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Abstract. Since centralized learning solutions are unable to meet the
requirements of mining applications with massive training samples, a so-
lution to distributed learning over massive XML documents is proposed
in this paper, which provides distributed conversion of XML documents
into representation model in parallel based on MapReduce, and a dis-
tributed learning component based on Extreme Learning Machine for
mining tasks of classification or clustering. Within this framework, train-
ing samples are converted from raw XML datasets with better efficiency
and information representation ability and taken to distributed learning
algorithms in ELM feature space. Extensive experiments are conducted
on massive XML documents datasets to verify the effectiveness and effi-
ciency for both distributed classification and clustering applications.

Keywords: XML, Extreme Learning Machine, classification, clustering,
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1 Introduction

Extreme Learning Machine (ELM) was proposed by Huang, et al. in [11,12]
based on generalized single-hidden layer feedforward networks (SLFNs). With
its variants[10,2,13,7,6], ELM achieves extremely fast learning capacity and good
generalization performance due to its universal approximation capability and
classification capability. Recently, paper [8] pointed out that from the optimiza-
tion method point of view, ELM for classification and SVM are equivalent. Fur-
thermore, it is proved in [9] that ELM provides a unified learning platform with
a widespread type of feature mappings.

It is generally believed that all the ELM based algorithms consist of two major
stages[5]: 1) random feature mapping; 2) output weights calculation. The first
stage is the key concept in ELM theory. Most existing ELM based classification
algorithms can be viewed as supervised learning in ELM feature space. While
in [3], the unsupervised learning in ELM feature space is studied, drawing the
conclusion that the proposed ELM kMeans algorithm can get better clustering
results than in original feature space.
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Recently, the volume of XML documents keeps explosively increasing.
MapReduce[1] provides tremendous parallel computing power without concerns
for the underlying implementation and technology. However, MapReduce frame-
work requires distributed storage of the datasets and no communication among
mappers or reducers, which brings challenges to: 1) converting XML datasets
into representation model; 2) implementing learning algorithms in ELM feature
space.

To our best knowledge, massive XML mining problems in this paper is dis-
cussed for the first time. The contributions can be summarized as

1. A distributed representing algorithm DXRC is proposed to convert massive
XML documents into XML representation model in parallel;

2. Existing distributed supervised learning algorithms in ELM feature space are
implemented to make comparison of massive XML documents classification
performance, including PELM and POS-ELM;

3. A distributed unsupervised learning algorithm DEK is proposed based on
ELM kMeans[3] to realize distributed clustering over massive XML docu-
ments in ELM feature space;

4. Empirical experiments are conducted on clusters to verify the performance
of our solution.

The remainder of this paper is structured as follows. Section 2 proposes a dis-
tributed representation converting algorithm. ELM feature mapping is presented
in Section 3. Section 4 presents classification algorithms based on distributed
ELMs and proposes a distributed clustering algorithm in ELM feature space
based on MapReduce. Section 6 shows the experimental results. Section 7 draws
conclusions of this paper.

2 Distributed XML Representation

In this section, we propose a distributed converting algorithm, named Dis-
tributed XML Representation Converting (DXRC), to calculate TFIDF[14] for
DSVM based on MapReduce.

The map function in Algorithm 1 accepts key-value pairs as input. The key
of key-value pairs is the XML document ID and the value is the corresponding
XML document content. A HashMap mapEle (Line 1) is used to cache the all
the elements of one XML document (Lines 2-11), using element name as key
and another HashMap mapEleTF (Line 4) as value. The mapEleTF caches the
TF values of all the words in one element (Lines 5-10). That is, for each XML
document, there are as many items in mapEle as there are elements; for each
element, there are as many items in mapEleTF as there are distinct words in
this element. Each item in mapEle and mapEle will be emitted as output in the
form of 〈term, 〈docID, element, times, sum〉〉 (Lines 12-17).

After the 〈term, 〈docID, element, times, sum〉〉 pairs are emitted by map func-
tion, all the key-value pairs with the same key, which are also the key-value pairs
of the same word in XML documents, are combined and passed to the same re-
duce function in Algorithm 2 as input. For each key-value pair processed by
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Algorithm 1. Mapper of DXRC

Input: 〈docID, content〉
Output: 〈term, 〈docID, element, times, sum〉〉

1 Initiate HashMap mapEle;
2 foreach element ∈ content do
3 Initiate sum = 0;
4 Initiate HashMap mapEleTF ;
5 foreach term ∈ element do
6 sum++;
7 if mapEleTF .containsKey(term) then
8 mapEleTF .put(term, mapEleTF.get(term)+1);

9 else
10 mapEleTF .put(term,1);

11 mapEle.put(element,mapEleTF );

12 foreach itrEle ∈ mapEle do
13 element = ele.getKey();
14 foreach itrEleTF ∈ itrEle do
15 term = itrEleTF .getKey();
16 times = itrEleTF .getValue();
17 emit(term, 〈docID, element, times, sum〉);

reduce function, two HashMaps mapDocEleTF (Line 1) and mapTDocs (Line
2) are initiated. The HashMap mapDocEleTF is to cache the tf values of a
word in each element in the corresponding XML document and mapTDocs is to
cache the number of documents containing this word. The total number of doc-
ument N (Line 3) and the vector weights (Line 4), which indicates the wights of
all the elements in each XML document, are obtained through distributed cache
defined in MapReduce job configuration. Since Reduce now have all the tf values
grouped by XML elements along with their weights, weighted tf values (Line 6)
and the number of documents containing each word are calculated and cached in
mapDocEleTF andmapTDocs respectively (Lines 5-12). Then the idf value can
be calculated (Line 14) and multiplied by each item in mapDocEleTF . The out-
put of reduce is the 〈position, tfidf〉 pairs, of which position is 〈docID, element〉
indicating the index of DSVM matrix and tfidf is the value of the matrix.

3 ELM Feature Mapping

In ELM, the n input nodes correspond to the n-dimensional data space of original
training samples; while L hidden nodes correspond to the L-dimensional ELM
feature space. With them-dimensional output space, the decision function output
the class label of the training sample.
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Algorithm 2. Reducer of DXRC

Input: 〈term, list(〈docID, element, times, sum〉)〉
Output: training samples matrix in the form of 〈position, tfidf〉

1 Initiate HashMap mapDocEleTF ;
2 Initiate HashMap mapTDocs;
3 N=DistributedCache.get(”totalDocsNum”);
4 weights = DistributedCache.get(”elementWeightsVector”);
5 foreach itr ∈ list do
6 weightedDocEleTF = weights[docId, element] ∗ itr.times/itr.sum;
7 mapDocEleTF .put(〈docId, element〉, weightedDocEleTF );
8 if mapTDocs.containsKey(docId) then
9 newT imes = mapTF .get(docId) + irt.getValue().times;

10 mapTDocs.put(docID,newT imes);

11 else
12 mapTDocs.put(docID,itr.getValue().times);

13 docsNumber = mapTDocs.size();
14 idf = log(mapTDocsSize/N);
15 foreach itrDocEleTF ∈ mapDocEleTF do
16 position = itrDocEleTF .getKey();
17 tfidf = itrDocEleTF .getValue()∗idf ;
18 emit(position, tfidf);

The ELM feature mapping denoted as H is calculated as

H =

⎡
⎢⎣
h(x1)

...
h(xN )

⎤
⎥⎦ =

⎡
⎢⎣
G(w1, b1,x1) · · · G(wL, bL,x1)

... · · · ...
G(w1, b1,xN ) · · · G(wL, bL,xN )

⎤
⎥⎦
N×L

(1)

4 Distributed Classification in ELM Feature Space

In this section, we introduce the learning procedure of classification problems in
ELM feature space, and distributed implementations based on two existing rep-
resentative distributed ELM algorithms, which are PELM[4] and POS-ELM[15].

4.1 Supervised Learning in ELM Feature Space

In supervised learning applications, since ELM is to minimize the training error
and the norm of the output weights[11,12], that is

Minimize: ‖Hβ −T‖2 and ‖β‖ (2)

where T =
[
tT1 , ..., t

T
L

]T
m×L

is the vector of class labels.
The matrix β is the output weight, which is calculated as

β = H†T (3)

where H† is the Moore-Penrose Inverse of H.
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If the number of training samples is much larger than the dimensionality of
the feature space, the output weight calculation equation can be rewritten as

β =

(
I

C
+HTH

)−1

HTT (4)

4.2 Distributed Implementations

The original ELM was parallelized by PELM in [4]; Online sequential ELM (OS-
ELM) was implemented on MapReduce as POS-ELM in [15].

Parallel ELM. Since the major cost in ELM is the calculation of generalized
inverse of matrix H, The matrix multiplication U = HTH and V = HTT can
be calculated by a MapReduce job. In map function, each term of U and V is
calculated in parallel. In reduce function, all the intermediate results are merged
and summed to the corresponding elements of the result matrix.

Parallel Online Sequential ELM. The basic idea of Parallel Online Sequen-
tial ELM (POS-ELM) is to calculate H1, · · · ,HB in parallel. POS-ELM takes
advantage of the calculation of partial ELM feature matrix Hi with a chunk of
training data of OS-ELM, in each map function calculates its Hi with its own
data chunk. The reduce function collects all the Hi and calculates βk+1 as

βk+1 = βk +Pk+1H
T
k+1(Tk+1 −Hk+1βk) (5)

where
Pk+1 = Pk −PkH

T
k+1(I+Hk+1PkH

T
k+1)

−1Hk+1Pk (6)

5 Distributed Clustering in ELM Feature Space

Generally, kMeans algorithm in ELM feature space, as ELM kMeans for short,
has two major steps: 1) transform the original data into ELM feature space;
2) implement traditional clustering algorithm directly. Clustering in the ELM
feature space is much more convenient than kernel based algorithms.

We present Distributed ELM k-Means (DEK) based on ELM kMeans[3]. Al-
gorithm 3 presents the map function of DEK. For each sample stored on this
mapper (Line 1), the distance between the sample and each cluster centroids is
calculated (Lines 2, 3). Then each sample is assigned to the cluster whose cen-
troid is the nearest one to this sample (Line 4). The intermediate key-value pair
is emitted in the form of 〈cmax,xi〉 (Line 5), in which xi is the specific sample
and cmax is the assigned cluster of xi.

Algorithm 4 presents the reduce function of DEK. We add up the sum distance
in Euclidean space of all the samples xi in list(x) (Lines 1, 2), and then calculate

the mean value to represent the new version of the centroid cupdatedj of cluster cj
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Algorithm 3. Mapper of DEK

Input: Training samples X, k centroids C
Output: 〈centroid cmax, sample xi〉

1 foreach xi ∈ X do
2 foreach cj ∈ C do
3 Calculate distance dij between xi and cj ;

4 Assign xi to the cluster cmax with max
j

(dij);

5 Emit 〈cmax,xi〉;

(Line 3). When all the k cluster centroids are updated, if this version of centroids
are the same as the older one, or if the maximum iteration number is reached,
DEK holds that the clustering job is done; otherwise, DEK continues to the next
round of MapReduce job until convergence.

Algorithm 4. Reducer of DEK

Input: 〈centroid cj , samples list(x)〉
Output: Updated set of centroids Cupdated

1 foreach xi ∈ list(x) do
2 Add xi to squared sum S;

3 Calculate cupdatedj of cluster cj as cupdatedj = S/list(x).length;

6 Performance Evaluation

6.1 Experiments Setup

Three datasetsWikipedia XML Corpus provided by INEX, IBM DeveloperWorks
articles and ABC News are used in our paper. We choose the same numbers of
XML documents out of all the three datasets, that is 6 classes and 500 documents
in each class. The only parameter of learning algorithms in ELM feature space,
i.e., the number of hidden nodes L, is set to 800.

To evaluate the performance, three sets of evaluation criteria are utilized:
1) for scalability evaluation, we compare the criteria of speedup, sizeup and
scaleup; 2) for classification problems, accuracy, recall and F-measure are used;
3) for clustering problems, since we treat this class label as the cluster label, the
same evaluation criteria are used as classification problems.

All the experiments are conducted on a Hadoop cluster of nine machines, each
of which is equipped with an Intel Quad Core 2.66GHZ CPU, 4GB of memory
and CentOS 5.6 as operating system. The MapReduce framework is configured
with Hadoop version 0.20.2 and Java version 1.6.0 24.
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6.2 Evaluation Results

Scalability of DXRC. The scalability of representation converting algorithm
DXRC is first evaluated. Figure 1 demonstrates good speedup, sizeup and scaleup
of DXRC. The representation ability DSVM applied in DXRC can be found in
our previous work [16].
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Fig. 1. Scalability of DXRC

Scalability of Massive XML Classification in ELM Feature Space. The
speedup comparison between PELM and POS-ELM on three datasets are pre-
sented in Figure 2.
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Fig. 2. Comparison of speedup between PELM and POS-ELM

Since the centralized calculation reduces the scalability of both PELM and
POS-ELM to some degree, especially for POS-ELM. Thus, the speedup of PELM
is better than POS-ELM.

Figure 3 demonstrates the sizeup comparison between PELM and POS-ELM,
from which we find that the sizeup of PELM is better than POS-ELM.

For the scaleup comparison, Figure 4 demonstrates that both PELM and
POS-ELM have good scaleup performance, and PELM outperforms POS-ELM
on each of the three datasets.

In summary, PELM has better scalability than POS-ELM, but both of them
have good scalability for massive XML documents classification applications.
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Fig. 3. Comparison of sizeup between PELM and POS-ELM
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Fig. 4. Comparison of scaleup between PELM and POS-ELM

Performance of Massive XML Classification in ELM Feature Space.
The classification results are shown in Table 1, from which we can see that PELM
slightly outperforms POS-ELM. However, both PELM and POS-ELM provide
satisfactory classification performance.

Table 1. Classification performance comparison between PELM and POS-ELM

Datasets
PELM POS-ELM

Accuracy Recall F-measure Accuracy Recall F-measure

Wikipedia 0.7886 0.7563 0.7721 0.7923 0.7745 0.7833

IBM developWorks 0.7705 0.8145 0.7919 0.7711 0.7863 0.7891

ABC News 0.8681 0.8517 0.8598 0.8517 0.8335 0.8425

Scalability of Massive XML Clustering in ELM Feature Space. In
theory, the scalability of distributed k-Means in ELM feature space and in orig-
inal feature space are the same, we only presents the scalability of DEK without
comparison with distributed k-Means in original feature space in Figure 5, which
demonstrates good scalability of DEK.



Distributed Learning over Massive XML Documents in ELM Feature Space 287

1 2 3 4 5 6 7 8
1

2

3

4

5

6

Slaves number

Sp
ee

du
p

 

 

Wiki

IBM

ABC

(a) Speedup

1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
1

2

3

4

5

6

7

8

Dataset size

Si
ze

up

 

 

Wiki

IBM

ABC

(b) Sizeup

1 2 3 4 5 6 7 8

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Scalability factor

Sc
al

eu
p

 

 

Wiki

IBM

ABC

(c) Scaleup

Fig. 5. Scalability of DEK

Performance of Massive XML Clustering in ELM Feature Space. The
comparison results on three different datasets are presented in Table 2. It can be
seen from the comparison results that DEK gets better clustering performance
due to its ELM features mapping.

Table 2. Clustering performance of DEK compared with parallel k-Means

Dataset
Parallel k-Means DEK

Accuracy Recall F-measure Accuracy Recall F-measure

Wikipedia 0.7602 0.7426 0.7513 0.7737 0.7648 0.7692

IBM developerWorks 0.7985 0.8268 0.8126 0.8124 0.8277 0.8200

ABC News 0.8351 0.8125 0.8201 0.8529 0.8192 0.8357

7 Conclusion

This paper addresses the problem of distributed XML documents learning in
ELM feature space, which has no previous work to our best knowledge. Parallel
XML documents representation converting problem is discussed by proposing
algorithm DXRC. Massive XML documents classification in ELM feature space
is studied by implementing PELM and POS-ELM; while for massive XML doc-
uments clustering in ELM feature space, a distributed ELM k-Means algorithm
DEK is proposed. Experimental results demonstrate that the distributed XML
learning in ELM feature space shows good scalability and learning performance.
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