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Abstract. Extreme learning machine (ELM) has been studied exten-
sively in recent years. It is a very simple machine learning algorithm
which can achieve a good generalization performance with extremely
fast speed. Thus, it has practical significance for Big Data analysis. Nor-
mally, it is implemented under the empirical risk minimization scheme
and it may tend to generate a large-scale and over-fitting model. In this
paper, an ELM model based on L1-norm and L2-norm regularizations is
proposed to deal with regression and multiple class classification prob-
lems in a unified framework, and it can reduce the complexity of the
network and prevent over-fitting. We test the proposed algorithm on
eight benchmark data sets. Simulation results have shown that the pro-
posed algorithm outperforms the original ELM and other advanced ELM
algorithm in terms of prediction accuracy and stability.

Keywords: extreme learning machine, ridge regression, elastic net, model
selection.

1 Introduction

More recently, data is being collected at an unprecedented scale. There are in-
creasing demand of effective data analysis for making decisions to fully realize
the potential of Big Data. Single-hidden layer feedforward network (SLFN) based
on extreme learning machine (ELM) [1] is one of the important methods used
in data analysis due to its powerful nonlinear mapping capability and extremely
fast learning speed. However, original ELM solution may tend to generate an
over-fitting model and are less stable in some situations [2]. Moreover, the struc-
ture of the neural network (NN) is still a question in ELM design.

To overcome the problems ELM faced, several schemes have been proposed. In
[3], Rong et al. proposed a fast pruned ELM for classification problems. Mart́ınez-
Mart́ınez et al. proposed a regularized ELM for regression problems in [4]. In [3]
and [4], although those algorithms can generate a spare NN structure, they do not
provide a unified NN framework for both regression and classification problems.
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Miche et al. proposed an optimally pruned ELM for regression and classification
in [5], which was a regularized ELM by using the least angle regression (LARS)
algorithm, i.e., a L1 penalty, but this algorithm has its limitation while facing a
group of high correlated variables.

Considering those problems in ELM design analyzed above, we propose a
novel ELM algorithm based on L1 penalty and L2 penalty to deal with both
multiple output regression tasks and multiple class classification tasks in a unified
framework. Here, elastic net algorithm is used to solve this mixed penalties [6].
Then separate elastic net algorithm and the Bayesian information criterion (BIC)
[7] are adopted to find the optimal model for each response variable. Thus, the
proposed algorithm tends to reduce over-fitting and provide a more robust model.

This paper is organized as follows. Section 2 analyses the SLFN based on
ELM and classic regularization methods. Section 3 presents the proposed ELM
model based on L1-norm and L2-norm regularizations. Section 4 provides the
simulation results and discussion. Section 5 summarizes the conclusion.

2 Model Description

2.1 SLFN Based on ELM

ELM theories claim that the hidden node learning parameters can be randomly
assigned and the output weights can be determined by solving a linear system [8],
thus the ELM can be implemented with few steps and low computational cost.

For P arbitrary distinct samples (xi, ti), where xi = [xi1, xi2, · · · , xim]T ∈ R
m

and ti = [ti1, ti2, · · · , tin]T ∈ R
n, a standard SLFN with L hidden nodes can be

mathematically modeled as:

oi =
L∑

j=1

βjG(aj , bj , xi), i = 1, 2, · · · , P (1)

where aj and bj are the learning parameters of hidden nodes, βj is the link
connecting the j -th hidden node to the output nodes, G(aj , bj , xi) is the output
of the j -th hidden node with respect to the input xi, and oi is the actual output.

The SLFN with L hidden nodes can approximate these P samples with zero
error, which means that the cost function E=

∑P
i=1 ||oi − ti||2 = 0, i.e., there

exist (aj , bj) and βj such that:

ti =
L∑

j=1

βjG(aj , bj , xi), i = 1, 2, · · · , P (2)

where ‖ · ‖2 represents the L2-norm.
The above P equations can be written compactly as :

Hβ = T (3)
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where

H =

⎡

⎢⎣
G(a1, b1, x1) · · · G(aL, bL, x1)

...
. . .

...
G(a1, b1, xP ) · · · G(aL, bL, xP )

⎤

⎥⎦

P×L

, β =

⎡

⎢⎣
β1

T

...

βL
T

⎤

⎥⎦

L×n

, T =

⎡

⎢⎣
t1

T

...
tP

T

⎤

⎥⎦

P×n

.

Here, H is called the hidden layer output matrix of the SLFN. Thus, the
system (3) becomes a linear model and the output weights can be analytically
determined by finding a least-square solution of this linear system as follows:

β = H†T (4)

where H† is the Moore-Penrose generalized inverse of matrix H [1].
Although ELM has been developed to work at a much faster learning speed

with the higher generalization performance, it also has some drawbacks:
1) ELM is designed with the empirical risk minimization (ERM) principle and

may tend to generate an over-fitting model.
2) ELM provides weak control capacity and is less stable because it is imple-

mented by using a classical least-square method.
3) Users have to choose the number of hidden nodes through trial-and-error.

2.2 Regularization Methods

Multiple linear regression is often used to investigate the relationship between
the predictor variables and the response variables. Then both the prediction
accuracy and the size of the model should be considered.

Considering the general setup for a single-output regression problem:

y = Hβ + ε (5)

where H is the inputs data set, and it is a P×L matrix. Here y is the actual out-
put, β is the regression weights, and ε is the residuals. The traditional approach
used to solve the above problem is the ordinary least square (OLS) estimates,
which can be formulated as follows:

β̂ = arg min
β

||y −Hβ||22 (6)

where β̂ = [β̂1, β̂2, · · · , β̂L]
T is the estimated regression weights. It is well known

that OLS often performs not well in terms of both prediction accuracy and the
model size [9]. Regularization techniques have been proposed to improve OLS.

The L1-norm, which is also called the least absolute shrinkage and selection
operator (Lasso) [10], represents the most basic augmentation of the OLS solu-

tion. The Lasso estimate β̂ is defined by:

β̂ = arg min
β

{||y −Hβ||22 + λ||β||1
}

(7)

where λ is a positive regularization parameter, ‖ · ‖1 represents the L1-norm. As

λ increases, the number of nonzero components of β̂ decreases.
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Due to its nature of both continuous shrinkage and automatic variable selec-
tion simultaneously, the Lasso has shown success in many situations. But it has
some limitations as noted by Zou and Hastie in [6].

To overcome the drawbacks of L1-norm, both the L1 penalty and the L2

penalty are used in the same minimization problem. The mathematic model of
this mixed penalties can be formulated as follows:

β̂ = argmin
β

{||y −Hβ||22 + λ||β||1 + ξ||β||22
}

(8)

where both λ and ξ are tuning parameters. In [11], the elastic net was proposed
to solve (8).

The elastic net simultaneously does automatic variable selection and continu-
ous shrinkage, and it can select group of correlated variables. It has been shown
that the elastic net often outperforms the Lasso in terms of prediction accuracy,
while enjoying a similar sparsity of representation.

3 L1-L2-ELM Model

3.1 Solution of the Elastic Net

The basic idea of solving the elastic net is to reduce the elastic net problem to
an equivalent Lasso problem.

For data set (y,H) and (λ, ξ) defined in (8), an artificial data set (y∗, H∗) is
generated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

H∗
(P+L)×L = 1√

(1+ξ)

(
H√
ξI

)

y∗(P+L)×L =

(
y
0

) (9)

Then the naive elastic net criterion can be written as:

β̂∗ = argmin
β∗

{||y∗ −H∗β∗||22 + r||β∗||1
}

(10)

where r = λ√
1+ξ

and β∗ =
√
1 + ξβ. Thus, β̂ can be represented as follows:

β̂ =
1√
1 + ξ

β̂∗ (11)

However, the above solution may incur a double shrinkage, which may intro-
duce unnecessary extra bias. Then the elastic net estimates β̂ as follows:

β̂ =
√
1 + ξ β̂∗ (12)

Thus the elastic net avoids the ridge shrinkage effect by introducing a scaling
factor (1 + ξ), while still keep the grouping effect feature of ridge regression.
Hence, the solution of elastic net has been successfully transformed into the
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lasso problem, and an efficient LARS-EN algorithm was implemented to solve
the elastic net solution paths for any fixed ξ [6] .

For each fixed ξ, the LARS-EN algorithm will produce a set of candidate
models. Then we adopt the BIC to do the model selection to balance the accuracy
and the network size. The BIC was defined as follows:

BIC= −2ln(Q)+M ln(P ) (13)

where Q is the value of the likelihood function for the estimated model, M is
the number of hidden nodes to be estimated, and P is the number of samples.

3.2 L1-L2-ELM Model

Both multiple output regression and the multiclass classification tasks can be
implemented using a unified network model in the proposed algorithm. For
multiclass classification problem, it can be transformed into a multiple out-
put regression problem. Assume a set of multiclass training samples (xi, ti)
(i = 1, 2, · · · , P ), ti ∈ {1, 2, · · · , n}, each class label is expanded into a label
vector of length n according to the original ELM algorithm. For example, in a
training sample (xi, ti), if xi is the third class, the corresponding output label
vector is ti = [−1,−1, 1,−1, · · · ,−1], i.e, the output node with the largest value
indicates its class label.

Then, for the regression problem with n output nodes, the proposed algo-
rithm uses n separate elastic nets to generate the entire solution paths for each
output node, then adopts the BIC to find the optimal candidate model. Thus,
the output weight of ELM consists of all the optimal candidate models for each
response variable. Overall, the proposed algorithm, namely, L1-L2-ELM, can be
summarized as Algorithm 1.

4 Simulation Results and Discussion

4.1 Experimental Setup

To verify the effectiveness of the proposed algorithm L1-L2-ELM, eight data
sets from the UCI machine learning repository [12] have been used to test this
algorithm, and we compare it with the original ELM and the OP-ELM [13].
The number of hidden neurons L=100 is assigned in ELM, while the OP-ELM
and the L1-L2-ELM use a maximum number of 100 neurons. In L1-L2-ELM
algorithm, the fixed ξ is assigned the value of 10−3. In the experiments, each
data set is normalized to zero mean and unit variance, and 50 trials have been
conducted for all the algorithms. Then the best performance and the standard
deviations (DEV) are recorded. Nodes required by L1-L2-ELM in each data set
can be obtained by calculating the average of the numbers of selected neurons
for each response node.
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Algorithm 1. L1-L2-ELM

Input: a training set: {(xi, ti) | xi ∈ R
m, ti ∈ R

n, i = 1, · · · , P};
hidden node activation function: g(x);

the max hidden node number: L;

fixed L2 penalty term: ξ .

Output: the output weight: β.

1 Assign arbitrary learning parameters of hidden nodes aj and bj , 1 � j � L;

2 Calculate the hidden layer output matrix H based on (3);

3 for 1 � i � n do

4 β′= LARS-EN(H,y(i), ξ), where y(i) = [ t1i, · · · , tPi ]
T ;

5 β′ = (1 + ξ)β′;

6 for 1 � k � size(β′) do

7 Calculate the BIC(k) for every candidate model based on (13) and β′(k).

8 end

9 k∗ = arg min
k

{BIC(k)}size(β′)
k=1 , where k∗ is the index of the minimum value

in vector BIC;

10 β′
optimal = β′(k∗);

11 β = [β β′
optimal].

12 end

Table 1. Information of the regression data sets

Data sets Attributes
Samples

Training Testing

Abalone 8 2000 2177

Delta elevators 6 6300 3217

Machine CPU 6 139 70

Servo 4 110 57

4.2 Real-World Regression Problems

The specifications of the 4 real-world benchmark data sets [12] are listed in Table
1 while the comparison results of algorithms are provided in Table 2. As we can
see from Table 2, the proposed algorithm is better than the OP-ELM and the
original ELM in terms of the testing average root mean square error (RMSE)
and the DEV, which means that the proposed algorithm has a better predicting
accuracy and is more robust than the other two algorithms. And the L1-L2-ELM
algorithm has a better variable selection procedure than the OP-ELM in most
cases.

4.3 Real-World Classification Problems

The specifications of the 4 real-world classification data sets [12] are listed in
Table 3. The comparison results are shown in Table 4. In Table 4, the L1-L2-



Extreme Learning Machine for Regression and Classification 299

Table 2. RMSE and DEV in ELM, OP-ELM, and L1-L2-ELM on regression data sets

Methods Datasets
RMSE DEV

Nodes
Training Testing Training Testing

ELM

Abalone

1.9807 2.1804 0.0071 0.0321 100

OP-ELM 2.0539 2.2042 0.0224 0.0287 55

L1-L2-ELM 2.0744 2.1087 0.0137 0.0123 37

ELM

Delta elevators

0.0014 0.0015 2.5996e-05 3.0653e-05 100

OP-ELM 0.0014 0.0014 8.6406e-06 8.7159e-06 65

L1-L2-ELM 0.0014 0.0014 2.9027e-06 1.7586e-06 30

ELM

Machine CPU

137.7941 235.7793 7.1300 4.1434e+11 100

OP-ELM 19.0124 75.8023 14.5489 27.8916 65

L1-L2-ELM 23.2940 45.2975 1.2069 3.5647 48

ELM

Servo

0.0424 3.5394 0.0155 1.4206 100

OP-ELM 0.2556 0.8962 0.1022 0.1219 60

L1-L2-ELM 0.2631 0.6979 0.0196 0.0393 63

Table 3. Information of the classification data sets

Data sets Attributes/Classes
Samples

Training Testing

Iris 4/3 100 50

Wine 13/3 120 58

Glass Identification 9/6 170 44

Landsat Satellite 36/6 4435 2000

Table 4. Success rate and DEV in ELM, OP-ELM, and L1-L2-ELM on classification
data sets

Methods Datasets
Success Rate DEV

Nodes
Training Testing Training Testing

ELM

Iris

1.0000 0.7800 0.0000 0.1017 100

OP-ELM 0.9800 0.9600 0.0167 0.0341 30

L1-L2-ELM 0.9900 0.9600 0.0045 0.0110 14.667

ELM

Wine

0.8333 0.8276 0.0686 0.0932 100

OP-ELM 0.9917 0.9483 0.0121 0.0294 55

L1-L2-ELM 0.9917 0.9828 0.0035 0.0151 34

ELM

Glass Identification

0.8412 0.6591 0.0214 0.0521 100

OP-ELM 0.8824 0.6818 0.0413 0.0503 10

L1-L2-ELM 0.7353 0.7045 0.0403 0.0412 6.333

ELM

Landsat Satellite

0.7445 0.7320 0.0322 0.0336 100

OP-ELM 0.8397 0.8140 0.0053 0.0066 80

L1-L2-ELM 0.8616 0.8420 0.0039 0.0057 29.166

ELM can achieve a higher success rate for testing samples. And the DEV is much
lower than the other algorithms, which means that the proposed algorithm has
more accurate and stable classification performance.



300 X. Luo, X. Chang, and X. Ban

5 Conclusion

Data analysis plays a guidance role for making future plans in this Big Data era.
In this paper, a novel algorithm called L1-L2-ELM was proposed as an effec-
tive technology in data analysis. It can deal with multiple output regression and
multiple class classification problems in a unified framework. In the proposed al-
gorithm, for W multiple output applications, W separate elastic nets need to be
used to find the optimal candidate model. Simulation results have shown that the
proposed algorithm has a better generalization performance and variable selec-
tion ability than the ELM and OP-ELM especially in multiple class applications.
Meanwhile the L1-L2-ELM is more robust than the other two algorithms.
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