if both
inputs I1 and I2 never fail at the same time with late failure. This type of con-
tracts is specified as weak since, unlike for strong contracts, their satisfaction
in every context should not be mandatory. For example, in some contexts late
timing failure is not hazardous, hence it is not required to be ensured.

We translate the second type of rules differently as they do not identify causes
of failures, but they specify behaviours that help mitigate failures in certain cases.

A Method to Generate Reusable Safety Case Fragments 261

Table 1. Contracts for components C1 and C

BC1: (not (I1.late and I2.late));
HC1: not O1.late;

AC−1: -;
GC−1: I1.late, I2.late → noFailure;

BC−2: (not (I1.coarse and I2.coarse));
HC−2: not O1.late;

Since these contracts specify safety behaviour of components that should be sat-
isfied in every context, without imposing assumptions on the environment, we
denote these contracts as strong contracts. The corresponding contracts state in
which cases the component guarantees that it will not exhibit any failures. We do
this by guaranteeing the rule that describes this behaviour, as shown in Table 1
for the 〈A,G〉C−1 contract for component C.

As shown on an example of translating FPTC rules from the example in Fig. 5
to contracts in Table 1, the translation can be performed in the following way
for each failure:

– Identify FPTC rules that are directly related to the failure mode (either
describing when it happens or describing behaviour that prevents it);

– For the rules describing when the failure mode happens:
• Add the negation of the combination of the input failures to the contract
assumptions. Connect with other assumptions with AND operator;

• Use the absence of the failure mode as the contract guarantee;
– For the rules that describe behaviours that prevent the failure mode:

• Use the rule within the contract guarantee to state that the component
guarantees the behaviour described by the rule;

The abstract behaviour specified within the FPTC rules can be further refined
so that more concrete behaviours of the component are described. For example,
a refined contract related to timing failures would include concrete timing be-
haviour of the component in a particular context and additional assumptions
related to the timing properties of the concrete system should be made.

3.3 Argument-Fragment Generation

As mentioned in Section 2, safety relevant components usually need to provide ar-
gument and associated evidence regarding absence of particular failures. We gen-
erate the required argument-fragment based on previously established argument
pattern HSFM for presenting absence of late failure mode, briefly recalled in Sec-
tion 2.3. By providing means to generate context-specific argument-fragments,
i.e., argument-fragments that include only information related to those contracts
satisfied in the particular context, we allow for reuse of certain evidence related
to the satisfied contracts.

To build an argument based on the HSFM pattern, we identify the known
causes of primary and secondary failures from the corresponding FPTC rules.

262 I. Sljivo et al.

We identify the primary failures from the contracts translated from FPTC rules
that describe behaviours that mitigate a failure mode. The secondary failures
are captured within the contracts translated from FPTC rules that describe
when a failure mode happens. All causes and assumptions not captured by the
corresponding FPTC rules should be additionally added to the safety contracts,
e.g., scheduler policy constraints. We construct the argument-fragment by us-
ing the reasoning from the HSFM pattern. The top-most goal claiming absence
of the failure mode is decomposed into three sub-goals focusing on primary,
secondary and controlling failures as described in Section 2.3. We adapt the
contract-satisfaction fragment from [14] to further develop the sub-goals.

We use the safety contracts to generate the supporting sub-arguments for the
primary and secondary failures and leave the goal related to controlling failures
undeveloped. Supporting sub-arguments for both primary and secondary failures
are generated to argue that the corresponding safety contracts are satisfied with
sufficient confidence. The sufficient confidence is determined based on the specific
SIL of the requirements allocated on the component and may require additional
evidence in case of higher SILs. We argue the satisfaction of contracts as in [14]
where we make a claim that the contract is satisfied with sufficient confidence,
i.e., that the guarantee of the contract is offered. We further decompose the claim
into two supporting goals: (1) an argument providing the supporting evidence
for confidence in the claim in terms of completeness of the contract, and (2) an
argument showing that the assumptions stated in the contract are met by the
contracts of other components. We further focus on the first sub-goal related to
evidence and adapt the rules related to generating the evidence sub-argument
to include additionally specified information about the evidence artefacts.

For every evidence attached to a safety contract we create a sub-goal to sup-
port confidence in the corresponding safety contract. At this point we can use the
additional information about the rationale connecting evidence and the safety
contract and present it in form of a context statement to clarify how this par-
ticular evidence contributes to increasing confidence in the corresponding safety
contract. The evidence can be further backed up by the related trustworthiness
arguments that can be attached directly to a particular evidence. If the evidence
trustworthiness information is provided in a descriptive form then additional
context statements are added to the solutions, otherwise an away goal is created
to point to the argument about the trustworthiness of the evidence, e.g., an
argument presenting competence of a person that conducted the analysis which
resulted in the corresponding evidence.

To achieve the argument-fragment generation we extended the approach for
generation of argument-fragments from safety contracts [14] to allow for argument-
fragment generation in the specific form of the selected pattern. The approach is
adapted to generate an argument-fragment that clearly separates and argues over
primary, secondary and controlling failures as described above, and to include ad-
ditional information related to the evidence.

While the benefits of reusing evidence are great, a big risk can be falsely reusing
evidence which may result in false confidence and potentially unsafe system.

A Method to Generate Reusable Safety Case Fragments 263

Fig. 6. BSCU model in CHESS

It must be noted that deriving safety contracts from safety analyses does not nec-
essarily result in complete contracts. To increase confidence in reuse of safety arte-
facts, additional assumptions should be captured within the safety contracts to
guarantee the specified behaviour with sufficient confidence. While this will limit
reuse of the particular contract and the associated evidence, the weak safety con-
tracts notion allows us to specify a number of alternative contracts describing par-
ticular behaviour in different contexts.

4 Application Example

In this section we demonstrate FLAR2SAF by applying it to a Wheel-Braking
System (WBS). We first briefly introduce the WBS in Section 4.1. In Section 4.2
we apply CHESS-FLA/FPTC analysis on WBS. We use the translation steps
from Section 3.2 to translate the contracts from the FPTC analysis results in
Section 4.3. We present the generated argument-fragment in Section 4.4.

4.1 Wheel Braking System (WBS)

In this section we recall WBS, which was originally presented in ARP4761 [2].
We use a simplified version of WBS to illustrate the use of FLAR2SAF.

WBS is a part of an airplane braking system. It takes two input brake pedal
signals that are used by the Brake System Control Unit (BSCU) to calculate
the braking force. The software architecture of BSCU modelled in CHESS is
shown in Fig. 6. Based on the preliminary safety analysis performed on the
system, the BSCU is designed with two redundant dual channel systems to meet
the availability and integrity requirements. Each of the two subBSCU systems,
namely subBSCU1 and subBSCU2, provide a calculated command value and
a valid signal that indicates the validity of the corresponding command value.
The selectSwitch forwards by default the command value from subBSCU1 if the
corresponding valid signal is true, otherwise the command value from subBSCU2
is forwarded. The validSwitch component returns true if any of the signals is true,

264 I. Sljivo et al.

Table 2. A subset of FPTC rules for BSCU subcomponents

Component FPTC rule

subBSCU pedal1.late, pedal2.late → valid.late, cmd.late;
pedal1.noFailure, pedal2.late → valid.noFailure, cmd.omission;
pedal1.late, pedal2.noFailure → valid.noFailure, cmd.omission;

validSwitch valid1.late, valid2.late → valid.late;
valid1.noFailure, valid2.late → valid.noFailure;
valid1.late, valid2.noFailure → valid.noFailure;

selectSwitch valid.late, cmd1.late,cmd2.late → cmd.late
valid.noFailure, cmd1.noFailure,cmd2.late → cmd.noFailure
valid.noFailure, cmd1.late,cmd2.noFailure → cmd.noFailure
valid.omission, cmd1.omission,cmd2.omission → cmd.omission

otherwise it returns false indicating that an alternate braking mode should be
used, as the braking command calculated by BSCU cannot be trusted.

4.2 FPTC Analysis

To perform the FPTC analysis we first model the system architecture in the
CHESS-toolset (Fig. 6) and then define FPTC rules for the modelled compo-
nents. The architecture and the corresponding failure behaviour of the compo-
nents are defined based on the system description in Section 4.1.

The specified FPTC rules are shown in Table 2. As mentioned in Section 2.2,
the FPTC rules specified for components are inherited by all the instances, hence
the FPTC rules for the two subBSCU component implementations are the same
as they are instances of the same component. The validSwitch component re-
quires at least one valid signal present in order to forward the correct response,
i.e., at least to signal that there is a problem within BSCU. Similarly, the se-
lectSwitch component output depends both on valid and cmd signals.

As shown in Fig. 6 in the FPTC specifications on the input ports, we run
the analysis for noFailure and late failure behaviours on the inputs. The FPTC
analysis then computes the possible failures on the output ports of BSCU based
on the FPTC rules for the BSCU subcomponents. The results show that the
validOut port can either not fail or propagate late failures, while the cmdOut
port in addition to noFailure and late failure can exhibit omission failure as well.

Table 3. The results of the FPTC analysis for bscuSys component

Port type Port label Port values

input pedal1 noFailure, late

input pedal2 noFailure, late

output cmdOut noFailure, omission, late

output validOut noFailure, late

A Method to Generate Reusable Safety Case Fragments 265

Table 4. The translated BSCU contracts and associated evidence information

BBSCU−1: not (pedal1.late and pedal2.late);
HBSCU−1: not validOut.late and not cmdOut.late;

CBSCU−1: The contract is derived from the FPTC analysis results for the bscuSys
component;

EBSCU−1: name: bscuSys FPTC analysis report
description: FPTC analysis is performed in CHESS-toolset.
supporting argument : FPTC analysis conf;

ABSCU−2: -;
GBSCU−2: pedal1.noFailure, pedal2.late → validOut.noFailure,cmdOut.omission;

CBSCU−2: The contract is derived from the FPTC analysis results for the bscuSys
component; Unit testing is used to validate that the contracts are suffi-
ciently complete with respect to the implementation;

EBSCU−2:

name: bscuSys FPTC analysis report
description: FPTC analysis is performed in CHESS-toolset.
supporting argument : FPTC analysis conf;

name: Unit testing results
description: -
supporting argument : Unit test conf;

4.3 The Translated Contracts

The results of the FPTC analysis can be interpreted in the form of FPTC
rules for the system component bscuSys. The resulting FPTC rule “pedal1.late,
pedal2.late → validOut.late, cmdOut.late” for bscuSys can be translated to the
contract 〈B,H〉BSCU−1 shown in Table 4. The contract specifies that the out-
puts of BSCU will not be late if both input pedals are not late. The contract is
supported by the FPTC analysis report from which the contract is derived.

The second translated contract 〈A,G〉BSCU−2 describes the behaviour when
only the second pedal is faulty. In that case the failure is detected by the BSCU
component and reported through the validOut port, hence the validOut port re-
ports no failure, while the cmdOut signal is omitted. The additional information
related to the supporting evidence includes context statements CBSCU−1 and
CBSCU−2 and a set of evidence (EBSCU−1 and EBSCU−2). Each evidence can
be further described by a context statement and supported by a set of arguments.

4.4 The Resulting Argument-Fragment

A part of the resulting argument-fragment is shown in Fig. 7. In this argument
snippet we focus only on the identified causes of primary failures (AbsLatePri-
mary goal), while the other goals shown in Fig. 4 remain undeveloped. We identi-
fied the BSCU-2 contract shown in Table 4 as the one related to primary failures
as it describes behaviour of the component that mitigates a possible failure. By
applying the rules to generate the contract satisfaction argument (goal BSCU-
2 sat), we divide the argument to argue over the satisfaction of the supporting
contracts (BSCU-2 supp sat) and supporting evidence in contract completeness

266 I. Sljivo et al.

Fig. 7. Argument-fragment based on the HSFM pattern

(BSCU-2 confidence). While the argument for the BSCU-2 supp sat goal follows
the same pattern as for goal BSCU-2 sat, we focus on the argument related to
the BSCU-2 confidence goal.

The goal BSCU-2 confidence is clarified by the two context statements stating
that the contract has been derived from the FPTC analysis and that unit testing
has been performed to validate that the contracts are sufficiently complete. In the
rest of the argument we create a goal for each of the attached artefacts and enrich
them with additional evidence information. The goal BSCU-2 1 presents the
confidence in the FPTC analysis. Since we do not have an argument supporting
qualification of the tool used to perform the analysis we attach context statement
clarifying that the FPTC analysis is performed in the CHESS-toolset. We provide
an away goal related to the evidence to support trustworthiness in the analysis by
arguing confidence in the FPTC analysis. Further evidence might be provided to
present competences of the engineers that formed the FPTC rules and performed
the analysis.

5 Related Work

The use of model-based development in safety-critical systems to support the
development of the system safety case has been the focus of much research during
the past years. Integration of model-based engineering with safety analysis to
ease the development of safety cases is presented in [5]. The work presents how
the architecture description language EAST-ADL2 can be used to support the
development of safety-critical systems. Similarly, an approach to handling safety
concerns and constructing safety arguments within a system architectural design
process is presented in [19]. The work presents a set of argument patterns and
a supporting method for producing architectural safety arguments. The focus
of these works is usually on extending the modelling approaches to support
the safety case development process and provide guidelines on how to produce
the corresponding safety arguments. Unlike in these approaches, in our work we

A Method to Generate Reusable Safety Case Fragments 267

provide a method for generating safety-arguments from the safety contracts that
are based on and supported by the safety analysis performed on the system.

Deriving a safety argument from the actual source code is presented in [3].
The work focuses on constructing an argument for how the actual code complies
with specific safety requirements based on the V&V artefacts. The argument
skeleton is generated from a formal analysis of automatically generated code
and integrates different information from heterogeneous sources into a single
safety case. The skeleton argument is extended by separately specified addi-
tional information enriching the argument with explanatory elements such as
contexts, assumptions, justifications etc. In contrast, in this work we generate
an argument-fragment from safety contracts obtained from and supported by
FPTC analysis. We utilise the contracts to specify the additional information
regarding the context and additional assumptions and generate an argument-
fragment for a specific failure mode covered by the FPTC analysis.

6 Conclusion and Future Work

Reuse within safety-critical systems is not complete without reuse of safety arte-
facts such as argument-fragments and the supporting evidence, since they are
the key aspects of safety-critical systems development that require significant
efforts. In this work we have presented a method called FLAR2SAF for generat-
ing reusable argument-fragments. This method first derives safety contracts from
failure logic analysis results and then uses the contracts supported by evidence to
generate reusable pattern-based argument-fragments. By an illustrative example
we have shown how an argument-fragment could be generated and supporting
evidence reused. The application of FLAR2SAF gives a clear indication that
safety contracts can be derived from failure logic analyses. Moreover, accompa-
nying COTS with a set of such safety contracts supported by safety evidence
artefacts allows us to generate context-specific argument-fragments based on the
satisfied contracts.

As our future work we are planning an evaluation of FLAR2SAF on an indus-
trial case study. Moreover, we plan to extend the CHESS toolset to include our
methods for derivation of contracts and generation of argument-fragments. We
plan to explore how different types of safety analyses can be used to derive and
support contracts, hence how different types of evidence could be easily reused.
Another interesting future direction would be to explore how this approach can
help us with change management and reuse of safety artefacts in case of changes
in the system.

Acknowledgements. This work is supported by the Swedish Foundation for
Strategic Research (SSF) via project Synopsis as well as EU and Vinnova via
the Artemis JTI project SafeCer.

268 I. Sljivo et al.

References

1. AC 20-148: Reusable Software Components. FAA (2004)
2. ARP4761: Guidelines and Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems and Equipment. Society of Automotive Engineers (1996)
3. Basir, N., Denney, E., Fischer, B.: Building heterogeneous safety cases for auto-

matically generated code. In: Infotech@ Aerospace Conference. AIAA (2011)
4. Bloomfield, R., Cazin, J., Craigen, D., Juristo, N., Kesseler, E., et al.: Validation,

Verification and Certification of Embedded Systems. Tech. rep., NATO (2005)
5. Chen, D., Johansson, R., Lönn, H., Papadopoulos, Y., Sandberg, A., Törner, F.,

Törngren, M.: Modelling support for design of safety-critical automotive embed-
ded systems. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS,
vol. 5219, pp. 72–85. Springer, Heidelberg (2008)

6. CHESS-toolset, http://www.chess-project.org/page/download
7. Gallina, B., Javed, M.A., Muram, F.U., Punnekkat, S.: Model-driven Dependability

Analysis Method for Component-based Architectures. In: Euromicro-SEAA Con-
ference. IEEE Computer Society Press (2012)

8. Gallina, B., Kashiyarandi, S., Zugsbratl, K., Geven, A.: Enabling cross-domain
reuse of tool qualification certification artefacts. In: Bondavalli, A., Ceccarelli, A.,
Ortmeier, F. (eds.) SAFECOMP 2014 Workshop. LNCS, vol. 8696, pp. 255–266.
Springer, Heidelberg (2014)

9. Gallina, B., Punnekkat, S.: FI4FA: A Formalism for Incompletion, Inconsistency,
Interference and Impermanence Failures Analysis. In: International Workshop on
Distributed Architecture Modeling for Novel Component Based Embedded Sys-
tems. IEEE Computer Society (2011)

10. GSN Community Standard Version 1. Origin Consulting (York) Limited (2011)
11. Hawkins, R., Habli, I., Kelly, T., McDermid, J.: Assurance cases and prescriptive

software safety certification: A comparative study. Safety Science 59, 55–71 (2013)
12. ISO 26262:2011: Road vehicles — Functional safety. International Organization for

Standardization (2011)
13. Kelly, T.P.: Arguing Safety — A Systematic Approach to Managing Safety Cases.

Ph.D. thesis, University of York, York, UK (1998)
14. Sljivo, I., Gallina, B., Carlson, J., Hansson, H.: Generation of Safety Case

Argument-Fragments from Safety Contracts. In: Bondavalli, A., Di Giandomenico,
F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 170–185. Springer, Heidelberg
(2014)

15. Sljivo, I., Gallina, B., Carlson, J., Hansson, H.: Strong and weak contract for-
malism for third-party component reuse. In: International Workshop on Software
Certification. IEEE Computer Society (2013)

16. Varnell-Sarjeant, J., Andrews, A.A., Stefik, A.: Comparing Reuse Strategies: An
Empirical Evaluation of Developer Views. In: International Workshop on Quality
Oriented Reuse of Software. IEEE Computer Society (2014)

17. Wallace, M.: Modular architectural representation and analysis of fault propa-
gation and transformation. In: International Workshop on Formal Foundations of
Embedded Software and Component-Based Software Architectures. Elsevier (2005)

18. Weaver, R., McDermid, J., Kelly, T.: Absence of Late Hazardous Failure Mode,
http://www.goalstructuringnotation.info/archives/218

19. Wu, W.: Architectural Reasoning for Safety — Critical Software Applications.
Ph.D. thesis, University of York, York, UK (2007)

http://www.chess-project.org/page/download
http://www.goalstructuringnotation.info/archives/218

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 269–281, 2014.
© Springer International Publishing Switzerland 2014

A Comparison of Methods for Automatic Term
Extraction for Domain Analysis

William B. Frakes, Gregory Kulczycki, and Jason Tilley

Software Reuse Laboratory
Virginia Tech

Falls Church, VA USA
{wfrakes,gregwk}@vt.edu, tilley_jason@hotmail.com

Abstract. Fourteen word frequency metrics were tested to evaluate their effec-
tiveness in identifying vocabulary in a domain. Fifteen domain-engineering
projects were examined to measure how closely the vocabularies selected by the
fourteen word frequency metrics were to the vocabularies produced by domain
engineers. Stemming and stopword removal were also evaluated to measure
their impact on selecting proper vocabulary terms. The results of the experi-
ment show that stemming and stopword removal do improve performance and
that term frequency is a valuable contributor to performance. Most word fre-
quency metrics gave similar results. A few of the metrics did poorly compared
to the others.

Keywords: domain engineering, vocabulary extraction, stemming, stoplists,
word frequency metrics, software reuse, domain documents.

1 Introduction

Studies have shown that systematic software reuse offers many benefits [4]. A key
step in systematic software reuse is domain analysis. In domain analysis, an engineer
studies several related software systems and their documentation to understand their
commonalities and variabilities. This is done to determine how to improve the pro-
duction of systems in that domain including which types of reusable assets can be
created.

Several domain analysis techniques have been proposed [4]. One such methodolo-
gy is the Domain Analysis and Reuse Environment (DARE) [5]. This methodology
uses a domain book to document different views of the domain. The book captures
useful code components, architectural diagrams, feature tables, facet tables, and a
domain vocabulary. The vocabulary is typically one of the first products created dur-
ing the process, and is also one of the most important as its formation leads to the
creation of subsequent models, like a generic facet table and a generic architecture.

While a domain vocabulary can come from many sources, like subject matter ex-
perts and code, it is typically drawn primarily from domain documents. These docu-
ments, such as requirements documents and user manuals, describe systems in the
domain.

270 W.B. Frakes, G. Kulczycki, and J. Tilley

A domain vocabulary can be selected manually, with the domain engineers reading
the documents and selecting the vocabulary. The DARE method, however, suggests
using tools that provide basic term frequency analysis as a starting point for selecting
a vocabulary. However, not all words that appear frequently are important, and not all
important words appear frequently. Domain engineers currently base their decisions
on their understanding of the domain. This task is very time consuming and prone to
error due to a single human’s perspective on what is important in the study of the
domain. Domain analysis could greatly benefit from accurate automation of vocabu-
lary selection. Current selection methods rely on term frequency analysis and a hu-
man interpretation of the term frequency metrics.

The purpose of this paper is to evaluate various automatic vocabulary extraction
methods for domain analysis [11]. Each method gave weights to terms in an experi-
mental text corpus, and those terms were evaluated against a manually selected do-
main vocabulary. We evaluated O = f(K,C,S), where O is an overlap score for each
methodology K. The variable C represents the conflation variable with two values:
stemmed with Porter’s stemming algorithm [9], or not stemmed. The variable S
represents 3 possible stopword list options: no stoplist, short stoplist, or long stoplist.
Our hypothesis was that there would be significant differences in overlaps for the
different metrics, and that stemming and stopword removal would also significantly
affect overlap.

2 Methods

In this paper we evaluate the effectiveness of many statistical test measures and deriv-
atives of them. Our purpose is to find accurate statistics for automatically selecting a
domain vocabulary, WA (A for automatic), from a small corpus of documents D.

Our model is: D lexer W (metrics / stoplist / stemmer) W’

The process begins with a set of documents D. D is run through a lexical analyzer

to extract the set of words in the corpus, W. The process then applies a combination
of metrics, stoplists, and stemmers to W to produce W’. The elements of W’ are
ranked based on the metric used.

From the ranked set W’ we create WA, which contains the first n elements of W’,
where n is the size of the expert vocabulary WE (E for expert). In the experiments we
are evaluating the effectiveness of WA by comparing it to WE. In the case of ties in
WA, the terms are selected arbitrarily. WA is considered the final automatically con-
structed domain vocabulary and is measured for overlap with the expert’s manually
selected vocabulary WE.

2.1 Overlap Metric

Overlap is measured as the cardinality of the intersection of WA and WE, over the
cardinality of the union of the same two sets as follows,

 A Comparison of Methods for Automatic Term Extraction for Domain Analysis 271

O =
WA ∩WE

WA ∪WE

 (1)

As an example, suppose that an expert chose 12 words to be the domain vocabu-

lary. Thus the automatic term extraction algorithm also selects 12 words. Suppose that
four of them are in the expert’s vocabulary. The intersection of these two vocabulary
sets would have a cardinality of four. The size of the union would be 20, because the
automatically constructed vocabulary had eight unique terms. The overlap would be
4/20, or .2.

This experiment seeks to determine which of 14 word frequency metrics will best
approximate, i.e. have the highest overlap with, the word sets created by domain ex-
perts. The paper also discusses whether the overlaps are affected by stemming and
stopword removal.

2.2 Test Set and Demographics

The data used in this study was collected over several years in a graduate course on
reuse and domain engineering in which students used DARE to analyze domains.
Most of the students were professional software engineers. The results of these
projects were complete, or partially complete DARE domain books. Each subject
bounded their domain [2], selected at least three exemplar systems in the domain, and
then selected documents from the systems in the domain. These documents were typi-
cally research papers and web pages, but also included system documentation. With
the help of those documents, subjects selected terms pertinent to the domain. The
instructions suggested that subjects use tools that could automatically provide fre-
quencies for terms in their corpus. The vocabulary was then used to create other arti-
facts in the domain book. A subset of these domain books, and their corresponding
vocabulary selections, were used for our test set. We selected fifteen domain books to
analyze. The vocabularies were determined by the students, who were the domain
engineers in this study.

Of the 15 subjects, seven chose conflation algorithms as their domain. Four used
domains related to application or programming metrics. The remaining four domains
were in personal information management, military medical systems, encryption, and
sentence alignment. Figure 1 shows the frequency of subjects’ chosen corpus sizes,
token counts, unique token counts, and the size of their selected vocabularies.

Figure 1.A shows that the median number of documents used by subjects was 5,
but that some subjects used 2 to 3 times that many. From these documents, the total
number of words extracted by lexical analysis gave a median value of around 15,000
words as shown in Figure 1.C. When duplicates were eliminated, the median number
of words was around 2,000 as shown in Figure 1.B. From these unique terms about 40
words were selected on average for the domain vocabulary, as can be seen in 1.D.

272 W.B. Frakes, G. Kulczycki, and J. Tilley

A. Test Corpus Sizes
(Number of Documents)

B. Test Unique Term Counts (words)

C. Test Total Token Count (words)

D. Test Vocabulary Sizes (words)

Fig. 1. Distributions for various metrics for domain engineering projects

2.3 Corpus Preparation

We prepared our corpuses first with tokenization. The frequency with which each
word appears in a document was counted and recorded. The recorded frequencies are
the number of occurrences of a word in an individual document, not the corpus as a
whole. This recorded frequency list was the baseline for an individual document. We
created several variations of this baseline. The first two variations were created
through stopword removal. Stopwords are terms that occur in language so often that
they are generally not associated with a domain. These terms tend to be articles, pre-
positions, and exclamations. We used two stopword lists, one short and the other
large. In addition to the baseline and the two stopword variations, we also created
another variation by using a stemmer. Stemming is the process of grouping related
terms into one central term, often by removing suffixes and prefixes [3]. The Porter
stemmer was chosen because of its popularity, and the convenience of having many
implementations available. Stemming was most likely to reduce the number of terms
by bringing similar terms into the same grouping, such as plural and singular nouns,
and past and present tense verbs.

2.5 5 7.5 10 12.5 15 17.5 0 1000 3000 5000 7000

0 25000 50000 75000 125000 0 50 100 150 200

 A Comparison of Methods for Automatic Term Extraction for Domain Analysis 273

2.4 Vocabulary Creation

These steps produced large vocabularies that we trimmed down using statistical me-
trics. We used Java to write several algorithms that use corpus and document statistics
to filter the corpus’ vocabulary to a few terms that best exemplify the vocabulary of
the domain. Although most work in this field has strictly used noun phrases for term
candidates, our research used any single word in a corpus, not just nouns, as a possi-
ble candidate. There are two reasons for this. Our human produced vocabularies in-
clude many verbs (mean = 14.51%), and also some adverbs and adjectives. Domain
engineering is different from many of the other fields requiring vocabularies in that
the vocabulary is used in domain artifacts, such as a generic architecture. Software
projects often use verbs to model methods and transitions.

2.5 Word Frequency Metrics

Using each metric, we weighted each term in a subject’s corpus and assigned it a
value, w. The term weights were sorted and the top |V| terms were selected (unless
otherwise noted), where V is the set of terms in the expert selected vocabulary for the
domain corresponding to the corpus. Tables 1-4 summarize the metrics and provide
an abbreviation for metric names. The tables also provide a short description of the
weighting rationale of each term.

Figure 2 gives a taxonomical view of the metrics in the experiment, showing the
four broad categories into which we group the metrics. The Non-normalized, Norma-
lized, and Static Document Allotment categories are all based on term frequencies,
while the Frequency Distribution category is based on frequency distributions.

Fig. 2. Metric Categories

Sections 2.5.1 through 2.5.4 give equations and details for each of the four catego-
ries of metrics. In the equations, the following variables are used.

274 W.B. Frakes, G. Kulczycki, and J. Tilley

• N – Number of documents in a corpus
• Tj – Number of terms in a document
• Tc – Number of terms in a corpus
• V – A set representing the experts vocabulary
• tfij – Number of occurrences of term i in document j
• tfic – Number of occurrences of term i in corpus c
• Pj – Number of occurrences of the most frequent term in document j
• Pc – Number of occurrences of the most frequent term in corpus c
• ni – Number of documents in which term i appears
• wi – weight of term i in a corpus
• Kj – Number of terms to be selected from document j

2.5.1 Non-normalized Term Frequency Metrics
Most indexing algorithms and term extraction algorithms base their results on some
calculation involving term frequency, assuming that words that appear often are likely
candidate terms for the vocabulary of the domain. This assumption is justified by [6],
although they further their results with restricting candidates to particular patterns.
The original paper on the importance of term frequency in selecting index terms for
information retrieval dates back to [7]. The metrics in this and the following two sub-
sections are all based on term frequency.

Table 1. Non-Normalized Term Frequency Metric Equations

Metric Title Equation Notes
Corpus Term
Frequency
(TF)

wi = tf ij
j =1

N

∑
Pure term frequency metric calculated
over entire corpus. Rewards high term
counts. Large documents have advan-
tage

Logged Term
Frequency
(LTF)

wi = ln(tfij +1)
j =1

N

∑
Uses logarithms to reduce variability of
term weights in document.

Document
Term Fre-
quency (USN) wi = max1≤ j≤N

(tfij)/Tc
Selects the words that appear most often
within their respective document.

Term Fre-
quency and
Inverse Doc-
ument Fre-
quency
(TFIDF)

wi = tfij
j =1

N

∑ ⋅ N /ni
Multiplies term frequency by number of
documents in corpus. Divides by num-
ber of documents that term appears in.
Rewards terms that appear frequently in
few documents.

Term Fre-
quency and
Logged In-
verse Docu-
ment Fre-
quency
(TFLIDF)

wi = tf ij
j =1

N

∑ ⋅ ln(
N

ni

)
Similar to TFIDF, except term frequen-
cy weighted more highly. Flattens dis-
tribution of TFIDF making outliers less
powerful.

 A Comparison of Methods for Automatic Term Extraction for Domain Analysis 275

2.5.2 Normalized Term Frequency Metrics
The concept of term normalization has been a standard metric for information retriev-
al since the late 1970’s [8]. Normalization occurs by dividing the frequency of a term
in a document by the total number of terms in a document. By normalizing each doc-
ument, we remove the effect of size, and each term frequency is now a percentage of
another characteristic of the document, the document’s term count.

Table 2. Normalized Term Frequency Metric Equations

Metric Title Equation Notes
Normalized
Term Fre-
quency (NTF) wi = tfij

j=1
N

∑ /Tj

Normalizes by dividing term
frequency by number of terms in
document. Rewards high term
count but negates large docu-
ment skewing.

Document
Relativized
(DR) wi = tfij

j=1
N

∑ / Pj

Divides by most frequent term in
document, then sums the results.
Less rewards for large docu-
ments; penalizes verbose docu-
ments.

Corpus Rela-
tivized (CR) wi = tfij

j=1
N

∑ / Pc

Normalizes by dividing by most
frequent term in corpus, then
summing results. Less reward
for large documents.

Document
Relativized
Minus Docu-
ment Average
Frequency
(DRDA)

 wi = tfij

j=1
N

∑ / Pj

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ −

tfijj=1N∑
N

Normalizes using most frequent
term in document, then subtracts
average frequency of term i in
all documents. Less reward for
large documents.

Corpus Rela-
tivized Minus
Document
Average Fre-
quency
(CRDA)

 wi = tfij

j=1
N

∑ / Pc

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ −

tfijj=1N∑
N

Normalizes using most frequent
term in corpus, then subtracts
average frequency of term i in
all documents. Less reward for
large documents

2.5.3 Static Document Allotment Metrics
The following two metrics use a different approach to term selection. The weights
given to each term are specific to individual documents within the corpus and are not
summed, nor used in a maximization formula. Each document is allotted some num-
ber of terms, Kj, to add to the set of terms to be returned to the user. The scoring in-
ternal to each document is a normalized term frequency score. The algorithm, WAG, is
as follows:

for (j = 1; j ≤ N; j++) // for each document
 rankTermsByWeight(); // sort the terms by their weight, in descending order
 for (i = 1; i < Tj; i++) // for each term in document j

276 W.B. Frakes, G. Kulczycki, and J. Tilley

 if (Tij exists in WAG) continue;
 else
 WAG = WAG ≠ Tij
 if (|WAG| > Kj) break;

Table 3. Static Document Allotment Metric Equations

Metric Title Equation Notes
Evenly Distri-
buted (ED)

K j = floor

V
N

Each document contributes the same number of
terms based on the proportion of most frequent
terms from each document, avoiding duplicate
terms.

Favor Big
Documents
(BD)

K j = floor

Tc

Tj

Each document in corpus is allotted a quota of
terms based on its size.

2.5.4 Frequency Distribution Based Metrics
Previous term extraction work that looks at noun phrases has shown that consensus
can be an important factor in selecting a suitable vocabulary [10]. This metric will
reward terms that have consensus. Consensus is an indication of a term’s popularity
by many authors. Terms that have an even probability distribution across the docu-
ments of the domain have consensus.

Table 4. Frequency Distribution Based Metric Equations

Metric Title Equation Notes
Distribution
Consensus
(DC) wi =

1

N
tfij −

1

N
tf ij

j =1

N

∑
⎛

⎝ ⎜
⎞

⎠ ⎟
⎛

⎝ ⎜
⎞

⎠ ⎟ j =1

N

∑
2

Rewards terms with consen-
sus – a reflection of a term’s
popularity by many authors.

Binary Con-
sensus (BC) wi = binij

j =0

N

∑

where binij =
0 if tf ij = 0

1 if tf ij > 0

⎧
⎨
⎩

Measures consensus based
on a term’s binary distribu-
tion. Rewards minimum
frequency of one.

3 Results

In this section we discuss how the observed data supports or contradicts our hypothe-
sis that stemming and stoplist methods and variations on term frequency metrics im-
pact the quality of term extraction as measured by overlap as described in section 2.

We used several information retrieval related metrics to select the vocabularies for
each project, and then compared the results to the expert vocabularies. As described
above, we used overlap as the measure of similarity. After processing each vocabu-
lary through various automatic term extraction algorithms, we compared the metrics’

 A Comparison of Methods for Automatic Term Extraction for Domain Analysis 277

overlap measures against each other using notched box plots [1]. Notched box plots
are a variation on normal box plots that provide a simple visual demonstration of an
experiment’s statistical significance. Variability in these boxplots is measured with
midspreads, that is, the difference between the first and third quartile. These are
represented in the plot as the top and bottom of the boxes. The line across the middle
of the box is the median. The notch (sloping lines) in the box plot represents the 95%
confidence interval for the median. If the notches for two datasets do not overlap, this
indicates a statistically significant difference. The box plots also show outliers.

3.1 Stemming and Stoplist Impact

It is clear that stemming and stopword removal improved overlaps. While the results
are better on the whole, we found that there are cases when improvement is not guar-
anteed, particularly with stemming. Our experiments used two possible stemming
options –stemmed or not stemmed, and three possible stopword list options – no stop-
list, short stoplist, or long stoplist. For example, Figure 3 provides the results of six
different treatments involving the term frequency metric. BASE is the term frequency
metric with no stoplist or stemming. BIGSTEM is the metric with stemming and the use
of the big stoplist. BIG is the metric with no stemming and the use of the big stoplist.
SHRTSTEM is the metric with stemming and the use of the short stoplist. SHORT is the
metric with no stemming and the use of the short stoplist. STEM is the metric with
stemming and no stoplist. The notched box plots show that the big-stem and short-
stem treatments have significantly higher overlaps than does the base treatment.

In our experiments, stemming improved vocabulary extraction. There are a few
problems that did occur however. Many of the preselected vocabularies did indeed
contain morphological variants of each other, and stemming eliminated any chance of
having two words with the same stem from being selected as terms. For example,
subject 5 chose the words “stem”, “stemming”, and “stemmer” to be three distinct
terms in their expert vocabulary. But for results in which a stemmer was used, the
terms stemming and stemmer were eliminated, and only the term stem was chosen,
resulting in a lower overlap score.

As expected both the short and big stopword lists increased overlap on average, but
in some cases stopword list removal can hurt effectiveness. An obvious example is
medicine, where vitamin types have short names like ‘A’ and ‘B’. Many stopword
removal lists remove single letter words from texts. Most stopword lists also remove
articles and prepositions. The first stopword list we used, a short stoplist, removed
many of these and improved performance. However, it did not include many words
that were on the big stoplist. For instance, “end” and “ending” are both on the big list,
but not on the small list. The vocabulary created by expert 15 included both “end” and
“ending”. The short stoplist performed better than the big stoplist in this case because
it allowed these words to be selected.

Both stoplists took away many candidates that scored highly in the base line run,
like “the” and “of”. The big stoplist found more words than the short stoplist, and
therefore received better overlap results. For instance, subject 12 received a 26%
overlap score versus a 20% overlap score when using the document term frequency
metric alone. Some words that appear in the short stem vocabulary that did not appear
in the big stem vocabulary were “I”, “our”, “you” and “each”. In this case, removing
these words was very effective.

278 W.B. Frakes, G. Kulczycki, and J. Tilley

In most cases, a combination of both stemming and stopword removal was more
effective than either filtering method alone. The big stopword removal list was more
effective overall than the short stopword list, even in conjunction with stemming. The
results of using a big stoplist and stemming were the highest scoring results in our
tests.

Our results show that the highest overlaps were typically produced by using the
combination of the big stoplist and stemming. This was true for the following metrics:
TF, LTF, USN, ED, BD, NTF, DR, CR, CRDA, and TFIDF. For two of the metrics,
TFIDF and BC, the big stoplist in combination with stemming produced the highest
average overlap but the scores were not significantly different. For two other metrics,
DRDA and DC, the combination of the big stoplist and the stemmer did not produce
the highest overlaps, nor were the scores significantly different from the baseline. For
these two metrics, the overlaps were quite low and roughly the same.

As an example, Figure 3 displays the overlap scores for our filtering methods when
the corpus term frequency metric was applied. As discussed above, the baseline per-
forms relatively poorly because common words are not omitted, like ‘the’ and ‘or’. In
fact, ‘the’ was the top word in almost every test. It also performs poorly because
words that have several variants are counted individually. The baseline could not
overcome the problems of word variants and common terms in almost all runs, and
therefore the distribution had a small variability.

The test shows that the big stopword removal (BIG) and the stemming filterer
(STEM) had very similar improvements on the baseline, and the big stopword removal
and stemming in the same test caused significant improvement. The base run had the
smallest midspread because the same set of stopwords caused noise in every run, and
unstemmed words were not consolidated into a single variant.

The outliers in the figure belong to two subjects that remain outliers in almost
every test. The reasons behind these outliers will be discussed later.

Fig. 3. Overlap Results for term frequency
metric

Fig. 4. Metric Overlap Results after applying
big stoplist and stemming

 A Comparison of Methods for Automatic Term Extraction for Domain Analysis 279

3.2 Filtering Methods

Most of the filtering methods produced similar results. For example, Figure 4 displays
the overlap scores for our statistical metrics when stemming is applied to the tokens
and a large set of stopwords are removed. Most of the methods here produced results
of around 20 percent. Four of the metric produce significantly lower results that the
others: DRDA, CRDA, LTFIDF, and DC.

3.3 Consistent Outliers

The first consistent outlier was subject 12. The only comment about the expert voca-
bulary in the domain book is that stemming was not used. The vocabulary terms in the
domain book were presented with scores, leading us to believe that some type of sta-
tistic was computed to derive the vocabulary. Tokens that would typically be removed
by humans, such as “1” and either “used” or “using” were included in the final voca-
bulary. This indicates that some metric was applied to the corpus, and few, if any,
human alterations occurred. If the statistic that was used was term frequency related,
that would account for the high overlap scores. Any differences in vocabularies could
be accounted for by definitions of allowable tokens, pre-processing of data, and varia-
tions of the metric used.

Another possible reason that this subject’s overlap score was consistently high
could be that the corpus used was heavily text oriented and did not include source
code, pictures, or graphs. Source code and diagrams created noise in other subjects’
results. Short variable names from source code and abbreviations from diagrams
made their way into automatically constructed vocabularies, and these terms did not
belong in the expert vocabulary.

The second consistent outlier was subject 9. This subject studied application analy-
sis. It is less obvious why the results were better for this subject than many of the
others, but it is most likely due to reasons similar to subject 12. The subject stated
that the domain vocabulary was created in less than one hour. This is unusual as many
other subjects indicated it took longer than one hour, even though they had signifi-
cantly less words in their domain vocabulary. This indicates that some quick approach
was used. Another note about the domain vocabulary is that it stood out from the
other vocabularies in that it used multiple tenses and capitalization in each term. It
incorporated present and past tense words, singular and plural words, and upper and
lower case words. We can infer that the vocabulary was quickly extracted from the
corpus, most likely using automation. If quickness of vocabulary creation and incon-
sistent tense are indications of automatically constructing a vocabulary, then this
would put this subject into similar circumstances with the previous outlier. Unfortu-
nately we cannot judge the validity of their vocabularies, so we cannot state whether
the high metric scores for these subjects are the result of poor vocabularies or because
these metrics can perform well in certain circumstances.

4 Conclusions

Our results show that the highest overlaps were typically produced by using the com-
bination of the big stoplist and stemming. This was true for the following metrics: TF,

280 W.B. Frakes, G. Kulczycki, and J. Tilley

LTF, USN, ED, BD, NTF, DR, CR, CRDA, and TFIDF. For two of the metrics,
TFIDF and BC, the big stoplist in combination with stemming produced the highest
average overlap, but the scores were not significantly different. For two other metrics,
DRDA and DC, the combination of the big stoplist and the stemmer did not produce
the highest overlaps, nor were the scores significantly different from the baseline. For
these two metrics, the overlaps were quite low and roughly the same.

One obvious conclusion of these experiments is that overlap scores are low, with
the medians ranging from 0 and 20 percent. Some of the methods – specifically
DRDA, CRDA, and DC – had significantly lower overlaps than the other methods.
The DRDA and CRDA metrics both penalize high term frequency. The fact that they
performed poorly confirms previous work that suggests term frequency is one of the
most important factors in term extraction. Distribution consensus (DC) also scored
poorly. The DC metric rewards terms that have a consistent frequency in all docu-
ments, regardless of whether that frequency is high or low. This suggests that there
should be some minimum frequency threshold used in conjunction with the DC me-
tric. Other than the DRDA, CRDA, and DC metrics, there tended to be no significant
differences among the frequency metrics tested. The use of stemming and stopwords
did significantly improve overlaps. However, if the performance of the metric was
poor enough to begin with – as in the case of DC – stemming and stopwords did not
improve overlaps. The practical conclusion would be to use term frequency (TF) as
the metric because it is simplest to calculate, and to augment it with a stoplist and a
stemmer.

References

1. Crawley, M.J.: The R Book. Wiley, West Sussex (2007)
2. Frakes, W.: A Method for Bounding Domains. In: IASTED International Conference

Software Engineering and Applications, Las Vegas, NV, pp. 269–272 (2000)
3. Frakes, W.B.: Stemming Algorithms. In: Frakes, W.B., Baeza-Yates, R. (eds.) Information

Retrieval: Data Structures and Algorithms, pp. 131–160. Prentice Hall, Englewood Cliffs
(1992)

4. Frakes, W.B., Kang, K.: Software Reuse Research: Status and Future. IEEE Transactions
on Software Engineering 31(7), 529–536 (2005)

5. Frakes, W., Prieto-Diaz, R., Fox, C.: DARE: Domain Analysis and Reuse Environment.
Annals of Software Engineering, 125–141 (1998)

6. Justeson, J., Katz, S.: Technical Terminology: Some Linguistic Properties and an Algo-
rithm for Identification in Text. In: Natural Language Engineering, pp. 9–27. IBM Re-
search Division, Almadem (1993)

7. Luhn, H.P.: The Automatic Creation of Literature Abstracts. IBM Journal of Research and
Development 2(2), 159–165 (1958)

8. Noreault, T., McGill, M., Koll, M.: A performance evaluation of similarity measures, doc-
ument term weighting schemes and representations in a Boolean environment. In: Proceed-
ings of the 3rd Annual ACM Conference on Research and Development in Information
Retrieval, pp. 57–76. Butterworth and Co., Cambridge (1980)

9. Porter, M.F.: An Algorithm for Suffix Striping. Program 14(3), 130–137 (1980)

 A Comparison of Methods for Automatic Term Extraction for Domain Analysis 281

10. Sclano, F., Velardi, P.: TermExtractor: A Web Application to Learn the Shared Terminol-
ogy of Emergent Web Communities. In: Gonçalves, R.J., Müller, J.P., Mertins, K., Zelm,
M. (eds.) Enterprise Interoperability II, pp. 287–290. Springer, London (2007)

11. Tilley, J.: A Comparison of Statistical Filtering Methods for Automatic Term Extraction
for Domain Analysis. Masters Thesis, Computer Science Department, Virginia Tech
(2009)

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 282–297, 2014.
© Springer International Publishing Switzerland 2014

Measures for Quality Evaluation of Feature Models

Carla I. M. Bezerra1,2, Rossana M. C. Andrade1,2,*, and José Maria S. Monteiro2

1 Group of Computer Networks, Software Engineering and Systems (GREat),
Campus do Pici - Bloco 942-A - ZIP: 60455-760 - Fortaleza - CE - Brazil

2 Computer Science Department (DC) Federal University of Ceará, UFC Fortaleza, Brazil
{carlabezerra,rossana}@great.ufc.br,

monteiro@lia.ufc.br

Abstract. In Software Product Lines (SPL), quality evaluation is a critical fac-
tor, because an error in a SPL can spread to various end products. However, it is
often proved impractical to ensure the quality of all products of a given SPL
both for economic reasons and the effort needed due to their large number. In
this context, a strategy that can be used is to make quality assessments on the
initial phases of the SPL development. This approach avoids having errors that
could be propagated to the next SPL phases. So, taking into account the feature
model, which is one of the most important artifacts in a SPL since its quality di-
rectly affects the quality of the SPL end products, to assure the quality of the
feature model is one of the current strategies to assess the quality of a SPL. In
this sense, one way to evaluate the feature model is to use measures, which
could be associated with the feature model quality characteristics and their qual-
ity attributes. This paper presents a measures catalog, which can be used to
support the quality evaluation of the feature model. In order to identify these
measures, a systematic mapping is conducted and to validate the measures cata-
log, we perform a peer review with experts in software quality and SPL.
Besides that, to evaluate the use of the proposed catalog, we apply the measures
in three feature models in the domain of mobile applications. The results show
that the proposed measures catalog can be effectively deployed to support the
quality evaluation of the feature models.

Keywords: Software Product Lines, Quality Evaluation, Measures, Feature
Model.

1 Introduction

Among the techniques for software reuse, one that has gained relevance is Software
Product Line (SPL). Clements and Northrop [1] defined SPL as a collection of soft-
ware intensive systems using and sharing a group of common characteristics, which
are managed to meet the needs of a particular segment of the market or mission, and
which are developed from a common set of core assets and a predetermined shape.

In this scenario, quality assessment is essential because an error or inconsistency
in a SPL artifact can be propagated to all its products. It is important to notice that

* Research Scholarship – DT Level 2, sponsored by CNPq.

 Measures for Quality Evaluation of Feature Models 283

quality assessment in SPL presents greater complexity than in traditional software
development due to two aspects: i) different products can be derived from the same
SPL; and ii) different products in the same SPL may require different levels of quality
[2]. In this context, the quality evaluation of all artifacts and software products of a
given SPL proves to be impractical, both for economic reasons and the effort needed
[2].

One of the most important assets of a SPL is the feature model. This artifact cap-
tures the common features and differences among end applications resulting from a
SPL [3]. It models all possible products of a SPL in a given context [4]. Features de-
scribe the functional as well as the quality characteristics of the system under consid-
eration [5]. The feature model serves as a basis for a SPL since all features are set in
this model and, in general, it is one of the first artifacts to be produced in a SPL.
Therefore, evaluating the quality of a feature model is critical to ensure that errors in
the early stages do not spread throughout the SPL.

To evaluate the quality of an artifact, a popular strategy is the use of measures. A
measure is a mapping from an entity to a number or a symbol in order to characterize
a property of the entity. Measures can be part of a quality model. According to the
ISO/IEC 25010 standard (SQuaRE) [6], a quality model categorizes software quality
into characteristics which are further subdivided into subcharacteristics and quality
attributes. Quality characteristics are properties of a software product by which its
quality can be defined and evaluated [7]. Quality attributes are measurable physical or
abstract properties of an entity. The quality measures are used to reflect the quality
characteristics, subcharacteristics or attributes. The SQuaRE model evaluates internal
software quality (software intermediate products) and external software quality (soft-
ware execution) [6]. The feature model is a software intermediate product.

According to Montagud and Abrahão [8], several works have been proposed in or-
der to ensure the quality in SPLs. However, the majority of them focus on the evalua-
tion of quality attributes at the architecture level (e.g., see [9, 10, 11, 12, 13,14]) and a
few methods focus on the evaluation of the relevant domain attributes [2, 15].

This paper presents a measures catalog, which can be used to support the quality
evaluation of the feature model. In order to identify these measures, a literature re-
view using the technique of systematic mapping was conducted. In this review we
identified: quality characteristics, quality attributes, measures and quality models used
to evaluate the quality of the feature model. Then, to validate the measures catalog we
performed a peer review with experts in software quality and SPL. Next, to evaluate
the use of the proposed catalog, we applied the measures in three feature models, in
the domain of mobile applications. The results show that the proposed measures cata-
log can be effectively deployed to support the quality evaluation of the feature model.

The remainder of this paper is organized as follows. Section 2 describes the results
of the systematic mapping and the identified measures. Section 3 discusses the peer
review executed in order to validate the measures catalog. Section 4 presents the use
evaluation of measures in three feature models. Section 5 describes approaches relates
to the quality evaluation of the feature model. Finally, Section 6 concludes this paper
and points out directions for future research.

284 C.I.M. Bezerra, R.M.C. Andrade, and J.M.S. Monteiro

2 Identifying Measures

In order to identify a set of measures that could be used to evaluate the quality of
feature models, a literature review using the technique of systematic mapping was
conducted. A systematic mapping is a type of systematic literature review [16] used
when there are a lot of extensive research questions and there is a need to identify a
high number of papers related to a research area. More specifically, in this review, we
tried to identify: quality characteristics, quality attributes, measures and quality mod-
els that could support feature model quality evaluation.

The protocol used to guide the execution of this systematic mapping was based on
the guidelines defined by [17]. The following steps compose the protocol: defining
research questions, conducting the search for relevant papers, screening of papers,
keywording using abstracts and data extraction.

The research questions (RQ) are defined based on the subject of the conducted sys-
tematic mapping study as follows:

• RQ1: What measures are used to evaluate the quality of the feature model in a SPL
and which of these measures have specifications?

The following secondary research questions are also identified as relevant to our
purpose:

• RQ2: What quality characteristics are used to evaluate the quality of a feature
model?

• RQ3: What quality attributes are used to evaluate the quality of a feature model?
• RQ4: Which of these quality models use measures for quality evaluation?
• RQ5: What feature model notations are used to represent the SPL domain?
• RQ6: Which studies present a tool to evaluate the feature model?

The following search libraries are chosen because they are reliable sources and also
widely used by other studies in the literature: IEEE Computer Society Digital Library;
ACM Digital Library; Science Direct; and Springer Link.In order to perform an au-
tomatic search in the selected digital libraries, we used a search string as follows:

((Quality OR Attribute OR Metric OR Measure OR Characteristic) AND ("Feature
Model" OR “Feature Diagram”) AND ("Product Line" OR "Product Family") AND

("Quality Evaluation" OR "Quality Assessment”))

It is important to notice that some papers selected by this work were already well
known (e.g. see [5, 18]). Then, based on key terms used by these papers we were able
to identify a set of relevant terms to be used in the aforementioned search string.
Searches were conducted in the search libraries from January 26 to 31 of 2014. There-
fore, this mapping is considering only papers that were indexed up in this period.

We define, for the screening of papers, inclusion and exclusion criteria. The studies
that met at least one of the following inclusion criteria were considered: papers that
present quality measures to evaluate the quality of the feature model in SPLs; papers
that present quality models to evaluate the quality of the feature model in SPLs; and

 Measures for Quality Evaluation of Feature Models 285

papers that present quality characteristics, subcharacteristics or attributes related with
the feature model. The studies that met at least one of the following exclusion criteria
were removed: papers that are not related with SPL; introductory papers for special
issues and books; and papers not written in English.

In the keywording of abstracts, we apply the criteria of inclusion and exclusion in
reading the abstracts of all papers. After the selection of primary studies, it was per-
formed the extraction and analysis of the relevant data to the research, reading each
one of the selected papers. In order to guide this data extraction, we examined the
research questions and defined the fields to guide the systematic mapping, as shown
in Table 1. It was also included the kind of facet classification for primary study pro-
posed by Petersen et al. [15]. Our classification scheme includes two facets. The first
facet structured the topic in terms of the research questions. The second one consi-
dered the type of research. For this, we used the classification of research approaches
proposed by Wieringa et al. [18].

Table 1. Data extraction form

RQ Item Possible Answers
- Research Type Facet Validation Research; Evaluation Research; Solution Pro-

posal; Philosophical Papers; Opinion Papers; Experience
Papers

RQ1 Measures Extract measures from papers that are related to the as-
sessment of the feature model in SPL (e.g. Cyclomatic
complexity, Number of Variants)

RQ1 Specifying Measures () Yes () No
RQ2 Quality Characteris-

tics
Extract quality characteristics that are related to the feature
model in SPL (e.g., Maintainability, Reliability, Perfor-
mance Efficiency)

RQ3 Quality Attributes Extract the quality attributes that are related to feature
model in SPL (e.g., Accuracy, Consistency)

RQ4 Quality Model () Yes () No
RQ5 Feature Model Nota-

tion
Extract the feature model notation (e.g. FODA, FORM,
Extended Feature Model)

RQ6 Tools () Yes () No

Initially, the search process was performed using the search string in the search li-
braries defined in section 2. The next step for the selection of primary studies is to
apply selection filters on the search results using the inclusion and exclusion criteria
defined in section 2. The selection of studies consisted of three selection filters:

• #1 Filter: Refine the search excluding duplicated papers;
• #2 Filter: Apply the selection criteria of inclusion and exclusion, defined in the

screening of papers section, in the abstract and title reading; and
• #3 Filter: Apply again the selection criteria of inclusion and exclusion.

Table 2 shows the activities that were performed during the search and selection
of the studies and the number of studies that have remained in the mapping after

286 C.I.M. Bezerra, R.M.C. Andrade, and J.M.S. Monteiro

each filter. Therefore, the search returned papers published prior to January of 2014. In
the first filter, we found 3 duplicate papers. In the second filter, we read the titles and
the abstracts of the articles and applied the inclusion and exclusion criteria, selecting
then 40 papers. Finally, we applied the third filter in the complete reading of 40 papers,
and, by applying the inclusion and exclusion criteria, we selected 17 papers.

Table 2. Results of the studies search and selection

Source Search Results #1 Filter #2 Filter #3 Filter
IEEE 22 20 11 3
ACM 16 16 8 4

Springer 19 18 11 7
Science Direct 22 22 10 3

Total 79 76 40 17

For distribution of the primary studies by type of facet, we can conclude from this
figure that most studies are Evaluation Research (35%), Solution Proposal (41%) and
Philosophical Papers (18%). Most studies have proposed measures, quality characte-
ristics, quality attributes and/or quality models to evaluate the feature model, and part
of the studies has a Solution Proposal with small application examples [19, 20, 21, 22,
23, 24, 25]. Other studies of the Evaluation Research proposed further experiments to
validate their solution, often using cases in the industry [26, 27, 28, 29, 30, 31]. Stu-
dies of the Philosophical Papers type were systematic reviews [7, 32, 33], one review
is about assessing quality in SPL, another revision is on measures for evaluating SPL
and the latest revision involves the study of management of variabilities in SPL. Only
one paper was classified as an Opinion Paper [34] and it presents a comparison of
methods for assessing quality in SPL.

Based on the results of the selected papers, we elaborate a systematic map relating
the studies by facets. We consider a facet the research type and the second facet are
the research questions with information extracted from the form. The classification
was performed after applying the filtering process, i.e. only the final set of studies was
classified. The results of the classification are presented in Figure 1.

Fig. 1. Visualization of the systematic map in the form of a bubble plot

 Measures for Quality Evaluation of Feature Models 287

For the studies classification in a systematic map, each type of facet could answer
more than one research question, and not just one research question, which could
concentrate the studies. Our goal is to analyze all the research questions and identify
opportunities for future work on the subject of quality evaluation of the feature model
in SPL. As shown in Figure 3, the research types Experience Papers and Validation
Research were not classified in the selected papers. Therefore, the line in the graph in
Figure 1 is empty for these two points. The systematic map indicates that the selected
studies focus on Evaluation Research and Solution Proposal facet types. These results
partially answer the research question RQ1, which is the main subject of our study.
Some of the research presents measures to assess the quality of the feature model.
However, none of these papers present a specification for these measures.

After analyzing the types of research, the next step was to answer and analyze the
facet of the research questions. Table 3 consolidates the results that answer the
research questions RQ1, RQ2 and RQ3, and it presents the quality characteristics,
quality attributes, and the measures extracted from the selected papers. The quality
characteristics extracted were classified according to SQuaRE [6], which sets 8
quality characteristics of the software product: Functional Suitability, Reliability,
Performance Efficiency, Usability, Portability, Maintainability, Security and
Compatibility. The quality attributes extracted from the papers (see Table 3) are based
on the standard SQuaRE [6] (e.g. Functional correctness, Functional appropriateness,
Analyzability) and attributes that are specific to the feature model (e.g. Extensibility,
Flexibility, Variability). The quality attributes may not have Measures associated with
them. We can see that most of the quality attributes extracted are related to the quality
characteristic of maintainability (see Table 3), indicating that this characteristic has
several factors that impact the quality of the feature model.

Analyzing the result of the mapping we can see that most of the measures focus on
the quality characteristic of maintainability. In Table 3, we can also see that some
quality attributes have no associated measures (e.g. Ease of use, Accuracy, Resource
utilization, Scalability, Security, Availability, Integrity, Authenticity). This allows
future research to focus on these attributes and to derive new measures to assess the
quality of the feature model. New specific quality attributes were also identified for
feature model quality (e.g. Cognitive complexity, Extensibility, Flexibility, Structural
Complexity, Variability, Accuracy, Scalability). These new attributes are not
represented in the SQuaRE model and they are highlighted in bold in Table 3.

The research question RQ4 is answered by papers that propose quality models that
focus on evaluation of the feature model. Such quality models could be represented
by methods, approaches, or processes to assess the feature model. We found that most
of the papers (65%) proposed a model for quality assessment [12, 19, 20, 21, 22, 23,
24, 25, 26, 30, 34]. Another part of the papers (29%) proposed measures, quality
characteristics and/or quality attributes that did not have an associated quality model.

For papers that have proposed models based on quality measures found in the read-
ing, none have developed a specification for these measurements. Some papers
present the calculation formula of the measure. Others only present the description of
the measures, and others only have the name of the measure. The specification for
the measures should contain, according to the ISO/IEC 9126-3 standard [39], the

288 C.I.M. Bezerra, R.M.C. Andrade, and J.M.S. Monteiro

following items: description of the measure, formula, method of application, interpre-
tation of the measurement value, type of scale, and type of measure.

The lack of such information in proposed measures specification makes it difficult
to collect and analyze these measures in a standardized way, allowing the Domain
Engineer to interpret the measures wrongly, causing collection and analysis errors.

One factor that may affect the quality assessment of the feature model is the type
of feature model notation. Some notations for representing the features and variability
of SPLs have been proposed (e.g. FODA [3], FORM [35], FeatuRSEB [36], Cardinal-
ity-based Feature Model [37]; Extended Feature Model [13], Common Variability
Language [38]). The research question RQ5 was included to examine whether there is
any impact of the feature model notation in quality evaluation. Results present that
25% of the selected papers do not identify the notation in which the feature model is
represented. Most papers (25%) represent the feature model in FODA notation [19,
22, 28, 29, 30]. The second most frequently identified notation in the papers (20%)
was Extended Feature Model [25, 29, 30, 31]. The Extended Feature Model incorpo-
rates quality attributes in the model. Other notations were also identified (30%), for
example: FORM [19, 20], Cardinality-based Feature Model [23, 26], FeatuRSEB
[25], and Common Variability Language [24]. However, none of the papers com-
mented on the influence of the feature model notation in its quality evaluation.

The RQ6 research question corresponds to the identification of tools to support the
model or specified quality measures. We identified only 35% of the papers mentioned
a support tool [20, 26, 27, 28, 29, 30]. The identified tools support the automation of
approaches for quality evaluation of the feature model. Tool support is important in
the evaluation and data collection to make the analysis regarding the quality of the
feature model more precise. Thus, efforts are needed to build tools to support the
evaluation of the quality feature model based on measurements.

3 Validating the Measures Catalog

In the previous section we identified a measures catalog (Table 3) that could be used
to evaluate the quality of feature models. However, it is important to verify if the
measures and the relationships between the measures, the quality characteristics and
the quality attributes are correct. So, we used peer review to evaluating and assessing
the correctness and quality of the proposed measures catalog. Peer review is a type of
software review in which a work product (document, code or other) is examined by its
author and one or more experts, in order to evaluate its technical content and quality.
The technique of peer review was chosen because it is a technique widely used by
academia and industry and has a satisfactory result, because it involves experts.

The peer review was conducted with the following objectives:

• Evaluate if the identified quality characteristics, quality attributes are aligned with
the nomenclature of the SQuaRE quality model;

• Evaluate if the relationship between quality characteristics, quality attributes and
measures are correct;

 Measures for Quality Evaluation of Feature Models 289

Table 3. Measures Catalog: Quality characteristics, quality attributes and measures extracted
from the papers

Characteristics Quality Atributes Measures References

Functional
Suitability

Functional correctness Precision / Recall / F-measure [28]

Functional appropriateness Value of the feature importance (VFI) [20]

Maintainability

Analyzability Number of leaf Features (NLeaf)
Impact of change (IC) [26, 33]

Changeability/
Modifiability

Flexibility of change (FC)
Maintainability index of a feature (MI)
Quantitative impact of functional variable features
on quality attributes (QIFVF)

[8, 23, 25, 26,
29, 32, 33,
34]

Cognitive complexity/
Understandability Cognitive Complexity of a Feature Model (CogC) [26, 27, 33]

Extensibility Feature EXtendibility (FEX)
[8, 19, 25, 33,
34]

Flexibility Flexibility of configuration (FoC)
[24, 26, 29,
32, 33]

Modularity
Single Cyclic Dependent Features (SCDF)
Multiple Cyclic Dependent Features(MCDF) [19]

Reusability Non-Functional Commonality (NFC) [33]

Structural
Complexity

Cyclomatic complexity (CyC)
Configuration Complexity(ConfC)
Constraint Complexity (ConsC)
Structural Complexity (SC)
Compound Complexity (ComC)
Complexity Variability (CVy)
Complexity Variant (CVt)
Cross-tree constraints (CTC)
Coefficient of connectivity-density (CoC)
Depth of tree (DT)
Number of features (NF)
Number of top features (NTop) [26, 27, 33]

Variability

Multiple Hotspot Features (MHoF) /Multiple
Variation points Features
Number of variable features (NVF) / Number of
variants / Number of PL variants
Number of variation points (NVP) / Number of
HotSpots
Ratio of variability (RoV) / PL Variability
Number of valid configurations (NVC)
Rigid Nohotspot Features (RNoF) /Rigid No
Variation points Features
Single Hotspot Features (SHoF) /Single Variation
points Features

[19, 26, 27,
30, 32, 33]

Usability Ease of use - [29]

Performance
Efficiency

Accuracy - [21, 25]
Resource utilisation ´- [20, 23]
Scalability - [8, 31, 33]

Time Behaviour
Documentation Time (DT)
Time when a feature was included into the scope
of the project (TISP)

[20, 22, 29,
33]

Portability Adaptability
Feature Static Adaptability (FSA)
Feature Dynamic Adaptability (FDA) [10, 26]

Reliability
Availability - [8]
Consistency Consistency Ratio (CR) [29, 33]

Security
Authenticity - [20, 29]
Integrity - [20, 33]

290 C.I.M. Bezerra, R.M.C. Andrade, and J.M.S. Monteiro

• Assess if the quality characteristics, quality attributes and measures are in a suita-
ble granularity level. Where the level of granularity of the quality characteristic is
high, the quality attribute is medium and the measures is low; and

• Assess if the identified measures make sense in the feature model context.

Four experts conducted the peer review: two experts in software product quality
and two experts in software product line. In this review, inconsistencies were found
regarding with some aspects: granularity level of quality attributes (e.g. Size and
Length was identified as quality attributes, they were excluded), nomenclature not
aligned with the SQuaRE standard (e.g. Reuse information was identified as quality
attribute, Reusability is the correct use) and incorrect relationships between quality
characteristics (e.g. Accuracy quality attribute related to the Functional Suitability
characteristic, the correct is Accuracy quality attribute related to the Performance Effi-
ciency characteristic) and measures (e.g. measures that do not assess the feature model
as Program Complexity and Complexity of Core Models). The problems found in
peer review were analyzed and corrected. So, after the peer review a new version of
the measures catalog was produced (see Table 3).

4 Evaluating the Use of the Measures Catalog

In order to evaluate the use of the measures catalog, we selected a subset of the meas-
ures in the proposed catalog (showed in Table 4) to apply in three features models.
These feature models were extracted from the SPLOT tool [40]. SPLOT has a reposi-
tory of features models maintained by the SPL academic community. Only a meas-
ures subset were selected, as illustrated in Table 4, because other measures identified
in the mapping needed more information of the construction lifecycle and the evolu-
tion of the feature model, for example, Precision, Recall, F-measure, Value of the
feature importance (VFI), Complexity Variability (CVy), Complexity Variant (CVt),
Documentation Time (DT), time when a feature was included into the scope of the
project (TISP), Feature Static Adaptability (FSA) and Feature Dynamic Adaptability
(FDA), or they did not have complete information for collecting, how to change, time,
customer decisions, among others (Impact of change (IC), Flexibility of change (FC),
Maintainability index of a feature (MI), Quantitative impact of functional variable
features on quality attributes (QIFVF), Structural Complexity (SC) and Consistency
Ratio (CR)). All the measures calculation formulas are presented in Table 4. Meas-
ures calculation formulas were developed according to the descriptions of the papers,
being a contribution of our work.

According to the measures in Table 4, some measures were collected in an auto-
matic way by SPLOT tool (e.g., Number of features, Number of leaf Features, Depth
of tree, Cross-tree constraints, Number of variable features, Ratio of variability,
Number of valid configurations). The other measures not cited in this paper were
collected manually using either the calculation formula or the description provided by
the paper where the measure was cited.

 Measures for Quality Evaluation of Feature Models 291

Table 4. Calculation formulas

Measures Formula
Number of features (NF) NF = ∑ (Number of features of the feature model)
Number of leaf Features
(NLeaf) NLeaf = ∑ (Number of children without features)
Cognitive Complexity (CogC) CogC = ∑ (Number of variants points)
Flexibility of configuration
(FoC)

FoC = NO / NF
NO - Number of Optional Features

Single Cyclic Dependent
Features (SCDF)

SCDF = ∑ (Number of participants in features Constraints
and daughters of variants points with cardinality [1..1])

Multiple Cyclic Dependent
Features (MCDF)

MCDF = ∑ (Number of participants in features constraints
and daughters of variants points with cardinality [1..*])

Feature EXtendibility (FEX) FEX = NLeaf + SCDF + MCDF
Cyclomatic Complexity (CyC) CyC = ∑ (Number of integrity constraints)

Compound Complexity
(ComC)

ComC = NF² + (Rand² + 2Ror² + 3Rcase² + 3Rgr² + 3R²)/9
Rand - Number of mandatory relations
Ror - Number relations grouping OR.
Rcase - Number relations grouping XOR
Rgr - Number relations grouping
R =∑(Number relations grouping) + ∑(Number of Con-
straints)

Cross-tree constraints (CTC)

CTC = NFRI / NF
NFRI - Number of unique features involved in the integrity
constraints of the feature model

Coefficient of connectivity-
density (CoC)

CoC= NE/NF
NE - Number of edges

Depth of tree (DT)
DT = ∑ (Number of features of the longest path from the
root of the feature model)

Number of top features
(NTop)

NTop = ∑ (Number of the descendants of the root)

Non-Functional Commonality
(NFC)

NFC = NCNF / NF
NCNF - Number of common non-functional features (man-
datory)

Multiple Hotspot Features
(MHoF)

MHoF = ∑ (Number of features daughters of variants
points with cardinality [1..*])

Number of valid
configurations (NVC)

NCV = ∑ (Number of possible and valid configurations of
the feature model)

Number of variable features
(NVF)

NVF = (NA + NO) / NF
NA - Number of alternative features

Ratio of variability (RoV) RoV = ∑ (Average number of children of the nodes)

Rigid Nohotspot Features
(RNoF)

RNoF = ∑(Number of features not daughters of variants
points)

Single Hotspot Features
(SHoF)

SHoF = ∑ (Number of features daughters of variants points
with cardinality [1..1])

The features models used in this paper are related to the domain of mobile applica-
tions SPL, as follows:

• Strategy Mobile Game: Dynamic SPL of a multiplayer strategy mobile game;

292 C.I.M. Bezerra, R.M.C. Andrade, and J.M.S. Monteiro

• Mobile Guide (Mobiline): SPL for mobile and context-aware applications [41].
The feature model is specific for the domain of mobile visits guides; and

• Mobile Media 2: SPL for applications that manipulate photo, music, and video on
mobile devices, such as mobile phones.

All measures presented in Table 5 are related to the quality characteristic of main-
tainability. So, we will discuss the measurement results grouping the measures by
quality attribute.

Table 5. Results of measures for each feature model

Measures
Strategy Mo-

bile Game
Mobile Guide

(Mobiline)
Mobile
Media 2

Number of features (NF) 33 51 43
Number of leaf Features (NLeaf) 22 29 32
Cognitive Complexity (CogC) 8 11 7
Flexibility of configuration (FoC) 43 41 34
Single Cyclic Dependent Features (SCDF) 19 8 0
Multiple Cyclic Dependent Features (MCDF) 2 4 2
Feature EXtendibility (FEX) 43 41 34
Cyclomatic Complexity (CyC) 4 9 3
Compound Complexity (ComC) 1125 3263 2168
Cross-tree constraints (CTC) 4 9 3
Coefficient of connectivity-density (CoC) 0,4 0.53 0,6
Depth of tree (DT) 5 6 5
Number of top features (NTop) 6 12 14
Non-Functional Commonality (NFC) 6 8 10
Multiple Hotspot Features (MHoF) 1 12 11
Number of valid configurations (NVC) 9.198 1123200 2.128.89
Number of variable features (NVF) 21 26 20
Ratio of variability (RoV) 1,07E-04 1,50E-02 2,42E-05
Rigid Nohotspot Features (RNoF) 11 23 21
Single Hotspot Features (SHoF) 7 14 9

For the analyzability quality attribute we have the number of leaf features (NLeaf)
measure. Analyzability is the degree of effectiveness and efficiency in which it is
possible to assess the impact on a product or system of an intended change for one or
more of its parts, or to diagnose a product for deficiencies or causes of failures, or to
identify parts to be modified [6]. The higher the NLeaf, the greater the analyzability.
Thus, the Mobile Media feature model has higher analyzability (NLeaf=32).

The modifiability quality attribute was not analyzed since all related measures need
information about feature models changes. For the modularity attribute, the measures
Single Cyclic Dependent Features (SCDF) and Multiple Cyclic Dependent Features
(MCDF) were collected. Modularity is the degree to which a system or computer
program is composed of discrete components such that a change to one component
has minimal impact on other components [6]. The smaller the number of SCDF and
MCDF, better modularity. Therefore, the feature model with the better modularity
was the Mobile Media.

 Measures for Quality Evaluation of Feature Models 293

The reusability quality attribute is related to the Non-Functional Commonality
(NFC) measure. Reusability is the degree in which an asset can be used in more than
one system or in building other assets [6]. The higher the NFC, greater reusability.
Therefore, the feature model that has greater reusability is the Mobile Media
(NFC=10).

The other measures are related to quality attributes that are not present in the
SQuaRE model [6]. These quality attributes are specific to evaluate the feature model
quality (e.g. Cognitive complexity, Extensibility, Flexibility, Structural Complexity,
Variability).

The cognitive complexity attribute is related to the Cognitive Complexity of a Fea-
ture Model (CogC) measure. Cognitive complexity denotes how easy software can be
understood, which relates to traceability of variability in product line engineering
[43]. The feature model that showed better cognitive complexity was Mobile Guide
(CogC=11).

The extensibility quality attribute is related to the Feature EXtendibility (FEX)
measure. Extensibility refers to the ability to extend a feature model and the level of
effort required to implement the extension. The higher the FEX, the higher the exten-
sibility of the feature model [8, 19, 25, 33, 34]. Therefore, the feature model that
presents better extensibility is Mobile Strategy Game (FEX=43).

The flexibility quality attribute is represented by the Flexibility of Configuration
(FoC) measure. Flexibility refers to ability of a feature model to respond to potential
internal or external changes affecting its value delivery, in a timely and cost-effective
manner [24, 26, 29, 32, 33]. The greater the FoC, the better the flexibility. Therefore,
the feature model that has the best flexibility is Mobile Guide (FoC=0,59).

The complexity structural quality attribute is represented by the Cyclomatic com-
plexity (CyC), Compound Complexity (ComC), Cross-tree constraints (CTC),
Coefficient of connectivity-density (CoC), Depth of tree (DT), Number of features
(NF) and Number of top features (NTop) measures. Structural complexity is related to
understanding the structure of the feature model [26, 27, 33]. The lower the value of
the measures of complexity, the lower the complexity of the feature model. Thus, the
feature model that presents the lowest value of most measures of complexity was
Strategy Mobile Game. Therefore, it is the model with the least complexity.

Finally, the variability attribute is represented by the Number of Variable Features
(NVF), Single Hotspot Features (SHoF), Multiple Hotspot Features (MHoF), Rigid
Nohotspot Features (RNoF), Ratio of Variability (RoV) and Number of Valid
Configurations (NVC) measures. Variability refers to the ability of an artefact to be
configured, customized, extended, or changed for use in a specific context [44]. The
lower the value of the measures of variability, the lower the variability. Therefore, the
feature model that presents the lowest variability was Strategy Mobile Game.

We cannot conclude by the measures which model has better maintainability, since
all three feature models obtained good results in at least one quality attribute. For this,
we would need to investigate which attributes have more impact in the quality of the
feature model. It is important to note that we had not identified measures for some
quality characteristics, such as usability and security, for example. So, it is necessary
to propose new measures for these quality characteristics. Besides, some identified

294 C.I.M. Bezerra, R.M.C. Andrade, and J.M.S. Monteiro

measures do not have specification. Then, it is mandatory to provide a complete spe-
cification for these measures. Another complex and relevant problem consists in de-
fining the measure goal, that is, the interpretation of the measurement value. In this
sense, it is necessary to build a historical basis of measurements of various features
models and perform a statistical analysis to define the measure goal.

5 Related Work

In the last years, several proposals to ensure quality in SPL have been proposed.
However, most of these works has focused on the development and validation of
product configurations. Just a few of them have been investigated quality assurance
aspects, such as the definition of quality measures and internal and external evaluation
of quality attributes.

Bagheri and Gasevic [26] proposed a number of structural measures to assess the
quality of feature models in SPLs. They validated their measures using measurement-
theoretic principles. A controlled experimentation was performed in order to analyze
whether these structural measures can be good predictors of the three maintenance
subcharacteristics: analyzability, changeability and understandability. However, the
measures presented in their study belong only to the maintainability quality attribute,
not worrying about other attributes that may influence the quality of the feature model
what we have done in our work. In addition, other measures of maintainability men-
tioned in our work were not covered by Bagheri and Gasevic.

Montagud and Abraham [33] published a systematic review aiming to identify stu-
dies that have quality attributes and/or measures for SPL. These attributes and meas-
ures were classified using a set of criteria that includes the phase of the life cycle in
which the measures are applied. At the end of this study, a catalog was elaborated
identifying measures and quality attributes for all phases of SPL. However, different
from our work, in this catalog, few measures for evaluation of the feature model were
identified. Most measures focus on evaluating the architecture of the domain engi-
neering in SPL. Furthermore, these measures did not provide calculation formula and
not performed evaluation of the use of these measures.

Gamez and Fuentes [45] propose to use cardinality-based feature models and clon-
able features to model and manage the evolution of the structural variability present in
pervasive systems, composed by a large variety of heterogeneous devices. Besides,
they propose a model driven development process to propagate changes made in an
evolved feature model, into existing configurations. Le et al. [46] present an approach
to validate the consistency between commonality and variability (C&V) of a SPL,
expressed in a feature model, and C&V embedded in an implementation. With this
approach, product line engineers can have a method for maintaining C&V consistency
across SPL assets systematically. Both studies evaluate only one aspect of the quality
of the feature model, structural variability [45] and consistency [46].

 Measures for Quality Evaluation of Feature Models 295

6 Conclusion and Future Work

In this paper, we presented a measures catalog, which can be used to support the qual-
ity evaluation of the feature model. In order to identify these measures, a systematic
mapping was conducted. Then, to validate the measures catalog we performed a peer
review with experts in software quality and SPL. Besides that, to evaluate the use of
the proposed catalog, we applied the measures in three feature models. We consoli-
dated calculation formulas for maintainability measures of the feature model. The
results show the proposed measures catalog can be effectively deployed to support the
quality evaluation of the feature model.

As future work we intend to defining a measurement-based approach to evaluate
the quality of the feature model; deriving new measures; developing complete meas-
ures specifications; building a historical measurements base; performing a statistical
analysis; analyzing which measures have the greatest impact on the quality of the
feature model and building a tool to support feature model quality evaluations.

Acknowledgments. First, we would like to thank GREat (Group of Computer Net-
works, Software Engineering and Systems) team for all fruitful discussions through-
out this work. Second, we acknowledge that this work is a partial result of the Ubi-
Structure project supported by CNPq (MCT/CNPq 14/2011 - Universal) under grant
number 481417/2011-7 and the Maximum project supported by FUNCAP
(FAPs/INRIA/INS2i-CNRS 11/2011).

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley Longman Publishing Co., Inc., Boston (2001)

2. Etxeberria, L., Sagardui, G.: Variability Driven Quality Evaluation in Software Product
Lines. In: 12th Software Product Line Conference, pp. 243–252. IEEE, Ireland (2008)

3. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Carne-
gie Mellon University (1990)

4. Benavides, D., Segura, S., Ruiz-Cortes, A.: Automated Analysis of Feature Models 20
years Later: A Literature Review. Information Systems 35(6) (2010)

5. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer (2005)

6. ISO/IEC 25010: System and software engineering - system and software quality require-
ments and evaluation (SQuaRE) - System and software quality models, Switzerland (2011)

7. ISO/IEC 9126-1: Software Engineering – Product Quality, Part 1: Quality Model (2001)
8. Montagud, S.: Abrahão. S.: Gathering Current Knowledge about Quality Evaluation in

Software Product Lines. In: 13th International Software Product Line Conference (SPLC),
San Francisco, USA (2009)

9. Thiel, S.: On the definition of a framework for an architecting process supporting product
family development. In: van der Linden, F.J. (ed.) PFE 2002. LNCS, vol. 2290, pp. 125–
142. Springer, Heidelberg (2002)

296 C.I.M. Bezerra, R.M.C. Andrade, and J.M.S. Monteiro

10. Matinlassi, M., Niemelä, E., Dobrica, L.: Quality-driven architecture design and quality
analysis method: A revolutionary initiation approach to a product line architecture. Tech-
nical Report VTT-PUBS-456, VTT (2002)

11. Olumofin, F.G., Mišic, V.B.: A holistic architecture assessment method for software prod-
uct lines. Information and Software Technology 49, 309–323 (2007)

12. Kim, T., Ko, I., Kang, S., Lee, D.: Extending ATAM to assess product line architecture.
In: 8th IEEE Int. Conference on Computer and Information Technology, Sydney, Austral-
ia, pp. 790–797 (2008)

13. Oliveira, E.A., Gimenes, I.M.S., Maldonado, J.C., Masiero, P.C., Barroca, L.: Systematic
Evaluation of Software Product Line Architectures. Journal of Universal Computer
Science 19(1), 25–52 (2013)

14. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A.: FAMA: Tooling a Framework for
the automated analysis of feature models. In: 1st Internacional Workshop on Variability
Modelling of Software Intensive Systems, pp. 129–134. Springer, Berlin (2007)

15. Etxeberria, L., Sagardui, G.: Evaluation of quality attribute variability in software product
families. In: 15th Annual IEEE International Conference and Workshop on the Engineer-
ing of Computer Based Systems, pp. 255–264 (2008)

16. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software
engineering. In: EASE 2008, pp. 1–8. IET Publications (2008)

17. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Technical Report EBSE-2007-01, School of Computer Science and
Mathematics, Keele University (2007)

18. Wieringa, R., Maiden, N.A.M., Mead, N.R., Rolland, C.: Requirements engineering paper
classification and evaluation criteria: A proposal and a discussion. Requir. Eng. 11(1),
102–107 (2006)

19. Janakiram, D., Rajasree, M.S.: ReQuEst: Requirements-driven quality estimator. ACM
SIGSOFT Software Engineering Notes (2005)

20. Zhang, G., Ye, H., Lin, Y.: Quality attributes assessment for feature-based product confi-
guration in software product line. In: 17th Asia Pacific Software Engineering Conference
(APSEC). IEEE (2010)

21. Lee, K., Kang, K.C.: Usage context as key driver for feature selection. In: Bosch, J., Lee, J.
(eds.) SPLC 2010. LNCS, vol. 6287, pp. 32–46. Springer, Heidelberg (2010)

22. Belategi, L., Sagardui, G., Etxeberria, L.: Model based analysis process for embedded
software product lines. In: International Conference on Software and Systems Process, pp.
53–62. ACM (2011)

23. Gonzalez-Huerta, J., Insfran, E., Abrahao, S.: A Multimodel for Integrating Quality As-
sessment in Model-Driven Engineering. In: 8th International Conference on the Quality of
Information and Communications Technology (QUATIC 2012), Lisbon, Portugal (2012)

24. Duan, Y., Kattepury, A., Getahun, F., Elfakiz, A., Du, W.: Releasing the Power of Varia-
bility: Towards Constraint Driven Quality Assurance. In: IIAI International Conference on
Advanced Applied Informatics (IIAIAAI), pp. 15–20 (2013)

25. Etxeberria, L., Sagardui, G.: Quality assessment in software product lines. In: Mei, H. (ed.)
ICSR 2008. LNCS, vol. 5030, pp. 178–181. Springer, Heidelberg (2008)

26. Bagheri, E., Gasevic, D.: Assessing the maintainability of software product line feature
models using structural metrics. Software Quality Journal, 579–612 (2011)

27. Patzke, T., Becker, M., Steffens, M., Sierszecki, K., Savolainen, J.E., Fogdal, T.: Identify-
ing improvement potential in evolving product line infrastructures: 3 case studies. In: 16th
International Software Product Line Conference, pp. 239–248. ACM (2012)

 Measures for Quality Evaluation of Feature Models 297

28. Bagheri, E., Ensan, F., Gasevic, D.: Decision support for the software product line domain
engineering lifecycle. Automated Software Engineering 19(3), 335–377 (2012)

29. Zhang, G., Ye, H., Lin, Y.: Quality attribute modeling and quality aware product configu-
ration in software product lines. Software Quality Journal, 1–37 (2013)

30. White, J., Benavides, D., Schmidt, D.C., Trinidad, P., Dougherty, B., Ruiz-Cortes, A.: Au-
tomated diagnosis of feature model configurations. Journal of Systems and Software 83(7),
1094–1107 (2010)

31. White, J., Galindo, J.A., Saxena, T., Dougherty, B., Benavides, D., Schmidt, D.C.: Evolv-
ing feature model configurations in software product lines. Journal of Systems and Soft-
ware 87, 119–136 (2014)

32. Chen, L., Ali Babar, M.: A systematic review of evaluation of variability management ap-
proaches in software product lines. Information and Software Technology 53(4), 344–362
(2011)

33. Montagud, S., Abrahão, S., Insfran, E.: A systematic review of quality attributes and
measures for software product lines. Software Quality Journal, 425–486 (2012)

34. Etxeberria, L., Sagardui, G., Belategi, L.: Quality aware software product line engineering.
Journal of the Brazilian Computer Society 14(1), 57–69 (2008)

35. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse
method with domain- specific reference architectures. Annals of Software Engineer-
ing 5(1), 143–168 (1998)

36. Griss, M.L., Favaro, J., d’Alessandro, M.: Integrating feature modeling with the RSEB. In:
Fifth International Conference on Software Reuse, pp. 76–85. IEEE (1998)

37. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature models. In:
Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Heidelberg (2004)

38. Fleurey, F., Haugen, Ø., Møller-Pedersen, B., Svendsen, A., Zhang, X.: Standardizing Va-
riability – Challenges and Solutions. In: Ober, I., Ober, I. (eds.) SDL 2011. LNCS,
vol. 7083, pp. 233–246. Springer, Heidelberg (2011)

39. ISO/IEC TR 9126-3: Software Engineering – Product Quality - Part 3: Internal Metrics,
Geneva: International Organization for Standardization (2002)

40. Mendonca, M., Branco, M., Cowan, D.: S.P.L.O.T. - Software Product Lines Online
Tools. In: 24th ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, Orlando, Florida, USA (2009)

41. Marinho, F.G., Andrade, R.M., Werner, C., Viana, W., Maia, M.E., Rocha, L.S., Teixeira,
E., Filho, J.B.F., Dantas, V.L., Lima, F., Aguiar, S.: Mobiline: A nested software product
line for the domain of mobile and context-aware applications. Science of Computer Pro-
gramming (2012)

42. Bosch, J.: Software Variability Management. In: 26th International Conference on Soft-
ware Engineering, Scotland, UK, pp. 720–721 (2004)

43. Štuikys, V., Damaševicius, R.: Measuring complexity of domain models represented by
feature diagrams. Information Technology and Control 38(3), 179–187 (2009)

44. Chen, L., Ali Babar, M., Ali, N.: Variability management in software product lines: A sys-
tematic review. In: 13th International Software Product Line Conference, pp. 81–90. Car-
negie Mellon University (2009)

45. Gamez, N., Fuentes, L.: Software product line evolution with cardinality-based feature
models. In: Schmid, K. (ed.) ICSR 2011. LNCS, vol. 6727, pp. 102–118. Springer, Hei-
delberg (2011)

46. Le, D.M., Lee, H., Kang, K.C., Keun, L.: Validating consistency between a feature model
and its implementation. In: Favaro, J., Morisio, M. (eds.) ICSR 2013. LNCS, vol. 7925,
pp. 1–16. Springer, Heidelberg (2013)

A Metric for Functional Reusability of Services

Felix Mohr

Department of Computer Science, University of Paderborn, Germany
felix.mohr@uni-paderborn.de

Abstract. Services are self-contained software components that can be
used platform independent and that aim at maximizing software reuse. A
basic concern in service oriented architectures is to measure the reusabil-
ity of services. One of the most important qualities is the functional
reusability, which indicates how relevant the task is that a service solves.
Current metrics for functional reusability of software, however, have very
little explanatory power and do not accomplish this goal.

This paper presents a new approach to estimate the functional reusabil-
ity of services based on their relevance . To this end, it defines the degree
to which a service enables the execution of other services as its contri-
bution. Based on the contribution, relevance of services is defined as an
estimation for their functional reusability. Explanatory power is obtained
by normalizing relevance values with a reference service. The application
of the metric to a service test set confirms its supposed capabilities.

Keywords: reusability, metric, semantic descriptions, services, func-
tionality.

1 Introduction

The past years have shown a conceptual shift in software development toward
the service paradigm. Services are self contained software components that can
be used platform independent and that aim at maximizing software reuse.

A basic concern in service oriented architectures is to measure the functional
reusability of the services in general or for specific tasks. Such a metric would

– support the analysis of relations among services within a service network,
– allow to estimate the potential impact of new services, and
– serve as a heuristic to determine services that are relevant for a specific task.

The insight that is achieved by such a metric is depicted in Fig. 1. Usually, we
have no knowledge about how services in a network are related; they are merely
members of a homogeneous set (Fig. 1a). Analyzing their specifications helps us
recognize relations between them and identify reuse potential (Fig. 1b).

Measuring the functional reusability of software has been done before, but
the used metrics are either unsuitable for services or lack expressiveness. There
are two key problems. First, most metrics are based on code analysis, e.g. the
Halstead metric and others, but code analysis is contradictory to the service

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 298–313, 2014.
c© Springer International Publishing Switzerland 2014

A Metric for Functional Reusability of Services 299

(a) No knowledge about services relations (b) Insights in how service are related

Fig. 1. A metric for reusability helps us understand how services are related

paradigm [8]. Second, most metrics analyze reuse rather than reusability, but
it is unclear what reuse can say about reusability. Reusability metrics for black
box components do exist [5,12,13] but are notoriously inexpressive; that is, they
do effectively not allow to draw any conclusion regarding functional reusability.

This paper presents a new approach to estimate the functional reusability of
services based on their relevance . I suppose that the reusability of a service
s depends on how many other services can do something with the output of s
and on how many other services have outputs that, in turn, make s work. We
can then capture the degree to which services contribute to others in a service
contribution graph similar to the one in Fig. 1b. The contribution graph is then
used to estimate the relevance of services: First, we determine the impact of a
service as its recursive contribution to other services. Second, we determine the
applicability of a service as the recursive contribution of other services to it.
The relevance finally combines the impact and the applicability.

I conducted an experimental analysis of the relevance metric using a service
test set and exploit these experiments to discuss its contributions and shortcom-
ings. The experiments show that we can use the metric to (i) make assertions
about the suitability of automation approaches, (ii) cluster services into domains,
(iii) show relationships among services and their strengths, (iv) reveal isolated
services, and (v) give suggestions for the development of new services with high
reuse potential. However, we can also see limitations of the relevance metric
where service specifications are too vague.

Summarizing, this paper contributes to the question of how functional reusabil-
ity of services can be measured. I present relevance as a new metric for that
purpose based on their impact and applicability. I evaluate the metric with a
test set and discuss its capabilities and limitations.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 introduces the formal problem definition, and Section 4 explains the
relevance metric. The evaluation is described in Section 5.

2 Related Work

This paper is not about reuse but about reusability; more specifically, a metric
for functional reusability. Reuse means that there is a software artifact s1 that

300 F. Mohr

actually is employing another existing software artifact s2. Reusability, in con-
trast, talks about the potential that, for a software artifact s, there is a set S of
yet nonexistent software artifacts that would use s. Hence, reusability is dedi-
cated to what could be done and not to what is done with a software component.
Much has been said about principles of software reuse and reusability [3,4,7,9],
but that debate is mostly about how to increase reusability through sophisti-
cated design. In contrast, I assume a certain service architecture as given and
(try to) estimate the reusability under these conditions. In my previous work, I
give a corresponding vision statement but do not present a concrete metric [10].

In contrast to classical reuse metrics, metrics that estimate the functional
reusability of black box components are alarmingly poorly studied. I briefly
discuss three approaches that are closest to what I aim at. A comprehensive
and exhaustive survey of these and other works is found in [1]. Note that I
use the terms service and component synonymously in this paper, because the
distinguishing technical features are irrelevant for the discussion.

Washisaki measures the reusability of a component through the existence of
meta-information [13]. This binary metric, which is called Existence of Meta-
Information (EMI), does not take into account the meta-information itself but
only whether one exists or not. However, it is highly questionable what can
be deduced from this information. My paper, in contrast, analyzes that meta-
information itself in order to retrieve reusability information.

Rotaru defines a reusability measure based on the component interface [12].
The problem is that the presented metrics are notoriously vague, because they
are completely based on the number of parameters in an interface. I acknowledge
that reusability metrics always underlie estimations, but the metrics presented
in that paper are much too weak to have any explanatory power.

Choi defines functional reusability in terms of commonality [5]. The common-
ality of operation op is computed by ”the number of service consumers who want
to user the functionality of op” divided by the ”total number of service consumers
in the business domain”. It is not clear to us how the first number is obtained,
but, more importantly, this is a metric for reuse rather than reusability.

A field that is closely related to this research is specification matching. Spec-
ification matching has been heavily studied [11]. It is related to my approach
in that it also compares service descriptions in order to identify similarities.
However, there are conceptual differences as visualized by Fig. 2. On one hand,
matching addresses the look-up problem of services; that is, which existing ser-
vices are similar or equal to a desired service (Fig. 2a)? On the other hand, we
are interested in determining the “probability” that a service s1 is used together
with another service s2 (Fig. 2b). In fact, we use specification matching in order
to estimate the contribution of services; still, the examined question is different.

Some approaches for automated service composition use dependency graphs,
which are related to the contribution graph in this paper. Brogi et al. construct
a dependency graph consisting of service and data nodes and connects them
according to the service description [2]. Apart from their semantic difference,
dependency graphs and contribution graphs differ in their purpose: Dependency

A Metric for Functional Reusability of Services 301

(a) Service s∗ matches the query sq. (b) Service sq contributes to s∗.

Fig. 2. Matching and reusability analysis are related but pursue different goals

graphs are used to provide a structural basis for a composition algorithm; hence,
the goal is to solve an individual composition problem. In contrast, we use the
contribution graph as a logical basis for metrics that aim at making assertions
about reusability, independent from a concrete problem.

3 Problem Description

The ideal metric for functional reusability is roughly the number of problems
for whose solution a service may be used. Considering the probability of their
occurrence, we may formalize functional reusability as follows:

r∗(s) =
∑

p∈Ps

probabilityOfOccurrence(p) (1)

where P is the set of all composition problems, and Ps ⊆ P is the set of problems
for which there exists a solution that contains s; I refer to [10] for details.

I briefly introduce some formal definitions to obtain commonsense about the
problems in P . In this paper, I use a state-based setting, in which services are
described through inputs, outputs, preconditions, and effects (IOPE), and where
problems are characterized by an initial state and a goal state that must be
reached from the initial state through the application of services.

Definition 1. A service description is a tuple (I ,O ,P ,E). I and O are dis-
joint sets of input and output variables. P and E describe the precondition and
effect of the service in first-order logic formulas without quantifiers or functions.
Variables in P must be in I; variables in E must be in I ∪O.

As an example, consider a service getAvailability that determines the avail-
ability of a book. The service has one input b for the ISBN of a book and one
output a for the availability info; we have I={b} and O={a}. The precondition
is P = Book(b) and requires that the object passed to the input b is known
to have the type Book. The effect is E = HasAvInfo(b, a) and assures that the
object where the output a is stored contains the info whether b is available.

I acknowledge that this model can and should be discussed, so I briefly point
out my positions regarding two frequent topics. First, it is true that the exis-
tence of semantic descriptions is currently an issue. However, there is a notable
shift in the programming style towards workflows, replacing technically oriented

302 F. Mohr

programs [6]. Workflows are much more suitable for business domain specific de-
scriptions than the former technical components, which gives new incentives for
semantic description of components. Second, a formalization through IOPE may
not always be adequate. While this may be true for the description of complex
services, it is the by far most established service description paradigm besides
finite state machines (FSM), and even FSM service representations can often be
efficiently transformed into an IOPE representation.

Apart from this discussion, the approach in this paper is not limited to se-
mantic descriptions. In fact, we applied the presented metrics to common Java
libraries and obtained interesting insights from that. The explanatory power of
the metric, however, is closely related to the explanatory power of the underlying
service descriptions and, therefore, the real potential of the proposed method is
certainly an environment of semantically described software/services.

The service description in mind, we define a composition problem as follows:

Definition 2. A composition problem is a tuple (S , pre, post) where pre is a
precondition that must be transformed into the postcondition post by arranging
services from a set S described as in Def. 1. pre and post are first-order logic
formulas without quantifiers and functions.

For simplicity, we leave a knowledge base out of the model. A knowledge base
is usually used to express ontological information and logical implications in the
model but is not needed to explain the idea of this paper.

It is quite evident that the ideal reusability metric r∗ cannot be computed in
practice, so the task is to find a function that estimates it [10]. This is in part
because the number of potential problems is very large and estimating their
occurrence is not a trivial task. So, for a set S of services, the task is to find an
efficiently computable function r : S → R+ that comes reasonably close to r∗.
The rest of this paper is dedicated to explain and evaluate such an estimation
function based on the relevance of services.

4 Estimating Reusability through Relevance

This section introduces relevance of services as an estimate for their reusability. I
argue that a service s is most likely to be reused if there are many other services
that can do something with the effect of s; we say that s contributes to those
services. Likewise, there should be many other services that contribute to the
service itself and, thus, enable its execution. We capture these two directions of
contribution in terms of impact and applicability of a service and merge them
into the final relevance metric. I argue that the higher the relevance of a service,
the higher the number of problems that can be solved with it, and that, therefore,
relevance is a reasonable estimator for reusability.

4.1 The Service Contribution Graph

We capture the direct relation of two services in a service contribution graph.
Given a set of services S with descriptions as in Def. 1, a service contribution

A Metric for Functional Reusability of Services 303

Fig. 3. An exemplary contribution graph for 6 services

graph is a directed (cyclic) graph (V,E) with exactly one node in V for every
service in S and with an edge (si, sj) ∈ E if and only if at least one literal in the
effect of si and the preconditions sj can be unified. Intuitively, a link between
si and sj means that the effect of si has something to do with the precondition
of sj , and, thus, edges indicate a chance that the services represented by the
linked nodes may be invoked one after each other in a composition. Note that
the contribution graph, since it only relies on completely formalized information,
can and should be constructed automatically from the set of specifications.

To give consideration to the fact that contributions of services to the precon-
ditions of other services usually vary, the edges in the service contribution graph
should carry a weight. A weight function w : E → [0, 1] indicates for an edge
(u, v) to which degree service u contributes to service v. That is, to which extent
the effects of u cover the preconditions of v. An example is depicted in Fig. 3.
The weight function is usually implemented through a specification matching
algorithm [11] and should take into account the explanatory power of the differ-
ent description elements; e.g. it should give more weight to ontological concept
matching than to data type matching.

Experiences from the past or expert knowledge should be captured in a second
model but not in the contribution graph. Of course, if we already know that a
service is already used together with another one, we would want to exploit this
knowledge. Likewise, if two services are connected in the contribution graph and
we know that they will never be used together, we may be tempted to delete
the edge from the graph. However, it is the formal specification that allows the
deduction that s2 can do something with the effect of s1 and that makes the edge
between s1 and s2 appear in the graph. Instead of modifying the contribution
graph, we should refine the semantic description in order to prevent the undesired
deduction. Section 5.3 discusses this point in more detail.

4.2 Service Impact

I understand the impact of a service as a product of its contribution to the
preconditions of other services and the impact of those services. For example,
if a service s1 only contributes to a service s2 that does not contribute to any
other service, s1 is probably less reusable than a service s3 that contributes to a

304 F. Mohr

service s4 that contributes to five services, each of which contributing to another
five services. The impact of a service is then a recursive metric.

Additionally, an expert may announce (estimate) an unconditional impact for
every service. Such an estimation would not depend on other services but be
rather a rule of thumb that expresses the ”feeling” that an expert has towards
the reusability of a service. If the expert does not define this value, it is set to
a default constant; the choice of this constant does not matter as long as the
expert relates his explicit estimations to this number (cf. Section 4.3).

The fact that the contribution graph is usually cyclic is not a serious issue
for the recursive character of the impact metric. When defining impact, we can
reasonably assume a recursion cancel if a recursion path considers a service, in
particular itself, for the second time. A good argument to do this is that we want
to measure the impact of a service by its benefits to other services. Otherwise
the impact of a service value would be increased only due to the possibility to
invoke itself, which does not make sense. There will be compositions that are
excluded by this assumption, but this should not be the usual case.

To compute the impact of a service s, I utilize an impact tree. Every node in
that tree corresponds to a sequence of services, and the root corresponds to the
sequence of length 1 that is just the service s itself. There is an edge from node
(s1, . . . , sn) to node (s1, . . . , sn+1) if (sn, sn+1) is an edge in the contribution
graph and if sn+1 is not already in {s1, . . . , sn}. Fig. 4 depicts the impact tree
for service s1 from the above contribution graph. Taking such a tree, the impact
of a service s sums up the expert’s impact estimation (or default value) of each
node, weighted with the multiplied path weights from that node to the root.

Since the impact tree can be very large, the depth up to which it is computed
explicitly should be bound. An edge from u to v is then only inserted if the path
from u to the root has length at most a predefined bound k ∈ N.

We obtain the impact of a service s for depth k by the following formula:

impact(s, k) =

{
uci(s) +

∑

s′∈c(s)

w(s, s′) · impact(s′, k − 1) if k > 0

uci(s) else
(2)

where uci(s) ∈ R+ is the experts’ estimation for the unconditional impact and
c(s) the child nodes of service s in the impact tree1. Since the maximal recursion
depth k will usually be a parameter that is chosen once and then remains un-
changed, we denote the impact value of a service as impactk(s) := impact(s, k).

Note that the alleged redundancy of execution paths that are merely permu-
tations of each other is intended. For example, a service s0 may contribute to
both s1 and s2 while in turn s1 contributes to s2 and vice versa. Thereby, the
impact of s0 is increased twice, once by s1, s2 and once for s2, s1. This may seem
unreasonable at first, but it is actually quite what we want. The edge (s1, s2)
only has a high weight if s1 contributes for s2 and vice versa. If one of the paths
does not make sense, it will have a low weight anyway and will only marginally
affect the impact value of s0.

1 More precisely, the last service in the child, since nodes are service sequences.

A Metric for Functional Reusability of Services 305

Fig. 4. The impact tree of service s1

4.3 Normalized Impact

The impact itself has a low explanatory power, so it makes sense to normalize it.
Indeed, there is a good intuition for the absolute values in the contribution graph,
but the absolute impact values are quite unintuitive. Without a reference point,
it is unclear whether a particular value, say 4.71, is good or bad. In particular,
without normalization, the impact strongly depends on the arbitrary choice of
the default constant for the unconditional impact.

Therefore, we relate the impact values of service to the impact of a reference
service s∗. The reference service is a preselected service that is, in the eyes of
the experts, considered acceptable with respect to its reusability. There is no
need that the reference service is part of the service environment. It may also
be part of a different service environment that may, of course, even be artificial.
The reference value must be computed with the same measure impactk. Given
a service s∗, we denote the normalized impact of a service s as follows:

||impactk||(s) =
impactk(s)

impactk(s
∗)

(3)

As a result, the normalized impact not only increases the explanatory power
but also is agnostic to the choice of the default constant for the unconditional
impact. The explanatory power obviously comes from relating impact values to
a reference value and makes its interpretation intuitive. In addition, relating
the impact value to a reference service makes the concrete value of the default
unconditional impact irrelevant. For example, if the default value for the un-
conditional impact is 1, the expert assigns a value of 2 to a service in order to
express that he thinks that the ”intuitive impact” of a service is twice as high
as the common impact. The same relation would be specified if the default was
10 and the expert would assign a value of 20. While the unnormalized impact of
the service is different for the two cases, the normalized impact is identical.

Proposition 1. The normalized impact of a service is independent from the
choice of the default value of the unconditional impact as long as it is not zero.

306 F. Mohr

Proof. Let the default value for uci be a constant c ∈ R different from 0. The
above metric impactk(s) can be compactly rewritten in a non-recursive fashion
as a sum over nodes Nk(s) in the impact tree of s with depth bound k, where
n0 is the root node and Path(n0, n) are the edges that exist between n0 and n:

impactk (s) =
∑

n∈Nk(s)

uci(n) ·
∏

(u,v)∈Path(n0,n)

w(u, v) (4)

Since the expert has defined the unconditional impact of nodes n in relation to
the default value, we have uci(n) = c·uci ′(n), where uci ′(n) is the relation to the
default value that the expert wanted to express. The constant c can be factored
out and then cancels down in the quotient of impactk(s) and impactk(s

∗). �

4.4 Discounts and Penalties for Subsequent Services

The above formula applies discounts only on the basis of the edge weights in the
contribution graph. However, we may want to insert additional discounts.

First, we may want to assign a fixed discount per edge in the impact graph in
order to make the model more conservative. For example, given a path (s1, s2, s3)
in the impact graph of s1, we may want to reduce the impact of s2 and s3 for
the impact of s1, no matter what the contributions are. The reason is that we
do not want to blindly trust the specifications of the services with respect to
their functional interoperability. Even if s1 has a contribution of 1 to s2 and
s2 has a contribution of 1 to s3, there is still the risk that the model abstracts
away aspects that are important for functional reusability. We can consider this
risk in our model by discounting the value of each node n by δ ∈ [0, 1] for every
service before it on the path.

Second, we may want to give a special penalty to leaf services in the impact
tree that would not be expanded for a higher depth bound. Due to the depth
bound k, we ignore possible compositions of length greater than k. The problem
is that we may weight two services s and s′ equally, while s is a dead end (no
outgoing edges in the contribution graph) and s′ gives access to several other
services. We can consider this problem in our model by discounting the value of
a leaf service in depth k by ε ∈ [0, 1] if it has no successor in the contribution
graph. This allows us to make a difference between compositions with a service at
position k that enables or prevents to append more services to the composition.

Joining the two modifications, we obtain the following impact formula:

impactk (s) =
∑

n∈Nk(s)

uci(n) ·
⎛

⎝
∏

(u,v)∈Path(n0,n)

w(u, v) · (1 − δ)

⎞

⎠ · (1 − ε)leaf (n) (5)

where leaf(n) is 1 if n is a leaf node and the corresponding service has no outgoing
edge in the contribution graph and 0 otherwise.

Note that the metric in (4) is just a special case of the parametrizable metric
(5). We obtain the initial metric by setting both δ and ε to zero, which hence
means to deactivate these discounts.

A Metric for Functional Reusability of Services 307

4.5 The Counterpart of Impact: Applicability

The impact of a service captures the number of possibilities that are opened by
it, but reusability also depends on the chance that a service can be used at all.
For example, two services s1 and s2 may have the same impact, but there are no
services that contribute to s1 while there are many services that contribute to
s2; then s2 has obviously a higher reusability because the goals reachable from
s2 can be reached from more initial situations.

I describe this indicator as the applicability of a service and compute it in
the same recursive way as the impact. That is, for each service s, we define
an applicability tree that has (s) as its root and with edges defined as follows.
There is an edge from node (s1, . . . , sn) to node (s1, . . . , sn+1) if (sn+1, sn) is
an edge in the contribution graph and if sn+1 is not already in {s1, . . . , sn}. In
other words, the applicability tree is defined through the backward application
of edges in the contribution graph. The formula to compute the applicability of
a service, which we denote by applicability k(s), equals the impact impactk(s),
including the discounts and penalties, but with the underlying graph being the
applicability tree instead of the impact tree.

4.6 Merging Impact and Applicability Into Relevance

In order to obtain a metric that estimates reusability, I combine impact and
applicability and merge them into the relevance of a service. That is, I define
relevancek(s) that aggregates the indicators impactk(s) and applicability k(s).

There are lots of possibilities how the relevance can be computed, but it is
reasonable to use a multiplicative aggregation. On one hand, low applicability
of a service means that it only occurs at the beginning of compositions, because
there are no services that enable it. On the other hand, low impact of a service
means that it only occurs at the end of compositions, because it does not enable
other services that could follow it. Consequently, the relevance of a service should
be high if both its impact and applicability are high, it should be medium if one
of the two is high and the other is low, and it should be low if both are low. For
example, a reasonable choice is the product of the applicability and the impact.

In the following, I compute the relevance as the geometric mean of the applica-
bility and the impact. That is, relevancek(s) =

√
applicabilityk(s) · impactk(s).

Obviously, for this choice of relevancek, the normalized relevance ||relevancek||
is the relevance relevancek applied with the normalized applicability and nor-
malized impact.

5 Preliminary Evaluation

In this section, I explain the evaluation setting, describe the observations made
and explain them where necessary, and finally interpret and discuss the observa-
tions. Impact, applicability, and relevance refer to their normalized value. Note
that the evaluation is based only on synthetical data and, therefore, should be
considered preliminary; a deep analysis requires exhaustive case studies.

308 F. Mohr

Fig. 5. Contribution graph for an artificial network with reference service s∗

5.1 Evaluation Setting

I applied the metric to the publicly available set of service descriptions OWL-S
TC4 2. This set contains 1083 semantically described services, which belong to
different domains (book ordering, localization, etc). As the name suggests, the
services are described in OWL-S and, hence, fit into the IOPE service model.
The service model is special in the sense that it has no ”complex” preconditions
and effects that exceed ontological concepts and that preconditions and effects
are literal conjunctions.

To obtain a reference service, I created an artificial service environment where
every service completely enables the preconditions of two other services. This
network is computed for a particular k ∈ N that shall be used for the computation
of the metrics. An example of this network for k = 2 is depicted in Fig. 5 with
s∗ as reference service. The graph is extended by s1, s2, s11, and s12 in order to
test the penalty ε. It would have been an option to just choose a service from
the OLW-S TC4 set, but the idea was to evaluate that set according to my
understanding of good relevance.

I computed the metric with k = 3 and different values for δ and ε. I chose
k = 3, because the computation for k = 4 was too resource intensive and inter-
esting conclusions could also be drawn with this small depth bound. I ran the
experiments for all configurations (δ, ε) ∈ {0.0, 0.1, . . . , 0.9}2 and uci = 1.

5.2 Observations

Our first observation is that a significant part of the services is completely iso-
lated from any other service. There are 286 (26.4%) services that have neither
an outgoing nor an ingoing edge in the contribution graph; it is safe to say that
these services are useless for composition 3. The following results are based on
the adjusted service repository that does not contain these services.

Fig. 6 summarizes the values for impact, applicability, and relevance of the
remaining 797 services according to the choices of δ and ε respectively. The gray

2 At time of writing, this data set is available at
http://projects.semwebcentral.org/frs/?group_id=89&release_id=380

3 Of course, they may be used in a composition, but its specification does not give
reason to believe that this would make sense.

http://projects.semwebcentral.org/frs/?group_id=89&release_id=380

A Metric for Functional Reusability of Services 309

(a) discount factor δ (b) penalty factor ε

(c) discount factor δ (d) penalty factor ε

(e) discount factor δ (f) penalty factor ε

Fig. 6. Summary of relevance values depending on discount and penalty factors

area is the inter-quartile range (contains 50% of the services for the respective
factor) and reveals a moderate dispersion of impacts among the majority of the
services. However, there is a significant increase of impact in the upper quartile.
We use the mean instead of a maximum to avoid out-scaling implied by this
dispersion, but I shall mention that the maximum impact for δ = ε = 0 is
596,54. Figures on the left assume ε = 0, and figures on the right assume δ = 0.

The left diagrams of Fig. 6 show that the choice of δ has a huge implica-
tion for the relevance. Fig. 6a summarizes the fact that the impact of a service

310 F. Mohr

monotonically decreases with increasing δ except for services with a very low
impact value. The reason is the following: A service with a high (undiscounted)
impact value has many edges at level 2 and 3 in its impact graph, which are less
weighted with increasing δ. At the same time, the absence of such edges becomes
less significant for services with weak impact. We also observe in the decreasing
mean that the dispersion significantly decreases with increasing δ. The same
argument applies for the applicability and, consequently, for the relevance as
shown in Fig. 6c and Fig. 6e. Remarkably, the applicability is much higher than
the impact, which intuitively means that there are more services providing the
inputs necessary for a service s than there are services using the output of s.

In contrast, the right diagrams of Fig. 6 show that the influence of ε on the
service relevance is rather small. Similar to δ, an increase of ε implies a monotone
decrease of impact; in fact, there is no service in the service set that improves
its impact through this coefficient4. However, the penalties are rather small and,
even though there are individual services whose impact decrease up to 50% for
ε = 0.9 and the impact average decreases by 25% for ε = 0.9, the overall discount
is relatively moderate. Also, the dispersion of the impact is hardly affected by
increasing ε. The applicability is not affected at all, which means that there are
no (backward) paths in the contribution graph of length exactly k.

We can also see that particularly the more relevant services seem to have
a lower applicability. The applicability is generally very high, and one could
reasonable expect that the applicability of the relevant services is at least 1
(while it is at least 4 for at least 50% of the services). However, the relevance
is significantly smaller than the impact, in particular considering the mean and
the median values. This means that there is a significant number of services that
have a high impact but a bad applicability, which discounts their relevance.

For the sake of completeness, I provide the joint results of the discount and the
penalty factors. Fig. 7 depicts the development of the impact and the relevance
for the case that δ = ε. The results are roughly the same as for δ with a slight
linearization imposed by ε. I do not show the diagram for applicability since the
applicability is not affected by ε and, hence, would yield Fig. 6d.

Apart from the absolute influence of δ and ε, the relative values of impact,
applicability, and relevance are widely independent from these parameters. That
is, the ordering of services with respect to these values is independent from the
parameters. This observation is not visible in the above figures, but I checked
that the relative number of pairs of services {s1, s2} for which r(s1) ≥ r(s2)
(for applicability and relevance respectively) has the same truth value for all
configurations (δ, ε) is between 90% and 99%. While this result holds for the
particular dataset, I do not claim that it is also valid for other repositories.

5.3 Discussion

Some of the services have very high relevance values, which may generally
have both a positive or negative meaning. A high relevance value implies that,

4 This would be possible because also the reference service is discounted by ε.

A Metric for Functional Reusability of Services 311

(a) both factors δ, ε (b) both factors δ, ε

Fig. 7. Impact and relevance of the examined repository for the case δ = ε

according to the specification, the service has probably a very high functional
reusability. This can mean that the service has really a very high reusability or
that it is underspecified. For example, a service s1 may have a contribution of 1
for service s2 even though they would never be used together; the precondition
of s2 is underspecified. Of course, it can also be a mixture of the two.

In our case, it is in fact a mixture of the two reasons. A brief look at the services
shows that many of them could be used together. However, the preconditions
and effects of the services are merely (semantic) types and do not really specify
what computation they perform. This implies that many services fit together
according to their specifications, but they would not necessarily be used together
in practice.

This does, of course, not mean that the metric is useless in this scenario; quite
the contrary. First, without the metric, the very discovery and analysis of the
underspecification is cumbersome. Second, even if services are underspecified, it
still helps derive insights about the applicability of automated service composi-
tion. The good relevance values for many of the services tell us that there are
many service compositions constructable by automated approaches. The only
problem is that we must expect that the results of such a composition may
not always be satisfactory due to underspecification of services; so, automation
techniques are applicable with concessions regarding the quality of composition
results. Concludingly, the metric provides valuable information about reusability
that becomes even more valuable with increasing quality of service descriptions.

Apart from this, we can see that the presented concepts give great insights into
the relations within a service network. The domain detection as a side-effect of
the contribution graph allows us to partition the service set according to topics.
It may be interesting to analyze how this domain analysis can be refined by an
analysis of the coupling within a domain in order to identify sub-domains.

Also, we can derive interesting information about the vocabulary standard
in the service environment. Services with high impact or applicability values,
even if underspecified, define a de facto standard of predicates for what they do.
This serves as a very important orientation for developers who want to add new

312 F. Mohr

services to the environment. In the examined test case, for example, there is a
high standard for vocabulary associated with academic publications.

Similarly, the relevance gives us important information about the potential
of new services. We can add the specification of a new service that we plan
to implement to the service network and recompute the relevance values of all
services. Thereby, we can estimate the potential of that service. Also, a low
relevance value of a service reveals necessity to implement new services around
it in order to connect it more to other services.

Summarizing, relevance is not only a good estimation for reusability but also
provides a great basis for semantic service repository analysis. Services with high
relevance can be assumed to occur in solutions for many composition problems,
leaving non-functional properties aside. This is even true for underspecified ser-
vices, only that the obtained compositions in this case may not be as satisfactory
as for detailed specifications; this, however, is not an issue of the metric. In ad-
dition to this core benefit, the metric gives important insights about domains,
vocabulary standards, and the potential of new services.

5.4 Practical Usage of the Approach

If applied to a service repository, the described metric must be understood as a
guideline rather than a hard measurement of facts. The goal of the metric is to
give a feeling of reusability of components, but the results of the (and any such)
metric are inherently subject to interpretation and discussion. For example, the
quality of the descriptions cannot be recognized by the approach. Consequently,
applying this metric in practice means to do it in an interactive way and to
compare the results to the rough expectations and adjust the parameters if
necessary. For example, if the impact metric is unreasonably high for δ = 0, as
in our example, this is a signal that the services are underspecified; increasing
the ”mistrust” factor δ helps purify the metric to a certain extend.

Regarding the choice of δ and ε, it seems reasonable to start with low values
and increase them if necessary. The influence of the penalty factor is rather small
and, due to its semi-linear nature, it may be reasonable to initialize it with 0.1.
The ”mistrust” factor δ should be set according to the estimation of the doubt
that two services are not used together even if the contribution would allow to
do so; a default value may also be 0.1. If the relevance values of services are much
higher than we think they should be, then we can still increase the parameter.
For example, in the above case, a reasonable choice could be δ = ε = 0.75.
However, there is no general ”correct” choice of the parameters, but they should
be interactively adjusted considering the respective scenario.

6 Conclusion

In this paper, I presented and evaluated service relevance as a metric that es-
timates the reusability of services. Service relevance combines the impact and
the applicability of services in their environment to estimate the number of

A Metric for Functional Reusability of Services 313

compositions that may contain a service. The evaluation shows that the pre-
sented metric not only provides reusability estimations but also gives important
conceptual insights, which are knowledge about domains within the service envi-
ronment, possible underspecifications of services, vocabulary standards, and the
applicability of automatization approaches. The quality of service descriptions
limits its explanatory power.

This paper is a first step into the direction of analyzing functional reusability,
so there is great potential for future work; I just mention some options. First,
it would be intersting to estimate the reusability of services in a completely
different way; for example, we could use a simplification of the service model
that makes the number of composition problems tractable. Second, the proposed
metric could be integrated with a learning approach that collects information
about how services are used together. This integration of reuse with reusability
could make the metric more robust to poor service description quality.

Acknowledgements. This work was partially supported by the German Re-
search Foundation (DFG) within the Collaborative Research Centre ”On-The-
Fly Computing” (SFB 901).

References

1. Fazal-e Amin, A., Oxley, A.: A review of software component reusability assessment
approaches. Research Journal of Information Technology 3(1), 1–11 (2011)

2. Brogi, A., Corfini, S., Popescu, R.: Semantics-based composition-oriented discovery
of web services. ACM Transactions on Internet Technology 8(4), 19 (2008)

3. Caldiera, G., Basili, V.R.: Identifying and qualifying reusable software components.
Computer 24(2), 61–70 (1991)

4. Cheesman, J., Daniels, J.: UML components. Addison-Wesley, Reading (2001)
5. Choi, S.W., Kim, S.D.: A quality model for evaluating reusability of services in

soa. In: Proceedings of the 10th IEEE Conference on E-Commerce Technology, pp.
293–298. IEEE (2008)

6. Frakes, W.: Software reuse research: Status and future. IEEE Transactions on
Software Engineering 31(7), 529–536 (2005)

7. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Computing Sur-
veys (CSUR) 28(2), 415–435 (1996)

8. Gill, N.S., Grover, P.: Component-based measurement: few useful guidelines. ACM
SIGSOFT Software Engineering Notes 28(6), 4 (2003)

9. Krueger, C.W.: Software reuse. ACM Computing Surveys 24(2), 131–183 (1992)
10. Mohr, F.: Estimating functional reusability of services. In: Proceedings of the 12th

International Conference on Service Oriented Computing (ICSOC). IEEE (2014)
11. Platenius, M.C., von Detten, M., Becker, S., Schäfer, W., Engels, G.: A survey

of fuzzy service matching approaches in the context of on-the-fly computing. In:
Proceedings of the 16th International ACM Sigsoft Symposium on Component-
based Software Engineering, pp. 143–152. ACM (2013)

12. Rotaru, O.P., Dobre, M.: Reusability metrics for software components. In: Pro-
ceedings of the 3rd ACS/IEEE International Conference on Computer Systems
and Applications, p. 24. IEEE (2005)

13. Washizaki, H., Yamamoto, H., Fukazawa, Y.: A metrics suite for measuring
reusability of software components. In: Proceedings of 5th Workshop on Enterprise
Networking and Computing in Healthcare Industry, pp. 211–223. IEEE (2003)

Revealing Purity and Side Effects

on Functions for Reusing Java Libraries

Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan

{jc-yang,k-hotta,higo,kusumoto}@ist.osaka-u.ac.jp

Abstract. Reuse of software components requires the comprehension
of the behavior and possible side effects among APIs of program com-
ponents. Meanwhile, identifying problematic usage of these components
is difficult with conventional static analysis. Purity and side effects are
important properties of methods that often are neglected by the docu-
mentations of the object oriented languages such as Java. In this paper,
we studied these properties by using a static analysis technique to au-
tomatically infer the state dependencies for the return value and side
effects of methods. As a result, the effect information reveals purity of
methods as well as well-defined state interactions between objects. We
have implemented the analyzer targeting Java bytecode and tested it on
some open source Java software libraries with different scale and char-
acteristic. From our experimental results, we found that 24–44% of the
methods in the evaluated open source Java libraries are pure, which in-
dicates that a large percentage of the methods are suitable for high level
refactoring. Our study can help programmers to understand and reuse
these libraries.

Keywords: static analysis, pure function, state boundary, state depen-
dency, object-oriented, design by contract.

1 Introduction

It is difficult for programmers to reuse software components without fully under-
standing their behavior. The documentation and naming of these components
usually focuses on intent, i.e., what these functions are required to do, but fails
to illustrate their side effects, i.e., how these functions accomplish their task [4].
For instance, it is rare for API function1 signatures or documentation to include
information about what global and object states will be modified during an invo-
cation. It is hard to reuse the modularized components, because of the possible
side effects in API libraries. For instance, it is usually unclear for programmers

1 We interchange the term function with the term method throughout this paper
referring to the same thing. We use function to refer the ideas that originate from
the functional paradigm, and method to refer the ideas that originate from object-
oriented paradigm such as Java.

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 314–329, 2014.
c© Springer International Publishing Switzerland 2014

Revealing Purity and Side Effects on Functions 315

whether it is safe to call the APIs across multiple threads. In addition, undocu-
mented API side effects may be changed during software maintenance, making
debugging even more challenging in the future [16].

By understanding of side effects in the software libraries, programmers can
perform high level refactoring on the source code that is using the functional
part of the libraries. For instance, the return value of math functions such as
sin will be the same result if the same parameter is passed, therefore the result
can be cached if the same calculation is performed more than once. Moreover,
the calculation without side effects are good candidates for parallelization [9].
However, the purity information is usually missing in external libraries, therefore
programmers would risk introducing bugs with such refactorings, for example,
caching the result of a function which depends on the mutable internal state.

In this paper, we present an approach to infer a function’s purity from byte
code for later use. Programmers can use effect information to understand a
function’s side effects in order to reuse it. For example, the approach can help to
decide whether it is safe to cache or parallel a time-consuming calculation. The
contributions of this research include:

– An approach to automatically infer purity and side effects,
– A concrete implementation for Java bytecode,
– Experiments on well-known open source software libraries with different scale

and characteristic.

In our experiments,we found that 24–44% of the methods in the evaluated open
source Java libraries are pure. Also, we observed methods that should be pure
in theory but not in the implementation, and revealed tricks or potential bugs
in the implementation by a case study of our approach.

We achieved the same percentage of pure functions with the existing study
without a manually created white-list, and we revealed which side effects these
functions were generating which would not found in the existing studies. We
focused on revealing these side effect information on real world software libraries
to be used by the programmers and tools.

2 Related Work

The idea of verifiable imperative programs has been used in the Euclid lan-
guage [10] and its descendants [6] since the 1970s. However, modern OO lan-
guages such as Java and C# have not implemented these ideas. The proposed
research checks side effects and purity in legacy source codes written in these
modern OO languages.

Many previous efforts on combining pure functional style into an OO paradigm
concentrate on introducing immutable restrictions on existing type systems, as in
functional programming languages. Tschantz, et al. [19] proposed Javari as a new
programming language that adds readonly and other keywords into Java syntax
to indicate the reference immutably of variables. Based their work, Quinonez [8]
proposed an analyzer called Javarifier to automatically infer reference immutabil-
ity in Javari syntax. Huang, et al. [7] proposed a much simpler but more restricted

316 J. Yang et al.

design, called ReIm and ReImInfer, as they only modified the type system of
Java by adding three extra qualifiers in the type declaration, and their implemen-
tation is more unified in comparing Javari with Javarifier. A similar approach
has been taken by extending the syntax of C# in [5]. All these type-system-
based approaches require syntax modification of the source code. Although they
can be applied in newly developed projects, it is much more difficult for these
approaches to be adopted in legacy libraries, and existing tools such as IDE
support need to be extended to accept their new syntax.

There are studies of automatic purity analyzers on unmodified syntax. Sălcianu,
et al. present a purity analyzer for Java in [18], which uses an inter-procedural
pointer analysis [17] and escape analysis to infer reference immutability. Similar
to our approach, they verify the purity of functions, but their pointer and escape
analysis relies on a whole programanalysis starting from a main entry point, which
is not always available for software libraries. We have compared the purity re-
sult of our approach with their study using the same benchmark in Section 5.2.
JPure [14] eliminated the need for reference immutability inference by introducing
pure, fresh and local annotations, which lead to a more restrictive definition of
purity, and loses the exact information for effects. Both studies focus on analyzing
of purity only, and does not expose effects informations outside their toolchain.
Compared with these studies, our approach uses lexical state accessor analysis,
which will hopefully combine the modularity of JPure by illuminating the need
for inter-procedure analysis, and the flexibility of reference immutability with the
availability of effect informations. Also neither of these two studies further clas-
sify the pure functions into Stateless and Stateful as we do. Further, we provide
a heuristic approach to detect cache semantics in member fields, thus eliminating
the need of a manually provided white-list.

Mettler, et al. [13] take a different approach. Instead of extending the syntax
of an existing language, they created a subset of Java called Joe-E. As one ap-
plication of Joe-E, they proposed [3] to verify the purity of functions by only
permitting immutable objects in the function signature. Kjolstad, et al. [9] pro-
posed a technique to transform a mutable class into an immutable one. They
utilized an escaping and entering analysis similar to [18]. These two studies are
similar to each other as they completely eliminate the mutable states from target
source codes, which is not always acceptable in general programming scenarios,
thus limits their application. Comparing to these two studies, our technique can
be performed on the real world software libraries, even without the source code.
Therefore we are more suitable for comprehension the legacy code bases.

3 Automatic Inference of Purity and Side Effects

In this section, we first define the concepts of purity and side effects on the
functions in Java. Then we present our approach to automatically infer the purity
and side effects. Lastly, we will describe how to utilize our approach during the
reusing of software components.

Revealing Purity and Side Effects on Functions 317

3.1 Stateless and Stateful Purity of Functions

The notion of purity on functions does not match well with other OO paradigm
concepts. In OO languages such as Java, program states are usually encapsu-
lated within objects, which use well-defined boundary functions called methods
to interact with each other. This is the opposite of a pure functional paradigm
where states of the program are passing through function arguments. Moreover,
we noticed that most objects have a life span pattern of creation, use and de-
stroy. Many objects will not change their states after properly created, and the
methods called on them simply query these internal states. We would like to
distinguish these state-querying methods from those methods that modify the
states. Through our research we have observed that Java libraries can contain
around 24-44% of functional code that does not modify the program’s state.

Based on the above observation, we defined a function as pure if it does
not generate side effects such as modifying the state outside the object. Note
that this definition is slightly different from the traditional definition of pure
functions by return value dependencies [15]. Meanwhile, many existing studies
such as [11, 14, 18] share the same purity definition with us. To illustrate the
difference of two definitions, we divide our definition of a pure function into
stateless and stateful functions:

Definition 1 (Stateless). If the return value of a pure function is only deter-
mined by the state of its arguments.

Definition 2 (Stateful). If the return value of a pure function is also deter-
mined by the states of member fields.

All other non-pure functions generate side effects. Although the notion of a
stateful pure function may seem like a contradiction, we can view the state
of field members as extra arguments, so that they can be converted into the
mathematical form of a pure function. An example of a stateful pure function
is equals method in Java, which compares the value equality of two objects.
Although they depend on an object’s state, well-formed equals methods do not
change the state.

3.2 Lexical State Accessors and Side Effects

The main purpose of this research is to reveal the effects of functions. Therefore
we need to define what is a side effect of a function.

Definition 3 (Effect). We define the effects of a function as the modifications
to the states of the program, including the return value.

Definition 4 (Side Effect). We define the side effects of a function as the
modifications to the states of the objects or performing I/O operations.

The effects of a functions are all the side effects plus the return value. Ac-
cording to the single response principle in [12], a function should have exactly

318 J. Yang et al.

Fig. 1. Class Diagram with Call Graph

one effect, either calculating a value and return it, or doing one kind of mod-
ification to the state of the program. Disobeying this practice usually leads to
problematic, unmaintainable coding style.

Definition 5 (Lexical State Accessor). We define a lexical state accessor to
be any variable that is directly accessible within a function’s lexical scope before
the execution.

All possible modifications to the state of a program are achieved by accessing
the aforementioned lexical state accessors. There are two forms of modification:
changing the values of these accessors directly, or modifying indirectly though
the use of lexical state accessors. These modifications are considered to be the
side effects of executing the function. Additional side effects include directly or
transitively calling system routines to perform I/O operations.

3.3 Call Graph and Data Analysis

The analyzer identifies method targets by using a class diagram and call graph.
The class diagram records the inheritance relationship of classes (including in-
terfaces) and the overriding relationship between methods in a class hierarchy.
The call graph records the invocation instructions inside the method body, which
points to another method defined in the class diagram. An example class diagram
is shown in Fig. 1.

Our analyzer traverses all of the methods in the class diagram, inferring pos-
sible effects including side effects. We capture only the dependencies of lexical
state accessors, during these three analysis stages:
data flow analysis estimates the return value dependency.
reference alias analysis identifies possible modifications to lexical state ac-
cessors that are side effects.
control flow analysis supports data dependence calculations on conditional
branches.

There are three kinds of lexical state accessors as defined in Section 3.2, which
are the static fields (shortened as S) of a class, the member fields (shortened as
F) of an object, and the arguments (shortened as A) passed to the function.

Revealing Purity and Side Effects on Functions 319

Definition 6 (Data Dependency Set). We define a data dependency as the
value of a lexical state accessor before a function executes, and a dependency
set (DS) as the set of data dependencies such that DS ⊂ {x|x ∈ S ∪ F ∪ A}.

The above definition of dependency set is used in both our data flow analysis
and reference alias analysis. The difference between the dependency sets used
in these two analyses is that we only consider reference type dependencies in
reference alias analysis, and value type dependencies in data flow analysis. All
dependencies suitable in reference alias analysis are also suitable in data flow
analysis, but not vice versa. We define two dependency sets used in these two
stages of analysis as:
reference dependency (rd) is a DS of the possible reference aliases.
value dependency (vd) is a DS that affects the value.

Our analyzer interpret the code, follow the instructions in the given function,
and apply the aforementioned three analysis. The analyzer begins its interpreta-
tion by breaking the code of a given function into statement blocks using control
flow analysis, where we define a block to be a sequence of statements. The block
can be associated with a value of its condition if it is nested in a if or while state-
ment. Next, the analyzer interprets each block ’s instructions to evaluate the value
dependencies and obtain a list of effects. During the interpretation stage, each
value is represented as a triplet of its static type, a reference-dependency set,
and a value dependency set (V = (type, rd, vd)).

At the beginning of the interpretation of the given function, the argument val-
ues are assigned with value and reference dependencies of themselves. Next we
interpret each instructions of the function by following the transfer functions in
Table 1. The input of a transfer function is V before the execution of the instruc-
tion, and the output is the new V after the execution. Besides the reference and
value dependency sets in this table, the static types of these values should also
be calculated as defined in the language specifications. Note that the “merge”
instruction in this table merges the branches of statements during the interpre-

Table 1. Transfer Functions for Values and Instructions

Type of Instuctions Code Pattern Reference Dependency Value Dependency

new object new τ ∅ ∅
parameter x {x} {x}
local variable y ∅ ∅
member field this.field {field} {field}
static field Class.field {field} {field}
object field V .field Vrd Vvd

unary operation op V ∅ V
binary operation V1 op V2 ∅ V1vd ∪ V2vd

array access V1[V2] V1rd V1vd ∪ V2vd

type cast (τ)V Vrd Vvd

assignment V1 = V2 V1rd V2vd

return value return V ∅ ∅
merge V1rd ∪ V2rd V1vd ∪ V2vd

320 J. Yang et al.

boolean f(int[] a, int b) {
if(a.length > 0){ // condition depends on arg a

1: int [] local = a; // copy reference
2: a = new int[1]; // overwrite reference
3: a[0] = local [0]; // not modification
4: local [0] = b; // modify arg a
5: b = a[0]; // not modification
6: return true;

}else{
return false; // depend on arg a

}
}

Fig. 2. Example of Data and Control Analysis

tation. Besides the instructions listed in the table, there is another important
kind of instructions, the function invocations, described in Section 3.4.

During interpretation, possible function effects are collected when processing
assignment instructions. We initially mark two kinds of dependencies: modifica-
tion behavior for reference dependencies and return statement for value depen-
dencies. Both dependencies are merged with the value dependency set for the
current block.

An example of the interpretation stage is represented in Fig. 2. At the begin-
ning of interpretation, the reference dependency of a is assigned as argument a,
and the value dependency of a and b are assigned as corresponding argument
names. There are two blocks in this code colorized as red (above) and green
(below), which are associated with the branch condition a.length > 0. Since
the value dependency of this condition is argument a, both two blocks depend
on the state of a. Then, during the interpretation of the red block:

1. The reference of a is copied into local, which implies that the reference
dependency of local is {a}

2. The reference dependency of a is now ∅
3. Amodification behavior is performed on the reference dependency of a, which

is ∅, and thus has no side effects.
4. A modification behavior is performed on the reference dependency of local,

with a value dependency of {b}. An @Argument effect on a is generated with
a data dependency on b and a control flow dependency on a.

5. A modification behavior is performed on ∅.
6. A return statement generates a Depend effect with a value dependency of ∅

and an value dependency of the constant true, which is then merged with
the control dependency on a.

The analysis on the green block generates the same Depend effect, and these two
Depend effect are then merged.

3.4 Effects from Function Invocations

We refer to the function containing an invocation as a caller, and the function
being called as a callee. When the analyzer sees a function invocation instruc-
tion during interpretation, it generates possible effects by examining the data

Revealing Purity and Side Effects on Functions 321

flow across the invocation boundaries. Fortunately, this cross-function analysis
is possible with the generated effect information on the callee, so that we do not
need to examine the codes of the caller and callee at the same time.

There are two kinds of invocation instructions in Java: static and dynamic
dispatch. Dynamic dispatch is used to call virtual methods, and static dispatch
is used to call non-virtual methods and special cases such as calling overridden
methods defined in a super class.

All of the invocation instructions share the same form as Vobj.function(Varg).
All side effects on static fields are transferred from callee to caller. If there are ar-
gument effects generated on the callee method, i.e., when the callee is modifying
the state of a passed argument, then the analyzer will generate a modification
behavior on the reference dependencies of corresponding position, as if the mod-
ification occurred inside the caller method.

The Vobj is the object that owns the method, which could be this, ClassName
or a certain dynamically calculated value during the interpretation. Static mem-
ber methods on ClassNames are guaranteed not to generate modification side
effects on member fields. If a reference dependency of Vobj is this, all the mod-
ification side effect information on member fields will be copied, otherwise a
single modification effect on the reference dependency of the current Vobj will
be recorded. This behavior of analyzer follows the definition of lexical state ac-
cessors described in Section 3.2 to distinguish between directly and transitively
accesses of these accessors.

Finally, if the interpreted invocation expression returns a value, we need to
determine the reference and value dependency of its return value. The reference
dependency of the invocation expression is the reference dependency of return
value from callee, and the value-dependency of this expression is the merged
value dependencies of all Varg.

With the effect information on the functions, we can simply determine whether
a function is a pure function, and further, whether it is stateful or stateless. A
function that has no modifications is considered to be a pure function. A pure
function whose return value depends only on arguments is considered to be a
stateless pure function.

3.5 Iteration to a Fix-point of Class Diagram

A function’s effects depend on the effects of its callees as well its overriding func-
tions, potentially causing a function to be analyzed several times. In addition,
recursive functions may also be analyzed multiple times. We continue analyzing
until the effects are inferred. We set a flag in each function on the class diagram
to indicate whether the effects for this function need to be inferred or updated.

We also differentiate two sets of effects: static effects and dynamic effects,
because we differentiate between static and dynamic dispatch invocations.

Firstly, we initialize all methods in the class diagram with both static effects
and dynamic effects as ∅. Next we mark the flags for all of these methods as “need
to be analyzed”. Then, for each method whose flag is marked, the analyzer:

322 J. Yang et al.

1. Merges the static effects with the result of the data analysis on this method.
2. Sets the dynamic effects to be the merge of static effects and all dynamic

effects of the overridden methods.
3. Clears the flag on this method.
4. If the effects have changed since last analysis, marks the flags of all methods

that depend on this method.

We continue iterating until none of the methods in the class diagram are marked,
which means a fix-point of the analysis is reached. Note that during the execution
of this algorithm, the size of both static effects and dynamic effects only increases
and never decreases. There is an upper limit on the size, which is the sum of
numbers of all possible modifications to the fields and arguments in the program.
With the monotone increasing property and the upper bound of the algorithm,
we can guarantee that it will halt.

3.6 Applications in Reusing Software Components

We have described how our analyzer infer the effect information. Next, we will
briefly introduce how to use our analyzer from a programmer’s point of view.

Suppose a programmer is facing a reusable software component, either in
distributed binary form or in source code form, and the programmer would
like to know whether it is safe to reuse this component in his new code. The
programmer can apply our analyzer on the candidate component, together with
all its dependent libraries, to obtain a list of side effects on each functions from
the component. The programmer can then decide whether it is safe to reuse the
component based on the side effects.

For example, if the programmer is writing a multi-threaded program, and the
candidate component is accessing some global states, then the programmer may
need to introduce a thread lock to synchronize the accesses to these global states.
As another example, if the candidate function is a pure function reported by our
analyzer, then it is usually safe to reuse this function in the new source code
without introducing hidden data dependency.

Moreover, the output of our analyzer can help the debugging and understand-
ing of the behavior of software components. It is reported [1] that some bug will
appear only if the programmer execute the unit test separately. Understanding
the side effects could reveal these bugs even before executing the test cases.

4 Implementation Details

We discuss some of the implementation details of our analyzer in this section.
We chose Java bytecode defined by the Java Runtime Environment (shortened
as JRE) version 6 as our target language, and implemented the described ana-
lyzer based on the widely used ASM library [2]. There are several advantages in
targeting an intermediate language rather than source code. First, the analyzer
is syntax neutral, so we can automatically analyze all languages targeting the
Java Virtual Machine. Second, the analyzer can be applied on binary libraries
without source code. Finally, the type safety is assured by the JRE’s compiler
and bytecode verifier.

Revealing Purity and Side Effects on Functions 323

class String{
/** Cache the hash code for the string */
private int hash; // Default to 0
...
public int hashCode () {

int h = hash;
if (h == 0 && value.length > 0) {

char val[] = value;
for (int i = 0; i < value.length; i++) {

h = 31 * h + val[i];
}
hash = h;

}
return h;

}
}

Fig. 3. Example of Cache Semantic in java.lang.String

4.1 Detection of Cache Semantics

Although the described analysis works well for identifying modification behav-
iors in theory, we find a difficulty to apply it in practice when member fields
are used solely to cache the calculation results. We refer to the member fields
that are used to cache the calculation results as having cache semantics. We
found that the implementation of HashMap.equals modifies its member field
HashMap.entrySet, and the implementation of String.hashCode caches the
result in its member field String.hash, as shown in Fig. 3. By our definition,
these methods change the state of internal member fields, and thus are no longer
pure functions. As a result of these two methods not being pure, callers of these
methods were also marked as generating side effects.

This caching semantic is not only found by us, but also described in previous
literatures such as [18]. A widely accepted solution to this problem was to accept
a white-list of functions from the user (called special methods in [18]), indicating
that they are proven to be pure by the user manually. For the reason that
the selection of the white-list will impose great impact on the precision of the
analyzing result, and they involve human judgments, we do not consider this as
an ideal solution.

To preciously and automatically analyze this kind of methods that have
caching semantics, we extend our analyzer to detect the cache semantics us-
ing a heuristic approach. More precisely, we consider a member field of a class
having the cache semantic if all the following preconditions are true:

P1 The field is assigned either by a constant value, or in only one member
function.

P2 The non-constant assignment on the field occurs within a branch block.

P3 The right-hand value of the non-constant assignment is only depended on
other fields.

P4 The branch condition of the block checks that the value of the modified
member field is a constant value.

324 J. Yang et al.

We consider the following values as constant values: constant literals, null point-
ers and values of static final member fields that have a primitive type.
The assignment with a constant value is considered as re-initializing the state
of the cache field. The checking with a constant value is considered as checking
the initialized state. In either cases, the value of the field is determined by other
fields, therefore, it cannot be used to store a mutable state of the object.

In the example of String, the member field hash is assigned by hashCode

with a calculation result and by its constructor with a constant value, therefore
P1 is true. The assignment to hash occurs in a if condition block, therefore
P2 is true. The value of the assignment is depend on the member field value,
therefore P3 is true. Lastly in the condition block, the value of hash is assured
to be zero by the condition check h==0, therefore P4 are true. The member field
hash meets all the preconditions, therefore it is considered to be a caching field
by our analyzer.

The modification behavior on the detected caching fields are suppressed from
the effects, and the return value dependencies on these caching fields are ignored.

5 Experiments

We implemented our analyzer with name purano2, and evaluated it on real world
software components in terms of accuracy, performance, and the distribution of
different kinds of effects in different scale of software components. During the
experimentation, we expected to answer the following research questions:
RQ1 What is the distribution of pure and side effect methods in the software
libraries?
RQ2 How is the accuracy of our analysis comparing with an existing study?
How is the heuristic approach in the detection of cache semantic compared to
the white-list approach?
RQ3 How to utilize the revealed information during reusing the software com-
ponents?

Firstly, we will answer the 2 research questions by experiments. Then we will
demonstrate how would our study help programmers in RQ3 as a case study.

5.1 R1: Distribution of Effects

To show the distribution of purity and side effects of the methods in real world
software libraries, we experimented on 4 target software projects, listed in Ta-
ble 2. These experiments were executed on an octo-core Xeon E5520 with a 2GB
heap size limitation. purano is the implementation of the analyzer of this paper,
which includes a modified version of the ASM library. Both htmlparser, tomcat
and argouml are well-known open source Java projects, and we used their latest
stable binary distributions. Note that all of these software projects were analyzed
together with the JRE standard libraries, because the analyzer need the purity

2 We have published purano at https://github.com/farseerfc/purano.

https://github.com/farseerfc/purano

Revealing Purity and Side Effects on Functions 325

Table 2. Experiment Target and Analysis Performance

Software Analyzed Classes Target Classes Target Functions Time (sec.) # Passes

purano 2,942 253 2,372 148 16
htmlparser 5,795 156 1,645 112 17
tomcat 7,673 772 8,824 186 18
argouml 11,608 2,545 20,167 233 22

and side effect information for all functions being called including the ones in
the libraries. This lead to the much greater number of analyzed classes than
the number of the target classes. According to the Javadoc for JRE 7, there are
3,793 public classes altogether, and more private ones in the JRE library. The
analysis time of argouml was around 4 minutes, which is reasonable for large
scale software. The number of analysis passes ranged from 16 to 22, which was
depended on the longest invocation and overriding chain in all analyzed methods.
Based on the analysis times in Table 2, we can conclude that the performance of
our analyzer is reasonable within a daily programming environment, although it
could be further optimized by caching the result of the standard libraries.

The purity of functions of the experimental result is listed in Table 3. From
the output, we find that around 24%–44% of the methods in these software
projects were marked as stateless or stateful pure functions. We manually con-
firmed the generated result for purano to make sure it matched our expectation.
The argouml project contains many non-pure graphical code percentage and the
htmlparser project have more pure functional code percentage.

5.2 R2: Comparison with an Existing Approach

While there are none of existing studies to identify the side effect informations
within our knowledge, there are studies that only infer the purity of the functions
based on different approaches. Therefore, we compare our purity result with one
of the existing studies to examine the accuracy of our analysis. We ran our tool
against the JOlden benchmark used in [18]. The result from the benchmark is
shown in Table 4, comparing with the result from their study. Also we run our
analyzer in two different configurations. One configuration is using a white-list
which is similar to the configuration of [18], with the detection of cache semantic
disabled. Another configuration is using the detection of cache semantics.

Table 3. Percentage of Effects

Software
Pure Functions

Side Effects
Modifying

Stateless Stateful Member Static Arg.

purano 382 (16.1%) 192 (8.0%) 1,798 (75.9%) 1,548 1,087 485
htmlparser 363 (22.1%) 358 (21.8%) 924 (56.2%) 679 462 143
tomcat 1,260 (14.3%) 1,861 (21.1%) 5,703 (64.6%) 4,346 3,990 1,288
argouml 5,019 (24.9%) 1,744 (8.6%) 13,404 (66.5%) 7,057 11,849 3,255

326 J. Yang et al.

Table 4. Comparison on JOlden Benchmark. Function numbers are different because
our approach analyzes all functions while Sălcianu’s approach analyzes only the func-
tions invoked transitively from the main entry point.

Application
Our (White-list) Our (Cache Semantic) Sălcianu’s

Total Stateless Stateful Pure Stateless Stateful Pure Total Pure

BH 73 14 17 31 13 13 26 59 28
BiSort 15 6 0 6 5 0 5 13 5
Em3d 23 7 3 10 5 2 7 20 8
Health 29 8 1 9 8 0 8 27 13
MST 36 8 11 19 5 9 14 31 17
Perimeter 50 28 11 39 28 9 37 37 33
Power 32 2 4 6 2 4 6 29 9
TSP 16 5 1 6 4 1 5 14 5
TreeAdd 12 3 1 4 2 1 3 5 2
Voronoi 73 11 31 42 12 33 45 70 50

Their approach relies on a whole program analysis starting from a main entry
point, and thus they covered fewer functions than our tool. They chose a set of
functions for the white-list by viewing all the source code manually in advance,
a time-consuming task in practice, while our approach automatically identifying
the cache semantics. We were unable to compare precision and recall due to
challenges in executing their tool in our environment. Therefore we compared
with their result from the published literature [18]. As we can see from the result
table, we achieved a similar result on the number of pure functions. In addition
to the number of pure functions shown in the result, we identified all the side
effects and the type of purity, which is the main purpose of our study and cannot
be found in their result.

Comparing our result with different configurations, we can see that the de-
tection of cache semantics result to a slightly lower pure percentage than the
white-list approach. This is excepted, as the heuristic detection approach can-
not find all the fields that are used for caching purpose without increasing the
false positive rate. For example, we cannot detect the cached result within an
entry of a hashmap instead of a single field. We consider the heuristic detection
approach is more applicable for the existing software libraries because the pro-
grammers usually do not have a clue of which API functions are the libraries
using and whether they are pure functions. Revealing this information is the
main purpose of the purity analysis in the first place. An automatic technique
like our approach will break the chicken or the egg dilemma and enable the
purity analysis to be adopt in practice.

5.3 RQ3 A Case Study: Purity of equals and hashCode

Different programmers may use our tool for their own usages. Therefore, we
conducted a case study to illustrate one possible usage of our tool. We examined
the inferred effects on two methods, namely equals and hashCode. These two

Revealing Purity and Side Effects on Functions 327

package java.io;
public final class FilePermission ... {

public boolean equals(Object obj) {
...
return (this.mask == that.mask) &&

this.cpath.equals(that.cpath) &&
(this.directory == that.directory) &&
(this.recursive == that.recursive);

}
public int hashCode () { return 0; }

}

Fig. 4. A Potential Problem in FilePermission

methods are related with the value equality of objects in Java, and they are
used by collection classes such as HashMap. The programmer must ensure that
the return values of these methods reflect their value equalities, and hence these
return values should depend on the state of the objects. Therefore, we expect
these methods to be stateful pure functions if they contain member fields. The
purity types of these two methods are listed in Table 5.

To further understand the result, firstly we focused on the existence of stateless
pure functions in Table 5 by manually examining their source code. Most of
these methods are defined in interfaces or abstract classes. There were also 2
equals and 6 hashCodemethods defined in the classes that do not have member
fields. There were 9 equals that compares referential identities defined in classes,
while these classes have member fields that are not accessed in the equals.
These were used in unusual cases when comparing by referential identity rather
than value identity is desired. An example of this kind of special design can
be found in DefaultCaret.equals, where the author explicitly documented in
the Javadoc as “The superclass behavior of comparing rectangles is not desired,
so this is changed to the Object behavior”. In addition, most of these classes
are inner classes in Java with their names containing a “$” character. These
inner classes are supposed to be used internally, where programmers control the
creation of all objects. We found 3 hashCode that return a constant, whereas
their corresponding equals compared the states of member fields. An example is

Table 5. Purity of equals and hashCode

Software All
Pure Functions

Side Effects
Stateless Stateful

purano
equals 518 19 (3.7%) 165 (31.9%) 334 (64.5%)
hashCode 499 14 (2.8%) 176 (35.3%) 306 (61.9%)

htmlparser
equals 359 14 (3.9%) 141 (39.3%) 204 (56.8%)
hashCode 355 10 (2.8%) 147 (41.4%) 198 (55.8%)

tomcat
equals 477 65 (13.6%) 282 (59.1%) 132 (27.7%)
hashCode 473 52 (11.0%) 245 (51.8%) 176 (37.2%)

argouml
equals 426 55 (12.9%) 219 (51.4%) 152 (35.7%)
hashCode 416 55 (12.2%) 214 (51.4%) 162 (28.9%)

328 J. Yang et al.

shown in Fig. 4, that FilePermission.hashCode will always return 0. The user
of these classes must be aware of their respective behaviors, in order to avoid
putting them in a HashSet or HashMap, or comparing them using equals.

Next we examined the functions in Table 5 that generate side effects. Some
classes such as Date and Calendar normalized their internal representation be-
fore comparing equality or calculating the hash code. Classes used in reflection
at runtime, such as java.lang.reflect.Class, used a lazy loading technique
to optimize general performance, which is similiar to the caching technique but
will change the observable state of the object.

All of these implementation details revealed by our analyzer require special
care in both development and maintenance of the software. We hope our research
can aid the development in the situations like we have studied in this case study.

6 Future Work and Conclusions

The current implementation of our analyzer works on Java bytecode rather than
source code. Besides all the advantages described, this decision is also made
to ease the development, because it is easy to generate bytecode from source
code by a compiler but not vice versa. However, targeting source code format is
still important for integrating as an IDE plugin. We plan to add a source code
analyzer in the future.

Moreover, we plan to further evaluate the usability of the generated effect
information, by programmers as well as by analysis tools. Currently we output
the effect information as annotations. The format of these annotations needs
to be more readable and understandable to be used by programmers. We will
also further investigate the applications of these effect annotations other than
identification of pure functions. We will apply this approach to more software
projects for further evaluation.

To conclude, in this paper we presented a study on the purity and side effects
of the functions in Java, helping programmers to reuse the software libraries.
We proposed a technique to automatically infer the purity and side effect infor-
mations from Java bytecode. We implemented and experimented the proposed
analyzer on real world Java software libraries, and found that around 24%–44%
of all the methods of a Java libraries are made of pure functions. We compared
the accuracy of distribution of pure functions with an existing study. Also, we
demonstrated how programmers will use our technique to understand the be-
havior of library APIs by a case study.

Acknowledgment. This work was supported by MEXT/JSPS KAKENHI
25220003, 24650011, and 24680002.

Revealing Purity and Side Effects on Functions 329

References

1. Bell, J.S., Kaiser, G.E.: Unit test virtualization with vmvm (2013)
2. Bruneton, E., Lenglet, R., Coupaye, T.: Asm: A code manipulation tool to imple-

ment adaptable systems. Adaptable and Extensible Component Systems 30 (2002)
3. Finifter, M., Mettler, A., Sastry, N., Wagner, D.: Verifiable functional purity in

java. In: Proc. of the 15th ACM Conference on Computer and Communications
Security, pp. 161–174. ACM (2008)

4. Goetz, B.: Java theory and practice: I have to document that (2002),
http://www.ibm.com/developerworks/java/library/j-jtp0821/index.html

5. Gordon, C., Parkinson, M., Parsons, J., Bromfield, A., Duffy, J.: Uniqueness and
reference immutability for safe parallelism (2012)

6. Holt, R.C., Cordy, J.R.: The turing programming language. Communications of
the ACM 31(12), 1410–1423 (1988)

7. Huang, W., Milanova, A., Ernst, W.: Reim & reiminfer: Checking and inference of
reference immutability and method purity. In: OOPSLA (2012)

8. Javarifier, J.Q.: Inference of reference immutability in Java. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2008)

9. Kjolstad, F., Dig, D., Acevedo, G., Snir, M.: Transformation for class immutability.
In: Proceedings of the 33rd International Conference on Software Engineering,
ICSE 2011, pp. 61–70. ACM, New York (2011),
http://doi.acm.org/10.1145/1985793.1985803

10. Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G., Popek, G.J.: Report
on the programming language euclid. ACM Sigplan Notices 12(2), 1–79 (1977)

11. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of jml. Technical Report
96-06p, Iowa State University (2001)

12. Martin, R.C.: Clean code: A handbook of agile software craftsmanship. Prentice
Hall (2008)

13. Mettler, A., Wagner, D., Close, T.: Joe-e: A security-oriented subset of java. In:
Network and Distributed Systems Symposium. Internet Society (2010)

14. Pearce, D.J.: JPure: A modular purity system for java. In: Knoop, J. (ed.) CC
2011. LNCS, vol. 6601, pp. 104–123. Springer, Heidelberg (2011)

15. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. In: Proceed-
ings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 71–84. ACM (1993)

16. Raymond, C.: The importance of error code backwards compatibility (2005),
http://blogs.msdn.com/b/oldnewthing/archive/2005/01/18/355177.aspx

17. Sălcianu, A.: Pointer analysis and its applications for Java programs. Ph.D. thesis,
Citeseer (2001)

18. Sălcianu, A., Rinard, M.: Purity and side effect analysis for java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005)

19. Tschantz, M., Ernst, M.: Javari: Adding reference immutability to Java, vol. 40.
ACM (2005)

http://www.ibm.com/developerworks/java/library/j-jtp0821/index.html
http://doi.acm.org/10.1145/1985793.1985803
http://blogs.msdn.com/b/oldnewthing/archive/2005/01/18/355177.aspx

Mining Software Components
from Object-Oriented APIs

Anas Shatnawi1, Abdelhak Seriai1, Houari Sahraoui2, and Zakarea Al-Shara1

1 UMR CNRS 5506, LIRMM, University of Montpellier II, Montpellier, France
shatnawi,seriai,alshara@lirmm.fr

2 DIRO, University of Montreal, Montreal, Canada
sahraoui@iro.umontreal.ca

Abstract. Object-oriented Application Programing Interfaces (APIs)
support software reuse by providing pre-implemented functionalities. Due
to the huge number of included classes, reusing and understanding large
APIs is a complex task. Otherwise, software components are admitted to
be more reusable and understandable entities than object-oriented ones.
Thus, in this paper, we propose an approach for reengineering object-
oriented APIs into component-based ones. We mine components as a
group of classes based on the frequency they are used together and their
ability to form a quality-centric component. To validate our approach,
we experimented on 100 Java applications that used Android APIs.

Keywords: Reuse, reusability, component, API, object-oriented,
reengineering, mining, understandability, frequent usage pattern.

1 Introduction

Nowadays, the development of large and complex software applications is based
on reusing pre-existing functionalities instead of developing them from scratch
[1,2]. Application Programming Interfaces (APIs) are recognized as the most
commonly used repositories supporting software reuse [1]. APIs provide a pre-
implemented, tested and high quality set of functionalities [2,3]. Consequently,
they increase software quality and reduce the effort spent on coding, testing and
maintenance activities [2].

In the case of object-oriented APIs, e.g., Standard Template Libraries in C++
or Java SDK, the functionalities are encapsulated as object-oriented classes. It
is well known that reusing and understanding large APIs such as Java SDK,
which contains more than 7.000 classes, is not an easy task [4,5]. Consequently,
several approaches have been proposed, such as [6,7,8], in order to facilitate
the understandability and the reusability of APIs by discovering frequent usage
patterns of APIs. This is based on the API usage history of software applications
(i.e. API clients). Despite the value of frequent usage patterns, these are not
sufficient to provide a high degree of API reusability and understandability.
These are used as guides for reusing API classes and are not themselves reusable
entities [9].

Otherwise, software components are admitted to be more reusable and under-
standable entities than Object-Oriented (OO) ones [10]. This is because com-
ponents are considered coarse-grained software entities, while OO classes are

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 330–347, 2014.
c© Springer International Publishing Switzerland 2014

Mining Software Components from Object-Oriented APIs 331

considered fine-grained ones. In addition, components define their required and
provided interfaces. This means that the component dependencies are more un-
derstandable compared to the dependencies among objects. Consequently many
approaches have been proposed to identify components from OO software appli-
cations such as [11,12]. Nevertheless, no approach has been proposed to identify
components from object-oriented APIs. Thus, in this paper, we propose an ap-
proach to mine components from object-oriented APIs. This does not only im-
prove the reusability of APIs themselves, but also supporting component-based
reuse techniques by providing component based APIs. The approach exploits
specificities of API entities. We statically analyze the source code of both APIs
and their software clients to identify groups of API classes that are able to form
OO components. This is based on two criteria. The first one is the probability
of classes to be reused together by API clients. The second one is related to the
structural and behavioral dependencies among classes and thus their ability to
form a quality-centric component. In order to validate the proposed approach,
we experimented on a set of 100 Java applications that use three Android APIs.
The evaluation shows that structuring object-oriented APIs as component-based
ones improves the reusability and the understandability of these APIs.

The rest of this paper is organized as follows. The subsequent section, Section
2 puts in context the problem of component identification from APIs. It presents
the goal of the proposed approach, the background needed to understand our
proposal and the problem analysis. Section 3 presents the foundation of our
approach. Then, in Section 4 we present the identification of component interface
classes. Section 5 presents how APIs are organized as component-based libraries.
Experimentation and results of our approach are discussed through three APIs
case studies in section 6. Next, the related work is discussed in Section 7. Finally,
concluding remarks and future directions are presented in section 8.

2 Putting Problem in Context

2.1 The Goal: Object to Component

Our goal is to reengineer object-oriented APIs into component based ones. Based
on [10,13,14], we consider a component as, “a software element that (a) can be
composed without modification, (b) can be distributed in an autonomous way,
(c) encapsulates the implementation of one or many closed functionalities, and
(d) adheres to a component model”. According to this definition, we derive three
quality characteristics that should be satisfied by a component; Composability,
Autonomy and Specificity. Composability of a component refers to its ability to
be composed through its interfaces without any modification. Autonomy refers to
that a component can be reused in an autonomous way because it encapsulates
the strongly dependent functionalities. Specificity refers to that a component
implements a limited number of closed functionalities, which makes it a coarse-
grained entity. Based on that, we consider as OO components those implemented
as a group of OO classes.

In the context of our approach, the identification1 of a component means
identifying OO classes that can be considered as the implementation of this
1 Component identification is the first step of the migration process of object-to-

component.

332 A. Shatnawi et al.

component. Thus we consider that a component can be identified from a cluster
of classes that may belong to different packages. Classes that have direct links
(e.g. method call, attribute access) with classes implementing other components
compose the interfaces of the component. Provided Interfaces of a component are
defined as a group of methods implemented by classes composing these interfaces.
Required interfaces of a component are defined as a group of methods invoked
by the component and provided by other components. Figure 1 shows our object
to component mapping model.

Fig. 1. Mapping object to component

2.2 Background

Identifying Components in Software Applications : Synthesis of Pre-
vious Work. We have proposed in our previous works related to ROMANTIC2

approach [11,15] a set of metrics to measure the ability of a group of classes in
a software application to form a component. These metrics are defined based
on the main characteristics of a component (i.e. Composability, Autonomy and
Specificity). Similar to the software quality model ISO 9126 [16], we proposed
to refine the characteristics of the component into sub-characteristics. Next, the
sub-characteristics are refined into the properties of the component (e.g. number
of required interfaces). Then, these properties are mapped to the properties of
the group of classes from which the component is identified (e.g. group of classes
coupling). Lastly, these properties are refined into OO metrics (e.g. coupling
metric). This quality refinement model is shown in Figure 2. According to this
model, a quality function has been proposed to measure the component quality.
This quality function is used as a similarity metric for a hierarchal clustering
algorithm [11,15] as well as in search-based algorithms [17] to partition the OO
classes into groups; where each group represents a component.

Frequent Usage Patterns. In the domain of data mining, a Frequent Usage
Pattern (FUP) is defined as a set of items, subsequences or substructures that
are frequently used together by customers [18]. It provides information that helps
decision makers (e.g. customer shopping behavior) by mining associations and
correlations among a set of items in a huge data set. An example of FUP mining
is a market basket analysis. In this example, the customer buying habits are
2 ROMANTIC: Re-engineering of Object-oriented systeMs by Architecture extractioN

and migraTIon to Component based ones.

Mining Software Components from Object-Oriented APIs 333

Fig. 2. From component characteristics to object-oriented metrics

analyzed to identify items that are frequently bought together in the customer
shopping baskets, for instance, milk and bread form a FUP when they bought
frequently together. The identification of FUP is based on Support quality metric
that is used to measure the interestingness of a set of items. Support refers to
the probability of finding a set of items in the transactions. For example, the
value of 0.30 Support, means that 30% of all the transactions contain the target
item set. The following equation refers to Support :

S(E1, E2) = P (E1 ∪ E2) (1)

Where E1, E2 are sets of items; S refers to Support ; P refers to the probability.

2.3 Component and Frequent Usage Pattern

FUPs are observations made based on the analysis of previous uses of APIs.
They aim to help users of APIs by identifying recurring patterns, composed of
classes frequently used together.

FUPs and components serve the reuse needs in two different ways. Com-
ponents are entities that can be directly reused and integrated into software
applications, while FUPs are guides for reuse and not entities for reuse. In ad-
dition, components and FUPs are structurally different. Related to Specificity
characteristic, classes composing a component serve a coherent body of services,
while classes composing a FUP may be related to different services. Concerning
Autonomy characteristic, dependencies of component’s classes are mostly inter-
nal, which forms an autonomous entity. FUP’s classes can be very dependent on
other classes that are not directly used by clients of APIs. Concerning Compos-
ability characteristic, a component is structured and reused via interfaces, while
FUPs are not directly reusable entities.

334 A. Shatnawi et al.

3 The Proposed Solution Foundations

Based on the observations made in the previous sections, we consider that:

– In object-oriented APIs, a component is identified as a group of classes.
– To reengineer the entire object-oriented API into component-based one, each

class of the API is mapped to be part of at least one component. Each class
is mapped either as a class of the component interfaces or as a part of the
internal classes of the component.

– Classes directly accessed by the software clients represent the end-users’
services. These classes compose FUPs. These ones are the candidate to form
the provided interface of the components mined from the API.

– As a FUP can be composed of classes providing multiple services, its classes
can be mapped to be a part of different component interfaces.

– A class of an API can be a part of several FUPs and can participate to im-
plement multiple services. Consequently a class can be mapped into multiple
component interfaces.

Figure 3 shows our mapping model which maps class-to-component through
FUPs. According to this mapping model, we propose the following process to
mine components from APIs (c.f. Figure 4):

Fig. 3. Mapping class to component through FUP

– Identification of frequent usage patterns. FUPs are identified by ana-
lyzing the interactions between the API and its application clients.

– Identification of the interfaces of components. We partition the set
of classes of each FUP in subgroups, where each is considered as related to
the provided interfaces of one component (c.f. Figure 5). The partitioning
is based on criteria related to dependencies and lexical similarity of classes
and their frequency of simultaneous reuse.

– Identification of internal classes of components driven by their pro-
vided interfaces. Classes forming the provided interfaces of a component
form the starting point for identifying the rest of the component classes. To
identify these classes we rely on the analysis of structural and behavioral
dependencies between classes in the API with those forming the interfaces.
We check if these classes are able to form a quality-centric component.

Mining Software Components from Object-Oriented APIs 335

– Organizing API as Layers of Components. As we previously men-
tioned, the API classes can be categorized according to whether they are
directly reused by the API clients or not. Classes that are not directly used
by API clients can also be organized into two categories. This is based on
whether they belong to components identified from the classes that are di-
rectly used by API clients or not. As each class of the API must be a part
of at least one component, we associate classes that do not compose any of
the already identified components to new ones. Based on that, we organize
component-based APIs as a set of layers describing how their components
are organized. This organization is used-driven. The first layer is composed
of components that are used by the software clients, while the second layer
is composed of components that provide services used by components of
the first layer, and so on. As a result, the API is structured in N layers of
components (c.f. Figure 6).

Fig. 4. The process of mining components from an object-oriented API

4 Identification of Component Interfaces

The identification of classes forming an API component is driven by the identi-
fication of classes composing the provided interfaces of this component. Classes
composing these interfaces are those directly accessed by the clients of the API.
Classes belonging to the same interface are those frequently used together. There-
fore they are identified from frequent usage patterns. Classes of the API com-
posing frequent usage patterns are identified based on the analysis of how API
classes were used by the API clients. API classes used together constitute trans-
actions of usage.

4.1 Extracting Transactions of Usage

A transaction of usage is a set of interactions between an API and a client of
this API. These interactions consist of calling methods, accessing attributes,
inheritance or creating an instance object based on a class of the API. They
are identified by statically analyzing the source code of the API and its clients.

336 A. Shatnawi et al.

Fig. 5. From FUP to provided in-
terfaces

Fig. 6. Multi-layers component-
based API

Transactions are different depending on the choice of API clients. Therefore the
choice of the API clients directly affects the type of the resulting patterns. A
client can be considered either a class, a group of classes or the whole software
application. We define a client as group of classes forming a functional component
in software applications. The idea behind that is to mine patterns related to
functionalities composing the applications. Thus, a transaction is a set of API
classes used by classes composing a client component (c.f. Figure 7). To this end,
we use ROMANTIC approach to identify client components composing software
applications. Algorithm 1 shows the process of transaction identification. It starts
by partitioning each software client into components. Then, for each component,
it identifies API classes that are reused by the component classes.

4.2 Mining Frequent Usage Patterns of Classes

In the previous step, the interactions of all client components with the API are
identified as transactions. Based on these transactions, we identify FUPs. A FUP
is a set of API classes that are frequently used together by client components. It
allows the detection of hidden correlations of usage among classes of the API. We
mine FUPs based on the FPGrowth algorithm [18]. In this algorithm, a pattern
is considered as frequent if it reaches a predefined threshold of interestingness
metric. This metric is known as Support. The Support refers to the probability
of finding a set of API classes in the transactions. The use of the Support metric
separates the classes of API into two groups according to whether they belong
to at least one FUP or not. Classes that do not belong to any of the identified
FUPs are the less commonly used classes. As each API class that belongs to a
transaction is a class that has been accessed by the clients of the API, therefore it
must be a part of the classes composing the interfaces of at least one component.
We propose assigning each class of the less commonly used classes to the pattern
holding the maximum Support value when they are merged together.

4.3 Identifying Classes Composing Component Interfaces from
Frequent Usage Patterns

We identify classes composing component interfaces from those composing FUPs.
Each FUP is partitioned into a set of groups, where each group represents a

Mining Software Components from Object-Oriented APIs 337

Fig. 7. Client components using
API

Fig. 8. Identifying classes compos-
ing components

component interface. Classes are grouped together according to three heuristics
that measure the probability of a set of classes to be a part of the same interface.
The first is the frequency of simultaneous use of these classes by the same client.
The second is the cohesion of these classes. This measures the strength of sharing
data (e.g. attributes) between these classes. The third heuristic is the lexical
similarity between these classes based on the textual names of the classes, their
methods as well as their attributes. Based on the above heuristics, we propose a
fitness function, given below, measuring the ability of a group of classes to form
a component interface. We use LCC metric [19] to measure the cohesion of a set
of classes, Conceptual Coupling metric [20] to measure classes’ lexical similarity
and Support metric to measure the association frequency of a set of classes.
The partition of each pattern into groups of classes is based on a hierarchical
clustering algorithm which uses this function as a function of similarity.

I(E) =
1

∑
i λi

· (λ1 · LCC(E) + λ2 · CC(E) + λ3 · S(E)) (2)

Where E is a set of OO classes; LCC(E) is the Cohesion of E ; CC(E) is Con-
ceptual Coupling of E ; S(E) is the Support of E ; and λ1, λ2, λ3 are weight values,
situated in [0-1]. These are used by the API expert to weight each characteristic
as needed.

5 API as Library of Components

5.1 Identifying Classes Composing Components

As we mentioned before, the component identification process is driven by the
identification of its provided interfaces. This means that API classes forming
a component are identified in relation to their direct or indirect structural and
behavioral dependencies with the classes forming provided interfaces of the com-
ponent. The selection of a class of the API to be a part of the component classes

338 A. Shatnawi et al.

Input: Source Code of a Set of Software Clients(clients), API Source Code(api)
Output: A Set of Transactions(trans)
for each c in clients do

components.add(ROMANTIC(c));
end
for each com in components do

transaction = ∅;
for each class in com do

transaction.add(class.getUsedClasses(api));
end
trans.add(transaction);

end
return trans

Algorithm 1: Identifying Transactions

is based on the measurement of the quality of this component, when this is in-
cluded. The identification of these classes is done gradually. In other words, we
start to form the group of classes composing the interface ones, and then we add
other classes to form a component based on the component quality measurement
model. Classes having either direct or indirect links with the interface ones rep-
resent the candidate classes to be added to them. At each step, we add a new
API class. This is selected based on the quality value of the component, formed
by adding this class to the ones already selected. The class that maximizes the
quality value is selected in this step. This is done until all API classes are in-
vestigated. Each time we add a class, we evaluate the component quality. Then,
we select the peak quality value to decide which classes form the component.
This means that we exclude classes added after the peak value. As an exam-
ple, Class7 and Class8 in Figure 8 are excluded from the resulting component
because they were added after the quality value reached the peak.

5.2 Organizing API as Layers of Components

As we previously mentioned, the API is structured in N layers of components.
To identify components of layer L, we rely on components of layer L − 1. We
proceed similarly to the identification of the components of the first layer. We use
required interfaces of the components already identified in layer L−1 to identify
the interfaces provided by components in layer L. This continues until reaching
a layer where its components either do not require any interface or they require
ones already identified. Each interface defined as a required for a component of
layer L − 1 is considered as a provided by a component of layer L except ones
provided by the already identified components. All interfaces provided in layer
L are grouped into clusters to identify those provided by the same component of
layer L. The clusters are obtained based on a hierarchical clustering algorithm.
This algorithm uses a similarity function that measures: (i) the cohesion of classes
composing a group of interfaces, (ii) the lexical similarity of these classes and (iii)
the frequency of their simultaneous use. Clusters that maximize this function are
selected. The interfaces composing each cluster are considered as provided by the
same component. Analogously to the identification of the components of the first
layer, the other classes composing each component are identified starting from
classes composed of its already identified provided interfaces.

Mining Software Components from Object-Oriented APIs 339

6 Experimentation and Results

6.1 Experimental Design

Data Collection. We collected a set of 100 Android− Java applications from
open-source repositories3. The average size of these applications in terms of num-
ber of classes is 90. The application names are listed in the Appendix. These
applications are developed based on classes of the android APIs4. In our ex-
perimentation, we focus on three of these APIs. The first is the android.view
composed of 491 classes. This API provides services related to the definition
and management of the user interfaces in android applications. The second API
is the android.app composed of 361 classes. This API provides services related
to creating and managing android applications. The last API is the android
composed of 5790 classes. This API includes all of the android services.

Research Questions and Evaluation Method. The approach is evaluated
on the collected software applications and APIs. We identify client components
independently from each software application. Each component in software is
considered as a client of the APIs to form a transaction of classes. Then, we
mine Frequent Usage Pattern (FUP) from the identified transactions. Next, from
classes composing each FUP, we identify classes composing a set of component
interfaces. Then, we identify all component classes starting from ones composing
their interfaces. Lastly, the final results obtained by our approach are presented.

We evaluate the obtained components by answering the three following re-
search questions.

– RQ1: Does the Approach Reduce the Understandability Efforts?
This research question aims at measuring the saved efforts in the API un-
derstandability that are brought by migrating object-oriented APIs into
component-based ones.

– RQ2: Are the Mined Components Reusable? As our approach aims
at mining reusable components, we evaluate the reusability of the resulted
component. This is based on measuring how much related classes are grouped
into the same components.

– RQ3: Is the Identification of Provided Interfaces Based on FUPs
Useful? The proposed approach identifies the provided interfaces of the
components based on how clients have used the API classes (i.e. FUPs).
Thus, this research question evaluates how much benefit the use of FUPs
brings by comparing components identified by our approach with ones iden-
tified without taking FUPs into account.

To answer the second question that related to the reusability, we use the K−
fold cross validation method [18]. The idea is to partition the client applications
into K parts. Then, the identification process is applied K times by considering,
each time, K − 1 different parts for the identification process and by using the
remaining part to measure the reusability. Next, we take the average of all K
trail results. In our experiment, we set K to 2, 4, and 8.

3 sourceforge.net, code.google.com, github.com, gitorious.org, and
aopensource.com

4 We select android API level 14 as a reference

sourceforge.net
code.google.com
github.com
gitorious.org
aopensource.com

340 A. Shatnawi et al.

Fig. 9. Changing the support threshold value to mine FUPs of classes

6.2 Results

Intermediate Results and Identified Components. The average number
of client components identified from each software is 4.5 and the average num-
ber of classes composing each component is 18.73. Table 1 shows the average
number of transactions per software application (ANTIC), the average of trans-
action size in terms of classes (ATS), and the percentage of components that
have used the API (PCU). The last column of this table shows an example of
transactions.

The results show that android, view, and app APIs have been used respec-
tively by only 54%, 29% and 32% of client components. In addition, we note
that each client component has used the API classes intensively compared to
the number of classes composing it. For example, the transaction size is 17.91
classes for the view API, where the average number of classes per component
is 18.73. This is due to the fact that classes that serve the same services in
software applications, and consequently depend on the same API classes, are
grouped together in the same client component.

Table 1. The Identification of Transactions

API ANTIC ATS PCU Example
android 2.61 64.82 0.54 Bitmap, Path, Log, Activity, Location, Canvas, Paint,

ViewGroup, MotionEvent, View, TextView, GestureDe-
tector

view 1.51 17.91 0.29 MenuItem, Menu, View, ContextMenu, WindowManager,
MenuInflater, Display, LayoutInflater

app 1.58 10.90 0.32 ProgressDialog, Dialog, AlertDialog, Activity, ActionBar,
Builder, ListActivity

The identification of FUPs relies on the value of the Support threshold. The
number and the size of the mined FUPs depend on this value. For all application
domains where FUPs are used (e.g. data mining), this value is determined by
domain experts. In our approach, to help API experts to determine this value,
we assign the Support threshold values situated in [30%-100%]. We give for each
Support value the number of the mined FUPs and the average size of the mined

Mining Software Components from Object-Oriented APIs 341

FUPs for each API (c.f. Figure 9). The results show that the number of mined
FUPs is directly proportional to the Support value, while the average size of the
mined FUPs is inversely proportional.

Based on their knowledge of the API, API experts can select the value of
the Support. For example, if the known average number of API classes used
together to implement an application service is N , then the experts can choose
the Support value corresponding to FUPs having N as the average size. Based on
the obtained results and our knowledge on android APIs5, we select the Support
threshold values as 60%, 45%, and 45% respectively for the android, the view
and the app APIs.

Table 2 shows examples of the mined FUPs. For instance, the FUP related
to view API contains 10 classes. The analysis of this FUP shows that it corre-
sponds to three services: animation (Animation and AnimationUtils classes),
view (Surface, SurfaceView, SurfaceHolder, MeasureSpec, ViewManager and
MenuInflater classes), and persistence of the view states (AbsSavedState and
AccessibilityRecord classes). These services are dependent. Animation service
needs the view service and the data of animation view needs to be persistent.

Table 2. Examples of the Mined FUPs

API Example
android Intent, Context, Log, SharedPreferences, View, TextView, Toast, Activity,

Resources
view Surface, Animation, AnimationUtils, AccessibilityRecord, ViewManager,

MenuInflater, AbsSavedState, SurfaceView, SurfaceHolder, MeasureSpec
app Dialog, Activity, ProgressDialog

In Table 3, we present the results of interface identification in terms of the
average number of component interfaces identified from a FUP (ANCIP), the
average number of classes composing component interfaces (ACIS) and the to-
tal number of component interfaces in the API (TNCI). The last column of
this table presents examples of component interfaces identified from the FUPs
given in Table 2. For instance, the analysis of classes composing the component
interfaces identified from the FUP related to the view API shows that they are
related to surface view services.

Table 3. Identification of Component Interfaces from FUPs

API ANCIP ACIS TNCI Examples
android 1.57 5.62 232 Activity, View, TextView, Toast
view 2.17 2.94 19 Surface, SurfaceView, SurfaceHolder
app 2.50 4 10 Dialog, ProgressDialog

Table 4 presents the results related to the mined components composing the
firstAPI layer. For each API, we give the number of the mined components (NMC)
and the average number of classes composing the mined components (ACS).

5 The authors of this paper are experts on the android APIs.

342 A. Shatnawi et al.

The last column of this table shows examples of classes composing components
identified started from classes composing provided component interfaces presented
in Table 3. The results show that the services offered by classes of android, view
and appAPIs are identified as 232, 19 and 10 components respectively. This means
that developers only require to interact with these components to get the needed
services from these APIs.

Table 4. Identifying Classes Composing Components

API NMC ACS Example
android 232 19.99 Activity, View, TextView, Toast, Drawable, GroupView, Window,

Context, ColorStateList, LayoutInflater
view 19 7.49 Surface,SurfaceView, SurfaceHolder, MockView, Display, CallBack
app 10 5.86 Dialog, ProgressDialog, AlertDialog

Table 5 shows the final results obtained by our approach. For each API, we
firstly give the size of the API in terms of the number of OO classes composing
the API and the number of the identified components. Secondly, we present
the total number of used entities (classes and respectively components) by the
software clients. The results show that classes participating in providing related
services are grouped into one component. Furthermore, the total number of
cohesive and decoupled services is identified for each API. For instance, android
API consists of 497 components (coarse-grained services), while view and app
APIs contain 43 and 55 components respectively.

Table 5. The Final Results

API Name API Entity API size No. of used Entities

android
OO 5790 491
CB 497 54

view
OO 491 42
CB 43 17

app
OO 361 45
CB 55 5

Answering Research Questions. RQ1: Does the Approach Reduce the Un-
derstandability Efforts? The efforts spent to understand such an API is directly
proportional to the complexity of the API. This complexity is related to the
number of API elements and the individual element’s complexity. On the one
hand, the reduction in the number of elements composing the API is obtained
by grouping classes collaborating to provide one coarse-grained service into one
component. The results show that the average number of identified components
for the studied APIs is 11% (((497/5790) + (43/491) + (55/361)) /3) of the
number of classes composing the APIs. This means that the API size is signifi-
cantly reduced by mapping class-to-component. On the other hand, the reduc-
tion in the individual element complexity is done by migrating object-oriented
APIs into component-based ones. Meaning, components define their required and
provided interfaces, while OO classes at least do not define required interfaces

Mining Software Components from Object-Oriented APIs 343

(e.g. a class may call a large number of methods belonging to a set of classes with-
out an explicit specification of these dependencies). The results show that the
average number of used components for the APIs is 4% (((54/491) + (17/42) +
(5/45)) /3) of the number of used classes. This means that the effort spent to
understand API entities is significantly reduced in the case of software applica-
tions developed based on API components compared to the development based
on API classes. Note that, developers only need to understand the component
interfaces, but not the whole component implementation.

RQ2: Are the Mined Components Reusable? We consider that the reusability
of a software component is related to the number of used classes among all ones
composing the software component. Thus, we calculate the reusability of the
component based on the ratio between the numbers of used classes composing
the component to the total number of classes composing the component. To
prove that our resulted component-based APIs could be generalized to another
independent set of client applications, we rely on K − fold cross validation
method. Table 6 presents the results of this measurement. These results show
that the reusability results is distributed in a disparate manner. The reason
behind this disputation is the size of the train and test data as well as the size
of the API. For instance, the average reusability for the app API is 37% when
the number of train clients is 50 application clients, while it is 51% when the
number of train clients is 88 application clients. Thus, the reusability of the
components increases when the number of train client applications increases.
The results show that our approach identifies reusable components, where the
average reusability for all APIs is 47%.

Table 6. Reusability Results

API android view app
K 2 4 8 2 4 8 2 4 8

Reusability 40% 43% 57% 46% 48% 56% 37% 41% 51%

RQ3: Is the Identification of Provided Interfaces Based on FUPs Useful? To
prove the utility of using FUPs during the identification process, we compare
the components mined based on our approach with ones mined using ROMAN-
TIC approach, which does not take FUPs into consideration. This is based on
the density of using the component provided interfaces by application clients.
The density refers to the ratio between the number of used interface classes to
the total number of interface classes for each component. Table 7 shows the
average density for the two identification approaches. These results show that
our approach outperforms ROMANTIC approach. For instance, the application
clients need to reuse a larger number of components of ones mined based on RO-
MANTIC with less density of provided interface classes compared to component
mined based on our approach. For instance, the average usage density of classes
composing provided interfaces of ROMANTIC components is 21%, while it is
61% for components mined by our approach for all APIs.

344 A. Shatnawi et al.

Table 7. The Results of Interface Density

API ROMANTIC Our Approach
android 20% 69%
view 18% 58%
app 26% 55%

7 Related Work

To the best of our knowledge, no approach has been proposed to identify com-
ponents from object-oriented APIs. However, we present two research areas that
are related to our approach. The First one aims at identifying components from
OO software applications. The second area aims at mining frequent patterns of
API usage.

Concerning the identification of software components from the source code
of software applications, numerous approaches have been presented. Garcia et
al. provide a survey of some of these approaches [21]. In [22], Detten et al.
presented the Archimetrix approach, which aims at mining the architecture of
the legacy software. It relies on a clustering algorithm to partition the system
classes into components. This algorithm depends on name resemblance, cou-
pling and cohesion metrics as a fitness function. In [11], Kebir et al. presented
an approach to extract components from a single OO software system. Classes
composing the extracted components form a partition. Mined components are
considered as a part of the component-based architecture of the corresponding
software. In [12] Allier et al. depended on dynamic dependencies between classes
to recover components. Based on the use case diagram, the execution trace sce-
narios are identified. Classes that frequently occur in the execution traces are
grouped into a single component. Cohesion and coupling metrics are also taken
into account during the identification process. Weinreich et al. proposed, in [23],
an approach to recover multi-view architecture model of software applications
implemented based on service oriented architecture. The authors classified soft-
ware artifacts based on the information from source code, configuration files and
binary codes. In [24], an approach has been presented to mine reusable compo-
nents from a set of similar software applications. A component is considered as
more reusable, when it is reused many times by the software applications. The
authors firstly identified components independently from each software applica-
tion. Then, based on the lexical similarity between the classes composing these
components, they identified reusable ones.

In the context of API mining, many approaches have been proposed to mine
frequent usage patterns of APIs based on the usage history of APIs. Robillard
et al. provide a survey of these approaches [25]. These approaches can be mainly
classified based on four main criteria. The first one is related to the goal, which
can be either giving examples and recommendations of how to use API entities
(e.g. [7,5]), supporting the documentation of APIs (e.g. [7,6]), or improving the
bug detection task (e.g. [8]). The second criterion is related to the pattern or-
dering, where some approaches mine ordered patterns (e.g. [7,6]), while other
ones mine unordered patterns (e.g. [8,26]). The third one concerns the granular-
ity of the elements composing a pattern. For examples, in [7,6]), the approaches

Mining Software Components from Object-Oriented APIs 345

mine patterns composed of methods, and the approach in [26] mines patterns
composed of classes. The fourth one related to the technique that is used to
identify the patterns. The used technique can be association rules mining (e.g.
[26]), clustering algorithms (e.g. [6]) or a heuristic defined by the authors such as
[7,8]. Some approaches combines many techniques, e.g., Unddin et al. used Prin-
ciple Component Analysis with Clustering algorithm [5], and Buse and Weimer
combined the clustering algorithm with their own proposed heuristic [27].

8 Conclusion and Future Work

In this paper, we presented an approach aimed at mining software components
from object-oriented APIs. It is based on static analysis of the source code of
both the APIs and their software clients. The mining process is used-driven.
This means that components are identified starting from classes composing their
interfaces. Classes composing the provided interface of the first layer components
compose FUPs. We experimented our approach by applying it on a set of open
source Java applications as clients for three android APIs. The results show that
our approach improves the reusability of the API.

As our approach is used-driven, the results depend on the quality and the
number of usages of the API. This means that identified FUPs rely on the
considered software clients. Therefore the identification of provided interfaces
and then their corresponding components depends on API clients. Consequently
it is essential to select clients having the largest number of usages of the API.

Our future work will focus on migrating the identified OO components into
existing component models such as OSGI model, and developing a visual envi-
ronment that allows domain experts to interact with the approach at each step
of the identification process, thus modify the obtained results as needed.

Appendix

These are the names of the applications that considered as clients of the APIs.
ADW Launcher, APV, ARMarker, ARviewer, Alerts, Alogcat, AndorsTrail,

AndroMaze, AndroidomaticKeyer, AppsOrganizer, AripucaTracker, Asci-
iCam, Asqare, AugmentRealityFW, AussieWeatherRadar, AutoAnswer, Avare,
BansheeRemote, BiSMoClient, BigPlanetTracks, BinauralBeats, Blokish,
BostonBusMap, CalendarPicker, CH-EtherDroid, CVox, CamTimer, Chan-
ImageBrowser, CidrCalculator, ColorPicker, CompareMyDinner, ConnectBot,
CorporateAddressBook, Countdown, CountdownTimer, CrossWord, Cus-
tomMaps, DIYgenomics, Dazzle, Dialer2, DiskUsage, DistLibrary, Dolphin,
Doom, DriSMo, DroidLife, DroidStack, Droidar, ExchangeOWA, FeedGoal, File-
Manager, FloatingImage, Gcstar, GeekList, GetARobotVPNFrontend, GlTron,
GoHome, GoogleMapsSupport, GraphView, HeartSong, Hermit, Historify,
Holoken, HotDeath, Introspy, LegoMindstroms, Lexic, LibVoyager, LiveMusic,
LocaleBridge, MAME4droid, Look, LookSocial, Macnos, Mandelbrot, Mathdoku,
MediaPlayer, Ministocks, MotionDetection, NGNStack, NewspaperPuzzles, On-
MyWay, OpenIntents, OpenMap, OpenSudoku, Pedometer, Phoenix, PhotSpot,
Prey, PubkeyGenerator, PwdHash, QueueMan, RateBeerMobile, AlienbloodBath,
SuperGenPass, SwallowCatcher, Swiftp, Tumblife, VectorPinball, WordSearch.

346 A. Shatnawi et al.

References

1. Frakes, W.B., Kang, K.: Software reuse research: status and future. IEEE Trans-
actions on Software Engineering 31(7), 529–536 (2005)

2. Zibran, M.F., Eishita, F.Z., Roy, C.K.: Useful, but usable? factors affecting the
usability of apis. In: 18th Working Conf. on Reverse Engineering (WCRE), pp.
151–155 (2011)

3. Monperrus, M., Eichberg, M., Tekes, E., Mezini, M.: What should developers be
aware of? An empirical study on the directives of api documentation. Empirical
Software Engineering 17(6), 703–737 (2012)

4. Ma, H., Amor, R., Tempero, E.: Usage patterns of the java standard api. In: 13th
Asia Pacific Software Engineering Conf. (APSEC), pp. 342–352 (2006)

5. Uddin, G., Dagenais, B., Robillard, M.P.: Temporal analysis of api usage concepts.
In: Proc. of the 2012 Inter. Conf. on Software Engineering (ICSE), pp. 804–814.
IEEE Press, Piscataway (2012)

6. Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., Zhang, D.: Mining succinct and
high-coverage api usage patterns from source code. In: Proc. of the 10th Working
Conf. on Mining Software Repositories (MSR), pp. 319–328. IEEE Press, Piscat-
away (2013)

7. Montandon, J.E., Borges, H., Felix, D., Valente, M.T.: Documenting apis with
examples: Lessons learned with the apiminer platform. In: 20th Working Conf. on
Reverse Engineering (WCRE), pp. 401–408 (2013)

8. Monperrus, M., Bruch, M., Mezini, M.: Detecting missing method calls in object-
oriented software. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 2–25.
Springer, Heidelberg (2010)

9. Maalej, W., Robillard, M.P.: Patterns of knowledge in api reference documentation.
IEEE Transactions on Software Engineering 39(9), 1264–1282 (2013)

10. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Pear-
son Education (2002)

11. Kebir, S., Seriai, A.-D., Chardigny, S., Chaoui, A.: Quality-centric approach
for software component identification from object-oriented code. In: Joint
Working IEEE/IFIP Conf. and European Conf. on Software Architecture
(WICSA)/(ECSA), pp. 181–190 (2012)

12. Allier, S., Sadou, S., Sahraoui, H., Fleurquin, R.: From object-oriented applications
to component-oriented applications via component-oriented architecture. In: 2011
9th Working IEEE/IFIP Conf. on Software Architecture (WICSA), pp. 214–223
(2011)

13. Lüer, C., Van Der Hoek, A.: Composition Environments for Deployable Software
Components. Citeseer (2002)

14. Heineman, G.T., Councill, W.T.: Component-Based Software Engineering: Putting
the Pieces Together, vol. 17. Addison-Wesley, Reading (2001)

15. Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D.: Extraction of component-
based architecture from object-oriented systems. In: Seventh Working IEEE/IFIP
Conf. on Software Architecture (WICSA), pp. 285–288 (2008)

16. ISO. Software Engineering – Product Quality – Part 1: Quality Model. Technical
Report ISO/IEC 9126-1, International Organization for Standardization (2001)

17. Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D.: Search-based extraction of
component-based architecture from object-oriented systems. In: Morrison, R., Bal-
asubramaniam, D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 322–325.
Springer, Heidelberg (2008)

18. Han, J., Kamber, M., Pei, J.: Data mining: Concepts and techniques. Morgan
Kaufmann (2006)

19. Bieman, J.M., Kang, B.-K.: Cohesion and reuse in an object-oriented system. In:
Proc. of the 1995 Symposium on Software Reusability (SSR), pp. 259–262. ACM,
New York (1995)

Mining Software Components from Object-Oriented APIs 347

20. Poshyvanyk, D.: A Marcus. The conceptual coupling metrics for object-oriented
systems. In: 22nd IEEE Inter. Conf. on Software Maintenance (ICSM), pp. 469–
478 (2006)

21. Garcia, J., Ivkovic, I., Medvidovic, N.: A comparative analysis of software architec-
ture recovery techniques. In: IEEE/ACM 28th Inter. Conf. on Automated Software
Engineering (ASE), pp. 486–496 (2013)

22. von Detten, M., Platenius, M.C., Becker, S.: Reengineering component-based soft-
ware systems with archimetrix. Software & Systems Modeling, 1–30 (2013)

23. Weinreich, R., Miesbauer, C., Buchgeher, G., Kriechbaum, T.: Extracting and
facilitating architecture in service-oriented software systems. In: Joint Working
IEEE/IFIP Conf. on Software Architecture (WICSA) and European Conf. on Soft-
ware Architecture (ECSA), pp. 81–90 (2012)

24. Shatnawi, A., Seriai, A.-D.: Mining reusable software components from object-
oriented source code of a set of similar software. In: IEEE 14th Inter. Conf. on
Information Reuse and Integration (IRI), pp. 193–200 (2013)

25. Robillard, M.P., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T.: Auto-
mated api property inference techniques. IEEE Transactions on Software Engi-
neering 39(5), 613–637 (2013)

26. Bruch, M., Schäfer, T., Mezini, M.: Fruit: Ide support for framework understanding.
In: Proc. of the 2006 OOPSLA Workshop on Eclipse Technology Exchange, pp. 55–
59. ACM, New York (2006)

27. Buse, R.P.L., Weimer, W.: Synthesizing api usage examples. In: Proc. of the 2012
Inter. Conf. on Software Engineering, ICSE 2012, pp. 782–792. IEEE Press, Pis-
cataway (2012)

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 348–363, 2014.
© Springer International Publishing Switzerland 2014

Adapting Collections and Arrays: Another Step
towards the Automated Adaptation of Object Ensembles

Dominic Seiffert1 and Oliver Hummel2

1 University of Mannheim, Germany
seiffert@informatik.uni-mannheim.de

2 Karlsruhe Institute of Technology, Germany
hummel@kit.edu

Abstract. An important challenge of reuse in object-oriented development is
that objects or more generally components often cannot be plugged together di-
rectly due to interface mismatches. Consequently, automating the adaptation of
software building blocks has been on the research agenda for quite a while.
However, after various attempts based on (semi-)formal specifications, only re-
cently, adaptation approaches based on test cases have demonstrated that practi-
cally useable implementations of this idea are feasible. This paper addresses the
adaptation of arrays and collections in order to bring the associated challenges
into the center of attention and to increase the applicability of existing test-
based adaptation approaches.

Keywords: Object adaptation, signature mismatches, test-driven adaptation.

1 Introduction

Decomposing large problems into smaller, more manageable, is a well-known prin-
ciple in computer science that has been successfully applied in software development
as well. Let it be in object-oriented, component-based, or service-based approaches,
all are decomposing a monolithic system into smaller building blocks that are easier
to handle and not to forget supposed to be more reusable in different contexts. Not
surprisingly, however, the sheer complexity of software development makes system
composition and reuse of existing building blocks a challenging undertaking, because
even if a building block provides exactly the right functionality it often cannot be
used in a given environment because it’s provided interface does not match the one
required due to signature mismatches. A classic solution for overcoming such mis-
matches in the object-oriented programming is wrapping the provided interface with
an adapter [1], which, however, is often a time-consuming and error-prone manual
activity. One potential solution to this problem is fully automated adaptation, which
has hence been gaining increasing importance in various research communities in
recent years. Unfortunately, and to the best of our knowledge, a practically usable
solution for adapting objects, based on test-cases, has only been presented very re-
cently [2]. In order to increase the application range of automated adaptation in ob-
ject-oriented programming languages this paper addresses the challenge of adapting

 Adapting Collections and Arrays: Another Step towards the Automated Adaptation 349

complex parameter objects which are more difficult to adapt than primitive data types,
as they may provide their own functionality.

The contribution of this paper is that we present an upgraded prototype implemen-
tation of an existing test-based adapter generation tool [3] that is able to adapt col-
lections and arrays, as a subset of existing object types, on examples taken from the
Commons Math: The Apache Commons Mathematics Library [16].

The remainder of the paper is structured as follows: Section 2 gives background in-
formation on adaptation in object-oriented development. Section 3 provides a motiva-
tion for providing automated conversion mechanisms. Section 4 gives an overview on
selected literature from related fields. Section 4 introduces the Java Collections
Framework and briefly describes the term of test-driven reuse where the adaptation
approach happens. This section also specifies the challenges that need to be overcome
in detail. Section 5 provides an evaluation on “in-vitro” and “in-vivo” examples. Sec-
tion 6 states the Conclusion and Outlook.

2 Background

In order to overcome mismatches on the signature level (cf. to Becker et al. [4] for an
overview of other mismatch levels) a well-known solution is to add an adapter that
handles message “forwarding” from one interface to the other. In every object-
oriented programming language like Java the Object Adapter Pattern as documented
e.g. by the Gang of Four [1] is a well-known approach for the implementation of an
adapter. Figure 1 illustrates a typical object adapter where a Client would like to use
the functionality provided by the Adaptee, but is not able to do so, as it depends on a
different Target interface. Therefore, an Adapter gets interposed in order to imple-
ment the Target interface and forward incoming messages. In this example messages
arriving at the request method of the Adapter are forwarded to the specificRequest
method of the Adaptee.

Fig. 1. The Gang of Four Object Adapter Pattern

350 D. Seiffert and O. Hummel

Again according to Becker et al. [4], mismatches on the signature level can be
furthter categorized into the following mismatch types.

• Deviating Method Names and Parameter Names
• Different Parameter Types and Return Types
• Parameter Permutations
• Different Numbers of Parameter (through the use of record types)
• Deviating Types of Exceptions
• Attribute Sequence in Complex Types (e.g. structures)

This means that the adapter has to fulfill tasks such as “translating” between me-
thods with different names and different parameter orders. In order to specify the
semantics that the adapter must fulfil the idea of Hummel and Atkinson [2] is that the
Client specifies a test case. Out of this test case the required interface can be extracted
in the first step, which is used then to find potential matchings on the Adaptee’s pro-
vided interface. Through the assertions defined in the test case the Adapter can con-
trol if the semantics for the matchings are fulfilled during the adaptation process.

In order to increase the range of automated adaptation approaches, with the ulti-
mate goal of providing fully automated adaptation on arbitrary objects, however, it is
necessary to tackle the challenge of different parameter and return types that may
even contain even different complex types. Unfortunately, this has not been solved in
literature so far as further illustrated in the section of related work. This challenge
needs to be distinguished from simple conversion mechanisms which are already
provided by a common programming language such as Java, for instance. According
to the Java language specification [5], in the context of a method invocation, Java
allows the use of such implicit conversions, which means that the Java programming
language handles necessary conversions such as “Boxing” and “Unboxing”, e.g. con-
verting a provided parameter of type int to an expected parameter of type Integer and
vice versa, automatically. The latter represents a wrapper class for the primitive data
type int. Wrapper classes are used when objects are expected and the primitive data
type itself cannot be provided. It encapsulates the value of the primitive data type.
Other examples for automated conversions provided by the Java programming lan-
guage in the context of method invocation are listed in the following table. Thereby a
widening conversion from byte to short is given because short is a larger primitive
data type than byte. A widening reference conversion from ArrayList to List is possi-
ble because List is an interface that is implemented by ArrayList.

Table 1. Kinds of method invocation conversions in the Java programming language

Kind of Conversion

Example
Source Parameter Type Destination Parameter

Type
Identity Conversion byte byte
Boxing Conversion byte Byte
Unboxing Conversion Byte byte
Widening Primitive
Conversion

byte short

Widening Reference
Conversion

ArrayList List

 Adapting Collections and Arrays: Another Step towards the Automated Adaptation 351

The listed conversion mechanisms happen automatically, i.e. there is no need for
an adapter to provide such conversions programmatically. But given two types of a
Stack for instance, namely MyStack and YourStack which are assumingly not con-
nected by type hierarchy, no conversion mechanism can be applied. That is, although
both do semantically the same an instance of the one can not be provided if an in-
stance of the other is expected. Such conversion needs to be provided by the Adapter.
To distinguish automatically provided conversion mechanisms from those that need to
be fulfilled by the adapter we use the term transformation instead. Since the transfor-
mation of arbitrary type instances in each other can be a quite complex task we start
with a subset, namely arrays and collections from the Java Collections Framework.
The reason for this is that arrays and collections are data structures that show common
semantics as explained in the next section.

The Java Collections Framework and Arrays

The interface List and the class ArrayList both belong to the Java Collections frame-
work, which distinguishes between different kinds of collections, such as the general
purpose implementations like ArrayList, LinkedList, or HashSet, for instance. Table 2
gives an overview on these collections that are considered in this paper, categorized
by the interfaces they implement.

Table 2. General-purpose implementations

Interfaces

Implementing Classes
Hash table
 based

Resizable
Array based

Tree
based

Linked list Hashtable +
Linked List

Set HashSet TreeSet LinkedHashSet
List ArrayList

Stack
Vector

 LinkedList

Deque ArrayDeque LinkedList
Map HashMap TreeMap LinkedHashMap

In general, Java knows five different strategies for implementing collections with
different idiosyncrasies: Classes that implement the Map interface rely on a key value
mapping, where each key can map to at most one value and the Map may not contain
duplicate keys. Classes that implement the List interface represent ordered sequences
and may contain duplicate elements. Classes that implement the Set interface do not
allow duplicate elements. Classes that implement the Deque interface allow the inser-
tion and removal of elements at both ends. All the listed interfaces – except for the
Map interface - inherit from the super interface Collection. This interface provides for
example the add(Element) method to its sub-interfaces.

As collections, arrays are data structures that are used to store elements. For arrays,
once initialized, the length never changes which is different to collections. For exam-
ple, for the array Integer[] arrayInt = {1,2,3} the variable arrayInt points to an array of

352 D. Seiffert and O. Hummel

element type Integer which keeps three elements. In order to keep four elements in-
stead the array needs to be re-initalized by arrayInt = {1,2,3,4} for instance. Whereas
for an ArrayList instance the addElement method can be invoked.

3 Motivation

Obviously, collections and arrays share similar semantics, namely to store elements.
Therefore automated conversion of those in each other should make life easier for
developers, and hence should be supported during – potentially automated – adapter
creation as well. However, especially in the context of collections and arrays, there
exist a large number of other relatively straightforward conversions that are not sup-
ported by current automated adaptation approaches.

The example following in figure 2 illustrates a situation where a Client depends on
the Target interface that allows him to sort an array of numbers. But the Client wishes
to use the sortIt method provided by the Sorter instead, because it sorts faster. Thus,
Sorter plays the role of the Adaptee. The sortIt method is programmed against the List
interface and therefore can take any class implementing this interface as an argument,
like LinkedList or ArrayList, for intance. Since a direct match between both methods
is not possible, the Adapter needs to translate an array of primitive component type int
to a List implementation with argument type Integer (which is the wrapper class for
int). The other way around happens for the return type argument delivered by the
Sorter back to the Client.

Fig. 2. Object adapter pattern example

The transformation from the array to the List and vice versa is not that difficult a

task as will be illustrated in the next section. But writing such a transformation ma-
nually can be effortful and time-consuming. Therefore, it should happen automatical-
ly as detailed in the reminder of this paper.

 Adapting Collections and Arrays: Another Step towards the Automated Adaptation 353

4 Related Work

Various approaches in literature are concerned with the adaptation of software build-
ing blocks. In the following we concentrate on literature that tackles adaptation on the
signature level.

The work by Reiss [6] is based on the idea of test-driven reuse [7] where simple
test-cases are used as input for a component search engine, which takes the extracted
required interface out of the test-case as an input for an interface-based search. If
components are delivered that do not fit the requirements, as parameter and return
types do not match, a modification is attempted to the components in order to fit the
requirements. However, when components get modified invasively on source level or
even on binary level this may lead to license problems because the vendor of the
component may not allow the modification of the component’s source code [8], or
may not allow the re-compilation of it. The second problem are dependency prob-
lems: If a method of a component’s interface gets renamed for instance, all other
components that use the method must be modified. If parameter types are changed
this might require an even more propagated deep adjustment of type changes.

Kell [9] proposes a formal and rule-based language named Cake for automated
wrapper generation. The mapping rules used for defining interface relations thereby
must be written manually. Applying these rules, transformation on object structures
are possible. Nevertheless, we believe that transformation should happen automatical-
ly since it is a clear overhead for a developer writing mapping rules, especially for
unknown complex objects. The approach proposed by Nita and Notkin [10] is con-
cerned with adapting programs to alternative APIs. The user must still have know-
ledge of the new API in order to write mapping rules. The approach works best when
the differences between the APIs are small and it considers not-straightforward struc-
tural correspondences as out of scope, which we believe are the main challenge for
providing transformation. The work presented by Hummel [11] is based on the Identi-
ty Map Pattern from Fowler [12] and solves the problem of the Gang of Four adapter
pattern when the parameter or return type has the type of its own interface. For exam-
ple, given the expected interface of type Matrix which provides a method getMa-
trix():Matrix. Let the provided interface be of type OtherMatrix, playing the role of
the Adaptee, and providing a method getMatrix():OtherMatrix. Then both methods
can get matched on each other if OtherMatrix could be transformed to Matrix. But
such a transformation is not considered, since what is actually returned to the Client is
an adapter of type Matrix which delegates messages to the Adaptee OtherMatrix.
Therefore this approach does not consider the transformation of complex data types as
proposed in this paper. The approach is integrated into another work by Hummel and
Atkinson [2] that provides relaxed-signature matching for primitive data types. But
again, it does not provide a transformation mechanism as proposed in this paper.

The work by Janjic [13] overcomes the problem of the signature mismatches for
different method names, but again, it does not consider the transformation of complex
data types. The work by Seiffert and Hummel [3] tackles the challenge overcoming

354 D. Seiffert and O. Hummel

signature mismatches on method and parameter-names, relaxed signature matching
for primitive data types, and parameter permutations, on the basis of efficient run-
time behavior in the context of test-driven reuse (where test-cases are used as an input
[7]). But again, it does not consider the transformation of complex data types.

In the context of web-services Cavallaro et al. [14] present an approach that only
requires WSDL as an input to automatically derive a script that maps the correct op-
eration sequence from the expected to the provided service. The approach uses sche-
ma matching and ontology-based reasoning. This is not appropriate for object types
because of the following reasons: First, ontologies for ordinary programming lan-
guage APIs do not exist. Second the provided interfaces of a web-service are
described in a Web Service Description Language (WSDL) by XML. Parameter or
return types described as complex data types in such a WSDL are abstract data types
which do not provide any functionality through methods. Such a complex data type in
WSDL is therefore quite different from a complex data type forming an object or a
component.

As this overview reveals, literature is lacking a transformation mechanism for
complex data types (in the context of adaptation) for objects and components that
cannot be matched on each other. But we believe it is a need tackling this challenge in
order to realize McIlroy’s [15] idea of a component supermarket from where compo-
nents can simply plugged together to create new functionality.

5 Implementing Transformations

The general idea for creating adapters that are able to deal with collections and arrays
as parameters or return types should have become clear already. It is necessary to
generate routines that are able to transform instances of every type from table 2 to
instances of every other one contained there while taking the requirements for the
different implementations into account. Moreover, the transformation mechanism
should also consider arrays.

The adaptation tool presented in the following which supports the transformations
on collections and arrays is written in Java and is executed as a stand-alone applica-
tion with a graphical user interface. For each adaptation it takes a test-case as an input
from which the required interface gets extracted. Furthermore, the Adaptee needs to
be available out of which the provided interface gets extracted. When the adaptation
process finishes either the final adapter or a summary of exceptions is provided.

The following sequence diagram gives an overview on the adaptation process. The
TestCoordinator is responsible for managing the process. The test case is executed
until all the tests in the test case are executed successfully or the testing failed. The
adapter built for the process is temporary and able to change its “wirings” dynamical-
ly. This is different from the final adapter which will be available if the process fi-
nishes successfully. If the temporary adapter needs to transform parameter and return
type instances during the process it uses methods which are provided by the
Transformer class.

 Adapting Collections and Arrays: Another Step towards the Automated Adaptation 355

Fig. 3. Sequence diagram of the testing process

The following code snippet illustrates how the transformation is implemented by
the adapter for the example from the last section. These transformation methods will
eventually also be part of the final adapter.

//Adapter

 public void sort(int[] param0){
 try{
 adaptee.sortIt(java.util.LinkedList<Integer>)
 Transformer.transform(param0,
 java.util.LinkedList<Integer>));
 }catch(Exception e) { }
 return ;
 }

When the adaptation process gets initiated the tool recognizes that the sort method

required by the Client potentially matches the sortIt method provided by the Sorter. It
identifies that the parameter of the sort method is an array and the parameter of sortIt
is a List. Second, the primitive component type of the array is int which matches the
parameter type Integer of the List. Therefore the appropriate transformation can be
applied. When the array instance provided by the Client as an input arrives at the
Adapter’s sort method it first forwards it to a transform method which is provided by
the class Transformer. The transformed result is casted then to the expected destina-
tion type List which gets forwarded then to the Sorter’s sortIt method.

The Transformer’s transform method is described in the following for the previous
example. In the first step it detects that the type of the provided instance is actually
an array and that the destination type is a List, i.e. its super-interface Collection.

[until all tested]loop

TestCoordinator TestCase Adapter (temporary) Transformer Adaptee

1 : execute() 2 : invoke(params[])
3 : transform(params[]) 4 : invoke(params[])

5 : result

6 : result
7 : result

8 : assertEquals(result, expected)

9 : testresult

356 D. Seiffert and O. Hummel

Therefore it can forward the array instance to the specific transformArrayToCollec-
tion method where the actual transformation happens. The second else-if statement
checks the other way round which will become important when the Sorter’s sortIt
method returns a List implementation that needs to be transformed to the array then.

//Transformer

public static Object transform(Object instance, Class destinationType)
 throws Exception {
 Object result = null;
 Class<?> sourceType = instance.getClass();
 if(sourceType.isArray() &&
 Collection.class.isAssignableFrom(destinationType)){
 result = transformArrayToCollection(instance, destinationType);
 }else if(Collection.class.isAssignableFrom(sourceType) &&
 destinationType.isArray()){
 result = transformCollectionToArray(value,
 destinationType.getComponentType());
 }
 return result;
}

Before the actual transformation starts it is important to check if the destination

type is an interface type, such as List, or its super-interface Collections, or a class
type, such as ArrayList implementing the List interface. If it is one of the interface
types then a default List implementation is chosen, which is LinkedList in this case.
Any other implementation could be chosen instead. Since a LinkedList implements
the List interface which inherits from the Collection interface the created instance can
be casted to Collection. The helper class Array is then used to iterate over the array
instance’s elements and to insert these elements into the Collection. This Collection is
then returned to the adapter where it is casted to List again, since this is expected by
the Sorter’s sortIt method. If on the other hand an exception occurred during the trans-
formation it will be displayed on the GUI to the Client appropriately.

private static Object transformArrayToCollection(Object array,
 Class collectionType) throws Exception{
 Collection collection = null;
 try{
 if(collectionType.isInterface()){ //any kind of Collection is default a List
 if(collectionType == List.class || collectionType == Collection.class){
 collection = (Collection) LinkedList.class.newInstance();
 }
 }else {
 collection = (Collection) collectionType.newInstance();
 }
 for(int i=0; i< Array.getLength(array); i++){

 Adapting Collections and Arrays: Another Step towards the Automated Adaptation 357

 collection.add(Array.get(array, i));
 }
 }catch(Exception e){
 throw new TransformationException("Could not transform array to Collection:
 "+e.getMessage());
}
return collection;
}

The transformation the other way round from the List implementation to an array is

realized by the following transformCollectionToArray method provided by the Trans-
former again. The second parameter contentType specifies the content type of the array
to create. In the first step the Object instance is casted to a Collection. That collection
instance is a Collection that was already checked before in the transform method accor-
dingly. In the next step the array instance is created with the help of the class Array. Then
it is checked whether the Collection is empty. If so, the empty array instance can be re-
turned. If not, we need to check if another transformation is necessary for the content
type. This is the case for example, when the Collection contains elements of type Short
and the array expects elements of type Integer on the other hand. That is, the elements of
the Collection of type Short are then transformed to elements of type Integer. No auto-
mated conversion is provided in this case by the Java language.

private static Object transformCollectionToArray(Object collectionInstance,
 Class contentType) throws Exception{
 Collection collection = (Collection) collectionInstance;
 Object array = null;
 try{
 array = Array.newInstance(contentType, collection.size());
 int i = 0;
 Object firstElement = (collection.isEmpty() == true) ?
 null : collection.iterator().next();
 if(firstElement == null) {
 return array; //empty array
 }else if(needToTransform(firstElement.getClass(), contentType) == true){
 Class<?> elementType = firstElement.getClass();
 for(Object o : collection){
 Object collectionWrapperElement = getWrapperConstructor(getDataType(
 elementType)).newInstance(o.toString());
 Object transformedObject = getWrapperConstructor(getDataType(
 contentType)).newInstance(collectionWrapperElement.toString());
 Array.set(array, i, transformedObject);
 i++;
 }
 }else {
 for(Object o : collection){

358 D. Seiffert and O. Hummel

 Array.set(array, i, o);
 i++;
 }
 }
}catch(Exception e){
 throw new TransformationException("could not transform collection to array:
 "+e.getMessage());
 }
return array;
}

Due to space restrictions we cannot list all the kinds of transformations, as for ex-

ample the transformation from a LinkedList to an ArrayList for instance. But the
procedure is obviously similar. For transforming Map instances on Collection or array
instances, however, some more obstacles need to be overcome. For example, an array
or Collection does not use key value mappings for its entries as the Map does. The
idea is therefore to use the index positions where the elements are stored in the Col-
lection or the array as the keys for the Map. Since an index position is a numeric type
this requires that the Map instances expect such a type instance as a key, however.
The other way round, if keys of a Map are of numeric type, they can be used as the
index position in a Collection or an array. If this is not the case, a more sophisticated
transformation such as using a hash function in order to transform String keys to in-
teger keys is currently not implemented, but theoretically possible.

The following code snippet shows the transformation from a Collection instance to a
Map instance, provided that the check if the transformation is possible validated true.

private static Object transformCollectionToMap(Object value, Class destinationType)
 throws Exception{
Map destinationMap = null;
 try{
 if(destinationType != Map.class) {
 destinationMap = (Map) destinationType.newInstance();
 }else{
 destinationMap = (Map) HashMap.class.newInstance();
 //take HashMap as default.
 }
 Collection sourceCollection = (Collection) value;
 int indexAsKey = 0;
 for(Object element : sourceCollection){
 destinationMap.put(indexAsKey, element);
 indexAsKey++;
 }
 }catch(Exception e){
 throw new TransformationException("Could not transform Collection to Map");
 }
return destinationMap;
}

 Adapting Collections and Arrays: Another Step towards the Automated Adaptation 359

6 Experiments

The adapter generation tool can be downloaded at our homepage1. It is supplied with
a comprehensive documentation and samples of JUnit test cases and adaptees that
easily allow the verification of its adaptation capabilities. Some of them are described
in a former publication [3]. The tool is completely written in Java and is executable as
a standalone application. It is equipped with a GUI where different adaptation projects
can be created. Each project needs to specify the class to adapt, the test case where the
required interface gets extracted from, and the result directory where the final adapter
should be written.

The evaluation described in the following consists of two parts. In the first part an
“in-vitro” evaluation is provided by constructed examples. In the second part mathe-
matical components get adapted which are taken from the “wild”.

Concerning the first part of the evaluation: In order to verify the newly integrated
ability to transform arrays and collections different projects exist, which can be ex-
ecuted to verify the adaptation capabilities. The test cases for each project correspond
to the adaptation example where a Client would like to use a sorting mechanism by an
Adaptee but is prevented from this because he depends on an interface. That is Sorter
plays the role of the Adaptee again, sort represents the required interface and sortIt the
provided interface. For example, the following test method belongs to the testcase
from the project ArrayListTransformationTest where the transformation from
an ArrayList to a Vector instance is necessary. More exactly, it is the task of the adap-
ter to match the sort(ArrayList<Integer>):Vector<Integer> method on the sor-
tIt(Vector<Integer>):ArrayList<Integer> method provided by Sorter. The second test
method tests the transformation from an ArrayList to a LinkedList. For each of the
introduced collection classes and for arrays a test method exists.

The helper class Generator is used to generate a random ArrayList and a sorted
Vector instance. The latter is what is expected by the Client. If the assertEquals
statement validates true, both instances have the same sorted content. The test case
finishes successfully for this test method then. If all test methods finish the same the
whole test case does. All test cases equipped with the projects pass successfully.

import generator.Generator;

public class ArrayListTransformationTest extends TestCase {

 public void testArrayListToVector(){
 Sorter sorter = new Sorter();
 ArrayList<Integer> delivered = Generator.getRandomArrayList();
 Vector<Integer> expected = Generator.getSortedVector();

 assertEquals(expected, sorter.sort(delivered));
 //transform ArrayList to Vector (on forward)
 //transform ArrayList to Vector (on return)
 }

1 http://oliverhummel.com/adaptation/tool.zip

360 D. Seiffert and O. Hummel

 public void testArrayListToLinkedList(){
 …
 }
}

Besides this in-vitro evaluation on constructed examples the new integrated ability

to transform arrays and collections was also tested on real world examples. Thereby
classes from the Commons Math: The Apache Commons Mathematics Library [16]
were selected, namely those where its methods expect arrays or collections as parame-
ter or return types. The selected classes play the role of the Adaptee during the adap-
tation process.

As the name of the library implies the classes offer mathematical functionality.
Since they are equipped with test cases its functionality can be easily verified.

After the classes were selected the test cases were modified, i.e. clones were
created manually, such that the test cases threw compilation errors. This happened in
the following way: The type of provided method parameters and expected return
types were changed appropriately, as for example, when an array was expected by the
Adaptee, the test cases was changed to provide an ArrayList instead. This problem
should be solved by our adapter generation tool then.

After the adaptation process succeeded successfully the modified test case was ex-
ecuted again, but this time using the final adapter instead of the Adaptee directly.
Since the test case executed successfully the adapter’s transformation capability was
verified. For example, in the following test case the compute method of the selected
class EuclideanDistance from the org.apache.commons.math3.ml.distance package is
tested. It takes as an input two vectors, represented by an array of type double each,
and calculates the distance between them. If the same vector is provided as the first
and second parameter, as in this example, the distance should be zero. The interface
of the compute method is public double compute(double[], double[]).

package org.apache.commons.math3.ml.distance;
//skipping imports

public class EuclideanDistanceTest {
 final DistanceMeasure distance = new EuclideanDistance();

 @Test
 public void testZero() {
 final double[] a = { 0, 1, -2, 3.4, 5, -6.7, 89 };
 Assert.assertEquals(0, distance.compute(a, a), 0d);
 }

After verification that the original test case executed successfully the array of type

double was replaced with an LinkedList<Float> and the expected name of the method
was changed from compute to calculate. The required interface in the test case

 Adapting Collections and Arrays: Another Step towards the Automated Adaptation 361

therefore changed to public void double calculate(LinkedList<Float>). The adapter
generator had therefore to overcome a parameter type and method name mismatch,
namely from LinkedList<Float> on double[] and calculate on compute.

In the next step, the modified test case and the candidate to adapt, in this case
EuclidDistance, was used as an input for our adapter generation tool. The following
table provides an overview on the required interfaces, the selected components, and
their provided interfaces to adapt. The first column names the required interface of the
modified test case. The second column names the component to adapt from the
Commons Apache Mathematics library. The third column names its provided inter-
face that must be adapted in order to match the required interface.

Table 3. Adaptation testing overview

Required Interface Name of the
Adaptee adapt

Provided
Interface

calculate(float[],float[])
:float

EuclidDistance compute(double[], double[]):
double

calculate(int[], int[]): int CanberraDistance compute(double[], double[]):
double

calculate(ArrayList<Byte>,
ArrayList<Byte>): int

Chebyshev-
Distance

compute(double[], double[]):
double

calculate(Stack<Float>,
Vector<Float>): float

ManhattanDis-
tance

compute(double[], double[]):
double

Calculate(double[][])
:double

OneWayAnova anovaPValue(List<double[]>):
double

All the modified test cases passed successfully when the final adapter was tested.
Therefore, the adaptation capabilities could be verified.

7 Conclusion

We have presented in this paper matching possibilities for a subset of complex data
types that share common semantics, namely arrays and collections from the Java Col-
lections Framework. These matching possibilities are realized through simple - but
automated - transformation mechanisms which are a clear overhead for a developer
writing them manually. These mechanisms were implemented in our adapter genera-
tion tool.

We have provided experiments on that tool by an “in-vitro” evaluation that uses
constructed examples, as well as an evaluation on selected examples taken from the
“wild”.

Although the tool was improved by the presented matching possibilities it is not
able to adapt arbitrary candidates, because the problem of matching unknown com-
plex data types still exists. Therefore, from matching collection classes and primitive
data types, the next step would be to further improve the adaptation capabilities

362 D. Seiffert and O. Hummel

towards complex data types that do not represent known data structures, in order to
further improve the adaptation capabilities concerning signature mismatches.

Tackling the challenge of signature mismatches by more research and tools is ne-
cessary to further push fully automated adapter generation, which we believe should
have a great benefit for ordinary developers and the communities of self-adapting and
component based systems.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Pearson Education (1994)

2. Hummel, O., Atkinson, C.: Automated Creation and Assessment of Component Adapters
with Test Cases. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE 2010. LNCS,
vol. 6092, pp. 166–181. Springer, Heidelberg (2010)

3. Seiffert, D., Hummel, O.: Improving the Runtime-Processing for Component Adaptation.
In: Favaro, J., Morisio, M. (eds.) ICSR 2013. LNCS, vol. 7925, pp. 81–96. Springer, Hei-
delberg (2013)

4. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: Towards an
engineering approach to component adaptation. In: Reussner, R., Stafford, J.A., Szyperski,
C.A. (eds.) Architecting Systems with Trustworthy Components. LNCS, vol. 3938, pp.
193–215. Springer, Heidelberg (2006)

5. Gosling, J., Joy, B., Steele, G., Bracha, G. Buckley, A.: The Java Language Specification,
Java SE 7 Edition (February 28, 2013), http://docs.oracle.com/javase/
specs/jls/se7/html/index.html (accessed November 14, 2014)

6. Reiss, S.P.: Semantics-based code search. In: IEEE 31st International Conference on Soft-
ware Engineering, ICSE 2009, pp. 243–253 (2009)

7. Hummel, O., Janjic, W.: Test-Driven Reuse: Key to Improving Precision of Seach Engines
for Software Reuse. In: Finding Source Code on the Web for Remix and Reuse, pp. 227–
250. Springer (2013)

8. Hölzle, U.: Integrating independently-developed components in object-oriented languages.
In: Nierstrasz, O.M. (ed.) ECOOP 1993. LNCS, vol. 707, pp. 36–56. Springer, Heidelberg
(1993)

9. Kell, S.: Component adaptation and assembly using interface relations. In: Proceedings of
the ACM International Conference on Object Oriented Programming Systems Languages
and Application, OOPSLA 2010, pp. 322–340 (2010)

10. Nita, M., Notkin, D.: Using twinning to adapt programs to alternative apis. In: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010,
vol. 1, pp. 205–214 (2010)

11. Hummel, O., Atkinson, C.: The Managed Adapter Pattern: Facilitating Glue Code Genera-
tion for Component Reuse. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS,
vol. 5791, pp. 211–224. Springer, Heidelberg (2009)

12. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley (2003)
13. Janjic, W., Atkinson, C.: Leveraging software search and reuse with automated software

adaptation. In: 2012 ICSE Workshop on Search-Driven Development - Users, Infrastruc-
ture, Tools and Evaluation (SUITE), pp. 23–26 (2012)

 Adapting Collections and Arrays: Another Step towards the Automated Adaptation 363

14. Cavallaro, L., Di Nitto, E., Pelliccione, P., Pradella, M., Tivoli, M.: Synthesizing adapters
for conversational web-services from their WSDL interface. In: Proceedings of the 2010
ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, pp.
104–113 (2010)

15. McIlroy, M.: Mass-Produced Software Components. In: Software-Engineering: A Report
on a Conf. Sponsored by the NATO Science Commitee, pp. 138–155 (1969)

16. Apache Software Foundation, Commons Math: The Apache Commons Mathematics Li-
brary (2014), http://commons.apache.org/proper/commons-math/ (ac-
cessed August 2014)

Author Index

Al-Shara, Zakarea 330
Andrade, Rossana M.C. 282
Asaithambi, Suriya Priya R. 122

Bezerra, Carla I.M. 282
Biggerstaff, Ted J. 106

Carlson, Jan 253
Cecchinel, Cyril 221
Chen, Xiangping 204
Collet, Philippe 221
Constantino, Kattiana 73

da Silva Gomes, Gecynalda Soares 42
de Almeida, Eduardo Santana 42
de Oliveira, Raphael Pereira 42
Dintzner, Nicolas 1

Figueiredo, Eduardo 73
Frakes, William B. 269

Gallina, Barbara 253
Gasparic, Marko 164

Hansson, Hans 237, 253
Higo, Yoshiki 156, 314
Hotta, Keisuke 314
Hummel, Oliver 348

Ishihara, Tomoya 156

Janes, Andrea 164
Jarzabek, Stan 122
Javed, Muhammad Atif 139

Kaindl, Hermann 34
Kapitsaki, Georgia M. 90
Kramer, Frederik 90
Kulczycki, Gregory 269

Kulesza, Uirá 1
Kusumoto, Shinji 156, 314

Long, Yonghao 204
Luo, Xiaonan 204

Mannion, Mike 34
Männistö, Tomi 58
Mohr, Felix 188, 298
Monteiro, José Maria S. 282
Mosser, Sébastien 221
Myllärniemi, Varvana 58

Nagi, Khaled 172

Pereira, Juliana Alves 73
Pinzger, Martin 1
Puri, Stefano 253

Sahraoui, Houari 17, 330
Saleh, Iman 172
Savolainen, Juha 58
Seiffert, Dominic 348
Seriai, Abdelhak 17, 330
Shatnawi, Anas 17, 330
Sillitti, Alberto 164
Sljivo, Irfan 253
Succi, Giancarlo 164

Tilley, Jason 269

van Deursen, Arie 1

Walther, Sven 188

Yang, Jiachen 314
Yin, Hang 237

Zdun, Uwe 139

	Preface
	Organization
	Table of Contents
	Software Product Lines
	Evaluating Feature Change Impact on Multi-product Line Configurations Using Partial Information
	1Introduction
	2Background
	3Motivation: Change Impact in an Industrial Context
	4Feature-Change Impact Computation
	4.1Goals and Constraints
	4.2Approach
	4.3Example
	4.4Scalability Aspects
	4.5Prototype Implementation

	5Industrial Case Study
	5.1Modelling a X-Ray MPL
	5.2Simulating the Change
	5.3Performance Analysis
	5.4Threats to Validity

	6Related Work
	7Conclusion

	Recovering Architectural Variability of a Family of Product Variants
	1Introduction
	2Background
	2.1Component-Based Architecture Recovery from Single Software: ROMANTIC Approach
	2.2Formal Concept Analysis

	3Process of Recovering Architectural Variability
	4Identifying the Architecture Variability
	4.1Identifying Component Variants
	4.2Identifying Configuration Variants

	5Identifying Architecture Dependencies
	6Experimentation and Results
	6.1Results

	7Related Work
	8Conclusion

	A Feature-Similarity Model for Product Line Engineering
	1 Introduction
	2 Related Work
	3 Contrasting SPLE and CBR
	4 A Feature-Similarity Model
	4.1 Product Line Scoping
	4.2 Domain Engineering
	4.3 Application Engineering

	5 Discussion and Open-ended Questions
	6 Conclusion
	References

	Evaluating Lehman's Laws of Software Evolution within Software Product Lines: A Preliminary Empirical Study
	1Introduction
	2 Related Work
	3Empirical Study
	3.1Planning
	3.2Execution
	3.3Data Analysis and Discussion
	3.4Threats to Validity

	4Key Findings and Contributions for SPL Community
	5Conclusions and Future Work

	Experiences in System-of-Systems-Wide ArchitectureEvaluation over Multiple Product Lines
	1 Introduction
	2 Previous Work on Architecture Evaluation Methods
	3 Research Method
	4 Results
	5 Discussion
	6 Conclusions
	References

	A Systematic Literature Review of Software Product Line Management Tools
	1 Introduction
	2 Literature Systematic Review (SLR)
	2.1 Planning the Review
	2.2 Conducting the Review
	2.3 Reporting the Review

	3 Results and Analyses
	3.1 SPL Management Tools
	3.2 Main Characteristics of the Tools
	3.3 Main Functionalities of the Tools

	4 Threats to Validity
	5 Conclusion and Future Work
	References

	Solving Reuse Problems
	Open Source License Violation Checkfor SPDX Files
	1 Introduction
	2Describing Software Packages with SPDX
	3Modelling License Compatibilities
	4The SPDX Violation Checker
	5Experiments and Discussion
	5.1Testing Set
	5.2Main Results

	6Related Work
	7Conclusions

	Automatically Solving Simultaneous Type Equations forType Difference Transformations That Redesign Code
	1 Overview
	1.1 The Problem

	2 CQ Types, Their Relationships and Type Differencing
	2.1 Overview
	2.2 Solving Simultaneous Parameterized Type Equations

	3 Recursive Type Constructors
	4 Related Research
	5 Summary and Conclusions
	References

	Pragmatic Approach to Test Case Reuse -A Case Study in Android OS BiDiTests Library
	1 Introduction
	2 Motivation and Sketch of the Solution
	3 Overview of Generic Adaptive Test Template (GATT)
	4 Overview of BiDiTests
	5 Test Clones in BiDiTests Library
	5.1 Test Clone Examples
	5.2 Non-reducible Test Clone Groups in BiDiTests

	6 GATT Representation for BiDiTests
	6.1 Selected BiDiTests GATT Examples

	7 GATT Evaluation
	7.1 Lossless Translation of Test Libraries into GATT Representation
	7.2 Quantitative Evaluation
	7.3 Qualitative Analysis - Change Propagation
	7.4 Scalability
	7.5 Non-intrusiveness
	7.6 Threats to Validity

	8 Related Work
	9 Conclusion
	References

	Empirical and Industrial Studies
	The Supportive Effect of Traceability Links in ChangeImpact Analysis for Evolving Architectures– Two Controlled Experiments
	1Introduction
	2Related Work
	3Design of the Experiment
	3.1Goal, Hypotheses, Parameters, and Variables
	3.2Experiment Design

	4Execution
	4.1Sample and Preparation
	4.2Data Collection Performed
	4.3Validity Procedure

	5Analysis
	5.1Descriptive Statistics
	5.2Analysis of the Opinion of Participants
	5.3Hypothesis Testing and Results

	6Interpretation
	6.1Evaluation of Results and Implications
	6.2Threads to Validity and Limitations of the Study

	7Conclusions and Future Work

	How Often Is Necessary Code Missing? — A Controlled Experiment —
	1Introduction
	2Preliminaries
	2.1Motivating Example
	2.2Terms

	3Code Completion for Middle Code
	4Experiment
	4.1Procedure
	4.2Investigation for RQ1
	4.3Investigation for RQ2
	4.4Discussion

	5Conclusion

	An Analysis of a Project Reuse Approach in an Industrial Setting
	1Introduction
	2Related Work
	3Research Methodology
	3.1Case and Subject Selection
	3.2Data Collection Procedure
	3.3Analysis Procedure

	4Results
	5Validity Threats
	6 Conclusions and Future Work

	Reuse for the Web/Cloud
	HadoopMutator: A Cloud-Based Mutation TestingFramework
	1 Introduction
	2 Mutation Testing
	3 The Map/Reduce Programming Model
	4 HadoopMutator
	5 Experimentation
	6 Related Work
	7 Conclusion and Future Work
	References

	Template-Based Generation of Semantic Services
	1Introduction
	2Related Work
	3The Service and Template Model
	3.1Service and Knowledge Model
	3.2The Template Model
	3.3Template Instantiation

	4Correctness of Services by Correctness of Templates
	5Systematic Template Instantiation
	5.1The Basic Instantiation Mechanism
	5.2No Serious Combinatorial Explosion
	5.3An Enhanced Instantiation Mechanism

	6Preliminary Practical Evaluation
	6.1Evaluation Setting
	6.2Quantitative Evaluation: The Efficiency of the Approach
	6.3Qualitative Evaluation: Usefulnes of Generated Services
	Discussion

	7Conclusion and Future Work

	Automatic Color Modification for Web PageBased on Partitional Color Transfer
	1 Introduction
	2 Approach Overview
	3 Partitional Color Transfer
	3.1 Dimensions for UI Element Comparison
	3.2 Web Page Partition Based on Cluster of UI Elements
	3.3 Matching UI Elements
	3.4 Color Transfer between UI Elements

	4 Color Modification Based on Color Transfer Result
	5 Experiments
	5.1 Web Structure Preserving
	5.2 Color Characteristic Preserving
	5.3 Examples

	6 Related Work
	7 Conclusion
	References

	Reuse Based Software Development
	Software Development Support for Shared Sensing Infrastructures: A Generative and Dynamic Approach
	1Introduction
	2Motivations
	2.1The SmartCampus Project
	2.2Supporting Shared Sensing Infrastructure
	2.3Running Example

	3Contribution: The COSmIC Framework
	3.1Data Collection Policies as Timed Automata
	3.2The Generator Operator ()
	3.3The Decomposition Operator ()
	3.4The Composition Operator ()

	4Assessment
	4.1Implementation and Application
	4.2Illustration
	4.3Validation
	4.4Threats to Validity

	5Related Work
	6Conclusions and Perspectives

	Flexible and Efficient Reuse of Multi-mode Components for Building Multi-mode Systems
	1Introduction
	2The Mode Switch Logic (MSL)
	3Mode Transformation
	3.1Overview
	3.2Construction of the Mode Combination Tree
	3.3Deriving the Mode Transition Graph

	4An Example Illustrating the Transformation
	5Discussion
	5.1Industrial Value
	5.2Verification
	5.3Merging System Modes
	5.4Partial Mode Transformation

	6Related Work
	7Conclusion

	A Method to Generate Reusable Safety Case Fragments from Compositional Safety Analysis
	1Introduction
	2Background
	2.1COTS-Based Safety-Critical Architectures
	2.2CHESS-FLA within the CHESS Toolset
	2.3Safety Cases and Safety Case Modelling

	3FLAR2SAF
	3.1Rationale
	3.2Contractual Interpretation of FPTC Rules
	3.3Argument-Fragment Generation

	4Application Example
	4.1Wheel Braking System (WBS)
	4.2FPTC Analysis
	4.3The Translated Contracts
	4.4The Resulting Argument-Fragment

	5 Related Work
	6Conclusion and Future Work

	Reuse Metrics
	A Comparison of Methods for Automatic TermExtraction for Domain Analysis
	1 Introduction
	2 Methods
	2.1 Overlap Metric
	2.2 Test Set and Demographics
	2.3 Corpus Preparation
	2.4 Vocabulary Creation
	2.5 Word Frequency Metrics

	3 Results
	3.1 Stemming and Stoplist Impact
	3.2 Filtering Methods
	3.3 Consistent Outliers

	4 Conclusions
	References

	Measures for Quality Evaluation of Feature Models
	1 Introduction
	2 Identifying Measures
	3 Validating the Measures Catalog
	4 Evaluating the Use of the Measures Catalog
	5 Related Work
	6 Conclusion and Future Work
	References

	A Metric for Functional Reusability of Services
	1Introduction
	2Related Work
	3Problem Description
	4Estimating Reusability through Relevance
	4.1The Service Contribution Graph
	4.2Service Impact
	4.3Normalized Impact
	4.4Discounts and Penalties for Subsequent Services
	4.5The Counterpart of Impact: Applicability
	4.6Merging Impact and Applicability Into Relevance

	5Preliminary Evaluation
	5.1 Evaluation Setting
	5.2ervations
	5.3Discussion
	5.4Practical Usage of the Approach

	6Conclusion

	Reuse in Object-Oriented
	Revealing Purity and Side Effects on Functions for Reusing Java Libraries
	1Introduction
	2Related Work
	3 Automatic Inference of Purity and Side Effects
	3.1Stateless and Stateful Purity of Functions
	3.2Lexical State Accessors and Side Effects
	3.3Call Graph and Data Analysis
	3.4Effects from Function Invocations
	3.5ration to a Fix-point of Class Diagram
	3.6Applications in Reusing Software Components

	4 Implementation Details
	4.1Detection of Cache Semantics

	5Experiments
	5.1R1: Distribution of Effects
	5.2R2: Comparison with an Existing Approach
	5.3RQ3 A Case Study: Purity of equals and hashCode

	6Future Work and Conclusions

	Mining Software Components from Object-Oriented APIs
	1Introduction
	2Putting Problem in Context
	2.1The Goal: Object to Component
	2.2Background
	2.3Component and Frequent Usage Pattern

	3The Proposed Solution Foundations
	4Identification of Component Interfaces
	4.1Extracting Transactions of Usage
	4.2Mining Frequent Usage Patterns of Classes
	4.3Identifying Classes Composing Component Interfaces from Frequent Usage Patterns

	5API as Library of Components
	5.1Identifying Classes Composing Components
	5.2Organizing API as Layers of Components

	6Experimentation and Results
	6.1Experimental Design
	6.2Results

	7Related Work
	8Conclusion and Future Work

	Adapting Collections and Arrays: Another Steptowards the Automated Adaptation of Object Ensembles
	1 Introduction
	2 Background
	3 Motivation
	4 Related Work
	5 Implementing Transformations
	6 Experiments
	7 Conclusion
	References

	Author Index

