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Abstract. As one variant of MapReduce framework, ComMapReduce
adds the lightweight communication mechanisms to improve the per-
formance of query processing programs. Although the existing research
work has already solved the problem of how to identify the communi-
cation strategy of ComMapReduce, there are still some drawbacks, such
as relative simple model and too much user participation. Therefore, in
this paper, we propose a two stages query processing optimization model
based on ELM, named ELM to ELM (E2E ) model. Then, we develop
efficient sample training strategy, predicting and execution algorithm to
construct the E2E model. Finally, extensive experiments are conducted
to verify the effectiveness and efficiency of the E2E model.
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1 Introduction

Nowadays, MapReduce [1] has emerged as a famous programming framework
for big data analysis. MapReduce and its variants are used for big data appli-
cations, such as Web indexing, data mining, machine learning, financial analy-
sis [2–5]. As one of a successful improvements of MapReduce, ComMapRedcue
[2, 3] adds simple lightweight communication mechanisms to generate the certain
shared information and executes the query processing applications with large
scale datasets in the Cloud. In ComMapReduce framework, three basic and two
optimization communication strategies are proposed to illustrate how to com-
municate and obtain the shared information of different applications. During
further analyzing ComMapReduce execution course and the abundant experi-
ments, we find out that different communication strategies of ComMapReduce
can substantially affect the performance of query processing applications.

The existing work [6] proposes a query processing model named ELM CMR
based on ELM [7] which has the classification performance at an excellent per-
formance. ELM CMR can identify the communication strategy of ComMapRe-
duce according to the characteristics of query processing programs. However,
ELM CMR still has the following drawbacks. First, to the MapReduce or
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ComMapReduce, a program only consists of black box Map and Reduce func-
tions, without knowing the distributed details about the framework. But the con-
figuration parameters of the framework can fully influence the performance of
query processing. Finding the most suitable configuration parameters setting it-
self is difficult. Second, ELM CMR only adopts simple training method to gain
the classification model.

Therefore, in this paper, for solving the above drawbacks, we propose the
two stages query processing optimization model based on ELM, named ELM to
ELM (E2E ) model. The first stage gains the feature parameters according to the
program of users by using ELM algorithm. After that, according to the results
of the first stage, the second stage can identify the final classification result by
ELM too. Furthermore, an efficient training strategy, predicting and execution
algorithm are presented. The contributions of this paper can be summarized as
follows.

– We propose an efficient two stages query processing optimization model
based on ELM, E2E model, which can realize the most optimal executions
of query processing programs in MapReduce or ComMapReduce framework.

– We develop a sample training strategy, predicting and execution algorithm
to construct the E2E model.

– The experimental studies using synthetic data show the effectiveness and
efficiency of the E2E model.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the background, containing the ELM and ELM CMR. Our E2E model is
proposed in Section 3. The experimental results to show the performance of E2E
model are reported in Section 5. Finally, we conclude this paper in Section 6.

2 Background

2.1 Review of ELM

Nowadays, Extreme Learning Machine (ELM) [7] and its variants [8–18] have the
characteristics of excellent generalization performance, rapid training speed and
little human intervene, which have attracted increasing attention from more and
more researchers. ELM is originally designed for single hidden-layer feedforward
neural networks (SLFNs [19]) and is then extended to the “generalized” SLFNs.
ELM algorithm first randomly allocates the input weights and hidden layer biases
and then analytically computes the output weights of SLFNs. Contrary to the
other conventional learning algorithms, ELM reaches the optimal generalization
performance with a very fast learning speed. ELM is less sensitive to the user
defined parameters, so it can be deployed fast and convenient.

ForN arbitrary distinct samples (xj , tj), where xj = [xj1, xj2, . . . , xjn]
T ∈ R

n

and tj = [tj1, tj2, . . . , tjm]T ∈ R
m, standard SLFNs with hidden nodes L and

activation function g(x) are mathematically modeled as

L∑

i=1

βigi(xj) =

L∑

i=1

βig(wi · xj + bi) = oj (j = 1, 2, . . . , N) (1)
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where L is the number of hidden layer nodes, wi = [wi1, wi2, . . . , win]
T is

the weight vector between the ith hidden node and the input nodes, βi =
[βi1, βi2, . . . , βim]T is the weight vector connecting the ith hidden node and
the output nodes, bi is the threshold of the ith hidden node, and oj =
[oj1, oj2, . . . , ojm]T is the jth output vector of the SLFNs.

The standard SLFNs can approximate these N samples with zero error. The
error of ELM is

∑L
j=1 ||oj − tj || = 0 and there exist βi, wi and bi such that

L∑

i=1

βig(wi · xj + bi) = tj (j = 1, 2, . . . , N) (2)

Equation (2) can be expressed compactly as follows:

Hβ = T (3)

where H(w1,w2, . . . ,wL, b1, b2, . . . , bL,x1,x2, . . . ,xL)

=

⎡

⎢⎢⎢⎣

h(x1)
h(x2)

...
h(xN )

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

g(w1 · x1 + b1) g(w2 · x1 + b2) . . . g(wL · x1 + bL)
g(w1 · x2 + b1) g(w2 · x2 + b2) . . . g(wL · x2 + bL)

...
...

...
...

g(w1 · xN + b1) g(w2 · xN + b2) . . . g(wL · xN + bL)

⎤

⎥⎥⎥⎦

N×L

(4)

β =

⎡

⎢⎢⎢⎣

βT
1

βT
2
...
βT
L

⎤

⎥⎥⎥⎦

L×m

and T =

⎡

⎢⎢⎢⎣

tT1
tT2
...
tTN

⎤

⎥⎥⎥⎦

N×m

(5)

H is set as the hidden layer output matrix of the neural network. The ith column
of H is called the ith hidden node output with respect to inputs x1,x2, . . . ,xN .
The smallest norm least-squares solution of the above multiple regression system
is shown as follows:

β̂ = H†T (6)

whereH† is the Moore-Penrose generalized inverse of matrixH. Then the output
function of ELM can be modeled as follows.

f(x) = h(x)β = h(x)H†T (7)

2.2 ELM CMR Model

ComMapReduce [2, 3] is an improved MapReduce framework with lightweight
communication mechanisms. A new node, named the Coordinator node, is added
to store and generate the certain shared information of different applications.
In ComMapReduce, three basic communication strategies, LCS, ECS and HCS,
and two optimization communication strategies, PreOS and PostOS are proposed
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to identify how to receive and generate the shared information. In short, with-
out affecting the existing characteristics of the original MapReduce framework,
ComMapReduce is a successful parallel programming framework with global
shared information to filter the unpromising data of query processing programs.

Figure 1 shows the architecture of ELM CMR model. The four components of
ELM CMR are respectively the Feature Selector, the ELM Classifier, the Query
Optimizer and the Execution Fabric.

Training 
Data

Feature Selector ELM Classifier

Query 
Collector

Query Optimizer

Coordinator

Mapper

Mapper

Mapper

Reducer

Reducer

Split 

Split 

Split 

Output

Output

...

...

... ...

Execution Fabric

Fig. 1. Architecture of ELM CMR Model

The Feature Selector mainly examines the training query processing programs
and selects the configuration parameters that can wholly affect the query per-
formance by the job profiles. Naturally, the parameters of program p can be di-
vided into three types, parameters that predominantly affect Map task execution;
parameters that predominantly affect Reduce task execution and the cluster pa-
rameters. Then, in each cluster, we adopt the minimum-redundancy-maximum-
relevance (mRMR) [20] feature selection to find the optimal parameters sharply
affecting the performance. And then, we generate the globally optimal configu-
ration parameter settings by combining the results of each subspace. Therefore,
the near-optimal configuration parameter setting can be generated.

After selecting the features of training data, the Feature Selector sends the
extracted training data to the ELM Classifier. It uses the training data to con-
struct the ELM model by the traditional ELM algorithm. After that, when there
are one or multiple queries to be processed, the ELM Classifier can rapidly ob-
tain the classification results of the queries, and then sends them to the Query
Optimizer.

The Query Optimizer applies the classification results of the ELM Classifier
and combines the implementation patterns to choose an optimized execution
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order. After gaining the execution order, the query is sent to the Execution
Fabric.

The Execution Fabric implements the program in ComMapReduce framework.
When there is one query to be processed, the Execution Fabric implements the
query according to the classification result of the Query Optimizer in ELM CMR.
When there are multiple queries to be processed, the multiple queries can be
classified by ELM Classifier and gain the best communication strategy of each
program. Then, a Task Scheduler Simulator is used to simulate the execution
time of queries. According to the execution time and the classification results
of the queries, the Query Optimizer designs an execution order following the
common principle of Shortest Job First (SJF ) to implement multiple queries.

3 E2E Model

3.1 Overview of E2E Model

Our E2E model can identify the optimal communication strategies of query pro-
cessing programs in MapReduce or ComMapReduce, which contains three main
phases, respectively the training phase, the prediction phase and the execution
phase. Figure 2 shows the whole workflow of query processing in the E2E model.
The main workflow is as follows.

Classifications

Sample isolated & 
pairwise 

interactions

Higher 
multiprogramming 

level

ELM 

Configuration 
Parameters

ELM 
Sample 

E2E Model

Training Phase

Prediction Phase

Execution Phase

Fig. 2. Workflow of E2E Model

First, the training phase is responsible for extracting the training query pro-
cessing programs that have a large affect on the E2E model. In the training
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phase, we use sample-based training strategies to run our workload, in isola-
tion, pairwise and at several higher multi-programming levels. After gaining the
training samples, they can be used to generate the E2E model in the prediction
phase.

Second, in the prediction phase, by using the training samples from the train-
ing phase, the two stages E2E model can be generated based on the traditional
ELM algorithm. According to the user’s programs, the first stage can obtain
the most optimal feature parameters of the programs by ELM. And then, us-
ing the feature parameters of the first stage, the second stage can identify the
classification results of the query processing programs by ELM.

Third, after gaining the E2E model, for the query processing program sub-
mitted to MapReduce or ComMapReduce, we can predict the optimal commu-
nication strategy in the execution phase.

3.2 Training E2E Model

To obtain the prediction model more accurately, we need to train the E2E model.
Different from the simple training course of ELM CMR model, the training phase
of our E2E model consists of running the queries in isolation, pairwise as well
as at several higher multi-programming levels.

The E2E model realizes the training phase by sampling approach, containing
isolation, pairwise and higher degree of concurrency, which allows us to approx-
imate the running of queries in MapReduce or ComMapReduce. The course of
the training phase is displayed in Figure 2. First, we sample the workload in
isolation to gain how each query behaves, which can be seen as the baseline of
training. Second, according to the query types in our experiments, we build a ma-
trix of interaction by running all unique pairwise combinations. Pairwise sample
can help us to simply estimate the degree of concurrency. Here, Latin hypercube
sampling approach (LHS) can uniformly distribute our samples throughout our
prediction space, which can be realized by creating a hypercube with the same
dimension as the multi-programming level. We adopt LHS to sample at pairwise
or several higher multi-programming levels, and then select the samples that
every value on every plane gets inter selected exactly one. A simple example of
two dimensional LHS is shown in Table 1.

Table 1. An example of LHS

Query 1 2 3 4

1
√

2
√

3
√

4
√
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3.3 Predicting E2E Model

Then, we introduce the details of the prediction phase. A MapReduce job j
can be expressed by a MapReduce program p running on input data d and
cluster r, which can be expressed as j=< p, d, r, c > in short. We call the d, r,
c the feature parameters of p. The users only submit their jobs to MapReduce
or ComMapReduce without knowing the internal configuration details of the
system.

However, a number of choices can be made in order to fully specify how the
job should be executed. These choices, represented by c in < q, d, r, c >, stand
for a high dimensional space of configuration parameter settings, such as the
number of Map and Reduce task, the block size, the amount of memory, and so
on. The performance changes a lot in different configuration parameters. For any
parameter, its value is not specified explicitly during job submission, either the
default values shipped with the system or specified by the system administrator.
However, the normal users don’t understand the running details of MapReduce.
That is to say, finding good configuration settings for MapReduce job is time
consuming and requires extensive knowledge of system internals. Because the
users have little information of the parallelization details of MapReduce, it is
necessary to gain the suitable configuration parameters. The first stage of our
E2E model is to generate the model for identifying the suitable configuration pa-
rameters of query processing programs by ELM. The main goal of the first stage
is to construct a black box feature parameters of queries, containing < d, r, c >.
The configuration parameters wholly affecting the performance adopted by E2E
are the same as our ELM CMR approach. The corresponding information of the
job can be obtained from sampling a few tasks of the job. After the first stage,
the feature parameters setting can be obtained by ELM algorithm. After gain-
ing the configuration parameters, the second stage is to use them to predict the
communication strategy of ComMapReduce or MapReduce by ELM algorithm
too, and then generates the classification results.

4 Execution of E2E Model

When there is one new query being submitted, the E2E model generates its
classification result as soon as possible. According to the characteristics of the
coming query, the first stage of E2E model can generate the feature parameters
of this query based on ELM. After that, the user can make a decision that
whether adopting ComMapReduce or adopting which communication strategy
by the second stage of E2E model, and then implement the query processing
application.

The course of execution is shown in Algorithm 1. First, the most optimal
feature parameters of query processing job j are extracted in the first stage
of E2E model (Line 1). Second, after obtaining the feature parameters of job
j, the E2E generates the classification result of j (Line 2). Third, according
to the classification of j, the E2E ensures how to implement the query and
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Algorithm 1. Execution of E2E Model

1: Generate the feature parameters of j by the first stage of E2E model;
2: Generate the execution plan of j by the second stage of E2E model;
3: Execute j with its communication strategy;

sends it to MapReduce or ComMapReduce framework. The framework uses the
optimization result to execute the query program (Line 3).

For example, for a submitted skyline query, the first stage of E2E can obtain
the most optimal feature parameters of this skyline query. After abstracting its
feature parameters, the E2E can generate its classification and then identifies
the communication strategy of this skyline query, such as PostOS. After that,
the skyline query will be implemented in ComMapReduce with PostOS.

5 Performance Evaluation

5.1 Experimental Setup

The experimental setup is the same as ELM CMR model as follows. The exper-
imental setup is a Hadoop cluster running on 9 nodes in a high speed Gigabit
network, with one node as the Master node and the Coordinator node, the oth-
ers as the Slave nodes. Each node has an Intel Quad Core 2.66GHZ CPU, 4GB
memory and CentOS Linux 5.6. We use Hadoop 0.20.2 and compile the source
codes under JDK 1.6. The ELM algorithm is implemented in MATLABR2009a.

The data in our experiments are synthetic data. The classification results of
E2E model contains 7 types, respectively ECS, HCS-0.5, HCS-1, HCS-2, PreOS,
PostOS and MapReduce (MR). HCS-0.5 means the preassigned time interval of
HCS is 0.5s. We evaluate the performance of E2E model by comparing with
ELM CMR. Four typical query processing applications are adopted to evaluate
the peformance, respectively top-k, kNN, skyline and join.

5.2 Experimental Results

Figure 3 shows the performance of top-k queries (k=1000), with the data size is
2G, 4G, 6G and 8G in uniform distribution. We can see that the performance of
top-k queries in the classification results of E2E model is better than ELM CMR.
The reason is that E2E model can effectively evaluate the optimal configuration
parameters of the queries than ELM CMR model. When k is much smaller than
the original data, the global shared information of ComMapReduce can reach
the most optimal one quickly, so the Mappers can retrieve the shared information
in the initial phase to filter the unpromising data.

Figure 4 shows the performance of kNN queries with different data size of
uniform distribution. The performance of E2E is also optimal to ELM CMR
model, where the reason is that E2E model can gain the suitable classification
results.
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Fig. 3. Performance of top-k Query
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Fig. 4. Performance of kNN Query

Figure 5 shows the performance of skyline queries in anti-correlated distri-
bution with different data size. We can see that the performance of different
execution plans is not obviously different, but PostOS is a little better. The
reason is that the original data are skewed to the final results in anti-correlated
distribution. The percentage of filtering is low, so the performance difference
is not obvious. In this situation, although E2E and ELM CMR can obtain the
classification, it can also choose the other communication strategies.

Figure 6 shows the performance of join queries in different data size of small-
big tables, with the same data size of the small table 2G, and the different data
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Fig. 6. Performance of join Query

sizes of big table are shown in Figure 6. The performance of E2E is much better
than ELM CMR. In ComMapReduce, the join attributes of the small table can
be set as the shared information to filter the unpromising intermediate results.

6 Conclusions

In this paper, we propose an efficient query processing optimization model based
on ELM, E2E model. Our E2E can effectively analyze the query processing
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applications, and then generates the most optimized executions of query pro-
cessing applications. After analyzing the problems of the former ELM CMR
model, we use two stages model to classify the query processing applications in
ComMapReduce framework. Then, we propose an efficient training approach to
train our model. We also give the predicting and query executions. The exper-
iments demonstrate that the E2E model is efficient and the query processing
applications can reach an optimal performance.
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