
Keyword Search on Probabilistic XML Data

Based on ELM

Yue Zhao�, Guoren Wang, and Ye Yuan

College of Information Science and Engineering, Northeastern University,
Liaoning, Shenyang 110819

zhaoy0927@163.com

Abstract. This paper describe a keyword search measure on probabilis-
tic XML data based on ELM (Extreme Learning Machine). We use this
method to carry out keyword search on probabilistic XML data. A prob-
abilistic XML document differs from a traditional XML document to
realize keyword search in the consideration of possible world semantics.
A probabilistic XML data can be seen as a set of nodes consisting of
ordinary nodes and distributional nodes. ELM has good performance in
text classification applications. As the typical semi-structured data, the
label of XML data possesses the function of definition self. Label and
keyword which has been contained in the node can be seen as the text
data of the node. ELM offers significant advantages such as fast learning
speed, ease of implementation and classification nodes effectively. Key-
word search on the set after it classified by using ELM can pick up the
speed of query. This paper uses ELM to classify nodes and carry keyword
search on the set which has been classified. The experiments can show
that the speed of query can receive significant improvement.

Keywords: Extreme learning machine, Node classification, Probabilis-
tic XML data.

1 Introduction

Traditional databases only manage deterministic information, but many applica-
tions that use databases to involve uncertain data such as information extraction,
information integration, web data mining, etc. Because of the flexibility of XML
data model, it can easily allow a natural representation of uncertain data. Now,
many probabilistic XML models are designed and analyzed[1-4]. This paper se-
lect a popular probabilistic XML model PrXML{ind,mux}[5], which is discussed
in [6]. In this model, a probabilistic XML document (called a p-document) is
considered as a labeled tree which has two types of nodes, ordinary nodes and

� Yue Zhao, Ye Yuan and Guoren Wang were supported by the NSFC (Grant
No.61025007, 61328202 and 61100024), National Basic Research Program of China
(973, Grant No.2011CB302200-G), National High Technology Research and Devel-
opment 863 Program of China (Grant No.2012AA011004), and the Fundamental
Research Funds for the Central Universities (Grant No. N130504006).

c© Springer International Publishing Switzerland 2015 135
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 2,
Proceedings in Adaptation, Learning and Optimization 4, DOI: 10.1007/978-3-319-14066-7_14

zhaoy0927@163.com


136 Y. Zhao, G. Wang, and Y. Yuan

distributional nodes. Ordinary node is used to represent the actual data and
distributional node is used to represent the probability distribution on the child
nodes. There are two types of nodes in distributional nodes, IND and MUX. If
a node is an IND node, its children nodes are independent of each other, while
the children of a MUX node are mutually−exclusive. A real number from (0,1]
is attached on each edge in the XML tree, indicating the conditional probability
that the child node will appear under the parent node given the existence of the
parent node. Keyword search has been widely applied on XML data. Users don’t
need know the knowledge of the underlying data structures and complex query
language beforehand. So, keyword search is an easy method for ordinary users.
In the past years, the definition of common ancestor node has several choices,
such as LCA (Lowest Common Ancestor), SLCA (Smallest LCA) and so on.
This paper select SLCA as the root node of result subtree.

ELM[7-10] has good performance on classification applications, and can be
used to classify nodes before query XML data. Classification is considered as an
important cognitive computation task[11-14]. A probabilistic XML data tree can
be seen as a set of all the nodes including root node (only one), connected nodes,
leaves nodes and distributional nodes. So, the classification need to consider
two kinds of information, and they are keyword information and probability
distributional information.

This paper is organized as follows: Section 2 introduces the probabilistic XML
model and the formal semantics of keyword search result on probabilistic XML
data. Section 3 shows that how to classify nodes. In section 4, we propose an
algorithm to query keyword on probabilistic XML data by using ELM to classify
nodes. The experimental and performance evaluation are presented in section 5.
Section 6 gives the conclusion and future works.

2 Problem Definitions

2.1 Probabilistic XML Data

A probabilistic XML document (p-document) can be seen as a set of many de-
terministic XML documents. Each deterministic document is called a possible
world. Ordinary nodes are prime XML nodes and they are appearing on both
deterministic XML data and probabilistic XML data. Distributional nodes are
only used to define the probabilistic process of generating deterministic docu-
ments, while those nodes do not occur on deterministic XML data. This paper
adopts PrXML{ind,mux} as the probabilistic XML model. For example, figure
1(a) shows a p-document T .

Given a p-document T , we can traverse T in a top-down fashion. When we
visit a distributional node, there are two situations according to the different
typies. One situation is that if a node is an IND node with m children nodes, we
generate 2m copies. Another situation is that if a node is a MUX node with m
children nodes, we generate m or m + 1 copies. For example, figure 1(b) shows
the copies of a p-document with their probabilities. Figure 1(b) select node b
as the only child node of node a, and the probability is 0.7 ∗ (1 − 0.6) = 0.28.



Keyword Search on Probabilistic XML Data Based on ELM 137

lab

MUX1

manager

Tom Tony

researchfield

...
XML 

keyword search
...

person person person

name name namepaper paper paper

TomJohn

...
XML 

...

...
probabilistic

XML 
...

...
XML 

...

Tony

...
keyword
search 

...

...
XML 

...

0.7 0.4

0.8
0.6

0.5 0.5 0.70.8Keyword
{Tom, XML}

IND1

IND2

IND3

(a) A probabilistic XML document

MUX

IND

a

b c

d e

0.7 0.6

0.5 0.5

a

b c

e

a

c

d

a

c

e

a

b c

d

a

b

a

(a) 0.28 (b) 0.09 (c) 0.09

(f) 0.21(e) 0.21(d) 0.12

(b) A probabilistic subtree

Fig. 1. Probabilistic XML data

If there is not any node selected as the children nodes of a, the probability of
this copy is (1 − 0.7) ∗ (1 − 0.6) = 0.12. Node a selects nodes b and c as its
children nodes, and node c selects node d as its child node. The probability is
0.7 ∗ 0.6 ∗ 0.5 = 0.21. The probabilities of the other copies (possible worlds) are
easy to calculate from the above procedure.

2.2 Keyword Query

Usually, we model an XML tree as a labeled ordered tree, where nodes repre-
sent elements, and edges represent direct nesting relationship between nodes.
Recently, keyword search has been studied in XML documents more and more.
Given a set of keywords and a XML document, most work took LCA and SLCA
of the matched nodes as the results. The function lca(v1, v2, ..., vk) computes the
Lowest Common Ancestor of nodes v1, v2, ..., vk. Given k keywords and the in-
verted lists {S1, S2, ..., Sk} of them. The LCA of these keywords on T is defined
as:

lca(v1, v2, ..., vk) = lca(S1, S2, ..., Sk)

= {lca(n1, n2, ..., nk) | n1 ∈ S1, ..., nk ∈ Sk}
(1)

child(v, ni) denote the children nodes of node v on the path from v to ni. The
SLCA is defined as follows:

slca({v1}, S2, ..., Sk) =

{v | v ∈ lca({v1}, S2, ..., Sk), ∀v′ ∈ lca({v1}, S2, ..., Sk)(v �≺a v′)} (2)

For example, figure 2(a) give a traditional XML tree which is generated by
figure 1(a) and a query Q = {Tom,XML}. The result of query is shown in
figure 2(b). This paper selects SLCA as the result for the keyword search on
probabilistic XML data. Because SLCA is the smallest set, every SLCA node
should be seen as the suitable for the users.



138 Y. Zhao, G. Wang, and Y. Yuan

lab

manager

Tom

researchfield

...
XML 

keyword search
...

person person

name namepaper paper

TomJohn ...
XML 

...

...
XML 

...
0.0672

Keyword
{Tom, XML}

(a) A traditional XML document

person

name paper

Tom ...
XML 

...

0.0672

(b) SLCA nodes

Fig. 2. SLCA nodes on XML data

A keyword search on p-document consists of a p-document T , a query Q =
{k1, k2, ..., kn}. We define the answers for a keyword search on T as ordinary
nodes on T to be SLCAs in the possible worlds generated by T . The probability
of a node v being an SLCA in the possible worlds is denoted as PrTslca(v). The
formal definition is shown as follows:

PrTslca(v) =

m∑

i=1

{Pr(wi) | slca(v, wi) = true} (3)

where Pr(wi) is the existence probability of the possible world wi. {w1, w2, ...,
wn} denotes the possible worlds generated by T . slca(v, wi) = true indicates that
v is an SLCA in the possible world wi.

Definition 1: (SLCA on probabilistic XML data) Given a query Q in a
probabilistic XML tree T , an SLCA query finds the SLCA nodes v in all possible
worlds with the probability of all the probabilities of the possible worlds in which
the node v is an SLCA node.

3 Classification of Nodes

3.1 Classification of Ordinary Nodes

From section 2, we can see that if we can find keyword nodes tree, the set in-
tersection operation for keyword nodes tree should achieve SLCA nodes quickly.
Figure 3(a) and 3(b) shows the keyword nodes tree. When we use set intersec-
tion operation to obtain the common ancestor nodes tree such as shown in figure
4(c). So, the important section is how to receive the keyword nodes tree.

To receive the keyword nodes tree, we need add dummy node for actual node
which contains more than one keyword. If the subtree rooted at the node v
contains two keywords, we should add one dummy node as the sibling node of
node v. For example, node {lab} and {person} in figure 4 has its dummy node.
These dummy nodes don’t exist in the actual tree. The aim of adding dummy
nodes is to classify nodes effectively.



Keyword Search on Probabilistic XML Data Based on ELM 139

lab

manager

Tom

person

name

TomKeyword
{Tom}

(a) Keyword {Tom} nodes tree

lab

researchfield

...
XML 

keyword search
...

person person

paper paper

...
XML 

...

...
XML 

...Keyword
{XML}

(b) Keyword {XML} nodes tree

Fig. 3. Keyword nodes tree

lab

manager

Tom

researchfield

...
XML 

keyword search
...

person person

namepaper paper

Tom...
XML 

...

...
XML 

...

Fig. 4. A common nodes tree

3.2 Classification of Distributional Nodes

Distributional nodes can represent the probability distribution of the children
nodes. A p-document defines a probability distribution over a space of deter-
ministic XML documents. According to the different types of the distributional
node, the number of copies is different. If a node is an IND node, and it has
n children nodes, the number of copies is 2n. Otherwise, if a node is a MUX
node, the number is n or n+1. Each copy has its probability value. Some of the
copies will contain the keyword, and the copies which contain the keyword are
important for our probabilistic keyword search.

Tom Tony

0.7 0.4

IND1 Keyword
{Tom}

Tom
0.42

Tom Tony
0.28+ = 0.7

(a) An IND node

MUX1

...
XML 

...

...
probabilistic

XML 
...

0.5 0.5

Keyword
{XML}

0.5

...
XML 

...

...
probabilistic

XML 
...
0.5+ = 1

(b) A MUX node

Fig. 5. Distributional nodes

Figure 5(a) shows an example of an IND node. For the keyword {Tom}, IND1
is a parent node of nodes {Tom} and {Tony}. The copy with the existing of



140 Y. Zhao, G. Wang, and Y. Yuan

{Tom} has two situations, and their probabilities are 0.7× (1− 0.4) = 0.42 and
0.7 × 0.4 = 0.28. It means that the probability of the subtree rooted at node
IND1 contains the keyword {Tom} is 0.42 + 0.28 = 0.7. Figure 5(b) shows an
example of a MUX node. For the keyword {XML}, MUX1 is a parent node of
node {XML} and {ProbabilisticXML}. The copy with the existing of {XML}
has two situations, the probabilities are all 0.5. It means that the probability of
the subtree rooted at node MUX1 contains the keyword {XML} is 0.5+0.5 = 1.

lab

manager

Tom

person

name

TomKeyword
{Tom}

0.7

0.8

(a) Keyword {Tom} probabilistic tree

lab

researchfield

...
XML 

keyword search
...

person person person

paper paper paper

XML 
...

XML 
...

...
XML 

...

0.8 0.6

0.7

Keyword
{XML}

(b) Keyword {XML} probabilistic tree

Fig. 6. Keyword nodes probabilistic tree

For each keyword, all its ancestor nodes and itself nodes will constitute a
tree. This tree contains ordinary nodes and distributional nodes. To present the
probability contribution situation of this tree which contains keyword, we will
delete distributional nodes and connect its children nodes to its parent node with
the existence probability of containing the keyword of the subtree rooted at its
parent node according to the type of distributional node. For example, figure
6(a) shows a tree contained keyword {Tom}. Node {manager} is a parent node
of node {IND1}. The probability of a subtree rooted at node {IND1} which
contains keyword {Tom} is 0.7. As shown in figure 6(b), it is the situation of
the probabilistic tree which contains keyword {XML}.

lab

researchfield

...
XML 

keyword search
...

person person person

paper paper paper

XML 
...

XML 
...

...
XML 

...

0.8 0.6

0.7

name

Tom

manager

Tom

0.7

Fig. 7. A keyword nodes probabilistic tree



Keyword Search on Probabilistic XML Data Based on ELM 141

We merge all the keywords probabilistic trees together. A keyword nodes
probabilistic tree can be generated. We need calculate SLCA nodes on this tree
with the probability and delete the subtree rooted at SLCA nodes. Next, we
need continue to calculate SLCA results on remaining nodes tree. So, if we
repeat such operation, all the SLCA results will generate. For example, figure 7
is a keyword nodes probabilistic tree. This tree retains all the probabilities of the
subtree which contains keyword. If we calculate SLCA results on this tree, the
node {person} is the only result. So, we need delete the subtree which is rooted
at node {person}, and the remaining other nodes tree. To repeat calculated
operation on the remaining nodes tree, we can see that the node {lab} is another
result. The calculation of the probabilities of all the SLCA nodes can be shown
in next section.

4 Keyword Search on Probabilistic XML Data Based on
ELM

Keyword search on probabilistic XML data based on classification mainly include
four steps, they are shown as following: 1) Adding dummy nodes according to the
number of keywords. 2) To classify nodes with ELM based on keyword according
to the type of the nodes. 3) Use the set merging operation to structure the
common ancestor nodes probabilistic tree. 4) Repeat the operation of calculating
SLCA and deleting the subtree, all the SLCA results will generate. The key of the
keyword search on p-document is how to calculate the probability of the SLCA
results. Step 2 and step 4 all contain the computation of the probabilities.

Each node contains two kinds of information, they are code and keyword it
contained. If a node is a distributional node, there are the third information in
this node, that is probability. Code is used to judge the relationships between
nodes, such as finding the common ancestor nodes. The keyword which is con-
tained in a node is the key of keyword search. When we use ELM to classify
nodes, keyword can be used as the label of the classification set. Every set rep-
resent one keyword. For given the query, we will find all the sets of keywords
which is given by users, and operate set merging to obtain a keyword nodes tree.

Next, we introduce four steps of the keyword search algorithm used ELM to
classify nodes on probabilistic XML data one by one.

First, adding dummy nodes according to the number of keywords. We can see
that theprobabilisticXMLtree infigure 1(a) contains twokeywords{Tom,XML}.
The algorithm use Dewey code to encode the XML tree. So, the first step is adding
the dummy nodes for the node v which contains keywords in the subtree rooted at
the node v. If the subtree which is rooted at the node v has n keywords, we will add
n− 1 dummy nodes.

Second, to classify nodes with ELM based on keyword according to the type
of the nodes. From the dummy nodes tree, all the nodes and the distributional
nodes are consisted of the classified nodes. ELM can classify the nodes to two
sets such as shown in figure 8(a). The first set represent keyword Tom, and the
second set represent keyword XML. Each distributional node has a probability



142 Y. Zhao, G. Wang, and Y. Yuan

which represents the keyword probability of the subtree which is rooted at the
distributional node. For example, the node IND1 has the probability with 0.7,
that means the probability of containing keyword {Tom} of the subtree which
is rooted at IND1 is 0.7.

Then, we need delete all the distributional nodes and connect all their chil-
dren nodes to their parent node. The probability of distributional node will be
moved to its child node. For example, in figure 8(b), the node {Tom} accept the
probability 0.7 from its parent node {IND1}.

manager

person

name

Tom

researchfield
person person person

paper paper paper

XML

IND3(0.7)

lab lab

IND2(0.8)

IND2

IND1(0.7)

MUX1(1)Tom
Tom

XML

XML

XML XML

(0.8) (0.6)

(a) A keyword p-tree

manager person(0.8)

name

Tom

researchfield
person person(0.8) person(0.6)

paper paper paper

XML
lab lab

XML(0.7)
XMLXML

XML
Tom(0.7)

Tom

(b) P-tree without distributional nodes

Fig. 8. Probabilistic tree

manager (0.7)

name

researchfield
person

person(0.8) person(0.6)

paper paper paper(0.7)

lab

XMLXMLXML

XMLTom

Tom

Fig. 9. A common nodes p-tree

Third, use the set merging operation to structure the common ancestor nodes
probabilistic tree. The intersection of the two sets is the set which includes node
{lab} and {person}. Figure 9 shows the union set of two keyword sets.

Finally, repeat the operation of calculating SLCA and deleting the subtree, all
the SLCA results will generate. Let’s calculate SLCA result on the tree which
is shown in figure 9. The node {person} with the SLCA probability of 0.8 is
generated. So, the subtree which is rooted at {person} will be deleted, and the
probability 1 − 0.8 = 0.2 will be leaved to the other nodes tree. Next, the node
{lab} is another result. The probability of this result is 0.2×0.7 = 0.14. Because,
the extensive probability of the node Tom is 0.7, and the extensive probability
of node {XML} is 1, the SLCA probability of {lab} is 0.14.

5 Performance Verification

The dataset we used is shown in table 1. In this paper, the algorithm select
two datasets XMARK and DBLP. For each XML dataset used, we generate the



Keyword Search on Probabilistic XML Data Based on ELM 143

Table 1. properties of probabilistic XML data

ID name size Ordinary IND MUX

DOC 1 XMARK 1 10M 159,307 14,630 15,471
DOC 2 XMARK 2 20M 364,199 41,251 38,100
DOC 3 XMARK 3 40M 689,470 77,228 61,535
DOC 4 XMARK 4 80M 1,497,433 161,277 159,495
DOC 5 DBLP 1 20M 361,370 68,345 70,790
DOC 6 DBLP 2 40M 731,561 238,450 227,540
DOC 7 DBLP 3 80M 1,477,345 440,007 405,857
DOC 8 DBLP 4 160M 3,260,109 788,367 771,320

 30

 60

 90

 120

 150

DOC1 DOC2 DOC3 DOC4

Ti
m

es
(m

s)

Dataset ID

Prstack
SVM

ELM

(a) The time of DOC1 to DOC4

 60

 90

 120

 150

 180

 210

DOC5 DOC6 DOC7 DOC8

Ti
m

es
(m

s)

Dataset ID

Prstack
SVM

ELM

(b) The time of DOC5 to DOC8

Fig. 10. Vary query over DOC1 to DOC8

corresponding probabilistic XML tree, using the same method as used in [5].
We visit the nodes in the original XML tree in pre-order way. For each node v
visited, we randomly generate some distributional nodes as children of v. For
the original children of v, we select them as the children of the new generated
distributional nodes and assign them random probability distributions. We need
restrict that the sum of children nodes for a MUX node is no more than 1. The
keyword has 8 situations. The number of keywords is 2 to 3.

We compare the query times of three situations about keyword search in
probabilistic XML data. The first situation is using the method in [15] to retrieval
the SLCA nodes, and the second situation is using SVM to classify nodes for
the keyword search on p-document. The third situation classify nodes by using
ELM. The speed of classification is shown in figure 10.

From the figure 10, we can see that ELM has advantages of speed compared
with Prstack and SVM. Prstack will compute all the nodes probabilities of all
the ancestor nodes of the keyword node and it will record all the situation of the
node which contains the keyword. ELM can classify nodes according to the code
and keywords by retrieve all the nodes once. So, the algorithm has high speed
by using ELM to classify.

6 Conclusions

This paper use ELM to classify for keyword search on probabilistic XML data.
Keyword search on probabilistic XML data has been received much attention in
the literature. Finding efficient query processing method for keyword search on



144 Y. Zhao, G. Wang, and Y. Yuan

probabilistic XML data is an important topic in this area. In this paper, SLCA
is selected as the results. Classification for nodes is important among all the
operations. ELM can increase retrieval speed for the classification. So, ELM can
support keyword search on probabilistic XML data.

References

1. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: Ranked keyword
search over xml documents. In: SIGMOD (2003)

2. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest lcas in xml
databases. In: SIGMOD (2005)

3. Sun, C., Chan, C.Y., Goenka, A.K.: Multiway slca-based keyword search in xml
data. In: WWW (2007)

4. Zhou, J., Bao, Z., Wang, W., Ling, T.W., Chen, Z., Lin, X., Guo, J.: Fast SLCA
and ELCA Computation for XML Keyword Queries based on Set Intersection. In:
ICDE (2012)

5. Kimelfeld, B., Kosharovsky, Y., Sagiv, Y.: Query efficiency in probabilistic xml
models. In: SIGMOD (2008)

6. Nierman, A., Jagadish, H.V.: ProTDB: Probabilistic data in xml. In: VLDB (2002)
7. Huang, G.-B.: Learning capability and storage capacity of two-hidden-layer feed-

forward networks. IEEE Transactions on Neural Networks (2003)
8. Huang, G.-B., Siew, C.-K.: Extreme learning machine with randomly assigned RBF

kernels. International Journal of Information Technology (2005)
9. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learn-

ing machine. Neurocomputing (2008)
10. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocom-

puting (2007)
11. Taylor, J.G.: Cognitive computation. Cognitive Computation (2009)
12. Wöllmer, M., Eyben, F., Graves, A., Schuller, B., Rigoll, G.: Bidirectional lstm

networks for context-sensitive keyword detection in a cognitive virtual agent frame-
work. Cognitive Computation (2010)

13. Mital, P.K., Smith, T.J., Hill, R.L., Henderson, J.M.: Clustering of gaze during
dynamic scene viewing is predicted by motion. Cognitive Computation (2011)

14. Cambria, E., Hussain, A.: Sentic computing: Techniques, tools, and applications
(2012)

15. Li, J., Liu, C., Zhou, R., Wang, W.: Top-k Keyword Search over Probabilistic XML
Data. In: CICDE (2011)


	Keyword Search on Probabilistic XML Data
Based on ELM
	1
Introduction
	2
Problem Definitions
	2.1
Probabilistic XML Data
	2.2
Keyword Query

	3
Classification of Nodes
	3.1
Classification of Ordinary Nodes
	3.2
Classification of Distributional Nodes

	4
Keyword Search on Probabilistic XML Data Based on ELM
	5
Performance Verification
	6
Conclusions




