
Parallel Ensemble of Online Sequential Extreme

Learning Machine Based on MapReduce

Shan Huang, Botao Wang, Junhao Qiu, Jitao Yao, Guoren Wang, and Ge Yu

College of Information Science and Engineering,
Northeastern University, Liaoning, Shenyang, China 110004

huangshan.neu@gmail.com,{wangbotao,wanggr,yuge}@ise.neu.edu.cn,

lqqiujunhao@163.com,tao00800@126.com,

Abstract. In this era of big data, analyzing large scale data efficiently
and accurately has become a challenge problem. Online sequential ex-
treme learning machine is one of ELM variants, which provides a method
to analyze data. Ensemble method provides a way to learn data more
accurately. MapReduce provides a simple, scalable and fault-tolerant
framework, which can be utilized for large scale learning. In this paper,
we propose an ensemble OS-ELM framework which supports ensemble
methods including Bagging, subspace partitioning and cross validating.
Further we design a parallel ensemble of online sequential extreme learn-
ing machine (PEOS-ELM) algorithm based on MapReduce for large scale
learning. PEOS-ELM algorithm is evaluated with real and synthetic data
with the maximum number of training data 5120K and the maximum
number of attributes 512. The speedup of this algorithm can reach as
high as 40 on a cluster with maximum 80 cores. The accuracy of PEOS-
ELM algorithm is at the same level as that of ensemble OS-ELM running
on a single machine, which is higher than that of the original OS-ELM.

Keywords: Parallel learning, Ensemble, Extreme Learning Machine,
MapReduce, Sequential Learning.

1 Introduction

In this era of big data, analyzing large scale data efficiently and accurately
has become a challenge problem. There are often hidden noises behind large
scale data. Ensemble methods are proposed to eliminate the influence of the
noises. Generally, ensemble methods can reach higher accuracy dealing with the
same data set [9]. Ensemble methods usually train several ensemble members
and combine the output of these ensemble members to generate the final result.
However, this approach would lead in more calculations, and it is hard to analyze
large scale data efficiently. Extreme learning machine (ELM) was proposed based
on single-hidden layer feed-forward neural networks (SLFNs) [5], and has been
verified to have high learning speed as well as high accuracy [3]. It has also been
proved that ELM has have universal approximation capability and classification
capability [4]. Online sequential extreme learning machine (OS-ELM) [7] is one

c© Springer International Publishing Switzerland 2015 31
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_3

32 S. Huang et al.

of ELM variants that supports online sequential learning. OS-ELM can learn
data chunk by chunk with fixed or varying sizes instead of batch learning. There
are works researching on combining ensemble methods and ELM [6], [8], [12].
However, these algorithms mainly focus on the accuracy, but they are inefficient
to learn large scale data.

MapReduce framework is a well-known framework for large scale data pro-
cessing and analyzing on a large cluster of commodity machines. There are works
research on parallelizing ELM and OS-ELM to improve learning speed [2], [11],
[10]. However, ensemble methods are not taken into consideration in these works,
so these works are not suitable for large scale data learning due to the accuracy
limitation.

In this paper, we present a parallel ensemble of online sequential extreme
learning machine (PEOS-ELM) algorithm based on MapReduce for large scale
data processing and analyzing. This algorithm supports the most common en-
semble methods such as Bagging, subspace partitioning and cross validating.
This algorithm splits data according to user customization and calculates hidden
layer output matrix of OS-ELM in Map phase. In Reduce phase, the ensemble
members finish the remaining training work in parallel. We also test PEOS-ELM
algorithm real and synthetic data, and the results show that PEOS-ELM has
good scalability and the accuracy of this algorithm is at the same level with that
of ensemble OS-ELM running on a single machine.

The remainder of this paper is organized as follows. Section 2 introduces an
ensemble OS-ELM framework. Section 3 proposes parallel ensemble of online
sequential learning machine algorithm. Section 4 evaluates the PEOS-ELM al-
gorithm with real data and synthetic data, and section 5 concludes the paper.

2 Ensemble OS-ELM Framework

Figure 1 shows the ensemble OS-ELM framework. This framework considers en-
semble methods (Bagging, subspace partitioning and cross validation) as well
as training phase and testing phase of OS-ELM. (Xm,k, Tm,k) represents data
chunks for ensemble member m, where Xm,k represents the attributes set and
Tm,k represents the set of tags in which class the instances belong to corre-
sponding to Xm,k. There are two ways of using the training data, one is used for
training OS-ELM and the other is used for validating OS-ELM. The superscript
of (Xm,k, Tm,k) in the figure, marks these two ways of use.

In the framework, data are processed in the following steps.

1. The (Xm,k, Tm,k) used for training and validating are generated by taking
with replacement from training data. This procedure is needed by Bagging.

2. The subspace sets of (Xm,k, Tm,k) are generated. This procedure is needed
by subspace partitioning.

3. All OS-ELMs are sequentially trained using the subspace sets. This phase
follows the way of OS-ELM.

4. Data generated for validating are used to valid the trained OS-ELMs. This
procedure is needed by cross validating.

Parallel Ensemble of Online Sequential Extreme Learning Machine 33

(Xvalid
m,k , T valid

m,k) (Xvalid
m,k , T valid

m,k)

(Xtrain
m,k , T train

m,k) (Xtrain
m,k , T train

m,k)

Training
Data

(Xtrain
0,k , T train

0,k) (Xtrain
0,k , T train

0,k)

(Xvalid
0,k , T valid

0,k) (Xvalid
0,k , T valid

0,k)

Bagging Subspace
Partitioning

OS-ELMm

OS-ELM0

Testing
Data

Testing
Data

Cross
Validation

OS-ELMV alid
m

OS-ELMV alid
0

T test
m

T test
0

T test

V

o

t

e

Sequential
Learning
Phase

Testing
Phase

Voting
Phase

Fig. 1. Ensemble OS-ELM Framework

5. T test
m are generated by OS-ELMs with testing data. This phase follows the

way of testing phase of OS-ELM.
6. The T test

m are processed by vote procedure to generated the final T test. This
procedure is needed by Bagging, subspace partitioning and cross validating.

The ensemble OS-ELM algorithm can be divided into three mainly phases,
initialization phase, sequential learning phase and testing phase. In initialization
phase, the initial parameters of OS-ELM and subspace for each ensemble mem-
ber are generated. In sequential learning phase, several ensemble members are
trained in the same way with OS-ELM [7]. In testing phase, the final result is
created according to all the results from the ensemble members.

3 Parallel Ensemble of OS-ELM

3.1 Basic Idea

The goal of the parallel ensemble of online sequential extreme learning machine
(PEOS-ELM) is to improve the performance of sequential learning phase in
EOS-ELM using parallel techniques for large scale learning.

Figure 2 shows the matrix calculation dependency relationships among the
matrices in sequential learning phase of EOS-ELM. One dependency is denoted
as ”→”, which means the matrix at arrow side depends on the matrix at the
other side. That is to say, the calculation of matrix at the arrow side cannot start
until the calculation of matrix at the other side finished. The matrices which do
not depend on any other matrices can be calculated in parallel. Based on the
above observations, our basic ideas can be summarized as follows:

34 S. Huang et al.

Fig. 2. Dependency relationships of matrix calculations in EOS-ELM

1. The calculation of Hm,k ((0 ≤ m ≤ M), (0 ≤ k ≤ K)) depends on none of
Tm,k+1, Pm,k+1 and βm,k, besides this matrix can be calculated immediately
when its related training data are available. This means that Hm,k can be
calculated in parallel when K train data chunks are available for M ensemble
members. This can be done in Map phase of MapReduce framework.

2. The calculation of βm,k+1 is dependent on the calculation ofHm,k+1,Tm,k+1,
Pm,k+1 and βm,k, but not dependent on matrix calculations for another en-
semble member j(0 ≤ j �= m ≤ M). So the calculation of βm,k+1 for different
ensemble members can also be executed in parallel. This can be done by Re-
duce phase of MapReduce framework.

3.2 Parallel EOS-ELM

It is preferred to execute sequential learning phase of EOS-ELM in parallel on
MapReduce framework as it is the most time consuming phase. The parallel en-
semble of online sequential extreme learning machine algorithm uses one MapRe-
duce job to train ensemble members.

Procedure 1 shows the map() procedure of PEOS-ELM. For each ensemble
member, the input sample is possibly used for normal calculation (line 2-11) and
validating (line 12-13).

When the sample is chosen for normal calculation, a buffer is used to store
samples and a counter is used to count the number of samples in buffer (line
3-5). There are several data processing steps (line 6-11) when buffer is full to
extract subspace, calculate Hm,k, calculate Tm,k, generate key-value pair, clear
the counter and increase k. In the key-value pair, the key is composed with
ensemble member ID m, blockID k and Tag while the value is made up of Hm,k

and Tm,k.

Parallel Ensemble of Online Sequential Extreme Learning Machine 35

Procedure 1. PEOS-ELM map()

Input: (Key, Value): Key is the offset in bytes, Value is a sample pair
(xi, ti) ∈ (Xtrain

k , T train
k) where 0 ≤ i ≤| (Xtrain

k , T train
k) |;

Result: m: Ensemble member ID;
k: blockID;
tag: marks whether output is used for normal calculation or validating;
Hm,k: Output weight;
Tm,k: Observation value vector;

1 for m=0 to M do
2 if chooseForThisMember() then
3 add to blockm;
4 countm ++;
5 if countm ≥ BLOCK then
6 blockm=GetSpace(blockm);
7 Hm,k=calcH(blockm);
8 Tm,k=calcT(blockm);
9 output((m,km,NormalTag), (Hm,k,Tm,k));

10 countm = 0;
11 km++;

12 if chooseForValid() then
13 calucateForValid();

When the sample is chosen for normal calculation, similar operations are
applied with those for normal calculation except that the output key is marked
with V alidTag instead of NormalTag to facilitate distinguishing them later in
Reduce phase. We briefly express it as calucateForV alid().

Procedure 2 shows the reduce() procedure of PEOS-ELM. The output results
of Map which belong to the same ensemble member are partitioned to the same
Reducer and then sorted by tag and k. When the set of key-value pairs reaches
to reduce() procedure, the parameters composed in key are firstly resolved (line
1-2) Then the key-value pair is processed differently according to the tag. If the
tag is NormalTag, the parameters for ensemble member m are initialized if it
has not been initialized (line 4-6) and then Hm,k+1 and Tm,k+1 composed in
value are resolved (line 7-8). After that, the Pm,k+1 and βm,k+1 are updated
according to the equations (line 9-10). If the tag is V alidTag, it means that this
key-value pair is used for validating. The Hvalid

m,k and Tvalid
m,k are firstly resolved

from value (line13-14) and then used for cross validating (line 15).

3.3 Cost Model

The cost of PEOS-ELM algorithm mainly has four parts, (1) cost of starting a
MapReduce job, (2) cost of Map procedure, (3) cost of Reduce procedure and
(4) cost of data transmitting between Map and Reduce.

As the number of cores in cluster increases while the other parameters keep
the same, the cost of Map procedure and cost of Reduce procedure would be

36 S. Huang et al.

Procedure 2. PEOS-ELM reduce()

Input:
Set of (key, value): key is a combination of m, k and tag . value is a vector pair
(Hkb, Tkb);
Result: βm: output weight vector (corresponding to βm,k).

1 m = getm(key);
2 tag = gettag(key);
3 if tag=NormalTag then
4 if firstRun=true then
5 initMember(m);
6 firstRun=false;

7 Hm,k+1 = getH(value);
8 Tm,k+1 = getT (value);

9 Pm,k+1 = Pm,k −Pm,kH
T
m,k+1(I+Hm,k+1Pm,kH

T
m,k+1)

−1Hm,k+1Pm,k;

10 βm,k+1 = βm,k +Pm,k+1H
T
m,k+1(Tm,k+1 −Hm,k+1βm,k);

11 if tag=V alidTag then
12 for k = 0 to K do

13 Hvalid
m,k = getH(value);

14 Tvalid
m,k = getT (value);

15 CrossValid(Hvalid
m,k ,Tvalid

m,k);

significantly reduced, the cost of starting a MapReduce job and cost of data
transmitting between Map and Reduce are all fixed for MapReduce applications.
The reason is that all the calculations are equally distributed to the cores and
be executed in parallel. So the PEOS-ELM has good scalability.

4 Experimental Evaluation

4.1 Experimental Setup

In this section POS-ELM indicates parallel online sequential learning machine
algorithm in our previous work [10] that train each ensemble member one by
one. PEOS-ELM-B, PEOS-ELM-S and PEOS-ELM-C represent PEOS-ELM al-
gorithm for Bagging, subspace partitioning and cross validating, respectively.

PEOS-ELM algorithm is evaluated with real data and synthetic data. The
real data sets (gisette1, mnist1) are mainly used to test training accuracy and
testing accuracy. The specification of real data is shown in Table 1.

The synthetic data are only used for scalability test, which are generated by
extending based on Flower2. The volume and attributes of training data are
extended by duplicating the original data in a round-robin way. The parameters
used in scalability test are summarized in Table 2. In the experiments, all the
parameters use default values unless otherwise specified.

1 Downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2 Downloaded from http://www.datatang.com/data/13152

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.datatang.com/data/13152

Parallel Ensemble of Online Sequential Extreme Learning Machine 37

Table 1. Specifications of real data

Data Set #attributes #class
#training #testing Size of test

data data data (KB)

gisette 5000 2 6000 1000 128137.240

mnist 780 10 60000 10000 176001.138

Table 2. Specifications of synthetic data and running parameters for scalability test

Parameter Value range Default value

#training data 640k, 1280k, 2560k, 5120k 640k

#attributes 64, 128, 256, 512 64

#cores 10, 20, 40, 80 80

#ensemble member 10, 20, 40, 80 80

In scalability test, all of the data are pushed to each of the ensemble member.
That is to say the largest data set in Tabel 2 is as large as 640 instances *
(80*512) attributes or (80*5120)instances *64 attributes for normal use. For
PEOS-ELM-C, we randomly choose 80% of data for training and another 20%
are used for validating.

PEOS-ELM algorithm is implemented in Java 1.6. The universal java matrix
package (UJMP) [1] versioned 0.2.5 is used for matrix storage and processing,
and Hadoop versioned 0.20.2 is chosen as our MapReduce platform. A Hadoop
cluster deployed on 5 servers is used in our experiment. Each server has two Xeon
E5-2620 CPUs (6 cores *2 threads), 32G memory, 4*2T hard disk. The servers
are connected with Gigabit network. The servers are all running Centos6.4 64
bits Linux operating system. The number of hidden layer node is 25 and the
activation function is g(x) = 1

1+e−x .

4.2 Evaluation Results

Accuracy Test

Table 3 shows the results of accuracy and performance tests with real data. It can
be found that the training accuracy and testing accuracy of EOS-ELM are higher
than those of OS-ELM. This verifies that ensemble method is useful to increase
the learning accuracy. Compared with EOS-ELM, training time of PEOS-ELM
reduces while keeps the accuracy at the same level. This result demonstrates
that PEOS-ELM can learn large scale data accurately and efficiently.

Scalability Test

Figure 3 shows the scalability (speedup) of PEOS-ELM and POS-ELM. The
speedup of PEOS-ELM can reach to as high as 40 whereas the speedup of POS-
ELM can only reach to 1.3. The reason for this is that the there are several reduce

38 S. Huang et al.

Table 3. Evaluation results with real data

Data Set Algorithm
Training Training Testing
time (s) accuracy accuracy

gisette

OS-ELM 175.796 0.682 0.643

EOS-ELM 311.6 0.87 0.869
PEOS-ELM-B 66.745 0.882 0.87
PEOS-ELM-S 36.793 0.876 0.881
PEOS-ELM-C 64 0.767 0.773

mnist

OS-ELM 188.765 0.621 0.634
EOS-ELM 178.3 0.764 0.78

PEOS-ELM-B 56.988 0.789 0.798
PEOS-ELM-S 34.633 0.761 0.778
PEOS-ELM-C 70.753 0.784 0.796

 1

 10

 100

 10 20 30 40 50 60 70 80

Sp
ee

dU
p

Number of Cores

PEOS-ELM-B
PEOS-ELM-S
PEOS-ELM-C

POS-ELM

Fig. 3. Speedup of PEOS-ELM with re-
gard to different number of cores

 100

 1000

 10000

 100000

640 1280 2560 5120

T
ra

in
in

g
tim

e(
s)

Number of training data(k)

PEOS-ELM-B
PEOS-ELM-S
PEOS-ELM-C

POS-ELM

Fig. 4. Scalability of PEOS-ELM with
regard to the number of training data

tasks running in parallel to sequentially calculate βm,k for different ensemble
members whereas there is only one reduce task to calculate β in POS-ELM
algorithm. The high speedup is consistent with the cost model.

The speedup decreases as the number of cores increases. This is due to the
task scheduling cost and the bottleneck of memory and I/Os.

Figure 4 shows the scalability of PEOS-ELM and POS-ELM algorithm with
regard to the number of training data. It can be found that PEOS-ELM has
good scalability with regard to the number of training data. This is because the
calculations are equally distributed to different map tasks and reduce tasks.

It also can be found from Figure 4 that the performance of PEOS-ELM for
different ensemble methods outperforms that of POS-ELM. There are several
reasons for this. First, for PEOS-ELM, the calculation of βm,k are running in
parallel in Reduce phase, while in POS-ELM this calculation is running on one
reduce task. Second, the sequential learning data sets are read once and push to
each ensemble member in memory, while the POS-ELM read data many times.
Third, as there is trade off to run a MapReduce job, the cost of running several
MapReduce jobs for POS-ELM is higher than that of running one MapReduce
job for PEOS-ELM.

Parallel Ensemble of Online Sequential Extreme Learning Machine 39

 100

 1000

 10000

 100000

64 128 256 512

T
ra

in
in

g
tim

e(
s)

Number of Dimensions

PEOS-ELM-B
PEOS-ELM-S
PEOS-ELM-C

POS-ELM

Fig. 5. Scalability of PEOS-ELM with
regard to the number of attributes

 100

 1000

 10000

 10 20 30 40 50 60 70 80

T
ra

in
in

g
tim

e(
s)

Number of Machines

PEOS-ELM-B
PEOS-ELM-S
PEOS-ELM-C

POS-ELM

Fig. 6. Scalability of PEOS-ELM with
regard to the number of ensemble mem-
bers

Figure 5 shows the scalability of PEOS-ELM with regard to the number of
attributes. It can be found that the training time of PEOS-ELM increased slowly
as the number of attributes increases. On reason for this is the equally distributed
calculations among map tasks and reduce tasks, while another reason is that the
cost for transmitting data between Map phase and Reduce phased does not
increases with the number of attributes.

It can also be found from Figure 5 that the training time of PEOS-ELM
algorithms for different ensemble methods are nearly the same. This shows that
the PEOS-ELM algorithm is suitable for different ensemble methods to analyze
large scale data.

Figure 6 shows the scalability of PEOS-ELM with regard to the number of
ensemble members. It can be found that the training time scales linearly as the
number of ensemble members increases. The reason for this is that all of the
matrix calculations are evenly distributed to tasks that running in parallel. This
also shows that PEOS-ELM is efficient to train many ensemble members.

5 Conclusions

In this paper, a parallel ensemble of online sequential extreme learning machine
(PEOS-ELM) algorithm has been proposed for large scale learning. The basic
idea of this algorithm is to parallelize the calculation of Hm,k in Map phase and
βm,k in reduce phase for different ensemble members.

The algorithm is implemented on MapReduce framework. PEOS-ELM algo-
rithm for Bagging, subspace partitioning and cross validating are evaluated with
real and synthetic data with the maximum number of training data 5120k and
the maximum number of attributes 512 for each ensemble member. The exper-
imental results show that the accuracy of PEOS-ELM for different ensemble
methods are at the same level as that of EOS-ELM, and it has a good scala-
bility with the number of training data and number of attributes. The speedup
of PEOS-ELM can reaches as high as 40 on a cluster with maximum 80 cores.

40 S. Huang et al.

Compared with EOS-ELM and POS-ELM, PEOS-ELM can be used to learn
large scale data efficiently and accurately.

Acknowledgments. This research was partially supported by the National
Natural Science Foundation of China under Grant No. 61173030, 61272181,
61272182; and the Public Science and Technology Research Funds Projects
of Ocean Grant No. 201105033; and the National Basic Research Program of
China under Grant No. 2011CB302200-G; and the 863 Program under Grant
No.2012AA011004.

References

1. Arndt, H., Bundschus, M., Naegele, A.: Towards a next-generation matrix library
for java. In: 33rd Annual IEEE International Computer Software and Applications
Conference, COMPSAC 2009, vol. 1, pp. 460–467. IEEE (2009)

2. He, Q., Shang, T., Zhuang, F., Shi, Z.: Parallel extreme learning machine for re-
gression based on mapreduce. Neurocomput. 102, 52–58 (2013)

3. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocom-
puting 70, 3056–3062 (2007)

4. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for re-
gression and multiclass classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 42(2), 513–529 (2012)

5. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine. In: Technical
Report ICIS/03/2004. School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore (January 2004)

6. Lan, Y., Soh, Y.C., Huang, G.-B.: Ensemble of online sequential extreme learning
machine. Neurocomputing 72(13), 3391–3395 (2009)

7. Liang, P.N.-Y., Huang, G.-B., Saratchandran, Sundararajan, N.: A fast and accu-
rate online sequential learning algorithm for feedforward networks. IEEE Transac-
tions on Neural Networks 17(6), 1411–1423 (2006)

8. Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Pro-
cessing Letters 17(8), 754–757 (2010)

9. Rokach, L.: Ensemble-based classifiers. Artificial Intelligence Review 33(1-2), 1–39
(2010)

10. Wang, B., Huang, S., Qiu, J., Liu, Y., Wang, G.: Parallel online sequential ex-
treme learning machine based on mapreduce. In: The International Conference on
Extreme Learning Machines (ELM 2013), Beijing, China, October 15-17 (2013)

11. Xin, J., Wang, Z., Chen, C., Ding, L., Wang, G., Zhao, Y.: Elm*: distributed
extreme learning machine with mapreduce. In: World Wide Web, pp. 1–16 (2013)

12. Zhai, J.-h., Xu, H.-y., Wang, X.-z.: Dynamic ensemble extreme learning machine
based on sample entropy. Soft Comput. 16(9), 1493–1502 (2012)

	Parallel Ensemble of Online Sequential Extreme Learning Machine Based on MapReduce
	1
Introduction
	2
Ensemble OS-ELM Framework
	3
Parallel Ensemble of OS-ELM
	3.1 Basic Idea

	3.2
Parallel EOS-ELM
	3.3
Cost Model

	4
Experimental Evaluation
	4.1
Experimental Setup
	4.2
Evaluation Results

	5
Conclusions

