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Preface

This volume contains papers presented at the 23rd International Symposium on
Logic-based Program Synthesis and Transformation (LOPSTR) held in Madrid, Spain,
on September 18 and 19, 2013. There were 21 submissions. Each submission was re-
viewed by at least three Program Committee members. Thirteen papers were selected
for presentation at the symposium. The program also included invited talks by Peter
Stuckey and Albert Rubio. All but two of the papers presented at the symposium went
through another round of reviewing before being included in this volume.

We gratefully acknowledge the authors for submitting their papers, members of the
Program Committee for prompt reviewing, the Easychair system in helping administer
the reviewing process both for the symposium and for this volume, and the local ar-
rangements committee for their organizational efforts. We also recognize the support
of our respective institutions, the University of Texas at Dallas and Universidad Com-
plutense de Madrid.

October 2014 Gopal Gupta
Ricardo Peña
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Search Is Dead, Long Live Proof!

Peter Stuckey

Department of Computer Science,
University of Melbourne,

Melbourne, Australia

Constraint programming is a highly successful technology for tackling complex combi-
natorial optimization problems. Any form of combinatorial optimization involves some
form of search, and CP is very well adapted to make use of programmed search and
strong inference to solve some problems that are out of reach of competing technolo-
gies. But much of the search that happens during a CP execution is effectively repeated.
This arises from the combinatorial nature of the problems we are tackling. Learning
about past unsuccessful searches and remembering this in the form of lemmas (or no-
goods) in an effective way can exponentially reduce the size of the search space. In this
sense search can be seen as a mechanism to prove lemmas, and optimization search is
simply a proof that no better solution can be found, with the side effect that good solu-
tions are found on the way. In this talk I will explain lazy clause generation, which is a
hybrid constraint solving technique that steals all the best learning ideas from Boolean
satisfiability solvers, but retains all the advantages of constraint programming. Lazy
clause generation provides the state of the art solutions to a wide range of problems,
and consistently outperforms other solving approaches in the MiniZinc challenge. Lazy
clause generation allows concise lemmas to be recorded about the optimization search,
and this together with methods like rapid restart mean we are no longer searching for
a good solution, but instead iteratively building a proof that no better solution can be
found. So search is dead, long live proof.



Program Analysis Using SMT and Max-SMT

Albert Rubio

Universitat Politécnica de Catalunya,
Barcelona, Spain

When applying the constraint-based method in program analysis the existence of good
constraint solvers is key for its success. However, when the analysis requires the discov-
ery of several properties there are two new crucial elements to be taken into account in
the development of automatic tools, namely how to guide the search to and the relevant
properties and how to define a good notion of progress in this process.

Our work has been focused on showing how new SMT solvers for non-linear arith-
metic can improve the automatic invariant generation in imperative programs with
scalar and array variables, and how to combine this invariant generation with the ver-
ification of other properties like termination. In this respect, we have observed that by
considering the constraint method as a constraint optimization problem to be solved
with Max-SMT, as opposed to a constraint satisfaction problem to be solved with SMT,
one can devise natural notions of relevance of program properties and of progress in the
analysis.
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Formalization and Execution of Linear Algebra:
From Theorems to Algorithms

Jesús Aransay(B) and Jose Divasón

Departamento de Matemáticas y Computación, Universidad de La Rioja,
Edif. Luis Vives, c. Luis de Ulloa s/n., 26004 La Rioja, Spain

{jesus-maria.aransay,jose.divasonm}@unirioja.es

Abstract. In this work we present a formalization of the Rank Nul-
lity theorem of Linear Algebra in Isabelle/HOL. The formalization is of
interest because of various reasons. First, it has been carried out based
on the representation of mathematical structures proposed in the HOL
Multivariate Analysis library of Isabelle/HOL (which is part of the stan-
dard distribution of the proof assistant). Hence, our proof shows the
adequacy of such an infrastructure for the formalization of Linear Alge-
bra. Moreover, we enrich the proof with an additional formalization of
its computational meaning; to this purpose, we choose to implement the
Gauss-Jordan elimination algorithm for matrices over fields, prove it cor-
rect, and then apply the Isabelle code generation facility that permits to
execute the formalized algorithm. For the algorithm to be code generated,
we use again the implementation of matrices available in the HOL Mul-
tivariate Analysis library, and enrich it with some necessary features.
We report on the precise modifications that we introduce to get code
execution from the original representation, and on the performance of
the code obtained. We present an alternative verified type refinement of
vectors that outperforms the original version. This refinement performs
well enough as to be applied to the computation of the rank of some
biomedical digital images. Our work proves itself as a suitable basis for
the formalization of numerical Linear Algebra in HOL provers that can
be successfully applied for computations of real case studies.

Keywords: Linear Algebra · Verification · Code generation

Introduction

In standard mathematical practice, formalization of results and execution of
algorithms are usually (and unfortunately) rather separate concerns. Computer
Algebra systems (CAS) are commonly seen as black boxes in which one has to
trust, despite some well-known major errors in their computations, and mathe-
matical proofs are more commonly carried out by mathematicians with pencil &
paper, and sometimes formalized with the help of a proving assistant. Neverthe-
less, some of the features of each of these tasks (formalization and computation)
are considered as a burden for the other one; computation demands optimized
c© Springer International Publishing Switzerland 2014
G. Gupta and R. Peña (Eds.): LOPSTR 2013, LNCS 8901, pp. 1–18, 2014.
DOI: 10.1007/978-3-319-14125-1 1



2 J. Aransay and J. Divasón

versions of algorithms, and very usually ad hoc representations of mathematical
structures, and formalization demands more intricate concepts and definitions
in which proofs have to rely on.

In this paper, we present a case study in which we aim at developing a formal-
ization in Linear Algebra in which computations are still posible. From an exist-
ing library in the Isabelle/HOL distribution (HOL Multivariate Analysis [15],
HMA in the sequel), which has been fruitfully applied in the formalization of
major mathematical results (both in this system and also in HOL-Light, that
shares a similar representation), we formalize a mathematical result, known as
the “Rank Nullity theorem”.

The result is of interest by itself in Linear Algebra (some textbooks name it
the Fundamental theorem of Linear Algebra) but it is even more interesting if
we consider that each linear map between finite dimensional vector spaces can
be represented by means of a matrix with respect to some provided bases. Every
matrix over a field can be turned into a matrix in reduced row echelon form (rref,
from here on) by means of operations that preserve the behavior of the linear
map, but change the underlying bases; the number of non zero rows of such a
matrix is equal to the rank of the (original) linear map; the number of zero rows
is the dimension of its kernel.

The best-known algorithm for the computation of the rref of a matrix is the
Gauss-Jordan elimination method. We have implemented the algorithm over the
representation of matrices in the HMA library; this representation was intro-
duced by J. Harrison in HOL-Light and successfully applied in the formalization
of Mathematics in various theorem provers, because of its succinctness and its
taking advantage of the underlying type system; vectors are represented as func-
tions over an underlying finite type; matrices as vectors of vectors. A priori, finite
enumerable types have nice computational features, since mathematical and log-
ical operations (traversing, epsilon operator, universal or existential quantifiers)
over them can be executed. We present here some additional features, relying
in previous works, that enable these possibilities in Isabelle/HOL. In this work,
we link the original statement of the Rank Nullity theorem together with the
Gauss-Jordan elimination algorithm, and can use both tools to produce certified
computations of the rank and kernel of linear maps.

As we will illustrate with some examples, the performance of the algorithm is
rather poor, mainly because of the data structure used to represent matrices; the
executable algorithm cannot be used for real applications, but only for tests (for
instance, it could be used for experimental testing or as a reference algorithm for
more optimized versions of it). Therefore, we introduce a data type refinement
that allows us to obtain a version of the algorithm performing nicely in matrices
of a considerable size (but still far from specialized Computer Algebra libraries).

The paper is structured as follows; in Section 1 we describe the Isabelle
features in which our development is based on. In Section 2 we present the
Rank Nullity theorem, as well as its Isabelle formalization. In Section 3 we
introduce the notion of rref and the formalization of the Gauss-Jordan algorithm.
In Section 4 we present the choices and setup of the Isabelle code generation tool
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that enable to execute operations and algorithms. In Section 5 we bring together
the previous ingredients and present the generated SML code from the original
algorithm. Additionally, we present a refinement that enabled us to improve the
performance of the certified algorithm. In Section 6 we draw some conclusions
and present related works, as well as possible future research lines. The source
files of the development are available from [2]; they have been developed under
the Isabelle 2013 version. The previous web site also includes the SML code
generated from the Isabelle specifications, and also the input matrices that have
been used in the benchmarks presented in Section 5.

1 Isabelle/HOL

Isabelle [21] is a generic interactive proving assistant, on top of which different
logics can be implemented; the most explored of these variety of logics is higher-
order logic (or HOL), and it is also the one where the greatest number of tools
(code generation, automatic proof procedures) are available. We do not aim
to present here the fundamentals of Isabelle/HOL, just to introduce the main
features that are used in our work.

The HOL type system is rather simple; it is based on non-empty types, func-
tion types (⇒) and type constructors κ that can be applied to already existing
types (nat, bool) or type variables (α, β). Types can be also introduced by enu-
meration (bool) or by induction, as lists (by means of the datatype command).
Additionally, new types can be also defined as non-empty subsets of already
existing types by means of the typedef command; the command takes a set
defined by comprehension over a given type {x :: α. P x}, and defines a new
type σ. We will refer to this new type as abstract, and to the underlying one as
concrete (this terminology is particular to the context of code generation, where
the abstract type cannot be directly code generated, whereas the concrete one,
under precise assumptions, can be; see [8] for details).

Isabelle also introduces type classes in a similar fashion to Haskell; a type
class is defined by a collection of operators (over a single type variable) and
premises over them. For instance, the HMA library has a type class field rep-
resenting the algebraic structure. Concrete types (real, rat) can be proved to
be instances of a given type class (field in our example). Type classes can be
also used to impose additional restrictions over type variables; for instance, the
expression (x :: α :: field) imposes the constraint that the type variable α pos-
sess the structure and properties stated in the field type class, and can be later
replaced exclusively by types which are instances of that type class.

1.1 HOL Multivariate Analysis Library

The HOL Multivariate Analysis library is a set of Isabelle theories which contains
a wide range of results in different mathematical fields such as Analysis, Topology
or Linear Algebra. They are based on the work of J. Harrison in HOL-Light [10],
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which includes proofs of intricate theorems (such as the Stone-Weierstrass the-
orem) and has been successfully used as a basis for the Flyspeck project [11],
aiming at formally verifying the proof of the Kepler conjecture by T. Hales.
Among the fundamentals of the library, one of the keys is the representation of
n-dimensional vectors over a given type (Fn, where F stands for a generic field,
or in Isabelle jargon a type variable α :: field) taking into account that the HOL
type system lacks the expressivity of dependent types. A detailed explanation
can be found in [9, Section2]. The idea is to represent vectors over α by means
of functions from a finite type variable β :: finite to α; for proving purposes, this
type definition is usually sufficient; if we need to introduce vectors of a concrete
dimension n, β can be replaced by a (finite) type of such cardinality (we present
in Section 4 a possible representation of such types).

The Isabelle type definition is as follows; the functions vec-nth and vec-lambda
are the morphisms between the abstract data type vec and the underlying con-
crete data type, functions with finite domain:

typedef (α,β) vec = UNIV :: ((β::finite) ⇒ α) set

morphisms vec-nth vec-lambda ..

The previous type also admits in Isabelle the shorter notation αˆβ. The
idea of using underlying finite types for vectors indices has great advantages,
as already pointed out by Harrison, from the formalization point of view. For
instance, the type system enforces that operations on vectors (such as addition or
multiplication) are only performed over vectors of equal dimension, i.e., vectors
which indexing types are exactly the same (this would not be the case if we
were to use, for instance, lists as vectors). Moreover, the functional flavor of
operations and properties over vectors is kept (for instance, vector addition can
be defined in a pointwise manner).

The representation of matrices is then derived in a natural way based on the
one of vectors by iterating the previous construction (matrices over a type α will
be terms of type αˆmˆn, where m and n stand for finite type variables).

The HMA library already contains operations and properties of matrices
defined in this way (multiplication, invertible matrices, the relationship between
linear maps and matrices, determinants). Nevertheless, we missed some other
standard results in Linear Algebra, that we had to introduce, such as the notion
of coordinates with respect to a particular (not the canonical one) basis, the influ-
ence of changes of bases over a given matrix, or the elementary row (and column)
operations over matrices (exchanging rows, multiplying a row by a constant and
adding to a row another one multiplied by a constant). These elementary opera-
tions also give place to the notion of elementary matrices; indeed, these are the
invertible matrices; each elementary matrix represents a change of bases.

Another subject that has not been explored in the Isabelle HMA library, or in
HOL-Light, is the possibility to execute the previous data types and operations.
As we will see in Section 4, the finite type class does not enable some operators
over vectors and matrices to be executed, and some additional type classes have
to be used.
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Finally, another aspect that has not been explored in the HMA library is
numerical Linear Algebra. There is no implementation of common algorithms
such as Gaussian elimination or diagonalization. We aim to show that the HMA
library provides a framework where algorithms over matrices can be formalized,
executed and coupled with their mathematical meaning.

1.2 Code Generation

Isabelle/HOL offers a facility to generate code from specifications of data types,
type classes and definitions over them, as long as these elements have an exe-
cutable representation in the target languages (SML, Haskell, OCaml or Scala).
The code generator is part of the trusted kernel of Isabelle [7].

As we explained before, the vec type is an abstract type, produced as a sub-
set of the concrete type of functions from a finite type to a variable type; this
type cannot be directly mapped to an SML type, since its definition, a priori,
could involve HOL logical operators unavailable in SML. In the code generation
process, a data type refinement from the abstract to the concrete type must be
defined; the concrete type is then the one chosen to appear in the target pro-
gramming language. A similar refinement is carried out over the operations of
the abstract type; definitions over the concrete data type (functions, in our case)
have to be produced, and proved equivalent (modulo type morphisms) to the
ones over the abstract type. The general idea is that formalizations have to be
carried out over the abstract representation, whereas the concrete representa-
tions are exclusively used during the code generation process. The methodology
admits iterative refinements, as long as their equivalence is proved. A detailed
explanation of the methodology is found in [7]; an interesting case study in [5].

In Section 5 we present two different refinements of the vec Isabelle type; the
first one uses functions over finite domains, and is designed for simplicity. The
second one uses immutable arrays (represented in the Isabelle type iarray) and
presents a remarkable performance improvement when generated to SML.

2 The Rank Nullity Theorem of Linear Algebra

The Rank Nullity theorem is a well-known result in Linear Algebra; the following
formulation has been obtained from [22, Theorem2.8].

Theorem 1 (The rank plus nullity theorem). Let τ ∈ L (V,W ).

dim(ker(τ)) + dim(im (τ)) = dim(V )

or, in other notation,
rk (τ) + null (τ) = dim(V )

In the previous statement, L (V,W ) denotes the set of linear maps between
two given vector spaces V and W . It is worth noting that V must be a finite-
dimensional vector space. Several textbooks impose the additional restriction of
W being also finite-dimensional, but this restriction (as can be observed in the



6 J. Aransay and J. Divasón

Isabelle formalization) is only needed in the version of the theorem for matrices
representing linear maps (otherwise, we would have a matrix with an infinite
number of columns representing the linear map). The following formalization [1]
is part of the Isabelle repository; thanks to the infrastructure in the HMA library,
it comprises a total of 380 lines of Isabelle code. The Isabelle statement of the
result is as follows:

theorem rank_nullity_theorem:

assumes linear (f::(α::{euclidean_space}) => (β::{real_vector}))
shows DIM (α) = dim {x. f x = 0} + dim (range f)

Following the ideas in the HMA library, the vector spaces are represented
by means of types belonging to particular type classes; the finite-dimensional
premise on the source vector space is part of the definition of the type class
euclidean-space (in the hierarchy of algebraic structures of the HMA library [16],
this is the first type class to include the requisite of being finite-dimensional).
Accordingly, real-vector is the type class representing vector spaces over R. The
operator dim represents the dimension of a subset of a type, whereas DIM is
equivalent to dim, but refers to the carrier set of that type.

There is one remarkable result that we did not find in textbooks, but that
proved crucial in the formalization. Its Isabelle statement reads as follows:

lemma inj_on_extended:

assumes linear f and finite C and independent C and C = B ∪ W

and B ∩ W = {} and {x. f x = 0} ⊆ span B

shows inj_on f W

The result claims that any linear map f is injective over any collection (W )
of linearly independent elements whose images are a basis of the range; this is
required to prove that, given {e1 . . . em} a basis of ker(f), when we complete this
basis up to a basis {e1 . . . en} of the vector space V , the linear map f is injective
over the elements W = {em+1 . . . en} and therefore its cardinality is the same
than the one of {fem+1 . . . fen} (and equal to the dimension of the range of f).1

The Isabelle statement of the Rank Nullity theorem over matrices turns out
to be straightforward; we make use of a result in the HMA library (labeled as
matrix-works) which states that, given any linear map f , f(x :: realˆn) is equal
to the (matrix by vector) product of the matrix associated to f and x. The
picture has slightly changed with respect to the Isabelle statement of the Rank
Nullity theorem; where the source and target vector spaces were, respectively,
an Euclidean space and a real vector space (of any dimension), they are now
replaced by a realˆnˆm matrix, i.e., the vector spaces realˆn and realˆm.

lemma fixes A::real^α^β
shows DIM (real^α) = dim (null_space A) + dim (col_space A)

1 In our opinion, this result is a typical example of a property that is unavoidable in
a formalized proof, but usually skipped in paper & pencil proofs.
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This statement is used to compute the dimensions of the rank and kernel
of linear maps by means of their associated matrices. It exploits the fact that
the rank of a matrix is defined to be the dimension of its column space, also
known as column rank, which is the vector space generated by its columns; this
dimension is also equal to the ones of the row space and the range.

3 The Gauss-Jordan Elimination Method

There are several ways of computing the dimension of the range (and conse-
quently of the kernel) of a linear map. In our development we choose the Gauss-
Jordan elimination method. The main reason is that it has several different
applications. For instance, it can be used to solve systems of linear equations;
Nipkow [20] has proved that the Gauss-Jordan elimination algorithm is correct
in this respect; the algorithm used in that work is very succinct, but works
exclusively for input square matrices with unique solution, i.e., whose rank is
equal to their dimension. Nipkow proves that the algorithm is complete (under
suitable circumstances, it generates a solution) and correct (it generates a vector
which is a solution of the linear system). The algorithm we are formalizing differs
from Nipkow’s since we need an algorithm capable of dealing with non-square
matrices whose rank can be smaller or equal than their number of rows. We
also prove a different property of the algorithm than the one he proves; namely,
that the rank of the input matrix is preserved through the algorithm steps (in
other words, that the rank is an invariant of linear maps). Another difference
is implicit here; in the HMA setting, linear maps and matrices are proved to be
equivalent, whereas Nipkow uses an ad hoc matrix data type. In this sense, our
implementation of Gauss-Jordan elimination would admit further applications,
such as the computation of inverse matrices (or inverses of linear maps) and
the computation of determinants. The algorithm is not optimal for any of those
problems, but algorithmic refinements could be used in later stages to reach bet-
ter performing algorithms for each of the previous tasks, once the mathematical
properties of the original algorithm are stated and proved.

The Gauss-Jordan algorithm is based on the computation of the reduced row
echelon form of (probably non-square) matrices. The rref of a matrix is defined
as follows (see [22]):

1. All rows consisting only of 0’s appear at the bottom of the matrix.
2. In any nonzero row, the first nonzero entry is a 1. This entry is called a

leading entry.
3. For any two consecutive rows, the leading entry of the lower row is to the

right of the leading entry of the upper row.
4. Any column that contains a leading entry has 0’s in all other positions.

The previous definition of rref is valid for non-square matrices. Interestingly,
the rref (R) of a matrix A can be obtained by performing exclusively row opera-
tions, in such a way that R = E1 . . . EkA, where Ei denote elementary matrices;
since elementary operations (and elementary matrices) preserve the rank of a



8 J. Aransay and J. Divasón

matrix, computing the rank of A can be reduced to computing the rank of R (its
number of nonzero rows). The code in the following formalization is available
from [2] in files Elementary Operations and Gauss Jordan.

One way to compute the successive elementary row operations that produce
the rref of a matrix is through the Gauss-Jordan elimination algorithm2; versions
of the algorithm abound in the literature; however, we preferred to introduce our
own version, designed to ease the formalization. In it, the algorithm is described
by means of exclusively elementary row operations Ei (namely interchange rows,
mult row and add row), so that the rank of a matrix A is preserved because of
the previous formula R = E1 . . . EkA. Additionally, the algorithm exploits the
underlying (finite) representation of matrices, where both the indices of rows
and columns are represented by finite types; both the types of columns and
rows indices need to be traversed, and thus are restricted to be instances of the
enum type class; this type class is part of the Isabelle library, and represents
types for which the carrier set is explicit.

Algorithm 1. Gauss-Jordan elimination algorithm
Data: A is the input matrix;
l ← 0; � l is the index where the pivot is to be placed after each iteration;
for k ← 0, (ncols A) − 1 do

� Check that there is a nonzero entry over index l in column k;
if nonzero l (col k A) then

i ← index nonzero l (col k A) � Let i be the index of the first nonzero entry;
A ← interchange rows A i l � Rows i and l are interchanged;
A l ← mult row A l (1/A l k) � Row l is multiplied by (1/A l k);
for t ← 0, (nrows A) − 1 do

if t �= l then
A t ← add row A t l (−A t k) � Row t is added row l times (−A t k);

end if
end for
l ← l + 1

end if
end for

The algorithm satisfies the following properties. When applied from column 0
up to column k, the first k+1 columns will be in rref. Note that implicitly we are
imposing additional constraints on the types indexing columns (and rows); they
must be inductive, since the proofs will be performed by induction over columns’
indices; we make use of an additional type class mod-type, which resembles the
structure Z/nZ, together with some required arithmetic operations and conver-
sion functions from it to the integers. Therefore, the underlying types used for
representing the rows and columns of the input matrices must be instances of
2 A somehow surprising point is that this algorithm is not even mentioned in [22], even

if a detailed description of elementary operations over matrices, rref or invertible
matrices is presented; this underscores our claim that algorithms and its mathemat-
ical meaning are often presented as different subjects.
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the type classes finite, enum and mod-type, as can be noted in the Isabelle type
definition of the algorithm:

definition Gauss_Jordan::α::{inverse, uminus,

semiring_1}^columns::{mod_type}^rows::{mod_type} => α^columns^rows
where . . .

In the previous algorithm definition we exclusively included the type classes
required to state the algorithm; in the later proof of the algorithm, we have to
restrict α to be an instance of the type class field ; additionally, if we try to
execute the algorithm (or generate code from it), the rows and columns types
need to be instances of enum. The finite type class is implicit in the rows and
columns types, since mod-type is a subclass of it.

The crucial result in the formalization of the algorithm preserving the rank
of matrices is that elementary operations (i.e., invertible matrices) applied to a
matrix preserve its rank:

lemma fixes A::real^’n^’m and P::real^’m^’m

assumes invertible P and B = P ** A

shows rank B = rank A

As a consequence of the previous result, we also proved that linear maps are
preserved by elementary operations (only the underlying bases change). Note
that the previous machinery is not particular to our formalization, but could also
be reused for different algorithms in numerical Linear Algebra. Additionally, we
formalized a result stating that the previous algorithm produces a rref.

Moreover, the presented version of the algorithm is executable, as long as the
rows and columns types can be generated to some type in the target languages;
we present in Section 4 the details of that extraction.

4 Code Generation from Finite Types

Up to now, we have used in our development an abstract data type vec (and its
iterated construction for representing matrices), for which the underlying con-
crete types are functions with an indexing type; the indexing type is instance of
the finite, enum and mod-type type classes; these classes demand the universe of
the underlying type to be finite, to have an explicit enumeration of the universe,
and some arithmetical properties.

The finite type class is enough to generate code from some abstract data
structures, such as finite sets, which are later mapped in the target programming
language (for instance, SML) to data structures such as lists or red black trees
(see [19] for details and benchmarks). Our case study is a bit more demanding,
since the indexing types of vectors and matrices have to be also enumerable. The
enum type class allows us to execute operations such as matrix multiplication,
A ∗ B (as long as the type of columns in A is the same as the type of rows in
B), algorithms traversing the universe of the rows or columns indexing types
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(such as operations that involve the logical operators ∀ or ∃ or the Hilbert’s ε
operator), enabling operators like “every element in a row is equal to zero” or
“select the least position in a row whose element is not zero”.

The standard setup of the Isabelle code generator for (finite) sets is designed
to work with sets of generic types (for instance, sets of natural numbers), map-
ping them to lists on the target programming language. This poses some restric-
tions, since operations such as coset ∅ cannot be computed over arbitrary types,
whereas in an enumerable type this is equal to a set containing every element
of the enumerable type (and therefore, in the target programming language, the
result of the previous operation will produce a list containing every element in
the corresponding type). The particular setup enabling these kind of calculations
(only for enumerable types), which are ad-hoc for our case study, can be found
in the file Code Set of our development [2].

Another different but related issue is the election of a concrete type to be
used as index of vectors and matrices; we already know that the type has to be
an instance of the type classes finite, enum and mod-type. The Isabelle library
contains an implementation of numeral types used to represent finite types of
any cardinality. It is based on the binary representation of natural numbers (by
means of the two type constructors, bit0 and bit1, applied to underlying finite
types, and of a singleton type constructor num1 ).

typedef α bit0 = {0 . . . <2 * CARD(α:: finite)}

typedef α bit1 = {0 . . . <1 + 2 * CARD(α:: finite)}

From the previous constructors, an Isabelle type representing Z/5Z (or 5
in Isabelle notation) can be used, which is internally represented as bit1 (bit0
(num1)). The representation of the (abstract) type 5 is the set {0, 1, 2, 3, 4 ::
5}; its concrete representation is the subset {0, 1, 2, 3, 4 :: int}. The integers
as underlying type allow users to reuse (with adequate modifications) integer
operations (substraction and unary minus) in the resulting finite types. As part
of our development, we prove that the num1, bit0 and bit1 type constructors
are instances of the enum type class.

instantiation bit0 :: enum begin
definition (enum::α bit0 list)=map (Abs_bit0’◦ int) (upt 0 (CARD α bit0))

definition enum_all P = (∀ b ∈ enum. P b)

definition enum_ex P = (∃ b ∈ enum. P b)

instance proof (intro_classes) . . .

The Isabelle library already provides basic arithmetic functions for numeral
types, with definitions of addition, substraction, multiplication and division.
Note that, for these operations to be defined generally for arbitrary cardinal-
ities, the cardinality of the finite type must be computed on demand (adding
3 and 4 in type 5 must return 2). To this aim, the Isabelle library has a type
class (card UNIV ) for types whose cardinality is computable; we prove that the
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previous numeral types are instances of such class, enabling the computation of
their cardinals (see file Numeral Type Addenda in [2] for the complete proofs).

5 Bringing It All Back Home: Formalization and
Execution

In the previous section we have presented a setup that permits code generation of
the vectors indexing types and their operations. Nevertheless, as we mentioned in
Section 1.1, vec is itself an abstract type which also has to be refined to concrete
data types that can be code generated.

We present here two such refinements. The first one consists in refining the
abstract type vec to its underlying concrete type functions (with finite domain).
We expected the performance to be unimpressive, but the close gap between
both types greatly simplifies the refinement; interestingly, at a low cost, an exe-
cutable version of the algorithm can be achieved, capable of computing the rref
of matrices of small sizes.

The second data type refinement is more informative; we refine the vec data
type to the Isabelle type iarray, representing immutable arrays (which are gen-
erated in SML to the Vector structure [23]).

In order to achieve the first refinement (from abstract matrices to functions),
the type morphisms between the type vec and its counterpart (functions) have
to be labeled precisely in the code generator setup.

lemma [code_abstype]: vec_lambda (vec_nth v) = (v::α^β::finite)

Additionally, every operation over the abstract data type has to be mapped
to an operation over the concrete data type (and their behavioral equivalence
proved). It can be noted that because of the iterative construction of matrices
(as elements of type vec over vec) each operation over matrices (as multiplication
below) usually demands two lemmas to translate it to its computable version.
It is also remarkable that setsum is computable as long as there is an explicit
version of the UNIV set, and this holds since we have restricted ourselves to
enum types.

definition
mat_mult_row m m’ f = vec_lambda(λj. setsum (λi.(m$f$i * m’$i$j)) UNIV)

lemma [code abstract]: vec_nth (mat_mult_row m m’ f) =

vec_lambda (λj. setsum (λi.(m$f$i * m’$i$j)) UNIV)

lemma [code abstract]: vec_nth (m ** m’) = mat_mult_row m m’

As long as our algorithm is based on (abstract) operations which are mapped
to corresponding concrete operations, the later ones will be correctly code gen-
erated. Since dealing with matrices as functions can become rather cumbersome,
we also define additional functions for conversion between lists of lists and func-
tions (so that the input and output of the algorithm are presented to the user
as lists of lists).
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One subtlety appears at this step; from a given list of elements, a vector
of a certain dimension is to be produced; the user must add a type annotation
declaring which dimension the generated vector has to be (in other words, the
size of the list needs to be known in advance).

Below we present examples of the evaluation (by means of SML generated
code) of the Gauss-Jordan algorithm to compute the dimension of the rank
(which is also the one of the column space) and the one of the null space of
given matrices of reals; the evaluation can be also performed in Isabelle (and
therefore the code generator would not intervene):

value[code] rank (list_of_lists_to_matrix

[[1,0,0,7,5],[1,0,4,8,-1],[1,0,0,9,8],[1,2,3,6,5]]::real^5^4)

value[code] dim (null_space (list_of_lists_to_matrix

[[1,0,0,7,5],[1,0,4,8,-1],[1,0,0,9,8],[1,2,3,6,5]]::real^5^4))

The previous computations have been carried out with matrices represented
as functions. They are almost instantaneous, but the computation of the algo-
rithm over matrices of size 10 × 10 is already very slow (several minutes).

The second aforementioned refinement was designed for improving perfor-
mance. The original Isabelle abstract type vec is mapped to the Isabelle type
iarray (the type itself is just a wrapper of lists), which is then mapped in the
code generation process to the SML Vector structure; the SML structure requires
constant time for access operations, improving, a priori, an implementation by
lists. The code equations that perform the data type and operations conversions
(from type vec to type iarray) can be found in file Matrix To IArray in [2]. As in
our previous example, the data type refinement demands labeling the morphisms
between the abstract type (vec) and the concrete one (iarray), and introducing
operations on iarrays that are proven equivalent to the original abstract ones.
These proofs are almost straightforward, since the iarray and vec representa-
tions share a functional flavor (in the way of accessing elements) that can be
exploited in proofs.

Our Gauss-Jordan algorithm is implemented for matrices with entries over a
field ; in our execution experiments we carry out computations over the Isabelle
types real, rat (for Q) and bit (an implementation of the field Z/2Z); the
Isabelle type real admits serialisations to an SML ad hoc type (quotients of
SML IntInf.int elements) and also to the SML Real.real type. The former offers
arbitrary precision, but on a standard machine, using the optimizer compiler
MLton, only (randomly generated) matrices up to 100 × 100 size can be com-
puted in a reasonable time (as a matter of comparison, Gauss-Jordan algorithm
in Mathematica R© over matrices of real numbers with arbitrary precision becomes
rather slow at sizes over 500 × 500). Table 1 shows the times used by the SML
implementation Poly/ML and the optimizer compiler MLton to process and exe-
cute the Gauss-Jordan elimination algorithm generated from the Isabelle verified
specification over (randomly generated) matrices whose inputs are quotients of
IntInf.int elements. The following experiments have been carried out in a com-
puter with an Intel Core i3-370M Processor (2 cores of 2.4 GHz) with 4GB of
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Table 1. Elapsed time (in seconds) to process random Qn×n matrices (with elements
between -10 and 10) and computing their rrefs using the Gauss-Jordan algorithm with
Poly/ML 5.5 and MLton 20100608

Rational matrices

Size
(n)

Poly/ML MLton
Processing

Time (seconds)
Execution

Time (seconds)
Processing

Time (seconds)
Execution

Time (seconds)

10 0.0 0.0 0.2 0.0
20 0.0 0.2 0.3 0.0
40 0.1 3.7 0.9 1.5
60 0.2 22.7 1.9 9.6
80 0.5 77.0 3.5 32.7
100 0.7 200.9 6.0 84.1

RAM and Ubuntu GNU/Linux 11.10. The SML code and the benchmark matri-
ces are available from [2].

Applying profiling techniques, we detected that most of the computing time
is used not in matrix operations but in the ones related to integer quotients
operations (normalising quotients, computing the lcm of denominators, and the
like3). The latter serialisation (to the SML Real.real type) is produced only for
computing purposes, since it is inconsistent and suffers from numerical stability
problems, but allows us to apply Gauss-Jordan elimination to (randomly gen-
erated) matrices up to size 700 × 700. The performance tests are presented in
Table 2. The processing and execution times in Poly/ML follow a linear pattern
with respect to the number of elements in the matrix (n2).

The rat type is also serialised to quotients of IntInf.int pairs; the performance
tests are therefore equal to the ones obtained for the first serialisation of type
real and presented in Table 1.

Finally, we define our custom serialisation of type bit to SML; the Isabelle
constants 0 :: bit and 1 :: bit are mapped in SML to 0 and 1 of type IntInf.int ;
operations over bit to arithmetic operations modulo 2 in IntInf.int. This seriali-
sation proved empirically to perform better than other options such as the SML
type Bool, or using IntInf.int with exhaustive definitions of the operations. The
benchmarks of this serialisation are presented in Table 3.

With this last serialisation and Poly/ML 5.5 we get to apply Gauss-Jordan
elimination, and compute the rank, of matrices of dimensions up to 2560 ×
2560; computing time grows linearly on the number of matrix entries (as seen
in Table 3), and thus RAM memory becomes the only practical limitation. For
instance, we are able to compute the rank of the binary matrix representing
the following digital image (Fig. 1), captured with a confocal microscope from a
neuronal culture. It is worth noting that processing and computing times over
matrices obtained from digital images are smaller than the ones obtained over
3 Both MLton and Poly/ML make use of the GMP http://gmplib.org/ set of libraries

for arithmetic.

http://gmplib.org/
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Table 2. Elapsed time (in seconds) to process random Rn×n matrices (with elements
between -10 and 10) and computing their rrefs using the Gauss-Jordan algorithm with
Poly/ML 5.2 and MLton 20100608.

Real matrices

Size
(n)

Poly/ML MLton
Processing

Time (seconds)
Execution

Time (seconds)
Processing

Time (seconds)
Execution

Time (seconds)

10 0.0 0.0 0.8 0.0
20 0.0 0.0 2.5 0.0
40 0.1 0.0 13.8 0.0
60 0.2 0.0 56.9 0.0
80 0.3 0.0 164.3 0.0
100 0.6 0.2 361.6 0.1
200 3.7 0.7 9145.4 0.5
400 20.3 5.9 - -
600 65.8 20.5 - -
700 98.6 44.4 - -

Table 3. Elapsed time (in seconds) to process randomly generated (Z2)
n×n matri-

ces and computing their corresponding rrefs using the Gauss-Jordan algorithm with
Poly/ML 5.5 and MLton 20100608

Z2 matrices

Size
(n)

Poly/ML MLton
Processing

Time (seconds)
Execution

Time (seconds)
Processing

Time (seconds)
Execution

Time (seconds)

50 0.0 0.0 0.8 0.0
100 0.3 0.0 4.0 0.1
200 1.0 0.3 54.6 0.6
400 4.6 2.9 809.2 5.2
600 10.6 9.8 - -
800 19.8 24.1 - -
1000 31.8 45.1 - -
1200 53.7 79.7 - -
1400 65.6 143.0 - -
1600 107.0 200.5 - -

randomly generated matrices, since the first ones usually contain patterns which
reduce the number of computations performed during the diagonalization.

The rank of matrices with entries in Z2 permits to know the number of
connected components (and can be successfully applied to the computation of
the number of synapses in a neuron, automating a cumbersome task previously
made “by hand” by biologists) in the original image. See [13] for details about
this technique. Additional benchmarks and extensive details on the previous and
some other tests are presented in [3].
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Fig. 1. Image (2048 × 2048 px.) of a neuron captured with a confocal microscope

6 Related Work and Further Work

6.1 Related Work

From the different theorem provers available in the HOL family, the ones with
a better mathematical library are HOL-Light and Isabelle; this can be checked
by reading through their libraries, and corroborated by informal but informative
rankings such as [24]; our work here relies on the foundations that both systems
share and has reused successfully the mathematical machinery that has been
developed there; nevertheless, and to the best of our knowledge, both of them
lack of implementations of numerical Linear Algebra; moreover, we do not know
of any attempt of execution of the definitions available in that libraries. From
our point of view, our work is a starting point to fill a gap between formalization
and execution that aims to a greater use of these already powerful libraries.

Some other theorem provers have also formalized the computation of the
rank of linear maps; for instance, the SSReflect library of Coq contains the most
extensive effort to formalize finite-dimensional Linear Algebra concepts, aiming
at providing a suitable library for the implementation of the classification of
finite simple groups. The whole library is based upon finite-dimensional struc-
tures, and Coq itself is a constructive setting in which proofs and algorithms
are intertwined, so that one would (erroneously) expect that an implementa-
tion of Gauss-Jordan elimination over matrices should be executable; as is well
known [12, Sect.4], the extensive use of dependent types features in the repre-
sentation of algebraic structures and matrices, which allows for relatively simple
proofs, comes at a cost: these definitions have been locked to avoid the heavy
computations that they would demand, since they may not finish in a reasonable
amount of time. In an effort to offer executability of some of the concepts in the
SSReflect library, a new library CoqEAL [4] has been carried out in which, by
means of types and algorithms refinements, computable versions of, for instance,
the rank of a matrix, are provided.
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6.2 Further Work and Conclusions

We do not aim to present this development as a canonical approach to the
the task of bringing together mathematical formalization and execution, but
to show that proof assistants are mature enough to enable the simultaneous
development of both fields with some technical effort (that once carried out, can
be later reused in different settings). Additionally, one of the fields in which the
Isabelle/HOL tool is more actively growing at the moment is data types and
algorithms refinements, with the ambitious goal of reducing the gap between
software formalization and working software.

The case study we have presented in this paper can be considered from at
least two different points of view. First, as an experiment in Linear Algebra for-
malization, for which the HMA library has shown to be an adequate framework.
With some technical effort in the code generation process, we have been capable
of formalizing and executing the same “abstract” algorithm; in addition to this,
we have developed tools (definitions and proofs over row and column elementary
operations) that are applicable in the formalization of numerical Linear Alge-
bra. Second, as an effort to get competitive results from a computational point of
view; we have successfully applied some refinement techniques already available
in Isabelle, obtaining formalized programs that can be executed over matrices
of a remarkable size.

There are several directions we plan to take this work. Even if the per-
formance of the Gauss-Jordan formalized algorithm is quite satisfying, some
refinements could be thought of to reduce the number of operations that it per-
forms; the algorithm could be implemented using block matrices that recursively
decrease their size after each iteration of the algorithm. This would reduce the
number of operations performed; on the other hand, it could demand the use of
dependent types or subtypes to define submatrices (or some similar construct),
falling short of the HOL type system.

Some other improvements of the algorithm are presented in the literature;
for instance, instead of pivoting the first nonzero element over a given index of
a column, the maximum element of the same column can be pivoted (“partial
pivoting”), or even the maximum element in the whole submatrix (“total piv-
oting”); these strategies are experimentally known to improve the performance
of the algorithm and specially its numerical stability. Instead of improving the
performance of the Gauss-Jordan elimination algorithm, an ad hoc algorithm
computing the rank of matrices could be implemented, and linked by a standard
refinement technique with rank computation by Gauss-Jordan elimination.

There are further refinement techniques in Isabelle that we would like to
explore as a natural continuation to our work. The work in [8] presents an infras-
tructure for lifting definitions from a concrete data type to an abstract one, and
for transferring proofs from the abstract setting to the concrete one. The con-
cept is really close to the one we have proposed in this paper, but at the moment
the technology can be applied to Isabelle user defined types (as abstract type)
and its underlying concrete types or quotient types. In our setting, it could have
been used to lift definitions from functions to the type vec; it is also used in the
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code generation process of some of the fields that we used as examples. Another
interesting Isabelle tool that we would like to explore is Autoref [18]; according
to the authors, the tool automatically refines algorithms over abstract concepts
to algorithms over concrete implementations; even if our underlying algebraic
structures (vectors or matrices) are not completely “abstract”, it could be inter-
esting to explore the feasibility of writing down Linear Algebra algorithms in
Isabelle in an imperative way (as they are usually presented in textbooks) and
rely on the automatic refinement to translate these algorithms to executable
ones in a functional programming setting, very much in the spirit of [17]. The
previous tools and techniques could be applied to a wide range of Linear Algebra
algorithms, some of them rooted in variants of Gauss-Jordan elimination.
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Abstract. This paper contributes to the investigation of object-sensitive
information flow properties for sequential Java, i.e., properties that take
into account information leakage through objects, as opposed to primi-
tive values. We present two improvements to a popular object-sensitive
non-interference property. Both reduce the burden on analysis and mon-
itoring tools. We present a formalization of this property in a program
logic – JavaDL in our case – which allows using an existing tool without
requiring program modification. The third contribution is a novel fine-
grained specification methodology. In our approach, arbitrary JavaDL
terms (read ‘side-effect-free Java expressions’) may be assigned a security
level – in contrast to security labels being attached to fields and variables
only.

1 Introduction

The growing reliance of our daily lives on software systems of all kinds has
increased the demand for software quality assurance. A particular concern is
confidentiality of sensitive data: preventing information flow from secret (also
called high) sources to publicly observable (also called low) sinks. Methods for
specification and analysis of information flow play an important role in answer-
ing these concerns. Since the pioneering papers [11,13,14,21], research in infor-
mation flow has grown considerably and diversified in numerous branches. This
paper follows a language-based approach dealing with programs at the code level
(instead of analyzing abstractions such as automata or process algebras). We will
use a semantic definition of information flow, as e.g., introduced in [20]. For the
analysis of information flow properties, we use a program logic, along the lines
of [2,12], as opposed to the use of security type systems or dedicated analysis
algorithms. Logical information flow analysis started out by investigating sim-
ple imperative programming languages and later also targeted object-oriented
languages [1,9,28,32].

In imperative languages, sources and sinks are of primitive type. In an object
oriented context, it is natural to consider sources and sinks of object type, too.
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In this case, the usual definition of secure information flow – if a system is started
in two low-equivalent states s1, s2 with all publicly observable values equal, then
it terminates in states s′

1, s′
2 where all observable values are equal – is too strong.

It has been replaced by object-sensitive secure information flow [3,6,9,17,18,28]
that has a modified notion of low-equivalence of states: if a system is started
in two states s1, s2 such that the observable values are related by a partial
isomorphism π, then it terminates in states s′

1, s′
2 where all observable values

are related by a partial isomorphism extending π.
A desirable outcome in developing logic-based information flow analyses is

to find formalizations that allow application of existing verification tools. An
instance of such reuse is [28], where the two runs of a program are encoded
into a single program, allowing specifying secure information flow with JML and
verifying it with the ESC/Java2 tool. The particular encoding, though, relies
on ghost fields and requires instrumenting the program under investigation with
ghost code. The first contribution of our paper is a formalization of object-
sensitive secure information flow in Dynamic Logic that does not require any
changes or additions to the investigated program. The KeY system [8] can be
used to discharge the ensuing proof obligations.

To avoid loss of precision, it is reasonable to encode the partial isomorphisms
of object-sensitive secure information flow explicitly in the logical formalization.
This, on the other hand, holds the disadvantage that a naive encoding either
increases the burden on the analysis or the burden on the user, the latter by
requiring additional annotations [28]. The second contribution of this paper is
an investigation into the concept of object-sensitive secure information flow itself
with the aim to find alternative but equivalent formulations such that the partial
isomorphisms can be restricted as much as possible. We prove (Lemma 4) that
restricting the partial isomorphism π in the pre-state to be the identity still leads
to an equivalent concept. We also show that additionally restricting the partial
isomorphism in the post-state to newly created objects leads to a sufficient crite-
rion for object-sensitive secure information flow (Thm. 2). Further we show that
compositionality, which is considered an indispensable prerequisite for modular
verification of information-flow properties and which holds for object-sensitive
secure information flow only under certain conditions, holds for the sufficient
criterion in general (Thm. 3). The main difference between the original property
and the sufficient criterion is that the criterion admits the attacker the ability
to distinguish between newly created objects and objects which already existed
in the pre-state. This leads to a slightly stronger property. All three results hold
the potential of significantly reducing the burden on analysis and monitoring
tools. They apply under the assumption that references in Java are treated as
opaque, as formalized by Postulate 1.

As a third contribution, we introduce a specification methodology where
security levels (high or low) are assigned to arbitrary JavaDL terms. The set of
publicly observable memory locations is thus state-dependent. This is in contrast
to the typical static labeling of fields or variables only, and permits fine-grained
specifications, which are especially useful for declassification.
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2 Dynamic Logic for Java

In this section, we briefly review syntax and semantics of JavaDL, a Dynamic
Logic for Java, as far as needed in this paper. An in-depth account can be
found in [8,33]. JavaDL is an extension of classical typed first-order logic with
equality (the equality symbol is denoted by =̇), with which we assume the reader
is familiar. The following explanations only address particularities and the modal
extension.

The notion of a term in JavaDL is the same as in typed first-order logic.
We assume that, among others, constant and function symbols are available for
all local program variables, instance and static fields, this, result and method
parameters, and operations of Java primitive data types. In addition, we make
use of a special implicit program variable heap which stands for the current
heap.

JavaDL formulas are inductively built up from atomic formulas using propo-
sitional operators and quantifiers, as usual. In addition

1. {a := t}φ is a JavaDL formula, where a is a term which refers to a location
(a program variable, a static or dynamic field, or an array entry), t is a
JavaDL term, and φ is a formula. {a := t} is called an update.

2. For a JavaDL formula φ and any sequential Java program α, both 〈α〉 φ
and [α]φ are again JavaDL formulas.1

The basis JavaDL semantics is a structure D for typed first-order logic, called
the computation domain. D provides the interpretation of all state-independent
(sometimes also called rigid) function and predicate symbols. In our setup, pro-
gram variables are the only non-rigid symbols. The universe D of D is divided
into the interpretations TD for the types T occurring in the language. In particu-
lar, we assume the existence of types Any , Obj , Heap, Field , Int with AnyD = D,
ObjD = the set of all objects, HeapD = the set of all heaps, FieldD = the set
of all fields, IntD = Z, SeqD = the set of all finite nested sequences of values
from D, and a subtype relation � such that the Java reference type hierarchy
lies under Obj � Any . Moreover, Heap, Field , and Obj are pairwise disjoint.

A state s is a function mapping all program variables to properly typed
values in D. By D + s we denote the first-order structure that interprets all,
rigid and non-rigid, symbols. In most cases D will be implicitly understood
and we write s instead of D + s. For any state s and term t without logical
variables, the evaluation ts is as usual. If t contains logical variables, a variable
assignment β is needed to evaluate the term to ts,β . In the following, we will
omit β whenever it is not essential. The (current) heap in a state s is completely
determined by heaps: the value (t.f)s of a field access expression t.f is obtained
by select(heaps, ts, cf ). Here cf is a constant symbol representing the Java field f ,

1 The definition is in fact more liberal in that α need not be a compilable program.
Precisely which program sequences are allowed is explained in [8, Sect. 3.2.4]. We
will nevertheless use the term ‘program’ synonymously.
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∀Int i((0 ≤ i ∧ i < maxvalue) →
{a := i} 〈α〉 (0 ≤ r ∧ r ∗ r ≤ i ∧ (r + 1) ∗ (r + 1) > i))

(1)

∀Heap h, h′ ∀Int i, i′( (select(h, this, f)
.
= select(h′, this, f) ∧

{heap := h} 〈m();〉 i
.
= r ∧ {heap := h′} 〈m();〉 i′ .

= r) → i
.
= i′)

(2)

Fig. 1. Two examples of JavaDL formulas

select and its counterpart store are state-independent functions from the theory
of arrays, see [24,29].

The recursive definition of the relation s |= φ (formula φ is true in state s)
follows the usual pattern. Only the three modal operators need explanation. For
a JavaDL formula φ and state s, we define:
1. s |= {a := t}φ iff s′ |= φ, where s′ coincides with s except for s′(a) = ts.
2. s |= 〈α〉 φ iff s′ |= φ for some s′ such that α started in s terminates in s′.
3. s |= [α]φ iff s′ |= φ for all s′ such that α started in s terminates in s′.

If program α does not terminate when started in state s, then s |= [α]φ is
trivially true for all formulas φ, including φ ≡ false.

Let us look at the examples of Fig. 1. Formula (1) expresses that program
α computes the positive integer square root for any positive input a (result is
abbreviated by r). Formula (2) states that the return value of method m() only
depends on the field this.f . Logical variables cannot occur in programs and
program variables may not be quantified over. As these examples demonstrate,
updates can be used as an interface between both types of variables.

We adopt the constant domain approach (see for instance [8,33]), i.e., all
potential objects are contained in D from the start. The generation of a new
object of type T in state s is effected by changing the value of o.created from
ff to tt , where o = nextToCreateTD(s), with nextToCreateTD being the func-
tion which selects the next new object of type T to create depending on the
state. In this paper computation domains D1, D2 will at most differ in the inter-
pretation nextToCreateTDi . Only functions nextToCreateTD with createdD+s

(nextToCreateTD(s)) = ff and exactInstanceTD(nextToCreateTD(s)) = tt are
considered.

Let α be a program, D a computation domain and let s1, s2 be states. We
denote “α started in D + s1 terminates in D + s2” by D + s1

α� D + s2.

3 Information Flow in Java

In Fig. 2 we reproduce a typical example of object-sensitive information flow.
If low-equivalence of states required the values of x and y to be equal, method
m1() would be rated as insecure. However, we treat object references in Java as
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final class C {
static C x, y; // low variables
static boolean h; // high variable
static void m1() { if (h) {x = new C(); y = new C();}

else {y = new C(); x = new C();} } }

Fig. 2. Secure object creation

opaque, i.e., references can only be compared by the == function, cf. [23]. Thus
m1() obviously does not leak information.2

We describe publicly (and thus attacker-) visible parts of the program state
as sets of JavaDL terms. The attacker sees the term and the corresponding
evaluation in the pre- and post-state of a method as if they were printed on
a screen. Further, we assume that the attacker knows the program code. This
allows them to trace back the observed differences in low values in the post-state
to high values in the pre-state. In summary, an attacker can compare observed
values that are of a primitive type to each other and to literals (of that type) as
by using ==; can compare observed values of object reference type to each other
and to null as by using the == predicate and observe their (runtime) type and
the length attribute for array references; cannot learn more than object identity
from object references (e.g., the order in which objects have been generated
cannot be learned).

Formally, we call a sequence of JavaDL terms (which itself is a JavaDL
term), an observation expression. The low locations of Fig. 2, for instance, give
rise to the observation expression 〈C.x, C.y〉. Let R be an observation expression
and s a state. An attacker is able to observe the tuple (R,Rs), where Rs =
〈es

1, . . . , e
s
k〉 if R = 〈e1, . . . , ek〉. Hence, they are able to deduce for any 1 ≤ i ≤ k

that es
i is the value of the term ei. Additionally, an attacker can learn the result of

the comparison of any two values es
i = es

j and, in case of reference values, retrieve
their runtime type type(es

i ) and, for array references, their length len(es
i ).

Definition 1. By Obj (Rs) we denote the set of objects observable by R in state s,
that is, Obj (Rs) = {o ∈ ObjD | ∃i(o = Rs[i])} ∪ ⋃

i∈{j|Rs[j]∈SeqD} Obj (Rs[i]).

In an object-oriented setting, what is observable may depend on the state.
For example, if o.next .val is observable, then it depends on the state what
object o.next evaluates to. Moreover, if all locations in a linked list are observed,
then the number of observable locations may depend on the state, since the list
length does.

Observation expressions cover such cases: JavaDL includes a sequence def-
inition operator seq{i}(from, to, e) with the semantics [seq{i}(from, to, e)]s =

2 In [19] it has been demonstrated that this abstraction might be broken, e.g., by
the implementation of native methods such as Object::hashCode().This potential
leakage can be dealt with by assigning a high security level to the output of native
methods or by using the security type analysis proposed in the quoted paper.
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〈[e[i→n]]s, [e[i→n+1]]s, . . . , [e[i→m−1]]s〉, if froms = n < m = tos are inte-
gers. Here e[i→n] is the term obtained from e by replacing all occurrences of
the variable i by the literal n. Further JavaDL contains a reachability opera-
tor e.it(f, i), where e is a JavaDL term of type T , f is an attribute defined in
class T and also of type T and i is an integer term. The semantics of e.it(f, i)
is defined by [e.it(f, i)]s = f. . . . .f([e]s) (k times) with k = is. The observation
of all elements of a linked list can be modeled by the observation expression
seq{i}(0, list.len, list.it(next, i).val).

Here and in the following we abbreviate length by len. Further, we write
sequences of fixed length as 〈. . .〉 and denote the concatenation of two sequences
R1 and R2 by R1;R2. For uniformity of notation we will frequently write f(e0)
instead of e0.f .

Our approach generalizes and unifies declassification of terms [4,31]. It already
proved to be useful in a recent case-study [15] which uses our approach and imple-
mentation. Here, whether information is considered secret or public depends on
the internal state of the system. Therefore, the information flow specifications
of [15] make use of conditional terms. Another application is information flow class
invariants: if a program or library has a public interface with several methods, then
often it has to be ensured that any sequence of calls to those methods is secure.
For this purpose it is useful to define the knowledge of the caller by a list of terms.
The program is secure, if for any method of the interface the final values of those
terms depend at most on their initial values. An illustrating example can be found
in the companion technical report [7].

4 Isomorphisms

We assume that the reader is familiar with the concept of isomorphism for typed
structures [25]. In this section we collect the results needed later on for easy
reference.

We will consider isomorphisms only on the computation domain D, and the
structures D+s (see Section 2) for different states s. If π is an isomorphism from
D + s1 onto D + s2, we will say that s2 is isomorphic to s1 and write s2 = π(s1).
We will need the following (folklore) results:

Lemma 1. Let ρ be an automorphism of D, s a state, φ a formula, e an expres-
sion. Then s |= φ ⇔ ρ(s) |= φ and eρ(s) = ρ(es).

Lemma 2. Let D be a computation domain and π′ be a bijection from X onto
Y for finite subsets X,Y ⊆ ObjD with

1. If null ∈ X then π′(null) = null and null ∈ Y implies null ∈ X.
2. π′ preserves the exact types of its arguments.
3. π′ preserves the length of array objects.

Then there is a computation domain D′ and an isomorphism π : D → D′ extend-
ing π′.
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Definition 2 (Partial isomorphism w.r.t. R). Let R be an observation
expression and s1, s2 be two states.

A partial isomorphism with respect to R from s1 to s2 is a bijection π :
Obj (Rs1) → Obj (Rs2) such that (a) the requirements of Lemma 2 hold and
(b) πSeq(Rs1) = Rs2 where πSeq is defined on sequences as πSeq(〈e1, . . . , ek〉) =
〈e′

1, . . . , e
′
k〉 with e′

i = π(ei) if ei ∈ ObjD, e′
i = πSeq(ei) if ei ∈ SeqD and

e′
i = ei else.

It will greatly simplify notation to stipulate that every partial isomorphism π
is also defined on all primitive values w with π(w) = w.

If p ∈ R for all program variables p, every automorphism extending a partial
isomorphism π with respect to R according to Lemma 2 is a total isomorphism
from D + s1 onto D + s2 since π(ps1) = ps2 by requirement (b).

Not every partial isomorphism can be extended to a total isomorphism, on
the other hand. If q is a program variable such that q does not appear as a
subterm in R, then π(qs1) = qs2 is not required.

To clarify the role of the additional condition (b) in Def. 2 let x be a pro-
gram variable of type C and f a field in C, say of type integer such that R =
〈x, f(x)〉 and let s1, s2 be states. In this case the condition implies π((f(x))s1) =
(f(x))s2 = fs2(xs2) = fs2(π(xs1)). This amounts to the usual requirements on
isomorphisms on mathematical structures.

5 Formalizing Information Flow

As mentioned before, we treat object references as opaque. This means in par-
ticular that the behavior of a Java program cannot depend on the values of
references up to comparison by ==. Hence, if a program α is started in two iso-
morphic states, then α also terminates in isomorphic states (if α terminates.)
Though this assumption is not always made explicit, it is widely used in the
literature [1,3,26,28]. Opaqueness of references can be formalized in our setting
as follows:

Postulate 1. Let s1, s2 be states. Let α be a program which started in s1 ter-
minates in s2, and let ρ : D → D′ be an isomorphism from computation domain
D onto computation domain D′.

Then α started in D′ + ρ(s1) terminates in ρ′(s2), where ρ′ : D → D′ is an
isomorphism that coincides with ρ on all objects existing in state s1, i.e. for all
o ∈ ObjD with createds1(o) = tt we know ρ(o) = ρ′(o). (See beginning of Sect. 4
for the definition of ρ(si).)

The reason why we cannot assume ρ = ρ′, is that α may generate new objects
and there is no reason why a new element o′ generated in the run starting in
state D′ + ρ(s1) should be the ρ-image of the new element o generated in the
run of α starting in state D + s1.
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5.1 Basic Information Flow Definition and Its Properties

We start with formalizing the basic object-sensitive non-interference property for
Java. Apart from the more flexible assignment of security levels, this property
does not yet exceed the state of the art in object-sensitive non-interference (cf.
Sect. 1). We consider here the termination-insensitive case. Extensions taking
termination into account, as well as differentiating between normal and abnormal
termination, are straightforward.

Definition 3 (Agreement of states). Let R be an observation expression.
We say that two states s, s′ agree on R, abbreviated by agree(R, s, s′), iff there
exists a partial isomorphism π : Obj (Rs1) → Obj (Rs2) with respect to R. The
partial isomorphism π is uniquely determined by R, s and s′. We use the notation
agree(R, s, s′, π) to indicate that agree(R, s, s′) is true and π is the mapping thus
defined.

Notice thatbecause of our tacit agreement on thevalues of partial isomorphisms
on primitive values, agree(R, s, s′) entails (ei)s = (ei)s′

, if ei is a term of primitive
type.

We now define what it means for a program α (when started in a state s)
to allow information flow only from R1 to R2, a fact which we denote by
flow(s, α,R1, R2). The intuition is that R1 describes the low locations in the
pre-state and R2 describes the low locations in the post-state. Thus, the values
of the variables and locations in R2 in the post-state must at most depend – up
to isomorphism of states – on the values of the variables and locations in R1 in
the pre-state and on nothing else.

Definition 4 (The predicate flow). Let α be a program and R1 and R2 be
two observation expressions.

Program α allows information to flow only from R1 to R2 when started in s1,
denoted by flow(s1, α,R1, R2), iff, for computation domains D, D′ and all states
s′
1, s2, s

′
2 such that D + s1

α� D + s2 and D′ + s′
1

α� D′ + s′
2, we have

if agree(R1, s1, s
′
1, π

1) for some π1

then agree(R2, s2, s
′
2, π

2) for some π2 that is compatible with π1

where π2 is said to be compatible with π1 if
π2(o) = π1(o) for all o ∈ Obj (Rs1

1 ) ∩ Obj (Rs2
2 ) with createds1(o) = tt.

In the most common case, the low locations before program execution will
be the same as the low locations after program execution, i.e., R1 = R2. But,
that may not be true in all cases. To declassify an expression edecl, one would
choose R1 = R2; edecl.

Consider the following extension of method m1() from Fig. 2 as if defined in
class C:

C next;
static void m2() { if(h) {x=new C(); y=new C(); x.next=y;}

else {y=new C(); x=new C(); x.next=x;} }

Whether m2() leaks information or not depends on the examined observation
expression. For R = 〈C.x,C.y〉 the observation will always consist of two freshly
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created, distinct object references. If agree(R, s1, s
′
1, π

1), the partial isomorphism
π2 defined as an extension of π1 by π2(xs2) = xs′

2 and π2(ys2) = ys′
2 ensures

that agree(R, s2, s
′
2, π

2) and, therefore, flow(s1, m2(), R,R).
But if R′ = 〈C.x,C.y, C.x.next〉 is chosen, π2 is no longer a partial isomor-

phism as π2(nexts2(xs2)) = nexts
′
2(xs′

2) would need to hold. But if hs1 = tt and
hs′

1 = ff , the resulting heap structures are not isomorphic: π2(nexts2(xs2)) =
π2(ys2) and nexts

′
2(xs′

2) = xs′
2 = π2(xs2) which cannot be equal as π2 is an

injection. The attacker can learn the value of h by comparing x and x.next:
flow(s1, m2(), R′, R′) does not hold.

For later reference we state the following lemma.

Lemma 3. If agree(R, s, s′, π) and ρ is an automorphism on D then also
(1) agree(R, s, ρ(s′), ρ ◦ π) and (2) agree(R, ρ(s), s′, π ◦ ρ−1).

Proof. Part 1: By assumption the mapping π given by πSeq(Rs) = Rs′
is

a partial isomorphism, where πSeq is defined as in Def. 2. Since π is a
partial isomorphism and ρ is an automorphism also ρ ◦ π is a partial
isomorphism. Further, let (ρ ◦ π)Seq be defined as (ρ ◦ π)Seq(〈e1, . . . , ek〉) =
〈e′

1, . . . , e
′
k〉 with e′

i = ρ ◦ π(ei) if ei ∈ ObjD, e′
i = (ρ ◦ π)Seq(ei) if ei ∈ SeqD

and e′
i = ei else. Then (ρ ◦ π)Seq(Rs) = ρ ◦ πSeq(Rs), because ρ is an automor-

phism on D, and ρ ◦ πSeq(Rs) = ρ(Rs′
), because of πSeq(Rs) = Rs′

. Finally we
derive by Lemma 1 ρ(Rs′

) = Rρ(s′) and thus we have (ρ ◦ π)Seq(Rs) = Rρ(s′).
Hence agree(R, s, ρ(s′), ρ ◦ π) holds.

Part 2: By symmetry from Part 1. ��

5.2 An Optimized but Equivalent Formulation

In this section, we introduce flow∗, an optimized version of the flow property
from Def. 4. The property flow∗ restricts the partial isomorphism of the pre-
state to be the identity. This simplifies the formulation of verification conditions
considerably (see Theorem 1 below), also making them easier to verify. Yet, it
is semantically equivalent to flow.

Definition 5 (The flow∗ predicate). Let α be a program and R1 and R2 be
two observation expressions.

We say that α allows simple information flow only from R1 to R2 when
started in s1, denoted by flow∗(s1, α,R1, R2), iff, for all computation domains
D, D′ and states s′

1, s2, s
′
2 such that D + s1

α� D + s2 and D′ + s′
1

α� D′ + s′
2,

we have
if agree(R1, s1, s

′
1, id)

then agree(R2, s2, s
′
2, π

2) for some π2 compatible with id.

Note that agree(R1, s1, s
′
1, id) implies in particular Obj (Rs1

1 ) = Obj (Rs′
1

1 ) since
π1 = id is a bijection from Obj (Rs1

1 ) onto Obj (Rs′
1

1 ).

Lemma 4. For all programs α, any two observation expressions R1 and R2,
and any state s1 flow∗(s1, α,R1, R2) ⇔ flow(s1, α,R1, R2) .
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Proof. flow(s1, α,R1, R2) ⇒ flow∗(s1, α,R1, R2) is obviously true. Thus it suf-
fices to show flow∗(s1, α,R1, R2) ⇒ flow(s1, α,R1, R2).

To prove flow(s1, α,R1, R2) we fix, in addition to s1, states s′
1, s2, s

′
2 such

that s1
α� s2 and s′

1
α� s′

2, and assume agree(R1, s1, s
′
1, π

1). We need to show
agree(R2, s2, s

′
2, π

2) with π2 extending π1.
By Lemma 2, there is an automorphism ρ on D′ extending (π1)−1. From

agree(R1, s1, s
′
1, π

1) we conclude agree(R1, s1, ρ(s′
1), ρ◦π1) using Lemma 3. Since

ρ extends (π1)−1 we have agree(R1, s1, ρ(s′
1), id). By Postulate 1. there is a

state s′
3 and a computation domain D′′ such that D′′ + ρ(s′

1)
α� D′′ + s′

3.
This enables us to make use of the assumption flow∗(s1, α,R1, R2) and conclude
agree(R2, s2, s

′
3, π

3). Furthermore, π3(o) = o for all o ∈ Obj (Rs1
1 ) ∩ Obj (Rs2

2 ).
Again, appealing to Postulate 1. in the situation that ρ(s′

1)
α� s′

3 and con-
sidering the inverse automorphism ρ−1, we obtain an automorphism ρ′ such
that ρ−1(ρ(s′

1)) = s′
1

α� ρ′(s′
3) and ρ′ coincides with ρ−1 on all objects in

{o ∈ ObjD | createdρ(s′
1)(o) = tt}.

Again, using Lemma 3, this time for the isomorphism ρ′, we obtain from
agree(R2, s2, s

′
3, π

3) also agree(R2, s2, ρ
′(s′

3), ρ
′ ◦ π3). Since α is a deterministic

program and we have already defined s′
2 to be the final state of α when started in

s′
1 in the computation domain D′ we get s′

2 = ρ′(s′
3) and thus agree(R2, s2, s

′
2, ρ

′◦
π3). Because π2 is uniquely determined by R2, s2 and s′

2, we have ρ′ ◦ π3 = π2.
Finally, we show that ρ′◦π3 extends π1, i.e., for every o ∈ Obj (Rs1

1 )∩Obj (Rs2
2 )

with createds1(o) = tt we need to show ρ′ ◦ π3(o) = π1(o). Since π3(o) = o for
o ∈ Obj (Rs1

1 ) ∩ Obj (Rs2
2 ) it suffices to show π1(o) = ρ′(o). By the definition

of isomorphic states we obtain from createds1(o) = tt also createdρ(s1)(o) = tt .
Thus ρ′(o) = ρ−1(o) and by choice of ρ further ρ−1(o) = π1(o), as desired. ��

6 Verification Conditions

The ultimate goal is to prove information flow properties flow(s1, α,R1, R2) for
particular observations Ri and a program α. To this end, specialized proof rules
for the flow predicate could be introduced. We pursue this approach in another
paper. Here, we will show how to derive verification conditions directly from the
definition. We will show how flow(s1, α,R1, R2) can be expressed by a JavaDL
formula – to be discharged by a standard JavaDL calculus. This exposition
should also convey the idea how to obtain verification conditions with method-
ologies other than Dynamic Logic.

Theorem 1. Let α be a program, and let R1, R2 be observation expressions.
There is a JavaDL formula φα,R1,R2 making use of self-composition such that

D + s1 |= φα,R1,R2 iff flow(s1, α,R1, R2)
for all computation domains D.

We will explain here the construction of φα,R1,R2 only. The complete proof
of Thm. 1 can be found in the companion technical report [7].
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The property to be formalized requires quantification over states. A state s
is determined by the value of the heap hs in s and the values of the (finitely
many) program variables as in s. We can directly quantify over heaps h and refer
to the value of a field f of type C for the object o referenced by the term e as
selectC(h, e, f). We cannot directly quantify over program variables, as opposed
to quantifying over the values of program variables, which is perfectly possible.
Thus we use quantifiers ∀x, ∃x over the type domain of the variable and assign x
to a via an update a := x. There are four states involved, the two pre-states s1,
s′
1 and the post-states s2, s′

2. Correspondingly, there will be, for every program
variable v, four universally quantifier variables v, v′

1, v2, v′
2 of appropriate type

representing the values of v in states s1, s′
1, s2, s′

2. There are some program
variables that make only sense in pre-states, e.g., this, and variables that make
only sense in post-state, e.g., result. There will be only two logical variables
that supply values to them instead of four. This leads to the following schematic
form of φα,R1,R2 :
φα,R1,R2 ≡ ∀Heap h′

1, h2, h
′
2∀To′∀Trr, r

′∀ . . . v′
1, v2, v

′
2 . . .

(Agreepre ∧ 〈α〉 sv{s2} ∧ {in s′
1} 〈α〉 sv{s′

2} → {in s2}{in s′
2}(Agreepost ∧ Ext))

To maintain readability we have used suggestive abbreviations: (1) {in s′
1} 〈α〉

signals that an update {heap := h′
1 || this := o′ || . . . ai := v′

1 . . .} is
placed before the modal operator. The ai cover all relevant parameters and
local variables. (2) The construct sv{s2} abbreviates a conjunction of equations
h2

.= heap, r
.= result, . . . , v2

.= ai, . . . . (3) Analogously, sv{s′
2} stands for the

primed version h′
2

.= heap, r′ .= result, . . . , v′
2

.= ai, . . . . (4) The shorthand
{in s2}{in s′

2}E in front of a formula is resolved by (a) prefixing every occurrence
of a heap-dependent term e with the update {heap := h2} and (b) every primed
term e′ with {heap := h′

2}. (5) The same applies to {in s′
1}E. Note that there is

no {in s1}, and no quantified variables o, v since the whole formula φα,R1,R2 is
evaluated in state s1.

Furthermore we use the notation (R1
i )

′, R2
i , (R2

i )
′ for the expressions obtained

from Ri by replacing each state dependent designator v by v′
1, v2, v′

2 respectively.
Technically, these substitutions are effected by prefixing Ri with an appropriate
update. For short we use R[i] instead of seqGetAny(r, i), t �− A for instanceA(t),
and eInstA for exactInstanceA.

We now supply the definitions of the abbreviations used above:
Agreepre ≡ R1

.= (R1
1)

′

Agreepost ≡ Agreetype&prim(R2
2, (R

2
2)

′) ∧ Agreeobj (R2
2, R

2
2, (R

2
2)

′, (R2
2)

′)
Ext ≡ Agreeobj (R1, R

2
2, (R

1
1)

′, (R2
2)

′)
These definitions make use of the predicates Agreetype&prim , Agreeobj and

Agree2
obj which are recursively defined as

Agreetype&prim(Seq X,Seq X ′) ≡
X.len .= X ′.len ∧ ∀i(0 ≤ i < X.len →∧

A in α(eInstA(X[i]) ↔ eInstA(X ′[i]))
∧ (X[i] ��−Obj ∧ X[i] ��−Seq → X[i] .= X ′[i])
∧ (X[i] �− Seq → Agreetype&prim(X[i],X ′[i])))
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Agreeobj (Seq X,Seq Y,Seq X ′,Seq Y ′) ≡
∀i(0 ≤ i < Y.len → (Y [i] �− Obj → Agree2

obj (X,Y [i],X ′, Y ′[i]))
∧ (Y [i] �− Seq → Agreeobj (X,Y [i],X ′, Y ′[i])))

Agree2
obj (Seq X,Obj y,Seq X ′,Obj y′) ≡

∀i(0 ≤ i < X.len → (X[i] �− Obj → (X[i] .= y ↔ X ′[i] .= y′))
∧ (X[i] �− Seq → Agree2

obj (X[i], y,X ′[i], y′)))
In many cases these definitions are much simpler. Frequently it is the case

that Ri.length is not state dependent, then quantification over index i reduces
to a disjunction of fixed length. Also the exact type of an expression can often
be checked syntactically and needs not be part of the formula. In other cases
however, e.g., if Ri is a variable of type Seq , the full definition is necessary.

Reconsider method m1() from Fig. 2 on page 23. Let R = 〈C.x, C.y〉. Then,
(R.len)s = 2 for all states s and the exact type of both fields x, y is always C.
Thus Agreepre equals x

.= x′
1 ∧ y

.= y′
1. Agreepost equals x2

.= y2 ↔ x′
2

.= y′
2.

The complete formula φm3(),R,R is (after some simplification)

φm3(),R,R ≡
∀Heap h′

1, h2, h
′
2∀C o′∀x′

1, x2, x
′
2, y

′
1, y2, y

′
2((x

.= x′
1 ∧ y

.= y′
1 ∧

〈m3()〉 (x2
.= x ∧ y2

.= y) ∧ {x := x′
1, y := y′

1} 〈m3()〉 (x′
2

.= x ∧ y′
2

.= y))
→
(x2

.= y2 ↔ x′
2

.= y′
2 ∧ x

.= x2 → x′
1

.= x′
2 ∧ y

.= x2 → y′
1

.= x′
2 ∧

x
.= y2 → x′

1
.= y′

2 ∧ y
.= y2 → y′

1
.= y′

2))

7 An Efficient Compositional Criterion

Though flow∗ from Def. 5 already simplifies the formulation of verification condi-
tions and consequently checking for flow, we want to present another information
flow property, flow∗∗, which is still simpler to check. flow∗∗ is a criterion for flow,
i.e., a sufficient but not a necessary condition. Roughly speaking, the main dif-
ference between flow and flow∗∗ is that flow∗∗ admits the attacker to distinguish
between newly created objects and objects which already existed in the pre-state.
This property of flow∗∗ is responsible for its compositionality (Thm. 3), which is
an indispensable prerequisite for modular verification of information-flow prop-
erties. On the face of it, flow∗∗ takes more words to explain than the original
flow property, but it is easier to prove: the partial isomorphism only differs from
the identity on new objects. This reduces the effort to verify flow∗∗ considerably
if only few or no new objects are created. Also, there is no obligation that one
isomorphism is an extension of another.

On the other hand, an additional observation expression N2 has to be given
which exactly names the new elements of the set of objects observable in the
post-state. Further it has to be proven that N2 exactly names the new elements.
However, normally it is quite an easy task to prove whether an object is newly
created or not. Additionally, if a newly created object is observable in the post-
state by an observation expression R2, then there has to be a term in R2 which
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evaluates to this object. Hence N2 is normally an explicit subexpression of R2

and can be named easily.

Definition 6 (The predicate flow∗∗). Let N2 be an observation expression
such that all terms in N2 are of object type. Let, furthermore, α be a program,
R1, R2 observation expressions, and s1 a state.

The predicate flow∗∗(s1, α,R1, R2, N2) is true iff, for all computation domains
D, D′ and states s′

1, s2, s
′
2 such that D + s1

α� D + s2 and D′ + s′
1

α� D′ + s′
2,

we have
if agree(R1, s1, s

′
1, id)

then all objects in Obj (Ns2
2 ) and Obj (Ns′

2
2 ) are new and

agree(N2, s2, s
′
2, π) for a partial isomorphism π and

if agree(N2, s2, s
′
2, id) then agree(R2, s2, s

′
2, id)

Theorem 2. Let N2 be an observation expression such that all expressions in
N2 are of object type. Let furthermore α be a program, R1, R2 observation expres-
sions, and s1 a state.

1. flow∗∗(s1, α,R1, R2, N2) ⇒ flow(s1, α,R1, R2).
2. If for all domains D such that D+s1

α� D+s2 we have Obj (Ns2
2 ) = {o ∈

Obj (Rs2
2 ) | createds1(o) = ff } and {o ∈ Obj (Rs2

2 ) | createds1(o) = tt} ⊆
Obj (Rs1

1 )
then flow(s1, α,R1, R2) ⇒ flow∗∗(s1, α,R1, R2, N2) .

For the proof of the theorem we need the following auxiliary lemma. It states
that we always can find domains D2, D′

2 and therefore nextToCreate functions
such that in two runs of a program α, which are started in R equivalent states,
the same new objects are chosen for those objects which are observable by R.

Lemma 5. Let α be a program such that D + s1
α� D + s2, D′ + s′

1
α� D′ + s′

2,
agree(R, s1, s

′
1, id) and agree(N, s2, s

′
2, π) hold true for observation expressions

R and N . In addition we assume that all objects in Obj (Ns2) and Obj (Ns′
2) are

new.
Then there are domains D2, D′

2 and isomorphisms ρ : D → D2, ρ′ : D′ → D′
2

such that α started in D2 + s1 terminates in D2 + ρ(s2), α started in D′
2 + s′

1

terminates in D′
2+ρ′(s′

2) and agree(N, ρ(s2), ρ′(s′
2), id) and ρ(o) = o, ρ′(o′) = o′

for all o existing in state s1 and for all o′ existing in state s′
1.

We omit the proof of Lemma 5 and go for the proof of Thm. 2 instead.

Proof (Theorem 2).
Part 1: We assume flow∗∗(s1, α,R1, R2, N2) and show flow∗(s1, α,R1, R2). To

this end we fix states s′
1, s2, s′

2 and domains D, D′ such that D + s1
α� D + s2,

D′ + s′
1

α� D′ + s′
2 and agree(R1, s1, s

′
1, id). We need to show agree(R2, s2, s

′
2, π),

where the uniquely determined partial isomorphism π is compatible with id.
By assumption we obtain agree(N2, s2, s

′
2, σ) and we know that all objects in

Obj (Ns2
2 ) and Obj (Ns′

2
2 ) are new. By Lemma 5 there are domains D2, D′

2 and
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isomorphisms ρ : D → D2, ρ′ : D′ → D′
2 such that α started in D2 +s1 terminates

in D2 + ρ(s2), α started in D′
2 + s′

1 terminates in D′
2 + ρ′(s′

2), and agree(N2, ρ(s2),
ρ′(s′

2), id). This enables us to use flow∗∗(s1, α,R1, R2, N2) again, now for the
domains D2, D′

2 in place of D, D′ to obtain agree(R2, ρ(s2), ρ′(s′
2), id). Another

appeal to Lemma 3 yields agree(R2, s2, s
′
2, ρ

′ ◦ρ−1). For o ∈ Obj (Rs1
1 )∩Obj (Rs2

2 )
we have ρ′ ◦ρ−1(o) = o, thus ρ′ ◦ρ−1 is compatible with id and the claim is proved.

Part 2: For the reverse implication we assume flow(s1, α,R1, R2).
For the proof of flow∗∗(s1, α,R1, R2, N2) we consider states s′

1, s2, s′
2 and

domainsD,D′ suchthatD+s1
α� D+s2,D′+s′

1
α� D′+s′

2 andagree(R1, s1, s
′
1, id).

From flow(s1, α,R1, R2) we obtain agree(R2, s2, s
′
2, π) for π compatible with id. By

case assumption we know Obj (Ns2
2 ) = {o ∈ Obj (Rs2

2 ) | createds1(o) = ff }. We see
that π is a partial isomorphism from Obj (Ns2

2 ) onto Obj (Ns′
2

2 ). This already gives
us agree(N2, s2, s

′
2, π). We assume agree(N2, s2, s

′
2, id) to verify the remaining part

of flow∗∗(s1, α,R1, R2, N2) with the intention to show agree(R2, s2, s
′
2, id).

By agree(R2, s2, s
′
2, π) we already know πSeq(Rs2

2 ) = R
s′
2

2 , where πSeq is
defined as πSeq(〈e1, . . . , ek〉) = 〈e′

1, . . . , e
′
k〉 with e′

i = π(ei) if ei ∈ ObjD, e′
i =

πSeq(ei) if ei ∈ SeqD and e′
i = ei else. It remains to be shown that π(ei) =

ei for ei ∈ Obj (Rs2
2 ). We distinguish two cases: (1) createds1(ei) = tt and

(2) createds1(ei) = ff .
In case (1) we obtain ei ∈ Obj (Rs1

1 ) by the assumption {o ∈ Obj (Rs2
2 ) |

createds1(o) = tt} ⊆ Obj (Rs1
1 ). Hence π(ei) = ei since π is compatible with id.

In case (2) use assumptions agree(N2, s2, s
′
2, id) and Obj (Ns2

2 ) = {o ∈ Obj (Rs2
2 ) |

createds1(o) = ff }, and also arrive at π(ei) = ei. ��
The next lemma shows that the verification condition for flow∗∗ normally is

much simpler than the one for flow∗.

Lemma 6. Let α be a program, let R1, R2, N2 be observation expressions.
Then there is a JavaDL formula φα,R1,R2,N2 such that for all states s1

flow∗∗(s1, α,R1, R2, N2) ⇔ s1 |= φα,R1,R2,N2 .

Proof. The desired formula follows a pattern similar to the one in Thm. 1.

φα,R1,R2,N2 ≡ ∀Heap h′
1, h2, h

′
2∀To′∀Trr, r

′∀ . . . v′
1, v2, v

′
2 . . .

(R1
.= (R1

1)
′ ∧ 〈α〉 save{s2} ∧ in{s′

1} 〈α〉 save{s′
2}

→ {in s2}{in s′
2}(newIso ∧ (N2

2
.= (N2

2 )′ → R2
2

.= (R2
2)

′)))

The abbreviations used above are defined as follows:
newIso ≡ newOn(heap, N2

2 ) ∧ newOn(h′
1, (N

2
2 )′) ∧ Agreetype(N2

2 , (N2
2 )′) ∧

Agreeobj (N2
2 , N2

2 , (N2
2 )′, (N2

2 )′)
newOn(Heap h,Seq X) ≡

∀i(0 ≤ i < X.len → (X[i] �− Obj → select(h,X[i], created) .= FALSE )
∧ (X[i] �− Seq → newOn(h,X[i])))
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Agreetype(Seq X,Seq X ′) ≡

X.len .= X ′.len ∧ ∀i(0 ≤ i < X.len →∧
A in α(eInstA(X[i]) ↔ eInstA(X ′[i]))

∧ (X[i] �− Seq → Agreetype(X[i],X ′[i])))

Agreeobj as in Thm. 1. We skip the rest of the proof, since it greatly parallels
the one given for Thm. 1. ��

We now show the compositionality of flow∗∗. To this end we need to prove
that flow∗∗ implies that the set of objects, which can be observed by an attacker
in the post-state, contains only objects which are newly created or which already
have been observed in the pre-state.

Lemma 7. Let s1, s′
1, s2, s′

2 be states such that s1
α� s2 and s′

1
α� s′

2.
flow∗∗(s1, α,R1, R2, N2) implies flow(s1, α,R1, R2) and agree(R1, s1, s

′
1) ⇒

{o ∈ Obj (Rs2
2 ) | createds1(o) = tt} ⊆ Obj (Rs1

1 ).

Lemma 7 in combination with Thm. 2 gives an almost complete characteri-
zation of flow∗∗. Indeed we can show that flow∗∗(s1, α,R1, R2, N2) also implies
agree(R1, s1, s

′
1) ⇒ {o ∈ Obj (Rs2

2 ) | createds1(o) = ff } ⊆ Obj (Ns2
2 ) which

makes this characterization tight. This characterization shows in particular that
the main difference between flow and flow∗∗ is that, roughly speaking, flow∗∗

admits the attacker to distinguish between newly created objects and objects
which already existed in the pre-state. This property of flow∗∗ is responsible for
its compositionality:

Theorem 3 (Compositionality of flow∗∗). Let s1, s′
1, s2, s′

2, s3, s′
3 be states

such that s1
α1� s2, s2

α2� s3, s′
1

α1� s′
2 and s′

2
α2� s′

3. If

1. flow(s1, α1, R1, R2),
2. flow(s2, α2, R2, R3),
3. agree(R1, s1, s

′
1) ⇒ {o ∈ Obj (Rs2

2 ) | createds1(o) = tt} ⊆ Obj (Rs1
1 ) and

4. agree(R2, s2, s
′
2) ⇒ {o ∈ Obj (Rs3

3 ) | createds2(o) = tt} ⊆ Obj (Rs2
2 )

then
flow(s1, α1;α2, R1, R3) and agree(R1, s1, s

′
1) ⇒ {o ∈ Obj (Rs3

3 ) | createds1(o) =
tt} ⊆ Obj (Rs1

1 ).

We omit the proofs of Lemma 7 and Thm. 3 for the sake of brevity, but they
can be found in the companion technical report [7].

8 Related Work

There exists a very large body of work on language-based security. Besides the
discussion below, we refer to [30] for a survey.

Security type systems are one of the most popular approaches. A promi-
nent example in this field is the JIF system [26]. Type system approaches are
efficient, but sometimes also quite imprecise. A further approach is checking the
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dependence graph of a program for graph-theoretical reachability properties [16].
Though this technique is substantially different from type system approaches, it
is efficient and sometimes quite imprecise, too. Further approaches use abstrac-
tion and ghost code for explicit tracking of dependencies [10]. They are quite near
in spirit to flow-sensitive security type systems, but have not tackled the problem
of modular verification yet. All approaches mentioned so far appear to be limited
to information flow between variables and it is questionable whether they can
be adopted to fine-grained specifications as the one introduced in this paper.

The most popular approach in logic based information flow analysis is stating
secure information flow with the help of self-composition [5,12] and using off-
the-shelf software verification systems to check for it, as we do. The approach
has the appealing feature that it can be arbitrarily precise as long as the used
verification system has a relatively complete calculus. An important alternative
in logic based information flow analysis is the usage of specialized, approximate
calculi [1]. Finally, secure information flow can be formalized in higher-order
logic, and higher-order theorem provers like Coq can be used for checking secure
information flow [27]. This approach seems to be very expressive, but comes at
the price of more and more complex interactions with the proof system.

Focusing on object-sensitive secure information flow, the paper closest to ours is
[1]. The authors build on region logic, a kind of Hoare logic with concepts from sep-
aration logic, which is comparable to JavaDL. They use the same basic definition
of object-sensitive secure information flow. Instead of providing verification condi-
tions which can be discharged with a standard calculus, as we do, they introduce
a specialized, more efficient calculus to show object-sensitive secure information
flow. This specialized calculus uses approximate rules which avoid explicit model-
ing of isomorphisms, but comes with the price of imprecision. The discerning points
of our work are: (1) a further investigation of the security property, allowing the
restriction of isomorphisms as far as possible and thus making the explicit, non
approximate modeling of isomorphisms feasible with a minimum of additional
user interaction; (2) verification conditions that are discharged with an existing
tool; and (3) a more flexible specification methodology.

Contributions (1) and (3) also distinguish this work from the other approaches
mentioned above, including JIF, which already presented an approximative treat-
ment of object-sensitive secure information flow for Java [26]. JIF is a practical
approach to the analysis of secure information flow which covers a broad range of
language features, but it has not been formally proven to enforce non-interference.
Similar to JIF, [3,6] use type systems for the verification of object-oriented secure
information flow. They treat a smaller set of language features, but prove that
their type systems indeed enforce non-interference. A closely related approach is
[9]. Here, only the information flow analysis is based on type systems; the verifica-
tion task is separated from the analysis and based on program logics. Still, points
(1) and (3) as well as the overall precision are discerning points of this paper. The
approach in [6], already mentioned above, and the approaches [17,18] target Java
Bytecode in contrast to source code, as the other approaches do. The latter is
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a type system approach, too, whereas the former uses abstract interpretation in
combination with classical static analysis.

To the best of our knowledge, the only approach which models isomorphisms
explicitly is the self-composition approach [28]. The drawback of that approach
is that the specifier needs to track the isomorphism manually with the help of
additional ghost code annotations. This increases the burden on the specifier,
whereas our approach detects the isomorphism automatically.

Focusing on fine-grained information flow specifications, the approaches clos-
est to ours are [4,31]. These approaches specify information flow between vari-
ables and fields only, but allow for the declassification of terms. Our approach
generalizes and unifies these approaches. This generalization already proved to
be useful in a recent case-study, see Sect. 3.

9 Conclusions and Future Work

Lemma 4 and Thm. 2 prove the relation between standard object-sensitive non-
interference and our improved versions. These results lead to an approach to
verify object-sensitive non-interference properties of Java programs by a direct
translation into Dynamic Logic (Thm. 1 and Lemma 6). The approach has been
implemented in the KeY tool and successfully tested on small examples. The
implementation can be tested on our web page using Java Web Start. In partic-
ular, we have successfully treated the examples included in this paper, as well
as the (somewhat more involved) examples by Naumann [28]. Application to a
larger e-voting case study is currently underway.

In a future paper we plan to present a complementary specialized calcu-
lus for the flow predicate intended to further increase reasoning efficiency. As
proved in Thm. 3, the flow∗∗ criterion is compositional and is expected to lead
to a particularly efficient calculus. A specification interface to the Java Mod-
eling Language (JML) [22] for information flow properties has been published
in [31].
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Abstract. In order to automatically infer the resource consumption of
programs, analyzers track how data sizes change along a program’s exe-
cution. Typically, analyzers measure the sizes of data by applying norms
which are mappings from data to natural numbers that represent the
sizes of the corresponding data. When norms are defined by taking type
information into account, they are named typed-norms. The main contri-
bution of this paper is a transformational approach to resource analysis
with typed-norms. The analysis is based on a transformation of the pro-
gram into an intermediate abstract program in which each variable is
abstracted with respect to all considered norms which are valid for its
type. We also sketch a simple analysis that can be used to automatically
infer the required, useful, typed-norms from programs.

1 Introduction

Automated resource analysis [17] needs to infer how the sizes of data are modified
along a program’s execution. Size is measured using so-called norms [5] which
define how the size of a term is computed. Examples of norms are list-length
which counts the number of elements of a list, tree-depth which counts the depth
of a tree, term-size which counts the number of constructors, etc. Basically, in
order to infer the resource consumption of executing a loop that traverses a data-
structure, the analyzer tries to infer how the size of such data-structure decreases
at each iteration w.r.t. the chosen norm. Given a tree t, using a term-size norm,
we infer that a function like “def Int foo(Tree t)= case t {Leaf �→0; Node(l,r) �→
1+foo(r);}” performs at most nodes(t) iterations, where function nodes returns
the number of nodes in the tree. This is because size analysis infers that at each
recursive call nodes(t) decreases. However, by using the tree-depth norm, we will
infer that depth(t) is an upper bound on the number of iterations. The latter is
obviously more precise than the former bound as depth(t)≤nodes(t).
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The last two decades have witnessed a wealth of research on using norms
in termination analysis, especially in the context of logic programming [5,6,9].
Early work pointed out that the choice of norm affects the precision such that
the analyzer may only succeed to prove termination if a certain norm is used,
while it cannot prove it with others. Later on, there has been further investi-
gation on applying multiple norms, i.e., using two or more norms by applying
them simultaneously [5]. This means that the same data in the original program
is replaced by two or more abstract data each one specifying its size informa-
tion w.r.t. the corresponding norm. Even a further step has been taken on using
typed-norms which allow defining norms based on type information (namely on
recursive types) [6]. Inferring norms from type information makes sense as recur-
sive types represent recursive data-structures and thus, in termination analysis,
they identify some potential sources of infinite recursion and, in resource analysis,
they might influence the number of iterations that the loops perform. Besides,
typed-norms allow that the same term can be measured differently depending on
its type. As pointed out in [9], this is particularly useful when the same function
symbol may occur in different type contexts.

In the context of resource analysis, we found early work that already pointed
out that the combination of norms affects the precision of lower-bound time
analysis [11]. Sized-types provide a way to consider more than one norm for
each type. They have been used in the context of functional [15,16] and recently
in logic programming [12]. In the former case, they are inferred by a type analysis
and in the latter via abstract interpretation. In contrast, we propose a transfor-
mational approach which provides a simple and accurate way to use multiple
typed-norms in resource analysis as follows: (1) we first transform the program
into an intermediate abstract program in which each variable is abstracted with
respect to all considered norms valid for its type, (2) such intermediate pro-
gram is then analyzed to obtain upper and lower resource bounds automatically.
Importantly, this second phase is done using existing techniques that do not
need to be modified. Thus, formalizing our framework focuses only on the first
step.

While allowing multiple norms might lead to more accurate bounds than
adopting one norm, the efficiency of the analysis can be degraded considerably.
This is because the process of finding resource bounds from abstractions that
have more arguments (due to the use of multiple norms) is more costly. Thus, an
essential aspect for the practical applicability of our method is to eliminate those
abstractions that will not lead to further precision. As our second contribution,
we outline an algorithm for the inference of typed-norms which, by inspect-
ing the program, can detect which norms are useful to later infer the resource
consumption, and discard norms that are useless for this purpose. This analy-
sis is applied as a pre-process, such that once the relevant norms are inferred,
the transformation into the abstract program is carried out w.r.t. the inferred
norms.
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Syntactic categories.
T in Ground Type
B in Basic Type
D in Data type
x in Variable
e in Expression
t in Ground Term
br in Branch
p in Pattern
n in Integer

Definitions.
T ::= B | D
B ::= Int | String

Dd ::= data D = Cons[| Cons];

Cons ::= Co[(T )]

F ::= def T fn(T x) = e;

e ::= x | t | Co[(e)] | fn(e) | case e {br}
t ::= n | Co[(t)]

br ::= p ⇒ e;
p ::= | x | t | Co[(p)]

Fig. 1. Syntax for the functional level. Terms T and e denote possibly empty lists over
the corresponding syntactic categories, and square brackets [ ] optional elements.

2 The Language

We present the simple functional language on which our framework is defined. It
corresponds to the functional sublanguage of ABS [10], a modeling language for
concurrent distributed systems which has been used to implement two industrial
case studies (both of them of more than 1,000 lines of code). The functional
sublanguage of ABS is used to define and manipulate the data structures used in
the program, while the imperative sublanguage is used to handle its concurrency
and distribution aspects. The reason why we chose ABS is double: first, because
the funcional part of the language is appropriate to present our results in a clear
and simple manner; and second, because our final goal is to integrate typed-
norms in the complexity analysis of concurrent and distributed systems modeled
in ABS. Sec. 2.1 defines the syntax of our functional language, and Sec. 2.2
introduces the intermediate form to which the programs are translated to define
the analysis later.

2.1 A Simple Functional Language

The language defines data types and functions, as shown in Fig. 1. Ground
types T consist of basic types B as well as names D for data types. In data type
declarations Dd , a data type D has at least one constructor Cons, which has a
name Co and a list of ground types T for its arguments. Function declarations F
consist of a return type T , a function name fn, a list of variable declarations x of
types T , and an expression e. Expressions e include variables x, (ground) terms
t, constructor expressions Co(e), function expressions fn(e) and case expressions
case e {br}. Ground terms t are integer numbers and constructors applied to
ground terms Co(t). Case expressions have a list of branches p ⇒ e, where p is
a pattern. The branches are evaluated in the listed order. Patterns include wild
cards , variables x, terms t, and constructor patterns Co(p). Abusing notation,
f n in e can be a function name or a built-in function (+,−, >,=,≥). We assume
that the considered programs are well-typed and unambiguous.
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1 module Library;
2 type Author = String ;
3 type Title = String ;
4 data Authors = Nil
5 | Cons(Author,Authors);
6 data Titles = Nil
7 | Cons(Title,Titles);
8 data Book=Pair(Title,Authors);
9 data Books = EmptyMap

10 | InsertAssoc(Book,Books);
11 data Ref = Pair(Author,Titles);
12 data Refs = EmptyMap
13 | InsertAssoc(Ref,Refs);

14 def Int is coauthor(Author a,Authors as)
15 = case as {
16 Nil => 0;
17 Cons(a,as‘) => 1;
18 Cons(a‘,as‘)=> is coauthor(a, as‘); };
19

20 def Titles written by(String a,Books bs)
21 = case bs {
22 EmptyMap => Nil;
23 InsertAssoc(b,bs‘)
24 => case b {
25 Pair(t,as)
26 => case is coauthor(a, as) {
27 1 => Cons(t,written by(a,bs‘));
28 0 => written by(a,bs‘); }; }; };

29 def Refs sort books by author(Authors as,Books bs)
30 = case as {
31 Nil => EmptyMap;
32 Cons(a,as‘)
33 => InsertAssoc(Pair(a,written by(a,bs)),sort books by author(as‘, bs)); };

Fig. 2. Motivating example (data type declarations and three functions)

Example 1. Our running example is showed in Fig. 2. It defines a function
sort books by author (and several auxiliary functions) for sorting books by author
given a list of authors and a list of books.

2.2 Intermediate Form

From now on, we develop our analysis on a typed intermediate representation
(IR) similar to those defined in [2,8,13,14]. The translation from our simple
functional language to the IR is straightforward and follows exactly the same
steps as the one formalized in [2]. Essentially, the IR of each function is obtained
by translating each basic block in its control flow graph (CFG) into a procedure,
defined by means of rules that adhere to the following grammar:
r ::= m(x̄, y) �→ g, b1, . . . , bn.
b ::= x:=t | m(x̄, y)
g ::= true | g ∧ g | e op e | match(x, t) | nonmatch(x, t)
t ::= e | Co(t̄)
e ::= x | n | e+e | e−e

where op ∈ {>,=,≥}, m(x̄, ȳ) is the head of the rule, g specifies the conditions
for the rule to be applicable and b1, . . . , bn is the rule’s body. Calls are of the
form m(x̄, y) where the variables x̄ are the properly typed formal parameters
and the variable y is the properly typed return value. Guards match(x, t) and
nonmatch(x, t) simulate case-expressions and x and t are of the same type. We
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assume x �∈ vars(t). Terms are constructed using Co(t̄), where Co is a data
symbol and t̄ are the arguments (e.g., Cons(x, y)), variables x, integer numbers
n and arithmetic expressions (e + e and e − e). A function is thus defined by a
(global) set of rules. The dynamics of the data-structures are preserved by using
the guard match, which fixes the shape of the input variables in the rules.

Example 2. Fig. 3 shows the IR of function is coauthor. For each function defini-
tion, we have a rule with the same number of arguments plus a new argument
at the end that represents the output of the function call. The case expression
is split into three new rules, one rule for each possible matching alternative.

def Int is coauthor(Author a,
Authors as)

= case as {
Nil => 0;
Cons(a,as′) => 1;
Cons(a′,as′)
=> is coauthor(a, as′);

};

is coauthor(a,as,y) �→ case0(a,as,y).
case0(a,as,y) �→ match(as,Nil),

y := 0.
case0(a,as,y) �→ nonmatch(as,Nil),

match(as,Cons(a,as′)),
y := 1.

case0(a,as,y) �→ nonmatch(as,Nil),
nonmatch(as,Cons(a,as′)),
match(as,Cons(a′,as′)),
is coauthor(a,as′,y).

Fig. 3. IR of function is coauthor from the example in Fig. 2

3 Size Abstraction Using Typed-Norms

The cost analysis framework that we rely on [2] is performed in two steps: (1) the
program is first transformed into an abstract version that is used to track how
the sizes of the different data-structures change, when moving from one control
point to another; and (2) the abstract program is then analyzed to infer lower
and upper bounds on the resource consumption. As the second step remains
unchanged, we focus only on the first step.

Abstract programs are obtained from the source program (in the intermediate
form) as follows: (1) the program variables are replaced by numerical variables
that represent their corresponding sizes; and (2) the instructions are replaced by
linear constraints, over the new variables, to simulate the effect of their execution
on the sizes of the corresponding data-structures. When data refer to numerical
values, their sizes are defined as their values, and when they refer to data-
structures then size functions, commonly known as norms, are used to measure
their sizes. Note that our goal is not to obtain the real size of data-structures,
but to use the data-size information to obtain a more accurate complexity of the
recursions in the program.
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3.1 Preliminaries on Typed-Norms

Among all norms in the literature, the term-size norm is probably the most
well-known one. It has been introduced, and intensively used, in the context of
termination analysis of logic programs. Intuitively, it counts the number of data
constructors in a given data-structure, and can be defined as follows:

‖t‖ts =
{

1 +
∑n

i=1 ‖ti‖ts if t = Co(t1, . . . , tn)
1 otherwise . (1)

The main shortcoming of the term-size norm is that it considers all data types
equal, which leads to imprecision when used in the context of cost analysis.

Example 3. The recursive function written by in the example traverses Authors
and Books recursive data-structures. Using term-size norm, a static analysis
obtains that the complexity is O(n2), because each recursion in the data-structure
is abstracted to n. However, it is more accurate if we can say that the complexity
is O(bs×as) where bs refers to the number of books and as the maximum length
of the lists Authors for each of the books in bs, because recursions are applied to
different data-types.

To overcome the imprecision issues discussed above we use typed-norms, which
are designed to distinguish data constructors according to their types. For exam-
ple, they can measure the length of a list, and the size of its elements separately.
Such norms have been used before in the context of termination analysis (see [6]
and its references), and can be defined as follows:

‖t‖σ =

⎧
⎪⎪⎨

⎪⎪⎩

t σ = Int and t is an integer
length(t) σ = String and t is a string
1 +

∑n
i=1 ‖ti‖σ if t = Co(t1, . . . , tn) and type(t) = σ∑n

i=1 ‖ti‖σ if t = Co(t1, . . . , tn) and type(t) �= σ

. (2)

Intuitively, ‖t‖σ counts the number of data-constructs of type σ in t. Basic types
are treated in a special way: integers keep their values, and strings are abstracted
to their lengths. This means that ‖t‖Int equals to the sum of all integer values in
the data-structure t. We modify the above typed-norm scheme to the following
one

‖t‖σ =

⎧
⎪⎪⎨

⎪⎪⎩

t σ = Int and t is an integer
length(t) σ = String and t is an string
1 +

∑n
i=1 ‖ti‖σ if t = Co(t1, . . . , tn) and type(t) = σ

maxn
i=1 ‖ti‖σ if t = Co(t1, . . . , tn) and type(t) �= σ

. (3)

The difference from (2) is that, instead of summing the sizes of the inner ele-
ments, it just keeps the maximal one. For instance, consider the recursive func-
tion written by. By using (3), we will be able to infer that the cost is bounded by
O(bs×as) where bs denotes the length of the recursive data-structure Books and
as is the maximal length of the recursive data-structure Authors for each book.
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This is because when abstracting the list using the Authors norm, the fourth case
applies and the maximum value of all elements of the list is taken as worst case
cost. Using (2), we add the length of Authors as many times as Books we have (at
most bs books). Thus, obtaining the less accurate bound O(bs2 × as). We argue
that scheme (3) is more suitable than (2) for the cost analysis framework we
rely on. This is because this framework is based on compositional reasoning that
assumes worst-case for each iteration (i.e., when processing the inner elements
of a data-structure), and then multiplies it by the number of iterations (which
usually depends on the size of the skeleton). Note that one could also define in
an analogous way a norm that estimates the minimum value, by replacing max
with min in (3). This is in particular useful for inferring lower-bounds [12]. A
variation of (3) is implicitly used in works on sized types [12,15] (see Sec. 6 for
more details).

3.2 Our Transformational Approach

Next we describe our abstraction procedure based on typed-norms. Our app-
roach allows maintaining several abstractions even for the same variable at the
same time as in [6]. Thus, it allows estimating the size of a variable using differ-
ent measures. This is important since two different parts of the program might
traverse two different parts of the same data-structure. Having both measures
allows us to provide tighter bounds. Note that although we are interested in using
typed-norms following scheme (3), our techniques are also valid for scheme (2).

b bα

g1 ∧ g2 gα
1 ∧ gα

2

match(x, t) ∧{Xσ = ‖t‖σ | σ ∈ typed norms(x)}
nonmatch(x, t) true

e1 op e2 (e1 op e2)[y/YInt] if Int ∈ typed norms(x); otherwise true

p(x̄, ȳ) p(X̄, Ȳ )

x := t ∧{Xσ = ‖t‖σ | σ ∈ typed norms(x)}
true true

Fig. 4. Size abstraction for the instructions

We first introduce some concepts. Given two types σ1 and σ2, we write σ1 

σ2 if the definition of type σ2 uses (either directly or transitively) type σ1. If
σ 
 σ we say that the type is recursive. For simplicity, we assume that recursive
types are in direct recursive form (thus, its form can be checked by just inspecting
its definition). We use type(x) to refer to the type of x, and typed norms(x) to
refer to the set of types w.r.t. which we want to measure the size of x. In Sec. 4
we explain how to automatically infer typed norms(x). For typed norms to be
valid, we require that σ′ 
 σ if type(x) = σ and σ′ ∈ typed norms(x). For
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instance, typed norms(x) = {Authors,String} is a valid typed-norm for x with
type(x) = Authors. Given a type σ ∈ typed norms(x), we let Xσ be an integer
valued variable representing the size of (the value of) x w.r.t the typed-norm
‖.‖σ. If σ �= Int, then we implicitly assume Xσ ≥ 0. For a sequence of variables
x̄, we let X̄ be a sequence that results from replacing each xi by Xσ1 , . . . , Xσn

,
where typed norms(xi) = {σ1, . . . , σn}. Given an arithmetic expression e, we
abstract e as e[y/YInt], where we use e[y/YInt] to denote the expression that
results from replacing each variable y in e by YInt.

Given a typed-norm as in scheme (2) or (3), its symbolic version is an exten-
sion to handle terms that include variables, e.g., Cons(x, xs) where x and xs
are variables. It is obtained from the corresponding typed-norms definition by
adding the following extra cases: when t is a variable of type σ1, then ‖t‖σ = Tσ

if σ 
 σ1 and ‖t‖σ = 0 otherwise. In what follows, we abuse notation and use
‖t‖σ to refer to this symbolic version of typed-norm.

For the sake of simplifying the presentation, we assume that the input pro-
gram is in single static assignment form. A size abstraction is a conjunction of
linear constraints that describe the effect of the corresponding instruction. Given
an instruction b, its abstract version bα is defined as in Fig. 4. Let us explain the
abstraction for the different instructions: conjunctions are abstracted by recur-
sively abstracting each of their conjuncts; a match guard on x adds as many
constraints as typed-norms apply to the variable x, each constraint assigns to
the abstract variable the abstraction of the matched term w.r.t. the considered
norm; as we do not keep inequality constraints, nonmatch guards are abstracted
to true; in the expressions involving arithmetic operations, each variable y is
replaced by an abstract variable YInt; the arguments in the calls are replaced by
their corresponding abstract names; assignments are abstracted analogously to
match guards.

Definition 1. Given a program P , its size abstraction Pα is a program obtained
by replacing each rule p(x̄, ȳ) �→ g, b1, . . . , bn ∈ P by p(X̄, Ȳ ) �→ gα, bα

1 , . . . , bα
n.

When using the typed-norm scheme (3), then Pα might include constraints of
the form Xσ = E where E is an arithmetic expression that involves max. Such
non-linear constraints can be approximated by linear ones as follows: replace
the sub-expression max(B1, . . . , Bn) by a new auxiliary variable A, and add the
constraints A ≥ B1 ∧ · · · ∧ A ≥ Bn; this might be applied repeatedly in case
of nested or multiple occurrences of max. When the max has zero operands, it
can be safely replaced by 0. Note also that if non-linear arithmetic is allowed in
our language, then Pα might include non-linear constraints. These can also be
approximated by linear ones as in [4].

Example 4. Fig. 5 shows, in the right column, the abstraction of the instructions
which appear in the corresponding left column for function is coauthor. We use
underlining to denote abstractions that are useless, as it will be explained in the
next section. The typed norms that we use in is coauthor is: typed norms(x) =
{String} if type(x) = String; typed norms(x) = {String,Authors} if type(x) =
Authors; and typed norms(x) = {Int} if type(x) = Int. Observe that the first
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is coauthor(a,as,y)�→
case0(a,as,y).

is coauthor(a1,as1,as2,y1) �→
case0(a1,as1,as2,y1).

case0(a,as,y)�→
match(as,Nil), y := 0.

case0(a1,as1,as2,y1)�→
{as1 = 0, as2 = 1}, {y1 = 0}.

case0(a,as,y)�→
nonmatch(as,Nil),
match(as,Cons(a,as′)),

y := 1.

case0(a1,as1,as2,y1)�→
{},
{as1 ≥ a1, a1 ≥ 0, as1 ≥ as′

1,
as′

1 ≥ 0, as2 = as′
2 + 1, as′

2 ≥ 1},
{y1 = 1}.

case0(a,as,y)�→
nonmatch(as,Nil),nonmatch(as,Cons(a,as′)),
match(as,Cons(a′,as′)),

is coauthor(a,as′,y).

case0(a1,as1,as2,y1) �→
{}, {},
{as1 ≥ a′

1, a
′
1 ≥ 0, as1 ≥ as′

1,
as′

1 ≥ 0, as2 = as′
2 + 1, as′

2 ≥ 1},
is coauthor(a1,as′

1,as′
2,y1).

Fig. 5. Abstraction of function is coauthor

argument a of is coauthor is abstracted by the variable a1 using the type String
and the second argument as is abstracted in variables as1 and as2, one for each
element of typed norms(as). It is interesting to see that the abstraction of the
guard match(as,Cons(a′,as′)) on the third case0 rule uses as1 to denote the
maximum length of a String in the recursive data-structure as, so we have to
add the constraints as1 ≥ a′

1 (a′
1 represents the abstraction of the first argument

of Cons) and as1 ≥ as′
1. Note that if we use (2) in Sec. 3.1 then as1 corresponds

to the length of the concatenation of every String in as, i.e., as1 = a′
1 + as′

1.
Since a′

1 and as′
1 represent String lengths, their value cannot be lower than 0

and we add constraints for that. Also, as′
2 represents the length of Authors (and

Nil corresponds to size 1), then as′
2 must be at least of size 1. In order to assess

the impact of our approach, we show in Fig. 6 the exact upper bounds obtained
from an abstraction using only the term-size norm (left) and the abstraction
using typed-norms (right) for our three functions. The upper bounds are given
as functions of the sizes of the input parameters w.r.t. the different abstractions
(hence the output parameter is not included). As explained in Ex. 3, the upper
bounds obtained for written by are more accurate using typed-norms. The largest
gain is obtained for sort books by authors as it uses the upper bounds of the two
other functions, namely we achieve O(n×m× l), where n represents the number
of authors in as, m represents the number of books in bs and l represents the
maximum length of Authors for each book in bs.

Intuitively, the analyzer obtains this upper bound following this reasoning.
As function sort books by authors has a recursive call that decreases the number of
authors of as, we have that the maximum number of recursive calls is bound by
n (number of authors in as), thus its cost is O(n ∗ cost body1) where cost body1
is the cost of each application of the body of the function. Now, in order to
compute cost body1, we have to analyze the cost of function written by as it is
called in the body. In this case, we also have recursive calls that decrease the size
of the second argument bs (i.e., the number of books denoted as m). By applying
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term-size norm typed-norms

is coauthor(a, as) is coauthor(a1, as1, as2)
= 4+ 5 × (as

2
− 1

2
) = 4+ 5 × (as2 − 1)

written by(a, bs) written by(a1, bs1, bs2, bs3)
= 3+ ( bs

4
− 1

4
) × (14 + 5 × ( bs

2
− 5

2
)) = 3+ (bs2 − 1) × (14 + 5 × (bs3 − 1))

sort books by author(as, bs) sort books by author(as1, as2, bs1, bs2, bs3)
= 3+ (as

2
− 1

2
) × (10 + ( bs

4
− 1

4
) = 3+ (as2 − 1) × (10 + (bs3 − 1)

×(14 + 5 × ( bs
2

− 5
2
))) ×(14 + 5 × (bs2 − 1)))

Fig. 6. Upper bounds comparison term-size vs. typed-norms (a1, as1 and bs1 represent
String-norms, as2 and bs2 represent Authors-norms and bs3 represents Books-norm)

a similar reasoning, the cost of written by is bound by O(m ∗ cost body2). Again,
we need to compute the cost of the call to is coauthor, as it determines the cost
of the body of written by. Finally, we have a recursive call in is coauthor that
decreases the size of l (maximum size of Authors). By replacing each cost body
by the computed cost, we get the cubic cost above as upper bound. By using
term-size, we obtain O(n ∗ m2) where n is the size of as and m the size of bs.
The difference is that the whole data structure is abstracted by m, thus the cost
of method is coauthor is bound by the whole m, instead of by the length of the
author’s lists (denoted l above) which are a subterm of m. This might lead to
an important loss of precision when the data structure m is large.

4 Inference of Typed-Norms

In Sec. 3, we have assumed that each variable x is assigned a set of types, given
by typed norms(x), whose size we want to track. In principle, one could abstract
each variable w.r.t. all norms valid for its type. However, this would threaten
the efficiency of the analysis, as the complexity of the solving procedure for find-
ing resource bounds from abstractions exponentially grows with the number of
variables. In this section we develop an analysis that eliminates useless abstrac-
tions in two dimensions: (1) As it was observed in [3], one can remove variables
that do not affect the cost. In particular, the cost of a given program (mainly)
depends on the number of recursions performed, which in turn is controlled by
the corresponding guards (conditions to stop the recursion). This means that any
variable that does not affect, directly or indirectly, the value of a guard, can be
completely ignored. (2) We push this observation further, and besides eliminat-
ing useless variables (and their abstractions), we also eliminate useless (typed)
size information for those variables that are useful and thus have not been elim-
inated in (1). In some sense we eliminate useless types, and thus typed-norms,
from each variable.

We say that a guard instruction g is cost-significant if it appears in a guard.
In practice, we identify such instructions by examining the (recursive) strongly
connected components of the corresponding control flow graph. The variables
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that are involved in the guards are the source for the size information that we
want to track. For example, if a cost-significant guard is of the form match(x, t),
and type(x) = σ where σ is a recursive type, then ‖.‖σ is a norm that we should
use for x (because the corresponding recursion might be traversing this part of
x). Our analysis is done in two steps: (1) first the cost-significant guards are
used to initialize typed norms(x) for the variables involved in these guards, and
(2) this information is propagated to other variables in the program by means
of backwards data-flow analysis. Below we sketch these two steps.

Initialization. This step starts by setting typed norms(x) to ∅ for each variable
x in the program. Then, it identifies the set of cost-significant guards, and uses
each such guard to modify related typed norms(x) as follows:

– If the guard is match(x, t), variable x has a type σ, and σ is a recursive type,
then σ is added to typed norms(x).

– If the guard is of the form e1 op e2, and variable x appears in e1 or e2, then
Int is added to typed norms(x).

Note that in the case of match(x, t), if σ is not recursive then it is simply ignored.
This is because non-recursive types cannot directly affect the number of recur-
sions. However, they might have some inner recursive types that do, those will
be propagated to x (from other guards) in the second step.

Propagation. The initial information computed in the first step must be propa-
gated backwards to other variables in the program. Intuitively, the propagation
step works as follows: suppose we have an instruction x:=Cons(y, ys), and we
know that σ ∈ typed norms(x) (after the instruction). This means that we want
to track the size of x w.r.t. the type σ, but to do so precisely we must track this
information in all parts of x, i.e., in y and ys, thus we add σ to typed norms(y)
and typed norms(ys), if they are valid norms for the corresponding types. The
propagation rules for the different instructions are defined as follows:

– For match(x, t) and nonmatch(x, t), if y ∈ vars(t), and σ ∈ typed norms(y),
then we add σ to typed norms(x).

– For x:=t, if σ ∈ typed norms(x) we add σ to typed norms(y) for each vari-
able y ∈ vars(t) as far as type(y) 
 σ.

– For m(x1, . . . , xn, y), if there is a rule m(w1, . . . , wn, z) �→ g, b1, . . . , bm and
σ ∈ typed norms(wi) we add σ to typed norms(xi), for each 1 ≤ i ≤ n.

– For m(x1, . . . , xn, y), if there is a rule m(w1, . . . , wn, z) �→ g, b1, . . . , bm and
σ ∈ typed norms(y) we add σ to typed norms(z).

– For any pair of rules m(x1, . . . , xn, y) �→ g, b1, . . . , bm and m(w1, . . . , wn, z) �→
g′, b′

1, . . . , b
′
k, if σ ∈ typed norms(xi) then σ ∈ typed norms(wi), and if

σ ∈ typed norms(y) then σ ∈ typed norms(z) (this forces rules with the
same name and number of arguments to be abstracted to rules with the
same name and same number of abstracted arguments).
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Function Initialization Propagation

is coauthor {}a,{}as,{}y {}a,{Authors}as,{}y

case0 (1st rule) {}a,{Authors}as,{}y {}a,{Authors}as,{}y

case0 (2nd rule) {}a,{Authors}as,{}y,{}as′ {}a,{Authors}as,{}y,{}as′

case0 (3rd rule) {}a,{Authors}as,{}y,{}a′ ,{}as′ {}a,{Authors}as,{}y,{}a′ ,{Authors}as′

Fig. 7. Inference on is coauthor

– There are some built-in functions that are treated as built-in instructions,
e.g., length(s, x) which binds x to the length of the string s. In such case, if
Int ∈ typed norms(x) then we add String to typed norms(s).

– All other instructions do not modify any information.

The propagation step is applied iteratively, using standard backwards data-flow
analysis, until a fix-point is reached, i.e., the values of all typed norms(x) become
stable. Note that this data-flow analysis also propagates information between the
rules (no special treatment is required). Termination is guaranteed because the
number of typed-norms is finite.

Example 5. Fig. 7 shows the obtained typed norms on each variable after ini-
tialization and propagation on is coauthor and case0 rules. We use {}x notation
to represent typed norms(x) in a compact way. The algorithm works in the
following way:

– Initialization sets typed norms(as) = {Author} and typed norms(x) = ∅ for
any other variable x in the program because all the guards in the program
are of the form match(as, t).

– Then, {Author} is propagated in the following way:
1. The second argument of case0 propagates {Authors} to is coauthor

rule, making typed norms(as) = {Author} on is coauthor.
2. The second argument of is coauthor propagates {Authors} to the third

case0 rule, making typed norms(as′) = {Author} on the third case0.
3. Guard match(as, Cons(a′, as′)) on the third case0 rule adds {Authors}

to typed norms(as), but typed norms(as) already contains {Authors},
and the process stops.

When a variable has an empty set of candidate norms, it means that it is not
relevant to obtain the cost expression. In our example, String-norm and Int-norm
are useless to obtain an upper bound. The result of applying our inference of
typed-norms on the running program is the abstraction in Fig. 5 removing all
underlined variables and associated constraints.

5 Experimental Evaluation

We have implemented the resource analysis detailed in this paper in the static
analyzer for ABS programs SACO (http://costa.ls.fi.upm.es/saco). Our analysis

http://costa.ls.fi.upm.es/saco
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is currently being integrated in the web interface of SACO and will be avail-
able by selecting the typed-norms option within the settings section soon. Our
experiments aim at evaluating both the accuracy and efficiency of our analy-
sis. Experimental evaluation has been carried out on the functional modules of
the Replication System case study (an industrial case study whose source code
is available from the SACO website). A total of 88 functions are used in the
replication system. We have used three different configurations for the analysis
with norms: (1) term-size, (2) typed-norms considering all possible norms, and
(3) significant typed-norms obtained by the inference algorithm as described in
Sec. 4. An upper bound was obtained on 61 out of the 88 functions in config-
uration (1) and in 62 out of the 88 functions on configurations (2) and (3). A
notable result of our experiment is that for one function (’itemMapToSchedule’ )
an upper bound has been obtained using configurations (2) and (3) but cannot
be obtained in (1) since it requires a more refined abstraction than term-size.

As regards accuracy, in Fig. 8 we compare the quality of the upper bounds
obtained using term-size and typed-norms (note that in (2) and (3) we infer the
same upper bounds). Since the term-size norm measures the size of the input in
a different way from the typed-norms, a fair comparison of the results can be
done by actually evaluating the corresponding upper bounds on some (random)
concrete input. We used quickCheck [7] to generate 10 random concrete inputs
for each upper bound, so for each case we obtain 10 different quotients.

For each random input, the diagram in Fig. 8 shows the quotient between the
value of the upper bound obtained using term size, and the value of the upper
bound using typed-norms. The x-axis corresponds to the benchmark number,
and to improve readability we have sorted the benchmarks according to the
corresponding values in the y-axis. We have ignored constant upper bounds
since they correspond to functions without any recursion (i.e., the term-size
norm and typed-norm should give the same answer), and thus remained with 32
non-constant upper bounds (the horizontal axe of the diagram corresponds to
these 32 upper bounds). Values below 1 mean the analysis based on the typed-
norms is more precise than the term-size one (the smaller the value, the bigger
is the improvement), which is the case in all 32 cases.

We have also compared the performance of the different configurations. The
run-time of each configuration (for all benchmarks together, using the average
of 5 runs) is depicted in Table 1. We divide the total time into 3 parts: Tsa is
the time for processing the input program in order to define the typed-norms,
for configuration (3) this also includes the typed-norms inference, and for con-
figuration (1) this step does not exist and thus it costs 0; Tac is the time for
generating the abstract program; and Tub is the time for solving the abstract
program into an upper bound. As expected, using all typed-norms introduces
a significant overhead in configuration (2) when compared to (1). Importantly,
by using the typed-norms inference we reduce the number of typed-norms sig-
nificantly and thus the overhead becomes reasonable in configuration (3) when
compared to (1). The experiments have been performed on an Intel Core 2 Duo
at 2.4GHz with 8GB of RAM, running OS X 10.9.
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Fig. 8. Upper Bound Comparison

Table 1. Run-Time statistics (in ms.) on 61 functions: (1) using term-size; (2) using
all type-norms; and (3) using only significant typed-norms obtained as in Sec. 4

Configuration Tsa Avg. Tsa Tac Avg. Tac Tub Avg. Tub Tsa+Tac+Tub

(1) 0 0 120 2 3911 65 4031

(2) 1633 27 631 11 14230 234 16494

(3) 2161 36 255 5 4488 74 6904

6 Conclusions, Related and Future Work

We have presented a novel transformational approach to resource analysis with
typed-norms which has the advantage that its formalization can be done by only
adapting the first phase of cost analysis in which the program is transformed
into an intermediate abstract program. Besides its simple formal development,
the implementation has been easily integrated into the previous system as a
pre-phase to the existing analysis.

Our work is inspired by [9] where the authors introduce the notion of typed-
based norm in the context of termination analysis, and show how types can be
very useful for finding suitable norms even for untyped languages like Prolog.
They also illustrate that typed-based norms sometimes must be combined to
get a termination proof. In [15], Vasconcelos introduces an enriched typing to
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get upper bounds and uses it on resource analysis. Unlike our approach, in this
approach one can handle multiple typed-norms on variables only by having para-
metric data-structures. The techniques of Vasconcelos have been extended to the
context of logic programs [12]. When compared to an approach based on abstract
interpretation like [12], our transformational approach is simpler to define and
to implement because we do not need to re-do all the abstract interpretation
theory (defining specific concretization, abstraction functions, etc.). Instead, we
simply have to add explicit arguments for the sizes of data structures and define
a size abstraction which is rather straightforward. The implementation simply
requires a pre-process to add the arguments and properly abstract them. Then,
standard size analysis works on the transformed program. As regards accuracy,
when compared to [12], we define an additional step to infer the required typed-
norms. This allows us to handle accurately examples like our running example
in which the same term requires the use of more than one typed-norm in order
to be as accurate as possible.

With respect to the inference of typed-norms, we extend the results in [1]
to deal with typed-norms in addition to useless arguments. As our experiments
have showed, this analysis is essential to be scalable in practice (the analysis
time is reduced 58.14%) and, to the best of our knowledge, it is the first time
that it is applied on norms.

In future work, we plan to include parametric data types, which pose some
challenges in the definition of the framework. Also, we want to enrich types
with positions so that we can measure differently the same type when it appears
in different type contexts. E.g., the type data t = Pair(Int, Int) is enriched to
data t = Pair(Int1, Int2), and thus we will have the two different norms ‖.‖Int1
and ‖.‖Int2 .
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Abstract. Narrowing basically extends rewriting by allowing free vari-
ables in terms and by replacing matching with unification. As a con-
sequence, the search space of narrowing becomes usually infinite, as in
logic programming. In this paper, we introduce the use of some operators
that allow one to always produce a finite data structure that still rep-
resents all the narrowing derivations. Furthermore, we extract from this
data structure a novel, compact equational representation of the (pos-
sibly infinite) answers computed by narrowing for a given initial term.
Both the finite data structure and the equational representation of the
computed answers might be useful in a number of areas, like program
comprehension, static analysis, program transformation, etc.

1 Introduction

The narrowing relation [28], originally introduced in the context of theorem
proving, was later adopted as the operational semantics of so called functional
logic programming languages (like Curry [15]). Basically, narrowing extends term
rewriting by allowing terms with variables and by replacing matching with unifi-
cation. Therefore, narrowing has many similarities with the SLD resolution prin-
ciple of logic programming. Indeed, both narrowing and SLD resolution usually
produce an infinite search space, i.e., an infinite tree-like structure where several
branches are created every time a function call matches with the left-hand side
of more than one program rule. Currently, narrowing is regaining popularity in
a number of areas other than functional logic programming, like protocol verifi-
cation [10,18], model checking [8,11], partial evaluation [1,27], refining methods
for proving the termination of rewriting [5,6], etc. In many—if not all—of these
applications, producing a finite representation—usually in the form of a finite
graph—of the narrowing space is essential.
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r ≈ f(x)
{x �→0}

��
{x �→s(x′)}
��

r ≈ 0
{r �→0} ��

r ≈ g(f(x′))

��
true . . .∞ . . .

r ≈ f(x)
{x �→0}

��
{x �→s(x′)}

��
r ≈ 0

{r �→0} ��

r ≈ g(f(x′))

true r ≈ g(r′) & r′ ≈ f(x′)

�� ��
r ≈ g(r′)

{r′ �→s(0)} ��

r′ ≈ f(x′)

{r′ �→r,x′ �→x}
�	

r ≈ s(0)
{r �→s(0)} ��

true
(a) (b)

Fig. 1. Building a finite representation of the narrowing space for f(x)

The generation of a finite representation of the narrowing space has been
tackled, e.g., by partial evaluation techniques (see, e.g., [1]). Here, so called sub-
sumption and abstraction operators are introduced in order to stop potentially
infinite derivations. However, no previous work has formally considered how the
use of these operators can be used to construct a finite tree that still represents
all possible derivations. In this work, we present a new approach to produce a
finite data structure that still represents all the narrowing derivations for any
given term. For this purpose, we introduce two basic operators: splitting and
flattening. Splitting a conjunction like e1 & e2 implies the parallel evaluation of
the conjuncts e1 and e2. On the other hand, flattening an equation e returns a
conjunction of the form x ≈ e|p & e[x]p, where the subterm e|p of e is replaced
by a fresh variable x not in e and a new equation is added. These two operations
suffice to always produce a finite representation of the narrowing space.

Example 1. Consider the simple program (a term rewriting system) { f(0) →
0, f(s(x)) → g(f(x)), g(s(0)) → s(0) }. where natural numbers are built using
the constructors 0 and s( ). Given the initial equation r ≈ f(x), the narrowing
space using an innermost strategy is infinite, as shown inFig. 1 (a), where the terms
selected to be narrowed are underlined. Even by using some sort ofmemoization (as
in [4]), where variants of a previously narrowed term are not unfolded, we still get
an infinite narrowing space. In contrast, by using flattening (depicted with a dou-
ble line) and splitting (depicted with a double arrow), we can obtain a finite tree
that still represents all the possible narrowing derivations, as shown in Fig. 1 (b),
where dotted arrows are used to point to a previous variant of a term or equation.
We consider these dotted arrows implicit to keep the data structure a tree (i.e., they
are only used to identify the occurrence of a variant of the given node, and could
be replaced by just adding the information locally to this node).

Designing a technique for producing finite trees can be useful in many dif-
ferent areas. For instance, one can use them to better understand the program’s
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control flow, to analyze weak termination,1 to detect subtrees that will never
produce a computed answer (which is useful, e.g., in the context of the more
specific transformation recently introduced in [23]), and so forth. In this paper,
we present the building blocks for designing such techniques.

Furthermore, we also introduce a novel, compact equational representation
of the (possibly infinite) answers computed by narrowing for a given initial term.
In particular, we only need three operators:

– standard composition (·),
– alternative (+), that represents the union of sets of substitutions, and
– parallel composition (⇑), that denotes the unification on sets of substitutions.

The precise definitions will be introduced in Section 4.2. Using these operators,
we are able to produce compact representations of the computed answers of a
term from its finite tree. E.g., the set of computed answers Γf(x) associated to
the narrowing tree depicted in Fig. 1 (a) can be succinctly represented by

Γf(x) = {x �→0, r �→0}+{x �→s(x′)}·({r �→s(0), r′ �→s(0)} ⇑ {r′ �→r, x′ �→x}·Γf(x))

which is extracted from the finite tree in Fig. 1 (b). Interestingly, one can easily
see that there is no solution to

{r �→ s(0), r′ �→ s(0)}⇑ {r′ �→ r, x′ �→ x} · Γf(x)

since {r �→ s(0), r′ �→ s(0)} maps r′ to s(0) while {r′ �→ r, x′ �→ x} · Γf(x) can
only bind r′ to 0 (because the only non-recursive solution of Γf(x) binds r to
0), and s(0) and 0 clearly do not unify. Therefore, one can conclude that the
only solution is {x �→ 0, r �→ 0} despite the fact that the original narrowing
tree is infinite. In this case, this was already obvious from the inspection of the
narrowing tree. In general, however, our equational representation may be useful
to analyze the computed answers of more complex programs.

This paper is organized as follows. In Section 2, we briefly review some notions
and notations of term rewriting and narrowing. Section 3 presents some results on
the compositionality of narrowing, introduces the flattening operator and proves
its correctness. Section 4 then presents our method to produce finite trees by
using subsumption, constructor decomposition, flattening, and splitting. We also
introduce an equational representation for the computed answers in this section.
Finally, Section 6 concludes and points out some directions for future research.
Proofs of technical results can be found in the appendix available from http://
users.dsic.upv.es/∼gvidal/german/lopstr13a lncs/paper.pdf.

2 Preliminaries

We assume familiarity with basic concepts of term rewriting and narrowing. We
refer the reader to, e.g., [7], [25], and [14] for further details.

Terms and Substitutions. A signature F is a set of function symbols. Given a
set of variables V with F ∩ V = ∅, we denote the domain of terms by T (F ,V).
1 A TRS is weakly terminating if any term has at least one normal form [13].

http://users.dsic.upv.es/~gvidal/german/lopstr13a_lncs/paper.pdf
http://users.dsic.upv.es/~gvidal/german/lopstr13a_lncs/paper.pdf
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We assume that F always contains at least one constant f/0. We use f, g, . . .
to denote functions and x, y, . . . to denote variables. A position p in a term t is
represented by a finite sequence of natural numbers, where ε denotes the root
position. The set of positions of a term t is denoted by Pos(t). We let t|p denote
the subterm of t at position p and t[s]p the result of replacing the subterm t|p by
the term s. Var(t) denotes the set of variables appearing in t. A term t is ground
if Var(t) = ∅.

A substitution σ : V �→ T (F ,V) is a mapping from variables to terms such
that Dom(σ) = {x ∈ V | x �= σ(x)} is its domain. Substitutions are extended to
morphisms from T (F ,V) to T (F ,V) in the natural way. We denote the appli-
cation of a substitution σ to a term t by tσ rather than σ(t). The identity
substitution is denoted by id. A variable renaming is a substitution that is a
bijection on V. A substitution σ is more general than a substitution θ, denoted
by σ � θ, if there is a substitution δ such that δ · σ = θ, where “·” denotes
the composition of substitutions (i.e., σ · θ(x) = (xθ)σ = xθσ). A substitution
σ is idempotent if σ · σ = σ. The restriction θ |̀V of a substitution θ to a set of
variables V is defined as follows: xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise. We
say that θ = σ [V ] if θ |̀V = σ |̀V .

A term t2 is an instance of a term t1 (or, equivalently, t1 is more general
than t2), in symbols t1 � t2, if there is a substitution σ with t2 = t1σ. Two
terms t1 and t2 are variants (or equal up to variable renaming) if t1 = t2ρ for
some variable renaming ρ. A unifier of two terms t1 and t2 is a substitution σ
with t1σ = t2σ. This notion is naturally extended to a set of equations: σ is a
unifier of a set of equations {s1 = t1, . . . , sn = tn} if siσ = tiσ for i = 1, . . . , n;
furthermore, σ is the most general unifier of {s1 = t1, . . . , sn = tn}, denoted by
mgu({s1 = t1, . . . , sn = tn}) if, for every other unifier θ of {s1 = t1, . . . , sn = tn},
we have that σ � θ.

TRSs and Rewriting. A set of rewrite rules l → r such that l is a non-variable
term and r is a term whose variables appear in l is called a term rewriting system
(TRS for short); terms l and r are called the left-hand side (lhs) and the right-
hand side (rhs) of the rule, respectively. We restrict ourselves to finite signatures
and TRSs. Given a TRS R over a signature F , the defined symbols DR are the
root symbols of the lhs’s of the rules and the constructors are CR = F \ DR.
Constructor terms of R are terms over CR and V, i.e., T (CR,V). We omit R
from DR and CR if it is clear from the context. A substitution σ is a constructor
substitution (of R) if xσ ∈ T (CR,V) for all variables x. A TRS R is a constructor
system if the lhs’s of its rules have the form f(s1, . . . , sn) where si are constructor
terms, i.e., si ∈ T (C,V), for all i = 1, . . . , n.

For a TRS R, we define the associated rewrite relation →R as the smallest
binary relation satisfying the following: given terms s, t ∈ T (F ,V), we have
s →R t iff there exist a position p in s, a rewrite rule l → r ∈ R and a
substitution σ with s|p = lσ and t = s[rσ]p; the rewrite step is usually denoted
by s →p,l→r t to make explicit the position and rule used in this step. The
instantiated lhs lσ is called a redex. A term t is called irreducible or in normal
form w.r.t. a TRS R if there is no term s with t →R s. A derivation is a (possibly
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empty) sequence of rewrite steps. Given a binary relation →, we denote by →∗

its reflexive and transitive closure. Thus t →∗
R s means that t can be reduced to

s in R in zero or more steps.

Narrowing. The narrowing relation [28] mainly extends term rewriting by replac-
ing pattern matching with unification, so that terms containing logic variables
can also be reduced by non-deterministically instantiating these variables. For-
mally, given a TRS R and two terms s, t ∈ T (F ,V), we have that s �R t is a
narrowing step iff there exist a non-variable position p of s, a variant l → r of a
rule in R, and a substitution σ = mgu({s|p = l}),2 such that t = (s[r]p)σ. We
usually write s �p,l→r,θ t (or simply s �θ t) to make explicit the position, rule,
and substitution of the narrowing step.

A narrowing derivation t0 �∗
σ tn denotes a sequence of narrowing steps

t0 �σ1 · · · �σn
tn with σ = σn · · · · · σ1 (if n = 0 then σ = id). Given a

narrowing derivation s �∗
σ t with t a constructor term, we say that σ is a

computed answer for s.

Innermost Narrowing. In this paper, we consider a particular narrowing strategy
called innermost narrowing (see, e.g., [12]). Innermost narrowing only reduces
subterms of the form f(t1, . . . , tn), with f a defined function symbol and t1, . . . , tn
constructor terms; if there are several such subterms, we consider in this paper
that the leftmost one is selected. Innermost narrowing steps are denoted using
arrows of the form “ i

�”. A well-known result for innermost narrowing states its
completeness for (confluent and terminating) constructor TRSs that are com-
pletely defined (CD) (or sufficiently complete): TRSs in which no function symbol
occurs in any ground term in normal form (i.e., functions are always reducible
on all ground terms). The CD condition is common when using types and each
function is defined for all constructors of its argument types. It is easy to extend
innermost narrowing to incompletely defined functions, by just adding a so called
innermost reflection rule which skips an innermost function call that cannot be
reduced [17], given rise to so called innermost basic narrowing. For the sake of
simplicity, here we assume that the CD condition holds for all functions so that
innermost narrowing suffices to compute all answers.

Example 2. Consider the TRS R = { (R1) add(0, y) → y, (R2) add(s(x), y) →
s(add(x, y)) } defining the addition add/2 on natural numbers built from 0/0 and
s/1. Given the term add(x, s(0)), we have infinitely many innermost narrowing
derivations starting from add(x, s(0)), e.g.,

add(x, s(0)) i
�ε,R1,{x �→0} s(0)

add(x, s(0)) i
�ε,R2,{x �→s(y1)} s(add(y1, s(0)))

i
�1,R1,{y1 �→0} s(s(0))

. . .

with computed answers {x �→ 0}, {x �→ s(0)}, etc.
2 We consider the so called most general narrowing, i.e., the mgu of the selected

subterm and the lhs of a rule—rather than an arbitrary unifier—is computed at
each narrowing step.
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3 Compositionality and Flattening

The compositionality property can be simply formalized at the level of equa-
tions, i.e., we say that narrowing is compositional when the computed answers
of e1 & e2 can be obtained from the computed answers of e1 and e2, where
“&” denotes the Boolean conjunction operator. As for the flattening operation,
given an equation x ≈ f(g(y)),3 its flattening w.r.t. the position 2.1 (i.e., w.r.t.
g(y) since x ≈ f(g(y))|2.1 = g(y)) returns x′ ≈ g(y) & x ≈ f(x′), where x′ is
a fresh variable. Therefore, flattening can be used to distribute the narrowing
tasks among different equations.

Intuitively speaking, compositionality holds for any narrowing strategy that
fulfills the following conditions:

– Independence of the context. This is the case, for instance, of unrestricted
narrowing, basic narrowing, innermost narrowing, etc. Lazy or needed nar-
rowing, in contrast, are not independent of the context because, given an
expression s[t]p, we cannot determine whether t should be narrowed (and to
what extent) without looking at the context s[ ]p.

– Terms introduced by instantiation should not be narrowable. This is the
case, for instance, of basic narrowing, innermost narrowing, lazy and needed
narrowing (for left-linear constructor systems), etc. This is not the case of
unrestricted narrowing though.

In the following, we will focus on (unconditional) innermost narrowing (though
other narrowing strategies would also be equally appropriate, e.g., basic narrow-
ing or innermost basic narrowing). Furthermore, some strategies not fulfilling
the above conditions, like lazy and needed narrowing, can also be proved com-
positional by restricting the narrowing derivations to head normal form (so that
they become essentially independent of the context).

In this paper, we consider the usual definitions for syntactic equality and
conjunction: Req = {x ≈ x → true}, R& = {true & x → x, false & x →
false}. Hence, we have that s ≈ t holds if s and t are syntactically equal. Also,
when using innermost narrowing, we can only reduce s ≈ t using the rule x ≈
x → true if both s and t are constructor terms. Narrowing deals with equations
and conjunctions as ordinary terms. We often call such terms equational terms
to make it explicit that they contain occurrences of “≈” and/or “&”. In the
following, we assume that every TRS implicitly includes the rules of Req ∪R&.

Here, we only aim at preserving the answers computed in successful deriva-
tions, i.e., derivations ending with a constructor term (true, when the initial term
is an equation or a conjunction of equations).

Definition 3 (Success Set). Let R be a TRS and let t be a term. We define
the success set SR(t) of t in R as follows:

SR(t) = {σ |̀Var(t)| t i
�∗

σ c in R and c ∈ T (C,V) is a constructor term}
3 Here, “≈” is a binary symbol to denote syntactic equality on terms, see below.
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Observe that function S does not return the computed normal forms. Never-
theless, we can still get the computed normal form as follows: given a term t,
we consider an initial equation of the form x ≈ t, where x is a fresh variable
not occurring in t; therefore, x will be bound to the normal form of t in any
successful derivation (i.e., any derivation that ends with true).

Let us now recall the definition of parallel composition of substitutions,
denoted by ⇑ in [16,26]. Informally speaking, this operation corresponds to the
notion of unification generalized to substitutions. Here, θ̂ denotes the equational
representation of a substitution θ, i.e., if θ = {x1 �→ t1, . . . , xn �→ tn} then
θ̂ = {x1 = t1, . . . , xn = tn}.

Definition 4 (Parallel Composition [26]). Let θ1 and θ2 be two idempotent
substitutions. Then, we define ⇑ as follows:

θ1 ⇑ θ2 =
{
mgu(θ̂1 ∪ θ̂2) if θ̂1 ∪ θ̂2 has a solution (a unifier)
fail otherwise

Parallel composition is extended to sets of substitutions in the natural way:

Θ1 ⇑ Θ2 = {θ1 ⇑ θ2 | θ1 ∈ Θ1, θ2 ∈ Θ2, θ1 ⇑ θ2 �= fail}
Now, we state the main compositional result for innermost narrowing:

Theorem 5. Let R be a constructor CD TRS. Let e1 & e2 be an equational
term. Then, we have SR(e1 & e2) = SR(e1) ⇑ SR(e2) up to variable renaming.

As a useful consequence of the above compositionality result, we can state the
following corollary:

Corollary 6. Let R be a constructor CD TRS. Let e1 & e2 be an equational
term. Then, we have SR(e1 & e2) = SR(e2 & e1) up to variable renaming.

In practice, this result implies that innermost narrowing can select the equations
to be narrowed in any order (and not necessarily in a left-to-right order) while
preserving the computed answers. This is equivalent to the independence of the
selection rule of logic programming.

Now, we recall the flattening transformation (called unfolding in [24]) that
will become useful in the next section, and prove its correctness.

Definition 7 (Flattening). Let e be an equational term and p ∈ Pos(e) be a
position of e such that e|p is not a variable, and the root of e|p is neither ≈ nor
&. Then, the flattening of e w.r.t. p is given by x ≈ e|p & e[x]p.

We say that a flattening is trivial when e has an equation y ≈ t and flattening
just replaces it with x ≈ t & y ≈ x (so that just another level of indirection is
created). In the following, we assume that all flattenings are non-trivial.

The following property states the correctness of the flattening operation:

Theorem 8. Let R be a constructor CD TRS. Let e be an equational term
and e′ be a non-trivial flattening of e w.r.t. some position p. Then, we have
SR(e) = SR(e′) [Var(e)] up to variable renaming.
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4 A Finite Representation of the Narrowing Space

First, we introduce a framework to obtain a finite representation of a (possi-
bly infinite) narrowing space. Then, we also present a method to extract an
equational representation of the success set of a given term.

4.1 Constructing Finite Narrowing Trees

We produce finite trees representing all the (possibly infinite) narrowing deriva-
tions of a term as follows. Basically, we proceed as in the construction of a
standard narrowing tree, but we also introduce some new operators in order to
ensure that the tree can be kept finite.

Definition 9 (Extended Narrowing Tree). Let R be a TRS and t be a
term. An extended narrowing tree for t in R is a directed rooted node- and
edge-labeled graph τ built as follows:

– the root node of τ is labeled with x ≈ t, where x is a fresh variable not
occurring in t;

– a leaf is either a node labeled with true (a success node) or a node containing
defined functions that cannot be further narrowed, which is labeled with fail
to make it explicit that it represents a failing derivation;

– subsumption: if a node is labeled with a non-constructor term e that is a
variant of a previous node e′ in the same root-to-leaf derivation, i.e., eϑ = e′,
it is also considered a leaf, and we add an implicit edge between these nodes
labeled with ϑ; 4

– otherwise, given a node labeled with e, we expand it (do not care non-
deterministically) using one of the following rules:
narrowing: if e is narrowable, we have an output edge labeled with σ from

node e to node e′ for each innermost narrowing step e
i

�σ e′;
constructor decomposition: if e ≡ (y ≈ c(t1, . . . , tn) & e′) (c ∈ C), we add

an edge to a node y1 ≈ t1 & . . . & yn ≈ tn & e′, with y1, . . . , yn fresh
variables, and the edge is labeled with {y �→ c(y1, . . . , yn)};

splitting: if e ≡ (e1 & · · · & en−1 & en), we add output edges from e to
new nodes labeled with e1, . . . , en−1, and en;

flattening: we add an output edge from node e to a node y ≈ e|p & e[y]p,
where y is a fresh variable not occurring anywhere in the tree.

The operations considered in the previous definition can also be found in the
literature (perhaps with slightly different definitions). For instance, flattening is
introduced in [24] (where it is called unfolding); subsumption is used in many dif-
ferent contexts (e.g., [1,4]); (constructor) decomposition rules are used in differ-
ent narrowing calculi (see, e.g., [19]); finally, splitting is considered when proving
compositionality results (e.g., [3]) and in the partial evaluation of logic programs
[9].

In the following, we will use these graphical conventions when depicting the
steps of an extended narrowing tree:
4 We consider these edges implicit to keep the data structure a tree.



62 N. Nishida and G. Vidal

r ≈ f(x, y)
{x �→0,y �→y′}

	


{x �→s(x′),

y �→y′′} ��

{x �→s(x′),

y �→y′′′}


�
r ≈ y′

{r �→y′}
��

r ≈ f(x′, y′′)

{x′ �→x,

y′′ �→y}

��

r ≈ f(y′′′, x′)

{y′′′ �→x,x′ �→y}
	


true

Fig. 2. Finite narrowing tree for f(x, y)

– narrowing and constructor decomposition: (labeled) solid arrow (−→);
– subsumption: (labeled) dotted arrow ( �);
– flattening: double line (==);
– splitting: double arrow (=⇒).

By abuse of notation, we often use in the text e −→∗
σ e′ to denote a path in

the tree, no matter the type of rules applied from node e to node e′—except
subsumption—where σ is the composition of the substitutions in the labeled
edges along this path (if any, and id otherwise).

Let us now illustrate the construction of finite extended narrowing trees with
some examples (where no fixed strategy is considered). Note that rule variables
are always renamed with fresh names; this is mandatory to produce correct
equations in the next section.

Example 10. Consider the (non-confluent) TRS R = { f(0, y) → y, f(s(x), y) →
f(x, y), f(s(x), y) → f(y, x) }. Given the initial term f(x, y), the narrowing space
is clearly infinite because of the recursive calls to f. Here, a couple of subsumption
steps suffice to get a finite extended narrowing tree, as shown in Fig. 2.

Example 11. Consider the TRS R={ f(0, y) → y, f(s(x), y) → c(f(x, y), f(y, x))}
and the initial term f(x, y). In this case, subsumption does not suffice and con-
structor decomposition and splitting becomes necessary, as shown in Fig. 3. This
is a simple pattern that could be routinely applied to all constructor-rooted terms
in order to get a finite representation of the narrowing space.

Observe that the constructor decomposition step is not really needed and
could be mimicked by performing two flattening steps and, then, reducing the
last equation as follows:

r ≈ c(f(x′, y′′), f(y′′, x′))
=== r′ ≈ f(x′, y′′) & r ≈ c(r′, f(y′′, x′))
=== r′ ≈ f(x′, y′′) & r′′ ≈ f(y′′, x′) & r ≈ c(r′, r′′)
−→{r �→c(r′,r′′)} r′ ≈ f(x′, y′′) & r′′ ≈ f(y′′, x′) & true

However, we prefer to keep the constructor decomposition steps for simplicity.

Example 12. Finally, consider the TRS R = { 0 + y → y, s(x) + y → s(x + y),
0 ∗ y → 0, s(x) ∗ y → y+(x ∗ y) }. Given the initial term x ∗ y, both flattening
and splitting are necessary to produce a finite extended narrowing tree, as shown
in Fig. 4.
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r ≈ f(x, y)
{x �→0,y �→y′}

�
{x �→s(x′),y �→y′′}


�
r ≈ y′

{r �→y′}
��

r ≈ c(f(x′, y′′), f(y′′, x′))

{r �→c(r′,r′′)} ��
true r′ ≈ f(x′, y′′) & r′′ ≈ f(y′′, x′)

�� �
r′ ≈ f(x′, y′′)

{r′ �→r,

x′ �→x,

y′′ �→y}

��

r′′ ≈ f(y′′, x′)

{r′′ �→r,y′′ �→x,x′ �→y}��

Fig. 3. Finite narrowing tree for f(x, y)

r ≈ x ∗ y{x �→0,y �→y′}
��

{x �→s(x′),y �→y′′}

�

r ≈ 0
{r �→0} ��

r ≈ y′′ + (x′ ∗ y′′)

true r ≈ y′′ + r′ & r′ ≈ x′ ∗ y′′

�� �
r ≈ y′′ + r′{y′′ �→0,r′ �→r′′}

��
{y′′ �→s(y′′′),r′ �→r′′′}


�
r′ ≈ x′ ∗ y′′

{r′ �→r,x′ �→x,y′′ �→y}��

r ≈ r′′

{r �→r′′} ��

r ≈ s(y′′′ + r′′′)
{r �→s(r′′′′)}��

true r′′′′ ≈ y′′′ + r′′′{r′′′′ �→r,y′′′ �→y′,r′′′ �→r′}

��

Fig. 4. Finite narrowing tree for x∗y

In the following, we use the following notation. Given an extended narrowing
tree τ , we let root(τ) denote the root of τ . We also let τ ≡ (t →σ τ ′) denote the
fact that τ is rooted by term t and has a (possibly labeled) output edge to a
subtree τ ′. Moreover, we use the auxiliary function out(τ) that returns the output
edges from root(τ) (if any). E.g., let τ be the extended narrowing tree of Fig. 4;
here, we have out(τ) = {r ≈ x ∗ y →{x�→0,y �→y′} τ1, r ≈ x ∗ y →{x�→s(x′),y �→y′′}
τ2}, where τ1 and τ2 are the subtrees rooted by r ≈ 0 and r ≈ y′′ + (x′ ∗ y′′),
respectively. Finally, we let subtrees(τ) denote the set of subtrees of a tree τ that
are obtained by partitioning τ into those subtrees that are rooted by a term with
an incoming subsumption edge. E.g., for the tree τ of Fig. 4, subtrees(τ) returns
two subtrees, one rooted by r ≈ x ∗ y and another one rooted by r ≈ y′′ + r′.

The relevance of the notion of extended narrowing tree is that, thanks to the
use of the rules of flattening, constructor decomposition,5 and splitting, one can
always produce a tree with finitely many non-variant nodes. We do not provide
a formal proof of this claim, but it is an easy consequence of the fact that using
flattening—which involves replacing a subterm by a fresh variable—and splitting
one can keep the set of non-variant terms finite.
5 The rule of constructor decomposition is mainly introduced for simplicity, but could

be replaced by a sequence of flattening steps.
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Extended narrowing trees represent all possible computed answer substitu-
tions in the following sense:

Definition 13 (Success Set of an Extended Narrowing Tree). Let τ0 be
a extended narrowing tree for a term t. Then, the success set of a subtree τ for
τ0, SS(τ), is defined as follows:6

SS(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

{id} if τ ≡ true
{ } if τ ≡ fail (a failing derivation)
σ · SS(τ ′) if τ ≡ ( t

σ
� τ ′ )

SS(τ ′) if τ ≡ (e == τ ′)
SS(τ1) ⇑ · · · ⇑ SS(τn) if out(τ) = {e ⇒ τi | i = 1, . . . , n}
σ1 · SS(τ1) ∪ · · · ∪ σn · SS(τn) if out(τ) = {e →σ τi | i = 1, . . . , n}

The correctness of the extended narrowing trees is then stated as follows:

Theorem 14. Given a finite narrowing tree τ for a term t, SR(t) = SS(τ).

Observe that the four operations—narrowing, constructor decomposition, split-
ting and flattening—might be applicable to the same node. A strategy is needed
in order to decide which step should be applied and when. Some strategies
can produce very compact representations by applying constructor decompo-
sition/flattening and splitting as much as possible. However, in this case, we
also get less accurate results in general. Other strategies may try to avoid break-
ing down a term as long as possible. Here, one should be very careful to avoid
entering an infinite loop.

For instance, a simple strategy that always guarantees the construction of
a finite extended narrowing tree may proceed as follows. Basically, every time
a node e is narrowed at some position p with e|p rooted by a defined function
symbol: e i

�σ e[r]pσ′ with σ′ = σ |̀Var(e), we apply a flattening step:

e[r]pσ′ == x ≈ r & e[x]pσ′

followed by these splitting steps:

x ≈ r

x ≈ r & e[x]pσ′

���������
�������

�

����
����

���

����
����

�
e[x]p

σ̂′

By abuse of notation, for σ′ = {x1 �→ tn, . . . , xn �→ tn}, we use σ̂′ to denote the
equational term x1 ≈ t1 & · · · &xn ≈ tn. Roughly speaking, the construction of
the extended narrowing tree will be finite since i) the number of nodes of the
form x ≈ r, with r an rhs of the TRS, is finite modulo variable renaming; ii) the
new node e[x]p contains strictly less defined function symbols than e; and iii) σ̂′
only contains constructor symbols, ≈, and &.

More refined strategies involve the use of appropriate orders on terms so that
flattening and/or splitting steps are only applied when there is a risk of non-
termination. We refer the interested reader to [1,2], where terminating strategies
6 Observe that a failing derivation returns an empty set. Here, we assume that both
σ · { } = { } and { } ⇑ Θ = Θ ⇑ { } = { }.
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for narrowing-driven partial evaluation are introduced. Similar strategies could
be defined using the operations of Definition 9.

4.2 Success Set Equations

In this section, we introduce an equational notation for representing the success
set of a term, that we call its success set equations. Here, we consider the following
three operators:

– Composition (·). For simplicity, besides the standard composition of substitu-
tions, we also consider its extension to sets of substitutions as follows. Given
a set of substitutions Θ and a substitution σ, we let σ · Θ = {σ · θ | θ ∈ Θ}
and Θ · σ = {θ · σ | θ ∈ Θ}.

– Alternative (+). In our context, an expression like ss1 + ss2 denotes the
union of the success sets denoted by ss1 and ss2. Again, for simplicity, we
let a substitution denote a singleton set with this substitution.

– Parallel composition (⇑). This is the standard parallel composition operator
introduced in Definition 4.

As for the operator precedence, we assume that composition has a higher priority
than parallel composition, which has a higher priority than alternative.

Now, we introduce a technique to extract the success set equations of a term
from a given (finite) extended narrowing tree. Loosely speaking, substitutions
along derivations with narrowing steps are just composed; the success sets of
the different branches issuing from a term are put together using the alternative
operator; flattening and constructor decomposition steps are ignored; splitting
steps involve computing the parallel composition of the success sets of the dif-
ferent branches; finally, for subsumption steps, we compose the current set with
the substitution labeling the step and, then, with the success set of the previous
variant term.

Definition 15 (Success Set Equations). Let τ be a finite extended narrowing
tree for a term t. Let T = subtrees(τ). Then, we produce a success set equation
Γt = SF(τ ′) for each tree in τ ′ ∈ T with root(τ ′) = t, where the auxiliary
function SF is defined as follows:

SF(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

id if τ ≡ true
fail if τ ≡ fail (a failing derivation)
σ · Γt′ if τ ≡ ( t

σ
� τ ′ ), t′ = root(τ ′)

SF(τ ′) if τ ≡ (e == τ ′)
SF(τ1) ⇑ · · · ⇑ SF(τn) if out(τ) = {e ⇒ τi | i = 1, . . . , n}
σ1 · SF(τ1) + · · · + σn · SF(τn) if out(τ) = {e →σ τi | i = 1, . . . , n}

For clarity, when no confusion can arise, we often label function Γ with term t
rather than with the equation x ≈ t.
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Example 16. Given the extended narrowing tree of Fig. 2, we produce the fol-
lowing success set equation:

Γf(x,y) = {x �→ 0, y �→ y′, r �→ y′}
+ {x �→ s(x′), y �→ y′′} · ({x′ �→ x, y′′ �→ y} · Γf(x,y))
+ {x �→ s(x′), y �→ y′′′} · ({y′′′ �→ x, x′ �→ y} · Γf(x,y))

Informally speaking, the (infinite) solutions of this equation can be enumerated
iteratively as follows. One starts with Γ 0

f(x,y) = { }. Then, we compute the next
iteration i > 0 as follows:

Γ i
f(x,y) = {x �→ 0, y �→ y′, r �→ y′}

+ {x �→ s(x′), y �→ y′′} · ({x′ �→ x, y′′ �→ y} · Γ i−1
f(x,y))

+ {x �→ s(x′), y �→ y′′′} · ({y′′′ �→ x, x′ �→ y} · Γ i−1
f(x,y))

Therefore, we have the following infinite sequence:7

Γ 1
f(x,y) = {{x �→ 0, y �→ y′}}

Γ 2
f(x,y) = Γ 1

f(x,y) ∪ {{x �→ s(0), y �→ y′}, {x �→ s(y′), y �→ 0}}
Γ 3
f(x,y) = Γ 2

f(x,y) ∪ {{x �→ s(s(0)), y �→ y′}, {x �→ s(s(y′)), y �→ 0},
{x �→ s(y′), y �→ s(0)}, {x �→ s(0), y �→ s(y′)}}

. . .

In the following, we denote by sols(Γt) the (possibly infinite) set of solutions
of the success set equation Γt for some term t. Let us consider a set of success
set equations Γt1 = r1, . . . , Γtn = rn associated to the narrowing derivations
starting from term t1. A procedure to enumerate the substitutions in sols(Γt1)
can proceed as follows:

1. Initialization. Γ 0
t1 = · · · = Γ 0

tn = { }.
2. Iterative process. for all i > 0, we compute the following sets:

Γ i
t1 = r1[Γt �→ Γ i−1

t ] . . . Γ i
tn = rn[Γt �→ Γ i−1

t ]

where rj [Γt �→ Γ i−1
t ] denotes the expression that results from rj by replacing

every occurrence of Γt by Γ i−1
t , with j = 1, . . . , n and t ∈ {t1, . . . , tn}.

Then, we have sols(Γt1) =
⋃

i>0 Γ
i
t1 , where the Γ i

t1 are computed as above.
We do not formally prove the correctness of the above procedure for com-

puting sols(Γt), but it is rather straightforward.

Example 17. Given the extended narrowing tree shown in Fig. 3, we produce
the following success set equation:

Γf(x,y) = {x �→ 0, y �→ y′, r �→ y′}
+ {x �→ s(x′), y �→ y′′, r �→ c(r′, r′′)}·({r′ �→ r, x′ �→ x, y′′ �→ y} · Γf(x,y)

⇑{r′′ �→ r, y′′ �→ x, x′ �→ y}·Γf(x,y))

7 We restrict substitutions to Var(f(x, y)) for conciseness.
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Computing the success set is slightly more difficult now since it involves parallel
compositions. The sequence of success sets is as follows:

Γ 0
f(x,y) = { }

Γ 1
f(x,y) = {{x �→ 0, y �→ y′, r �→ y′}}

Γ 2
f(x,y) = Γ 1

f(x,y) ∪ {{x �→ s(x′), y �→ y′′, r �→ c(r′, r′′)}
·({r′ �→ y′, x′ �→ 0, y′′ �→ y′, x �→ 0, y �→ y′, r �→ y′}

⇑ {r′′ �→ y′, y′′ �→ 0, x′ �→ y′, x �→ 0, y �→ y′, r �→ y′})}
= Γ 1

f(x,y) ∪ {{x �→ s(x′), y �→ y′′, r �→ c(r′, r′′)}
·{r′ �→ 0, r′′ �→ 0, x′ �→ 0, y′′ �→ 0, x �→ 0, y �→ 0, r �→ 0}}

= Γ 1
f(x,y) ∪ {{x �→ s(0), y �→ 0, r �→ c(0, 0)}}

. . .

Example 18. Given the extended narrowing tree shown in Fig. 1, we produce
the following success set equation:

Γf(x) = {x �→0, r �→0} + {x �→ s(x′)} · ({r′ �→s(0), r �→r′}⇑{r′ �→r, x′ �→x} · Γf(x))

The sequence of success sets is as follows:

Γ 0
f(x) = { }

Γ 1
f(x) = {{x �→ 0, r �→ 0}}

Γ 2
f(x) = Γ 1

f(x) ∪ {{x �→ s(x′)} · ({r′ �→s(0), r �→r′}⇑{r′ �→0, x′ �→0, x �→0, r �→0})}
= Γ 1

f(x)

Thus, the success set equation denote the singleton set {{x �→ 0, r �→ 0}}.

Example 19. Given the extended narrowing tree shown in Fig. 4, we produce
the following success set equations:

Γx ∗ y = {x �→ 0, y �→ y′, r �→ 0}
+ {x �→ s(x′), y �→ y′′} · (Γy′′+r′ ⇑ {r′ �→ r, x′ �→ x, y′′ �→ y} · Γx ∗ y)

Γy′′+r′ = {y′′ �→ 0, r′ �→ r′′, r �→ r′′}
+ {y′′ �→ s(y′), r′ �→ r, r �→ s(r), r′′′′ �→ r, y′′′ �→ y′, r′′′ �→ r′} · Γy′′+r′

The success set is the obvious one for addition and multiplication.

The correctness of success set equations can be stated as follows:

Theorem 20. Let R be a constructor CD TRS and let t be a term. Let τ be
a finite extended narrowing tree for t in R rooted with x ≈ t, and let Γx≈t be
its associated success set equation. Then, we have SR(x ≈ t) = sols(Γx≈t) up to
variable renaming.

5 Related Work

There are basically two closely related lines of research. On the one hand, we
have a work by Antoy and Ariola [4] that aims at finding a finite representation
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of the (possibly infinite) narrowing space. In contrast to our approach, however,
they only consider subsumption. Therefore, there is no guarantee that the rep-
resentation of the narrowing space is going to be finite. They also propose a
finite representation inspired by regular expressions to denote a (possibly infi-
nite) enumeration of computed answers. This is somehow similar to our success
set equations; nevertheless, our equations are more complex since they may also
include parallel compositions.

On the other hand, there are a number of papers on the so called narrowing-
driven partial evaluation (see [1] and references herein) that also require the
construction of a finite representation of the narrowing space. In contrast to [4],
other operators like generalization (i.e., replacing some subterms by fresh vari-
ables) and splitting are used to ensure that the representation of the narrowing
space is finite. However, no single narrowing tree is constructed, but a sequence of
(possibly incomplete) narrowing trees, which are then used to extract the resid-
ual program (a sequence of resultants associated to each root-to-leaf narrowing
derivation). The correctness of the transformation is proved for some narrowing
strategies (under the closedness condition of the narrowing trees). However, no
general properties are proved for the different operators.

Our approach can be seen as a combination of the above lines of research. We
aim at constructing finite representations of the narrowing space, as in [4], but
we also allow the use of powerful operators like flattening and splitting, similarly
to the works on narrowing-driven partial evaluation.

6 Conclusion and Future Work

In this work, we have introduced a framework that provides the building blocks
that are required to produce a finite representation of the (possibly infinite)
narrowing space. For this purpose, we have considered three simple operations:
constructor decomposition, flattening and splitting, and have proved its correct-
ness. Then, we have introduced the notion of extended narrowing tree, where
the above operations can be applied to make the tree finite. Finally, we have
introduced a compact equational representation of the success set that follows
the structure of a finite extended narrowing tree.

Let us note that our approach could easily be transferred to other logic-based
programming languages like Prolog. For instance, the splitting operation is well-
known in this context and allows one to partition a query Q into a number of
queries Q1, . . . , Qn such that Q = Q1, . . . , Qn (see, e.g., [9] for a precise defini-
tion, where the reordering of atoms in a query is also allowed). As for flattening,
it can be seen as a simplified version of our notion since predicate symbols can-
not be nested. For instance, the flattening of a query p(X), q(f(Y ), Z) w.r.t. the
position of f(Y ) would be p(X),W = f(Y ), q(W,Z), where Z is a fresh vari-
able and “=” is the syntactic equality defined by the clause X = X ← . Thus,
it should not be difficult to adapt the notions of extended narrowing tree and
success set equations to logic programming.

Among the possible applications, one can consider the use of extended nar-
rowing trees and success set equations to better understand the program’s control
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r ≈ s(log(div(x, s(s(y))), s(s(y))))

{r �→s(r1)} ��
r1 ≈ log(div(x, s(s(y))), s(s(y)))

{x �→0}
��

{x �→s(x1)}��
r1 ≈ log(0, s(s(y)))

{r1 �→s(r2)}��

r1 ≈ log(div(s((minus(x1, s(y))), s(s(y)))), s(s(y)))

{x1 �→s(x2)}��
r2 ≈ log(0, s(s(y)))

{r2 �→r1}
��

τ ′

Fig. 5. Finite narrowing tree for s(log(div(x, s(s(y))), s(s(y))))

flow, to analyze weak termination [13], to detect subtrees that will never produce
a computed answer as in Example 1 (which could be useful, e.g., in the context
of the more specific transformation (MSV) recently introduced in [23]), and so
forth. For instance, let us consider the following TRS:

log(s(0), s(s(y))) → 0
log(x, s(s(y))) → s(log(div(x, s(s(y))), s(s(y))))

div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

which is obtained by applying the inverse transformation of [21]. Now, we aim at
producing a non-overlapping definition of function log. Unfortunately, by apply-
ing the original MSV transformation [23] to the body of the second rule, we
construct an incomplete narrowing tree for r ≈ s(log(div(x, s(s(y))), s(s(y))))
that still produces overlapping (partial) computed answers. In this context, we
can construct the finite extended narrowing tree shown in Fig. 5 instead.

In the extended narrowing tree, one can easily see that the leftmost subtree
rooted by r1 ≈ log(0, s(s(y))) cannot produce any computed answer since there
is no leaf. Therefore, it is still safe if the MSV transformation ignores the sub-
stitution {x �→ 0} of the leftmost subtree. Thus we know that the variable x of
the rule log(x, s(s(y))) → s(log(div(x, s(s(y))), s(s(y)))) needs to be bound only
to s(s(x2)), so that the following non-overlapping definition of log is obtained:8

log(s(0), s(s(y))) → 0
log(s(s(x2)), s(s(y))) → s(log(div(s(s(x2)), s(s(y))), s(s(y))))

This work opens many possibilities for future work. In particular, we would
like to design fully automatic strategies for producing finite extended narrowing
trees (e.g., following the methods used in the context of narrowing-driven partial
8 Actually, since the initial TRS is not completely-defined, a reflection rule for inner-

most narrowing is required, as discussed in Section 2. However, since the result would
be the same, we prefer to ignore this rule here and keep the example simpler.
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evaluation [1]). We find also interesting the definition of methods to automati-
cally analyze success set equations and infer useful properties that can be used
in other contexts (like the more specific transformation mentioned above, that
is currently being used for improving program inversion [20–22]).
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Abstract. Energy consumption analysis of embedded programs requires
the analysis of low-level program representations. This is challenging
because the gap between the high-level program structure and the low-
level energy models needs to be bridged. Here, we describe techniques for
recreating the structure of low-level programs and transforming these into
Horn clauses in order to make use of a generic resource analysis frame-
work (CiaoPP). Our analysis, which makes use of an energy model we
produce for the underlying hardware, characterises the energy consump-
tion of the program, and returns energy formulae parametrised by the size
of the input data. We have performed an initial experimental assessment
and obtained encouraging results when comparing the statically inferred
formulae to direct energy measurements from the hardware running a set
of benchmarks. Static energy estimation has applications in program opti-
misation and enables more energy-awareness in software development.

Keywords: Energy consumption analysis · Energy models · Resource
usage analysis · Static analysis

1 Introduction

Energy consumption and the environmental impact of computing technologies
are a major focus. Despite advances in power-efficient hardware, more energy
savings can be achieved by improving the way current software technologies
make use of such hardware. Many optimization techniques that can be used for
producing energy-efficient software need estimations of the energy consumption
of software segments prior to their execution, in order to make decisions about
the optimal way of executing them. These a priori estimations are also very
useful to software engineers to better understand the effect of their designs on the
c© Springer International Publishing Switzerland 2014
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energy consumption early on during the software development process, and make
more informed design decisions (e.g., using the appropriate data structures), even
when there are parts not developed yet.

In this paper we combine static analysis and low level energy modelling tech-
niques to implement a tool capable of estimating the energy consumption of
an embedded program (and its constituent parts, such as procedures and func-
tions) as a function on several parameters of the input data (e.g., sizes), and the
hardware platform where they are executed (e.g., clock frequency and voltage).
We show the feasibility of our proposal with a concrete case study: analysis of
ISA (Instruction Set Architecture) code compiled from XC [24]. XC is a high-
level C-based programming language that includes extensions for concurrency,
communication, input/output operations, and real-time behaviour. XC libraries
share a common API with standard C libraries and therefore C code can com-
mingle with XC code in a single application.

Since energy consumption analysis depends on the underlying hardware, the
analyser requires information expressing the effect of the execution of a software
segment (e.g., an assembly instruction) on the hardware. Such information is
represented using models. In our approach these models express information
using assertions. These are propagated during the static analysis process in order
to infer information for higher-level entities such as functions. For instance, using
assertions we abstract the operations in the language in terms of their effect on
the size of the runtime data and the energy exerted. Energy models at lower
levels (e.g., at the ISA level) are more precise than at higher levels (e.g., XC
source code), since the closer to the hardware, the easier it is to determine the
effect of the execution of the program on the hardware. For this reason, we
have produced models for the ISA level, which we use when analysing ISA code
generated by the XCC compiler.

Our approach leverages the CiaoPP tool [6], the preprocessor of the Ciao
programming environment [7]. CiaoPP includes a generic, parametric analy-
sis framework for resource usage that can be instantiated to infer bounds on
resources of interest (energy consumption in our case), for different languages [14].
In CiaoPP, a resource is a user-defined counter representing a (numerical) non-
functional global property, such as execution time, execution steps, number of
bits sent or received by an application over a socket, etc. The CiaoPP resource
analysis can infer upper and lower bounds on the usage made of such resources by
programs by working on an intermediate block-based representation, the Horn
clause (HC) IR. In this representation, each block is written as a Horn clause,
i.e., a head followed by a sequence of primitive operations or calls to other blocks.
Assertions describe the resources to be analyzed. We propose a transformation
of the ISA program into this HC IR (containing Horn clauses and assertions),
which allows us to analyse the transformed program with CiaoPP. The control
and data flow encoded through the procedural interpretation of these Horn-
clause programs, coupled with the resource-related information contained in the
assertions (such as the energy consumption models at the ISA level), allow the
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Fig. 1. Overview of the analysis framework for XC programs

int fact(int N) {

if (N <= 0) return 1;

return N * fact(N - 1);

}

Fig. 2. An XC source (factorial) function

resource analysis to infer static bounds on the energy consumption of the blocks
that are directly applicable to the original ISA programs.

Figure 1 shows the main steps of our approach for energy consumption anal-
ysis, which starts with an XC program (e.g., the fact function in Figure 2). The
ISA program corresponding to it is generated using the XC compiler tool XCC
(left hand side of Figure 3). The resulting ISA program is passed to a translator
which generates the associated Horn clauses (right hand side of Figure 3). Such
program, together with the information contained in the energy models at the
ISA level (represented using the mentioned assertion language), is passed to the
resource analysis which outputs the energy consumption for all procedures in
the HC IR program. In our example, the resource analysis infers an estimation
of the energy consumed by a call to fact as (26.0 N + 19.4) nano-Joules. This
is parametric with N , the input argument to fact.

In this work we have successfully bridged the gap between researchers closer
to the hardware area, needed to produce the low level energy models, and others
from software, with expertise in static analysis techniques and tools. In this
multidisciplinary research, we have faced some challenges and produced some
original contributions that we describe in this paper and summarise as follows:

1. Development of an energy model for a multi-threaded architecture (XMOS
XS1-L), that can be applied at instruction set simulation level or higher,
with specialisation for high-level, single-threaded benchmarks.

2. Design and implementation of a translation from ISA programs into a Horn-
clause representation (HC IR).

3. Instantiation of the CiaoPP general resource analysis framework to infer
energy consumption using the low-level energy consumption model.
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1 <fact >:

2 001: entsp 0x2

3 002: stw r0, sp[0x1]

4 003: ldw r1, sp[0x1]

5 004: ldc r0, 0x0

6 005: lss r0, r0 , r1

7 006: bf r0, <008>

11 007: bu <010>

12 010: ldw r0, sp[0x1]

13 011: sub r0, r0 , 0x1

14 012: bl <fact >

16 013: ldw r1, sp[0x1]

17 014: mul r0, r1 , r0

18 015: retsp 0x2

21 008: mkmsk r0, 0x1

22 009: retsp 0x2

1 fact(R0 ,R0_3):-

2 entsp (0x2),

3 stw(R0,Sp0x1),

4 ldw(R1,Sp0x1),

5 ldc(R0_1 ,b0x0),

6 lss(R0_2 ,bR0_1 ,R1),

7a bf(R0_2 ,0x8),

7b fact_aux(R0_2 ,Sp0x1 ,R0_3 ,

R1_1).

10 fact_aux(1,Sp0x1 ,R0_4 ,R1):-

11 bu(0x0A),

12 ldw(R0_1 ,Sp0x1),

13 sub(R0_2 ,R0_1 ,0x1),

14a bl(fact),

14b fact(R0_2 ,R0_3),

16 ldw(R1,Sp0x1),

17 mul(R0_4 ,R1,R0_3),

18 retsp (0x2).

20 fact_aux(0,Sp0x1 ,R0,R1):-

21 mkmsk(R0 ,0x1),

22 retsp (0x2).

Fig. 3. An ISA (factorial) program (left) and its Horn-clause representation (right)

4. Overall design and implementation of a fully automatic system that statically
estimates the energy consumption of functions and procedures written in a
high-level, C-based programming language, giving the results as functions
on input data sizes.

5. Experimental assessment of the developed energy usage static analyser.

Point 4 above may look simple at first sight, given that we have taken advan-
tage of a number of existing tools, mainly the CiaoPP general resource analyser.
However, in practice the implementation has required the development of a sig-
nificant number of new modules and functionalities, as well as interfaces between
these existing tools, all of which posed substantial design and implementation
challenges and problems that we have successfully solved.

In the rest of the paper, energy characterisation and modelling for our case
study architecture (XMOS XS1-L) is explained in Section 2. Then, Section 3
describes the translation from ISA programs into Horn clauses and Section 4
the instantiation of the CiaoPP general resource usage analysis framework. In
Section 5, we have performed an experimental assessment of our approach, show-
ing that the estimation of energy consumption is reasonably accurate. Section 6
comments on related work. Finally, Section 7 summarises our conclusions and
comments on ongoing and future work.
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2 Energy Characterization and Modelling

The assertion-based model uses power consumption data collected during hard-
ware measurement. We have developed an ISA-level model that provides software
energy consumption estimates based on Instruction Set Simulation (ISS) statis-
tics. The hardware, the measurement process, as well as the construction of the
ISS-driven model, are detailed in [10], with the key components relevant to this
paper explained in the rest of this section.

The practicality and accuracy of our approach to energy consumption analy-
sis relies on a good characterisation of energy consumption and generating good
energy consumption models. A trade-off needs to be found between the simplic-
ity of the models, which improves the efficiency of the analysis, and the accuracy
of the models, which improves the accuracy of the global analysis. Although we
analyse single-threaded code, the energy profiling must consider the hardware
multi-threading of the architecture, which has an energy impact even when only
a single thread is executed.

Further, the nature of the architecture requires specific approaches in order
to gather energy profiling data, but these same characteristics preclude cer-
tain energy effects from static analysis. For example, the effects of interleav-
ing instructions or re-use of operands from the previous instruction become less
relevant in a hardware multi-threaded pipeline, and impossible to determine stat-
ically. Although manifested in a specific way in this particular processor archi-
tecture, such traits also exist in other processors, such as super-scalar designs.
In this paper we describe an initial proposal that offers a good compromise
between the above issues, and also eliminates factors that are determined to be
insignificant.

2.1 Energy Profiling Framework and Strategy

An energy profiling framework, xmprofile, is used to generate sequences of
instructions under various constraints in order to profile the energy characteris-
tics of the hardware. This data is essential for the accurate application of models
at any analysis level. The hardware used is shown in Figure 4. A master proces-
sor issues test programs to and measures the power used by a slave processor,
the Device Under Test (DUT).

Currently, a subset of the ISA, including arithmetic operations, logic opera-
tions, and condition tests, has been characterised. Other instructions are at the
moment approximated using a single average value, based on typical observed
behaviour.

2.2 ISA-Level Model

An ISA-level model, xmmodel, gives an energy estimate for a program based on
ISS output. Data from the measurement framework feeds this model.

Our model is based on that devised by Tiwari [22]. Tiwari’s approach is shown
in Equation (1). The energy of an ISA program, Ep, is characterised as the sum
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Fig. 4. Overview of test harness hardware and software structure, with a slave processor
executing test kernels and a master processor collecting power samples

of base energy cost, Bi, for all ISA instructions, i, multiplied by the number of
executions of each instruction, Ni. An inter-instruction overhead energy, Oi,j ,
is then accounted for by enumerating for all instruction combinations i, j and
their frequency, Ni,j . Finally, additional contributions to program energy can be
accounted for by k external effects, Ek, which may include externally modelled
behaviours such as cache memory.

Ep =
∑

i∈ISA (Bi × Ni) +
∑

i,j∈ISA (Oi,j × Ni,j) +
∑

k∈ext Ek (1)

The XS1 architecture is hardware multi-threaded. This necessitates a fun-
damental revision of the model equation. In addition, for performance reasons,
the ISS collects instruction statistics rather than a full trace. This reduces the
execution time by an order of magnitude, such that it is approximately 100 times
slower than the hardware when simulation is run on a modern computer.

Equation (2) describes the energy of a program, Ep, using a similar method
to Equation (1), but with several key differences. Time is an explicit component,
multiplied by power terms in order to calculate energy. This separation enables
future exploration of idle periods, external event timing, and variable operat-
ing frequencies. Inter-instruction overhead is represented as a single component,
rather than considering it for all possible pairs of instructions, on account of a
statistics-based approach rather than cycle-by-cycle instruction tracing. Finally,
the level of concurrency must be accounted for, something that was not neces-
sary for the architecture targeted by Equation (1). The concurrency level is the
number of threads that are active at a given time. In the case of the XS1-L,
the concurrency level represents how full the pipeline is and therefore how much
activity is generated within it as each stage switches between instructions from
the active threads.

Ep = PbaseNidleTclk +
∑Nt

t=1

∑
i∈ISA ((MtPiO + Pbase) Ni,tTclk) (2)

The base power, Pbase, is present in both active and idle periods. The number
of idle periods, Nidle, is counted and multiplied by the clock period, Tclk, to
account for the energy consumed when no threads are active. For each number
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of concurrent threads, t, (based on the proportion of time each thread is active),
and for each instruction, i, in the ISA, the instruction power, Pi, is multiplied
by a constant inter-instruction power overhead, O, and a concurrency cost for
the level of concurrency at which the processor is operating, Mt. These are all
multiplied by the number of times this instruction occurs at this concurrency
level, Ni,t, and the clock period. Combined with the idle energy, this gives a
total energy estimate for the program run.

In the case where a single thread is running, with no idle periods, then the
above can be simplified to Equation (3). The result is very similar to the single-
threaded Tiwari equation, but with only a single, generic inter-instruction power
overhead component, O, and with no external “k” components as the memory
of the XS1-L is single-cycle with no cache, with no other effects that need to
be considered at this point. There is only ever one active thread, so we use the
concurrency cost for one thread, M1. Again, in Equation (3), time is an explicit
component. The overhead, O, is a constant because the inter-instruction effect
cannot be known statically in the XS1 architecture, and during profiling the
variation in inter-instruction effect was shown to be an order of magnitude less
than the instruction cost and would average out over program runs.

Ep =
∑

i∈ISA ((M1PiO + Pbase) × (NiTclk)) (3)

Our ISS-based model, using the same energy data as the static analysis,
will be used as an additional comparison point between actual hardware energy
measurements and the static analysis results.

3 Transforming ISA Programs into Horn Clauses

In this section we describe the transformation from ISA programs into Horn
clauses (HC IR) mentioned in Section 1, which is used for analysis. Such repre-
sentation consists of a sequence of blocks (as in the right hand side of Figure 3).
Each block is represented as a Horn clause:

< block id > (< params >) :− S1, . . . , Sn.

which has an entry point, that we call the head of the block (to the left of the
:− symbol), including a number of parameters < params >, and a sequence

of steps (the body, to the right of the :− symbol), each of which is either, (the
representation of) an ISA instruction, or a call to another (or the same) block.
The analyser deals with the HC IR always in the same way, independently of
its origin. The transformation ensures that the program information relevant to
resource usage is preserved, so that the energy consumption functions of the HC
IR programs inferred by the resource analysis are applicable to the original ISA
programs.

ISA programs are expressed using the XS1 instruction set [13]. The transfor-
mation framework currently works on a subset of this instruction set. The ISA
program is parsed and a control flow analysis is carried out, yielding an inter-
procedural control flow graph (CFG). This process starts by identifying control



Energy Consumption Analysis of Programs 79

transfer instructions such as branch or call instructions. Basic blocks are then
constructed, which are annotated with input/output arguments and transformed
into Static Single Assignment (SSA) form. Finally, the target HC IR (i.e., Horn
clauses) is emitted.

A basic block over a CFG is a maximal sequence of distinct instructions, S1

through Sn, such that all instructions Sk, 1 < k < n have exactly one in-edge
and one out-edge (excluding call-return edges), S1 has one out-edge, and Sn has
one in-edge. A basic block therefore has exactly one entry point at S1 and one
exit point at Sn. All call instructions are assumed to eventually return. Using the
basic block definition a block control flow graph is constructed by the analyser,
where each node represents a block. Edges between the blocks are derived from
calls/jumps between blocks. This process involves iterating through the CFG
of the ISA program and marking block boundaries, which are instructions that
either begin or end a basic block.

Inferring Block Input/Output Parameters. In order to treat each block as
a Horn clause, the block’s input and output arguments need to be inferred. For
the entry block, the input and output arguments are derived from the original
function’s signature. We define the functions paramsin and paramsout, which
infer input and output parameters of a block respectively. These perform a
backwards analysis of the program, and are recomputed until a least fixpoint
is reached on these functions.

paramsout(b) = kill(b) ∪ ⋃
b′∈next(b) paramsout(b′)

paramsin(b) = gen(b) ∪ ⋃
b′∈next(b) paramsin(b′)

where next(b) denotes the set of immediate target blocks that can be reached
from block b with a call or jump, while gen(k) and kill(k) are the read and
written variables in a block respectively, which we define as:

kill(b) =
n⋃

k=1

def (k), gen(b) =
n⋃

k=1

{v | v ∈ ref (k) ∧ ∀(j < k).v /∈ def (j)}

and def (k) and ref (k) denote the variables written or referred to at a node in
the block respectively.

Our approach here is closely related to that of the live variable analysis
(LVA) [18] used in compilers, and in dead code elimination in particular. A
variable is live at a program point if it may get referenced later in the program
(which is decided by considering the whole CFG of the program). In LVA, for
each program point, a set of live variables is computed using functions similar to
our kill and gen functions with data flow equations. In our approach however,
instead of computing liveness information for each program point, we compute a
least fixpoint of our paramsout and paramsin functions over the program’s block
control flow graph. This is an efficient solution that safely over-approximates
the set of input/output arguments to each block, so that the extra arguments
inferred for block heads due to such over-approximation do not affect the energy
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consumption estimations, since they are not used in the analysis of procedures
corresponding to the original XC code.

Resolving Branching to Multiple Blocks. In the XS1 instruction set, con-
ditional branch instructions (e.g., bt, bf) jump to one of the two target blocks
based on the value of the branching variable. For example, in Figure 3, at line 7
the bf instruction (branch if fail) will jump to address 008 if r0 = 0, otherwise
to address 007. In the HC IR this branch needs to be a call to one of the two
blocks.

We use a similar approach to the one described in [14] to resolve branches to
multiple blocks. The multiple target blocks of a jump instruction are assigned
the same head, which essentially are clauses of the same HC IR predicate. This
is achieved by merging the heads of the target clauses so that each clause has the
same head. The algorithm is trivial, since we have already inferred the input/out-
put parameters to each block’s head. The input/output parameters to the new
head of the clauses are the union of the input/output parameters of all the clauses
along with the branching variable. This enables preservation of the branching
semantics of the original ISA program in the HC IR form.

For example in Figure 3, the bf instruction at line 7 of the ISA program is
changed to a dummy literal at line 7a in the HC IR, plus a predicate call to
fact aux on line 7b. The predicate fact aux has two clauses, each representing
one of the target blocks of the bf instruction. The dummy literal for the bf
instruction is created so that the resource usage analysis can take it into account
when inferring energy usage functions.

Static Single Assignment form (SSA). The last step is to convert the block
representation into static single assignment (SSA) form, where each variable is
assigned exactly once and multiple assignments to the same variable create new
versions of that variable.

In compilers, the SSA form is generated at the function level (e.g., at LLVM
[11] level) where a function might consist of multiple basic blocks. However, we
follow the approach of generating the SSA form at the block level, and therefore
we do not need to generate φ nodes. A φ node is an instruction used to select a
version of the variable depending on the predecessor of the current block. Since
each block is already annotated with input/output arguments, any predecessor
block will pass the appropriate values as input parameters when making a call
to the target block.

In Figure 3, the HC IR (right hand side) is already in SSA form, where each
variable is defined exactly once and stack references are transformed to local
variables. Each instruction is transformed into a HC IR literal with input/output
variables.

Analysis on low level (ISA) representations, in general, suffers from the prob-
lem of extracting a precise control flow graph in the presence of indirect jumps
and calls. The current implementation of our transformation is restricted to direct
jumps and calls. We plan to integrate other techniques into the transformation
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tool to resolve such problems including recognizing code patterns used by compil-
ers and performing static program analysis (see [26] and its references).

4 General Analysis Framework

In this section we introduce the CiaoPP general resource usage analysis frame-
work and discuss how to instantiate it for the analysis of the HC IR programs
resulting from the translation of ISA programs.

CiaoPP includes a global static analyser which is parametric with respect to
resources and type of approximation (lower and upper bounds) [17]. The user
can define the parameters of the analysis for a particular resource by means of
assertions that associate basic cost functions with elementary operations of the
base language and procedures in libraries, thus expressing how they affect the
usage of a particular resource. The global static analysis can then infer bounds
on the resource usage of all the procedures in the program, as functions of input
data sizes.

In the rest of the section we use a running example to illustrate the main
concepts and steps of the analysis framework. In particular, and for simplicity,
assume that we are interested in estimating upper bounds on the energy con-
sumed by the HC IR program in Figure 3 (right hand side) generated from its
XC code in Figure 2.

4.1 Instantiating the General Framework

Defining Resources. We start by defining the identifier (“counter”) associated
to the energy consumption resource, through a declaration:
:- resource energy.

Expressing the Energy Model. In CiaoPP, the resource usage of primitive
operations can be provided using “trust” assertions (see [7] and its references for
a description of the assertion language). For example, we can write assertions for
each predicate that represents an ISA instruction; these constitute the energy
models. The following assertions (for the add and sub instructions) are part
of the simple energy model that we used in the static analysis, which assigns
a constant energy consumption to these ISA instructions (values 1215439 and
1210759 respectively):

:- trust pred add(X,Y,Z) + resource(avg , energy , 1215439).

:- trust pred sub(X,Y,Z) + resource(avg , energy , 1210759).

Note that the first argument (avg) of the resource property (in the global
computational properties field “+” of the assertions) expresses that the given
energy consumption for the ISA instructions is an average value. This model
is obtained using the measurement process described in Section 2, based on
Equation (3), so that the energy cost for an ISA instruction i is ci = (M1 Pi O+
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Pbase) Tclk, expressed in the third argument of the resource property in femto-
Joules (fJ, 10−15 Joules).

Assertions are also used to express other information that is instrumental in
the resource usage analysis. For example, the assertion:

:- trust pred sub(X,Y,Z) : (var(X), int(Y), int(Z))

=> (int(X), int(Y), int(Z), size(ub ,X,int(Y)-int(Z)),

size(ub,Y,int(Y)), size(ub,Z,int(Z)))

+ (metric(X,int), metric(Y,int), metric(Z,int)).

indicates that if the sub(X, Y, Z) predicate (representing the “subtraction”
ISA instruction) is called with X and Y bound to integer numbers and Z an
unbound variable (precondition field “:”), after the successful completion of the
call (postcondition field “=>”), X is an integer number whose size is the size of
Y minus the size of Z. It also expresses that the size metric used for the three
arguments is “int”, the actual value of the integer numbers.

4.2 Performing the Analysis

Once the parameters of the general resource analysis framework have been defined,
and assertions for primitives (representing the energy models) and library calls
have been provided, the CiaoPP global static analysis can infer the resource usage
of all the procedures/blocks in the program (as functions of input data sizes). A
full description of how this is done can be found in [17].

Calling Mode Information. The resource analysis needs information referred
to each argument in each predicate in the block representation (HC IR) that
expresses whether it acts as an input or an output argument (its “mode”). In
our approach no mode analysis is performed in order to obtain such information.
The modes of the main blocks are extracted from the XC source code that the
HC IR is originated from. This is possible because mode information is statically
known at the XC language level and is propagated to the HC IR using (trust)
assertions. There are also new intermediate predicates generated by the trans-
formation from ISA programs into HC IR (described in Section 3), originated
from conditional branching, which cannot be directly related to the XC source
code. However, for such predicates information from the transformation phase,
where the input/output arguments are determined for each predicate, is used,
so that no mode analysis needs to be performed by CiaoPP.

Size Measure Analysis. CiaoPP uses type information to decide which metric
to use to infer and express data sizes, from a set of predefined metrics (see [17]
for details). As already said, our resource analysis is performed on a block-
based representation (HC IR) of the ISA code generated by the XC compiler.
Although XC is a typed language, most of the type information is lost in the
ISA code generated by the compiler. There are a number of static and dynamic
techniques developed by the reverse engineering community to reconstruct type-
s/shape information from binaries (see [12] and its references). In our approach,
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we can recover and transfer types from the ISA code into some blocks (predi-
cates) in the HC IR that are directly related to the ISA code, so that no type
analysis is performed in those cases. However, we still need to perform some
propagation of such types to any new intermediate blocks created by the trans-
formation from ISA programs into Horn clauses. For example, our approach can
determine that in the HC IR program in Figure 3 (right hand side) fact will be
called with R0 bound to an integer and R0 3 a free variable, and will succeed
with R0 3 bound to an integer. Also, fact aux will be called with the first two
arguments bound to integers, and the rest free, and, upon success, all of them
will be bound to integers. Given that information, the chosen metric for all the
arguments will be int, i.e., the integer value of the argument.

Size Analysis. It determines the relative sizes of variable bindings at different
program points. For each clause, size relations are propagated to express each
output data size as a function of input data sizes. For recursive functions this
is done symbolically, creating a set of recurrence relations that will be solved to
get a closed form function.

For our running example, the recurrence relations set up for the size of the
output argument R0 3 of fact as a function of the size of the input argument
R0 (denoted factR0 3(R0)) as well as the corresponding one for fact aux are:

factR0 3(R0) = fact auxR0 4(0 ≤ R0, R0)

fact auxR0 4(B,R0) =
{

R0 ∗ factR0 3(R0 − 1) if B is true (i.e., 0 ≤ R0)
1 if B is false (i.e., 0 > R0)

These inferred recurrence relations/equations are then fed into a computer
algebra system (e.g., CiaoPP’s internal solver or an external solver such as Math-
ematica, used for the results presented in this paper) that gives the following
closed form function for it: factR0 3(R0) = R0!

Resource Usage Analysis. It uses the size information inferred by the size
analysis to set up recurrence equations representing the resource usage of pred-
icates (blocks), and computes bounds to their solutions. Remember that ci rep-
resents the energy cost of each instruction, taken from the energy model. Let
be denote the energy consumption function for a predicate (block) b. Then, the
inferred equations for fact are:

facte(R0) = fact aux e(0 ≤ R0, R0) + centsp + cstw + cldw + cldc + clss + cbf

fact aux e(B,R0) =

⎧
⎨

⎩

facte(R0 − 1) + cbu + 2 cldw + csub +
+ cbl + cmul + cretsp if B is true

cmkmsk + cretsp if B is false

If we assume (for simplicity of exposition) that each instruction has unitary
cost, i.e., ci = 1 for all i, we obtain (using the mentioned computer algebra
system) the energy consumed by fact as a function of its input data size (R0):
facte(R0) = 13 R0 + 8.
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Table 1. Description of benchmark functions used in experiments and their corre-
sponding energy functions

Function name Description Energy function

fact(N) Calculates N ! 26.0 N + 19.4

fibonacci(N) Nth Fibonacci no. 30.1 + 35.6 φN + 11.0 (1 − φ)N

sqr(N) Computes N2 103.0 N2 + 205.8 N + 188.32

poweroftwo(N) Calculates 2N 62.4 · 2N − 312.3

power(base,exp) Calculates baseexp 6.3 (log2 exp + 1) + 6.5

Note that our approach based on setting up recurrence equations and sol-
ving them using a computer algebra system allows inferring different types of
(resource usage) functions, such as polynomial, factorial, exponential, logarith-
mic, and summatory.

Note also that using average values in the model implies that the energy
function for the whole program inferred by the upper-bound resource analysis
is an approximation of the actual upper bound that can possibly be below it.
To ensure that the analysis infers a strict upper bound, we would need to use
strict upper bounds as well in the energy models. However, with the current
models such bounds would be very conservative, causing a loss in accuracy that
would make the analysis not useful in practice. Thus, the current approach is a
practical compromise.

5 Benchmarks, Results and Evaluation

The aim of the experimental evaluation is to perform a first comparison of actual
hardware energy measurements, in terms of accuracy, with the values obtained
from both the low-level Instruction Set Simulation (ISS) model and the Static
Resource Analysis (SRA) implemented within the CiaoPP framework, to obtain
an early estimation of the feasibility of the approach. To this end, we describe
a selection of currently analysable benchmarks, the method by which data was
collected, and an evaluation of the analysis framework accuracy vs. the low-level
ISS model and hardware measurements.

Benchmarks. For this type of evaluation we use as benchmarks mainly small
mathematical functions. The structure of these programs is either iterative or
recursive, with their cost depending on the function argument. For such programs
state of the art solvers can easily provide the cost functions, by solving the
system of recurrence relations provided by the SRA framework. Table 1 shows
the benchmarks used in this comparison, their execution behaviour in relation
to each function’s parameters, and the cost function inferred.
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Table 2. Actual and estimated energy consumption for the fact(N) function over a
range of N

SRA cost
N

HW measured Model energy (nJ) Error vs. HW
function(nJ) energy (nJ) ISS SRA ISS SRA

1 53.1 62.8 45.3 1.18 0.85
2 78.0 83.8 71.3 1.07 0.91
4 127.7 125.7 123.1 0.98 0.96

26.0 N + 19.4 8 227.1 209.6 226.8 0.92 1.00
16 426.0 377.4 434.2 0.89 1.02
32 823.8 713.4 849.0 0.87 1.03
64 1690.5 1387.0 1678.4 0.82 0.99

Experimental Method. Hardware energy readings were obtained by repeat-
edly executing a benchmark function over a 0.5 second period, T , collecting a
set of power samples, P , whilst counting the number of executions, Nfn. From
this, the energy of a single function call, Efn = mean(P )×T

Nfn
is calculated. This

was performed using a similar method to the collection of energy model data
described in Section 2, but was performed on separate hardware so as to de-
couple modelling from testing.

ISS modelling involved simulating the same function a smaller number of
times than on the hardware in order to keep simulation time adequately low.
The instruction statistics were then processed in order to produce an energy
figure, and then that figure divided by Nfn was used during ISS in order to
extract the energy of a single call. The ISS modelling framework currently has
a less efficient test loop than the hardware, potentially reducing accuracy for
very short function calls. Similarly, if too few function calls are made during the
simulation due to a long-executing function, overrun in the test time may skew
low-level energy figures.

Static resource usage analysis was performed by evaluating the produced cost
function for a given benchmark with respect to the input arguments, immediately
providing the energy cost of a single function call.

Results. Table 2 provides an example of test data for the fact (factorial) func-
tion. The hardware (HW), low-level Instruction Set Simulation model (ISS),
and Static Resource Analysis (SRA) model energy figures are compared. The
relative errors of ISS and SRA are compared with respect to the HW energy
and normalised as such. The cost function provided for this particular example
demonstrates the relationship between the input parameter, N , and the SRA
estimate of such a call. This, together with data for a number of further bench-
marks are presented in graph form in Figure 5.

In Figure 5, hardware measured energy is compared directly to ISS and SRA
energy predictions for the set of four benchmarks. The relative errors are also
plotted. In all cases, the ISS model is seen to improve in accuracy as the input
parameter N increases, in line with the expected inaccuracies arising from inef-
ficiencies in the modelling loop used in simulation, as described in the previous
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Fig. 5. Hardware energy, estimations and relative errors for (starting top-left, moving
clock-wise) fact, fibonacci, poweroftwo and power

subsection. In the case of the poweroftwo function, time limitations prevent the
ISS model from approximating the function above N = 13, approaching which
the error begins to increase markedly. The power function behaves in a similar
way and demonstrates the relationship between multiple input arguments.

The CiaoPP SRA model does not suffer the same deficiencies, although it
does incur a greater underestimation of energy for small values of N . The HW
measurements unavoidably contain some loop code beyond the target function
being examined and small N values will increase the effects of this in the mea-
surement. ISS in fact models this inefficiency directly, whereas SRA does not,
hence the roughly symmetrical relative errors for the two models, particularly
in the fact and fibonacci cases.

Both approaches are reliant on the same underlying instruction energy fig-
ures. Given that some instructions are not directly profiled and, instead, given
an average value, accuracy is reduced when the distribution of instructions in a
given program is such that the number of profiled instructions is low.

Overall, these results demonstrate bothmodels’ capabilities to estimate energy,
with encouraging accuracy that can be improved upon. Further, the SRA approach
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is less restrictive, particularly in situations where simulation time might be pro-
hibitively long.

6 Related Work

Static cost analysis techniques based on setting up and solving recurrence equa-
tions date back to Wegbreit’s seminal paper [25], and have been developed
significantly in subsequent work [1–3,16,17,19,21,23]. This approach was first
applied to energy consumption in [15], which inferred statically upper-bounds
on the energy consumption of Java programs as functions of input data sizes. As
herein, this work used the generic framework of [6,17], specializing it for Java
bytecode [14,16] by translating the Jimple (a typed three-address code) repre-
sentation of Java bytecode into the Horn clause-based IR of the analyzer [14].
However, we employ transformations at lower level (XS1-ISA), irrespective of
source language in general, where much of the program structure and typing
information is trimmed away. Our transformation employs analysis techniques
to reverse engineer ISA programs and reconstruct the control flow graph so that
the equivalent HC IR safely approximates the semantics of the original ISA pro-
gram. In addition, [15] did not compare the results with actual, measured energy
consumptions and used a comparatively simple energy model.

Other approaches to cost analysis, such as, e.g., those based on the potential
method [8], are limited to polynomial bounds, and do not allow inferring non-
polynomial energy functions, as in the recurrence equation method. A number
of static analyses are aimed at inferring worst case execution time (WCET, see,
e.g., [4] and its references) and related techniques have been applied in [9] to
derive a worst-case energy analysis. However, WCET methods typically do not
infer cost functions on input data sizes but rather absolute maximum values,
and they generally require manual annotation of loops with an upper bound on
the number of iterations.

Other transformation-based approaches have been proposed in order to anal-
yse low level microprocessor code [5] and Java source and bytecode [1] (outside
the context of energy analysis).

Instruction Set Simulation can be used to estimate the energy of a program run-
ning on a suitably profiled hardware platform. Simple models for single-threaded
architectures have been demonstrated [22]. These have then been expanded upon,
leading to models capable of modelling more complex hardware such as that used
in this paper, which comprises a multi-threaded architecture [10].

7 Conclusions and Future Work

In this paper we introduce an approach for estimating the energy consumption of
programs compiled for the XS1 architecture, based on a Horn clause transforma-
tion and the use of ISA level models that we have produced. We have shown the
feasibility of the approach with a prototype implementation within the CiaoPP



88 U. Liqat et al.

system, which has been successful in statically finding a good approximation of
the energy consumed by a set of selected programs in our experiments.

The XS1 architecture is inherently multi-threaded, and the simulation-based
model is able to provide energy estimates for this. Statically analysing multi-
ple concurrent threads adds a significant new dimension of complexity to the
modelling exercise. This is a goal of further work in order to provide meaningful
analysis for contemporary multi-threaded programs running on this architecture.

We also plan to produce and deal with energy models that take into account
the switching cost among pairs of ISA instructions (i.e., the energy consumed by
bit flipping), since our analysis framework allows it. The improvement in accu-
racy from this approach can vary between architectures, for example research
such as [20], shows that a simple model can be sufficient in some cases, due to bit
flipping effects averaging out over time. Thus, the impact in the context of any
target architectures must therefore be considered in this future work, in order
to establish whether the increased complexity of analysis delivers a worthwhile
gain in accuracy.

We also intend to improve upon the energy measurements of commonly
used instructions, which involves more complex techniques such as linear regres-
sion. This technique can also be used to construct energy models of interme-
diate compiler representations such as LLVM IR [11], which would enable us
to apply our analysis techniques to more structured program representations.
Another method for analysing LLVM IR would involve mapping low-level pro-
gram instruction segments to LLVM IR segments and reusing the ISA-level
energy models.

Acknowledgments. The research leading to these results has received funding from
the European Union 7th Framework Programme under grant agreement 318337, ENTRA
- Whole-Systems Energy Transparency, Spanish MINECO TIN’12-39391 StrongSoft and
TIN’08-05624DOVES projects, and Madrid TIC-1465PROMETIDOS-CM project. We
also thank John Gallagher for useful and fruitful discussions and feedback in general, and
in particular for his help on the implementation of a translation for removing mutual
recursions in Horn clause programs, which is performed prior to setting up recurrence
equations.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

2. Debray, S.K., Lin, N.-W., Hermenegildo, M.: Task Granularity Analysis in Logic
Programs. In: Proc. of the 1990 ACM Conf. on Programming Language Design
and Implementation, pp. 174–188. ACM Press (June 1990)
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Abstract. Reduction semantics is a popular format for small-step oper-
ational semantics of deterministic programming languages with compu-
tational effects. Each reduction semantics gives rise to a reduction-based
normalization function where the reduction sequence is enumerated. Refo-
cusing is a practical way to transform a reduction-based normalization
function into a reduction-free one where the reduction sequence is not enu-
merated. This reduction-free normalization function takes the form of an
abstract machine that navigates from one redex site to the next without
systematically detouring via the root of the term to enumerate the reduc-
tion sequence, in contrast to the reduction-based normalization function.

We have discovered that refocusing does not apply as readily for reduc-
tion semantics that use an outermost reduction strategy and have over-
lapping rules where a contractum can be a proper subpart of a redex.
In this article, we consider such an outermost reduction semantics with
backward-overlapping rules, and we investigate how to apply refocusing
to still obtain a reduction-free normalization function in the form of an
abstract machine.

1 Introduction

A Structural Operational Semantics [27] is a small-step semantics where reduction
steps are specified with a relation. For a deterministic programming language, this
relation is a function, and evaluation is defined as iterating this one-step reduction
function until a normal form is found, if there is one. This way of evaluating a term
is said to be “reduction-based” because it enumerates each reduct in the reduction
sequence, reduction step by reduction step. A reduction step from a term ti to
the reduct ti+1 is carried out by locating a redex ri in ti, contracting ri into a
contractum ci, and then constructing ti+1 as an instance of ti where ci replaces
ri. In a Structural Operational Semantics, the context of every redex is represented
logically as a proof tree.

A Reduction Semantics [13] is a small-step semantics where the context of
every redex is represented syntactically as a term with a hole. To reduce the term
ti to the reduct ti+1, ti is decomposed into a redex ri and a reduction context
Ci[ ], ri is contracted into a contractum ci, and Ci[ ] is recomposed with ci to
form ti+1. Graphically:

ti = Ci[ri] → Ci[ci] = ti+1

c© Springer International Publishing Switzerland 2014
G. Gupta and R. Peña (Eds.): LOPSTR 2013, LNCS 8901, pp. 91–108, 2014.
DOI: 10.1007/978-3-319-14125-1 6
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A reduction step is therefore carried out by rewriting a redex into a contractum
according to the reduction rules, with a rewriting strategy that matches the
reduction order and is reflected in the structure of the reduction context. If
the reduction strategy is deterministic, it can be implemented with a function.
Applying this decomposition function to a term which is not in normal form
gives a reduction context and a potential redex.

Reduction is stuck for terms that are in normal form (i.e., where no potential
redex occurs according to the reduction strategy), or if a potential redex is found
which is not an actual one (e.g., if an operand has a type that the semantics
deems incorrect).

For a deterministic programming language, the reduction strategy is deter-
ministic, and so it yields a unique next potential redex to be contracted, if there
is one. Furthermore, for any actual redex, only one reduction rule can apply.
Therefore, there are no critical pairs and rewriting is confluent.

The format of reduction semantics lends itself well to ensure properties such
as type safety [32], thanks to the subject reduction property from type theory.
It also makes it possible to account for control operators and first-class con-
tinuations by making the reduction context part of the reduction rules [3,13].
Today reduction semantics are in common use in the area of programming lan-
guages [14,25].

1.1 Reduction-Based vs. Reduction-Free Evaluation

Evaluating a term is carried out by enumerating its reduction sequence, reduction
step after reduction step:

. . . →
ti

︷ ︸︸ ︷
Ci−1[ci−1] = Ci[ri] →

ti+1
︷ ︸︸ ︷
Ci[ci] = Ci+1[ri+1] →

ti+2
︷ ︸︸ ︷
Ci+1[ci+1] = Ci+2[ri+2] → . . .

This reduction-based enumeration requires all of the successive reducts to be
constructed, which is inefficient. So in practice, alternative, reduction-free eval-
uation functions are sought, often in the form of an abstract machine, and many
such abstract machines are described in the literature.

Over the last decade, the first author and his students have been putting
forward a methodology for systematically constructing such abstract machines
[4,5,9]: instead of recomposing the reduction context with the contractum to
obtain the next reduct in the reduction sequence and then decomposing this
reduct into the next potential redex and its reduction context, we simply continue
the decomposition of the contractum in its reduction context, as depicted with
a squiggly arrow:

. . . → Ci−1[ci−1] � Ci[ri] → Ci[ci] � Ci+1[ri+1] → Ci+1[ci+1] � Ci+2[ri+2] → . . .

This shortcut works for deterministic reduction strategies where after recom-
position, decomposition always comes back to the contractum and its reduc-
tion context before continuing [9]. In particular, it always works for innermost
reduction, and has given rise to a ‘syntactic correspondence’ between reduction
semantics and abstract machines [2,3].
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This syntactic correspondence has proved successful to reconstruct many
pre-existing abstract machines as well as to construct new ones [1,6,16,29], even
in the presence of control operators [3,7]. For a class of examples, it applies
to all the reduction semantics of Felleisen et al.’s latest textbook [14]. More
generally, it concretizes Plotkin’s connection between calculi and programming
languages [26] in that it mechanizes the connection between reduction order (in
the small-step world) and evaluation order (in the big-step world), and between
not getting stuck (in the small-step world) and not going wrong (in the big-step
world).

That said, we have discovered that for reduction semantics that use an out-
ermost strategy and have backward-overlapping rules [11,17,18], refocusing does
not apply as readily: indeed after recomposition, decomposition does not always
come back to the contractum and its reduction context – it might stop before,
having found a potential redex that was in part constructed by the previous con-
traction. The goal of our work here is to study reduction semantics that use an
outermost strategy (“outermost reduction semantics”) and that have backward-
overlapping rules, and to investigate how to apply refocusing to still obtain an
abstract machine implementing a reduction-free normalization function.

1.2 Overview

We first illustrate reduction semantics for arithmetic expressions with an inner-
most reduction strategy (Section 2), where all the elements of our domain of
discourse are touched upon: BNF of terms; reduction rules and contraction
function; reduction strategy and BNF of reduction contexts; recomposition of
a context with a term; decomposition of a term either into a normal form or
into a potential redex and a reduction context; left inverseness of recomposition
with respect to decomposition; one-step reduction as decomposition, contrac-
tion, and recomposition; reduction-based evaluation as the iteration of one-step
reduction; refocusing; and reduction-free evaluation. We then turn to the issue of
overlapping rules (Section 3). With respect to refocusing, the only problematic
combination of overlaps and strategies is backward-overlapping rules and outer-
most strategy (Section 4). To solve the problem, we suggest to backtrack after
contracting a redex, which enables refocusing (Section 5). For symmetry, we also
consider foretracking (Section 6). We then review related work (Section 7).

2 A Simple Example with an Innermost Strategy

We consider a simple language of arithmetic expressions with a zero-ary con-
structor 0, a unary constructor S, and a binary constructor A. The goal is to
normalize a given term into a normal form using only the constructors 0 and S.

Terms: The BNF of terms reads as follows:

t ::= 0 | S(t) | A(t, t)
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Terms in normal form: The BNF of terms in normal form reads as follows:

tnf ::= 0 | S(tnf)

Reduction rules: The BNF of potential redexes reads as follows:

pr ::= A(0, t2) | A(S(tnf1 ), t2)

The reduction rules read as follows:

A(0, t2) �→ t2
A(S(tnf1 ), t2) �→ S(A(tnf1 , t2))

Note the occurrence of tnf1 , which is in normal form, in the left-hand side of the
second reduction rule: it is characteristic of innermost reduction.

All potential redexes are actual ones, i.e., no terms are stuck. We can thus
implement contraction as a total function:

pr �→ c
contract(pr) = c

Reduction strategy: We are looking for the leftmost-innermost redex. This reduc-
tion strategy is materialized with the following grammar of reduction contexts:

C[ ] ::= �[ ] | C[S[ ]] | C[A([ ], t)]

We obtained this grammar by CPS-transforming a search function implementing
the innermost reduction strategy and then defunctionalizing its continuation [10].

Lemma 1 (Unique Decomposition). Any term not in normal form can be
decomposed into exactly one reduction context and one potential redex.

Recomposition: As usual, a reduction context is iteratively recomposed with a
term using a left fold, as specified by the following abstract-machine transitions:

〈�[[[t]]]〉rec ↑ t

〈C[S[[[t]]]]〉rec ↑ 〈C[[[S(t)]]]〉rec
〈C[A([[[t1]]], t2)]〉rec ↑ 〈C[[[A(t1, t2)]]]〉rec

This abstract machine is a deterministic finite automaton with two states: an
intermediate state pairing a context and a term, and a final state holding a
term. Each transition corresponds to a context constructor. There is therefore
no ambiguity and no incompleteness. Recomposition is defined as the iteration
of these transitions:

〈C[[[t]]]〉rec ↑∗ t′

recompose(C, t) = t′

Since a context constructor is peeled off at each iteration, making the size of the
context decrease, the recomposition function is total.
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Decomposition: Likewise, a term is iteratively decomposed in an innermost fash-
ion into a potential redex and its reduction context, as specified by the following
abstract-machine transitions:

〈C[[[0]]]〉decterm ↓ 〈C[[[0]]]〉deccont

〈C[[[S(t)]]]〉decterm ↓ 〈C[S[[[t]]]]〉decterm

〈C[[[A(t1, t2)]]]〉decterm ↓ 〈C[A([[[t1]]], t2)]〉decterm

〈�[[[tnf ]]]〉deccont ↓ tnf

〈C[S[[[tnf ]]]]〉deccont ↓ 〈C[[[S(tnf)]]]〉deccont

〈C[A([[[0]]], t2)]〉deccont ↓ C[A(0, t2)]
〈C[A([[[S(tnf)]]], t2)]〉deccont ↓ C[A(S(tnf), t2)]

This abstract machine is a deterministic pushdown automaton with four states
where the context is the stack: two intermediate states pairing a context and a
term, and two final states, one for the case where the given term is in normal
form, and one for the case where it decomposes into a context and a potential
redex. Each transition from the first intermediate state corresponds to a term
constructor, and each transition rule from the second intermediate state corre-
sponds to a context constructor. Each transition from the first intermediate state
peels off a term constructor, and each transition from the second intermediate
state peels off a context constructor. There is therefore no ambiguity and no
incompleteness.

Furthermore, each transition preserves an invariant: recomposing the current
context with the current term yields the original term.

Given a term to decompose, the initial machine state pairs this term with
the empty context. There are two final states: one for terms in normal form
(and therefore containing no redex), and one for potential redexes and their
reduction context. Decomposition, which is defined as the iteration of these
machine transitions, is therefore a total function:

〈�[[[t]]]〉decterm ↓∗ tnf

decompose(t) = tnf
〈�[[[t]]]〉decterm ↓∗ C[pr ]

decompose(t) = C[pr ]

A notable property: Due to the invariant of the abstract machine implementing
decomposition, the recomposition function is a left inverse of the decomposition
function.

One-step reduction: One-step reduction is implemented as, successively, the
decomposition of a given term into a potential redex and its reduction con-
text; the contraction of this redex into a contractum; and the recomposition of
the reduction context with the contractum:

〈�[[[t]]]〉decterm ↓∗ C[pr ] pr �→ c 〈C[[[c]]]〉rec ↑∗ t′

t → t′
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Fig. 1. Innermost reduction sequence for A(A(S(0), 0), 0)

Reduction-based evaluation: A term is evaluated into a normal form by iterating
one-step reduction:

t →∗ tnf

t ⇒rb tnf

Towards reduction-free evaluation: Between one contraction and the next, we
recompose the reduction context with the contractum until the next reduct,
which we decompose into the next potential redex and its reduction context. But
since the reduction strategy is innermost (and deterministic), the decomposition
of the next reduct will come back to the site of this contractum and this context
before continuing. This offers us the opportunity to short-cut the recomposition
and decomposition to this contractum and this context and thus to refocus by
just continuing the decomposition in situ. 5 More formally, we have

t ↓∗ C[pr ] C[pr ] ([�→]; ↓∗)∗
tnf

t ⇒rf tnf

where ([�→]; ↓∗) denotes contraction in context followed by decomposition (and
was noted � in Section 1.1).

An example: See Figure 1.
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Reduction-free evaluation: After applying refocusing, we follow the steps of the
syntactic correspondence [2,3,5], fusing the iteration and refocus functions, inlin-
ing the contract function, and compressing corridor transitions. The resulting
normalizer implements a transition system described by the following abstract
machine:

t � 〈�[[[t]]]〉term
〈C[[[0]]]〉term � 〈C[[[0]]]〉cont

〈C[[[S(t)]]]〉term � 〈C[S[[[t]]]]〉term
〈C[[[A(t1, t2)]]]〉term � 〈C[A([[[t1]]], t2)]〉term

〈�[[[tnf ]]]〉cont � tnf

〈C[S[[[tnf ]]]]〉cont � 〈C[[[S(tnf)]]]〉cont
〈C[A([[[0]]], t2)]〉cont � 〈C[[[t2]]]〉term

〈C[A([[[S(tnf)]]], t2)]〉cont � 〈C[S[A([[[tnf ]]], t2)]]〉cont

3 Backward-Overlapping Rules

Refocusing (i.e., the short-cutting of recomposition and decomposition after con-
traction) is possible when, after recomposing a reduction context with a contrac-
tum into a reduct, the subsequent decomposition of this reduct comes back to
this contractum and context before continuing.

However, there are cases where decomposition of the reduct does not come
back to the contractum. For example, this is the case when the reduction strategy
is outermost and the contractum is a proper subpart of a potential redex: then
after recomposing a reduction context with a contractum into a reduct, the
subsequent decomposition of this reduct would not come back to this contractum
and context—it would stop at the newly created potential redex, above the
contractum. So when the reduction strategy is outermost and a contractum can
be a subpart of a potential redex, refocusing is not possible.

A contractum can be a subpart of a potential redex when the reduction rules
contain backward overlaps:

Definition 1 (Backward-Overlapping Rules). Let l1 → r1 and l2 → r2 be
two reduction rules. If l1 decomposes into a non-empty context C and a term t
that contains at least one term constructor and that unifies with r2, then the two
rules are said to be backward-overlapping [11,17,18].

Symmetrically, if the left-hand side of one reduction rule can form a proper
subpart of the right-hand side of another rule, the reduction rules are said to be
forward-overlapping.

The combination of backward-overlapping rules and outermost reduction
does not occur often in programming languages. However, it does occur in the
full normalization of λ-terms using normal-order reduction, which has applica-
tions for comparing normal forms in proof assistants. Other occurrences can
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more readily be found outside the field of programming-language semantics, in
the area of term rewriting.

We distinguish four cases of reduction strategy in combination with rule
overlaps, and treat each of them in the following sections:

innermost strategy outermost strategy
forward-overlapping rules Section 3.1 Section 3.2

backward-overlapping rules Section 3.3 Section 3.4

3.1 Forward Overlaps and Innermost Strategy

In this case, a contractum may contain a potential redex. This redex will be
found in due course when the contractum is decomposed. The detour via an
intermediate reduct can therefore be avoided.

3.2 Forward Overlaps and Outermost Strategy

In this case, a contractum may contain a potential redex. This redex will also
be found in due course when the contractum is decomposed. The detour via an
intermediate reduct can therefore be avoided.

3.3 Backward Overlaps and Innermost Strategy

In this case, a contractum may be a proper subpart of a potential redex. However,
it should be considered after the contractum has been decomposed in search
for an innermost redex, which will happen in due course. The detour via an
intermediate reduct can therefore be avoided.

3.4 Backward Overlaps and Outermost Strategy

In this case, a contractum may be a proper subpart of a potential redex. This
potential redex should be considered before decomposing the contractum since
it occurs further out in the term (i.e., towards its root). Avoiding the detour
via an intermediate reduct would in general miss this potential redex and there-
fore not maintain the reduction order. Does it mean that we need to detour
via every intermediate reduct to normalize a term outside-in in the presence of
backward overlaps? In this worst-case scenario, reduction-free outside-in normal-
ization would be impossible in the presence of backward overlaps.

It is our observation that this worst-case scenario can be averted: most of the
detour via an intermediate reduct can be avoided if we can identify the position
of the correct potential redex without detouring all the way to the root.

In the next section, we show how to systematically determine the position of
the next potential redex relative to the contractum in the presence of backward
overlaps. This extra piece of information makes it possible to move upwards
in the term to the position of the potential redex. Most of the detour via the
intermediate reduct can therefore be avoided.
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4 The Simple Example with an Outermost Strategy

We now consider the same simple language of arithmetic expressions again, but
this time using an outermost reduction strategy.

Terms: The BNF of terms is unchanged:

t ::= 0 | S(t) | A(t, t)

Terms in normal form: The BNF of terms in normal form is also unchanged:

tnf ::= 0 | S(tnf)

Reduction rules: The BNF of potential redexes now reads as follows:

pr ::= A(0, t2) | A(S(t1), t2)

The reduction rules now read as follows:

A(0, t2) �→ t2
A(S(t1), t2) �→ S(A(t1, t2))

Note the occurrence of t1, which is not necessarily in normal form, in the left-
hand side of the second reduction rule: it is characteristic of outermost reduction.

All potential redexes are actual ones, i.e., no terms are stuck. We can thus
implement contraction as a total function:

pr �→ c
contract(pr) = c

Reduction strategy: We are looking for the leftmost-outermost redex. We mate-
rialize this reduction strategy with the same grammar of reduction contexts as
in the innermost case:

C[ ] ::= �[ ] | C[S[ ]] | C[A([ ], t)]

As in Section 2, we obtained this grammar by CPS-transforming a search func-
tion implementing the outermost reduction strategy and then defunctionalizing
its continuation.1

In contrast to Section 2, a term not in normal form can be decomposed
into more than one reduction context and one potential redex. For example,
the term A(S(A(S(t0), t1)), t2) can be decomposed into �[[[A(S(A(S(t0), t1)), t2)]]]
and �[A([S[[[A(S(t0), t1)]]]], t2)]. This non-unique decomposition puts us outside
the validity conditions of refocusing [9], so we are on our own here.
1 A more precise grammar for contexts exists in the outermost case. It presents the

same problems for refocusing as the one used here, and the solution we present also
applies to it. Being unaware of any mechanical way to derive a precise grammar for
outermost reduction, we therefore present our solution using this less precise but
mechanically derivable grammar.



100 O. Danvy and J. Johannsen

Recomposition: It is defined as in Section 2.

Decomposition: A term is decomposed in an outermost fashion into a potential
redex and its reduction context with the following abstract-machine transitions:

〈C[[[0]]]〉decterm ↓ 〈C[[[0]]]〉deccont

〈C[[[S(t)]]]〉decterm ↓ 〈C[S[[[t]]]]〉decterm

〈C[[[A(t1, t2)]]]〉decterm ↓ 〈C[[[A(t1, t2)]]]〉decadd

〈C[[[A(0, t2)]]]〉decadd ↓ C[A(0, t2)]
〈C[[[A(S(t1), t2)]]]〉decadd ↓ C[A(S(t1), t2)]

〈C[[[A(A(t11, t12), t2)]]]〉decadd ↓ 〈C[A([[[A(t11, t12)]]], t2)]〉decadd

〈�[[[tnf ]]]〉deccont ↓ tnf

〈C[S[[[tnf ]]]]〉deccont ↓ 〈C[[[S(tnf)]]]〉deccont

As in Section 2, this abstract machine is a pushdown automaton where the
context is the stack. This time, the machine has five states: two intermediate
states pairing a context and a term, one intermediate state with two terms and
a context (this state handles A terms – the A is shown in the transitions above,
but can be left implicit in an implementation), and two final states, one for the
case where the given term is in normal form, and one for the case where the
term decomposes into a context and a potential redex.

Each transition rule from the first intermediate state corresponds to a term
constructor. Each transition rule from the second intermediate state corresponds
to a term constructor on the left-hand side of an addition. Each transition rule
from the third intermediate state corresponds to a context constructor. There is
no transition rule to handle A context constructors in the third state, because
the machine will move to the second state if it sees a A term constructor, after
which the machine is guaranteed to find a potential redex. There is therefore no
ambiguity and no incompleteness.

Furthermore, each transition preserves an invariant: recomposing the current
context with the current term yields the original term. Given a term to decom-
pose, the initial machine state pairs this term with the empty context. There are
two final states: one for terms in normal form (and therefore containing no redex
at all), and one for potential redexes and their reduction context. Decomposi-
tion, which is defined as the iteration of these machine transitions, is therefore
a total function:

〈�[[[t]]]〉decterm ↓∗ tnf

decompose(t) = tnf
〈�[[[t]]]〉decterm ↓∗ C[pr ]

decompose(t) = C[pr ]

A notable property: Due to the invariant of the abstract machine implementing
decomposition, as in Section 2, the recomposition function is still a left inverse
of the decomposition function.

One-step reduction: It is defined as in Section 2.
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Reduction-based evaluation: It is defined as in Section 2.

A backward overlap: The reduction rules contain a backward overlap:

A(0, t2) �→ t2
A(S(t1), t2) �→ S(A(t1, t2))

On the right-hand side of both reduction rules, the contractum may occur as
the first subterm in the left-hand side of the second rule. Additionally, the con-
tractum of the first rule may occur as the first subterm of the left-hand side of
the first rule.

Towards reduction-free evaluation: Between one contraction and the next, we
recompose the reduction context with the contractum until the next reduct,
which we decompose into the next potential redex and its reduction context.

Contrary to the innermost case, we now cannot be sure that decomposition of
the next reduct will come back to this contractum and context before continuing,
because a contractum in the context of an addition may be a new redex.

However, we can see from the reduction rules that any new redex constructed
in this way cannot be positioned any higher than one step above the contrac-
tum, so decomposition will always return at least to the site of this new redex.
Hence, if we backtrack/recompose one step after each contraction, we can short-
cut the recomposition and decomposition to this point, and just continue the
decomposition in situ.

More formally, we have

t ↓∗ C[pr ] C[pr ] ([�→]; ↑; ↓∗)∗
tnf

t ⇒rf tnf

where ([�→]; ↑; ↓∗) denotes contraction under context followed by one step of
backtracking/recomposition and then decomposition.

The need for backtracking is caused by the existence of backward-overlapping
rules. In the present example, we only need to backtrack one step, but in general,
multiple steps are needed (Section 5 explains how to determine the number
of necessary backtracking steps). Our contribution here is that backtracking is
sufficient to enable refocusing and therefore reduction-free evaluation.

An example: See Figure 2.

Reduction-free evaluation: After applying refocusing, we fuse the iteration and
refocus functions, we inline the contract function and the backtracking function,
and we compress corridor transitions. The resulting normalizer implements a
transition system described by the following abstract machine:
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decomposition

��

reduction

���
�
�
�
�
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������������������������ backtracking��
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�[S[[[A(0, 0)]]]]
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S(A(0, 0))

decomposition
��

reduction

���
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���������������������������
backtracking��

�[[[S(0)]]]
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S(0)
decomposition

�� S(0)

Fig. 2. Outermost reduction sequence for A(A(S(0), 0), 0)

t � 〈�[[[t]]]〉term
〈C[[[0]]]〉term � 〈C[[[0]]]〉cont

〈C[[[S(t)]]]〉term � 〈C[S[[[t]]]]〉term
〈C[[[A(t1, t2)]]]〉term � 〈C[[[A(t1, t2)]]]〉add

〈�[[[A(0, t2)]]]〉add � 〈�[[[t2]]]〉term
〈C[S[[[A(0, t2)]]]]〉add � 〈C[S[[[t2]]]]〉term

〈C[A([[[A(0, t2)]]], t′2)]〉add � 〈C[[[A(t2, t′2)]]]〉add
〈�[[[A(S(t1), t2)]]]〉add � 〈�[S[[[A(t1, t2)]]]]〉add

〈C[S[[[A(S(t1), t2)]]]]〉add � 〈C[S[S[[[A(t1, t2)]]]]]〉add
〈C[A([[[A(S(t1), t2)]]], t′2)]〉add � 〈C[[[A(S(A(t1, t2)), t′2)]]]〉add

〈C[[[A(A(t11, t12), t2)]]]〉add � 〈C[A([[[A(t11, t12)]]], t2)]〉add
〈�[[[tnf ]]]〉cont � tnf

〈C[S[[[tnf ]]]]〉cont � 〈C[[[S(tnf)]]]〉cont
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The effect of backtracking can be seen in the third and sixth transitions of the
second intermediate state, where contraction in an addition context gives rise to
a new redex above the position of the contractum. In these cases, the machine
peels off a context constructor until it reaches the position of the new redex.

5 Backtracking

5.1 Identifying the Number of Backtracking Steps

In our example, it is sufficient to backtrack one step after each contraction. In
general, it may be necessary to backtrack further in order to discover a new
potential redex and enable refocusing.

For each contractum, the number of steps to backtrack can be determined
by analyzing the reduction rules for backward overlaps, i.e., by identifying which
subterms of left-hand sides the contractum unifies with. The number of steps
to backtrack is the depth of the unifying subterm, i.e., the depth of the hole in
the context C of Definition 1. This analysis can be performed statically because
the depth of the hole is a property of the reduction rules, not of the reduction
strategy. In other words, the analysis is neither performed over the constitutive
elements of the normalization function (so no case-by-case semantic manipula-
tion is required) nor during the normalization process (so no extra overhead is
introduced).

Determining the existence of backward overlaps is local and mechanical, and
hence, so is determining the necessary number of backtracking steps for each
contractum. However, rather than determining the number of backtracking steps
for each reduction rule, we can obtain a conservative estimate of the necessary
number of backtracking steps for all reduction rules by

– always using the maximum depth of the left-hand sides of the reduction rules
of the system; or by

– always using the maximum depth of the unifying subterms in the backward
overlap analysis.

5.2 The Effect of Backtracking on the Abstract Machine

In practice, the choice of analysis (one precise number of backtracking steps
for each reduction rule or one conservative number of backtracking steps for all
reduction rules) has little impact on the resulting abstract machine. The reason
is that any superfluous backtracking steps introduced in the abstract machine
by an overly conservative analysis can be removed by the subsequent transi-
tion compressions. The contract function pattern-matches on terms, so after it
is inlined, the abstract machine knows a number of term constructors of the
contractum. The backtrack function pattern-matches on contexts, so after it is
inlined, the abstract machine knows a number of context constructors of the
immediate context. Within the window between the top-most known context
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constructor and the bottom-most known term constructor, transition compres-
sion makes the abstract machine move directly to the earliest position (according
to the reduction strategy) at which the next redex can be found. Hence, if the
context does not give rise to a redex, all the backtracking steps into that context
are removed by transition compression.

Still, avoiding superfluous backtracking has two beneficial consequences; first,
it simplifies transition compression because lowering the number of backtracking
steps reduces the number of cases that need to be considered in the abstract
machine. Second, it ensures that backtracking is only performed one new redex
pattern at a time, thereby limiting the depth of pattern matching on the context.

5.3 Backward Overlaps Without the Need for Backtracking

In some cases, the combination of backward overlaps and outermost reduction
can be dealt with without backtracking. Two examples in the literature illustrate
cases where backtracking is not needed:

– The call-by-name λ-calculus [2,9]. In this case, the contractum that gives rise
to a backward overlap is in normal form: it is a λ-abstraction that occurs on
the left of an application node; this application node forms a new β-redex.
Decomposing the contractum therefore does not yield a potential redex inside
the contractum, and thus the decomposition process moves outwards in the
term and finds the newly formed potential redex.

– Outermost tree flattening [5]. In this case, the backward overlap only occurs
when contracting a redex which is not outermost, so backtracking is not
needed.

6 Foretracking

Symmetrically to backtracking, one could envision foretracking as a symmetric
solution to innermost reduction in reduction systems with forward overlaps, i.e.,
where the contraction may construct a new redex at a lower position than the
contractum. However, refocusing is defined as resuming decomposition in the
context of the contractum, so the newly constructed redex will be found in due
time without using a separate foretracking function.

Additionally, one might envision that foretracking would result in a more
efficient abstract machine, because unnecessary decomposition steps could be
eliminated by a forward overlap analysis. However, the same superfluous steps
are eliminated by transition compression of the abstract machine derived without
foretracking.

So all in all, foretracking is not needed to go from an innermost reduction
semantics to an abstract machine.
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7 Related Work

Refocusing has mainly be applied for weak reduction in the λ-calculus, for nor-
mal order, applicative order, etc. For full reduction in the λ-calculus, a backward
overlap exists. As analyzed in Section 3, this overlap is only problematic for out-
ermost reduction, e.g., normal order. We are aware of two previous applications
of refocusing to full normal-order reduction of the λ-calculus: one by Danvy,
Millikin and Munk [8,23,24], in the mid-2000’s, and a recent one by Garćıa-
Pérez and Nogueira [15,16]:

– Danvy, Millikin and Munk overcome the backward overlap (without identi-
fying it as such) by backtracking after applying the refocus function. In a
more general setting, backtracking after refocusing would change the reduc-
tion order, so this solution does not scale. Our solution does not change the
reduction order, and therefore it applies in a more general setting.

– Garćıa-Pérez and Nogueira overcome the backward overlap (without identi-
fying it as such) by developing a notion of hybrid strategy and by integrating
backtracking in the refocus function. Our solution is more minimalistic and
remains mechanical: we simply analyze the reduction rules to detect back-
ward overlaps when the reduction strategy is outermost, and in that case,
we backtrack accordingly after contraction and before refocusing.

Backward and forward overlaps have been considered for some 30 years in
relation to termination and confluence properties of term rewriting systems
[11,12,17–19], and more recently in Jiresch’s thesis [20]. Whereas term rewrit-
ing studies normalization relations, where any potential redex in the term may
be contracted, we consider normalization operationally as functions, where a
deterministic reduction strategy determines which potential redex to contract
next.

As mentioned in Section 5, refocusing can in some cases be applied without
backtracking, even if the reduction semantics contains backward overlaps. A
formal definition of backward overlaps for which backtracking is needed would
be similar to the definition of narrowable terms [31], which is a concept used in
term rewriting [21,30]. However, narrowing is used to solve equations [22], and
hence it is unrelated to our goal here.

8 Conclusion

We have considered refocusing for reduction semantics with an outermost reduc-
tion strategy, and we have discovered that in that case, the original conditions for
refocusing [9] are not satisfied. We have then singled out backward-overlapping
rules as the only stumbling block towards reduction-free normalization, and we
have outlined how to overcome this stumbling block in a systematic way, by ana-
lyzing the backward overlaps in the reduction rules. In particular, we have shown
how to implement the backtracking function, how to incorporate the backtrack-
ing function into the derivation, and how to statically determine the minimal
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number of backtracking steps, be it relative to each reduction rule or to all of
them. We have also shown how to determine whether backtracking is actually
necessary.

We have also analyzed all the other combinations (innermost / outermost
reduction strategy and forward / backward overlaps in the reduction rules) and
demonstrated how refocusing is a simple and effective way to go from reduction-
based normalization in the form of a reduction semantics to reduction-free nor-
malization in the form of an abstract machine.
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Camino de Vera s/n, 46022 Valencia, Spain

gvidal@dsic.upv.es

Abstract. This paper presents a transformational approach to the ver-
ification of Erlang programs. We define a stepwise transformation from
(first-order) Erlang programs to (non-deterministic) term rewrite sys-
tems that compute an overapproximation of the original Erlang program.
In this way, existing techniques for term rewriting become available. Fur-
thermore, one can use narrowing as a symbolic execution extension of
rewriting in order to design a verification technique. We illustrate our
approach with some examples, including a deadlock analysis of a simple
Erlang program.

1 Introduction

The concurrent functional language Erlang [3] has a number of distinguishing
features, like dynamic typing, concurrency via asynchronous message passing
or hot code loading, that make it especially appropriate for distributed, fault-
tolerant, soft real-time applications. The success of Erlang is witnessed by the
increasing number of its industrial applications. For instance, Erlang has been
used to implement Facebook’s chat back-end, the mobile application Whatsapp
or Twitterfall—a service to view trends and patterns from Twitter—, to name
a few. The success of the language, however, will also require the development
of powerful testing and verification techniques.

In this work, we present a transformational approach to the verification of
Erlang programs. We define a stepwise transformation from (first-order) Erlang
programs to (non-deterministic) term rewrite systems that compute an overap-
proximation of the original Erlang programs. In contrast to direct approaches,
one can reuse the large body of techniques and tools for term rewriting in order
to design a verification tool for Erlang. The transformation, however, is far from
trivial. Previous work along these lines include, for instance, [19], where a trans-
lation from Erlang to rewriting logic [16]—a unified semantic framework for
concurrency—is introduced. In this case, though, the aim was to provide an
executable specification of the language semantics (as a basis for the develop-
ment of verification tools). Therefore, in this approach, Erlang programs are
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seen as data objects manipulated by a sort of interpreter implemented in rewrit-
ing logic. In contrast, our aim is to produce plain rewrite systems that keep
the structure of the original Erlang program as much as possible, so that they
can be accurately analyzed using existing techniques. To be precise, we pro-
duce a number of rewrite rules—a constant factor of the size of the original
program—that mimic the reductions of the original Erlang programs, and only
a few fixed number of state reductions rules that deal with global concurrency
actions (process spawning, message sending and receiving, etc.), which are com-
mon to every transformed system. In particular, if an Erlang program contains
no concurrency actions, we produce a purely functional rewrite system so that
the state reductions rules are not necessary.

The usefulness of our approach is illustrated by using it to verify safety
properties with a symbolic execution extension of rewriting. Luckily, such an
extension already exists and has been extensively studied. It is called narrow-
ing [23], and represents a conservative extension of rewriting to deal with non-
determinism and logic variables—representing missing information. In fact, the
rewrite systems produced by our transformation are steadily executable in a
so-called functional logic language like Curry [12], which opens up many pos-
sibilities for verifying safety properties. Furthermore, there already exist well
studied subsumption and abstraction operators for guaranteeing the termina-
tion of narrowing while still producing a sound overapproximation (see, e.g.,
the narrowing-driven partial evaluation approach of [2]). Therefore, one could
define a narrowing-based model checker by using similar operators. A first step
towards this direction can be found in [18], where a technique for building finite
narrowing trees is introduced (though reducing the number of states to avoid a
combinatorial explosion is still a challenge).

2 Erlang Syntax and Semantics

In this section, we present the basic syntax and semantics of a significant sub-
set of Erlang. In particular, we consider a simplified version of the language
where some features are excluded (mainly higher-order calls, predefined func-
tions, modules and exceptions) and some other features are slightly simplified.
This is similar to the language considered by Huch [13] or Noll [19], and still
includes the main features of Erlang: pattern matching, process creation, mes-
sage sending and receiving, etc.

The basic objects of the language are variables (denoted by X,Y, . . .), atoms
(denoted by a, b, . . . ), process identifiers –pids– (denoted by p, p′, . . . ), construc-
tors (which are fixed in Erlang to lists, tuples and atoms), and defined functions
(denoted by f/n, g/m, . . .). The syntax for programs and expressions obeys the
rules shown in Figure 1.

Programs are sequences of function definitions. Each function f/n is defined
by a rule f(X1, . . . , Xn) → s. where X1, . . . , Xn are distinct variables and the
body of the function, s, can be an expression, a sequence of expressions, a
case distinction, message sending (e.g., main ! {hello,world} sends a message
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pgm ::= f(X1, . . . , Xn) → s. | pgm pgm
ErlangExp � s ::= e | s1, s2 | case e of clauses end | e1 ! e2

| receive clauses end | pat = e | pat = self
| pat = spawn(f(e1, . . . , en))

Exp � e ::= f(e1, . . . , en) | [e1|en] | [ ] | {e1, . . . , en} | a | p | X
clauses ::= pat1 → s1; . . . ; patn → sn

Pat � pat ::= [pat1|pat2] | [ ] | {pat1, . . . , patn} | a | p | X
Value � v ::= [v1|v2] | [ ] | {v1, . . . , vn} | a | p

Fig. 1. Erlang syntax rules

{hello,world} to the process with pid main) and receiving (e.g., receive {A,B} →
A end reads a message from the process queue that matches the pattern {A,B}
and returns A), pattern matching where the right-hand side can be an expres-
sion, the primitive self (that returns the pid of the current process) or a process
creation (e.g., spawn(foo(1, 2)) creates a new process1 initialized to foo(1, 2)).
Expressions can contain function calls, lists, tuples, atoms, pids and variables.
Patterns are made of lists, tuples, atoms, pids and variables. Values are similar
to patterns but cannot contain variables. Note that we only allow occurrences of
self and spawn in the right-hand side of pattern matching. This is not a serious
restriction since occurrences in other positions can be flattened by introducing
fresh variables and pattern matching.

The domain of pids, Pid, and that of atoms, Atom, must be disjoint. For
simplicity, we consider that pids are natural numbers starting from 1.

Example 1. Consider the following program which simply creates a new process
and sends a message. The new process receives the message and does the same.
Finally, the third process receives the message and returns ok.

proc1 → Pid1 = spawn(proc2), proc3 → receive
Pid1 ! a. X → ok

proc2 → Pid2 = spawn(proc3), end.
receive

X → Pid2 ! X
end.

In the past, there have been several attempts to formalize the semantics of
Erlang (e.g., [6,7,13,17,19,20,24]). In the following, we present an operational
semantics for Erlang programs that mainly follows the approach of [13].

Erlang states are denoted by the parallel composition of their processes,
where each process 〈p, e, q〉 consists of a process identifier, an expression and a
message queue: Proc ::= Pid× ErlangExp×Value∗. An initial state has the form
〈p, f(v1, . . . , vn), []〉 where f is a defined function, v1, . . . , vn are values, p is some
initial pid and [ ] denotes an empty message queue; we will use lists to denote
message queues, where [ ] denotes an empty list and (x : xs) denotes a list with

1 Note that we consider spawn(foo(1, 2)) rather than the original Erlang notation
spawn(foo, [1, 2]) which is sensible since we do not allow higher order functions.
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(seq) 〈p, C[v, s], q〉 & Π −→ 〈p, C[s], q〉 & Π

(self) 〈p, C[self], q〉 & Π −→ 〈p, C[p], q〉 & Π

(fun)
f(X1, . . . , Xn) → s. ∈ prog

〈p, C[f(v1, . . . , vn)], q〉 & Π −→ 〈p, C[ŝ{X1 �→ v1, . . . , Xn �→ vn}], q〉 & Π

(match)
∃σ. patσ = v

〈p, C[pat = v], q〉 & Π −→ 〈p, (C[v])σ, q〉 & Π

(case)
∃i. patiσ = v for some σ ∧ 	 ∃σ′. patjσ

′ = v for any j < i

〈p, C[case v of pat1 → s1; . . . ; patn → sn end], q〉 & Π −→ 〈p, (C[si])σ, q〉 & Π

(spawn)
p’ is a fresh pid

〈p, C[spawn(f(v1, . . . , vn))], q〉 & Π −→ 〈p, C[p’], q〉 & 〈p’, f(v1, . . . , vn), [ ]〉 & Π

(send)
v1 = p’ ∈ Pid

〈p, C[v1 ! v2], q〉 & 〈p’, s, q′〉 & Π −→ 〈p, C[v2], q〉 & 〈p’, s, q′++[v2]〉 & Π

(receive)

vk is the first message such that
(∃i. patiσ = v for some σ ∧ 	 ∃σ′. patjσ

′ = v for any j < i)

〈p, C[receive pat1 → s1; . . . ; patn → sn end], [v1, . . . , vk, . . . , vm]〉 & Π
−→ 〈p, (C[si])σ, [v1, . . . , vk−1, vk+1, . . . , vm]〉 & Π

Fig. 2. Basic Erlang Semantics

head x and tail xs. A final state has the form 〈p1, v1, q1〉 & · · · & 〈pn, vn, qn〉
where v1, . . . , vn are values and “&” denotes the parallel composition operator.
Computations start with an initial state and proceed until a final state is reached
or the computation is blocked (otherwise, it proceeds forever).

The operational semantics is formalized by a state transition relation −→:
State × State. Erlang follows a leftmost innermost operational semantics. Every
expression can be decomposed into a context C[ ] with a (single) hole and a
subexpression s where the next reduction can take place:2

C ::= [] | C, s | case C of clauses end | C ! e | v ! C | pat = C
| spawn(f(v1, . . . , vi, C, ei+2, . . . , en)) | f(v1, . . . , vi, C, ei+2, . . . , en)
| [v1, . . . , vi, C|e] | {v1, . . . , vi, C, ei+2, . . . , en}

The definition of the operational semantics is shown in Figure 2. Let us briefly
explain the rules of the semantics:

– States are denoted by sequences of processes of the form Γ = 〈p, e, q〉 & Π
where Π denotes a (possibly empty) parallel composition of processes. The
order of processes is not relevant here (i.e., 〈p, s, q〉 might appear in any
position within the pool of processes Γ ).

– Rule self reduces the predefined atom self to the process identifier of the
current process.

– Rule fun performs a function unfolding, where ŝ denotes an expression s
in which the free variables of patterns (if any) have been replaced by fresh
variables to avoid name conflicts.

2 This is similar to the reduction contexts of [9] and allows us to deterministically
identify the next expression to be reduced.
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〈1, proc1, [ ]〉
−→fun 〈1, P id1 = spawn(proc2), P id1 ! a, [ ]〉
−→spawn 〈1, P id1 = 2, P id1 ! a, [ ]〉 & 〈2, proc2, [ ]〉
−→match 〈1, 2, 2 ! a, [ ]〉 & 〈2, proc2, [ ]〉
−→seq 〈1, 2 ! a, [ ]〉 & 〈2, proc2, [ ]〉
−→fun 〈1, 2 ! a, [ ]〉 & 〈2, P id2 = spawn(proc3), receive X → Pid2 ! X end, [ ]〉
−→spawn 〈1, 2 ! a, [ ]〉 & 〈2, P id2 = 3, receive X → Pid2 ! X end, [ ]〉

& 〈3, proc3, [ ]〉
−→match 〈1, 2 ! a, [ ]〉 & 〈2, 3, receive X → 3 ! X end, [ ]〉

& 〈3, proc3, [ ]〉
−→seq 〈1, 2 ! a, [ ]〉 & 〈2, receive X → 3 ! X end, [ ]〉 & 〈3, proc3, [ ]〉
−→send 〈1, a, [ ]〉 & 〈2, receive X → 3 ! X end, [a]〉 & 〈3, proc3, [ ]〉
−→receive 〈1, a, [ ]〉 & 〈2, 3 ! a, [ ]〉 & 〈3, proc3, [ ]〉
−→fun 〈1, a, [ ]〉 & 〈2, 3 ! a, [ ]〉 & 〈3, receive X → ok end, [ ]〉
−→send 〈1, a, [ ]〉 & 〈2, a, [ ]〉 & 〈3, receive X → ok end, [a]〉
−→receive 〈1, a, [ ]〉 & 〈2, a, [ ]〉 & 〈3, ok, [ ]〉

Fig. 3. Computation for the program of Example 1

– Rules match and case deal with pattern matching. In both cases, we assume
σ to be the minimal matching substitution and restricted to the variables of
the pattern. For case expressions, we should select the first matching branch.
Observe that we do not have rules for pattern matching failures, which are
considered program errors and left out of this work.

– Rule spawn creates a new process with a fresh pid.
– Finally, rules send and receive deal with message passing and receiving. Note

that receive should select the first message in the process queue that matches
some pattern.

The semantics is clearly deterministic in the sense that, given a single process,
there is only one applicable rule. However, we can define different strategies
for selecting processes when there are more than one reducible process. In this
paper, a fair selection strategy is assumed (e.g., a round-robin scheduling).

Example 2. Consider again the program of Example 1. A computation with this
program is shown in Figure 3, where the reduced subexpression is underlined for
clarity; moreover, we label the transitions with the applied rule. Therefore, the
computation terminates and reaches a final state.

3 From Erlang Processes to Term Rewriting

In this section, we present a stepwise transformation from Erlang programs to
term rewrite systems.
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3.1 Term Rewriting

Here, we recall some basic notions and notations of term rewriting (see, e.g.,
[5] for more details). A signature F is a set of function symbols. Given a set of
variables V with F∩V = ∅, we denote the domain of terms by T (F ,V). Positions
are used to address the nodes of a term viewed as a tree. A position p in a term t
is represented by a finite sequence of natural numbers, where ε denotes the root
position. We let t|p denote the subterm of t at position p and t[s]p the result
of replacing the subterm t|p by the term s. Var(t) denotes the set of variables
appearing in t. A substitution σ : V �→ T (F ,V) is a mapping from variables to
terms such that Dom(σ) = {x ∈ V | x 	= σ(x)} is its domain. Substitutions
are extended to morphisms from T (F ,V) to T (F ,V) in the natural way. We
denote the application of a substitution σ to a term t by tσ rather than σ(t).
The identity substitution is denoted by id.

A set of rewrite rules l → r such that l is a nonvariable term and r is a term
whose variables appear in l is called a term rewriting system (TRS for short);
terms l and r are called the left-hand side and the right-hand side of the rule,
respectively. We restrict ourselves to finite signatures and TRSs. Given a TRS R
over a signature F , the defined symbols DR are the root symbols of the left-hand
sides of the rules and the constructors are CR = F \ DR. Constructor terms of
R are terms over CR and V. We sometimes omit R from DR and CR if it is clear
from the context.

For a TRS R, we define the associated rewrite relation →R as follows: given
terms s, t ∈ T (F ,V), we have s →R t iff there exists a position p in s, a rewrite
rule l → r ∈ R and a substitution σ with s|p = lσ and t = s[rσ]p; the rewrite
step is often denoted by s →p,l→r t to make explicit the position and rule used
in this step. The instantiated left-hand side lσ is called a redex.

A derivation is a (possibly empty) sequence of rewrite steps. Given a binary
relation →, we denote by →∗ its reflexive and transitive closure. Thus t →∗

R s
means that t can be reduced to s in R in zero or more steps.

3.2 The Transformation

Our transformation is driven by the following principles:
Keep the original structure. We try to keep the structure of the original

Erlang programs as much as possible. In particular, an Erlang program with-
out concurrent features would be mostly untouched. This is useful to keep the
analyses performed on the transformed rewrite system as accurate as possible.

Overapproximate. Several Erlang constructs cannot be translated to a rewrite
system while preserving their original semantics (unless a number of rather com-
plex functions are introduced, which would be a drawback for the analysis of the
resulting system). This is the case, for instance, of a case expression. While
Erlang only considers the first matching clause, our translation will produce an
auxiliary function that considers all matching clauses. Therefore, in general, we
will produce rewrite systems that represent overapproximations of the original
Erlang programs.
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As a consequence, we cannot ensure that a bug detected in the transformed
rewrite system is an actual bug of the original Erlang program, i.e., false positives
may occur. For instance, the analysis of the rewrite system may point out that
a deadlock may occur, while this is not the case in the original Erlang program.
On the other hand, if the analysis of the rewrite system allows one to conclude
that no deadlock can occur, then this is surely the case in the original Erlang
program.

Concurrent actions by continuation functions. Loosely speaking, our trans-
formation replaces every concurrent operator with a new constructor: SPAWN,
SEND, RECEIVE and SELF. Then, we define a set of rewrite rules that deal with
states and take care of concurrent actions. The challenge here is to always have
these constructors in a topmost position of a process so that a rule can be applied
without requiring complex context rules (in contrast to, e.g., [19]).

For this purpose, we introduce some auxiliary functions that can be seen as
continuations of the original functions (see below).

We formalize our transformation [[ ]] as follows. Given an Erlang program P ,
we have:

[[P ]] = {f(x1, . . . , xn) → [[s.]]V | f(x1, . . . , xn) → s. ∈ P}
where V = {x1, . . . , xn} ∩ FVar(s) is used for introducing auxiliary functions
with appropriate parameters. In the following, FVar(s) denotes the free variables
of s. Now, we define the transformation function [[ ]] on every program construct.

Case Expressions. Let us first consider the transformation of case expressions.
This can easily be transformed by introducing an auxiliary function as follows:

[[case e of p1 → s1, . . . , pn → sn end.]]V = f(e, V )

where f is a fresh function symbol and V denotes a list with the variables of set
V . Here, the auxiliary function f is defined as follows:

f(p1, V ) → [[s1.]]
V1 . . . f(pn, V ) → [[sn.]]Vn

where Vi = Var(f(pi, V )) ∩ FVar(si), i = 1, . . . , n. When the case expression is
not the last statement in the right-hand side, we proceed analogously as follows:

[[case e of p1 → s1, . . . , pn → sn end, s.]]V = f(e, V )

where the auxiliary function f is now defined by

f(p1, V ) → [[s1, s.]]
V1 . . . f(pn, V ) → [[sn, s.]]Vn

where Vi = Var(f(pi, V )) ∩ FVar(si, s), i = 1, . . . , n.
Observe that this transformation implies that, in general, the transformed

function will compute an overapproximation of the original Erlang program when
there are overlapping patterns (since rewriting considers all matching patterns).
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Message Passing. In this case, we transform an expression p ! e using a new
constructor SEND(i, p, e, vars), where i is a unique identifier and vars is a list of
variables. We distinguish the following cases:

[[e1 ! e2.]]
V = SEND(i, e1, e2, [ ]) with send(i, v, ) → v

where i is a fresh constant symbol (e.g., a number), v is a fresh variable, and
“ ” denotes an anonymous variable (i.e., a variable whose name is not relevant
because it does not occur in the right-hand side).

In contrast to ordinary functions and the auxiliary functions introduced when
transforming a case expression, SEND is a constructor symbol that will require
the (global) system rules to be dealt with. Roughly speaking, the system rules
will rewrite SEND(i, e1, e2, [ ]) to send(i, e2, [ ])—the continuation of SEND—and
will also store e2 in the mailbox of the process with pid e1.

When the message passing is not the last construct of the sequence, we have

[[e1 ! e2, s.]]
V = SEND(i, e1, e2, V ) with send(i, , V ) → [[s.]]V

′

where i is a fresh constant symbol and V ′ = V ∩FVar(s). In this case, the system
rules will proceed analogously but the value of e2 is lost (as it will happen in the
original Erlang program).

Message Reception. Here, we introduce a new constructor AREC(i, list, vars),
where i is a unique identifier, list is the list of messages already processed (ini-
tially empty), and vars is a list of variables. We transform Erlang expressions as
follows:

[[receive p1 → s1, . . . , pn → sn end.]]V = AREC(i, [ ], V )

where i is a fresh a constant symbol (e.g., a number). The following auxiliary
functions are added to the program:

brec(i, p1) → True rec(i, p1, V ) → [[s1.]]
V1

. . . . . .

brec(i, pn) → True rec(i, pn, V ) → [[sn.]]Vn

where Vj = Var(rec(i, pj , V )) ∩ FVar(sj), j = 1, . . . , n. When the receive con-
struct is not the last expression of a sequence, we proceed analogously as follows:

[[receive p1 → s1, . . . , pn → sn end, s.]]V = AREC(i, [ ], V )

with
brec(i, p1) → True rec(i, p1, V ) → [[s1, s.]]

V1

. . . . . .

brec(i, pn) → True rec(i, pn, V ) → [[sn, s.]]Vn

where Vj = Var(rec(i, pj , V )) ∩ FVar(sj , s), j = 1, . . . , n.
Loosely speaking, the system reduction rules will rewrite AREC(i, [ ], V ) to

rec(i,m, V )—the continuation of AREC—when brec(i,m) is true, where m is the
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first message in the process mailbox; otherwise, the message m is moved to the
second parameter of AREC and the traversal of the mailbox continues. When the
mailbox is empty (i.e., no message matched the patterns of the receive clause),
we restore the mailbox and move the process to the end of the list.

Similar to the case statements, the transformed TRS will compute an overap-
proximation of the original Erlang program when there are overlapping patterns.

Pattern Matching. First, we consider a pattern matching in which the right-
hand side is an expression not including calls to spawn nor self. In this case, it
is transformed analogously to a case statement with a single case:

[[p = e.]]V = f(e, V ) with f(p, V ) → p.

where f is a fresh function symbol. When the pattern matching is not the last
element of a sequence, we proceed as follows:

[[p = e, s.]]V = f(e, V ) with f(p, V ) → [[s.]]V
′

where f is a fresh function symbol and V ′ = Var(f(p, V )) ∩ FVar(s).

Process Creation. Process are created using the predefined function spawn.
Here, we introduce a new constructor SPAWN(i, exp, vars), where i is a unique
identifier, exp is the function call that starts the new process, and vars is a list
of variables. First, we distinguish the following case:

[[p = spawn(e).]]V = SPAWN(i, e, [ ]) with spawn(i, p, ) → p

where i is a fresh constant. Basically, the auxiliary function spawn—the contin-
uation of SPAWN—will be called from the system reduction rules with a second
argument that contains the pid of the new process. When the pattern matching
is not the last element in a sequence, we proceed as follows:

[[p = spawn(e), s.]]V = SPAWN(i, e, V ) with spawn(i, p, V ) → [[s.]]V
′

where i is a fresh constant and V ′ = Var(spawn(i, p, V )) ∩ FVar(s).

The Primitive self. We replace the occurrences of self with a new constructor
SELF(i, vars), where i is a unique identifier and vars is a list of variables. We
distinguish the following cases:

[[p = self.]]V = SELF(i, [ ]) with self (i, p, ) → p

where i is a fresh constant symbol. Here, the system reduction rules will check
the pid of the process and will call the auxiliary function self —the continuation
of SELF—with this pid as a second parameter. When the pattern matching is
not the last element in a sequence, we proceed as follows:

[[p = self, s.]]V = SELF(i, V ) with self (i, p, V ) → [[s]]V
′

where i is a fresh constant symbol and V ′ = Var(self (i, p, V )) ∩ FVar(s).
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(〈0, k, [ ]〉 : (〈i,SPAWN(n, e, vs), m〉 : s)) → (〈0, k + 1, [ ]〉 : s)
++[〈i, spawn(n, k, vs), m〉, 〈k, e, [ ]〉]

(s0 : (〈i, SEND(n, j, e, vs), m〉 : s)) → (s0 : send msg(j, e, s++[〈i, send(n, e, vs), m〉]))
(s0 : (〈i, SEND(n, j, e, vs), m〉 : s)) → (s0 : (s++[〈i, SEND(n, j, e, vs), m〉]))

(s0 : (〈i,AREC(n, ms2, vs), m : ms〉 : s)) → (s0 : s++[〈i, rec(n, m, vs), (ms2++ms)〉])
if brec(n, m)

(s0 : (〈i,AREC(n, ms2, vs), m : ms〉 : s)) → (s0 : (〈i,AREC(n, ms2++[m], vs), ms〉 : s))
if not(brec(n, m))

(s0 : (〈i,AREC(n, ms2, vs), [ ]〉 : s)) → (s0 : s)++[〈i,AREC(n, ms2, vs), [ ]〉]

(〈0, k, [ ]〉 : (〈i,SELF(n, vs), m〉 : s)) → (〈0, k, [ ]〉 : s)++[〈i, self(n, i, vs), m〉]

(s0 : (〈i, p, m〉 : s)) → (s0 : (s++[〈i, p, m〉]))

Fig. 4. State reduction rules

Sequences. Most of the sequences are transformed away using the previous
transformations. However, some of them may still remain in the transformed
program. In this case, they are transformed as follows:

[[s1, s2.]]
V = [[case s1 of → s2 end.]]V

so that all remaining sequences are removed from the transformed program.

Expressions. For the remaining expressions, we have [[e.]] = e. Note that we
assumed that no occurrence of the concurrency primitives: !, receive, self, etc., can
occur in expressions. Note that this is not a real restriction since these statements
could be flattened by introducing fresh variables and pattern matching.

3.3 State Reduction Rules

Processes are denoted by tuples 〈p, e, q〉, which consists of a process identifier
p, an expression e, and a message queue q, as introduced in Section 2. We
consider natural numbers as pids, starting from 1. Also, we have an artificial
(first) process of the form 〈0, n, [ ]〉 that is only used for storing the first free pid
n, so that we do not need to compute it every time spawn is called.

Basically, a system is represented by a list of processes, where the first process
is always the one that stores the current free pid number. We consider the usual
notation for lists: [] and ( : ), where ++ denotes list concatenation. We consider
a breadth-first exploration of the search space regarding concurrent actions (so
that the considered process is always moved to the end of the current list). Let
us briefly describe the rules:

SPAWN. A process with a constructor call SPAWN(n, e, vars) is reduced by
creating a new process initialized with the expression e, and replacing the con-
structor call with a call to the auxiliary function spawn(n, k, vars), where k is
the pid number of the new process (which is then updated to k + 1). Note also
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proc1 → SPAWN(1, proc2, [ ]) proc2 → SPAWN(3, proc3, [ ])
spawn(1, pid1, [ ]) → SEND(2, pid1,A, [ ]) spawn(3, pid2, [ ]) → AREC(4, [ ], [pid2])

send(2, e, ) → e brec(4, x) → True
rec(4, x, [pid2]) → SEND(5, pid2, x, [ ])

proc3 → AREC(6, [ ], [ ]) send(5, e, ) → e

brec(6, x) → True
rec(6, x, [ ]) → Ok

Fig. 5. TRS associated to the Erlang program of Example 1

that both the reduced process and the newly created one are moved to the end
of the list.

SEND. Here, and in order to explore all possible schedulings, we consider
two non-deterministic alternatives. The first rule sends the message (using the
auxiliary function send msg), while the second rule just moves the process to
the end of the queue thus delaying the message delivery. In this way, we can
explore all possible process schedulings. The definition of the auxiliary function
send msg is straightforward (and can be found in the next section).

AREC. For receiving a message, we consider three possibilities. First, we check
whether the first message in the mailbox matches any of the receive clauses. If
so, we process the message using a call to the auxiliary function rec. Other-
wise, we move the first message to the second parameter of AREC and continue
inspecting the mailbox. When the mailbox is empty (either because no message
has been received or because we have already inspected all of them), the mailbox
is restored and the process is moved to the end of the list.

Finally, we also include a rule that just moves a finished process to the end of
the list. One could also remove it from the pool of processes, but we prefer to keep
it for analysis and debugging purposes. Note that this rule does not overlap with
the previous rules since the process must have a value not including the special
constructors SPAWN, SEND, etc. For simplicity, in this work we assume that
there are no non-terminating functions that are purely functional (i.e., without
occurrences of SPAWN, SEND, AREC or SELF). Otherwise, one would also need
to ensure that no expression in a process is rewritten infinitely.

Example 3. Let us consider the Erlang program of Example 1. This program is
transformed into the TRS shown in Fig. 3, where functions and variables start
with a lowercase letter, and constructors start with an uppercase letter.

The computation shown in Example 2 for the Erlang program proceeds now
as shown in Fig. 6.3 Here, we reach exactly the same final state of Fig. 3. Note,
however, that due to non-determinism, other computations are also possible.

Proving that the transformed program computes an overapproximation (i.e.,
that every computation of the original program can be mimicked in the trans-
formed one) is not difficult.

3 We underline either the expression or the selected process involved in a reduction
step.
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[〈0, 2, [ ]〉, 〈1, proc1, [ ]〉]
→ [〈0, 2, [ ]〉, 〈1, SPAWN(1, proc2, [ ]), [ ]〉]
→ [〈0, 3, [ ]〉, 〈1, spawn(1, 2, [ ]), [ ]〉, 〈2, proc2, [ ]〉]
→ [〈0, 3, [ ]〉, 〈1, SEND(2, 2,A, [ ]), [ ]〉, 〈2, proc2, [ ]〉]
→ [〈0, 3, [ ]〉, 〈2, proc2, [A]〉, 〈1, send(2,A, [ ]), [ ]〉]
→ [〈0, 3, [ ]〉, 〈2, SPAWN(3, proc3, [ ]), [A]〉, 〈1, send(2,A, [ ]), [ ]〉]
→ [〈0, 4, [ ]〉, 〈1, send(2,A, [ ]), [ ]〉, 〈2, spawn(3, 3, [ ]), [A]〉, 〈3, proc3, [ ]〉]
→ [〈0, 4, [ ]〉, 〈1,A, [ ]〉, 〈2, spawn(3, 3, [ ]), [A]〉, 〈3, proc3, [ ]〉]
→ [〈0, 4, [ ]〉, 〈2, spawn(3, 3, [ ]), [A]〉, 〈3, proc3, [ ]〉, 〈1,A, [ ]〉]
→ [〈0, 4, [ ]〉, 〈2,AREC(4, [ ], [3]), [A]〉, 〈3, proc3, [ ]〉, 〈1,A, [ ]〉]
→ [〈0, 4, [ ]〉, 〈3, proc3, [ ]〉, 〈1,A, [ ]〉, 〈2, rec(4,A, [3]), [ ]〉]
→ [〈0, 4, [ ]〉, 〈3,AREC(6, [ ], [ ]), [ ]〉, 〈1,A, [ ]〉, 〈2, rec(4,A, [3]), [ ]〉]
→ [〈0, 4, [ ]〉, 〈1,A, [ ]〉, 〈2, rec(4,A, [3]), [ ]〉, 〈3,AREC(6, [ ], [ ]), [ ]〉]
→ [〈0, 4, [ ]〉, 〈2, rec(4,A, [3]), [ ]〉, 〈3,AREC(6, [ ], [ ]), [ ]〉, 〈1,A, [ ]〉]
→ [〈0, 4, [ ]〉, 〈2, SEND(5, 3,A, [ ]), [ ]〉, 〈3,AREC(6, [ ], [ ]), [ ]〉, 〈1,A, [ ]〉]
→ [〈0, 4, [ ]〉, 〈3,AREC(6, [ ], [ ]), [A]〉, 〈1,A, [ ]〉, 〈2, send(5,A, [ ]), [ ]〉]
→ [〈0, 4, [ ]〉, 〈1,A, [ ]〉, 〈2, send(5,A, [ ]), [ ]〉, 〈3, rec(6,A, [ ]), [ ]〉]
→ [〈0, 4, [ ]〉, 〈2, send(5,A, [ ]), [ ]〉, 〈3, rec(6,A, [ ]), [ ]〉, 〈1,A, [ ]〉]
→ [〈0, 4, [ ]〉, 〈2,A, [ ]〉, 〈3, rec(6,A, [ ]), [ ]〉, 〈1,A, [ ]〉]
→ [〈0, 4, [ ]〉, 〈3, rec(6,A, [ ]), [ ]〉, 〈1,A, [ ]〉, 〈2,A, [ ]〉]
→ [〈0, 4, [ ]〉, 〈3,Ok, [ ]〉, 〈1,A, [ ]〉, 〈2,A, [ ]〉]

Fig. 6. Example of reduction

4 The Transformation in Practice

In this section, we show the usefulness of our transformation in the context of
program verification. An implementation of the transformation has been under-
taken and can be used through a web interface that can be found here:

http://users.dsic.upv.es/∼gvidal/erlang2trs/
For verifying safety properties, we consider the execution of the rewriting system
using narrowing [14,23], a conservative extension of term rewriting for dealing
with non-determinism and logic variables. Narrowing can be seen as a sym-
bolic execution version of rewriting where pattern matching is replaced with
unification (as in logic programming). Basically, given a TRS R and two terms
s, t ∈ T (F ,V), we have that s �R t is a narrowing step iff there exist a nonva-
riable position p of s, a variant l → r of a rule in R, and a substitution σ which
is a most general unifier of s|p and l, with t = (s[r]p)σ. E.g., narrowing has been
used as the basis of a partial evaluation framework for rewrite systems [2].

In particular, in order to produce executable programs, we consider the lan-
guage Curry [12] (a conservative extension of Haskell to deal with logic variables
and non-determinism).

http://users.dsic.upv.es/~gvidal/erlang2trs/
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Example 4. Consider the following Erlang program:

main → Pid2 = spawn(proc2), proc1(Pid) → receive
Pid1 = spawn(proc1(Pid2)), X → Pid ! X
Pid1 ! hello, end.
P id2 ! world. proc2 → receive

X → ok
end.

Our transformation tool erlang2trs returns the following program (we use a
curried notation for functions as in Curry):

main = (SPAWN 1 proc2 [])

spawn 1 pid2 [] = (SPAWN 2 (proc1 pid2) (pid2:[]))

spawn 2 pid1 (pid2:[]) = (SEND 3 pid1 Hello (pid1:(pid2:[])))

send 3 e (pid1:(pid2:[])) = (SEND 4 pid2 World [])

send 4 e fresh = e

proc1 pid = (AREC 5 [] (pid:[]))

brec 5 x = True

rec 5 x (pid:[]) = (SEND 6 pid x [])

send 6 e fresh = e

proc2 = (AREC 7 [] [])

brec 7 x = True

rec 7 x [] = Ok

together with data declarations, the system reduction rules and a few auxiliary
functions:

data State = State Int Exp [Exp]

data Exp = I Int | SPAWN Int Exp [Exp] | SEND Int Exp Exp [Exp]

| AREC Int [Exp] [Exp] | SELF Int [Exp]

| World | Hello | Ok

reduce (s0 : (State i (AREC n ms2 args) (m:ms)) : s) visited

= if (brec n m)

then reduce (s0:(s++[State i (rec n m args) (ms2++ms)])) visited

else reduce (s0:(State i (AREC n (ms2++[m]) args) ms):s) visited

reduce (s0 : (State i (AREC n ms2 args) []) : s) visited

= reduce ((s0 : s) ++ [State i (AREC n ms2 args) []]) visited

reduce (State o (I k) l2 : (State i (SPAWN n e args) m : s)) visited

= reduce ((State o (I (k+1)) l2 : s)

++ [State i (spawn n (I k) args) m, State k e []]) visited

reduce (s0 : (State i (SEND n (I j) e args) m : s)) visited

= reduce (s0:(send_msg j e (s++[State i (send n e args) m]))) visited

reduce (s0 : (State i (SEND n (I j) e args) m : s)) visited

= reduce (s0 : (s ++ [State i (SEND n (I j) e args) m])) visited
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send_msg _ _ [] = []

send_msg j e (State i b m : s)

| i==j = State i b (m++[e]) : s

| otherwise = State i b m : (send_msg j e s)

brec 5 fresh = case fresh of

x -> True

_ -> False

brec 7 fresh = case fresh of

x -> True

_ -> False

The complete code of the transformed program can be found at http://users.
dsic.upv.es/∼gvidal/erlang2trs/. Consider now that we are interested in verifying
whether the message “World” can arrive to proc3 before the message “Hello”.
We can easily check this property in Curry using the following test function:

init = reduce [State 0 (I 2) [], State 1 main []] []

test = wrongState init

wrongState (s:ss) = case s of

State _ Ok [Hello] -> True

_ -> wrongState ss

where the state reduction rules are implemented by function reduce and states
are represented using the constructor State. Here, function init denotes the
initial state and function test checks if there exists a reachable final state (i.e.,
where the main expression is reduced to Ok) with the message Hello in the
mailbox.

Example 5. Consider now the Erlang program shown in Fig. 7. This program
represents a simplified version of the well-known dining philosophers problem.
Basically, there are two processes (left and right) that compete for a couple of

main → Res = spawn(res({f, f})), res(St) → receive {q, S} → S ! St
L = spawn(left(Res)), end, receive{u, NSt} → res(NSt)
R = spawn(right(Res)). end.

left(Res) → S = self, right(Res) → S = self,
Res ! {q, S}, Res ! {q, S},
receive {f, B} → receive {A, f} →

Res ! {u, {b, B}}, Res ! {u, {A, b}},
Res ! {q, S}, Res ! {q, S},
left2(Res) right2(Res)

end. end.

left2(Res) → receive{b, f} → right2(Res) → receive{f, b} →
Res ! {u, {b,b}} Res ! {u, {b, b}}

end. end.

Fig. 7. A simple Erlang program to perform deadlock analysis

http://users.dsic.upv.es/~gvidal/erlang2trs/
http://users.dsic.upv.es/~gvidal/erlang2trs/
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shared resources, which are managed by process res—that accepts both queries
{q, pid} and updates {u, new state}—which is initialized with the state {f, f}
(i.e., both resources are free). The left process takes the resources from left to
right and the right process from right to left. We have not considered freeing the
resources since we are only interested in illustrating the definition of a deadlock
analysis in this example.

Our transformation tool erlang2trs returned a TRS of more than
100 lines of code (available at http://users.dsic.upv.es/∼gvidal/erlang2trs/).
Consider now that we are interested in verifying whether a deadlock is possible.
We can easily verify this property in Curry using the following test function:

init = reduce [State 0 (I 2) [], State 1 main []] []

test = wrongState init

where

wrongState s = and (map ws s) == True

ws s = case s of

State _ (I _) _ -> True

State _ (AREC _ _ _) _ -> True

_ -> False

where the function test checks if there exists a reachable state where all pro-
cesses are either finished with a process identifier or are waiting for a message
simultaneously (a deadlock):

deadlock> test

[(State 0 (I 5) []),(State 1 (I 4) []),

(State 4 (AREC 19 [] [(I 2)]) []),

(State 3 (AREC 12 [(T2 B B)] [(I 2)]) []),

(State 2 (AREC 6 [(T2 C (I 4))] []) [])]

Result: True

More solutions? [Y(es)/n(o)/a(ll)] n

deadlock>

Therefore, our analysis concludes that a deadlock may occur in the original
Erlang program.

Of course, for more contrived examples with an infinite number of states, nar-
rowing has an infinite search space. Fortunately, there already exist techniques
for ensuring the termination of narrowing while still producing overapproxima-
tions of the original program in the context of partial evaluation (see, e.g., [2]).
Therefore, we can adapt such an approach to perform symbolic execution of
infinite-state systems. A first step towards this direction can be found in [18].

Actually, our tool erlang2trs already produces a TRS that includes a simple
memoization to avoid reducing the same state once and again.

5 Related Work

Giesl and Arts [11] present a verification of Erlang processes by using depen-
dency pairs. They propose a similar idea—transforming Erlang programs to

http://users.dsic.upv.es/~gvidal/erlang2trs/


124 G. Vidal

(conditional) rewrite systems—but no transformation is formalized; rather, the
process is done manually. Moreover, no verification of safety properties is consid-
ered. In fact, the authors mainly focus on proposing general improvements to the
termination prover for TRSs and CTRSs. Another related approach—though for
different source and target languages—is that of Albert et al. [1], where a trans-
formation from a concurrent object-oriented programming language based on
message passing to a rule-based logic-like programming language is introduced.

Noll [19] introduces an implementation of Erlang in rewriting logic [16], a uni-
fied semantic framework for concurrency. Although we share some ideas with this
paper, the aim is different. Noll’s aim was to provide an executable specification
of the language semantics that is tailored to the Specification Language Compiler
Generator [15] in order to automatically translate the description into a verifica-
tion front-end that implements the transition rules. Therefore, in this approach,
Erlang programs are seen as data objects manipulated by a sort of interpreter
implemented in rewriting logic. In contrast, we aim at producing plain rewrite
systems that can be analyzed using existing technologies. Other approaches are
based on abstract interpretation (e.g., [13]) or the use of equations to define
abstraction mappings (e.g., [20]). We can also find some approaches where Erlang
is translated to π-calculus [22] or μCRL [4].

More specific tools for Erlang verification include EVT [21], a theorem prover
that requires user intervention, and the model checker McErlang [10], which
implements a big-step operational semantics for dealing with concurrency as a
run-time Erlang system. The main strengths of McErlang are that it is a robust
tool that covers most of the Erlang language, explores all possible schedulings
for concurrent actions, includes debugging facilities, provides mechanisms for
reducing the state space, etc. On the other hand, McErlang is not intended to
analyze sequential programs and, moreover, it does not allow the use of symbolic
input data (in contrast to other similar tools for other programming languages,
e.g., Java Pathfinder [26], a model checker for Java). This extension is far from
trivial, and a symbolic execution semantics should be carefully designed. Actu-
ally, we are only aware of the approach of [8] to symbolic execution in Erlang,
though no formalization is introduced in the paper (it is only explained infor-
mally). Hence we think that our approach is a promising step towards defining
a symbolic execution mechanism for Erlang.

6 Discussion

We have introduced a novel approach to Erlang verification based on translating
the original program to a term rewriting system. By keeping the original program
structure as much as possible, we can effectively analyze the rewrite system and
infer useful information regarding the original Erlang program using standard
techniques and tools for rewrite systems.4 We have illustrated the practicality
of the approach with some examples.
4 Nevertheless, although our syntax-directed transformation is tailored to the func-
tional language Erlang, one could also extend it to other programming languages by
using a semantics-driven transformation, similarly to that of [25].



Towards Erlang Verification by Term Rewriting 125

As a future work, we would like to deal with scalability issues, e.g., defin-
ing an appropriate partial order reduction. We would also like to extend our
approach to deal with the remaining features of Erlang (mainly higher-order
functions, guards, modules, etc). Finally, we will also consider the generation of
Prolog programs instead. In this case, we would have more mature environments
available as well as a flurry of analysis techniques that could be applied to the
transformed programs.

Acknowledgments. We thank the anonymous reviewers and the participants of LOP-
STR 2013 for their useful comments to improve this paper.
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vol. 7942, pp. 96–114. Springer, Heidelberg (2013)

7. Claessen, K., Svensson, H.: A semantics for distributed Erlang. In: Sagonas, K.F.,
Armstrong, J. (eds.). In: Proc. of the 2005 ACM SIGPLAN Workshop on Erlang,
pp. 78–87. ACM (2005)

8. Earle, C.B.: Symbolic program execution using the Erlang verification tool. In:
Alpuente, M. (eds.) Proc. of the 9th International Workshop on Functional and
Logic Programming (WFLP 2000), pp. 42–55 (2000)

9. Felleisen, M., Friedman, D.P., Kohlbecker, E.E., Duba, B.F.: A syntactic theory of
sequential control. Theor. Comput. Sci. 52, 205–237 (1987)

10. Fredlund, L.-A., Svensson, H.: McErlang: a model checker for a distributed func-
tional programming language. In: Hinze, R., Ramsey, N. (eds). In: Proc. of ICFP
2007, pp. 125–136. ACM (2007)

11. Giesl, J., Arts, T.: Verification of Erlang Processes by Dependency Pairs. Appl.
Algebra Eng. Commun. Comput. 12(1/2), 39–72 (2001)

12. Hanus, M. (ed.): Curry: An integrated functional logic language (vers. 0.8.3) (2012),
http://www.curry-language.org

13. Huch, F.: Verification of Erlang Programs using Abstract Interpretation and Model
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Abstract. Co-logic programming is a programming language allowing
each predicate to be annotated as either inductive or coinductive. Assum-
ing the stratification restriction, a condition on predicate dependency in
co-logic programs (co-LPs), a top-down procedural semantics (co-SLD
derivation) as well as an alternating fixpoint semantics has been given. In
this paper, we present some extensions of co-LPs, especially focusing on
the relationship with the existing alternating tree automata approaches
to branching-time model checking. We first consider the local stratifica-
tion restriction to allow a more general class of co-LPs, so that we can
encode the CTL satisfaction relation as a co-LP, which is a direct encod-
ing of the standard alternating automata by Kupferman et al. Next, we
consider non-stratified co-LPs based on the Horn μ-calculus. We give a
proof procedure, co-SLD derivation with the parity acceptance condition,
for non-stratified co-LPs, and show that it is sound and complete for a
class of non-stratified co-LPs. Its application to a goal-directed top-down
proof procedure for normal logic programs is also discussed.

1 Introduction

Co-logic programming, proposed by Gupta et al. [16] and Simon et al. [35,36], is an
extension of logic programming, where each predicate in definite programs is anno-
tated as either inductive or coinductive. Assuming the stratification restriction,
a condition on predicate dependency in co-logic programs (co-LPs), a top-down
procedural semantics, co-SLD derivation, as well as the declarative semantics by
an alternating fixpoint semantics has been given: the least fixpoints for inductive
predicates and the greatest fixpoints for coinductive predicates.

Predicates in a co-LP are defined over infinite structures such as infinite trees
or infinite lists as well as finite ones, and co-LPs allow us to represent and reason
about properties of programs over such infinite structures. Co-logic programming
therefore has interesting applications to reactive systems and verifying properties
such as safety and liveness in model checking and so on.
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24500171.

c© Springer International Publishing Switzerland 2014
G. Gupta and R. Peña (Eds.): LOPSTR 2013, LNCS 8901, pp. 127–144, 2014.
DOI: 10.1007/978-3-319-14125-1 8



128 H. Seki

Recently, there has been reported some work [17] on understanding and
extending the procedural semantics of co-LPs, in terms of the existing automata
theory such as tree automata with the Büchi or Rabin acceptance conditions.

In this paper, we also consider some extensions of co-LPs, especially focusing
on the relationship with the existing automata-theoretic approaches to branching-
time model checking. We first consider the local stratification restriction to allow
a more general class of co-LPs, so that we can encode the CTL satisfaction rela-
tion as a co-LP, which is a direct and natural encoding of the standard alternat-
ing automata by Kupferman et al. [21], including, among others, weak alternating
automata (WAAs) [29].

Next, we consider non-stratified co-LPs based on the Horn μ-calculus by
Charatonik et al. [2] We show that the notion of priorities in the Horn μ-calculus
captures nesting of inductive/coinductive computations in co-LPs. We then give
a proof procedure, co-SLD derivation with the parity acceptance condition (co-
SLD+p for short), for non-stratified co-LPs, and show its soundness and com-
pleteness for a class of non-stratified co-LPs. Its application to a goal-directed
top-down proof procedure for a class of normal logic programs is also discussed.

The organization of this paper is as follows. In Section 2, we summarise
some preliminary definitions on co-LPs and CTL [3]. In Section 3, we describe
an encoding schema for weak alternating automata into co-LPs, and introduce
the notion of the local stratification restriction. As an example, we consider
an encoding of WAAs for CTL model checking into co-LP. In Section 4, we
consider non-stratified co-LPs based on the Horn μ-calculus, and describe a
proof procedure, co-SLD+p, with its application to a top-down proof procedure
for normal logic programs. Finally, we discuss about the related work and give
a summary of this work in Section 5. 1

Throughout this paper, we assume that the reader is familiar with the basic
concepts of logic programming, which are found in [24].

2 Preliminaries

In this section, we first recall some basic definitions and notations concerning co-
logic programs (co-LPs). The details and more examples are found in [16,35,36].
Then, we also explain some preliminaries on CTL.

Since co-logic programming can deal with infinite terms such as infinite lists
or trees like f(f(. . . )) as well as finite ones, we consider the complete (or infini-
tary) Herbrand base [18,24], denoted by HB∗

P , where P is a program.
A co-logic program (co-LP) is a constraint definite program, where predicate

symbols are annotated as either inductive or coinductive. There is one restriction
on co-LP, referred to as the stratification restriction: Inductive and coinductive
predicates are not allowed to be mutually recursive. An example which violates

1 Due to space constraints, we omit most proofs and some details, which will appear
in the full paper.
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the stratification restriction is {p ← q; q ← p}, where p is inductive, while q is
coinductive.

When a co-LP P satisfies the stratification restriction, it is possible to decom-
pose the set P of all predicates in P into a collection (called a stratification) of
mutually disjoint sets P0, . . . ,Pr (0 ≤ r), called strata, so that, for every clause
p(x̃0) ← c � p1(x̃1), . . . , pn(x̃n) in P , we have that σ(p) ≥ σ(pi) if p and pi have
the same inductive/coinductive annotations, and σ(p) > σ(pi) otherwise, where
σ(q) = i, if the predicate symbol q belongs to Pi.

The following is an example of co-LPs.

Example 1. [36]. Suppose that predicates member and drop are annotated as
inductive, while predicate comember is annotated as coinductive.

member(H, [H| ]) ←
member(H, [ |T ]) ← member(H, T )

drop(H, [H|T ], T ) ←
drop(H, [ |T ], T1) ← drop(H, T, T1)

comember(X,L) ← drop(X,L,L1), comember(X,L1)

The definition of member is a conventional one; its meaning is defined in
terms of the least fixpoint, since it is an inductive predicate. So, the prefix
ending in the desired element H must be finite. The same applies to predicate
drop.

On the other hand, predicate comember is coinductive, whose meaning is
defined in terms of the greatest fixpoint. Therefore, it is true if and only if the
desired element X occurs an infinite number of times in the list L. Hence it is
false when the element does not occur in the list or when the element only occurs
a finite number of times in the list.

For example, the goal ← X = 1, L = [0, 1|L], comember(X,L) is true, while
the goal ← X = 1, L = [0, 1, 0, 1], comember(X,L) is false. Note that L = [0, 1|L]
represents an infinite list L consisting of 0s and 1s. ��

A meta-interpreter for co-logic programming has been developed and avail-
able [19], and recent SWI-Prolog (version 6.5.1) has also offered a module for
supporting coinduction.2

The declarative semantics of a co-logic program is a stratified interleaving of
the least fixpoint semantics and the greatest fixpoint semantics.

In this paper, we consider the complete Herbrand base HB∗
P as the set of

elements in the domain of a structure D. Given a structure D and a constraint
c, D |= c denotes that c is true under the interpretation for constraints provided
by D. Moreover, if θ is a ground substitution (i.e., a mapping of variables on the
domain D, namely, HB∗

P in this case) and D |= cθ holds, then we say that c is
satisfiable, and θ is called a solution (or ground satisfier) of c, where cθ denotes
the application of θ to the variables in c. We refer to [5] for an algorithm for
checking constraint satisfiability.

Let P be a co-logic program with a stratification P0, . . . ,Pr (0 ≤ r). Let
Πi (0 ≤ i ≤ r) be the set of clauses whose head predicates are in Pi. Then,
2 http://www.swi-prolog.org/pldoc/doc/swi/library/coinduction.pl

http://www.swi-prolog.org/pldoc/doc/swi/library/coinduction.pl
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P = Π0 ·∪ . . . ·∪Πr. Similar to the “immediate consequence operator” TP in the
literature, our operator TΠ,S assigns to every set I of ground atoms a new set
TΠ,S(I) of ground atoms as

TΠ,S(I) = {A ∈ HB∗
Π | there is a ground substitution θ and a clause in Π

H ← c � B1, · · · , Bn, n ≥ 0, such that
(i) A = Hθ, (ii) θ is a solution of c, and
(iii) for every 1 ≤ i ≤ n, either Biθ ∈ I or Biθ ∈ S}.

In the above, the atoms in S are treated as facts. S is intended to be a set
of atoms whose predicate symbols are in lower strata than those in the current
stratum Π. We consider TΠ,S to be the operator defined on the set of all subsets
of HB∗

Π , ordered by standard inclusion. Then, TΠ,S admits a least and a greatest
fixpoints denoted by lfp(TΠ,S) and gfp(TΠ,S), respectively.

Finally, the model M(P ) of a co-logic program P = Π0 ·∪ . . . ·∪Πr is defined
inductively as follows: Let M(Π−1) = ∅. For k ≥ 0, M(Πk) = lfp(TΠk,Mk−1) if
Pi is inductive; gfp(TΠk,Mk−1) if Pi is coinductive, where Mk−1 is the model of
lower strata than Πk, i.e., Mk−1 = ∪k−1

i=−1M(Πi).
Then, the model of P is M(P ) = ∪r

i=0M(Πi), the union of all models M(Πi).

Syntax andSemantics ofCTL. We first briefly recall the syntax and the seman-
tics of CTL (see [3,21]). The Computation Tree Logic (CTL) is a branching-time
temporal logic for expressing properties of events. It is a subset of CTL∗ in which
each of temporal operators X (“next time”), U (“until”) and Ũ , a dual of the U
operator (often denoted by R (“release”)), must be immediately preceded by a
path quantifier, either A (“for all paths”) or E (“for some path”).

Definition 1. Given a set AP of atomic propositions, a CTL formula is either
a state formula ϕ or a path formula ψ defined as follows:

〈state formulas〉 ϕ ::= true | false | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Aψ | Eψ

〈path formulas〉 ψ ::= Xϕ1 | ϕ1Uϕ2 | ϕ1Ũϕ2

where p ∈ AP . ��
Some familiar temporal operators F and G will be used as the following

abbreviations: Fϕ = trueUϕ (“eventually”) and Gϕ = falseŨϕ (“always”).
We assume that CTL formulas are given in positive normal form [3], that is,
negations are applied only to atomic propositions. This can be assumed without
the loss of generality, since we have conjunction, disjunction, both U and Ũ
operators, and both quantifiers A and E. A formula ϕ is a Ũ -formula if it is of
the form Aϕ1Ũϕ2 or Eϕ1Ũϕ2.

Given a CTL formula ϕ, let cl(ϕ), called the closure, be the set of all CTL
state subformulas of ϕ (including ϕ, but excluding true and false), and the size
‖ϕ‖ of ϕ is defined to be the number of elements in cl(ϕ).
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The semantics of CTL is defined with respect to a Kripke structure K =
〈AP ,W,R,w0, L〉, where AP is a set of atomic propositions, W is a set of states,
R ⊆ W ×W is a transition relation that must be total (i.e., for every w ∈ W there
exists w ∈ W such that 〈w,w′〉 ∈ R), w0 is an initial state, and L : W → 2AP

maps each state to the set of atomic propositions true in that state. A path in
K is an infinite sequence of states, π = w0, w1, . . . such that for every i ≥ 0,
〈wi, wi+1〉 ∈ R. We denote the suffix wi, wi+1, . . . of π by πi.

The notation K,w |= ϕ indicates that a CTL state formula ϕ holds at the
state w of the Kripke structure K. Similarly, K,π |= ψ indicates that a CTL
path formula ψ holds on a path π of K.

Definition 2. Given a Kripke structure K = 〈AP ,W,R,w0, L〉, the relation |=
is inductively defined as follows:

– For all w, we have K,w |= true and K,w �|= false.
– K,w |= p for p ∈ AP iff p ∈ L(w).
– K,w |= ¬p for p ∈ AP iff p �∈ L(w).
– K,w |= ϕ1 ∧ ϕ2 iff K,w |= ϕ1 and K,w |= ϕ2.
– K,w |= ϕ1 ∨ ϕ2 iff K,w |= ϕ1 or K,w |= ϕ2.
– K,w |= Aψ iff for every path π starting from w, we have K,π |= ψ.
– K,w |= Eψ iff there exists a path π from w such that K,π |= ψ.
– K,π |= ϕ for a state formula ϕ, iff K,w0 |= ϕ where π = w0, w1, . . . .
– K,π |= Xϕ iff K,π1 |= ϕ.
– K,π |= ϕ1Uϕ2 iff there exists i ≥ 0 such that K,πi |= ϕ2 and for all

0 ≤ j < i, we have K,πj |= ϕ1.
– K,π |= ϕ1Ũϕ2 iff for all i ≥ 0 such that K,πi �|= ϕ2, there exists 0 ≤ j < i

such that K,πj |= ϕ1.

Note that K,π |= ϕ1Ũϕ2 if and only if K,π �|= (¬ϕ1)U(¬ϕ2).

3 Encoding CTL Model Checking in Co-LP

In this section, we first briefly explain the automata-theoretic approach to CTL
model checking by Kupferman et al. [21], and we then present our encoding of
the CTL satisfaction relation into co-LPs.

3.1 The Automata-Theoretic Approach to CTL Model Checking

Kupferman et al. [21] have proposed the automata-theoretic approach to
branching-time model checking, where weak alternating automata (WAAs) [29]
and hesitant alternating automata (HAAs) are shown to play an essential role.
In the following, we will present an encoding method of WAAs into co-LPs,
although similar encoding of HAAs into co-LPs is also possible.

Let A = 〈Σ,Q, δ, q0, F 〉 be an alternating tree automaton, where Σ is the
input alphabet, Q is a finite set of states, δ is a transition function, q0 ∈ Q is an
initial state and F specifies the acceptance condition of A.
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In WAAs, Q and δ satisfy the following conditions: (i) there exists a partition
of Q into disjoint sets, Q1, . . . , Qm, equipped with a partial order ≤, and (ii)
transitions from a state in Qi lead to states in either the same Qi or a lower
one; that is, for every q ∈ Qi and q′ ∈ Qj for which q′ occurs in δ(q, s), for some
s ∈ Σ, we have Qj ≤ Qi.

In addition, a WAA has the Büchi acceptance condition F ⊆ Q, that is, a
run is accepting iff all its infinite paths π satisfy the Büchi acceptance condition:
inf (π) ∩ F �= ∅, where inf (π) is the set of all the states that appear infinitely
often on π. Moreover, we have that for each set Qi, either Qi ⊆ F (Qi is said to
be accepting), or Qi ∩ F = ∅ (Qi is said to be rejecting).

The following definition (Def. 3) shows a 1-letter weak alternating word
automaton AK,ϕ for CTL model checking due to Kupferman et al. [21]; For
a given Kripke structure K = 〈AP ,W,R,w0, L〉 and a CTL formula ϕ, the lan-
guage accepted by AK,ϕ is nonempty iff K, w0 |= ϕ.

Definition 3. For a given Kripke structure K = 〈AP ,W,R,w0, L〉 and a CTL
formula ϕ, AK,ϕ = 〈{a0},W × cl(ϕ), δ, 〈w0, ϕ〉, F 〉, where δ and F are defined
as follows:

1. δ(〈w, p〉, a0) = true if p ∈ L(w).
δ(〈w, p〉, a0) = false if p �∈ L(w).

2. δ(〈w,¬p〉, a0) = true if p �∈ L(w).
δ(〈w,¬p〉, a0) = false if p ∈ L(w).

3. δ(〈w,ϕ1 ∧ ϕ2〉, a0) = δ(〈w,ϕ1〉, a0) ∧ δ(〈w,ϕ2〉, a0).
4. δ(〈w,ϕ1 ∨ ϕ2〉, a0) = δ(〈w,ϕ1〉, a0) ∨ δ(〈w,ϕ2〉, a0).
5. δ(〈w,AXϕ〉, a0) =

∧k
i=1(wi, ϕ).

6. δ(〈w,EXϕ〉, a0) =
∨k

i=1(wi, ϕ).
7. δ(〈w,Aϕ1Uϕ2〉, a0) = δ(〈w,ϕ2〉, a0) ∨ (δ(〈w,ϕ1〉, a0) ∧ ∧k

i=1(wi, Aϕ1Uϕ2)).
8. δ(〈w,Eϕ1Uϕ2〉, a0) = δ(〈w,ϕ2〉, a0) ∨ (δ(〈w,ϕ1〉, a0) ∧ ∨k

i=1(wi, Eϕ1Uϕ2)).
9. δ(〈w,Aϕ1Ũϕ2〉, a0) = δ(〈w,ϕ2〉, a0) ∧ (δ(〈w,ϕ1〉, a0) ∨ ∧k

i=1(wi, Aϕ1Ũϕ2)).
10. δ(〈w,Eϕ1Ũϕ2〉, a0) = δ(〈w,ϕ2〉, a0) ∧ (δ(〈w,ϕ1〉, a0) ∨ ∨k

i=1(wi, Eϕ1Ũϕ2)),

where, for each w ∈ W in K, w has k successors: succR(w) = {w1, . . . , wk}. The
set F of accepting states consists of all pairs in W × Fϕ, where Fϕ is all the
Ũ -formulas in cl(ϕ). ��

3.2 An Encoding Schema of WAAs into Stratified Co-LPs

We now describe an encoding schema of WAAs into co-LPs, and explain it using
the above-mentioned WAA for CTL model checking.

Talbot [37] pointed out that the encoding of the WAAs into the alternation-
free Horn μ-calculus is straightforward. Rephrased in the co-LP framework, our
encoding schema of a WAA, A, into the corresponding co-LP, P , is as follows:
(i) the states of A are translated to predicates in P , (ii) the transitions are
simulated by clauses in P , and (iii) the predicates for accepting (rejecting) states
are annotated as coinductive (inductive), respectively.
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A Co-LP with the Local Stratification Restriction. Following the above-
mentioned encoding schema, we now translate AK,ϕ into the corresponding co-
LP PK. Since we need literals representing the states in AK,ϕ, we first extend
the notion of the stratification restriction to the local stratification restriction.
A local stratification is a function σ from ground literals to natural numbers
such that given A ∈ HB∗

P , we define σ(¬A) = σ(A) + 1. A co-logic program P
satisfies the local stratification restriction, if there exists a local stratification σ
such that, for every ground clause γ of the form h ← l1, . . . , lm, (i) σ(h) ≥ σ(li)
when either li has the same annotation of h or li is a negative literal, and (ii)
σ(h) > σ(li) when li has the different annotation from h. We note that for a co-
LP P with the local stratification restriction, the alternating fixpoint semantics
M(P ) is defined similarly.

Recall in Def. 3 that for each w ∈ W in K, w has k successors: succR(w) =
{w1, . . . , wk}. In accordance with this, a transition relation R in a Kripke struc-
ture K = 〈AP ,W,R,w0, L〉 is assumed to be specified by a finite disjunction
of k formula (k ≥ 1); for every w,w′ ∈ W , 〈w,w′〉 ∈ R iff |= tr(w,w′), where
tr(X,Y ) ≡ t1(X,Y ) ∨ · · · ∨ tk(X,Y ), and each ti is a function of its first argu-
ment, namely, ∀X,Y,Z (ti(X,Y ) ∧ ti(X,Z) → Y = Z), and ∀X(X ∈ W →
∃Y ti(X,Y )).

When writing terms encoding CTL formulas, we will use the function sym-
bols a, e, x, u and ũ for the CTL operator symbols A,E,X,U and Ũ , respec-
tively. Moreover, for saving space we write H ← M,

∧k
i=1 Li for a clause H ←

M,L1, . . . , Lk and H ← M,
∨k

i=1 Li for the set of clauses {H ← M,L1; . . . ;H ←
M,Lk} (k ≥ 1), where M and Li are (possibly empty) sequences of atoms.

Definition 4. Encoding Program for the CTL Satisfaction Relation
Given a Kripke structure K = 〈AP ,W,R,w0, L〉, the encoding program PK

is the following co-logic program:
1. sat(S, F ) ← elem(F, S)
2. sat(S,not(F )) ← ¬elem(F, S)
3. sat(S, and(F1, F2)) ← sat(S, F1), sat(S, F2)

4.1 sat(S, or(F1, F2)) ← sat(S, F1)
4.2 sat(S, or(F1, F2)) ← sat(S, F2)
5. sat(S, ax(F )) ← ∧k

i=1(ti(S, Si), sat(Si, F ))
6. sat(S, ex(F )) ← ∨k

i=1(ti(S, Si), sat(Si, F ))
7.1 sat(S, au(F1, F2)) ← sat(S, F2)
7.2 sat(S, au(F1, F2)) ← sat(S, F1),

∧k
i=1(ti(S, Si), sat(Si, au(F1, F2)))

8.1 sat(S, eu(F1, F2)) ← sat(S, F2)
8.2 sat(S, eu(F1, F2)) ← sat(S, F1),

∨k
i=1(ti(S, Si), sat(Si, eu(F1, F2)))

9.1 sat(S, aũ(F1, F2)) ← sat(S, F2), sat(S, F1)
9.2 sat(S, aũ(F1, F2)) ← sat(S, F2),

∧k
i=1(ti(S, Si), sat(Si, aũ(F1, F2)))

10.1 sat(S, eũ(F1, F2)) ← sat(S, F2), sat(S, F1)
10.2 sat(S, eũ(F1, F2)) ← sat(S, F2),

∨k
i=1(ti(S, Si), sat(Si, eũ(F1, F2)))

together with the clauses defining the predicate ti’s and elem, where elem(p,w)
holds iff p ∈ L(w) for every property p ∈ AP and w ∈ W .
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In PK, every ground atom of the form sat(·, aũ(·, ·)) or sat(·, eũ(·, ·)) is anno-
tated as coinductive, while the other atoms are annotated as inductive. ��

PK satisfies the local stratification restriction w.r.t. the stratification func-
tion σ defined as follows; For every ground terms e, s and s′, σ(elem(e, s)) =
σ(ti(s, s′)) = 0, and σ(sat(s, ϕ)) = ‖ϕ‖.

Each clause in PK is defined to simulate the corresponding transition rule of
δ in AK,ϕ, and the predicate annotation in PK is given in accordance with the
accepting condition of AK,ϕ. Since the construction of PK follows the encoding
schema of WAAs into co-LPs, the following proposition holds:

Proposition 1. Correctness of Encoding the CTL Satisfaction Relation
Given a Kripke structure K = 〈AP ,W,R,w0, L〉, let PK be the encoding co-logic
program and ϕ a CTL state formula. Then, K, w0 |= ϕ iff sat(w0, ϕ) ∈ M(PK).

Example 2. Let us consider: (i) the set AP = {a, b} of elementary properties,
and (ii) the Kripke structure K = 〈AP , {s0, s1, s2}, R, s0, L〉, where R is the tran-
sition relation {(s0, s0), (s0, s1), (s1, s1), (s1, s2), (s2, s1)} and L is the function
such that L(s0) = {a}, L(s1) = {b}, and L(s2) = {a}. Consider the CTL formula
ϕ = E(aUA(falseŨ(EtrueUb))), which is often abbreviated as E(aUAGEFb).
The encoding program PK consists of the clauses 1 − 10 in Definition 4 defining
the predicates sat , together with the following clauses:

tr(s0, s0) ← tr(s0, s1) ← tr(s1, s1) ← tr(s1, s2) ← tr(s2, s1) ←
elem(a, s0) ← elem(b, s1) ← elem(a, s2) ←

��
Given the encoding program PK and a CTL formula ϕ, the model checking

problem is reduced to theproblemof checkingwhether or not sat(w0, ϕ0) ∈ M(P ).
This is done in co-logic programming by two methods of query evaluation: the
bottom-up evaluation based on the fixpoint semantics and the top-down evaluation
based on the co-SLD resolution [35].

In summary, our encoding schema of WAAs/HAAs into the correspond-
ing co-LPs is quite simple and general; it is simple, because the definition of
clauses is given to precisely simulate the transition rules in δ, while the predi-
cate annotations are given to exactly correspond to the acceptance conditions
of WAAs/HAAs. Our encoding schema is also general; there is no need to indi-
vidually consider co-LPs for other branching-time logics such as alternating μ-
calculus and CTL*, because it is shown [21] that model checking for alternating
μ-calculus is done by WAAs, while CTL* model checking is done by HAAs.

3.3 Handling Negation in Co-LP

The definition of the encoding program PK contains a negative literal in the body
of clause 2 (Def. 4). In the following, we thus examine the existing proposal for
handling negation in co-LP.

In [27,28], Min and Gupta proposed an extension of co-SLD resolution, called
co-SLDNF resolution. The declarative semantics of co-SLDNF is given in terms
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of the work by Fitting [11] and Fages [10], while the procedural semantics is given
in terms of co-SLDNF resolution. Following Min [28], we denote by HMR(P ) the
(Rational) Herbrand model semantics given by co-SLDNF.

Example 3 (M(P ) and HMR(P )). In the following, predicates p and q are anno-
tated as inductive.

1. First, let P1 = {p ← p}. Then, P1 has two models in HMR(P1): M1 = {p}
and M2 = ∅. Since p is an inductive predicate, the standard co-LP semantics
M(P1) = M2. Therefore, HMR(P ) does not coincide with M(P ), the original
semantics by Simon et al. [35].

2. We then consider the following program: P2 = {p ← p; q ← not p}. P2 also
has two models in HMR(P2): M1 = {p} and M2 = {q}. P2 satisfies the local
stratification restriction, and it is a stratified program in the standard sense.
Therefore, M(P2) = M2.

3. Finally, consider the program P3 = {p ← not q; q ← not p}. P3 has two
models in HMR(P3): M1 = {p} and M2 = {q}. In this case, HMR(P3)
coincides with the answer set semantics AS (P3). M(P3) is not defined, since
P3 does not satisfy the local stratification restriction. ��

It is noted in [28] that the semantics HMR(P1) by co-SLDNF for P1 seems
to be counter-intuitive, whereas it was also argued that such a behaviour of
co-SLDNF is advantageous for Answer Set Programming (ASP), as shown in
program P3 in the above.

Fromtheviewpoint ofmodular programming, however, the semanticsHM R(P )
or co-SLDNF would make it difficult for a co-LP programmer to define a new pred-
icate (such as q in P2) by using given predicates (such as p in P1) as building blocks,
since her/his intended semantics of p will be the standard semantics M(P ) for def-
inite co-LPs. In the following, we therefore present an alternative approach to co-
LPswith negation. In our approach, the semantics coincideswithM(P ) for a co-LP
P with the (local) stratification restriction, whereas it coincides with the answer
set AS(P ) for a class of non-stratified programs.

4 Towards an Operational Semantics for Non-Stratified
Co-LP

4.1 Negation Elimination for Co-LP

Our approach to handling negation in co-LP is based on negation elimination
(NE for short), a familiar program transformation technique, tailored to co-logic
programs [34]. Given a co-LP P , NE [34] derives a set P ∗ of definite clauses from
P such that (i) each predicate symbol p in P has one-to-one correspondence
with a new predicate symbol, not p, in P ∗ with the same arity, and (ii) for any
ground atom p(t̃) and not p(t̃), M(P ) |= ¬p(t̃) iff M(P ∗) |= not p(t̃), by the
following two steps:
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(step 1) for each clause in P , we replace each occurrence not p of naf-literals (if
any) by not p, where not p is a new predicate not appearing elsewhere;
(step 2) we then derive the definition of each not p from the completed defini-
tion of p in P , denoted by comp(p). Namely,
(i) [Definition Derivation] Suppose that comp(p) is of the form: p ↔ B1 ∨

· · ·∨Bn. Then, negating both sides of comp(p), and replacing every negative
occurrence ¬p by not p, we obtain not p ↔ ¬(B1 ∨ · · · ∨ Bn).
Next, transforming the right-hand side in the above to a disjunctive form,
using De Morgan’s laws, replacing each occurrence of ¬not q by q, and each
occurrence of ¬q by not q, we obtain the completed definition of not p,
i.e., not p ↔ NB1 ∨ · · ·∨NBn′ , where each NB i is a conjunction of positive
literals. Finally, we transform comp(not p) to a set of clauses: {not p ←
NB1; . . . ;not p ← NBn′}.

(ii) [Annotation Inversion] Annotate the derived predicate not p as “coin-
ductive” (resp. “inductive”) if the annotation of the original predicate p is
inductive (resp. coinductive).

(iii) Apply the above steps (i) to (iv) to all remaining predicates not p appear-
ing in this transformation process.

Let P be a co-LP with the local stratification restriction σ, and P ∗ be the set
of all clauses obtained by applying the above NE transformation. We define the
stratification function σ∗ for P ∗ as follows: σ∗(p) = σ(p) for all predicates defined
in P , and σ∗(not p) = σ(p) + 1 for all predicates not p newly introduced in τ .
Then, we can show that P ∗ satisfies the local stratification restriction w.r.t. σ∗.

Example 4. Continued from Example 3. Recall that both p and q are annotated
as inductive.

1. We first reconsider P1 = {p ← p}. Then, P ∗
1 = P1 ∪ {not p ← not p}, and

not p is annotated as coinductive. Therefore, the goal not p has a successful
co-SLD derivation in P ∗

1 , which coincides with the original semantics M(P1).
2. Next, consider again P2 = {p ← p; q ← not p}. Then, P ∗

2 = {p ← p; q ←
not p}∪{not p ← not p;not q ← p}. Then, the goal not q, for example,
has no successful co-SLD derivation in P ∗

2 , since p is annotated as inductive.
Our approach thus coincides with the original semantics M(P2).

3. Finally, consider the non-stratified program P3 = {p ← not q; q ← not p}.
Then, P ∗

3 = {p ← not q; q ← not p; not p ← q; not q ← p}. P ∗
3 does not

satisfy the stratification restriction. ��

As the above example shows, NE works well for locally stratified co-LPs,
while NE will derive non-stratified co-LPs from non-stratified programs as P3.

In co-logic programming, one of the challenging issues is to extend the frame-
work to handle non-stratified co-LPs, e.g., [17]. Moreover, for the purpose of
model checking, the conventional co-LPs with the stratification restriction are
not expressive enough to handle temporal logics such as the general μ-calculus.
The general μ-calculus, which allows arbitrary nesting of least (μ) and greatest
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(ν) fixpoint operators, cannot be translated into WAAs; it can be translated to
alternating Rabin automata [9].

In the following, we will therefore focus on the Horn μ-calculus [2], which is an
extension of co-LPs. We present a practical proof procedure for Horn μ-calculus
à la co-SLD derivation and its application for co-LP with negation.

4.2 Horn µ-Calculus and Its Proof Procedure

Charatonik et al. [2] have proposed the Horn μ-calculus, an extension of logic
programs by allowing nesting of least and greatest fixpoints, in terms of a priority
of each predicate for specifying whether its semantics has to be computed as
a least or a greatest fixpoint. They have given to the Horn μ-programs the
semantics based on ground proof trees as well as the nested fixpoints semantics.

A Horn μ-program (P,Ω) is a set of definite clauses in which every predicate
symbol p in P is associated with a non-negative number Ω(p), called the priority
of p. The priority of an atom p(t̃) is defined to be the priority of the predicate
p, and denoted by Ω(p(t̃)).

The semantics for a Horn μ-program is given in terms of ground proof trees.
A proof tree for a ground atom p(t̃) is a (possibly) infinite tree with the root
labeled by p(t̃), which is defined in a usual way: Given a logic program P , r is a
proof tree if for each node n in r, labeled by some ground atom h, there exists a
ground instance h ← b1, . . . , bm (m ≥ 0) of a clause in P , and n has m children
nodes, each of which is labeled by bi (0 ≤ i ≤ m). When m = 0, the node n has
no children nodes.

For an infinite path π in a proof tree, we denote by Inf (π) the set of all
priorities occurring infinitely often on the path π. We say that a proof tree
accepts the atom p(t̃) if its root is labeled by p(t̃) and for all paths π starting
from the root, the maximal element of Inf (π) is even.

For a Horn μ-program (P,Ω) we define [[(P,Ω)]] the set of all ground atoms
p(t̃) such that there exists a proof tree which accepts the atom p(t̃).

Note that predicates of even (odd) priority are given greatest (least) fix-
point meanings, respectively. In particular, if all predicates have priority 0 then
[[(P,Ω)]] = gfp(TP ). On the other hand, if all predicates have priority 1, then
[[(P,Ω)]] = lfp(TP ).

Example 5. (Adapted and simplified from [2].) Let P0 = {p ← p; p ← q; q ← p}
be a set of clauses, where p is an inductive predicate, while q is a coinductive
predicate. Since P0 does not satisfy the stratification restriction, its meaning is
not determined in co-logic programming.

In the Horn μ-calculus, however, the semantics of P0 can be determined in
terms of priorities assigned to the predicates. Suppose, for example, that the
coinductive predicate q has a higher priority than the inductive predicate p. We
thus define: Ω(p) = 1 and Ω(q) = 2.

The acceptance condition for [[(P0, Ω)]] implies that any infinite path in an
accepting proof tree must have an infinite number of occurrences of the predicate
q. Since the priority of p is odd, it must “terminate” in the use of a higher priority
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P0 = {c1, c2, c3},

Ω(p) = 1, Ω(q) = 2

c1 : p ← p

c2 : p ← q

c3 : q ← p

q : 2

| c3

p : 1...| c∗
1c2

q : 2

| c3...

q : 2

| c3

p : 1

| c1

p : 1

| cω
1...

Fig. 1. Proof Trees for a Horn μ-Program in Ex. 5: an accepting proof tree (left) and
a not-accepting one (right). In the above, each node is depicted with the priority of its
labelled predicate, while each edge is depicted with the clause used for deriving a child
node from its parent node.

predicate, i.e., q in this case. In contrast, since the priority of q is even, it need not
terminate; it can call itself infinitely often, possibly through terminating calls
to p. If we assume that q expresses some “good” property, then the program
describes a kind of liveness property: from any point q will eventually happen.

In Fig. 1 (left), the node labelled with p is obtained from the root q using
clause c3. Then, applying clause c1 finitely often and then c2, denoted by c∗

1c2,
we obtain the node labelled with q, which is the same as the root node. We
then repeat this process infinitely often. For this unique infinite path π, we have
that max{Inf (π)} = 2, implying that the proof tree is accepting: q ∈ [[(P0, Ω)]].
Similarly, we have that p ∈ [[(P0, Ω)]].

On the other hand, the proof tree in Fig. 1 (right) is not accepting: it is
constructed from the root node, applying clause c1 infinitely often. Then, for
the resulting infinite path π′, we have that max{Inf (π′)} = 1, implying that the
tree is not accepting. ��

It is easy to see that the notion of priorities in a Horn μ-program exactly
captures the notion of strong/weak inductive annotations, which have recently
been proposed by Gupta et al. [17] to specify priorities of inductive predicates
to coinductive ones.

Operational Semantics of Non-Stratified Co-LP. The proof tree for defin-
ing the semantics of Horn μ-programs can be considered an “ideal” proof pro-
cedure, since the proof tree will be an infinite tree in general.

One simple way to realize an effective procedure for Horn μ-programs will
be use co-SLD derivation by Simon [36]. Recall that coinductive hypothesis rule
(CHR) in co-SLD derivation states that during execution, the current call p(t̃)
succeeds if it unifies with one of its ancestor calls p(t̃′). Our proof procedure,
called co-SLD derivation with the parity condition (co-SLD+p for short), simply
incorporate checking the parity condition into CHR; for a path π from the the
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current call p(t̃) to its ancestor p(t̃′), we check whether max{Inf (π)} is even or
not.

The above-mentioned simple modification allows us to handle non-stratified
co-LPs, as the following proposition shows. To prove the completeness, we need
to restrict atoms that have rational proof trees. A tree is rational ([5,6]) if the
cardinality of the set of all its subtrees is finite.

Proposition 2. Correctness of co-SLD+p

(Soundness) If an atom A has a successful co-SLD+p in a Horn μ-program (P,Ω),
then any ground instance of E(A) is true in (P,Ω), where E is the resulting
variable bindings for the derivation.
(Completeness) If A ∈ [[(P,Ω)]] has a rational proof tree, then A has a successful
co-SLD+p in program a Horn μ-program (P,Ω). ��

It is easy to show that Horn μ-calculus is an extension of co-logic program-
ming and that co-SLD+p derivation extends co-SLD derivation. In fact, let P
be a co-LP with a stratification σ. Then, we call a priority function Ω consis-
tent with σ, if it satisfies the following: (i) σ(p) ≤ σ(q) iff Ω(p) ≤ Ω(q) for any
predicates p and q, and (ii) Ω(p) is even (odd) if p is a coinductive (inductive)
predicate, respectively. Then, we have the following:

Theorem 1. Let P be a co-logic program with a stratification σ, and Ω be
a priority function consistent with σ. Then, the semantics of Horn μ-calculus
coincides with that of co-logic programming: [[(P,Ω)]] = M(P ). Moreover, co-
SLD+p derivation in (P,Ω) coincides with co-SLD derivation in P . ��

4.3 An Alternative Approach to LPs with Negation

As an application of co-SLD+p , we will utilize it for interpreters for logic pro-
grams with negation. In the following, we consider normal programs, where a
clause γ is of the form: p ← q1, . . . , qm, not r1, . . . , not rn (m ≥ 0, n ≥ 0). Each of
p and qi (1 ≤ i ≤ m) is a literal, each not rj (1 ≤ i ≤ n) is a naf-literal (negation
as failure or default negation). We call p the head of the clause γ, denoted by
hd(γ). A goal G is a conjunction consisting of positive literals and naf-literals,
and we can assume without loss of generality that G consists of a single posi-
tive literal. For ease of explanation, we restrict ourselves to only propositional
programs in what follows.

Let P be a program and G be a goal. Suppose that a program P ∗ is obtained
from P by NE transformation. Then, we consider a Horn μ-program (P ∗, Ω),
where we define the priority Ω as Ω(not p) = 2 and Ω(p) = 1 for each predicate
p appearing in P ∗. We call (P ∗, Ω) the dual Horn μ-program of P .

Our method is based on a “generate-and-filter” approach, i.e., first generating
a candidate model by constructing a proof tree with the root G using co-SLD+p ,
and then filtering it by checking some constraints on that model, depending on
the syntax and the intended semantics of P . We consider the following three
cases depending on whether a given program P is strict or not.
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P ∗
3 = {c1, c2, c3, c4}

c1. p ← not q

c2. q ← not p

c3. not p ← q

c4. not q ← p

G1

|
p : 1

|
not q : 2

|
p : 1

|... ...

p : 1

not q : 2

p : 1

...

q : 1

not p : 2

q : 1

G2

Fig. 2. The Proof Trees of G1 in P ∗
3 (left) and G2 in P ∗

3 (right) (Ex. 4): G1 is defined
by G1 ← p, and G2 is defined by G2 ← p, q

1. Strict Answer Set Programs. First, we consider a simple case; we assume
that P and G satisfy the strictness condition ([1,20]), which roughly says that
no predicate depends on another predicate both positively and negatively. When
p depends on q positively (negatively), we denote it by p ≥+1 q (p ≥−1 q),
respectively. We assume that ≥+1 is reflexive, i.e., p ≥+1 p. Then, P is called
strict iff we never have p ≥+1 q and p ≥−1 q. We call P strict with respect to G
iff for no predicate letter p, do we have both G ≥+1 p and G ≥−1 p.

In this case, a model generated by co-SLD+p is indeed a model of P , and no
filtering is necessary as the following proposition shows:

Proposition 3. Correctness of Co-SLD+p for Strict ASP
Let P be a strict answer set program and G a goal such that P is strict w.r.t.
G. Let (P ∗, Ω) be the dual Horn μ-program of P . Then,
(Soundness) If G has a successful co-SLD+p in Horn μ-program (P ∗, Ω), then G
is true in an answer set of P .
(Completeness) If G is true in an answer set of P , then G has a successful co-
SLD+p in Horn-μ program (P ∗, Ω). ��

In Fig. 2, the proof tree of G1 in P ∗
3 is shown, where G1 is defined by G1 ←

p. P3 is strict, and P3 is strict w.r.t. G1. The proof tree accepts G1, which
corresponds to the fact that p is tree in the answer set {p} of P3.

2. Non-strict Answer Set Programs. Next, suppose that the strictness
condition of P and G is not satisfied. In this case, after generating a candidate
model by co-SLD+p, we filter it by checking whether it satisfies two constraints
described below.

One constraint, termed the consistency constraint , requires that, for each
atom p, p and not p do not appear in a proof tree. In Fig. 2, for example, the
proof tree of G2 in P ∗

3 is shown, where G2 is defined by G2 ← p, q. Then, P3 is
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not strict w.r.t. G2. Since the proof tree contains both p (q) and not p (not q),
respectively, we filter the candidate model containing G2, which implies that
AS(P3) �|= G2.

The other constraint will be necessary, since an non-strict answer set pro-
gram will contain a well-known odd loops over negation (OLON) clause such
as γ = p ← q, not p. γ imposes a constraint on candidate models that either
the head of γ is true through other clauses, or the body of γ must be false.
Such OLON clauses can be handled by using the method by Marple et al. [26];
this constraint will be represented as the following consistency checking clauses:
{chk p ← p; chk p ← not q}. Then, for each head pi (n ≥ 0), we intro-
duce a new predicate chk pi defining the above-mentioned consistency checking
clauses, and we add each chk pi to a given goal G, i.e., the goal is transformed
to G, chk p1, . . . , chk pn.

Marple et al. [26] have proposed a goal-directed procedure for executing ASP,
by modifying co-SLD derivation so that a coinductive recursive call can succeed
only if it is in the scope of at least one negation. We note that their condition
exactly corresponds to our CHR with the parity condition in co-SLD+p.

3. Co-SLD+p for the WFS. Finally, we consider how to use co-SLD+p

for the well-founded semantics (WFS). We introduce the following constraint,
termed the well-founded constraint , for filtering a candidate model to obtain
well-founded models.

Let TP ∗,G be a proof tree with the root node G in P ∗ and cls(TP ∗,G) be the
set of ground clauses used to construct TP ∗,G. Then, we say that TP ∗,G satisfies
the well-founded constraint if the following order ≥ among ground atoms exists:

p > qi iff p ← b1, . . . , bm,not qm+1, . . . ,not qn ∈ cls(TP ∗,G), or
not p ← q1, . . . , qm,not bm+1, . . . ,not bn ∈ cls(TP ∗,G),

where n ≥ m ≥ 0, and > is well-founded, i.e., there is no infinite sequence of
ground atoms p1 > p2 > . . . .

The idea of introducing the above ordering ≥ will be obvious, when we con-
sider the dynamic stratification in an SLS-tree [32], where, when a negative
ground literal not p in a goal is selected, the dynamic stratum of p is strictly
smaller than that of the goal of the SLS-tree.

In the proof tree of G1 in P ∗
3 (Fig. 2), we have that p > q > p > . . . , thus

the well-founded constraint is violated. In this case, we assign the truth value u
(undefined) to G1, which corresponds to the fact that v(G3) = u, where v is the
truth valuation in the well-founded semantics WFS (P3).

We omit here the proof of the correctness of the above approach; the proof is
done by showing the correspondence between SLS-trees and the proof trees by
co-SLD+p using induction w.r.t. the dynamic stratum of a given goal.

5 Related Work and Concluding Remarks

Various logic programming-based techniques and tools have been developed for
CTL and other temporal logic model checking (see, e.g., an excellent overview
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[23] and the references therein). For example, techniques based on tabled reso-
lution, CLP, constraint solving, abstract interpretation, and program transfor-
mation have been proposed for performing CTL model checking of finite and
infinite state systems (see, e.g., [7,12,22,30,31,33]).

In the existing work based on the least-fixpoint semantics, CTL quanti-
fiers with the greatest fixpoint characterization such as AŨ and EŨ are repre-
sented using double negation: for example, AGϕ = AfalseŨϕ = ¬EtrueU¬ϕ =
¬EF¬ϕ. Such negative formulas will require an extra support such as construc-
tive negation. In contrast, a CTL formula in our framework is in positive normal
form: negation is applied only to atomic propositions (see Def. 1). Moreover, our
encoding is a “pure” co-logic program, while an extra logical predicate such as
tfindall is used in XMC [33].

Our approach in this paper is to study the relationship between co-LPs and
the standard automata-based methods. In particular, we have proposed a gen-
eral encoding schema of weak alternating automata (WAAs) into co-LPs; the
resultant co-LP PK for CTL model checking is only an instance of the schema.
For example, DeVries et al. [8] have recently proposed a LTL interpreter written
in co-LP. Such a co-LP for LTL model checker will be also derived via our encod-
ing schema in Sect. 3, since Gastin and Oddoux [13] have shown a translation
from LTL model checking to weak alternating Büchi automata.

Gupta et al. [17] have proposed an extension of co-LPs to handle non-
stratified co-LPs by introducing strong/weak inductive annotations. However,
they have not discussed its relationship with the Horn μ-calculus, and its declar-
ative semantics is not known. On the other hand, the Horn μ-calculus and its
fragment, the alternating-free Horn μ-calculus by Talbot [37], allow nesting of
least and greatest fixpoints similar to co-LPs, and they have been equipped with
the procedural semantics as well as the nested fixpoints semantics. However, a
practical top-down operational semantics like co-SLD resolution have not been
provided. In this paper, we have proposed a proof procedure, co-SLD+p, for non-
stratified co-LPs, and have shown its correctness. Based on that, we have also
shown that co-SLD+p can be utilized as a top-down proof procedure for a class
of normal logic programs.

One direction for future work is to extend the current co-logic programming
framework to allow generalized literals (e.g., [15,37]), which have universal quan-
tifications on the variables occurring in the body of clauses. For example, we can
write an expression: ∀S, S′(tr(S, S′) → sat(S′, ϕ)) in the body of a co-LP clause,
which will then make more succinct the encoding program in Def. 4. Further-
more, although we have restricted ourselves to only propositional AS programs
in this paper, it will be interesting to extend our approach to handle a more
general class of AS programs (e.g., [28]).

Acknowledgments. The author would like to thank anonymous reviewers for their
constructive and useful comments on the previous version of the paper. The idea of
using co-LP techniques for a proof procedure for the WFS in Sect. 4.3 came from the
discussions with Gopal Gupta at LOPSTR’13 in Madrid.
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Abstract. Constraint Handling Rules (CHR) is a high-level committed-
choice language based on multi-headed and guarded rules. Over the past
decades, several extensions to CHR and variants of operational semantics
were introduced. In this paper, we present a generic approach to simu-
late the execution of a set of different CHR operational semantics. The
proposed approach uses source-to-source transformation to convert pro-
grams written under different CHR operational semantics into equivalent
programs in the CHR refined operational semantics without the need to
change the compiler or the runtime system.
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1 Introduction

Constraint Handling Rules (CHR) [4] is a high level language that was intro-
duced for writing constraint solvers. CHR is a committed choice language based
on multi-headed and guarded rules. With CHR, users can have their own defined
constraints. CHR transforms constraints into simpler ones until they are solved.
Over the past decade, CHR has matured into a general purpose language. In addi-
tion, the number of CHR extensions and variants has increased [10]. These exten-
sions have operational semantics different than the refined operational semantics
(wr) of CHR [3] regarding some properties like execution control, expressivity
and declarativity.

Such extensions tackle some weaknesses and limitations of CHR and offer
interesting properties to its users [10]. However, users cannot use these exten-
sions directly through SWI-Prolog [13] since their operational semantics is differ-
ent than the refined operational semantics supported by SWI-Prolog (wr). Some
extensions, nevertheless, provide transformation schemes to the refined opera-
tional semantics. However, such schemes usually require accessing the compiler
and using additional low level tools [6,8,11,12] .
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The work presented here extends the tool presented in [2] which enhanced
CHR with visualization features through a source-to-source transformation app-
roach without changing the compiler or the runtime system.

The aim of this work, on the other hand, is to introduce an approach that
is able to automatically simulate the execution of a set of CHR operational
semantics. Such operational semantics could have different execution models
than the refined operational semantics. The proposed approach uses source-to-
source transformation to convert CHR programs written under different oper-
ational semantics to equivalent programs that could be used with the refined
operational semantics (wr). This process does not require any changes to the
compiler or the runtime system. The paper presents the general scheme that
could be used with different operational semantics. In addition, the scheme is
applied on a set of the existing CHR operational semantics. Although previous
approaches provided transformation techniques, the focus here is on achieving a
general approach that is usable without having to change any details regarding
the runtime system. The presented work thus does not aim to provide a more
efficient alternative but rather a more general one.

The paper is organized as follows. Section 2 briefly discusses the syntax and
semantics of Constraint Handling Rules. Section 3 introduces the general trans-
formation approach and the structure of the transformed file. In addition, it
introduces the implementation of an explicit propagation history. Section 4 shows
how the transformation approach is applied to implement a set of different CHR
operational semantics. Section 5 provides an sketch proof for the equivalence
between source programs and the transformed programs. Finally, we conclude
with a summary and a discussion of future work in Section 6.

2 Constraint Handling Rules

This section introduces the syntax of CHR. In addition, we informally explain
the abstract semantics and the refined operational semantics.

2.1 Syntax

CHR programs consist of a set of guarded rules that are applied until a fixed
point is reached. In CHR two types of constraints are available. The first type
is the built-in constraints provided through the host language. The second type
of constraints is the CHR or user-defined constraints that are defined through
the rules of a CHR program [5]. A CHR program consists of a set of a so-called
“simpagation” rules in the following format:

Hk \ Hr ⇔ G | B.

The head of the CHR rule, which comes before the (⇔), consists of a conjunction
of CHR constraints only. The elements of Hk are the constraints that are kept
after the rule is executed. On the other hand, the constraints in Hr are removed
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after executing the rule. G is the optional guard that consists of built-in con-
straints. The body (B) could contain both CHR and built-in constraints. Two
other types of rules exist. They are considered as special cases of simpagation
rules. The first one occurs whenever Hk is empty. Such rules are called “simplifi-
cation” rules. In this case, the head of the rule consists only of CHR constraints
that should be removed on executing the rule. Such rules replace constraints by
simpler ones. A simplification rule thus has the following format:

Hr ⇔ G | B.

The second rule type is propagation rules. In a propagation rule, Hr is empty.
Consequently, all head-constraints are kept after the rule is executed adding
the constraints in the body to the constraint store. This may cause further
simplification afterwards. Propagation rules have the following format:

Hk ⇒ G | B.

2.2 Operational Semantics

The operational semantics of CHR programs is defined by a state transition
system. The complete definition of state transitions of the abstract semantics
and the refined operational semantics are introduced in [5] and [3] respectively.
The execution of a CHR program starts from an initial state. Rules are applied
until a final state is reached. A final state is a state where no more rules are
applicable.

A rule is applied if the constraints in store matches the head-constraints of
the rule, and the guard of the rule succeeds. The current implementation of
CHR in SWI-Prolog does not allow binding variables in the guards of rules by
default [13]. According to the type of the rule, the constraints that matched the
head-constraints of the rule are either removed or kept after the rule application.

Consider the following example that computes the minimum of a multiset
of numbers. The numbers are represented by the CHR constraint min/1 whose
argument is the value of the number.

find_min @ min(N) \ min(M) <=> N=<M | true.

The initial query for the program is a multiset of constraints representing
the numbers whose minimum is to be computed. Each time the simpagation
rule (find_min) is applied, two numbers are compared and the larger one is
removed. This rule is applied exhaustively until the constraint store contains
one min constraint representing the minimum number.

The abstract CHR operational semantics does not specify the order in which
the constraints of the initial goal are processed, or the order of the application
of the rules. For the initial goal min(1), min(3), min(0), min(2), the result is
always min(0). However, many execution paths could be taken. The computation
can start with applying the rule on the constraints min(1) and min(3), or the
constraints min(1) and min(0), or any other combination of two constraints
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matching the head of the rule. In addition, in case the goal constraints match
the heads of more than one rule, then any of them could be applied. In other
words, there is no restriction on the order of application of rules.

The refined operational semantics fixes, in part, the non-determinism of the
abstract semantics. It fixes the order of processing the goal constraints and the
order in which the rules are applied. In the refined operational semantics, goal
constraints are processed from left to right, and rules are tried in the textual
order of the program. Accordingly, for the same goal in the above example, the
simpagation rule will be applied first with min(1) and min(3) constraints then
it will continue with the remaining constraints.

In both semantics, there is a restriction for the application of propagation
rules. A propagation rule is allowed to be applied only one time with the same
combination of constraints that matched the head-constraints of the rule.

3 The Transformation Approach

This section introduces a new source-to-source transformation approach that is
able to transform CHR programs written under different operational semantics
into CHR programs that are equivalent when executed under the refined opera-
tional semantics.

Building on the representation used in [2], the rules of the source program
are transformed into a so-called “relational normal form” introduced in [7]. This
normal form uses special CHR constraints that represent the components of a
rule. For example, the rule find_min in Section 2.2 is represented in the relational
normal form as follows:

head(find_min,‘min(N)’,keep),
head(find_min,‘min(M)’,remove),
guard(find_min, ‘N<=M’),
body(find_min,‘true’)

The CHR solver is first parsed. The parser extracts the information of the
program and represents it in the normal form. The transformer is a CHR solver
that runs on the relation normal formal of the source program and writes the
new rules into the transformed program file.

The idea of the presented transformation approach relies on the execution
model of the operational semantics. The work in this paper involves transforming
different operational semantics that have different state transitions for rule choice
and rule application. In addition, inverse execution of the rules of a program [14]
is also considered. The transformation allows for the simulation of different rule-
choice and rule-application state transitions of different operational semantics.
This is done by separating rule matching and rule application into two steps.
The basic idea is to delay the application of the body of the rule. With this app-
roach, rather than having to apply the first matched rule, the new program is
able to choose from the set of all the applicable rules. The adopted candidate set
resolution approach is similar to the conflict resolution mode introduced in [5].
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However, the presented work provides an automated transformation method-
ology that is able to combine the different properties of the execution models
of the operational semantics. As a result, the execution of different operational
semantics is possible. Two rules are generated for every rule in the source pro-
gram. The first is a propagation rule that replaces the body by a new CHR
constraint representing the rule name and the constraints that matched the rule
head. The second rule applies the (possibly modified) body of the rule. The
choice of the rule to be applied depends on the candidate set resolution strat-
egy. In the current implementation, the transformer provides different resolution
strategies simulating different rule-choice state transitions. The execution model
of the operational semantics was represented through a set of properties. Such
properties encode the execution direction, the candidate set resolution strategy
and whether multiple-rules matching is allowed. Such property-set is then used
to construct the transformed program.

Through specifying the properties of the execution model, the proposed app-
roach is able to transform different operational semantics. The proposed trans-
formation allows forward or inverse rule application as execution strategies. It
also offers a set of candidate set resolution strategies. In addition, at each com-
putation step, a choice of single or multiple rules matching is possible.

Section 3.1 explains the transformation of the rules according to the proper-
ties of the execution model. Section 3.2 introduces the idea of implementing an
explicit propagation history in the transformed program.

3.1 The Transformed Program Structure

Figure 1 shows the steps of constructing the transformed program. The choice
between the different construction paths depends on properties of the execution
of the semantics. The construction of the transformed file is done in four steps
as explained below.

1. The first step adds for every CHR constraint c(X) in the source program, a
simplification rule (extend) in the transformed program PT in the form:

extend @ c(X) <=> c(X,_).

This way, when executing the transformed program, an extended CHR con-
straint c(X,V) is created for each CHR constraint c(X) similar to the app-
roach used in [8]. V is a fresh Prolog variable used as an explicit identifier for
a constraint and is also used in the implementation of the propagation his-
tory explained in Section 3.2. In addition, all the constraints in the heads of
the rules of the transformed file are extended with an additional argument.
This argument represents the unique identifier of the constraint.

2. The second step adds, for each rule in the source program, a propagation
rule that differs according to execution strategy of the operational semantics.
One of two possible rules is added. The rule Fmatch is added in the case of
forward execution. On the other hand, the rule Imatch is added whenever
inverse execution is needed.
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Fig. 1. Construction Steps of The Transformed File

Although both rules are propagation rules, they have different constituents.
A forward match (Fmatch) rule has the same head-constraints and guard as
the original rule of the source program rule. However, the head of an inverse
match (Imatch) rule contains the kept head-constraints (if any) in addition to
the CHR constraints of the body of the original rule. If the body of the source
program rule contains built-in constraints then they are added to the guard
of this new rule. The body of Fmatch and Imatch is a new CHR constraint
cand/3. The arguments of this new constraint are the rule name, the list of
identifiers of the head-constraints od the rule in addition to a number that
could represent some specific property of the rule. For example, in the case of
CHR with user-defined rule priorities, this number represents the priority of
each rule. Since inverse execution of CHR rules is a one-to-many relationship,
a true disjunct is added to allow backtracking for more than one result.
Thus, for every CHR rule in the source program P:

ri @ Hk\Hr ⇔ G | B.

we will have one of the following rules in the transformed program PT :
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Fmatch-ri @ Hr,Hk ⇒ G | cand(ri, Ids, p).
Imatch-ri @ Hk, B ⇒ G | cand(ri, Ids, p) ; true.

Whenever a rule is applicable, then a new constraint cand/3 is created for
the applicable rule. This new constraint is added to the constraint store. The
new cand/3 constraint means that the applicable rule could be fired with
this specific combination of constraints. If the operational semantics allows
multiple-rules matching at each computational step, an additional constraint
id/1 is added to the head-constraints of the matching rules (Fmatch or
Imatch). Changing the value of the argument of id/1 allows the propaga-
tion rules to be matched with the same instances of constraints for multiple
times. This behaviour is needed to reach the correct output. An example
of this is the case of CHR with user-defined rule priorities, where the high-
est priority rule, among the applicable rules, is fired at each computational
step. The rules that were not fired at one step due to the existence of higher
priority rule(s), should be given a second chance of application. However,
the match (Fmatch or Imatch) rules are propagation rules that are fired for
a specific combination of constraints once. Thus changing any argument of
the constraints of the heads of such rules allow them to be fired again (i.e.
giving the rest of the rules another chance ). Since the original constraints
cannot be manually modified, using the auxiliary constraint id/1 with an
argument that changes with the rule application solved this problem.

In addition, a propagation rule (trigger) is added at the end of the
matching rules. This new rule adds the CHR constraint start/0 to trigger
the candidate set resolution step. The constraint trigger/0 is added to the
end of the constraints in the original query to ensure that it is only activated
at the end.

trigger @ trigger, id(Ni) ==> start.

On executing the transformed program, the result of this step is a set of
all the applicable rules. Each of the candidate rules is represented by the
constraint cand/3. In the refined operational semantics, head-constraints
are searched from left to right. However, for simpagation rules, the head-
constraints to be removed are tried before the constraints to be kept [5].
Thus to preserve the same order, removed head-constraints are added before
the kept head-constraints in the Fmatch transformed rules. p is a property
specified by the operational semantics. In the current implementation, the
property is concatenated to the rule name instead of using the directive
pragma argument to give hints to the compiler.

3. In the third transformation step, rules are added to perform candidate set
resolution. Only one of the candidate applicable rules is chosen to be applied
according to the resolution strategy. In the current implementation of the
transformer, this step is customized according to the respective CHR opera-
tional semantics. The current implementation allows probabilistic and prior-
ity based resolution strategies. More details about candidate set resolution is
given in Section 4 with examples. The result of this step is the rule chosen to
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be applied represented by a new CHR constraint fire/2. The first argument
of fire/2 is the rule name and the second argument is a list of identifiers
of the head-constraints of the rule. The list of constraint identifiers is added
to ensure that the rule will only be applied with this specific combination of
constraints.

4. The last part in the transformed file is responsible of the actual rule appli-
cation. A new rule is added for each rule in the original solver. The new
rule is chosen according to the execution strategy. Thus either a forward
application (Fapply) or an inverse application (Iapply) rule is added to the
transformed program. In Fapply rules, a new constraint fire/2 is added to
the head-constraints to be removed of the source program rule (if any). This
way ensures that only this rule will be applied with the specific combination
of constraints in the list. The body of the rule remains unchanged. In Iapply
rules, the fire/2 constraint and the body of the original rule are added as
head-constraints to be removed. The body of the Iapply rule contains the
head-constraints that should be removed.
For every CHR rule in the source program P:

ri @Hk\Hr ⇔ G | B.

we will have one of the following two rules in the transformed program PT :

Fapply-ri @ Hk\ fire(ri,Ids) , Hr ⇔ B.
Iapply-ri @ Hk\ fire(ri,Ids) , B ⇔ Hr.

The rules are written such that the execution of one rule in the source
program is done in 4 steps in the transformed program The execution of the
transformed program starts by extending the original query constraints. The
extended constraints (constraints with the additional identifier argument) then
try to match the propagation rules in the second part of the transformed file.
Among the set of the applicable rules represented by cand/3 constraints, one
rule is chosen according to the candidate set resolution strategy. Finally, the
chosen rule is applied. Execution then proceeds by extending any constraints
added after applying the chosen rule. The new constraints then try to match
the propagation rules. Candidate set resolution is applied afterwards on the new
candidate-set and so on until reaching a fixed point where no more rules are
applicable. The new file depends on the textual order of the rules since it runs
using the refined operational semantics implemented in SWI Prolog.

3.2 Propagation History Implementation

In some of the cases, the set of matched rules that were not applied at one com-
putation step are given a second chance in the next computation step. This is the
case when the operational semantics allows multiple-rules matching at each com-
putation step and one rule application. In order to allow for multiple-rules match-
ing, the constraint id/1 is added to the head-constraints of the transformed rules.
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However, this approach raised a problem with propagation rules. If a propaga-
tion rule was chosen to be fired then in the next computation step the same
propagation rule will also be applicable, because the constraints that matched
the head were not removed. This causes a problem of trivial non-termination in
the transformed program.

This problem would be solved if every propagation rule is fired only once for
each specific combination of constraint identifiers. This was done by implement-
ing an explicit propagation history. In the proposed approach, a new constraint
history/1 is added to the original query. The argument of history/1 is a list
that contains a set of tuples (r,I). Initially, the list is empty. The first argument
(r) is the propagation rule name while the second argument (I) is an ordered list
of the identifiers of constraints that matched the head-constraints of rule r. The
size of the propagation history depends on the propagation rules in the program.
At any computation step the length of the list of history/1 corresponds to the
number of fired propagation rules.

In the transformed program, propagation rules are modified to be applied
only if the tuple containing the rule name and the list of identifiers of constraints
does not exist in the propagation history, since each constraint in the executed
program has a unique identifier. For example, the following rule in the original
program P:

rule1 @ a(X) ==> b(X).

will have the corresponding propagation rule transformed program PT :

match-rule1 @ a(X,Id1), history(L) ==> \+member((rule1,[Id1]),L)
| cand(rule1,[Id1],1).

Moreover, in this example, the property specified to the operational semantics
is the rule order. Thus for the rule rule1, this property is set to 1 since the
program contains only one rule.

In addition, if a propagation rule is chosen to be applied, a new tuple with
the name of the rule and a list with the identifiers of the matched constraints
is added to the propagation history. Thus, the propagation rules are modified
in the rule application part to update the propagation history. The rule in the
previous example generates the following simpagation rule in the transformed
program PT :
apply-rule1 @ a(X,Id1) \ fire(rule1,[Id1]), history(L)

<=> b(X),history([(rule1,[Id1])|L]).

4 Source-to-Source Transformation for Different CHR
Operational Semantics

This section shows, through examples, how the presented transformation app-
roach is applied to a set of different CHR operational semantics. Transformation
for Probabilistic Constraint Handling Rules is explained in Section 4.1, CHR



154 G. Fakhry et al.

with user defined-rule priorities is introduced in Section 4.2. Section 4.3 intro-
duces transformation for CHRiSM. Finally, transformation for inverse CHR is
introduced in Section 4.4.

4.1 Transformation for Probabilistic Constraint Handling Rules

Probabilistic Constraint Handling Rules (PCHR) [6] is an extension of CHR that
allows for a probabilistic rule choice among the applicable rules. The choice of
the rule is performed randomly by taking into account the relative probability
associated with each rule. PCHR modifies the CHR abstract semantics (wt) in
the “Apply” transition by specifying the probability of the choices of the rules.
This results in an explicit control of the chance that certain rules are applied
according to their probabilities. The “Apply” transition of wt chooses a rule from
the program for execution. Constraints matching the head of the rule should
exist in the store. In addition, the guard should be satisfied. PCHR rules are the
same as CHR rules but with the addition of a number representing the relative
probability of each rule.

PCHR is implemented using the proposed approach with forward execution
strategy, multiple-rules matching. Candidate set resolution is done through a
random choice after normalizing the probabilities of the probabilistic rules. The
following example shows a PCHR program [6] that generates a n bit(s) random
number. The number is represented as binary list of n bit(s). The list is generated
bit by bit recursively and randomly. As long as N is greater than zero, the next
bit will be either 0 or 1 by applying either the second or the third rules with
equal probability; otherwise the non-probabilistic rule r1 will be applied and the
recursion ends. The program is:

r1 @ rand(N,L) <=> N =:= 0 | L = [].
r2_50 @ rand(N,L) <=> N>0 | L=[0|L1], N1 is N-1, rand(N1,L1).
r3_50 @ rand(N,L) <=> N>0 | L=[1|L1], N1 is N-1, rand(N1,L1).

The transformation will result in the following program:

extend @ rand(V2,V1) <=> rand(V2,V1,_).

r1 @ rand(N,L,Id0) <=> N =:= 0 | L = [].
match-r2_50 @ rand(N,L,Id0),id(Ni)==>N>0 | cand(r2_50,[Id0],50).
match-r3_50 @ rand(N,L,Id0),id(Ni)==>N>0 | cand(r3_50,[Id0],50).
trigger @ trigger, id(Ni) ==> start.

start @ cand(R,IDs,N),start <=> random(0,100,Random),
cand(R,IDs,0,N,N,Random).

normalize @ cand(R,IDs,N,M,UB,Random),cand(R1,IDs2,N1)
<=> M2 is M+N1,UB2 is UB+N1,

cand(R1,IDs2,M,M2,UB2,Random),
cand(R,IDs,N,M,UB2,Random).

drop @ id(Ni)\ cand(R,IDs,M,M1,100,Random) <=> Random<M | true.



Towards the Implementation of a Source-to-Source Transformation Tool 155

drop @ id(Ni)\ cand(R,IDs,M,M1,100,Random) <=> Random>=M1| true.
choose @ cand(R,IDs,M,M1,100,Random), id(Ni)

<=> M=<Random,Random<M1
|fire(R,IDs),Ni2 is Ni+1,id(Ni2).

apply-r2_50 @ fire(r2_50,[Id0]),rand(N,L,Id0)
<=> N>0 | L=[0|L1] , rand(N-1,L1).

apply-r3_50 @ fire(r3_50,[Id0]),rand(N,L,Id0)
<=> N>0 | L=[1|L1] , rand(N-1,L1).

The rule start triggers the probability normalization by replacing the first can-
didate rule cand/3 by cand/6. The additional arguments are a list of the con-
straint identifiers that were matched in the head of the rule, the lower bound and
the upper bound of the rule probability interval. In addition, the last argument
is a random number in the interval from 0 to the sum of all rule probabilities cal-
culated by the built-in Prolog predicate random/3. The rule normalize keeps on
replacing the rest of the candidate rules represented through cand/3 constraints
by the extended constraint cand/6, each with the lower and upper bound inter-
val of the corresponding probability of the rule. The arguments of fire/2 are
the rule name and the list of constraints identifiers that were matched in the
head. Otherwise, the cand/6 constraint is replaced by true by the rules drop
which means that this rule will not be applied.

4.2 Transformation for Constraint Handling Rules with
User-Defined Rule Priorities

CHRrp extends CHR with user-defined rule priorities [8]. Rule priorities improve
the expressivity of CHR as they allow for a different choice for rule application
depending on the respective rule priority, resulting in a more flexible execution
control. The operational semantics wp for CHRrp only adds restrictions to the
applicability of the “Apply” transition of the abstract CHR semantics wt. The
rest of state transitions are equivalent in both semantics. For CHRrp programs in
which all rule priorities are equal, every execution strategy under wt is consistent
with wp. Thus, such programs can be executed using the refined operational
semantics as implemented by the current CHR implementations.

In [8], a source-to-source transformation approach that uses some of the com-
piler directives is presented. In [8], constraints are not activated when introduced
to the store by the default transitions of the refined operational semantics, which
are the “Activate” and “Reactivate” transitions [3]. Instead, they remain passive
using the compiler directive passive/1 and are scheduled for activation with the
corresponding rule priority. After trying all the possible matching rules with the
constraints in the query, the highest priority scheduled constraint is activated.

CHRrp is implemented using the proposed approach with forward execution,
multiple-rules matching and a rule priority candidate set resolution strategy. The
following example [8] shows the difference in the execution of the refined opera-
tional semantics and CHRrp . For the same initial query a, the refined operational
semantics will apply the rules in the following order: 1,2,4,3. While in CHRrp ,
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rule 3 has higher priority than rule 4. Therefore, the rules will be applied in the
following order: 1,2,3. Rule 4 will not be applied anymore because constraint
a is removed by rule 3. The same example is used to illustrate the proposed
transformation approach.

r1_1 @ a ==> print(’rule 1 \n’),b .
r2_2 @ a , b ==> print(’rule 2 \n’).
r3_3 @ a <=> print(’rule 3 \n’).
r4_4 @ a , b ==> print(’rule 4 \n’).

The transformation will result in the following program:

extend @ a <=> a(_).

extend @ b <=> b(_).

match-r1_1 @ a(Id0),id(Ni),history(L)

==> \+ member((r1_1,[Id0]),L)|cand(r1_1,[Id0],1).

match-r2_2 @ a(Id0),b(Id1),id(Ni),history(L)

==> \+ member((r2_2,[Id0,Id1]),L)|cand(r2_2,[Id0,Id1],2).

match-r3_3 @ a(Id0),id(Ni) ==> cand(r3_3,[Id0],3).

match-r4_4 @ a(Id0),b(Id1),id(Ni),history(L)

==> \+ member((r4_4,[Id0,Id1]),L)|cand(r4_4,[Id0,Id1],4).

trigger @ trigger,id(Ni) ==> start.

start @ start <=> candList([]).

collect @ candList(L),cand(R,IDs,N) <=> candList([(N,R,IDs)|L]).

choose @ candList(L),id(Ni) <=> sort(L,[(P,H,IDs)|T]),fire(H,IDs),

N2 is Ni+1,id(N2).

apply-r1_1 @ a(Id0)\ fire(r1_1,[Id0]),history(L)

<=> print(’rule 1’), b, history([(r1_1,[Id0])|L]).

apply-r2_2 @ a(Id0),b(Id1)\ fire(r2_2,[Id0,Id1]),history(L)

<=> print(’rule 2’),history([(r2_2,[Id0,Id1])|L]).

apply-r3_3 @ fire(r3_3,[Id0]),a(Id0) <=> print(’rule 3’).

apply-r4_4 @ a(Id0),b(Id1) \ fire(r4_4,[Id0,Id1]), history(L)

<=> print(’rule 4’),history([(r4_4,[Id0,Id1])|L]).

In the transformed program, the rule with the highest priority among the
set of applicable rules is chosen to be applied. The three rules start, collect,
and choose are added to the transformed program to perform the candidate
set resolution according to the priorities of the rules. The rule start initalizes
an empty priority list such that the applicable rules represented by cand/3 are
added to this list by the collect rule. After all cand/3 constraints are added
to the list, the rule choose sorts the list and the rule with the highest priority is
chosen for application. The chosen rule is represented by a new CHR constraint
fire/2, whose first argument is the rule name and the second argument is a list
of identifiers of the head-constraints of the rule. The list of constraint identifiers
is added to ensure that the rule will only be applied with the specific combination
of constraints. In addition, the argument of constraint is incremented to allow
match rules to be tried again.
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4.3 Transformation for CHRiSM

CHRiSM is a probabilistic extension of CHR that is based on CHR and PRISM
[9]. The main difference between the semantics of CHRiSM and PCHR is that the
rule probabilities have a localized meaning. The probability of a rule application
does not depend on the other applicable rules. CHRiSM semantics adds two
features to CHR [9]. First, a defined probability for the entire rule application
given by the “Maybe-Apply” state transition. In the “Maybe-Apply” transition,
according to the probability of the rule, it is either applied or not. However, if
the rule is not applied, the propagation history is updated to prevent further
rule application with the same combination of constraints that matched the rule
head. The second feature is the ability to define a probability for each disjunct
in the rule body in CHR∨ [1] given by the “Probabilistic Choice” transition. In
“Probabilistic Choice”, one disjunct is chosen probabilistically according to its
probability relative to the other disjuncts.

In this paper, the transformation for CHRiSM implements programs with
a user-defined rule probability for the entire rule application, corresponding to
the “Maybe Apply” transition only. In CHRiSM operational semantics, a rule
with a probability p means that whenever the rule is applicable, it will only be
applied with a probability p. If the rule probability is not defined, it is set to
uniform distribution 0.5. CHRiSM is implemented using the proposed approach
with forward execution, single-rule matching and a probabilistic rule application
choice.

The following example illustrates the transformation of CHRiSM to the
refined operational semantics (wr). Starting with initial query a, it is proba-
ble that the first rule is applied. If the first rule is applied, then the constraint b
will be added to the constraints store. Consequently, there is a chance to apply
the second rule with probability 0.5, removing constraint a and adding c to the
constraint store. The program is:

r1_50 @ a ==> b .
r2_50 @ b \ a <=> c .

The transformation will result in the following program:

extend @ a <=> a(_).

extend @ b <=> b(_).

extend @ c <=> c(_).

match-r1_50 @ a(Id0)==>cand(r1_50,[Id0],50).

match-r2_50 @ a(Id0),b(Id1)==>cand(r2_50,[Id0,Id1],50).

start @ cand(R,IDs,N) <=> random(0,100,Random),cand(R,IDs,N,Random).

choose-apply @ cand(R,IDs,M,Random) <=> Random=<M | fire(R,IDs,1).

choose-ignore @ cand(R,IDs,M,Random) <=> M<Random | fire(R,IDs,2).

apply-r1_50 @ a(Id0)\ fire(r1_50,[Id0],1) <=>b.

apply-r2_50 @ b(Id1)\ fire(r2_50,[Id0,Id1],1),a(Id0) <=> c.



158 G. Fakhry et al.

ignore-r2_50 @ a(Id0),b(Id1)\ fire(r2_50,[Id0,Id1],2)<=> true.

ignore-r1_50 @ a(Id0)\ fire(r1_50,[Id0],2)<=> true.

In CHRiSM, each rule is given one chance for application with every com-
bination of constraints. In order to achieve that, the constraint id(Ni) is not
added to the head-constraints in the match rules similar to PCHR and CHRrp .
In addition, since the choice is whether to apply the rule or not, there is only
one candidate rule at each computation step, therefore no need to add the rule
trigger.

Whenever a rule is applicable, the cand/3 constraint of the applicable rule
will fire the rule start in the candidate set resolution rules. Similar to “Maybe
Apply” transition in the CHRiSM operational semantics [9], the body of the rule
gets applied with a probability P. The rule start generates a random number
between 0 and 1 and replaces cand/3 with cand/4. The additional argument is
the randomly generated number. The rules choose-apply and choose-ignore
determine whether the rule will be applied according to the randomly generated
number. In both cases, the cand/4 constraint is replaced by fire/3 constraint.
If the randomly generated number is less than the rule probability, the third
argument in fire/3 is set to 1, otherwise it is set to 2.

For simplification and simpagation rules, if the rule is chosen not to be applied
then the removed head-constraints should not be removed from the store. In
order to keep the same instances of removed head-constraints in store when the
probabilistic rule is not applied, each rule in the source program will have an
additional ignore rule in the transformed file. The rule ignore is a simpagation
rule where the head-constraints are added as kept head-constraints. Only the
fire/3 constraint with the last argument set to 2 is to be removed. In addition,
the body of the rule is replaced by true.

4.4 Transformation for Inverse Constraint Handling Rules

The execution of traditional CHR starts from the initial state and applies pro-
gram rules until reaching a fixed point or a final state where no more rules
are applicable. Inverse execution of CHR rules starts from a state and applies
the inverse of program rules in order to reach the initial state. The “Apply”
transition of the inverse CHR is the same as “Apply” transition of the abstract
semantics of CHR but with exchanging the left and right hand side states of the
transition [14]. Inverse CHR is implemented using the proposed transformation
approach with inverse execution of rules, multiple-rules matching and rule pri-
ority candidate set resolution, where the rule priority is the textual rule order.
Thus, the first rule in the program has the highest priority. However, different
resolution strategies could be used. The following example [14] is an exchange
source for elements in a list. Elements are represented by constraint a/2, the
first argument is the index of the element in the list and the second argument is
the value of the element.

eSort @ a(I,V),a(J,W) <=> I>J , V<W | a(I,W),a(J,V).
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The transformation will result in the following program:

extend @ a(V2,V1) <=> a(V2,V1,_).

Imatch-eSort @ a(I,W,Id0),a(J,V,Id1),id(Ni)

==> I>J,V<W | cand(eSort,[Id0,Id1],1) ; true.

trigger @ trigger, id(Ni) ==> start.

start @ start <=> candList([]).

collect @ candList(L),cand(R,IDs,N) <=> candList([(N,R,IDs)|L]).

choose @ candList(L),id(Ni) <=> sort(L,[(P,H,IDs)|T]),fire(H,IDs),

N2 is Ni+1,id(N2) ; true.

Iapply-eSort @ fire(eSort,[Id0,Id1]),a(I,W,Id0),a(J,V,Id1)

<=> I>J,V<W | a(I,V) , a(J,W).

The current implementation of the transformer does not distinguish between
user-defined and built-in constraints in reverse execution of programs. Accord-
ingly, the transformation is limited to programs with rules whose body contain
user-defined constraints only.

5 Equivalence Proof

In this section, we will show how the newly transformed file program is able to
capture the needed operational semantics. In other words, we will introduce how
the execution of the rules in the new solver is equivalent to the corresponding
semantics. For proof of concept, we will show the equivalence of the execution of
the transformed program under wt[5] with the execution of the original program
under wp for CHRrp [8].

A state in wt[5] is a tuple in the form 〈G,S,B, T 〉n. The components of
the state are defined as follows: The goal G is a multiset of all unprocessed
constraints. The CHR store S is a set of numbered user-defined constraints that
can be matched with rules in a given program. B is the built-in constraints store.
It is the conjunction of built-in constraints that have been added to the built
in constraint store. The propagation history T is a set of tuples (r, I), where r
is the rule name and I is a list of identifiers of constraints that were matched
in the rule head. Finally, n is a counter representing the next free integer for
constraint identifying. For the sake of brevity, only G and S are shown in the
proof [5].

wr[3] provides a deterministic execution strategy for any goal. Therefore,
for any program P and an initial state S, every derivation for P , S

wr�−−→
P

∗S
′

corresponds to a derivation S
wt�−→
P

∗S
′
. The provided sketch proof is based on the

mapping between wt and wr.

Theorem 1. Given a CHR program P and its corresponding transformed pro-
gram T (P ) and two states S1 = 〈G,φ〉 and S2 = 〈G⋃

Aux, φ〉 where G contains
the initial goal constraints and Aux is a set of auxiliary constraints. Then the
following holds:

If S1
wp�−−→
P

∗S1
′
and S2

wt�−−−→
T (P )

∗S1
′ ∪ Aux′ then T (P ) is equivalent to P .
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Proof. (Sketch)
Table 1 shows the computational steps of executing one rule of the program

P under wp starting with S1. On the other hand, tables 2 to 5 show the com-
putational steps of executing the transformed program T (P ) under wt starting
with S2.

Table 1. Computation steps under wp

〈G1, φ〉 G contains initial query constraints

�−−−−−−→
introduce

∗ 〈φ, S〉 G The store S contains all the activated goal con-
straints and the goal G is empty

�−−−→
apply

∗ 〈G,S〉 G contains the added constraints after the rule
application (if any)

Table 2. Computation of step 1 (Constraints Extending)

〈G⋃
Aux, φ〉 Aux contains trigger and id(1) constraints, G

contains initial query constraints

�−−−−−−→
introduce

∗ 〈φ, S〉 The store S contains all the activated goal con-
straints and the auxiliary constraints

�−−−−−−−−→
apply extend

∗ 〈G′, S〉 G′ contains extended constraints after applying
the extend rules on the initial query constraints

�−−−−−−→
introduce

∗ 〈φ, S〉 The store S contains all the activated extended
constraints in addition to the auxiliary constraints

Table 3. Computation of step 2 (Rule Matching)

�−−−−−−−→
apply match

∗ 〈G′′, S〉 G′′ contains cand/3 constraints after applying the
match rules

�−−−−−−→
introduce

∗ 〈φ, S〉 S contains all the activated cand/3 constraints

�−−−−−−−−→
apply trigger

〈{start}, S〉 The goal contains only one constraint(start)
since it is the only applicable rule

�−−−−−−→
introduce

〈φ, S〉 S contains all the activated cand/3 constraints in
addition to start constraint

A rule in wp is fired through the “apply” transition. However, the “apply”
transition is applicable only to a state with an empty goal. This transition also
ensures that the highest priority rule among the set of applicable rules is the one
fired [8].
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Table 4. Computation of step 3 (Candidate Set Resolution)

�−−−−−−−→
apply start

〈{candList([])}, S〉
�−−−−−−→
introduce

〈φ, S〉
�−−−−−−−−→
apply collect

〈{candList(L)}, S〉
�−−−−−−→
introduce

〈φ, S〉 This computation step and the one
above are repeated till no more
cand/3 constraints are available in
store

�−−−−−−−−→
apply choose

〈{fire(R,IDs),id(N)}, S〉
�−−−−−−→
introduce

〈φ, S〉 The store S at this step contains
only one fire/2 constraint

Table 5. Computation of step 4 (Rule Application)

�−−−−−−−→
apply apply

〈G,S〉 The goal G contains the body of the fired rule,
and the store S contains the rest of the activated
constraints after applying the chosen rule

As shown in the last step of each of table 3 and 4, the result step contains
an empty goal. Thus before firing any rule in table 5, the state contains an
empty goal. Table 5 shows the rule application step. Therefore, the transformed
program only fires the rule when the goal of the state is empty.

In Section 4.1, we showed how the rule matching step finds the set of all
applicable rules. The set of rules of Table 3 on the other hand chooses the
highest priority rule among this set using the built-in constraint sort/2.

The only difference between the goal of S1 and S2 is the set of auxiliary
constraints. As shown, the conditions required by wp to fire a rule in P are
the same as the conditions required by wt to fire a rule in T (P ). Consequently,
the same rules will be fired in both programs with the same order. Thus, both
derivations add the same constraints to the final store. Thus, at the end of both
derivations the only difference in the result states S1

′
and S1

′ ∪Aux′ is auxiliary
constraints. Accordingly, omitting the auxiliary constraints from S1

′ ∪Aux′ will
result in S1

′
. Hence, we proved that the transformed program T (P ) is equivalent

to the source program P .

6 Conclusion

This paper introduced a source-to-source transformation approach to implement
a set of CHR operational semantics that have a different execution model than
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the refined operational semantics. The source programs written in different oper-
ational semantics are transformed into equivalent programs written under the
refined operational semantics. Moreover, the execution of the transformed pro-
gram does not need accessing the compiler or changing the runtime environment.

The transformation approach allows a different rule application choice when
there is more than one applicable rule compared to the top-down program order
of the refined operational semantics. Moreover, it allows forward and inverse
execution of CHR programs. A sketch proof is provided to show the equivalence
between the transformed programs and the source programs.

For future work, we intend to extend the transformation approach to imple-
ment a larger set of CHR operational semantics by incorporating additional prop-
erties to the current model. In addition, we intend to investigate the result of
combining the properties of the execution model of different operational seman-
tics such as combining inverse CHR and CHRrp .
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Abstract. We develop a logical encoding of the operational semantics
of timed π-calculus: a real-time extension of Milner’s π-calculus. This
executable encoding is based on Horn logical semantics of programming
languages and directly leads to an implementation for timed π-calculus.
This implementation can be used for modeling and verification of real-
time systems and cyber-physical.

1 Introduction

In previous work [17], we extended the π-calculus [14] with real time by adding
clocks and assigning time-stamps to actions. The resulting formalism, timed
π-calculus, provides a simple and novel way to annotate transition rules of
π-calculus with timing constraints. The timed π-calculus provides a framework
for describing systems whose components interact with each other under time
constraints. It contains an algebraic language for describing processes in terms
of the communication actions they can perform. The timed π-calculus can model
mobility, concurrency and message exchange between processes as well as infi-
nite computation (through the infinite replication operator ‘!’), while taking into
account the time constraints imposed on the actions. Therefore, it is suitable for
modeling real-time systems and cyber-physical systems (CPS) [7,11] and support
reasoning about their behavior related to time.

Our extension of π-calculus with time unlike most of other approaches
[2,4,5,12], represents time faithfully as a continuous quantity: in other words,
it does not discretize time. Discretizing means that time is represented through
finite time intervals. As a result, infinitesimally small time intervals cannot be
represented or reasoned about in these approaches. In practical real-time systems,
e.g., a nuclear reactor, two or more events can occur within an infinitesimally
small interval. Discretizing time can miss the modeling of such behavior which
may be wholly contained within this infinitesimally small interval. Some other
approaches for extending π-calculus with time e.g., the work of Chen [3] miss out
the replication operator of the original π-calculus. Therefore, they are unable to
model infinite processes. In our approach the infinite behavior of processes is
modeled through the infinite replication operator ‘!’.

We also developed an operational semantics as well as a notion of timed
bisimilarity for the timed π-calculus and we investigated the properties of timed
bisimilarity; in particular, expansion theorem for real-time, concurrent, mobile
processes [17].
c© Springer International Publishing Switzerland 2014
G. Gupta and R. Peña (Eds.): LOPSTR 2013, LNCS 8901, pp. 164–182, 2014.
DOI: 10.1007/978-3-319-14125-1 10
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In this paper, we show how an executable operational semantics of timed
π-calculus can be elegantly realized through coinductive constraint logic pro-
gramming extended with coroutining. In our implementation of timed π-calculus
concurrency is modeled by coroutining, and (rational) infinite computation in
presence of constraints by coinductive constraint logic programming over reals
(Co-CLP) [16]. The executable semantics faithfully captures real-time behaviors
and allows us to prove behavioral and timing properties of a system modeled in
timed π-calculus.

The work of Gupta et al. [21,22] showed how Horn logical semantics and
partial evaluation can be used to generate provably correct code. From the Horn
logical semantic description of the language L, one immediately obtains an inter-
preter of language L. In this paper, we apply the approach of [21,22] to our timed
π-calculus to obtain an implementation of this language. First, we express the
syntax of timed π-calculus in the Definite Clause Grammar (DCG) notation.
This syntax specification trivially and naturally yields an executable parser for
timed π-calculus. This parser can be used to parse timed π-calculus expres-
sions and obtain their parse trees. Next, we express the semantic algebra and
valuation functions of timed π-calculus in logic programming. The syntax and
semantics specifications of timed π-calculus loaded into a coinductive constraint
logic programming system directly leads to an interpreter for timed π-calculus.
This interpreter can be executed and used for verifying properties of systems
expressed as timed π-calculus processes. We illustrate our approach by applying
it to the rail road crossing problem of Lynch and Heitmeyer [8].

Note that there is a past work on logic based implementation of the opera-
tional semantics of π-calculus, but not timed π-calculus [23]. However, this work
is different from our work as it is unable to model infinite processes and infinite
replication. In our implementation we are using coinductive logic programming,
a more recently developed concept, which allows such modeling. Also our imple-
mentation is based on using Horn logic semantics.

2 Timed π-Calculus

Design decisions. Timed π-calculus [17] is an extension of the original π-calculus
[14] with (local) clocks, clock operations and time-stamps. As in π-calculus,
timed π-calculus processes use names (including clock names) to interact, and
pass names to one another. We assume an infinite set N of names (channel
names and names passing through channels), an infinite set Γ of clock names
(disjoint from N ) and an infinite set Θ of variables representing time-stamps
(disjoint from N and Γ ). When a process outputs a name through a channel,
it also sends the time-stamp of the name and the clock that is used to generate
the time-stamp. Thus, messages are represented by triples of the form 〈m, tm, c〉,
where m is a name in N , tm is the time-stamp on m, and c is the clock that is
used to generate tm.

All the clocks are local clocks; however, their scope grows as they are sent
among processes. Note that all the clocks advance at the same rate. At any
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instant, the reading of a clock is equal to the time that has elapsed since the last
time the clock was reset. Following the semantics of timed automata [1], only
non-Zeno behaviors are considered, that is, only a finite number of transitions
can happen within a finite amount of time.

Clock operations and interpretations. Clock resets, represented by γ, and clock
constraints, denoted by δ, are defined by the following syntactic rules,

δ ::= (c ∼ r)δ
∣
∣ (c − t ∼ r)δ

∣
∣ (t − c ∼ r)δ

∣
∣ ε

γ ::= (c1 := 0) . . . (cn := 0)
∣
∣ ε

where c and ci, 1 ≤ i ≤ n, are clock names, r is a constant in R≥0, t is a time-
stamp and ∼∈ {<,>,≤,≥,=}. ε represents an empty clock constraint or clock
reset.

For a process P , c(P ) is the set of clock names in P . For every two processes
P and Q, c(P ) ∩ c(Q) = ∅. A clock interpretation I for a set Γ of clocks is
a mapping from Γ to R≥0. It assigns a real value to each clock in Γ . A clock
interpretation I for Γ satisfies a clock constraint δ over Γ iff the expression
obtained by applying I to δ evaluates to true. For t ∈ R≥0, I + t denotes the
clock interpretation which maps every clock c to the value I(c) + t. For γ ⊆ Γ ,
[γ �→ t]I denotes the clock interpretation for Γ which assigns t to each c ∈ γ,
and agrees with I over the rest of the clocks.

Syntax . The set of timed π-calculus processes is defined by the following syntactic
rules in which, P , P ′, M and M ′ range over processes, x, y and z range over
names in N , c and d range over clock names in Γ , and ty represents a time-stamp.

M ::= δγx̄〈y, ty, c〉.P ∣
∣ δγx(〈y, ty, c〉).P ∣

∣ δγτ.P
∣
∣ 0

∣
∣ M + M ′

P ::= M
∣
∣ (P | P ′)

∣
∣ !P

∣
∣ (z) P

∣
∣ [x = y] P

∣
∣ [c = d] P

The expression δγx̄〈y, ty, c〉.P represents a process that is capable of outputting
name y on channel x. This process generates a time-stamp ty using clock c and
sends ty and c along with y via the channel x, and evolves to P . The time-stamp
ty is the reading of clock c at the time of transition. The assignment of a time-
stamp to y and sending y is an atomic operation. The clock constraint δ must
be satisfied by the current value of clocks at the time of transition. γ specifies
the clocks to be reset with this transition.

The expression δγx(〈y, ty, c〉).P stands for a process which is waiting for a
message on channel x. When a message arrives, the process will behave like
P{z/y, tz/ty, d/c} (substitution is formally defined later in this section) where z
is the name received; tz is the time-stamp of z; and d is the clock of the sending
process that is used to generate tz. The time-stamp tz must satisfy the clock
constraint expressed by δ; γ specifies the clocks to be reset with the transition.

The expression δγτ.P stands for a process that takes an internal action and
evolves to P , and in doing so resets the clocks specified by γ, if the clock con-
straint δ is satisfied.
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In each of three processes explained above, if the clock constraint δ is not
satisfied by the value of clocks at the time of transition, then, the process becomes
inactive. An inactive process, represented by 0, is a process that does nothing.

The operators + and | are used for non-deterministic choice and composition
of processes, just as in π-calculus [14]. The replication !P , represents an infinite
composition P | P | . . . , just as in π-calculus. The restriction (z)P, z ∈ N ,
behaves as P with z local to P . Therefore, z cannot be used as a channel over
which to communicate with other processes or the environment. [x = y]P, x, y ∈
N ∪Γ , evolves to P if x and y are the same name; otherwise, it becomes inactive.

Example 1. The timed π-calculus expression x(〈m, tm, c〉).(c− tm ≤ 5)ȳ〈n, tn, c〉
represents a process that is waiting for a message on channel x. The process
upon receiving a name m with time-stamp tm and its accompanying clock c on
channel x, sends a name n with time-stamp tn on channel y with the delay of at
most 5 units of time since the time-stamp of m. The process will use the clock
c to choose a time tn on c such that c − tm ≤ 5.

In a process of the form δγx(〈y, t, c〉).P the occurrences of y, t and c are binding
occurrences, and the scope of the occurrences is P . In (n)P, n ∈ N the occurrence
of n is a binding occurrence, and the scope of the occurrence is P . An occurrence
of a (non-clock) name n in a process is free if it does not lie within the scope of a
binding occurrence of n, and bound if it is not free. All occurrences of a clock c in
a process P are bound. The set of bound names and free names of P are denoted
by bn(P ) and fn(P ), respectively. We write n(P ) for the set fn(P ) ∪ bn(P ).

Example 2. Let P = x(〈y, t, c〉).0 and Q = (d > 1)(d < 5)x〈z, t′, d〉.0. Then,
fn(P ) = {x}, bn(P ) = {y, t, c}, fn(Q) = {x, z, t′}, and bn(Q) = {d}. x is a
channel that is shared between P and Q.

A substitution is a function θ from a set of names N to N . If xiθ = yi for all i
with 1 ≤ i ≤ n (and xθ = x for all other names x), we write {y1/x1, . . . , yn/xn}
for θ. The effect of applying a substitution θ to a process P is to replace each
free occurrence of each name x in P by xθ, with change of bound names to avoid
name capture (to preserve the distinction of bound names from the free names).
Substitution for time-stamps can be defined similarly. A clock substitution is a
function θc from a set of clock names Γ to Γ . If ciθc = di for all i with 1 ≤ i ≤ n
(and cθc = c for all other clock names c), we write {d1/c1, . . . , dn/cn} for θc.
The effect of applying a substitution θc to a process P , Pθc, is to replace all
occurrences of each clock name c in P by cθc. Given a clock c, the function θf

creates a fresh copy, f , of c (f does not appear in any process) and updates the
interpretation with I(f) = I(c). The application of θf to c is represented by cθf .
A clock renaming θr is a clock substitution {f1/c1, . . . , fn/cn} in which fi =
ciθf , 1 ≤ i ≤ n. The effect of applying a clock renaming θr = {f1/c1, . . . , fn/cn}
to process P , Pθr, is to replace all occurrences of each name c in P by cθr.

Operational semantics. The actions of timed π-calculus are defined by the fol-
lowing syntactic rule:

α ::= x̄〈y, t, c〉 ∣
∣ x̄〈(y), t, c〉 ∣

∣x(〈y, t, c〉) ∣
∣ τ
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The first two actions are the bound output actions. The expression x̄〈y, t, c〉 is
used for sending a name y, time-stamp of y, t, and the (local) clock that is used
to generate t, via channel x. The process that gives rise to this action can be of
the form x̄〈y, t, d〉.P . In this action x, y and t are free and c = dθf is bound (c is
a fresh copy of d). The expression x̄〈(y), t, c〉 is used by a process for sending its
private name y (y is bound in the process) and its (local) clock c. The process
that gives rise to this action can be of the form: (y)x̄〈y, t, d〉.P . In this action x
and t are free, while y and c = dθf are bound (c is a fresh copy of d).

The third action is the input action x(〈y, t, c〉). This action is used for receiv-
ing any name z with its time-stamp tz, and a clock d via x. In this action x is
free, while y, t and c are bound names.

The last action is the silent action τ , which is used to express performing
an internal action. Silent actions can naturally arise from processes of the form
τ.P , or from communications within a process (e.g., rule COM in Table 1).

We use fn(α) for set of free names of α, bn(α) for set of bound names of α,
and n(α) for the union of fn(α) and bn(α). Note that fn(τ) = ∅ and bn(τ) = ∅.

A transition in timed π-calculus is of the form P
〈δ,α,γ〉−−−−→ P ′. This transition

is understood as follows: if δ is satisfied by the current values of clocks, P evolves
into P ′, and in doing so performs the action α and resets the clocks specified
by γ. With abuse of notation, γ is used as a set of clocks to be reset. The triple
〈δ, α, γ〉 is called a timed action. The set of transition rules of timed π-calculus
are represented in Table 1. These rules are labelled by timed actions. Note that
there are two more rules for SUM and PAR where the process Q takes an action.
These rules are symmetric to SUM and PAR rules of Table 1 and are eliminated.

A time sequence w = w1w2 . . . is an infinite sequence of time values wi ∈ R≥0,
satisfying the following constraints:

– Monotonicity: w increases strictly monotonically; that is, wi < wi+1 for all
i ≥ 1.

– Progress: For every w ∈ R, there is some i ≥ 1 such that wi ≥ w.

A system specified by the set of timed π-calculus processes starts with all the
clocks initialized to 0. As time advances the value of all clocks advances, reflecting
the elapsed time. At time wi, a process Pi−1 takes a timed action 〈δi, αi, γi〉 and
evolves to Pi, if the current values of clocks satisfy δi. The clocks specified by
γi are reset to 0, and thus start counting time with respect to it. This behavior
is captured by defining runs of timed π-calculus processes. A run for a process
P records the state (process expression) and the values of all the clocks at the
transition points. For a time sequence w = w1w2 . . . , a run r denoted by (P̄ , Ī),
of a process P , is a finite or an infinite sequence of the form

〈P0, I0〉 〈δ1,α1,γ1〉−−−−−−→
w1

〈P1, I1〉 〈δ2,α2,γ2〉−−−−−−→
w2

〈P2, I2〉 〈δ3,α3,γ3〉−−−−−−→
w3

. . .

where Pi is a process and Ii ∈ [Γ → R], for all i ≥ 0, satisfying the following
requirements:
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– Initiation: P0 is the initial process expression, and I0(c) = 0 for all c ∈ Γ .

– Consecution: for all i ≥ 1, there is a transition of the form Pi−1
〈δi,αi,γi〉−−−−−−→ Pi

such that (Ii−1+wi−wi−1) satisfies δi and Ii equals [γi �→ 0](Ii−1+wi−wi−1).
We assume w0 = 0.

Along a run r = (P̄ , Ī), the values of the clocks at time wi ≤ w ≤ wi+1 are given
by the interpretation (Ii +w −wi). When the transition from Pi to Pi+1 occurs,

Table 1. Timed π-calculus Transition Rules

IN y /∈ fn((z)P )

δγx(〈z, t, c〉).P 〈δ{t′/t,d/c},x(〈y,t′,d〉),γ{d/c}〉−−−−−−−−−−−−−−−−−−−−→ P{y/z, t′/t, d/c}
OUT d = cθf

δγx̄〈y, t, c〉.P 〈δ,x̄〈y,t,d〉,γ〉−−−−−−−−→ P
TAU

δγτ.P
〈δ,τ,γ〉−−−−→ P

P
〈δ,α,γ〉−−−−→ P ′

PAR bn(α) ∩ fn(Q) = ∅
(P | Q)

〈δ,α,γ〉−−−−→ (P ′ | Q)

P
〈δ,α,γ〉−−−−→ P ′

SUM
P + Q

〈δ,α,γ〉−−−−→ P ′

P
〈δ,x̄〈z,t,c〉,γ〉−−−−−−−−→ P ′ Q

〈δ′,x(〈z,t,c〉),γ′〉−−−−−−−−−−→ Q′
COM

(P | Q)
〈δδ′,τ,γγ′〉−−−−−−−→ (P ′ | Q′)

P
〈δ,x̄〈y,t,c〉,γ〉−−−−−−−−→ P ′

OPEN y �= x ∧ u /∈ fn((y)P ′)
(y)P

〈δ,x̄〈(u),t,c〉,γ〉−−−−−−−−−→ P ′{u/y}

P
〈δ,x̄〈(z),t,c〉,γ〉−−−−−−−−−→ P ′ Q

〈δ′,x(〈z,t,c〉),γ′〉−−−−−−−−−−→ Q′
CLOSE

(P | Q)
〈δδ′,τ,γγ′〉−−−−−−−→ (z)(P ′ | Q′)

P
〈δ,α,γ〉−−−−→ P ′

RES z /∈ n(α), z ∈ N
(z)P

〈δ,α,γ〉−−−−→ (z)P ′

P
〈δ,α,γ〉−−−−→ P ′

MATCH x ∈ N or x ∈ Γ
[x = x]P

〈δ,α,γ〉−−−−→ P ′
P

〈δ,α,γ〉−−−−→ P ′
REP

!P
〈δ,α,γ〉−−−−→ (P ′θr | !P )

P
〈δ,x̄〈z,t,c〉,γ〉−−−−−−−−→ P ′ P

〈δ′,x(〈z,t,c〉),γ′〉−−−−−−−−−−→ P ′′
REP-COM

!P
〈δδ′,τ,γγ′〉−−−−−−−→ ((P ′θ′

r | P ′′θ′′
r) | !P )

P
〈δ,x̄〈(z),t,c〉,γ〉−−−−−−−−−→ P ′ P

〈δ′,x(〈z,t,c〉),γ′〉−−−−−−−−−−→ P ′′
REP-CLOSE

!P
〈δδ′,τ,γγ′〉−−−−−−−→ ((z)(P ′θ′

r | P ′′θ′′
r) | !P )
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the value (Ii + wi+1 − wi) is used to check the clock constraint. At time wi+1,
the value of a clock that gets reset is defined to be 0.

When the transition from Pi = δγx(〈z, t, c〉).P to Pi+1 = P{y/z, t′/t, d/c}
occurs (〈y, t′, d〉 is the received name), we check the satisfiability of the clock
constraint δ{d/c}, similarly we reset the clocks specified by γ{d/c}. Intuitively,
this means that the value of the receiving clock should satisfy the constraint δ
for the transition to take place. Moreover, the incoming clock might get reset
upon arrival. When the transition from Pi = δγx̄〈y, t, c〉.P to Pi+1 = P occurs
in which, the timed action 〈δ, x̄〈y, t, d〉, γ〉, d = cθf takes place, the time-stamp t
in x̄〈y, t, d〉 gets bound to (Ii(c) + wi+1 − wi). Note that at this point Ii+1(d) =
Ii+1(c).

3 Operational Semantics in Logic Programming

For a complete encoding of the operational semantics of timed π-calculus, we
must account for the facts that: (i) clock constraints are posed over continu-
ous time, (ii) infinite computations are defined in timed π-calculus (and also
π-calculus) through the infinite replication operator ‘!’, and (iii) we are dealing
with mobile concurrent processes. We have developed an implementation of the
operational semantics of timed π-calculus using coinductive constraint logic pro-
gramming over reals extended with coroutining, in which channels are modeled
as streams and all the three aspects are handled faithfully.

Coinductive constraint logic programming [16] is a paradigm that combines
constraint logic programming (CLP) [9] and coinductive logic programming
[6,18,19]. The operational semantics of coinductive CLP relies on the coinductive
hypothesis rule and systematically computes elements of the greatest fixed point
(gfp) of a program via backtracking. The coinductive hypothesis rule states that
during execution, if the current resolvent R contains a call G′ that unifies with
an ancestor call G, and the set of accumulated constraints are satisfied, then the
call G′ succeeds; the new resolvent is R′θ where θ is the most general unifier of
G and G′, and R′ is obtained by deleting G′ from R. Regular constraint logic
programming execution extended with the coinductive hypothesis rule is termed
co-constraint logic programming (or co-CLP)[16]. In co-CLP, predicates can be
declared as being either coinductive or inductive. Using co-CLP enables us to
handle (i) real time and timing constraints; (ii) infinite computations, realized
by the replication operator of timed π-calculus.

Consider the following program, where stream/2 is a coinductive predicate
and number/1 is an inductive predicate.

:-coinductive(stream).
:-inductive(number).
stream([H | T], X) :- number(H), stream(T, Y), {Y - X >= 3}.
number(0).
number(s(N)) :- number(N).

The following is an execution trace for the query ?- stream([0,s(0),s(s(0))
| R], W)., in a co-CLP system, which shows the recursion stack and also the



A Logical Encoding of Timed π-Calculus 171

set of generated constraints (that must be satisfied) after each recursive call
(substitution is not shown).

1. stream([0, s(0), s(s(0)) | R], W), C1 = ∅
2. stream([s(0), s(s(0)) | R], U), C2 = {U − W >= 3}
3. stream([s(s(0)) | R], V), C3 = {U − W >= 3, V − U >= 3}
4. stream(R, Z), C4 = {U − W >= 3, V − U >= 3, Z − V >= 3}

The last goal call unifies with ancestor (1) and immediately succeeds, since C4 is
consistent. Hence the original query succeeds with R = [0, s(0), s(s(0)) | R] with
the answer constraint {U − W ≥ 3, V − U ≥ 3, Z − V ≥ 3}.

The coroutining feature of logic programming deals with having logic pro-
gram goals scheduled for execution as soon as some conditions are fulfilled. In LP
the most commonly used condition is the instantiation (binding) of a variable.
Scheduling a goal to be executed immediately after a variable is bound can be
used to model the actions taken by processes as soon as a message is received
in the channel specified by that variable. Coroutining can be practically realized
through the delay/freeze construct supported in most Prolog systems.

Our implementation of the operational semantics of timed π-calculus consists
of developing the logical denotational semantics of timed π-calculus which yields
an interpreter for timed π-calculus. The denotational semantics of a language
L has three components: (i) syntax specification which maps sentences of L
to parse trees; (ii) semantic algebra which represents the mathematical objects
whose elements are used for expressing the meaning of a program written in the
language L along with associated operations to manipulate the elements; (iii)
valuation functions which map parse trees to elements of the semantic algebras.

We present the names in timed π-calculus as Prolog variables. The direct
encoding of the operational semantics of timed π-calculus in logic programming
is due to the similarity between the treatment of variables in the resolution proce-
dures for logic programs and the treatment of names in the operational semantics
of timed π-calculus. Note that the same (non-clock) name may appear bound and
also free in a timed π-calculus expression. For instance, in ȳ〈y, t, c〉.(y)z̄〈y, t, c〉.0,
the name y appears both free and bound. In our encoding, we ensure (auto-
matically) that bound names are all distinct from each other and from the free
names: all top-down resolution techniques (such as SLD) rename the variables
in a clause that is selected at each resolution step in order to avoid the capture
of free variables. This procedure is called standardization apart.

First, we express the grammar of timed π-calculus as a DCG. There is a
one-to-one correspondence between rules in the grammar of timed π-calculus
and rules in the DCG. The DCG, shown in Table 2, is a logic program and
when executed in the Prolog system, leads to an automatic parser for timed
π-calculus. This parser parses a timed π-calculus expression representing a pro-
cess, and produces a parse tree for it. For instance the query for parsing the
expression ((d < 2)x̄〈w, t1, d〉.0|(c := 0)x(〈z, t2, c〉).0):

process( T, [(,(,d,<,2,),x,<,w,’,’,t1,’,’,d,>,.,0,|,
(,c,:=,0,),x,(,<,z,’,’,t2,’,’,c,>,),.,0,)], [] ).
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Table 2. DCG for Timed π-calculus Grammar

process(par(P1,P2)) --> [(],process(P1),[|],process(P2),[)].

process(rep(P)) --> [!],process(P).

process(((N),P)) --> [(],name(N),[)],[(],process(P),[)].

process(match(N1,N2,P)) --> [[],name(N1),[=],name(N2),[]],process(P).

process(P) --> mprocess(P).

mprocess([Prefix|Processes]) --> prefix(Prefix),[.],process(Processes).

mprocess([process(0)]) --> [0].

mprocess(sum(M1,M2)) --> [(],mprocess(M1),[+],mprocess(M2),[)].

prefix(in(CO,CN,N,T,C)) --> clockOp(CO),name(CN),[(],[<],name(N),[,],

time(T),[,],clock(C),[>],[)].

prefix(out(CO,CN,N,T,C)) --> clockOp(CO),name(CN),[<],name(N),[,],

time(T),[,],clock(C),[>].

prefix(tau(CO)) --> clockOp(CO),[tau].

clockOp(clockOp(C,R)) --> constraints(C),resets(R).

constraints([Constr|List]) --> constraint(Constr),constraints(List).

constraints([]) --> [].

constraint((C,Op,R)) --> [(],clock(C),op(Op),const(R),[)].

constraint((C,T,Op,R)) --> [(],clock(C),[-],time(T),op(Op),const(R),[)].

constraint((T,C,Op,R)) --> [(],time(T),[-],clock(C),op(Op),const(R),[)].

resets([Reset|List]) --> reset(Reset),resets(List).

resets([]) --> [].

reset(C) --> [(],clock(C),[:=],[0],[)].

time(T) --> [T],{atom(T); var(T)}.

const(R) --> [R],{number(R)}.

clock(C) --> [C],{atom(C); var(C)}.

name(N) --> [N],{atom(N); var(N)}.

op(O) --> [O],{O = <; O = =<; O = >; O = >=; O = =}.
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will produce the parse tree shown below:

T = par([out(clockOp([(d,<,2)]), x, w, t1, d), process(0)],
[in(clockOp([c]), x, z, t2, c), process(0)])

Next, we express the semantic algebra and the valuation functions as logic pro-
grams. The semantic algebra consists of two store domains: one for storing clocks,
realized as an association list of the form [(Clock, Value),...], and one for
storing timed events, realized as a list (initially empty). The valuation functions,
realized by the coinductive predicate sem/8, shown in Table 3, take the parse tree
patterns and the current stores and assign meaning to the parse tree patterns,
while updating the stores. This denotational semantics can be viewed also as the
logical encoding of the operational semantics of timed π-calculus. The encoded
operational semantics generates the symbolic transition systems from process
expressions using the sem/8 predicate. The syntax of timed π-calculus realized
as a DCG along with the semantic algebras and valuation functions realized
as a logic program lead to an interpreter for timed π-calculus. This interpreter
when loaded into a coinductive constraint logic programming system can be run
directly. Note how concurrency is realized through the coroutining facility of
logic programming– in particular freeze construct of Prolog– while writing the
rules for COM, CLOSE, REP-COM and REP-CLOSE. Note also that the freeze
construct on variable A2 in COM corresponds to the case when the process P2
takes an output action and P1 takes an input action. In other words, P1 which
is the receiving process has to wait until A2 gets bound, where A2 is an output
action taken by P2. The symmetric rule in which P1 and P2 take output and
input actions, respectively, is omitted. The symmetric rules for PAR and SUM
where process P2 takes action are also omitted.

In our formulation of the operational semantics of timed π-calculus, clock
expressions and time constraints are modeled using constraint logic programming
over reals [9], infinite (rational) computations, realized through the replication
operator of timed π-calculus (and also π-calculus) are handled using coinductive
logic programming [6,19], and finally concurrency is simulated by coroutining
within logic programming computations. Therefore, timed π-calculus processes
are modeled as coroutined coinductive constraint logic programs.

If the above syntax and semantics rules along with the logic program p are
loaded into a co-CLP system and the query: ?-main(S2,E2,E,Q,A) is posed,
then S2=[(w,T),(c,T),(d,0)], T>0,T<2, E2=[out(x,y,W,d),in(x,Z,T,D)],
Q=((d),par([process(0)],[process(0)])), E=[Z=y,T=W,D=d], A=tau(T).

p: main(S2,E2,E,Q,A) :-

process(P,[(,(,d,<,2,),x,<,y,’,’,W,’,’,d,>,.,0,|,

(,c,:=,0,),x,(,<,Z,’,’,T,’,’,D,>,),.,0,)],[]),

store(S1),

eventStore(E1),

sem(P, S1, E1, S2, E2, E, Q, A).

store([ (wallClock, 0), (c, 0), (d, 0) ]).

eventStore([]).
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Table 3. Denotational Semantics of Timed π-calculus in Logic Programming

% OUTPUT

sem([ out(CO, ChN, N, T, C) | P ], C1, E1, C2, E2, Eq, P, A):-

access(wallClock, C1, Wall),

{ W > Wall },

clockOp(CO, C1, Ctemp, W),

update(wallClock, W, Ctemp, C2),

Eq = [], A = out(ChN, N, W, C),

add_events(out(ChN, N, W, C), E1, E2).

% INPUT

sem([ in(CO, ChN, N, W, C) | P ], C1, E1, C2, E2, Eq, P, in(ChN,N,W,C)):-

clockOp(CO, C1, C2, W),

add_events(in(ChN, N, W, C), E1, E2),

Eq = [].

% TAU

sem([tau(CO)|P], C1, E1, C2, E2, [], P, tau(W)):-

access(wallClock, C1, Wall),

{ W > Wall },

clockOp(CO, C1, C2, W),

add_events(tau(W), E1, E2).

% MATCH

sem(match(N1, N2, P), C1, E1, C2, E2, Eq, R, A):-

( N1 == N2 -> sem(P, C1, E1, C2, E2, Eq, R, A)

;sem(P, C1, E1, C2, E2, Eq1, R, A),

Eq = [ N1 = N2 | Eq1 ] ).

% SUM

sem(sum(P1,_P2), C1, E1, C2, E2, Eq, R, A) :-

sem(P1, C1, E1, C2, E2, Eq, R, A).

% PAR

sem(par(P1, P2), C1, E1, C2, E2, Eq, par(Q1, P2), A):-

sem(P1, C1, E1, C2, E2, Eq, Q1, A).

% COM

sem(par(P1, P2), C1, E1, C2, E2, Eq, ((C), par(Q1, Q2)), tau(W)):-

freeze(A2, sem(P1, Ctemp, Etemp, C2, E2, Eq1, Q1, A1)),

sem(P2, C1, E1, Ctemp, Etemp, Eq2, Q2, A2),!,

match(A1, A2, W, C, Eq4),

append(Eq1, Eq2, Eq3), append(Eq3, Eq4, Eq).

% OPEN

sem(((N), P), C1, E1, C2, E2, Eq, Q, out(ChN, M, W, C)):-

sem(P, C1, E1, C2, E2, Eq, Q, out(ChN, M, W, C)),

N \== ChN, N == M,

not_in(N, Eq).

% CLOSE

sem(par(P1, P2), C1, E1, C2, E2, Eq, ((C, N), par(Q1, Q2)), tau(W)):-

freeze(A2, sem(P1, Ctemp, Etemp, C2, E2, Eq1, Q1, A1)),

sem(P2, C1, E1, Ctemp, Etemp, Eq2, Q2, A2),

match(A1, A2, N, W, C, Eq4),

append(Eq1, Eq2, Eq3), append(Eq3, Eq4, Eq).
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Table 4. Denotational Semantics of Timed π-calculus in Logic Programming

% RES

sem(((N),P), C1, E1, C2, E2, Eq, ((N), Q), A) :-

(P, C1, 1, C2, E2, Eq, Q, A),

not_in_act(N, A), not_in(N, Eq).

% REP

sem(rep(P), C1, E1, C2, E2, Eq, par(Q,rep(P)), A) :-

sem(P, C1, E1, C2, E2, Eq, Q, A).

% REP-COM

sem(rep(P), C1, E1, C2, E2, Eq, par(((C), par(P1, P2)),rep(P)), tau(W)):-

freeze(A2, sem(P, Ctemp, Etemp, C2, E2, Eq1, P1, A1)),

sem(P, C1, E1, Ctemp, Etemp, Eq2, P2, A2),!,

match(A1, A2, W, C, Eq4),

append(Eq1, Eq2, Eq3),

append(Eq3, Eq4, Eq).

% REP-CLOSE

sem(rep(P), C1, E1, C2, E2, Eq, par(((N,C),par(P1,P2)),rep(P)), tau(W)):-

freeze(A2, sem(P, Ctemp, Etemp, C2, E2, Eq1, P1, A1)),

sem(P, C1, E1, Ctemp, Etemp, Eq2, P2, A2),!,

match(A1, A2, N, W, C, Eq4),

append(Eq1, Eq2, Eq3), append(Eq3, Eq4, Eq).

not_in_act(X, in(ChN, N, W, C)) :- X \== ChN, X \== N.

not_in_act(X, out(ChN, N, W, C)) :- X \== ChN, X \== N.

not_in_act(X, tau(W)).

not_in(X, [ Y = Z | T]) :- X \== Y, X \== Z, not_in(X, T).

not_in(_X, []).

match(in(H1, N, T, D), out(H2,M , W, C), W, C, E) :-

((nonvar(H1), nonvar(H2)) -> H1 == H2, E1 =[ ]

; H1 = H2, E1 = [H1 = H2]),

((nonvar(N), nonvar(M)) -> N == M, E2 = E1

; N = M, E2 = [ N = M | E1]),

((nonvar(T), nonvar(W)) -> T == W, E3 = E2

; T = W, E3 = [T = W | E2]),

((nonvar(D), nonvar(C)) -> D == C, E = E3

; D = C, E = [D = C | E3]).

match(out(H1, N, T, D), in(H2, M, W, C), M, W, C, E) :-

((nonvar(H1), nonvar(H2)) -> H1 == H2, E1 = []

; H1 = H2, E1 = [H1 = H2]),

((nonvar(N), nonvar(M)) -> N == M, E2 = E1

; N = M, E2 = [N = M | E1]),

((nonvar(T), nonvar(W)) -> T == W, E3 = E2

; T = W, E3 = [T = W | E2]),

((nonvar(D), nonvar(C)) -> D == C, E = E3

; D = C, E = [ D = C | E3]).
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Note that not in act/2, not in/2, match/5 and match/6 are predicates that
handle the side conditions of Table 1 and defined in Table 4. Operations for
creating, accessing and updating the stores and clocks are implemented through
simple predicates: access/3, update/4, add events/3 and clockOp/3, which
are not presented here.

4 Example: The Rail Road Crossing Problem

The generalized rail road crossing (GRC) problem [8] describes a rail road cross-
ing system with several tracks and an unspecified number of trains traveling
through the tracks. The gate at the rail road crossing should be operated in a
way that guarantees the safety and utility properties. The safety property stip-
ulates that the gate must be down while there is a train in the crossing. The
utility property states that the gate must be up (or going up) when there is
no train in the crossing. The system is composed of three components: train,
controller and gate. The components of the system which are specified via three
timed automata in Fig. 1, communicate by sending and receiving signals. We
specify the components of the system in timed π-calculus.

Fig. 1. Timed automata for train, controller, and gate in the rail road crossing problem

The controller at the rail road crossing might receive various signals from
trains in different tracks. In order to avoid signals from different trains being
mixed, each train communicates through a private channel with the controller.
A new channel is established for each approaching train to the crossing area
through which the communication between the train and the controller takes
place. For simplicity of presentation we consider only one track in this example.

In our modeling of the rail road crossing problem in timed π-calculus each
component of the system is considered as a timed π-calculus process. This model
is presented in Table 5.

Note that the design of the rail road crossing problem shown in Fig. 1 (orig-
inally from [1]) does not account for the delay between the sending of approach
(exit) signal by a train and receiving it by the controller. Similarly the delay
between sending lower (raise) by the controller and receiving it by the gate is
not taken into account. Arguably, in a correct design, the delay before approach
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Table 5. The timed π-calculus expressions for components of the rail road crossing
problem

train ≡ controller ≡
!(ch)ch1〈ch, tc, t〉. !ch1(〈y, ty, d〉).y(〈x, tx, c〉).
(t := 0)ch〈approach, ta, t〉. ([x = approach](c = 1)(e := 0)ch2〈lower, tl, e〉+
(t > 2)τ.τ. [x = exit](c − tx < 1)(e := 0)ch2〈raise, tr, e〉)
(t < 5)ch〈exit, te, t〉

gate ≡
!ch2(〈x, tx, g〉).
([x = lower](g < 1)τ + [x = raise](g > 1)(g < 2)τ)

main ≡ train
∣
∣ controller

∣
∣ gate

is received by the controller should be taken into account. The lower signal must
be sent within one unit of time since the time-stamp of the original approach
but not the time at which the controller receives the signal (note that the con-
troller resets its clock to remember the time it receives approach). In contrast,
in our specification of the rail road crossing problem in timed π-calculus, we are
considering the delays; therefore, all the time-related reasoning in the system is
performed against train’s clock and the time-stamp of approach signal (sent by
train to controller).

Note that in the π-calculus expression for train, t is the local clock of train
and the two consecutive τ actions correspond to train’s internal actions in and
out. In the expression for controller, c is a place holder for the receiving clock
t from train; while, e is the controller’s clock that is reset before it is sent to
gate. In the expression for gate, g is a place holder for the receiving clock e from
controller and the two τ actions correspond to gate’s internal actions; the first
τ represents down; while the second τ represents up.

Timed π-calculus allows the rail road crossing problem to be modeled faith-
fully. Additionally, significantly more complex systems can be modeled. The
timed π-calculus specification can be used for verification of the system as well
as generating the implementation [15].

The coroutined coinductive constraint logic program corresponding to the
components of the system are presented next.

:- coinductive(train). t_trans(s0, approach, s1).

train(X, Y, St, W, T) :- t_trans(s1, in, s2).

( H = approach, { T2 = W } t_trans(s2, out, s3).

; H = in, { W - T > 2, T2 = T } t_trans(s3, exit, s0).

; H = out, { T2 = T}

; H = exit, { W - T < 5, T2 = T}),

{ W2 > W },

t_trans(St, H, St2),

freeze(X, train(Xs, Ys, St2, W2, T2)),

( ( H = approach; H = exit )->
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Y = [ (H, W) | Ys ]

; Y = Ys ),

X = [ (H, W) | Xs ].

:- coinductive(controller).

controller([ (H, W) | Xs ], Y, Sc) :-

freeze(Xs, controller(Xs, Ys, Sc3)),

( H = approach, M = lower, { W2 > W, W2 - W = 1 }

; H = exit, M = raise, { W2 > W, W2 - W < 1 } ),

c_trans(Sc, H, Sc2),

c_trans(Sc2, M, Sc3),

Y = [ (M, W2) | Ys ].

:- coinductive(gate).

gate([ (H, W) | Xs ], Sg) :-

freeze(Xs, gate(Xs, Sg3)),

( H = lower, M = down, { W2 > W, W2 - W < 1 }

; H = raise, M = up, { W2 > W, W2 - W > 1, W2 - W < 2} ),

g_trans(Sg, H, Sg2),

g_trans(Sg2, M, Sg3).

c_trans(s0, approach, s1). g_trans(s0, lower, s1).

c_trans(s1, lower, s2). g_trans(s1, down, s2).

c_trans(s2, exit, s3). g_trans(s2, raise, s3).

c_trans(s3, raise, s0). g_trans(s3, up, s0).

The first argument of train/5 is the list of timed events (a list of events with
their time-stamps) generated by train, the second argument is the list of events
sent to controller and the third argument is train’s current state. W is the cur-
rent wall clock time and T is train’s clock. Similarly, the first argument of
controller/3 is the list of timed events received from train; while the sec-
ond argument is the list of events generated by controller and sent to gate. Sc
is the current state of controller. Finally, the first argument of gate/2 is the
list of timed events received from controller ; while the second argument is the
current state of gate. g trans/3 specifies the internal transitions of gate; while,
the internal transitions of train and controller are specified by t trans/3 and
c trans/3, respectively. The entire system will wait for train to generate the
initial signals and send them to controller ; as soon as controller receives these
signals (the first argument of controller/3 gets bound), it will send appropriate
signals to gate. This composition of three processes is realized by the expression:

freeze(A, (freeze(C, gate(C,s0)),controller(B,C,s0))),train(A,B,s0,0,0).

This expression can be understood as follows: The entire system waits for train to
generate the initial approach (captured by the first freeze on variable A) and send
it to controller (via variable B), then the system will wait for appropriate signals
to be sent to gate by controller (captured by the second freeze on variable C).

Once the system is modeled as a coinductive coroutined CLP(R) program,
the model can be used to verify interesting properties of the system by posing
queries. Given a property Q to be verified, we specify its negation as a logic
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program, notQ. If the property Q holds, the query notQ will fail w.r.t. the logic
program that models the system. If the query notQ succeeds, the answer provides
a counterexample to why the property Q does not hold.

To prove the safety property, we define unsafe/1 in which the safety property
is negated: we look for any possibility that a train is in the crossing area before
the gate goes down, with the gate being up initially. main(R) represents the com-
position of three processes in which R is the time trace of the system after the
execution is done. The call to unsafe/1 fails, which proves the safety of the sys-
tem. Similarly we check the utility property using unutilized/1 defined below.
unutilized/1 looks for the possibility of a situation in which the gate is down
without any train being in the crossing area. Likewise if a call to unutilized/1
fails we know that the utility property is satisfied. We have also verified the
liveness property by using not live/1 predicate, defined below. The liveness
property states that once the gate goes down, it will not stay down forever.
To verify this, we negate the liveness property and look for the possibility that
up does not appear infinitely often in the accepting timed trace. Coinductive
co not member/2 succeeds if up does not appear in R infinitely often.

unsafe(R) :-

main(R),

append(C, [ (in, _) | D ], R),

append(A, [ (up, _) | B ], C),

not_member((down, _), B).

unutilized(R) :-

main(R),

append(A, [ (down, _) | B ], R),

find_first_up(B, C),

not_member((in, _), C).

not_live(R) :-

main(R),

co_not_member((up, _), R).

find_first_up([ (X, _) | T ], [ (X, _) | R ] ) :-

X \== up, find_first_up(T, R).

find_first_up([ (up, _) | T ], [] ).

5 Conclusions and Related Work

In our previous work [17], we presented an extension of π-calculus with real-time
and we developed an operational semantics for it. Our timed π-calculus handles,
mobility, concurrency and infinite computation. In contrast to other extensions,
in our work the notion of time and clocks is adopted directly from the well-
understood formalism of timed automata [1]. Therefore, time is faithfully treated
as a continuous quantity.

In this paper, we developed an implementation of timed π-calculus [17]. This
implementation is based on Horn logical semantics of programming languages
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and directly leads to an implementation of timed π-calculus. First, we expressed
the syntax of timed π-calculus in the Definite Clause Grammar (DCG) nota-
tion, which trivially leads to a parser for the language. Next, we expressed the
semantic algebra and valuation functions of timed π-calculus in logic program-
ming. The syntax and semantics specifications of timed π-calculus loaded into a
coinductive constraint logic programming system directly yields an interpreter
for timed π-calculus. This interpreter is executable and can be used for veri-
fying properties of real-time systems and CPS, expressed as timed π-calculus
processes. We illustrated our approach by applying it to the rail road crossing
problem and verifying properties of the system.

There have been some efforts on implementing the operational semantics
of π-calculus and its various extensions with time; the most notable one and
closest one to our approach is the work of Yang et al. [23]. However, this work is
different from our work as: (i) it is unable to model infinite processes and infinite
replication. In our implementation we are using coinductive logic programming,
a more recently developed concept, which allows such modeling, (ii) it models
π-calculus but not timed π-calculus, (iii) it does not use Horn logic semantics.

Tiu et al. [20] specify the operational semantics and bisimulation relations
for the finite π-calculus (but not timed π-calculus) within a logic called FOλΔ∇.
However, the focus of this work is to show the use of a certain logic (FOλΔ∇) to
specify and reason about computation in general. A major goal of this work is
to illustrate how the ∇-quantifier and a second proof-level binding (introduced
earlier by the same authors) [13] can be used to specify and reason about compu-
tation. The authors claim that they have chosen π-calculus because it is a small
calculus in which bindings play an important role in computation. Our contri-
bution is quite different as we develop the executable operational semantics of
full (not just finite) timed π-calculus. Handling name-bindings in our work has
been automatically done by resolution procedures for logic programming. Infi-
nite computations as well as constraints are handled using coinduction and CLP,
respectively.

Our timed π-calculus is an expressive, natural model for describing real-
time, mobile, concurrent processes and our logic-based implementation of the
operational semantics of this calculus provides a framework for modeling and
verification of real-time systems and CPS.

As for future work, partial evaluation can be used to optimize the logical
encoding of the operational semantics of timed π-calculus. It is well known that
compiled code for a program P written in language L can be obtained by par-
tially evaluating the interpreter for L w.r.t. the program P [10]. Given a partial
evaluator for pure Prolog, the interpreter can be partially evaluated w.r.t. pro-
gram P to obtain provably correct compiled code for P [21,22]. After obtaining
an interpreter for timed π-calculus from its denotational specifications, partial
evaluation can be used to obtain a more efficient encoding. We plan to use this
technique with L being timed π-calculus and program P being timed π-calculus
expressions, to obtain a coroutined co-CLP program Q which is equivalent to
direct (and more efficient) encoding of P.
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{jgonza,dinsa,jsilva}@dsic.upv.es

Abstract. During many years, Print Debugging has been the most used
method for debugging. Nowadays, however, industrial languages come
with a trace debugger that allows programmers to trace computations
step by step using breakpoints and state viewers. Almost all modern
programming environments include a trace debugger that allows us to
inspect the state of a computation in any given point. Nevertheless,
this debugging method has been criticized for being completely man-
ual and time-consuming. Other debugging techniques have appeared to
solve some of the problems of Trace Debugging, but they suffer from
other problems such as scalability. In this work we present a new hybrid
debugging technique. It is based on a combination of Trace Debugging,
Algorithmic Debugging and Omniscient Debugging to produce a synergy
that exploits the best properties and strong points of each technique. We
describe the architecture of our hybrid debugger and our implementation
that has been integrated into Eclipse as a plugin.

1 Introduction

Debugging is one of the most time-consuming tasks in software engineering.
However, the automatization of debugging is still far from being a reality. In
fact, during many years, Print Debugging (also known as Echo Debugging) has
been the most common method for debugging. Print Debugging allows us to
easily know whether the computation traverses one specific point. Many bugs can
be corrected with this information, and the programmer (maybe optimistically)
prefers to use this method before loading a real debugger. Nevertheless, some
bugs are almost impossible to detect with Print Debugging, specially in presence
of random values, input, and concurrency.

Fortunately, all modern programming environments, e.g., Borland JBuilder
[5], NetBeans [2], Eclipse [3], SICStus Prolog SPIDER IDE [6] or SWI-Prolog
[1] include a trace debugger, which allows programmers to trace computations
step by step. However, Trace Debugging is a completely manual task, and the
programmer is in charge of inspecting the computations of the program at a low
abstraction level. For this reason, other debugging techniques have been proposed
to solve some of these problems, but they also suffer from other problems. For
instance, Algorithmic Debugging [26,27] (also known as Declarative Debugging)
is semi-automatic, i.e., the search for the bug is directed by the debugger instead
c© Springer International Publishing Switzerland 2014
G. Gupta and R. Peña (Eds.): LOPSTR 2013, LNCS 8901, pp. 183–201, 2014.
DOI: 10.1007/978-3-319-14125-1 11
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of the programmer; and its abstraction level is so high that programs can be
debugged without even seeing the code, but it suffers from scalability problems.

In this work we introduce a hybrid debugging technique that combines three
different techniques, namely, Trace Debugging (TD), Omniscient Debugging
(OD) and Algorithmic Debugging (AD). The combination is done exploiting the
strong points of each technique, and counteracting or removing the weak points
with their composition. Our method is presented for the programming language
Java—our implementation is an Eclipse plugin for Java—but the technique and
the architecture of our debugger could be applicable to any other programming
language. In summary, the main contributions of this work are the following:

– The design of a new hybrid debugging technique that combines TD, OD and
AD.

– The integration of the technique on top of the JPDA architecture—which
was conceived for tracing, but not for algorithmic or omniscient debugging—.

– The implementation of the technique as a Eclipse plugin.
– The empirical evaluation of the new architecture that demonstrates the prac-

tical scalability of the technique.

The rest of the paper is structured as follows: In Section 2 we describe
TD, OD, and AD, analyzing their strong and weak points. Then, in Section 3
we present our new hybrid debugging technique and explain its architecture.
In Section 4 we describe our implementation, which has been integrated into
Eclipse. The related work is presented in Section 5. Finally, Section 6 concludes
and outlines the future work.

2 Debugging Techniques

This section describes the three debugging techniques that we use in our hybrid
method: TD, OD and AD. For each technique, we also analyze its strong and
weak points and its applicability to Java.

2.1 Trace Debugging

The most used method for debugging is TD. It allows the programmer to traverse
the trace of a computation step by step. The programmer places a breakpoint
in a line of the source code and the debugger stops the computation when this
line is reached. Then, the programmer proceeds line by line and, at each step,
the programmer can inspect the state of the computation (i.e., variables’ values,
exceptions, etc.). During the traversal of the trace, when a call to a method is
reached, the debugger can either enter the method (step into) or skip it (step
over). Modern breakpoints are conditional, i.e., the breakpoint includes condi-
tions over the values of some variables, or over the action performed where they
are defined. For instance, it is possible to define a breakpoint that only stops the
computation when an exception happens, or when a class is loaded. TD has one
important advantage over other debugging techniques: scalability. The debugger
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only needs to take control over the interpreter to execute the program normally.
Hence, its scalability is the same as the one of the interpreter. On the other
hand, TD has four main drawbacks:

1. The whole debugging process is done at a very low abstraction level. The
programmer just follows the steps of the interpreter, and she needs to under-
stand how variables’ values change to identify an error.

2. The debugger can generate an overwhelming amount of information.
3. The debugging process is completely manual. The programmer uses her intu-

ition to place the breakpoints. If the breakpoint is after the bug, she has to
place it again before, and restart the program. If the breakpoint is placed
long before the bug, then she has to manually inspect a big part of the
computation.

4. The inspection of the computation is made forwards, while the natural way
of discovering the bug is backwards from the bug symptom.

2.2 Omniscient Debugging

Omniscient debugging [19] solves the fourth drawback of TD with the cost of
sacrificing scalability. Basically both techniques rely on the use of breakpoints
and they both do exactly the same from a functional point of view. The dif-
ference is that OD allows the programmer to trace the computation forwards
and backwards (chronologically). This is very useful, because it allows the pro-
grammer to perform steps backwards from the bug symptom. To do this, the
debugger needs a mechanism to reconstruct every state of the computation. One
of the most scalable schemas to do this is depicted in Figure 1. In this figure,
we have an horizontal line representing an execution as a sequence of events.
Some of these events are method invocations (represented with a white circle),
and method exits (represented with a black circle). Each event is identified with
a timestamp. From the execution, the omniscient debugger stores a variable
history record that contains the values of all variables together with the exact
timestamp where they updated each value. The omniscient debugger also stores
information about the scope of variables that we omit here for clarity. With
this information the debugger can reconstruct any state of the computation. For
instance, in state 42, value M.N.y did not exist, and the last value of variables
O.x and O.v[3] was 23 and 3 respectively.

Being able to reconstruct the complete trace also allows the programmer
to start the execution at any point. Nevertheless, storing all values taken by
all variables in an execution is usually impossible for realistic industrial (large)
programs, and even for medium sized programs. Thus scalability is very limited
in this technique.

2.3 Algorithmic Debugging

Algorithmic Debugging [26,27] is a semi-automatic debugging technique that
is based on the answers of the programmer to a series of questions generated
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automatically by the algorithmic debugger. The questions are always whether a
given result of a method invocation with given input values is actually correct.
The answers provide the debugger with information about the correctness of
some (sub)computations of a given program; and the debugger uses them to
guide the search for the bug until a buggy portion of code is isolated.

Example 1. Consider the Java program in Figure 2 that simulates Tic-Tac-Toe
games —we suggest the reader not to see the code now, and try to debug this
program without seeing the code. This is possible with AD as it is shown in
the following debugging session—. This program is buggy, and thus it does not
produce the expected marks in the board. Class Replay reads from a file a new
game and it reproduces the game using a TicTacToe object. The null character
is represented in Java with ’\u0000’.

An AD session for this program is shown below where boards are repre-
sented with a picture for clarity (e.g., {{X,","}{O,","}{",","}} is represented

with ). For the time being ignore column Node:

Starting Debugging Session...

Node Initial context Method call Final context Answer

(2) [turn=’X’,board= ] game.mark(’X’,0,0) [turn=’O’,board= ] ? YES

(7) [turn=’O’,board= ] game.mark(’O’,0,1) [turn=’X’,board= ] ? NO

(8) [turn=’X’,board= ] game.win(0,1)=false [turn=’X’,board= ] ? YES

Bug found in method: TicTacToe.mark(char, int, int)

Discovered with the call: game.mark(’O’,0,1)

Fig. 1. Timestamps-based scheme to store traces in Omniscient Debugging
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public class Replay {
public static void main(String[] args) throws IOException {

TicTacToe game = new TicTacToe();
FileReader file = new FileReader("./game.rec");
play(game, file);

}
private static void play(TicTacToe game, FileReader file) throws IOException {

BufferedReader br = new BufferedReader(file);
String linea = br.readLine();
while ((linea = br.readLine()) != null) {

char player = linea.charAt(0);
int row = Integer.parseInt(linea.charAt(2) + "");
int col = Integer.parseInt(linea.charAt(4) + "");
game.mark(player, row, col);

}
}

}

public class TicTacToe {
private static boolean equals(char c1, char c2, char c3) {

return c1 == c2 && c2 == c3;
}

private char turn = ’X’;
private char[][] board = new char[3][3];

public void mark(char player, int row, int col) {
if (turn == ’\u0000’ || turn != player

|| row < 0 || row > 2 || col < 0 || row > 2
|| board[row][col] != ’\u0000’)
return;

board[col][row] = player; // Bug!! Correct: board[row][col] = player;
turn = turn == ’X’ ? ’O’ : ’X’;
if (win(row, col))

turn = ’\u0000’;
}
private boolean win(int row, int col) {

if (board[row][col] == ’\u0000’)
return false;

if (equals(board[row][0], board[row][1], board[row][2]))
return true;

if (equals(board[0][col], board[1][col], board[2][col]))
return true;

if (col == row && equals(board[0][0], board[1][1], board[2][2]))
return true;

if (col + row == 2 && equals(board[0][2], board[1][1], board[2][0]))
return true;

return false;
}

}

Fig. 2. Example program

Note that the debugger generates questions, and the programmer only has to
answer the questions with YES or NO. It is not even necessary to see the code.
Each question is about the execution of a particular method invocation, and
the programmer answers YES if the execution is correct (i.e., the output and the
final context are correct with respect to the input and the initial context) and
NO otherwise.

At the end, the debugger points out the specific call to a method in the code
that revealed a bug in that method. In this case, method TicTacToe.mark is
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wrong. This method first checks whether the movement is correct (e.g, it is the
player’s turn, the mark is inside the board, etc.). If the movement is correct, then
it places the mark in the corresponding position of board, it updates the next
player to make a movement, and it finally checks whether this mark wins the
game. Unfortunately, the programmer interchanged the row and the column pro-
ducing a bug. This error can be easily corrected by replacing board[col][row]
= player by board[row][col] = player.

Typically, algorithmic debuggers have a front-end that produces a data struc-
ture representing a program execution—the so-called execution tree (ET) [23]—
and a back-end that uses the ET to ask questions and process the programmer’s
answers to locate the bug. Each node of the ET contains an equation that con-
sists of a method execution with completely evaluated arguments and results.
The node also contains additional information about the context of the method
before and after its execution (attributes values or global variables in the scope
of the method).

Essentially, AD is a two-phase process: During the first phase, the ET is
built, while in the second phase, the ET is explored. The ET is constructed as
follows: The root node is (usually) the main function of the program; for each
node n with associated method m, and for each method invocation done from
the definition of m, a new node is recursively added to the ET as the child of n.

Example 2. Consider again the Java program in Figure 2. Figure 3 depicts the
portion of the ET associated with the execution of the method play(game,
file) using game.rec as the input file. Each node contains:

– A string representing the method call (including input and output) depicted
at the top of each node.

– The variables (and their values) in the scope at the beginning and at the end
of the method execution. When the value of a variable is modified during
the execution of the method, the node contains both values on the left and
on the right of the node respectively. When the variable is not modified, it
is shown only once in the middle of the node.

Once the ET is built, in the second phase, the debugger uses a strategy to
traverse the ET asking an oracle to answer each question. For instance, each
question in the debugging session of Example 1 corresponds to a node (see col-
umn Node) of the ET in Figure 3. These nodes have been selected by the strategy
Divide & Query [26]. After every answer, some nodes of the ET are marked as
correct or wrong. When all the children (if any) of a wrong node are correct,
the node becomes buggy and the debugger locates the bug in the part of the
program associated with this node [24].

Theorem 1 (Correctness of AD [24]). Given an ET with a buggy node n,
the method associated with n contains a bug.
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Fig. 3. ET associated with the call play(game, file) of the program in Figure 2

Theorem 2 (Completeness of AD [26]). Given an ET with a bug symptom
(i.e., the root is a method with a wrong final context), provided that all the
questions generated by the debugger are answered, then, a bug will eventually be
found.

The most important advantage of AD is its high level of abstraction and its
semi-automatic nature. The main drawbacks of this technique are:

1. Low scalability. Each ET node needs to record a part of the computation
state (i.e., the context before and after the method execution). Storing the
ET of the whole execution can be unpractical.

2. The strategy that traverses the ET can ask unnecessary questions until it
reaches the part of the computation that contains the bug.

3. Low granularity of the error found. This technique reports a method as
buggy, instead of an expression.

2.4 Comparison of the Techniques and Empirical Analysis

Table 1 summarizes the strong and weak points of the techniques.
In our hybrid technique, we want to take advantage of the high abstraction

level of AD. We also want to exploit the semi-automatic nature of this technique
to speed up bug finding and to avoid errors introduced by the programmer when
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Table 1. Comparison of debugging techniques

Feature Trace Omniscient Algorithmic

Scalability Very Good Very bad Bad

Error granularity Expression Expression Method

Automatized process Manual Manual Semi-automatic

Execution Forwards Forwards and backwards Forwards and backwards

Abstraction level Low Low High

searching the bug. However, AD alone would explore all computations as if they
all were suspicious. To avoid this, we want to take advantage of the breakpoints,
which provide information to the debugger about what parts of the computa-
tion are suspicious for the programmer (e.g., the last changed code). Hence, we
designed our technique to start using the breakpoints of the programmer, and
then automatize the search using AD. Another problem that must be faced is
that AD is able to find a buggy method, but not a buggy expression. Therefore,
once AD has found a buggy method, we can use OD to further investigate this
method in order to find the exact expression that produced the error.

In order to analyze whether this scheme is feasible, we studied the scalability
problem of both AD and OD. Operationally, AD and OD are similar. They both
record events produced during an execution, and they associate with each event
a timestamp. The main difference is that AD only needs to reconstruct the state
of the events that correspond to method invocations and method exits (white
and black circles in Figure 1). Moreover, AD does not need to store information
about local variables—only about attributes and global variables—, which is an
important difference regarding scalability.

We conducted some experiments to measure the amount of information stored
by an algorithmic debugger to produce the ET of a collection of medium/large
benchmarks (e.g., an interpreter, a parser, a debugger, etc.) accessible at:

http://www.dsic.upv.es/∼jsilva/DDJ/#Experiments
Results are shown in Table 2.

Table 2. Benchmark results

Benchmark var. num. ET size ET depth

argparser 8.812 2 MB 7
cglib 216.931 200 MB 18
kxml2 194.879 85 MB 9
javassist 650.314 459 MB 16
jtstcase 1.859.043 893 MB 57
HTMLcleaner 3.575.513 2909 MB 17

Column var. num. represents the total amount of variable changes stored.
Column ET size represents the size of the information stored. Observe that the
last benchmark needs almost 3 GB. Column ET depth is the maximum depth of

http://www.dsic.upv.es/~jsilva/DDJ/#Experiments
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the ET (e.g., in benchmark jtstcase, there was a stack of 57 activation records
during its execution). If we consider that this information does not include local
variables, then we can guess that the amount of information needed by an omni-
scient debugger can be huge. Clearly, these numbers show that neither AD nor
OD are scalable enough as to be used with the whole program. They should be
restricted to a part of the execution. For AD, we propose to restrict its use only
to the part of the execution that corresponds to a breakpoint (i.e., the execution
of the method where the breakpoint is located). For OD, we propose to restrict
its use only to the part of the execution that corresponds to a single method (i.e.,
the method where AD identified a bug). This proposal is completely aligned with
the previous ideas discussed: AD will only start in a suspicious area pointed out
by a breakpoint, and OD will only be used when a buggy method has been found,
and thus the programmer can trace backwards the incorrect values identified at
the end of this method.

3 Hybrid Debugging

In this section we present our hybrid debugger for Java (HDJ) based on the
ideas discussed in the previous section. It combines TD, AD and OD to produce
a synergy that exploits the best properties and strong points of each technique.

We start by describing the steps followed in a hybrid debugging session. Con-
sider the diagram in Figure 4 that summarizes our hybrid debugging method.
We see three main blocks that correspond to TD, AD and OD. These blocks
contain four items that have been numbered; and these items are connected by
arrows. Black arrows represent an automatic process (performed by the debug-
ger), whereas white arrows represent a manual process (performed by the pro-
grammer):

Trace Debugging. First, after a bug symptom is identified, the user explores
the code as usual with the trace debugger and she places a breakpoint b1 in
a suspicious line (probably, inside one of the last modified parts of the code).

Algorithmic Debugging. Second, the debugger identifies the method m1 that
contains breakpoint b1, and it generates an ET whose root method is m1.
This is completely automatic. Then, the user explores the ET using AD until

Fig. 4. Hybrid debugging with HDJ



192 J. González et al.

a buggy node n is found. Note that, according to Theorem 2, if method m1

is wrong, then it is guaranteed that AD will find a buggy node (and thus a
buggy method). From n, the AD automatically generates a new breakpoint
b2. b2 is placed in the definition of the method m2 associated with n. And,
moreover, b2 is a conditional breakpoint that forces the debugger to stop at
this definition, only when the bug is guaranteed to happen. The condition
ensures that all values of the parameters of m2 are exactly the same as their
values in the call to m2 associated with n.

Example 3. Consider a buggy node {x = 0} m(42) {x = 1}, where the
definition of method m, void m(int a), is located between lines 176 and 285.
Then, the conditional breakpoint generated for it is (176, {x = 0, a = 42}).
Alternatively, another conditional breakpoint can also be generated at the
end of the method.

According to Theorem 1, because node n is buggy, then method m2 contains
a bug.

Omniscient Debugging. Third, the debugger acts as an omniscient debugger
that explores method m2 by reproducing the concrete execution where the
bug showed up during AD. The user can explore the method backwards
from the final incorrect result of the method. Observe that the OD phase is
scalable because it only needs to record the trace of a single method. Note
that all method executions performed from this method are known to be
correct thanks to the AD phase.

The three phases described produce a debugging technique that takes advan-
tage of all the best properties of each technique. However, one of the most impor-
tant objectives in our debugger is to avoid a rigid methodology. We want to give
the programmer the freedom to change from one technique to another at any
point. For instance, if the programmer is using TD and decides to use OD in a
method, she must be able to do it. Similarly, new breakpoints can be inserted at
any moment, and AD can be activated when required. The architecture of our
tool provides this flexibility that significantly increases the usability of the tool,
and we think that it is the most realistic approach for debugging.

3.1 Architecture

This section explains the internal architecture of HDJ, and it describes its main
features. HDJ is an Eclipse plugin that takes advantage of the debugging capa-
bilities already implemented in Eclipse (i.e., HDJ uses the Eclipse’s trace debug-
ger), and it adapts the already existent Declarative Debugger for Java (DDJ)
[15] to the Eclipse workbench. The integration of HDJ into Eclipse is described
in Figure 5.

One of the debuggers, the trace debugger, was already implemented by an
Eclipse plugin called JDT Debug. The other two debuggers have been imple-
mented in the HDJ plugin. The tool allows the programmer to switch between
three perspectives:
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Fig. 5. Integration of HDJ into Eclipse

Debug: This perspective allows us to perform TD. It is the standard perspective
of Eclipse for debugging. It is composed of several views and editors and it
offers a wide functionality that includes conditional breakpoints, exception
breakpoints, watch points, etc.

ODJ: This perspective allows us to perform OD. It contains the same views and
editors that form the standard debug perspective. Therefore, although the
programmer is using a different debugger with a totally different debugging
mechanism, their GUI is exactly the same; and thus, the internal differences
are transparent for her. The only difference is that ODJ allows us to explore
the execution backwards. Internally, it uses a trace of the execution (as the
one described in Section 2.2) that is stored in a database.

DDJ: This perspective allows us to perform AD. An usage example of this
perspective interface is presented in Figure 6. In the figure we can see two of
its three views and one editor. First, on the left we see the ET view, which
contains the ET and the questions generated by the debugger. Second, on the
right we see the Node inspector, which shows all the information associated
with the selected ET node. This includes the initial context, the method
invocation and the final context, where changes are highlighted with colors.
Third, at the bottom we see the Java editor, which contains the source
code and the breakpoints. This editor is shared between the three debuggers,
and thus, all of them manipulate the same source code, and handle the same
breakpoints of the programmer.

One of the important challenges when integrating two new debuggers into
Eclipse was to allow all of them to debug the same program together (i.e., giving
the programmer the freedom to change from one debugger to the other in the
same debugging session). For this, all of them must have access to the same
target source code (e.g., a breakpoint in the target source code should be shared
by the debuggers), and use the same target Java Virtual Machine (JVM) and
the same execution control over this target JVM. In the figure, this common
target JVM is represented with the black box. The Java Virtual Machine Tools
Interface (JVM TI) provides both a way to inspect the state and to control the
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Fig. 6. Snapshot of HDJ (DDJ perspective)

execution running in the target JVM. The debuggers access it through the Java
Debug Interface (JDI) whose communication is ruled by the Java Debug Wire
Protocol (JDWP). This small architecture to control the JVM is called Java
Platform Debugger Architecture (JPDA) [21].

The integration of HDJ into Eclipse implies having three different debuggers
accessing and controlling the same JVM where the debuggee is being executed.
Therefore, our architecture uses two different JVMs that run in parallel and
communicate via JPDA. The first JVM is where the debuggee is executed. The
second JVM is where the debuggers are executed. It is important to remark
that the information of one JVM cannot be directly accessed by the other JVM.
Controlling one JVM from the other must be done through JPDA.

A first idea could be to execute the program in the target JVM and stop
it when the statement that the programmer wants to inspect is reached. How-
ever, this would imply to re-execute the program once and again every time the
programmer wants to perform a step backwards (i.e., to inspect the previous
statement). Obviously, this is a bad strategy, because every time the program
is re-executed, the state could change due to, e.g., concurrency, nondetermin-
ism, input, etc. Therefore, even if we reached the same statement, it could vary
between executions, and the information shown to the programmer would not
be confident. Hence, we need to use some memorization mechanism to store all
relevant states of a single execution.

Prior to our current implementation, our first design was conceived in such a
way that the JVM of the debugger directly controlled the JVM of the debuggee
using communication through JPDA. This implementation had to establish com-
munication between both JVMs after every relevant event. This produced a
heavy interaction with a massive message passing that was not scalable even for
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small programs. Therefore, we designed a second strategy whose key idea is to
let the JVM of the debuggee to control itself. More precisely, before executing
the debuggee in the JVM, we load a thread in this JVM so that, this thread
directs the debugging of the program, thus, avoiding unneeded communication
thorough JPDA. Figure 7 summarizes the internal architecture of the debugger
to control the execution of the debuggee.

Fig. 7. Architecture of HDJ

The big boxes represent two JVMs. One for the debugger, and one for the
debuggee. The debugger has two independent modules that can be executed
in parallel: The algorithmic debugger DDJ, and the omniscient debugger ODJ.
Each dark box represents a thread. DDJ has four threads: interface to control
the GUI, construction to build the ET, control to control and communicate
with the debuggee JVM, and selection to select the next question. ODJ has
two threads: interface and control that perform similar tasks as in DDJ. In the
debuggee, a new thread is executed in parallel with the program. This thread,
called HDJ, is in charge of collecting all debugging information and storing it in
a database. This information is later retrieved by threads control. Thread HDJ
makes this approach scalable, because it allows to retrieve all the necessary
information with a very reduced set of JPDA connections. In the case of OD,
the information stored in the database by thread HDJ contains all changes of
variable values occurred during the execution of the method being debugged.

Example 4. Consider again the debugging session in Example 1. In this debug-
ging session AD determined that method mark is buggy, and that the bug shows
up with the specific call game.mark(’O’,0,1). With this information, HDJ auto-
matically generates a conditional breakpoint to debug this call. The information
stored in the database by thread HDJ for this call is shown in Figure 8. Observe
that only the variables that changed their value during the execution are stored.
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Fig. 8. Information stored in the database by the omniscient debugger

4 Implementation

HDJ has been completely implemented in Java. It contains about 29000 LOC:
19000 LOC correspond to the implementation of the algorithmic debugger (the
internal functionality of the algorithmic debugger has been adapted from the
debugger DDJ with some extensions that include the communication with JPDA
trough JDT Debug, and the perspective GUI), 8300 LOC correspond to the
implementation of the omniscient debugger that has been implemented from
scratch, and 1700 LOC correspond to the implementation of the own plugin
and its integration and communication with Eclipse. The debugger can make
use of a database to store the information of the ET and the trace used in
OD (if the database is not activated, the ET and the trace are stored in main
memory). Thanks to JDBC, HDJ can interact with different databases. The
current distribution includes both a MySQL and Access databases. The last
release of the debugger is distributed in English, Spanish and French.

All described functionalities in this paper are completely implemented in the
last stable release. This version is open and publicly available at:

http://www.dsic.upv.es/∼jsilva/HDJ/
In this website, the interested reader can find installation steps, examples, demon-
stration videos and other useful material.

4.1 Empirical Evaluation

In order to measure the scalability of our technique, we conducted a number of
experiments to achieve the time needed by the debugger to start the debugging
session. The scalability of TD is ensured by the own nature of the technique
that reexecutes the program up to a breakpoint, and then shows the current
state. In fact, we use the Eclipse’s standard trace debugger that is scalable no
matter where the breakpoint is placed. In the case of AD, scalability could be
compromised if the debugger is forzed to generate the ET of the whole execution.
Even in this case, we are able to ensure scalability: (i) The memory problem
is solved with a database. Our debugger never stores the whole ET in main
memory. It uses a clustering mechanism to store and load from the database
the subtrees of the ET that are dynamically needed by the GUI. (ii) The time

http://www.dsic.upv.es/~jsilva/HDJ/


A New Hybrid Debugging Architecture for Eclipse 197

problem is solved by allowing the debugger to start the debugging session even if
the ET is not completely generated (i.e, our debugger is able to debug incomplete
ETs while they are being generated) [16]. In the case of OD, we cannot ensure
scalability if it is applied to the whole program. For this reason, we limit the
application of OD to a single method. This is scalable as demonstrated by our
empirical evaluation whose results are shown in Table 3.

Table 3. Benchmarks results for OD

Benchmark Execution Omniscient

Statements Objects Time (ms) Time (ms)

0 - 9
0 - 1 (96) 5 2060

(294)
2 - 5 (97) 273 3265

6 - 18 (101) 27 4099

10 - 19
7 - 18 (10) 51 6527

(29)
19 - 24 (10) 739 7348
25 - 32 (9) 2062 12379

20 - 57
25 - 39 (3) 83 3999

(10)
40 - 54 (4) 117 6347
55 - 100 (3) 176 3757

This table summarizes the results obtained for 333 benchmarks. Each bench-
mark measures the time needed to generate all the information used in OD (the
information stored in the database by thread HDJ in Figure 7). After this time,
the debugger contains the state at any point in the method, and thus, the pro-
grammer can make backwards steps, jump to any point in the method and show
the values of the variables at any point. These benchmarks correspond to all
methods executed (333 different methods) by the loops2recursion Java library
[17] applied over a collection of 25 Java projects. This library automatically
transforms all loops in the Java projects to equivalent recursive methods.

All benchmarks have been grouped into three categories according to the
number of statements executed in the method (0-9, 10-19, and 20-57). Inside
each category, we indicate the number of benchmarks that fall on this cate-
gory between parentheses. Categories have been divided in subcategories that
indicate the number of objects that have changed during the execution of the
method (i.e., the number of objects that must be inspected and stored in the
database). We have a total of 9 subcategories. Each of them indicates the aver-
age time needed to execute the methods in that subcategory (Execution Time),
and the time needed to generate the information for OD (Omniscient Time). All
the information is generated between 2 and 12 seconds. The variability between
the rows is dependent on the size of the objects changed. Clearly, row 6 has less
objects to store than rows 7, 8 and 9, but these objects are bigger, and thus both
the execution and omniscient times are higher.
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5 Related Work

While a trace debugger is always present in modern development environments,
algorithmic debuggers and omniscient debuggers are very unusual due to their
scalability problems already discussed. There exist, however, a few attempts to
implement algorithmic debuggers for Java such as the algorithmic debugger JDD
[12] and its more recently reimplemented version DDJ [15]. Other debuggers exist
that incorporate declarative aspects such as the Eclipse plugin JavaDD [11] or
the Oracle JDeveloper’s declarative debugger [10] however, they are not able to
automatically produce questions and to control the search to automatically find
the bug. This means that they lack the common strategies for AD implemented
in standard algorithmic debuggers of declarative languages such as Haskell (Hat-
Delta [8]) or Toy (DDT [7]). None of this debuggers can work with breakpoints
as our debugger does.

The situation is similar in the case of omniscient debuggers. To the best of our
knowledge, OmniCore CodeGuide [4] is the only development environment for
Java that includes by default an omniscient debugger. Nevertheless, for the sake
of scalability, this debugger uses a trace limited to the last few thousands events.
Some ad-hoc implementations exist that can work stand-alone or be integrated
in commercial environments [14,19,20,22,25]. Almost all these works focus on
how to make OD more scalable [20,25]. For instance, by reducing the overhead
of trace capture as well as the amount of information to store using partial traces
that exclude certain trusted classes from the instrumentation process [19]. Other
works try to enhance OD, e.g., with causality links [22] that provide the ability
to jump from the point a value is observed in a given variable to the point in the
past when the value was assigned to that variable. This can certainly be very
valuable to resolve the chain of causes and effects that lead to a bug.

There have been several attempts to produce hybrid debuggers that combine
different techniques. The debugger ODB [19] combines TD with OD. It allows
the user to debug the program using TD and start recording the execution for
OD when the user prefers. The debugger by Kouh et al. [18] combines AD with
TD. Once the algorithmic debugger has found a buggy method, they continue
the search with a trace debugger to explore this method (forwards) step-by-step.
This idea is also present in our debugger, but we use OD instead of TD, and
thus we also permit backwards steps. The debugger JIVE [9] combines TD, OD
and dynamic slicing. It does not use AD, but allows the programmer to perform
queries to the trace.

To the best of our knowledge, JHyde [13] is the only previous technique that
combines TD, OD and AD. Unfortunately, we have not been able to empirically
evaluate this tool (it is not publicly accessible); but considering its architecture,
it is highly probable that it suffers from the same scalability problems as any
other omniscient debugger. Unlike our solution, their architecture is based on
program transformations that instrument the code to store the execution trace
in a file as a side effect. First, this instrumentation and the execution of the trace
usually takes a lot of time with an industrial program, so that the programmer
has to wait for the instrumentation before starting to debug; and second, they
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store the trace of the whole program, while our scheme only needs the trace of
a single method. The common point is that both techniques are implemented
as an Eclipse plugin, and they both use the same data structure for OD and
AD. This is important to reuse the trace information collected by the debugger.
Another important feature implemented by both techniques is the use of a color
vocabulary used in the views. This is very useful to allow the programmer to
quickly see the changes in the state.

6 Conclusions and Future Work

Trace Debugging, Algorithmic Debugging and Omniscient Debugging are three
of the most important debugging techniques. Some of them are more suitable for
one specific kind of program, while for other programs the other techniques can
be better. Furthermore, it is possible that one technique is desirable to debug
one part of a program, while other technique is preferable for other part of the
same program. For these reasons, in any development environment the three
techniques should be available.

In this work, we introduce a new debugger called HDJ that implements and
integrates the three techniques. The implementation uses a new debugging archi-
tecture that allows the three techniques to share the same target virtual machine,
and the same target source code. This allows the programmer to change from
one technique to the other in the same debugging session. Moreover, we present
a new model for debugging that combines the three techniques. Our new debug-
ging architecture is particularly interesting because it exploits the best properties
of each technique (e.g., high precision, high abstraction level, etc.) and it mini-
mizes the problems such as scalability. HDJ is open and freely distributed as an
Eclipse plugin.

As future work, we plan to incorporate in our debugger the causality links
functionality [22], which allows the programmer to click on a variable and jump
to the statement that produced the value of this expression. We are also further
improving the integration between AD and OD. In particular, we want to allow
the programmer to select a node in the ET and automatically start an omniscient
debugging session with the information of this node.
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rio de Economı́a y Competitividad (Secretaŕıa de Estado de Investigación, Desarrollo
e Innovación) under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana
under grant PROMETEO/2011/052. David Insa was partially supported by the Span-
ish Ministerio de Eduación under FPU grant AP2010-4415.

References

1. Swi-prolog (1987). http://www.swi-prolog.org/
2. Netbeans (1999). http://www.netbeans.org/
3. Eclipse (2003). http://www.eclipse.org/

http://www.swi-prolog.org/
http://www.netbeans.org/
http://www.eclipse.org/


200 J. González et al.
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Abstract. We present a compilation scheme for a functional logic pro-
gramming language. The input program to our compiler is a constructor-
based graph rewriting system in a non-confluent, but well-behaved class.
This input is an intermediate representation of a functional logic program
in a language such as Curry or T OY. The output program from our com-
piler consists of three procedures that make recursive calls and execute
both rewrite and pull-tab steps. This output is an intermediate represen-
tation that is easy to encode in any number of programming languages.
We formally and tersely define the compilation scheme from input to
output programs. This compilation scheme is the only one to date that
implements a deterministic strategy for non-deterministic computations
with a proof of optimality and correctness.

1 Introduction

Recent years have seen a renewed interest in the implementation of functional
logic languages [16,18,23]. The causes of this trend, we conjecture, include the
maturity of the paradigm [1,5,25], its growing acceptance from the programming
languages community [6,13,28], and the discovery of and experimentation with
new techniques [7,9,19] for handling the most appealing and most problematic
feature of this paradigm—non-determinism.

Non-determinism can simplify encoding difficult problems into programs
[6,10], but it comes at a price. The compiler is potentially more complicated
and the execution is potentially less efficient than in deterministic languages
and programs. The first issue is the focus of our work, whereas the second one is
addressed indirectly. In particular, we present an easy to implement, determin-
istic strategy for non-deterministic computations. Our strategy is the only one
to date in this class with a proof of its correctness and optimality.

Section 2 defines the source programs taken by our compiler as a certain
class of non-confluent constructor-based graph rewriting systems. Section 3 for-
mally defines and informally describes the design of our compiler by means of
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three abstract target procedures that can be easily implemented in any num-
ber of programming languages. Section 4 relates to each other source and target
computations and states some properties of this relation. In particular, it shows
that every step executed by the target program on an expression is needed to
compute a value of that expression in the source program. Section 5 formalizes
the strong completeness of our scheme: any value of an expression computed by
the source program is computed by the target program as well. Sections 6 and
7 summarize related work and offer our conclusion.

2 Background

The class of rewrite systems that we compile is crucial for the relative simplicity,
efficiency and provability of our design. Below we both describe and motivate
this class. Functional logic programming languages, such as Curry [27,30] and
T OY [21,39], offer to a programmer a variety of high-level features including
expressive constructs (e.g., list comprehension), checkable redundancy (e.g., dec-
laration of types and free variables), visibility policies (e.g., modules and nested
functions), and syntactic sugaring (e.g., infix operators, anonymous functions).

A typical compiler transforms a program with these high-level features into
a program that is semantically equivalent, i.e., it has the same I/O behavior, but
is in a form that is easier to compile and/or execute. The details of this transfor-
mation are quite complex and include lambda lifting [34], elimination of partial
applications and high-order function [41], elimination of conditions [4], transfor-
mation of non-inductively sequential functions into inductively sequential ones
[4] and replacement of logic (free) variables with generator functions [11]. This
transformed program, which is the input of our compilation scheme, is a graph
rewriting system [22] in a class called LOIS (limited overlapping inductively
sequential). Definitional trees characterize this class.

A definitional tree is a hierarchical structure consisting of rule nodes abstract-
ing the rules of a program, branch nodes abstracting subexpressions that need
to be evaluated for the application of the rules in the tree below the branch,
and exempt nodes abstracting the incompleteness of certain definitions. Since
definitional trees are a standard tool for the implementation of functional logic
languages, we defer to [2,5] for the details. A defined operation is inductively
sequential when it has a definitional tree.

Definition 1 (LOIS). A LOIS system is a constructor-based graph rewriting
system R in which every operation of the signature of R either is the binary
choice operation denoted by the infix symbol “ ?” and defined by the rules:

x ? - = x

- ? y = y
(1)

or is inductively sequential. A LOIS system will also be called a source program.
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All the non-determinism of a LOIS system is confined to the choice operation,
which is also the only non-inductively sequential operation. While its rules can
be used in a rewriting computation, the code generated by our compiler will not
(explicitly) apply these rules. The reason is that the application of a rule of (1)
makes an irrevocable decision in a computation. In this event, the completeness
of computations can be ensured by techniques such as backtracking or copying
which have undesirable aspects [7]. By avoiding the application of the choice
rules, pull-tabbing (also bubbling [8,9]) makes no irrevocable decisions.

LOIS systems are an ideal core language for functional logic programs for the
reasons discussed below and are therefore the source programs of our compiler.

1. Any LOIS system admits a complete, sound and optimal evaluation strategy
[3]. (A crucial difference between this strategy and our work is explained in
Sect. 6.)

2. Any constructor-based conditional rewrite system is semantically equivalent
to a LOIS system [4].

3. Any narrowing computation in a LOIS system is semantically equivalent to
a rewriting computation in another similar LOIS system [11,36].

4. In a LOIS system, the order of execution of disjoint steps of an expression
does not affect the value(s) of the expression [3,12].

Below we define a binary relation on nodes (and the expressions rooted by these
nodes, since they are in a bijection) that with a slight abuse we call needed. This
relation is at the core of some of our results.

Definition 2 (Needed). Let S be a source program, e an expression of S
whose root node we denote by p, and n a node of e. Node n is needed for e, and
similarly needed for p, iff in any derivation of e to a constructor-rooted form the
subexpression of e at n is derived to a constructor-rooted form. A node n (and
the redex rooted by n, if any) of a state e of a computation in S is needed iff it
is needed for some maximal operation-rooted subexpression of e.

When a node n is needed for an expression e and n roots a redex, the subexpres-
sion at n is a needed redex of e in the classic sense of [32]. Our definition of need
is well-suited for constructor-based systems and is convenient because it may
“see” the need of a subexpression s before s becomes a redex and even in the
case in which s will not become a redex (see the following definition of failure).
The relationships between our definition and the classic one are explored in [15].

Situations where a node n, root of an irreducible expression, is needed for an
expression e enable aborting a possibly non-terminating computation of e which
cannot produce a value. The next definition formalizes this point. An example
will follow.

Definition 3 (Failure). Let S be a source program and e an operation-rooted
expression of S. Expression e is a failure iff there exists no derivation of e to a
constructor-rooted form. When e is a failure, we may denote it with the symbol
“⊥” instead of e if the nodes, labels, and other components of e are of no interest.
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In general, telling whether an expression e is a failure is undecidable, since it
entails knowing whether some computation of e terminates. However, detect-
ing failures in programming is commonplace. Indeed, in many programming
languages a failure goes by the name of exception, a name that also denotes
the mechanism for recovering from computations failing to produce a value.
In functional logic programming, because of non-determinism, there are use-
ful programming techniques based on failing computations [10] and failures are
simply and silently ignored. Detecting some failures is easy, even in the pres-
ence of non-terminating computations. For example, consider the expression
e = loop+(1/0), where loop is defined below and the other symbols have their
usual meaning:

loop = loop (2)

It is immediate to see that the only redex of e is loop and consequently the
computation of e does not terminate. Relying on the intuitive meaning of the
symbols, since we have not defined them by rewrite rules, 1/0 is a failure, but
its value would be needed to evaluate e. Hence, e itself is a failure. Thus, the
computation of e can be terminated (in a failure) even though e is reducible and
loop is a needed redex in the classic sense [32].

The definition of the compiler in Fig. 2 rewrites failures to the distinguished
symbol “⊥”. These rewrites are only a notational convenience to keep the pre-
sentation compact. An implementation needs not rewrite failures to the “⊥”
symbol. Instead, the internal representation of a node may be tagged to say
whether that node is the root of a failure.

3 Compilation

3.1 Preliminary Definitions

Our compilation scheme is abstract in the sense that both input and output of
the compiler are programs expressed in convenient intermediate languages. The
advantage of this abstraction is decoupling a concrete language from a concrete
implementation so that different functional logic languages can be mapped to dif-
ferent run-time environments. This simplifies design and eases experimentation,
which are essential for high-performance implementations.

The input of the compilation is a LOIS system described in the previous
section. The output of the compilation consists of three procedures denoted
D (Dispatch), N (Normalize) and S (Step). These procedures make recursive
calls, and execute rewrite [22, Def. 23] and pull-tab [7, Def. 2] steps. A concrete
compiler only has to represent graphs as objects of some language L and map
the target procedures into procedures (functions, methods, subroutines, etc.) of
L that execute both the recursive calls and the replacements originating from
the steps.

This style of compilation for functional logic languages was pioneered in [16],
where three procedures were also defined for the same purpose. We will compare
these two approaches in Section 6, but in short, our strategy handles failures,
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avoids “don’t know” non-determinism, and ensures the (strong) completeness of
computations. None of these properties holds for the scheme of [16].

Pull-tabbing [7,19] is a technique for computing in graph rewriting systems
that avoids making any irrevocable non-deterministic decisions and incurs a very
modest overhead when a computation is deterministic. Informally, if e is an
expression of the form s(. . . , x?y, . . .), where s is not the choice symbol, then a
pull-tab step of e produces s(. . . , x, . . .) ? s(. . . , y, . . .). Therefore, pull-tabbing is
a binary relation over the expressions of a source program similar to rewriting—
in a graph a (sub)graph is replaced. The difference with respect to a rewrite
step is that the replacement is not an instance of the right-hand side of a rewrite
rule. It seems very natural for pull-tab steps, as well, to call the (sub)graph being
replaced the redex and to denote a step as a reduction.

Definition 4 (Pull-Tab). Let e be an expression, n a node of e, referred to as
the target, not labeled by the choice symbol and s1 . . . sk the successors of n in
e. Let i be an index in {1, . . . k} such that si, referred to as the source, is labeled
by the choice symbol and let t1 and t2 be the successors of si in e. Let ej, for
j = 1, 2, be the graph whose root is a fresh node nj with the same label as n and
successors s1 . . . si−1tjsi+1 . . . sk. Let e′ = e1 ? e2. The pull-tab of e with source
si and target n is e[n ← e′] and we write e → e[n ← e′].

Without some caution, however, pull-tabbing is unsound with respect to rewrit-
ing because a pull-tab step clones a choice, and different clones of the same choice
could be reduced to different alternatives in a single expression. For example,
consider the operation:

xor True x = not x
xor False x = x

(3)

and the expression:

xor x x where x = False ? True (4)

A pictorial representation of this expression is shown in the left-hand side of
Fig. 1. The choice of this expression is pulled up along two paths creating two
pairs of strands, one for each path, which eventually must be pair-wise combined
together. Some combinations will contain mutually exclusive alternatives, i.e.,
subexpressions that cannot be obtained by rewriting because they combine both
the left and right alternatives of the same choice. Fig. 1 presents an example of
this situation.

The soundness of pull-tabbing computations is preserved so long as the alter-
natives of a choice are never combined in the same expression [7]. To this aim,
a node n labeled by the choice symbol is decorated with a choice identifier
[7, Def. 1], such as an arbitrary, unique integer created when n is “placed in
service” [7, Princ. 1]. When a choice is pulled up, this identifier is preserved.
Should a choice be reduced to either of its alternatives, every other choice with
the same identifier must be reduced to the same alternative. A very similar idea
in a rather different setting was proposed by Brassel et al. [17,19]. A rewriting
computation that for any choice identifier i consistently takes either the left or



Compiling a Functional Logic Language: The Fair Scheme 207

xor

?
��

��
��
��

False True

→

?

���
���

�

� �
� � ���

���
�

��
��

?

��
�� ��

�� �
� ?

��
���
�

��
��

xor xor

��
�� 				

				
	 xor xor

False








True

Fig. 1. Pictorial representation of two states of the computation of (4): the initial state
to the left, and the state after three pull-tab steps to the right. Every choice in every
state has the same choice identifier which is then omitted from the representation. The
dashed paths are inconsistent, since they combine the left and right alternatives of the
same choice, and therefore should be discarded.

the right alternative of i is called a consistent computation. Furthermore, con-
sistent computations with pull-tab steps are correct (i.e., sound and complete)
with respect to rewriting computations [7, Th. 1]

The notion of trace [16], recalled below, allows us to keep track of a subgraph
in a graph after the graph undergoes a sequence of replacements. The definition
is non-trivial, but its application in an implementation is straightforward. We
will discuss this point after defining the target procedures.

Definition 5 (Trace). Let g0, g1, . . . be a sequence of expressions such that,
for all i > 0, gi is obtained from gi−1 by a replacement, i.e., there exist an
expression ri−1 compatible [22, Def. 6] with gi−1 and a node pi−1 such that
gi = gi−1[pi−1 ← ri−1]. A node m of gi is called a trace of a node n of gj,
for j � i, according to the following definition by induction on i � 0. Base
case, i = 0: m is a trace of n iff n = m. Ind. case, i > 0: by assumption
gi = gi−1[pi−1 ← ri−1] and by the induction hypothesis it is defined whether a
node q of gi−1 is a trace of n. A node m of gi is a trace of a node n of gj iff
there exists a trace q of n in gi−1 such that m = q or m is the root of ri−1 and
q = pi−1.

The trace of t captures the changes that t undergoes as it passes through tar-
get procedures. An implementation in which the expression being evaluated is a
global, persistent datum passed to the target procedures by reference provides
very efficient tracing. Considering traces is essential for the correctness of our
approach. For example, consider the expression f(p:t, p), where the two argu-
ments of f are the same, i.e., t is shared. If t is evaluated to u, the resulting
expression is f(q:u, q), for some node q, i.e., the two arguments of f remain the
same. Using traces preserves the sharing of arguments throughout a computa-
tion. Not only does this improve efficiency by avoiding repeated computations,
it is essential to the soundness of computations. If the same non-deterministic
expression is re-evaluated to a different value, the computation is unsound. For-
malisms that might break this identity, e.g., because they look at expressions
as trees instead of graphs, must introduce some device to preserve the identity.
For example, CRWL [25] (a natural semantics) observes the call-time choice
semantics [33] by reducing the function arguments to partial terms before per-
forming the parameter-passing substitution and let-rewriting [38] (a small-step
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semantics) observes the call-time choice semantics by sharing function arguments
through let-constructs.

3.2 The Fair Scheme

Our compiler is presented in Fig. 2. In the definition, whenever appropriate and
understandable from the context, a single object may stand for a sequence con-
taining only that object. Subsequences and/or individual objects in a sequence
are separated by a semicolon. The empty sequence is denoted by “null ”. The
target procedures execute only two particular kinds of replacement. The graph
where the replacement occurs is always the procedure argument and this argu-
ment is always the redex. Hence, we use the simpler notations introduced in
Def. 6.

Definition 6 (Target Procedures). Each procedure of the target system
takes a graph, or sequence of graphs in the case of D, as argument. Each proce-
dure is defined by cases on its argument. Each case, called a rule, is selected by
a liberal form of pattern matching and is defined by a possibly empty sequence
of semicolon-terminated actions, where an action is either a recursive call to
a target procedure, or a graph replacement [22, Def. 9] resulting from either
a rewrite [22, Def. 23] or a pull-tab step [7, Def. 2]. In addition, procedure N
returns a Boolean shown between curly braces in the pseudo-code. The rules are
presented in Fig. 2. The rules have a priority as in common functional languages.
Rules with higher priority come first in textual order. The application of a rule is
allowed only if no rule of higher priority is applicable. Any reference to a node in
the actions of any rule is the trace [16] of the node being referenced, i.e., tracing
is consistently and systematically used by every rule without explicit notation.
The notation null is a visible representation of an empty sequence of expres-
sions, actions, steps, etc. depending on the context. The notations rewr(p) and
pull(p) are a rewrite and pull-tab steps, respectively, where p is the root of the
replacement and the redex is the root of the argument of the rule where the nota-
tions occur. Graphs are written in linear notation [22, Def. 4], e.g., in p:e, p
is the root node of the pattern expression e, with the convention that nodes are
explicitly written only when they need to be referenced.

Procedure D manages a queue of expressions being evaluated. If the queue is not
empty, it examines the expression, e, at the front of the queue. Depending on
the form of e, e may be removed from queue or it may undergo some evaluation
steps and be placed back at the end of the queue. Initially, the queue contains
only the top-level expression. Pull-tabbing steps pull choices toward the root.
If the front of the queue is a choice-rooted expression e, e is removed from the
queue and its two alternatives are placed at the end of the queue (rule D.1).
Their order does not matter because any call to N terminates. Therefore, any
expression in the queue is a subexpression of a state of computation of the top-
level expression. Since we use pull-tab steps, some of these expressions could
be inconsistent. Thus, we will refine this rule, after introducing the notion of
fingerprint, to discard inconsistent expressions. If the expression at the front of
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D(g; Ḡ) =

case g of

when x ? y: D(Ḡ; x; y); D.1

when ⊥: D(Ḡ); D.2

when g is a value: D(Ḡ); -- yield g D.3

default: N(g);

if vn(g) then D(Ḡ); else D(Ḡ; g); D.4

D(null) = null; -- program ends D.5

N(c(. . . , ⊥, . . .)) = null; {return true} N.1

N(c(. . . , p : ?(-, -), . . .)) = pull(p); {return false} N.2

N(c(x1, . . . , xk)) = N(x1); . . . ;N(xk);

{return vn(x1) ∨ . . . ∨ vn(xk)} N.3

N(n) = S(n); {return false} N.4

compile T
case T of

when rule(π, l → r):

output S(l) = rewr(r); S.1

when exempt(π):

output S(π) = rewr(⊥); S.2

when branch(π, o, T̄ ):

∀T ′ ∈ T̄ compile T ′

output S(π[o ← ⊥]) = rewr(⊥); S.3

output S(π[o ← p: ?(-, -)]) = pull(p); S.4

output S(π) = S(π|o); S.5

S(c(. . .)) = null S.6

Fig. 2. Compilation of a source program with signature Σ into a target program con-
sisting of three procedures: D, N, and S. The rules of D and N depend only on Σ.
The rules of S are obtained from the definitional trees of the operations of Σ with the
help of the procedure compile. The structure of the rules and the meaning of symbols
and notation are presented in Def. 6. The notation vn(x) stands for the value returned
by N(x). The symbol c stands for a generic constructor of the source program and ⊥
is the fail symbol. A symbol of arity k is always applied to k arguments. Line com-
ments, introduced by “--”, indicate when a value should be yielded, such as to the
read-eval-print loop of an interactive session, and where the computation end. The call
to a target procedure with some argument g consistently and systematically operates
on the trace of g. Hence, tracing is not explicitly denoted.

the queue is a failure, it is removed from the queue (rule D.2). If the expression
at the front of the queue is a value, it is removed from the queue as well (rule
D.3) after being yielded to a consumer, such as the read-eval-print loop of an
interpreter. Finally, if no previous case applies, the expression e at the front of
the queue is passed to procedure N, which executes some steps of e (we will show
a finite number) and returns whether the result should be either discarded or
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put back at the end of the queue (rule D.4). A result is discarded when it cannot
be derived to a value. If the argument of D is the empty queue, the computation
halts (rule D.5).

Procedure N either executes steps (of constructor-rooted expression), or
invokes S. These steps do not depend on any specific operation of the source
program. Like the other target procedures, the steps executed by N update the
state of a computation. In addition to the other target procedures, N also returns
a Boolean value. Procedure N returns the value “true” if it can determine that
its argument cannot be derived to a value, and only in that case. This situation
occurs when the argument e of an invocation of N is constructor-rooted, and an
argument of the root is either a failure or (recursively) it cannot be reduced to a
value (rule N.1). If an argument of the root of e is a choice, then e undergoes a
pull-tab step (rule N.2). The resulting reduct is a choice that procedure D will
split it into two expressions. If e is constructor-rooted, and neither of the above
conditions holds, then N is recursively invoked on each argument of the root
(rule N.3). Finally, if the argument e of an invocation of N is operation-rooted,
then procedure S is invoked on e (rule N.4) in hopes that e will be derived to
a constructor-rooted expression and eventually one of the previous cases will be
executed.

The following example shows why target procedure N cannot rewrite con-
structor-rooted expressions to ⊥. In the following code fragment, e is a con-
structor-rooted expression that cannot be derived to a value, hence a failing
computation, but not a failure in the sense of Def. 3. Let snd be the operation
that returns the second component of a pair and consider:

t = e ? snd e where e = (⊥,0) (5)

If e is rewritten to ⊥, for some orders of evaluation t has no values, since snd⊥
is a failure. However, 0 is a value of t, since it is also a value of snd (⊥,0).

Procedure S executes a step of an operation-rooted expression. Each opera-
tion f of the source program contributes a handful of rules defining S. We call
them Sf–rules. The pattern (in the target program) of all these rules is rooted
by f . Consequently, the order in which the operations of the source program
produce S-rules is irrelevant. However, the order among the Sf–rules is relevant.
More specific rules are generated first and, as stipulated earlier, prevent the
application of less specific rules. Let T be a definitional tree of f . At least one
rule is generated for each node of T . Procedure compile, which generates the
Sf–rules, visits the nodes of T in post-order. If π is the pattern of a node N of
T , the patterns in the children of N are instances of π. Hence, rules with more
specific patterns textually occur before rules with less specific patterns. In the
following account, let e be an f -rooted expression and the argument of an appli-
cation of an Sf -rule R and N the node of the definitional tree of f whose visit
by compile produced R. If N is a rule node, then e is a redex and consequently
reduced (rule S.1). If N is an exempt node, then e is a failure and it is reduced to
⊥ (rule S.2). If N is a branch node, unless p is reduced to a constructor-rooted
expression, e cannot be reduced to a constructor-rooted expression. Thus, if p



Compiling a Functional Logic Language: The Fair Scheme 211

is a failure, e is a failure as well and consequently is reduced to ⊥ (rule S.3). If
p is a choice, e undergoes a pull-tab step (rule S.4). Finally, if p is operation-
rooted, p becomes the argument of a recursive invocation of S (rule S.5). The
last rule, labeled S.6, handles situations in which S is applied to an expression
which is already constructor-rooted. This application occurs only to nodes that
are reachable along multiple distinct paths, and originates only from rule N.3.

As an example, we show here the result of compiling operation xor, defined
above (3), into the Sxor rules. To ease understanding we take some small nota-
tional liberties. Let t be an xor -rooted expression argument of S. We use pattern
matching for the dispatching of cases on t. rewr(u) (resp. pull(u)) abbreviates
the rewrite (resp. pull-tab) step that replaces t by u.

S(xor True x) = rewr(not x);
S(xor False x) = rewr(x);
S(xor ⊥ x) = rewr(⊥);
S(xor (x ? y) z) = pull((xor x z) ? (xor y z));
S(xor x y) = S(x);

(6)

4 Properties

A call tree is a possibly infinite, finitely branching tree in which a branch is a
call to a target procedure whereas a leaf is a step in the source program. This
concept offers a simple relation between computations in a source program and
computations in the corresponding target program. If e is an expression of the
source program, a left-to-right traversal of the call tree of D(e) visits the sequence
of steps of a computation of e in the source program. In this computation, we
allow pull-tab steps in addition to rewrite steps, but never apply a rule of choice.
An example of call tree is presented below.

Definition 7 (Call Tree). Let S be a source program and T the target pro-
gram obtained from S according to the Fair Scheme. A call tree rooted by X,
denoted Δ(X), is inductively defined as follows: if X is a null action or a rewrite
or pull-tab step, we simply let Δ(X) = X. If X is a call to a target procedure
of T executing a rule with sequence of actions X1; . . . Xn, then Δ(X) is the tree
rooted by X and whose children are Δ(X1), . . . Δ(Xn). If e is an expression of
S, then a left-to-right traversal of rewrite and pull-tab steps of D(e) is called the
simulated computation of e and denoted ω(D(e)).

The name “simulated computation” [24,35] stems from the observation that,
under the assumption of Def. 7, ω(D(e)) is indeed a pull-tabbing computation
of e in the source program. This will be proved in Cor. 2. We start with some
preliminary results. We disregard the fact that pull-tabbing creates inconsistent
expressions. Inconsistent expressions should not be passed as arguments to pro-
cedures S and N. We will describe later how to ensure this condition, but for
the time being we ignore whether an expression is consistent.
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D(
xor x x

where x=F?T
)

��
��
��
�

���
���

���
��

N(
xor x x

where x=F?T
) D( xor u x ? xor v x

where x=u?v, u=F, v=T
)

S(
xor x x

where x=F?T
) D(. . .)

pull(F?T)

Fig. 3. Topmost portion of the call tree of the expression defined in (4). The syn-
tax of expressions is Curry. The values False and True are abbreviated by F and T,
respectively.

Theorem 1 (Optimality). Let S be a source program and S the step procedure
of the corresponding target program. If e is an operation-rooted expression of S,
then:

1. S(e) executes a replacement at some node n of e,
2. node n is needed for e,
3. if the step at n is the reduction to ⊥, then e is a failure.

Theorem 1 is significant because it shows that the execution of S(e), for any
operation-rooted expression e, terminates with a step. If the step is a rewrite to
⊥, then e has no values. This knowledge is important to avoid wasting unpro-
ductive computational resources on e. If the step is a rewrite, then that rewrite is
unavoidable. More precisely, if e has some value (a fact that generally cannot be
known before obtaining a value), then we have to execute that rewrite to obtain
a value of e. In other words, computational resources are used conservatively. If
the step is a pull-tab, then reducing the choice source of the pull-tab is needed
to reduce the redex target of the pull-tab to a constructor-rooted expression.
Generally, we cannot know in advance which alternative of the choice might
produce a value, hence both alternatives must be tried. This is exactly what
pull-tabbing provides, without committing to either alternative. In this case,
too, no computational resources are wasted.

Below we state some properties of the computation space of the target pro-
gram that culminate in Corollary 2. The correctness of the Fair Scheme is a
relatively straightforward consequence of this corollary.

Corollary 1 (N Termination). Let S be a source program and N the nor-
malize procedure of the corresponding target program. For any expression e of
S, the execution of N(e) terminates.
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Lemma 1 (Space). Let S be a source program, D the dispatch procedure of the
corresponding target program, and e an expression of S. If Δ(D(e)) is infinite,
then:

1. Δ(D(e)) has exactly one infinite path, say B;
2. B is rightmost in Δ(D(e));
3. B contains all and only the applications of D in Δ(D(e));
4. rule D.4 is applied an infinite number of times in B.

Lemma 2 (State Subexpressions). Let S be a source program, D the dis-
patch procedure of the corresponding target program, and e an expression of S.
If D(L0),D(L1), . . . is the (finite or infinite) rightmost path of Δ(D(e)), then
for every Li in the path, the elements of Li are subexpressions of a state of the
computation of e.

Corollary 2 (Simulation). Let S be a source program, D the dispatch proce-
dure of the corresponding target program, and e an expression of S. ω(D(e)) is
a pull-tabbing derivation of e.

Corollary 2 shows that a computation in the target program can be seen as
a pull-tabbing computation in the source program. Each element in the queue
argument of D is a subexpression s of a state of a computation t of the top-
level expression e. Expression t is not explicitly represented. Every node in the
path from the root of t to s, excluding the root of s, is labeled by the choice
symbol. Hence, any value of s is a value of e. Furthermore, s can be evaluated
independently of any other element of the queue argument of D, though it may
share subexpressions with them, which both improves efficiency and simplifies
computing the values of e.

As presented in Fig. 2, the queue argument of D may contain unintended
expressions originating from pull-tab steps. The following statement character-
izes all and only the intended values. A simple modification of D, discussed
shortly, avoids creating these unintended expressions in the target program. A
consistent computation, formally defined in [7, Def. 4], avoids combining the left
and right alternatives of the clones of a same choice produced by pull-tab steps.

Theorem 2 (Correctness). Let S be a source program, D the dispatch proce-
dure of the corresponding target program, e an expression of S, and ω(D(e)) =
t0 → t1 → . . . the simulated computation of e. Modulo a renaming of nodes:
(1) if e

∗→ v in S, for some value v of S, and tk is an element of ω(D(e)), for
some k � 0, then tk

∗→ v, for some consistent computation in S; and (2) if tk is
an element of ω(D(e)), for some k � 0, and tk

∗→ v is a consistent computation
in S, for some value v of S, then e

∗→ v in S.

Given an expression e of the source program, we evaluate D(e) in the target
program. From any state of the computation of e, through consistent computa-
tions, we find all and only the values of e in S. Point (1) ensures a weak form
of completeness—from any state of the computation of e in target program it
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is possible to produce any value of e. Point (2) ensures the soundness of the
fair scheme—the target program does not produce any value of e that would
not be produced in the source program. We will address the weakness of our
completeness statement shortly.

The consistent computations sought for obtaining the values of e come almost
for free with the fair scheme. A simple modification of D eliminates inconsisten-
cies so that only intended values are produced. A fingerprint [19] is a finite set
{(c1, a1), . . . , (cj , aj)}, where ci is a choice identifier [7, Def. 1] and ai ∈ {1, 2}.
A fingerprint is associated with a path in an expression. Given an expression e
and a path p = n0, n1, . . . in e starting at the root of e, the fingerprint of p in e,
denoted Fe(p), is defined by induction on the length of p as follows. Base case:
Fe(n0) = ∅. Ind. case: Let f = Fe(n0, n1, . . . nk), for k � 0. If nk is labeled by the
choice symbol and has choice identifier i, then Fe(n0, n1, . . . nk+1) = f ∪{(i, h)},
where h = 1, resp. h = 2, iff nk+1 is the first, resp. second, successor of nk. Oth-
erwise, nk is not labeled by the choice symbol, and Fe(n0, n1, . . . nk+1) = f . A
fingerprint f is inconsistent iff for some choice identifier i both (i, 1) and (i, 2)
are in f .

An implementation associates a fingerprint to each expression in the queue
argument of D. Expressions with consistent fingerprints are evaluated as dis-
cussed earlier whereas expressions with inconsistent fingerprints are removed
from the queue

D(g; Ḡ) =

if fingerprint(g) is consistent

then case g of

. . . rules as in Fig. 2 . . .

else D(Ḡ);

Fig. 4. Refinement of the dispatch procedure to avoid evaluating inconsistent expres-
sions

5 Strong Completeness

The completeness statement of Th. 2 is weak since, e.g., any hypothetical target
program that keeps rewriting any expression to itself satisfies the same complete-
ness statement. Of course, rewriting any expression to itself is useless, whereas
our target program rewrites only needed redexes (Th. 1.2). In orthogonal term
rewriting systems, this suffices to compute the normal form of an expression,
when it exists [32, Th. 3.26]. Our systems are not orthogonal, hence we cannot
apply this result. The reason why the theorem of [32] does not extend to LOIS
systems is the choice operation. Consider the rewrite rule:

f(n) → f(n + 1) ? n (7)
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The (infinite) derivation f(0) +→ f(1) ? 0 +→ f(2) ? 1 ? 0 +→ . . . makes only steps
without which some value of f(0) could not be reached. Hence, in an intuitive
sense these steps are needed for those values. Yet the derivation does not end in
a normal form of f(0) (nor does it end at all).

Ideally, we would like to state that if S is a source program and T is the
program obtained from S according to the Fair Scheme, then if a computation
of e in S produces a value v, then a computation of e in T produces v as well.
Formalizing this statement is complicated by the fact that the computation of
e in T may not terminate, yet still produce the value v. These considerations
suggest to formulate the (strong) completeness of our scheme as follows.

Statement (Strong Completeness). Let S be a source program, D the dis-
patch procedure of the corresponding target program, and e an expression of S.
If e

∗→ v in S, for some value v, then Δ(D(e)) has a node D(v; Ḡ) for some,
possibly empty, sequence of expressions Ḡ.

The above statement is exactly what we need in practice. If e has value v, node
D(v; Ḡ) of Δ(D(e)) is where v becomes available for consumption.

We have a solid argument supporting the validity of the above statement,
based on a construction showing that in Δ(D(e)), the computation space of e in
the target program, there is a computation of e that makes the “same choices”
as a computation of e in source program, and consequently these computations
produce the same value.

Our argument is rigorous, but it assumes that some facts about term rewrit-
ing systems cross over to graph rewriting systems of the same class, e.g., repeat-
edly reducing needed redexes in admissible graphs [22, Def. 18] in inductively
sequential systems is a normalizing strategy. While a result of this kind seems
relatively easy to prove by reduction to term rewriting, we are not aware of
any published proof. For this reason, we do not present the strong completeness
statement as a theorem.

6 Related Work

Our work principally relates to the implementation of functional logic languages
[18,20,21,23,29,40]. This is a long-standing and active area of research whose dif-
ficulties originate from the combination of laziness, non-determinism and sharing
[37].

The 90’s saw various implementations, such as Pakcs [29] and T OY [21], in
which Prolog is the target language. This target environment provides built-in
logic variables, hence sharing, and non-determinism through backtracking. The
challenge of these approaches is the implementation in Prolog of lazy functional
computations [26].

The following decade saw the emergence of virtual machines [14,31,40], with
a focus on operational completeness and/or multithreading. In some very recent
implementations [18,23] Haskell is the target language. This target environment
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provides lazy functional computations and to some extent sharing. The challenge
of these approaches is the implementation of non-determinism in Haskell.

Our approach follows that of Antoy and Peters [16], which relies less on
the peculiarities of the target environment than most previous approaches. The
target procedures, being abstract, can be mapped to a variety of programming
languages and paradigms. For example, one implementation [16] maps to OCaml
using its functional, but not its object-oriented, features.

Our work extends the Basic Scheme [16]. The Basic Scheme is also defined by
three procedures, but a direct procedure-wise comparison would not be fruitful.
The Basic Scheme has neither a queue of subexpressions of the state of the com-
putation nor does it handle explicit failures. It defines a procedure, H, obtained
by compiling definitional trees, which is similar to S, but contrary to S, H does
not return until its argument has been derived to a constructor-rooted expres-
sion. The Fair Scheme changes this condition to ensure fairness in the sense that
any subexpression of a state of a computation which could produce a result is
eventually reduced with a needed step. Fairness ensures that, given enough com-
putational resources, all the values of any expression are eventually produced, a
very desirable property of computations in any declarative language. We showed
that achieving fairness is conceptually simple, the complexities of the definitions
of Fair and Basic Scheme are comparable. One major contribution of the Fair
Scheme is its provability. No proof of optimality is given in the presentation of
the Basic Scheme, and it is not strongly complete.

A strategy for the same class of source programs accepted by our compiler was
presented by one of us long before the Basic Scheme [3]. This strategy executes
rewrite (and narrowing) steps, but not pull-tabs, and is non-deterministic, i.e.,
it assumes that a choice is always reduced to the “appropriate” alternative to
produce a result, when there exists such a result. This assumption is obviously
unrealistic. In practice, all implementations of this approach resolve the non-
determinism in one way or another, but without any guarantees. By contrast,
the Fair Scheme strategy is deterministic and its essential properties are well-
understood and provable.

7 Conclusion

We presented the design of a compiler for functional logic programming lan-
guages. Our compiler is abstract and general in the sense that both source pro-
grams input to the compiler and target programs output from the compiler are
encoded in intermediate languages. This separation greatly contributes to the
flexibility of our compilation scheme. A source program is a graph rewriting sys-
tem obtainable from a program in a concrete syntax such as that of Curry or
T OY. A target program consists of three procedures that make recursive calls
and rewriting and pull-tab steps. From these procedures, it is easy to obtain
concrete code in any number of programming languages.

Our compiler is remarkably simple—it is described by the 15 rules presented
in Fig. 2. The simplicity of the compiler description enables us to prove properties
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of the compilation to a degree unprecedented for a work of this kind. We showed
both correctness and optimality. Loosely speaking correctness means that the
target code produces all and only the results produced by the source code, and
optimality means that the target program makes only steps that the source
program must make to obtain a result.

The focus of this paper has been formalizing the Fair Scheme and discovering
and proving some of its fundamental properties. Future work will focus on the
implementation. The presentation of the Fair Scheme in Fig. 2 is conceptually
simple and suitable to prove various properties of the computations of the target
program. This presentation is not intended as a faithful or complete blueprint
of an implementation.

The Fair Scheme is the only deterministic strategy for non-deterministic
functional logic computations with a proof of optimality and correctness.

Acknowledgments. We thank the anonymous reviewers for constructive suggestions.
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32. Huet, G., Lévy, J.-J.: Computations in orthogonal term rewriting systems. In:
Lassez, J.-L., Plotkin, G. (eds.) Computational Logic: Essays in Honour of Alan
Robinson. MIT Press, Cambridge, MA (1991)

33. Hussmann, H.: Nondeterministic algebraic specifications and nonconfluent rewrit-
ing. Journal of Logic Programming 12, 237–255 (1992)

34. Johnsson, T.: Lambda lifting: Transforming programs to recursive equations.
In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer,
Heidelberg (1985)

35. Kamperman, J.F.T., Walters, H.R.: Simulating TRSs by minimal TRSs a sim-
ple, efficient, and correct compilation technique. Technical report CS-R9605, CWI
(1996)
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Abstract. Modular Structural Operational Semantics (MSOS) is a
variant of Structural Operational Semantics (SOS). It allows language
constructs to be specified independently, such that no reformulation of
existing rules in an MSOS specification is required when a language is
extended with new constructs and features.

Introducing the Prolog MSOS Tool, we recall how to synthesize exe-
cutable interpreters from small-step MSOS specifications by compiling
MSOS rules into Prolog clauses. Implementing the transitive closure of
compiled small-step rules gives an executable interpreter in Prolog. In the
worst case, such interpreters traverse each intermediate program term in
its full depth, resulting in a significant overhead in each step.

We show how to transform small-step MSOS specifications into
corresponding big-step specifications via a two-step specialization by
internalizing the rules implementing the transitive closure in MSOS and
‘refocusing’ the small-step rules. Specialized specifications result in gen-
erated interpreters with significantly reduced interpretive overhead.

Keywords: Interpreter generation · Structural operational semantics ·
Modular SOS · Specialization · Partial evaluation · Program derivation ·
Refocusing

1 Introduction

Background. Structural operational semantics (SOS) [21] provides a simple and
direct method for specifying the semantics of programming language constructs
and process algebras. The behaviour of constructs defined by an SOS is modelled
by a labelled transition system whose transition relation is defined by a set of
inference rules and axioms. For programming language semantics, the configura-
tions of the transition system are typically given by terms and auxiliary entities,
such as stores (recording the values of imperative variables before and after each
transition step) and environments (determining the bindings of identifiers). In
conventional SOS, auxiliary entities are explicit in all rules. This gives rise to the
modularity problem with SOS: language extensions involving new auxiliary enti-
ties require reformulation of existing rules. Modular SOS (MSOS) [16] solves the
modularity problem in SOS by implicitly propagating all unmentioned auxiliary
entities.
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Besides propagating auxiliary entities, small-step (M)SOS rules relate terms
to partly evaluated terms. Evaluation in small-step (M)SOS specifications is
given by a sequence of transition steps that eventually reaches a final state. In
contrast, big-step (M)SOS rules relate terms directly to final states. As illus-
trated elsewhere [2,16], small-step rules are typically more concise than big-step
rules for programming languages with abrupt termination and/or divergence.

The PLanCompS 1project is developing an open-ended set of reusable funda-
mental constructs (or funcons), whose dynamic semantics is given by small-step
MSOS rules2. Translating concrete constructs of a programming language into
fundamental constructs gives a component-based semantics. MSOS rules provide
a basis for verification, using, e.g., bisimulation [5,18] or structural induction on
the underlying MSOS rules [16], and prototype interpreter generation. In this
paper we focus on generating prototype interpreters in Prolog.

Contribution. It is well-known that big-step SOS rules can be compiled into Pro-
log clauses [7], and compilation of small-step MSOS rules into Prolog clauses has
been utilized and hinted at in earlier publications [5,15–17]. The present paper
presents the first systematic account of how to synthesize executable interpreters
in Prolog from small-step MSOS specifications. We also assess and show how to
reduce interpretive overhead in these interpreters.

The efficiency of generated interpreters is significantly improved by adapting
refocusing [9] to MSOS. This is achieved by specializing a refocusing rule wrt an
MSOS specification. The specialization forces evaluation of sub-terms, effectively
transforming small-step rules into big-step rules. Compiling these big-step rules
gives interpreters that avoid the computational overhead of decomposing the
program term in each intermediate step, which previous interpreters generated
from small-step MSOS specifications [3,5,16,17] have suffered from.

Through a subsequent specialization step, called striding, a small-step specifi-
cation is transformed into its corresponding big-step counterpart by compressing
corridor transitions, in a similar style to [8]. By left-factoring [1,20] the resulting
big-step specification, back-tracking in generated interpreters is minimized.

We demonstrate and illustrate our techniques on MSOS specifications due
to the pragmatic advantages of MSOS over SOS, but expect that the techniques
are straightforward to extend to SOS.

Relatedwork. TheMaudeMSOSTool [3] executesMSOS specifications encoded as
rewriting logic rules inMaude [6]. It allows for elegant representation ofMSOS rules
utilizing Maude features such as sorts and records. The approach to interpreting
MSOS specifications is essentially similar to that of the Prolog MSOS Tool, where
evaluation is implemented by sequences of small-step transitions, resulting in a sig-
nificant overhead in each step.

The refocusing rule that we introduce is inspired by the work on refocusing
by Danvy et al. [8,9]. That work is based on program transformations applied to

1 Programming Language Components and Specifications: www.plancomps.org.
2 In fact, funcons are specified using Implicitly Modular SOS [19], a variant of MSOS

with syntax closer to SOS.

http://www.plancomps.org
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functional programs implementing reduction semantics. In contrast, the special-
ization we present here applies directly to MSOS rules, and is based on simple rule
unfolding.

Partial evaluation in logic programming [10,13] has been extensively studied
as a means of compiling programs and speeding up interpreters based on binding
time analyses. The specializations that we consider here correspond to partial eval-
uations of the refocusing rule wrt to small-step inference rules.

Horn logical semantics [11] uses Horn clauses to relate terms to values or deno-
tations.The big-step style inherent toHorn logical semanticsmakes specification of
control instructions challenging, as witnessed by Wang et al.’s suggestion of using
Horn logical continuation-based semantics [22] tohandle abrupt termination: in the
continuation-based approach each predicate is parameterized over terms, seman-
tic domains, control stacks, and continuations. In contrast, small-step MSOS can
dealwith abrupt terminationwithoutparameterizing andmodifying existing rules.
This paper uses small-step MSOS for specification, and describes how to system-
atically derive a corresponding big-step specification by specialization.

Refocused rules bear a striking resemblance to Charguéraud’s pretty-big-step
rules [4]. As demonstrated in [2], pretty-big-step rules can be derived from small-
step rules by unfolding refocused rules.

Outline. Section 2 reviews MSOS. Section 3 recalls how the Prolog MSOS Tool
compiles MSOS rules into Prolog clauses. Section 4 shows how to improve the effi-
ciency of generated interpreters by refocusing. Section 5 introduces the striding
transformation, which unfolds refocused rules into classic big-step rules. The effi-
ciency of generated näıve, refocused, and striding interpreters is assessed in Sect. 6.
Section 7 concludes and suggests further lines of research.

2 Modular Structural Operational Semantics

This section outlines the main features of MSOS by comparing it with SOS.

2.1 An Example SOS

SOS rules define possible transitions between configurations in an underlying
labelled transition system. In SOS, a configuration γ can make a transition to γ′ if:
(1) γ matches the conclusion source of an SOS rule

C1 · · · Cn

γ
α−→ γ′

where γ
α−→ γ′ is the rule conclusion, α is a (possibly empty) transition label, and

Ci are the premises (e.g., transition steps or side-conditions) of the rule; and (2)
using only SOS rules, for each premise Ci we can construct an upwardly branching
derivation treewhose leaves are axioms, i.e., ruleswith emptypremises and satisfied
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side-conditions3. For amoredetailed introduction to (M)SOS, the reader is referred
to [16,21].

The following SOS rules define the applicative constructs let(id, e1, e2) and
bound(id). We let ρ range over environments, id over identifiers, e over expressions,
and v over values. The formula ρ � γ → γ′ asserts that γ makes a transition to γ′

under environment ρ. ρ[id �→ v] returns an environment ρ′ where ρ′(id) = v and
ρ′(id′) = ρ(id′) for id′ �= id.

ρ � e1 → e′
1

[let1-sos]
ρ � let(id, e1, e2) → let(id, e′

1, e2)

ρ[id �→ v] � e2 → e′
2

[let2-sos]
ρ � let(id, v, e2) → let(id, v, e′

2)

[let3-sos]
ρ � let(id, v1, v2) → v2

ρ(id) = v
[bound-sos]

ρ � bound(id) → v

We now turn our attention to a semantics for sequential composition, seq(e1, e2),
variable assignment, assign(ref , e), and variable dereferencing, deref(ref ). We let
σ range over stores, ref over references, and skip is a value. The formula 〈e, σ〉 →
〈e′, σ′〉 asserts that the configuration given by term e and store σ can make a tran-
sition to the configuration given by term e′ and store σ′.

〈e1, σ〉 → 〈e′
1, σ

′〉
[seq1-sos]〈seq(e1, e2), σ〉 → 〈seq(e′

1, e2), σ
′〉 [seq2-sos]〈seq(skip, e2), σ〉 → 〈e2, σ〉

〈e1, σ〉 → 〈e′
1, σ

′〉
[asn1-sos]〈assign(ref , e1), σ〉 → 〈assign(ref , e′

1), σ
′〉

σ′ = σ[ref �→ v]
[asn2-sos]〈assign(ref , v), σ〉 → 〈skip, σ′〉

σ(ref ) = v
[deref-sos]〈deref(ref ), σ〉 → 〈v, σ〉

Combining the constructs let, bound, seq, assign, and deref in SOS requires that we
reformulate all rules: the rules for let and boundmust propagate a store σ; similarly,
seq,assign, andderefmustpropagate an environmentρ.We refrain fromthis tedious
reformulation, and use MSOS instead.

2.2 Modular SOS

Like inSOS,MSOSrules define transition steps; i.e., a configurationmakes a transi-
tion if we can construct a derivation tree using the rules defining the transition rela-
tion. Auxiliary entities in MSOS are encoded in the label of the transition relation,
and are only explicitly mentioned when required. For example, in Fig. 1 the [let1]

rule makes no explicit mention of auxiliary entities, since they are not explicitly
used by that rule. Crucially, computations in MSOS require labels on consecutive
transitions to be composable. The remainder of this section defines MSOS labels
and label composition.
3 This notion of transition is based on positive SOS specifications. Rules with negative

premises are not considered here.
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e1
{...}−−−→ e′

1
[let1]

let(id, e1, e2)
{...}−−−→ let(id, e′

1, e2)

e2
{env=ρ[id �→v1],...}−−−−−−−−−−−−→ e′

2
[let2]

let(id, v1, e2)
{env=ρ,...}−−−−−−−→ let(id, v1, e

′
2)

[let3]

let(id, v1, v2)
{−−}−−−→ v2

ρ(id) = v
[bound]

bound(id)
{env=ρ,−−}−−−−−−−−→ v

e1
{...}−−−→ e′

1
[seq1]

seq(e1, e2)
{...}−−−→ seq(e′

1, e2)

[seq2]

seq(skip, e2)
{−−}−−−→ e2

e1
{...}−−−→ e′

1
[asn1]

assign(ref , e1)
{...}−−−→ assign(ref , e′

1)

σ′ = σ[ref �→ v]
[asn2]

assign(ref , v)
{sto=σ,sto′=σ′,−−}−−−−−−−−−−−−−→ skip

σ(ref ) = v
[deref]

deref(ref )
{sto=σ,−−}−−−−−−−−→ v

Fig. 1. MSOS rules for example constructs

Definition 1 (MSOS Label). An MSOS label L is an unordered set of label
components, where each label component ix= E consists of a distinct label index
ix and an auxiliary entity E such that each index is either unprimed (e.g., env)
meaning the label is readable, or primed (e.g., sto′) meaning the label is writable.

Label variables refer to sets of label components. The label variable ‘−−’ ranges
over sets of unobservable label components, while label variables ‘. . .’,X, Y, etc.
refer to sets of arbitrary label components.

Informally, a label component isobservable if it exhibits side effects.Anexample
of an observable label component is the component pair sto=σ, sto′ =σ′ such that
σ �= σ′. The change from sto to sto′ is an observable side effect. Another example
of an observable component is illustrated by the print construct:

[print]

print(v)
{out′=[v],−−}−−−−−−−−−→ skip

The out′ component represents an output channel. An output channel may emit
observable output several times during program execution. The observable output
of evaluating the print construct above is the single element list [v]. The label com-
ponent is unobservable when it contains the empty list, i.e., out′ =[ ].

Environments, stores, andoutput channels each exemplify adistinct categoryof
label components. These categories define how information is propagated between
consecutive transition labels (i.e., how labels compose).Labels aredefinedbyarrows
in a category.The category gives the semantics of label composition [14,16]. For the
purpose of this paper, the following definition of a label composition operator ‘◦’
suffices:

– Read-only label components (e.g., environments) remain unchanged between
consecutive transition steps; e.g., {env=ρ} ◦ {env=ρ} = {env=ρ}.
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– Read-write label components (e.g., stores) compose like binary relations; e.g.,
{sto=σ′, sto′ =σ′′} ◦ {sto=σ, sto′ =σ′} = {sto=σ, sto′ =σ′′}.

– Write-only label components (e.g., output channels) are monoidal, generating
lists of observable outputs; e.g., {out′ = l2} ◦ {out′ = l1} = {out′ = l1 · l2},
where ‘·’ is list concatenation, and l1, l2 are lists.

The formula assign(ref , v)
{sto=σ,sto′=σ′,−−}−−−−−−−−−−−−−→ skip says that assign(ref , v)

makes a transition to skip under the label where the readable label component sto
is σ and the writable label component sto′ is σ′. It also says that no observable
side effects occur in the remaining label components. Label composition in MSOS
propagates the written σ′ entity to the sto label component in the next transition.
The following consecutive steps illustrate this propagation:

seq(assign(ref , v), skip)
{sto=σ,sto′=σ′,−−}−−−−−−−−−−−−−→ seq(skip, skip)

{sto=σ′,sto′=σ′,−−}−−−−−−−−−−−−−−→ skip

The second transition has σ′ in both sto and sto′; i.e., no unobservable side effects
occur on the sto, sto′ label components. Since no observable side effects occur in
the second label, it could alternatively be written as {−−}.

3 GeneratingMSOS Interpreters

This sectiondescribeshowthePrologMSOSTool synthesizes interpreters inProlog
from MSOS specifications.

3.1 FromMSOS Rule to Prolog Clause

MSOS terms are compiled as summarized in Table 1. Table 2 shows the com-
piled Prolog clauses for the seq construct. Solving a goal step( , , ) in Prolog
using the compiled clauses corresponds to checking that the step is valid rela-
tive to the MSOS rules. Using the clauses in Table 2, we can check that the term
seq(seq(skip, skip), skip) can make a transition step:

?- init_label(L), step(seq(seq(v(skip),v(skip)),v(skip)), L, X).

L = [env=map_empty, sto=map_empty, sto+=map_empty, out+=[]],

X = seq(v(skip), v(skip))

Here, init label initializes MSOS labels with initial label components; in this
case, env=map empty, sto=map empty, sto+=Sigma , and out+=Out. Solving this goal
executes the second Prolog clause in Table 2 which by label instance(L,unobs)

unifies sto=map empty with sto+=Sigma , and out+=Out with the unobservable out-
put out+=[].

3.2 Implementing the Transitive Closure in Prolog

The steps predicate4 generates the transitive closure of the transition relation:
4 This predicate is not tail-recursive. It is, however, possible to construct a tail-recursive

version: post comp accumulates sequences of emitted write-only data. If this data were
to be emitted as it is generated, the call to post comp could be removed.
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Table 1. Compilation of MSOS terms into Prolog predicates

MSOS term Prolog predicate

Rule

�
C1 · · · Cn

γ
L−→ γ′

� step(�γ�, L, �γ′
�) :-

label instance(L, �L�),
�C1�, · · · , �Cn�.

Transition step
�

γ
L−→ γ′

�

step(�γ�, �L�, �γ′
�)

Readable label �{ix=E,X}� [�ix�=�E�|�X�]

Writable label �{ix′=E,X}� [�ix�+=�E�|�X�]

Unobservable label �−−� unobs

Map (e.g., ρ, σ, . . .) � [x1 �→ v1, . . . , xn �→ vn] � [ �x1�+>�v1�, . . . , �xn�+>�vn�]

Terms, values,
and label indices

�t�
Prolog atoms, annotated with
v( ) for values.

Variables �x�; �x1�; �x′
� X; X1; X

Table 2. Compiled Prolog clauses for the seq construct

MSOS rule Prolog clause

e1
{...}−−−→ e′

1

seq(e1, e2)
{...}−−−→ seq(e′

1, e2)

step(seq(E1,E2),L,seq(E1_,E2)) :-

label_instance(L,Dots),

step(E1,Dots,E1_).

seq(skip, e2)
{−−}−−−→ e2

step(seq(v(skip),E2),L,E2) :-

label_instance(L,unobs).

steps(T1,L,T3) :-

pre_comp(L,L1), step(T1,L1,T2), mid_comp(L1,L2),

steps(T2,L2,T3), post_comp(L1,L2,L).

steps(v(V),L,v(V)) :-

label_instance(L,unobs).

These clauses are mutually exclusive; i.e., values are final terms for which no fur-
ther transition is possible. pre comp, mid comp, and post comp propagate readable
and writable label components as described in Sect. 2.2.

?- init_label(L), steps(seq(seq(v(skip),v(skip)),v(skip)), L, X).

L = [env=map_empty, sto=map_empty, sto+=map_empty, out+=[]],

X = v(skip)

Prolog fails if no sequence of steps exists that yields a value:

?- init_label(L), steps(seq(seq(v(0),v(skip)),v(skip)), L, X).

false.
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Figure 2 summarizes the number of inferences required for interpreters gener-
ated by the Prolog MSOS Tool to reduce terms of the structure5:

seq(seq(· · · seq
︸ ︷︷ ︸

n

(skip, skip) · · · , skip), skip)

0

   300,000

0 500

In
fe

re
nc

es

n

naive

Fig. 2. Näıve evaluation of deeply nested seq terms

Since each step occurs on the outermost program term, the Prolog interpreter
traverses the term in its full depth in each step, i.e., each step uses O(n) inferences.
It takes n steps to evaluate a seq term of depth n, hence evaluation of deeply nested
seq terms uses O(n2) inferences. We next demonstrate how refocusing reduces the
number of required inferences to O(n).

4 RefocusedMSOS Interpreters

The transitive closure implemented by the steps predicate in Prolog is straightfor-
wardly internalized in MSOS by the −→∗ relation defined by the rules:

x
L1−−→ y y

L2−−→∗ z
[trans]

x
L2◦L1−−−−→∗ z

[refl-v]

v
{−−}−−−→∗ v

Evaluating a term susing these rules proceedsby constructing anupwardlybranch-

ing derivation tree, if one exists, from the root formula s
L−→∗ t . Using Γ,Δ, . . . to

5 Right-nested seq terms do not suffer from runtime overhead. This is not the case,
however, for deeply right-nested arithmetic expressions or λ-applications. We use left-
nested seq terms here for simplicity of exposition.
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refer to instances of −→∗ and A,B, . . . to refer to instances of →, derivation trees
have the structure:

...
A

...
B

...
C . .

.

Ψ

Δ

Γ

In generated Prolog interpreters this corresponds to traversing the entire program
term in each intermediate step. Ideally,wewant to construct as fewderivation trees,
and have as few traversals of intermediate program terms, as possible; i.e., we want
to evaluate sub-terms as they are encountered. Augmenting our rules by the fol-
lowing refocusing rule permits exactly this:

x
L1−−→ y y

L2−−→∗ z
[refocus]

x
L2◦L1−−−−→ z

The refocusing transformation forces evaluation of sub-terms by specializing the
refocusing rule wrt an MSOS specification. The resulting set of refocused rules
replace the original set of rules. The refocusing transformation unfolds the leftmost
premise of [refocus] wrt all rules in an MSOS specification:

C D
[d1]

B Γ
[refocus]

A
=⇒ C D Γ

[d1-refocus]
A

Using refocused rules changes the structure of derivation trees:

...
...

B

C
...

Γ
A Ψ

Δ

For example, refocusing [seq1] (from Fig. 1, page 224) gives:

e1
L1−−→ e′

1
[seq1]

seq(e1, e2)
L1−−→ seq(e′

1, e2) seq(e′
1, e2)

L2−−→∗ z
[refocus]

seq(e1, e2)
L2◦L1−−−−→ z

=⇒ e1
L1−−→ e′

1 seq(e′
1, e2)

L2−−→∗ z
[seq1-refocus]

seq(e1, e2)
L2◦L1−−−−→ z

Unfolding [seq2] and applying the [refl-v] rule trivially gives an identical rule.
Thus the refocused rules for seq are:

e1
L1−−→ e′

1 seq(e′
1, e2)

L2−−→∗ z
[seq1-refocus]

seq(e1, e2)
L2◦L1−−−−→ z

[seq2-refocus]

seq(skip, e2)
{−−}−−−→ e2



Generating Specialized Interpreters 229

Figure 3 summarizes the number of inferences the interpreter generated from
the refocused MSOS specification uses to evaluate deeply nested seq terms. In con-
trast to näıve evaluation, the number of inferences increases linearly, since each
sub-term is reduced when it is first encountered: evaluation uses O(n) inferences.

0
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naive
refocused

Fig. 3. Refocused and näıve evaluation of deeply nested seq terms

Introducing the refocusing rule permits sub-terms to be evaluated locally in
derivations. Specializing the refocusing rule wrt an MSOS specification produces
a specialized interpreter which forces evaluation of all sub-terms. However, forcing
evaluation of sub-terms is not semantically sound in the presence of abrupt termi-
nation.

4.1 Refocusing and Abrupt Termination

Consider the language given by the following add, blocking, block, and loop con-
structs, where +i is integer addition, and block′ is a write-only label component:

[block]

block
{block′=1,−−}−−−−−−−−−−→ stuck

e
{block′=1,...}−−−−−−−−−→ e′

[blocking1]

blocking(e)
{block′=0,...}−−−−−−−−−→ skip

e
{block′=0,...}−−−−−−−−−→ e′

[blocking2]

blocking(e)
{block′=0,...}−−−−−−−−−→ blocking(e′)

[loop]

loop
{−−}−−−→ loop

[blocking3]

blocking(v)
{−−}−−−→ v

v = v1 +i v2
[add1]

add(v1, v2)
{−−}−−−→ v

e1
{...}−−−→ e′

1
[add2]

add(e1, e2)
{...}−−−→ add(e′

1, e2)

e2
{...}−−−→ e′

2
[add3]

add(e1, e2)
{...}−−−→ add(e1, e

′
2)
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If a block term is evaluated inside a blocking term, evaluation terminates and pro-
duces the value skip. Evaluating the loop-construct results in divergence.

Under ordinary small-step evaluation of the term blocking(add(block, loop)) we
have the two possible outcomes of evaluation: either evaluation terminateswith the
value skip, or it diverges. If block is evaluated, the block′ = 1 label component is
matched by the [blocking1] rule for the blocking term, which terminates the pro-
gram with value skip. Otherwise, the sub-term loop is evaluated, which results in a
program term identical to the initial program.

Refocused evaluation, on theotherhand, alwaysdiverges: evaluatingblock gives
the term add(stuck, loop). This term has an evaluable sub-term, namely loop. Refo-
cused evaluation forces evaluation of this term, resulting in divergence. In other
words, adding the refocusing rule to a semantics with abrupt termination is not
correct by default.

The issue of dealing with abrupt termination is symptomatic for big-step rules.
In the presence of abrupt termination, one typically needs extra rules propagating
the abruptly terminated term [4]. We show how to circumvent the problem with
abrupt termination in refocusedandbig-stepMSOSrules in agenericway:we intro-
duce a special read-write label component, labeled by ε and ε′, representing a flag
indicating abrupt termination.

First, we add a single reflexive rule that propagates abruptly terminated con-
figurations6 (ε=1), and update our existing evaluation rules to indicate that they
apply only to configurations that are not abruptly terminated (ε=0):

x
{ε=0,X1}−−−−−−→ y y

L2−−→∗ z
[trans-ε]

x
L2◦{ε=0,X1}−−−−−−−−−→∗ z

x
{ε=0,X1}−−−−−−→ y y

L2−−→∗ z
[refocus-ε]

x
L2◦{ε=0,X1}−−−−−−−−−→ z

[refl-v-ε]

v
{ε=0,−−}−−−−−−→∗ v

[refl-ε]

x
{ε=1,−−}−−−−−−→∗ x

Second, MSOS specifications must explicitly indicate abrupt termination in rules.
For example, rules that are sensitive to the behaviour of their sub-terms, such as
[blocking1] which inspects the writableblock′ component during evaluation of its
sub-term, must explicitly indicate abruptly terminating steps via ε, ε′:

[block-ε]

block
{block′=1,ε′=1,−−}−−−−−−−−−−−−−→ stuck

e
{block′=1,ε=0,ε′=1,...}−−−−−−−−−−−−−−−−→ e′

[blocking1-ε]

blocking(e)
{block′=0,ε=0,ε′=0,...}−−−−−−−−−−−−−−−→ skip

Using this alternative set of rules, refocused evaluation has the same possible out-
comes for the example term blocking(add(block, loop)) as small-step evaluation.

Refocusing is a simple specialization which significantly reduces overhead
compared to traditional small-step MSOS rules. However, it requires explicit spec-
ification of abrupt termination and of rules for constructs whose behaviour is sen-
sitive to the behaviour of their sub-terms. It is ongoing work to identify syntactic
6 We refer to configurations as being abruptly terminated rather than stuck, since

the terms in the configuration may have computational behaviour. E.g., the
add(stuck, loop) term is not stuck in a strict sense, since it has evaluable sub-terms.



Generating Specialized Interpreters 231

constraints which uniquely distinguish abruptly terminating constructs and con-
structs that are sensitive to the number of steps their sub-terms can make. Such
constraints would enable automatic insertion of ε, ε′ label components.

5 Big-StepMSOS Interpreters

Asmall-step transition relation relates terms tootherpartly evaluated terms.Under
refocused evaluation, the transition relation relates terms directly to values or
abruptly terminated terms. Refocused rules are therefore in big-step style. How-
ever, refocused rules may use several intermediate inferences to map a term to a
value. The striding transformation specializes refocused rules to remove the extra
overhead. The resulting rules are similar to classic big-step rules.

5.1 The Striding Transformation

The striding transformation has the effect of compressing ‘corridor’ transitions [8],
i.e., transitions for which a unique further transition exists. The striding trans-
formation specializes a refocused rule, [d1-refocus], wrt another refocused rule,
[d2-refocus]. The result is a big-step style rule, [d1-d2-striding]:

C D

E Δ
[d2-refocus]

Γ
[d1-refocus]

A

=⇒ C D E Δ
[d1-d2-striding]

A

The striding transformation generates the set of all possible combinations of rule
unfoldings. To filter semantically equivalent rules resulting from the transforma-
tion, we use formal hypothesis simulation (fh-simulation) [18]. For example, spe-
cializing the [seq1-refocus] rule wrt itself gives:

e1
L1−−→ e′

1 e′
1

L2−−→ e′′
1 seq(e′′

1 , e2)
L3−−→∗ z

[seq1-seq1-striding]

seq(e1, e2)
L3◦L2◦L1−−−−−−→ z

However, every possible step this rule can make can be matched by [seq1-refocus].
Hence, we omit this rule from the set of striding rules. Specializing [seq1-refocus]

wrt [seq2-refocus] gives the rule:

e1
{...}−−−→ skip

[seq1-seq2-striding]

seq(e1, e2)
{...}−−−→ e2

By the MSOS rules for the seq construct, substituting the → with −→∗ is equivalent:

e1
{...}−−−→∗ skip

[seq1-seq2-striding∗]

seq(e1, e2)
{...}−−−→ e2
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This rulematches all steps that canbemadeusing the [seq2] rule.There are no rules
which can match all possible steps that the [seq1-seq2-striding*] rule can make.
Any subsequent rule unfoldings can be shown to be equivalent to the current set
of rules by fh-similarity. Thus the set of rules resulting from applying the striding
transformation to the seq construct are:

e1
{...}−−−→∗ skip

[seq1-seq2-striding*]

seq(e1, e2)
{...}−−−→e2

e1
L1−−→e′

1 seq(e′
1, e2)

L2−−→∗ z
[seq1-refocus]

seq(e1, e2)
L2◦L1−−−−→z

5.2 Left-Factoring

The [seq1-refocus] rule relates a seq term to a result, which is characteristic of
big-step rules. While big-step derivation trees contain fewer inferences, compiled
big-step Prolog clauses potentially give rise to non-determinism and back-tracking
during proof search. For example, the conclusions of both [seq1-seq2-striding*]

and [seq1-refocus] match arbitrary seq terms. In the worst case, this non-
determinism leads to back-tracking, which would increase the number of inferences
required to evaluate terms that do not yield values.

Left-factoring [1,20] is a simple clause transformationwhich improves thedeter-
minacy of Prolog clauses generated from big-step style rules:

H ← A ∧ B
H ← A ∧ C

=⇒ H ← A ∧ (B ∨ C)

Using this simple idea, Prolog clauses are transformed to obtain specialized
interpreterswithout the back-trackingpenalty incurredby compiling big-step style
rules into Prolog clauses. Figure 4 summarizes the reduction in the number of infer-
ences resulting from striding and left-factoring when evaluating deeply nested seq
terms.

6 Benchmark Experiments

We assess the viability of the specializations proposed in previous sections by con-
sidering a variant of a larger MSOS example semantics [5] with function closures
and imperative state.

Figure 5 summarizes the number of Prolog inferences used to calculate the fac-
torial of n, the nth Fibonacci number, and the greatest common divisor of the nth
and n + 1st Fibonacci numbers using Euclid’s algorithm. Each program is imple-
mented7 in twoways: applicatively, based on recursive unfolding; and imperatively,
based on assignment and a while loop construct.

The refocusing rule introduces extra label composition operations in generated
Prolog clauses for refocused rules. For deeply nested program terms this saves hav-
ing to re-traverse the term in the next step. However, it entails redundant compu-
tations for values. This explains both the encouraging speed-ups in the applicative
7 Benchmark code, generated interpreters, and details about the Prolog system used are

available online: http://cs.swansea.ac.uk/∼cscbp/lopstr13.

http://cs.swansea.ac.uk/~cscbp/lopstr13
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Fig. 4. Striding, refocused, and näıve evaluation of deeply nested seq terms

benchmarks (which unfold function closures to form deeply nested terms), and the
slight overhead that refocusing and striding introduces for shallowly nested terms,
such as the imperative factorial and Fibonacci benchmarks.

We emphasize that our specialization significantly reduces overhead in 4 out of
6 benchmarks, where the number of inferences is reduced by 4 times or more. Eval-
uating shallowly nested terms using big-step rules compared to small-step entails
a relatively modest overhead of around 1.3 times more inferences.

7 Conclusion and FurtherWork

We have described how to generate interpreters from MSOS specifications and
how such interpreters can be encoded in Prolog. After assessing the overhead of
interpreters generated from small-step rules, we applied refocusing and striding
to derive their big-step counterparts. The resulting generated interpreters signif-
icantly reduced the number of inferences used to evaluate deeply nested program
terms.

Label composition is computationally expensive in generated interpreters as
Fig. 5 illustrates. Our label composition strategy alleviates the need to re-compile
rules as new constructs are added to languages, but requires us to traverse the Pro-
log list representation of label components multiple times (in the worst case) in
each step. One could use a partial evaluator, such as Logen [12], to unfold label
composition predicates. This would correspond to compiling an MSOS specifica-
tion into an SOS specification, similar to compiling generalized transition systems
(underlying MSOS) to labelled transition systems (underlying SOS), as described
in [16]. Unfolding label composition predicates in generated Prolog interpreters
should decrease the number of inferences required to evaluate terms.
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Fig. 5. Benchmark inference graphs

The refocusing rule requires MSOS rules to be explicit about abruptly termi-
nating constructs and constructs that are sensitive to the number of steps their
sub-terms make. It should be possible to specify a rule format for conservatively
identifying abruptly terminating constructs. This would enable automatic anno-
tation of MSOS rules with ε, ε′ label components.
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Striding requires filtering specialized rules that are equivalent to existing ones.
We suggested using fh-simulation [18] for this. For the purposes of this paper, these
proofs were constructed manually. While bisimulation is undecidable in general, it
should be possible to automate proofs for at least some constructs.
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