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Abstract. Silicon content ([Si]) of the molten metal is an important index re-
flecting the product quality and thermal status of the whole blast furnace (BF) 
ironmaking process. Since the direct online measure on this index is difficult 
and larger time lag exists in the offline assay procedure, quality modeling is re-
quired to achieve online estimation of [Si], which is an open problem for realiz-
ing BF automation. Focusing on this practical problem, this paper proposes a 
data-driven dynamic modeling method for [Si] prediction using extreme learn-
ing machine (ELM) with the help of principle component analysis (PCA). First, 
data-driven PCA is introduced to pick out the most pivotal variables from mul-
titudinous factors that influence [Si] to serve as the secondary variables of  
modeling. Second, since this BF metallurgical process is nonlinearity dynamic 
system with severe time-varying characteristic, dynamic ELM modeling tech-
nology with good generalization performance and strong nonlinear mapping ca-
pability is proposed by applying the self-feedback structure on traditional ELM. 
The self-feedback connection enables ELM to overcome the static mapping li-
mitation of its feedforward network structure so as can cope with dynamic time-
series prediction problems very well. At last, industrial experiments and  
compared studies demonstrate that the constructed model has a better modeling 
and estimating accuracy as well as a faster learning speed when compared with 
different modeling method and different model structure. 

Keywords: extreme learning machine (ELM), silicon content, dynamic model-
ing, principle component analysis (PCA), blast furnace.  

1 Introduction 

Blast furnace (BF) is a giant countercurrent reactor and heat exchanger in metallur-
gical industry, and is the first step towards the production of steel [1~3]. As one of the 
most complex industrial reactors, the BF has received broad interests both theoretical-
ly and experimentally due to its complexity and the key role of iron and steel industry 
on the national economy. However, it is true that the operation and control of an in-
dustrial BF is a serious problem, and still relies on the manual operation of foremen 
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experientially [1, 2]. So far, there remains some open problems both in metallurgical 
fields and engineering control fields, such as the closed-loop control or operational 
optimization for the whole BF ironmaking process [4~6]. 

Undoubtedly, the most crucial obstacle for closed-loop control of BF is that the 
current regular instruments do not have the ability to feed the need of online measure 
for molten iron quality, such as the silicon content ([Si]) in the final hot metal. In the 
past decades, through continuous efforts and attempts, a great deal of models and 
algorithms have been developed trying to tackle the modeling problem for [Si] predic-
tion. These existing methods including linear model based methods like ARX and 
ARMAX models [6~8], partial least squares based methods [9], and nonlinear intelli-
gent based methods like artificial neural network (ANN) model [10~12], and support 
vector machine (SVM) model [1, 2, 13, 14]. Though these existing methods have 
made some achievements in practical application, most of these studies are only fo-
cused on the static modeling for [Si] prediction while little attention has been paid to 
dynamical modeling of this quality parameter.  

The BF ironmaking process is a complicated dynamic system with many influenti-
al factors and large time-lag. To capture the system dynamics, the time series and 
time delays of the relevant input and output variables should be took into account 
during the process modeling. This also means that the existing static prediction mod-
els cannot capture the process nonlinear dynamics very well, thus do not provide 
much accuracy estimation. Therefore, the self-feedback structure which can construct 
a dynamic system may appear more important for the BF system with serious nonli-
near dynamics and large time lag. Moreover, most of the existing prediction models 
are trained by gradient-based algorithms such as back propagation (BP) algorithm and 
its variants. It is clear that the learning speed of such intelligent models is insufficient-
ly fast as larger number of training data may be required. Moreover, the BP-like algo-
rithm usually suffers from high computational burden, poor generalization ability, and 
local optima and overweighting problems [15].  

On the other hand, a new machine learning approach that is termed as the extreme 
learning machine (ELM) has been recently proposed by Huang et al. in [15~18], and 
verified on a number of benchmark and real-world problems including pattern classi-
fication and prediction modeling [16~25]. The ELM and its variants have been consi-
dered as a promising learning algorithm in contrast with other algorithms such as BP 
NN and SVM. This is because ELM has the following advantages: 1) much faster 
learning speed; 2) higher generalization performance in comparison with BP NN and 
SVM; and 3) no extra parameters need to be tuned except the predefined network 
architecture [15~18, 22~25]. In this paper, a data-driven dynamic modeling method to 
predict molten iron silicon content using ELM with the help of principle component 
analysis (PCA) [26,27] is proposed. In the design of this predictive model, data-driven 
PCA for reducing the input variables space of ELM has been constructed. Moreover, 
output self-feedback architecture has been introduced to establish a dynamic ELM 
model for practical BF dynamic system. This self-feedback structure enable ELM to 
overcome the static mapping limitation of its feedforward network structure so as can 
cope with dynamic time-series prediction problems very well. Lastly, performance of 
the proposed dynamic ELM based prediction model is compared with other well-
known modeling algorithms by industrial experiments on 2# BF in Liuzhou Iron & 
Steel Group Co. of China. 



 ELM Based Dynamic Modeling for Online Prediction of Molten Iron Silicon Content 269 

 

2 Description of BF Ironmaking System and Its Quality Index 

The BF ironmaking is a continuous production process conducted in a closed vertical 
furnace where materials reduction from iron ore to molten iron takes place every time 
using carbon coke and gas in high temperature and high pressure environment. When 
a BF ironmaking system runs, the solid raw materials consisting of coke and fresh ore 
are charged layer by layer with definite quantities from the top, while the preheated 
compressed air, together with pulverized coal, is introduced at the bottom through 
tuyeres, entering just above the hearth, which is a crucial region of BF where the final 
molten metal product gathers. The hot air at approximately 1200℃ passes upward 
through the charge and reacts with the descending coke and the supplementary in-
jected oil to generate carbon dioxide, which then changes to CO and H2 at high tem-
perature. A lot of heat energy is released during this period that can heat up the hearth 
as high as 2000℃. The generated CO and H2 further reduces the descending iron ore 
to form hot metal accumulating in the hearth, and some unreduced impurities (mainly 
SiO2) form the slag (mainly CaSiO3) floating on the hot metal being lighter. The liq-
uid hot metal and slag are periodically tapped out by opening a clay-lined tapholes for 
the subsequent processing. Generally, it will take 6~8 hours for each period of BF 
ironmaking [28].  

For a practical BF production process, silicon content ([Si]) is an important index 
indicating the chemical heat of molten iron. High [Si] means a large quantity of slag, 
and this would be easier to wipe off the phosphorus and sulphur in the hot metal. 
However, excessive [Si] will make cast iron become stiff and brittle, even lead lower 
yield of metal and easier splashing. In addition, high [Si] will result in a correspond-
ing increase of SiO2 in the slag, thereby influencing slagging speed of calclime, ex-
tending converting time and intensifying corrosion to furnace lining. From an energy 
point of view, it would be desired to operate the BF process at low molten metal sili-
con content, still avoiding the risk of cooling the hearth which may result in chilled 
hearth. Generally, the content of silicon should be controlled in 0.5%~0.7%. 

Nowadays, it is still an insoluble dilemma to realize the closed-loop control of  
molten iron quality in ironmaking BF. The main bottleneck is that the directly online-
measurement on [Si] parameter is difficult to be realized with the existing conven-
tional measuring means. Moreover, the offline assaying process for this index takes a 
long lag time, usually more than 1 hour. Therefore, online prediction based [Si] mod-
eling must be established. Effective online prediciton or estimation for [Si] not only 
can offer useful information for operators to judge the inner smelting state and  
operational condition, but also plays a key role in realizing closed-loop control and  
operational optimization as well as energy-saving and cost-reducing. 

3 Modeling Strategy 

The proposed data-driven modeling strategy for [Si] prediction is shown in Fig.1. 
First, data-driven PCA technology with a strong ability to handle strong high-
dimensional nonlinear correlated data is introduced to pick a few key factors as the 
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input variables of model so as to reduce the dimension and difficulty for prediction 
modeling. Then, ELM with better nonlinear mapping and fast process capability mod-
eling technology is brought in this paper. In the meantime, output self-feedback struc-
ture is put into use on the basis of traditional ELM in this method, and the output 
variables derived from previous time are feed back to the network input layer. This 
feedback outputs together with input variables at different time constitutes a dynamic 
ELM structure which has a storage capacity and has the ability to tackle data in dif-
ferent time, thus overcoming the limitation of static modeling of traditional ELM.  

Remark 1: The proposed modeling strategy has two advantages: 1) The dynamic 
property of time series and time delays is considered by feeding the output and inputs 
in previous time through a self-feedback structure. This self-feedback connection 
enables ELM to overcome the static mapping limitation of its feedforward network 
structure. Thus the improved version of ELM can capture the process nonlinear dy-
namics very well by remembering prior input and output states and using both the 
prior and current states to calculate new output value; 2) Different from the BP-like 
modeling algorithm usually suffering from high computational burden, poor generali-
zation ability, and local optima and overweighting problems, the ELM based model-
ing profits from much faster learning speed, higher generalization performance, and 
easy of implantation and use (no extra parameters need to be tuned except the prede-
fined network architecture).                                             □ 
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Fig. 1. Strategy diagram of nonlinear intelligent modeling for silicon content prediction 
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4 Modeling Algorithm 

4.1 Selection of Secondary Variables by PCA-Based Dimension Reduction 

PCA is a kind of method trying to grasp the main contradiction part in statistical anal-
ysis process and analyze the main influencing factors from multiple objects in order to 
simplify the complex problems. Actually, the principle components conducted by 
PCA are the combination of column vectors picked by varimax from input matrix. 
Since correlations and noises are always existed in practical industrial data, principle 
components with a small variance are usually some noisy information. Abandoning 
this data will not cause a crucial information loss and can even achieve de-noising in 
some extent. 

Consider the following data set  

i iu v= X                                   (1) 

where n m×X  is the measured n data array on m  variables, iu  is the score vector, 

iv  is the characteristic unit vector of covariance matrix TX X , named load vector. 

The variance of iu  is iλ  which is also the eigenvalue of TX X , and satisfies 

Var( )i it λ= , 1 0mλ λ≥ ≥ ≥ . PCA is also a procedure used to explain the variance 

in a single data matrix. The principal component decomposition of X  can be 
represented as follows: 
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In Eq.(2) T
i iu v is the thi  principal component, and E  is a matrix of residuals. It is to 

be noted that the score vectors are orthogonal and so are the loading vectors which are 
of unit length. Eq.(2) indicates that a rank n  matrix X  can be decomposed as the 
sum of n  rank 1 principal components. The number of principle component kept in 
Eq.(2) is determined by the total variance. The variance contribution and the total 
variance of principal component can be represented as follows: 
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where kη is the thk principle component variance contribution; kCη is the total va-

riance of the first k  terms. Usually, the total variance varies should be larger than 
85%. Only in this case, the data dimension can be reduced on the premise of not  
losing useful information. 
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Remark 2: A problem of the PCA-based dimension reduction is that the conducted 
principle components are comprehensive representation of the original higher-
dimension physical variables. However, by computing the component matrix which 
contains the correlations between the principle component and the original physical 
variable, one can obtained the lower-dimension physical variables which related to 
the principle components mostly, according to some specific requirements.       □ 

4.2 ELM with Self-feedback Connection 

Extreme learning machine (ELM) is an algorithm for single hidden layer feedforward 
networks (SLFNs) with additive or radial basis function (RBF) hidden nodes whose 
learning speed can be thousands of times faster than conventional feedforward network 
learning algorithm like BP algorithm while reaching better approximation performance. 
The procedure of the ELM algorithm used here can be summarized as follows: For N  

arbitrary distinct samples ( , )i iX Y , where T
1 2[ , , , ] n

i i i inx x x= ∈X R  and 1[ ,i iy=Y  
T

2 , , ] m
i imy y ∈ R , the output of a SLFN with N  hidden nodes can be represented by 

1

( ) ( , , ),   ,
N

n n
i i i iN

i

f G bβ
=

= ∈ ∈∑X a X X R a R                  (5) 

where ia  and ib  are the learning parameters of hidden nodes, iβ  is the output 

weigh, and ( , , )i iG ba X  is the output of the thi hidden node with respect to the input 

data X .  
In supervised batch learning, the learning algorithms use a finite number of input-

output samples for training. For N  arbitrary distinct samples ( , )i iX Y , if an SLEN 

with N  additive hidden nodes can approximate these N  samples with zero error, 
it then implies that there exist ia , ib  and iβ  such that 

1
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Eq.(6) can be written compactly as: 

β =H Y                               (7) 

where 
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The purpose of ELM is training the net to find a least-squares solution β  of the 

linear system β =H Y  

1 1 1 1(a , , a , b , , b ) min (a , ,a , b , , b )
N N N Nβ

β β− = −H Y H Y   (9) 

And the solution of the above linear system can be solved by the inverse of matrix β  

by the Moore-Penrose method, which is 

†β = H Y                             (10) 

where †H is the Moore-Penrose generalized inverse of H  [15~17]. 

Remark 3: For the simplicity of the paper, the prediction modeling process based on 
ELM with additive hidden node is summarized as follows: Giving a training set 

{( , ) | , , 1, }n m
i i i i i= ∈ ∈ =Z X Y X R Y R  for prediction modeling, and hidden neuron 

number N , the input weight ia  and bias ib  can be assigned arbitrarily to calculate 

the output matrix H  of hidden layer by using Eq.(8). After that, the output weight 
β  can be calculated by Eq.(10), which is essential for estimating output only based 

on estimating inputs.                                                   □ 

Remark 4: The hidden node number N  is the only parameter need to be predefined 
in the presented modeling method. In order to achieve optimal approximation ability 
of training and realize fast convergence aiming complex industrial data, a proper 

(maybe optimal) N  can be determined as the one which results in the lowest valida-
tion error through several trainings and validations.                           □ 
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Fig. 2. Eigenvalue and variance contribution rate of each component 
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5 Industrial Experiments 

In this section, a medium-sized blast furnace with the working volume of 2000 m3 in 
Liuzhou Iron & Steel Group Co. is chosen to perform the validation of silicon content 
prediction model. On the foundation of process mechanism and existing monitoring 
instruments status, 16 measurable parameters influencing [Si] are determined as blast 
temperature (℃), blast pressure (kPa), blast humidity (g/m3), and so on. Considering 
that the impact of strong correlation between the selected 16 input variables, PCA is 
used to determine the key input variables that influence the molten iron silicon  
content mostly. According to Eq.(3) and Eq.(4), the eigenvalue and the variance con-
tribution rate of each component can be calculated as shown in Fig.2. It can be sum-
marized that the cumulative variance contribution rate of the first 6 terms is 
98.723%>98%. This means these 6 principal components are sufficient to describe the 
major variances in the data. Then, by computing the component matrix of principle 
components, 6 process variables can be determined as the secondary input of the [Si] 
prediction model. These secondary variables include hot blast pressure 1x (kPa), hot 

blast temperature (℃), oxygen enrichment percentage (%), volume of coal injection 
(Kg/t), blast humidity (g/m3), and gas volume of bosh (m3/min). 

The optimal number of hidden units is selected as the one which results in the low-
est validation error. Through experiments analysis, the optimal number of hidden 

nodes with sigmoidal function is set as 25N = . The corresponding modeling result 
of the developed ELM model with self-feedback structure is shown in Fig.3, where 
the good modeling accuracy with practical data has been demonstrated. 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

Samples

S
ili

co
n 

co
n
te

n
t, 

%

 

 

Estimated
Actual

 

Fig. 3. Modeling results with proposed method 

The developed ELM prediction model has been test on 2# blast furnace in Liuzhou 
Steel of China for quite a long time. Fig.4 shows the estimated results using the pro-
posed modeling method for predicting [Si], where the figure compares the predicted 
trend with the actual one. Moreover, in order to show the superiority of the proposed 
method more intuitively, comparisons with various popular prediction models have 
been made. Here, BP NN without self-feedback (SFB) connection, BP NN with SFB 
connection, and traditional ELM without SFB connection have been chosen to con-
duct the prediction comparison on the same observations. From Fig.4, it can be seen 
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that the proposed model has the best estimation performance among all the developed 
prediction models. For example, it results in the best estimation trend and accuracy, 
and the shape of the estimated curve values match the measured ones very well and 
better than that with other three methods. 
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Fig. 4. Estimation results of molten iron silicon content with different models 
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Fig. 5. Autocorrelation function of estimating error of different models 

It is well known that a good model should have its estimated error autocorrelation 
close to a white noise. So in this text, we draw the autocorrelation function of estimat-
ing error of different models as shown in Fig.5. It can be seen that the autocorrelation 
results of algorithm like BP NN without SFB connection, and ELM without SFB 
connection is much worse than that with a SFB structure, respectively. Although one 
can obtain that the measuring error autocorrelation of the proposed ELM with SFB 
connection and BP NN with SFB connection are all satisfactory and close to the shape 
of the white noise here, the above estimation result confirmed the effectiveness and 
superiority of the proposed method in predicting accuracy. 
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6 Conclusions 

This paper proposed a data-driven modeling for prediction of molten iron silicon con-
tent using PCA and ELM with self-feedback structure. Performance of the proposed 
ELM based prediction model is compared with BP algorithm and different model 
structure on practical industrial data from 2# BF in Liuzhou Steel Company of China. 
The accuracy can basically meet the requirements of actual operation. 
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