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Abstract. Recognition of complex dynamic texture is a challenging
problem and captures the attention of the computer vision community for
several decades. Essentially the dynamic texture recognition is a multi-
class classification problem that has become a real challenge for com-
puter vision and machine learning techniques. Existing classifier such as
extreme learning machine cannot effectively deal with this problem, due
to the reason that the dynamic textures belong to non-Euclidean man-
ifold. In this paper, we propose a new approach to tackle the dynamic
texture recognition problem. First, we utilize the affinity propagation
clustering technology to design a codebook, and then construct a soft
coding feature to represent the whole dynamic texture sequence. This
new coding strategy preserves spatial and temporal characteristics of
dynamic texture. Finally, by evaluating the proposed approach on the
DynTex dataset, we show the effectiveness of the proposed strategy.

Keywords: Extreme learning machine, affinity propagation, dynamic
texture.

1 Introduction

Extreme Learning Machine (ELM), which was firstly proposed by Huang [1], has
become an effective learning algorithm for various classification tasks. It works
on a simple structure named Single-hidden Layer Feed-forward Neural networks
(SLFNs) and randomly applies computational hidden nodes. This mechanism
is different from the conventional learning of SLFNs. ELM yields better perfor-
mance than other conventional learning algorithms in application with higher
noise. It also has an extremely fast learning speed compared with traditional
gradient-based algorithms. Furthermore, ELM technique successfully overcomes
the difficulty of the curse of dimensionality [2,3]. Currently, the application scope
of ELMs covers face recognition [4,5], action recognition [6], video concept detec-
tion [7], and so on. Ref.[8] gives a comprehensive survey about ELM and Ref.[9]
provides a deep insight into ELM. For time-series, Ref.[10] developed time-series
processing of large scale remote sensing data with ELM. Ref.[11] studied the
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cross-person activity recognition using reduced kernel ELM. However, for gen-
eral visual dynamic textures, which belong to the non-Euclidean manifold, how
to realize effective classification using ELM is still an open problem.

Dynamic textures (DT) are video sequences of non-rigid dynamical objects
that constantly change their shape and appearance over time. Some examples of
dynamic textures are video sequences of fire, smoke, crowds, and traffic. These
classes of video sequences are ubiquitous in our natural environment.

However, the classification of DT admits great challenging since DT include
both spatial and temporal elements. To model DT, Ref.[12] developed a linear
dynamic system (LDS) method. LDS can be used to model complex visual phe-
nomena with a relatively low dimensional representation. However, the signal
would rapidly decay. The work in [13] extended this work by introducing feed-
back control and modeled the system as a closed loop LDS. The feedback loop
corrected the problem of signal decay. In [14], LDS was regarded as educational
bridge to merge the gap between computer science and control engineering.

A difficult problem to use LDS for classification lies in the fact that LDS
does not lie in an Euclidean space, and therefore many classification cannot be
utilized. In [12], the Martin distance between LDS is adopted to compare the
similarity between different DTs. Martin distance, is effective to evaluate the
distance between LDS, but cannot be effectively used for video with multiple
dynamic textures. Therefore, many works which utilize Martin distance are lim-
ited to investigate simple video with single DT.

Very recently, Ref.[15] proposed to categorize DT by using a novel Bag-Of-
dynamic-Systems (BoS). It models each video sequence with a collection of LDSs,
each one describing a small spatial-temporal patch extracted from the video. This
BoS representation is analogous to the Bag-of-Words (BoW) representation for
object recognition. This choice provides an effective strategy to deal with video
sequences which are taken under different viewpoints or scales.

Because BoS model is similar to BoW, it naturally inherits the disadvantages
of BoW. It is well known that BoW model assign only one codebook element to
a descriptor, and therefore the quantization error is large. This usually degrades
the classification performance. In [16] and [17], the sparse coding and local coding
methods are proposed to address such problem. In such frameworks, more than
one codebook element will be assigned to a descriptor and form coding vector.
Such strategy can obviously improve the classification performance since the
quantization error is attenuated. Unfortunately, neither sparse coding nor local
coding can be used for BoS. The intrinsic reason is that both methods depends
on the linear subspace assumption and used the linear reconstruction error to
design the object function.

Another problem lies in the design of codebook. Conventional k-means or k-
mediod clustering method requires the user to prescribe the size of the codebook.
This is an non-trivial task.

In this paper, we present a new representation of DT for ELM classifier de-
sign. We use the LDS to model the spatial-temporal patches which is sampled
from the original video sequence, and adopt the affinity propagation (AP) to
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design the codebook. AP algorithm is originally proposed in [18] to deal with
exemplar extraction problem. The reason to adopt AP lies in two facts: (1) It
can automatically determine the size of the codebook; (2) It can extract the
existing DT exemplar to construct the codebook. After that, we develop a soft
assignment coding method to design the DT representation. The experimental
results show the advantage of the proposed method.

The rest of this paper is organized as follows: In Section 2 we give an introduc-
tion about ELM. Section 3 presents the details of the proposed coding method.
Section 4 shows the experimental results. In Section 5 we give some conclusions.

2 ELM Classification

In this section, we provide a brief introduction of the ELM algorithm which will
be used in dynamic texture classification. The more details can be found in [2,6].

In the case of multiple classes, the training data are denoted as {(ui, li)}Ni=1,
where ui is the feature vector, li is the label and N is the number of the
training samples. For each vector ui, li should be transformed to the vector
ti = [ti1, ..., tiC ]

T , where tik = 1 for the vector belonging to class k, i.e., when
li = k, and tik = −1 otherwise.

The input weights of ELM are randomly chosen, while the output weights
should be analytically calculated. Assume that the network’s hidden layer con-
sists of Q neurons and that b ∈ R

Q is a vector containing the hidden layer
neurons bias values. Function G(·) used for output calculation is denoted as
G(wj , bj ;ui), where wj denotes the input weight. The hidden layer neurons
outputs G can be represented as:

G =

⎡
⎢⎣

G(w1, b1;u1) · · · G(w1, b1;uN )
...

. . .
...

G(wQ, bQ;u1) · · · G(wQ, bQ;uN )

⎤
⎥⎦ ∈ R

Q×N

The network’s output vector corresponding to the training vector set {ui}Ni=1

can be written in a matrix form as

O = WT
o G (1)

where Wo ∈ R
C×Q is the output weight.

By assuming that the network’s predicted outputs O are equal to the net-
work’s desired outputs T = [t1, ..., tN ], Wo can be analytically calculated by

Wo =
(
GGT

)−1
GTT (2)

Taking account of training errors, Ref.[2] have recently proposed an optimiza-
tion based on regularized ELM algorithm formulated as follows:

Minimize : LP =
1

2
‖Wo‖2 + C

1

2

N∑
i=1

‖ξi‖2

Subject to : gT
i Wo = oT

i − ξTi , i = 1, ..., N

(3)
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where ξi ∈ R
C is a training error vector corresponding to training sample ui

and C is a parameter denoting the importance of the training error in the op-
timization problem. By adopting the above described optimization scheme, Wo

can be calculated by:

Wo = G

(
1

C
I+GTG

)−1

TT (4)

Finally, the test data can be introduced to the ELM network and be classified
to the class corresponding to the highest networks output.

Further, we use the Kernel trick to deal with complex dynamic texture videos.
According to [2], we define a kernel matrix for ELM as:

Ω = GTG, (5)

where the {i, j} element in Ω is gT
i gj = K(ui,uj). Then, the output function of

ELM classifier can be written as

oT = gTWo = gTG

(
1

C
I+GTG

)−1

TT =

⎡
⎢⎣
K(u,u1)

...
K(u,uN )

⎤
⎥⎦
T (

1

C
I+Ω

)−1

TT

(6)
In this work, we adopt the Gaussian kernel which is represented as

K(u,v) = exp(−γ‖u− v‖2) (7)

where γ is the prescribed parameter.
The whole procedure to utilize ELM is illustrated in Fig.1. In the following

sections we will give more details.

Codebook Design

DT Feature 
Extraction Soft Coding Feature 

RepresentationLabel

Fig. 1. The overview of the proposed method.

3 Video Representation

3.1 Dynamic Texture Modeling

This section summarizes the key concepts in dynamic texture. According to [12],
an LDS model can be used to fit a small spatial-temporal patch. Assume the
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short spatial-temporal patches includes τ frames with resolution m × n. The
dynamic texture should obeys the standard state-space equation:

{
x(k + 1) = Ax(k) + u(k), u(k) ∼ N(0,Q), x(0) = x0

y(k) = Cx(k) +w(k), w(k) ∼ N(0,R)
(8)

where x(k) ∈ R
nx is the hidden state variable vector, and y(k) ∈ R

ny (ny =
m× n) is the data corresponding to the sequence of images. A ∈ R

nx×nx , and
C ∈ R

ny×nx are the parameter matrices. u(k) ∈ R
nx and w(k) ∈ R

ny are the
zero-mean normally distributed random variables, which are used to compensate
the modeling error.

Since w(k) and u(k) are modeling errors, they are expected to be negligible.
Therefore the problem can be formulated as: Given the observed image sequence
y(1),y(2), ...,y(τ)(τ > nx), estimate the values of A, C and x(k).

Denote Y1:τ = [y(1),y(2), ...,y(τ)] ∈ R
ny×τ and X1:τ = [x(1),x(2), ...,x(τ)]

∈ R
nx×τ . It can be reformulated as

Y1:τ ≈ CX1:τ (9)

SVD can be performed on the matrix Y1:τ and the parameters are estimated as:

Y1:τ ≈ UΣVT

C = U and X1:τ = ΣVT
(10)

Because x(k + 1) ≈ Ax(k) for k = 1, 2, ..., τ − 1, the estimation of A can be
uniquely determined by solving the following least squares problem:

A = argmin
A

τ−1∑
k=1

||x(k + 1)−Ax(k)||2 (11)

Finally, we can use the tuple p = (A,C) to describe A DT spatial-temporal
patch.

3.2 Codebook Design

To effectively code the obtained DT spatial-temporal patches, a reasonable code-
book is needed. As the whole video is complicated , we sample non-overlapped
spatial-temporal patches from videos and obtain the DT models of all the patches
[19]. The codebook is generated from all the patch models in training data.

In this work, we adopt Affinity Propagation (AP) clustering algorithm [18] to
find prototypes V = {v1, ...,vK} as the codebook. Such a method can automat-
ically determine the codebook size K. Let P = {p1, ...,pM} be the set of all the
DT patches. AP takes as input a collection of similarities between DT patches.
The details of the algorithm are described in Algorithm.1.

A DT spatial-temporal patch pi can be described as pi = (Ai,Ci) by mod-
eling dynamic textures. The similarities of pi and pj should be defined for AP
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Algorithm 1. AP Clustering Algorithm

Input:
s(i, j)(1 ≤ i, j ≤ M) : similarities and preference;

Output:
idx(i)(1 ≤ i ≤ M) : indices of exemplars for each pi;

1: initial a(i, j) = 0;
2: repeat
3: compute responsibilities r(i, j) (1 ≤ i, j ≤ M);

4: r(i, j) = s(i, j) − max
j
′
s.t. j

′ �=j

{
a(i, j

′
) + s(i, j

′
)
}

5: compute availabilities a(i, j) (1 ≤ i, j ≤ M);

6: a(i, j) = min

{
0, r(j, j) +

∑
i
′
s.t. i

′
/∈{i,j}

{
max{0, r(i′ , j)}

}}
(i �= j)

7: a(j, j) =
∑

i
′
s.t. i

′ �=j

{
max{0, r(i′ , j)}

}

8: Identifying exemplars;
9: idx(i) = argmax

1�j�M
a(i, j) + r(i, j)

10: until idx(i) do not change.

clustering algorithm. One family of distances between two models is based on
principal angles between specific subspaces derived from the models, namely
the observability subspaces [15]. The observability subspaces is the range of the

extended observability denoted by O∞(pi) =
[
Ci

T , (CiAi)
T
, (CiAi

2)
T
, ...

]T
∈

R
∞×nx . Let θa be the a-th principal angles between the spaces. The Martin

distance between pi and pj is defined as

dM (pi,pj) = − ln

nx∏
a=1

cos2θa (12)

After we obtain the distance matrix D ∈ RM×M and its element D(i, j) is

the Martin distance between pi and pj , we set s(i, j) = −D(i, j)
2
and s(i, i) =

min
j=1,...,M

(
−D(i, j)

2
)

for AP clustering algorithm. AP clustering provides two

advantages: (1) the size of the codebook is automatically determined; (2) the
result of the clustering is deterministic and do not depend on the initialization.

3.3 Soft Coding Feature Design

A popular method for coding is vector quantization which searches the near-
est neighbor to represent the descriptor. Such a representation is usually called
BoW. BoW quantizes a video into discrete “visual words”, and then computes
a histogram representation. One disadvantage of BoW is that it introduces sig-
nificant quantization errors since only one element of the codebook is selected
to represent the descriptor. To reduce the quantization error, we develop a soft
coding approach to solve this problem.
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Given a spatial-temporal patch which is denoted as pi, the corresponding fea-
ture vector is constructed as {μik}Kk=1. In this representation, μik is the mem-
bership value of sample pi to the cluster identified by the center v∗

k. The mem-
berships can be obtained by

μik =
e(−β·dM(pi,v

∗
k))

K∑
k′=1

e

(
−β·dM(pi,v∗

k
′ )
) (13)

Please note that {μik}Kk=1 is normalized to satisfy
K∑

k=1

μik = 1.

The coding vector for the spatial-temporal patch pi is then obtained as ci =
[μi1, μi2, ..., μiK ]T ∈ R

K . For a single video sequence, if we extract N local DT
descriptors, then we can get the codes C = [c1, ..., cN ] ∈ R

K×N .Then we need
an operator to pool all codes in a video into a single vector ui ∈ R

K . This
pooling operation is defined as

ui = P(Ci) (14)

where the pooling function P is defined for each column of C. Each column of
ui corresponds to the responses of all the local descriptors in the specific video.
Therefore, different pooling functions construct different image statistics. In this
study, we select the average operator. Such strategy results in

ui(k) =

N∑
j=1

|C(k, j)|
K∑

k′=1

N∑
j=1

|C(k′ , j)|
(15)

where ui(k) is the k-th element of ui(k) and C(k, j) is the matrix element in
the k-th row and j-th column of C.

4 Experimental Results

In this section, we present experimental results that validate the proposed al-
gorithm. As indicated by [20], some existing DT data sets have a number of
drawbacks such as the resolution is quite low; there is only a single occurrence
per class and not enough classes are available for practical classification pur-
poses. To tackle this problem, Ref.[20] developed the DynTex data set, which
aims to serve as a reference database for dynamic texture research by providing
a large and diverse database of high-quality dynamic textures. Dyntex provides
3 data sets for classification. In our experiment, we adopt the Gamma dataset
for classification evaluation. It includes 10 classes such as sea, calm water, grass,
etc. We randomly choose half of the videos in each class as the training data.
The remaining videos are used for test purpose.
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Table 1. Accuracy Comparisons

Method Accuracy Method Accuracy

BoW-ELM 75.00% 1-NN 52.34%
BoW-SVM 75.78% 3-NN 49.22%

soft coding-ELM 88.28% 5-NN 40.62%
soft coding-SVM 82.81%

In this work, the size of the codebook is never prescribed by the designer.
After we run the AP procedure, we get a codebook for Gamma dataset. The
obtained codebook size is 184.

As to the coding methods, we compare two methods: soft coding and hard
coding. The hard coding method assigns only one codebook element to a local
DT descriptor. It is equivalent to the usual BoW method. As to the classifiers,
we compare three classifiers: ELM, SVM, and k-Nearest Neighbors(NN). Both
ELM and SVM can be combined with two coding methods. For k-NN, we use
a single DT model to model the video and use the Martin distance to measure
the difference between videos. Such a method serves the role of baseline. In our
implementation, we set k = 1, 3, and 5.

Table.1 lists the performance of all of the above methods. k-NN always obtains
the worse results. This is not surprising because only a single DT is used to
describe the video and therefore the modeling error will be significant. If we use
BoW feature, both ELM and SVM obtain better results than k-NN, while ELM
is a little worse than SVM. However, if we use soft coding method, the results
of ELM will be dramatically increased and is superior to SVM. In Fig.2, we list
the confusion matrice of ELM. From this figure we see the performance of ELM
is rather good.

In the above comparison, the parameters of ELM and SVM are carefully
tuned to get the best results. To show the influence of the parameters γ and C,
we change the values of γ from 2−18 to 218, and the values of C from 2−18 to
218. The obtained performance results are listed in Figs.2. From this figure we
see that the performance change of ELM is very smooth, while SVM is rather
susceptible to the parameters.

Finally, to show the advantages of the obtained codebook, we also used the
K-Medoids algorithm to design a codebook with the same size. Therefore we
actually compare the following four methods: (1) AP-ELM(using AP and ELM);
(2) AP-SVM(using AP and SVM); (3) KM-ELM(using K-Medoids and ELM);
(4) KM-SVM(using K-Medoids and SVM).

We study the influence of the parameter β which plays important roles in
the soft coding stage. In Fig.2 we list the accuracy versus the values of β. In
addition to β, the other parameters in the algorithms are carefully-tuned to get
the best results. From this figure we see that AP-ELM performs better than
other methods and this shows that the AP codebook indeed helps ELM to get
better results.
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Fig. 2. 1st row: Confusion Matrix and Classification performance v.s. the parameter
β; 2nd row: Classification performance v.s. the parameter γ and C

5 Conclusions

In this paper, the ELM classifier is developed to tackle the dynamic texture
classification problem. Since the dynamic texture lies in the non-Euclidean space,
we design a soft coding BoS representation for it. Such a representation can be
used for ELM classifiers and obtains satisfactory performance on public datasets.
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