A Deep and Stable Extreme Learning Approach
for Classification and Regression*

Le-le Cao, Wen-bing Huang, and Fu-chun Sun

Tsinghua National Laboratory for Information Science and Technology (TNList),
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, P.R. China
{caol112,huangwb12}@mails.tsinghua.edu.cn,
fcsun@mail.tsinghua.edu.cn

Abstract. The random-hidden-node based extreme learning machine
(ELM) is a much more generalized cluster of single-hidden-layer feed-
forward neural networks (SLFNs) whose hidden layer do not need to
be adjusted, and tends to reach both the smallest training error and
the smallest norm of output weights. Deep belief networks (DBNs) are
probabilistic generative modals composed of simple, unsupervised net-
works such as restricted Boltzmann machines (RBMs) or auto-encoders,
where each sub-network’s hidden layer serves as the visible layer for the
next. This paper proposes an approach: DS-ELM (a deep and stable ex-
treme learning machine) that combines a DBN with an ELM. The perfor-
mance analysis on real-world classification (binary and multi-category)
and regression problems shows that DS-ELM tends to achieve a better
performance on relatively large datasets (large sample size and high di-
mension). In most tested cases, DS-ELM’s performance is generally more
stable than ELM and DBN in solving classification problems. Moreover,
the training time consumption of DS-ELM is comparable to ELM.

Keywords: extreme learning machine (ELM), deep belief networks
(DBNS), classification, regression, deep-and-stable ELM.

1 Introduction

In the research field of machine learning, the capability of classification and
regression is often evaluated from perspectives such as accuracy, time cost, sta-
bility, and statistical significance. The research introduced in this paper will
focus on the performance of learning machines with respect to accuracy and
stability of both classification and regression tasks. In particular, the neural net-
works approaches are our major focus. On one hand, Extreme Learning Machine
(ELM) [1-3] is within our scope because of its simple architecture with proven
potential in solving classification and regression problems [1, 4]; on the other
hand, we emphasize deep neural networks, specifically on deep belief networks

* This work was supported by grants from China National Natural Science Foundation
under Project 613278050 and 61210013.

© Springer International Publishing Switzerland 2015 141
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_13

142 L.-1. Cao, W.-b. Huang, and F.-c. Sun

(DBNs) composed of several layers of restricted Boltzmann machines (RBMs),
which “seek to learn concepts instead of recognizing objects” [5].

Both ELM and DBNs have gained widespread popularity these years; and
many sound and successful applications built upon ELM and DBNs have been
reported. Generally speaking, ELM has high scalability and less computational
complexity, while DBNs are known to have good modeling ability for higher-
order and highly non-linear statistical structure in the input [6]. It is commonly
accepted that the first layers of DBNs are expected to extract relatively low-level
features out of the input space while the upper layers are expected to gradually
refine previously learnt concepts to generate more abstract ones. Hence, it is
natural to think of the possibility of combining ELM and DBNs, so we can have
advantages from both methodologies in one.

Because the output of the higher DBN layers can easily be used as the input
of a supervised classifier, Ribeiro et al. [5] used an ELM classifier for classify the
deep concepts and lower the training cost of DBNs by applying adaptive learn-
ing rate technique and Graphics Processing Units (GPU) implementation of
DBNs [7]. The recognition rate of their proposed approach (named DBN-ELM)
is competitive (and often better) than other successful approaches in well-known
benchmarks. The so called DBN-ELM approach is making use of full unsuper-
vised learning power of DBN (as an auto encoder), the output of which is fed into
a typical ELM classifier with randomly generated hidden neurons. This method
tends to consume noticeable more time than a standalone ELM classifier; and
the performance is not stable, meaning the test accuracy of a single trial (given
exactly the same training and testing split) might very well likely be different
from others trials. Although this kind of performance fluctuation is acceptable
and limited within a certain interval, this phenomenon makes it mandatory to
carry out multiple trials and perform statistical significance analysis.

The authors of [8] proposed a method called multilayer ELM (ML-ELM)
using ELM as an auto encoder for learning feature representations. ML-ELM
is composed of ELM auto encoders (ELM-AE) which performs layer-by-layer
unsupervised learning like a typical DBN. ELM-AE can be regarded as a special
case of ELM, where the input is equal to output. In a nutshell, the proposed
method [8] initialize ELM-AE hidden layer weights within a deep structure in a
random manner, adjust the weights using layer-wise unsupervised training, and
finally fine-tune the entire network with BP algorithm. Although the reported
testing accuracy of ML-ELM outperforms DBNs and ELMs, the problem of
performance fluctuation still exists as in DBN-ELM [5].

In short, DBN-ELM [5] concatenates a DBN with an ELM (on top layer as
a supervised classifier), while ML-ELM [8] stacks multiple ELM-AE together to
form a deep network. Because of the random hidden nodes in both approaches,
the performance (testing accuracy) is not stable. One of our objectives is to
propose a new way of assembling DBN and ELM together, obtaining an ELM
learning machine with deep structure, which is expected to have a relatively
stable performance. DBN-ELM was only tested towards image reconstruction
and classification tasks in [5]. ML-ELM was tested merely on MINIST data

The DS-ELM Approach for Classification and Regression 143

set which is commonly used for testing deep network performance. The other
objective of our research is testing our approach on classification (binary and
multiple class) and regression datasets to obtain a full picture of its performance.

2 Extreme Learning Machine

Extreme learning machine (ELM) [1-3] was developed specifically for single-
hidden-layer feed-forward neural networks (SLFNs) at the very beginning. Huang
et al. then “generalized” it to a kind of SLFN which may not be neuron alike
[9, 10]. ELM was also extended to kernel learning in [4] showing that ELM can
make use of various feature mappings such as random hidden nodes and kernels.
ELM tends to reach both the smallest training error and the smallest norm
of output weights [1, 4, 11]. It has been proved in [4] that ELM can achieve
fast learning speed and good generalization performance on both regression and
classification tasks. ELM is fast, which may be attributed to its single-hidden-
layer structure requiring no iterative process. ELM also requires less human
intervention and supervision, which makes it an efficient algorithm especially
when facing large datasets where training time and easy parameter tuning are
critical.

The decision function of ELM for generalized SLFNs is shown in the following
equation. For simplicity, we take the case of one output node as an example.

L
fr(z) = ZBiG(aiabiax) =B h(z) (1)

where L denotes the number of hidden-layer node; (; represents the weight con-
necting the #th hidden node and the output; notation G(a;,b;,x) is the acti-
vation function of the i-th hidden node; h(z) = [G(a1,b1,2), -+ ,G(ar, by, x)]T
is the output vector of the hidden layer with respect to the input z [11]. h(x)
maps the feature dimension(s) from N to L. It is worth mentioning that parame-
ters for hidden node (i.e. {a;,b;},_,...;) can be randomly generated obeying any
continuous probability distribution [4, 11]. As a result, ELM could generate the
hidden node parameters before seeing the training data. As long as the output
functions of hidden neurons are nonlinear piecewise continuous, neural networks
with random hidden neurons attain both universal approximation and classi-
fication capabilities, and the changes in finite number of hidden neurons and
their related connections do not affect the overall performance of the networks.
Equation (1) is equivalent to H3 = T', where

G(alablal'l) G(aLabLaml) /B{ t{
G(a1,by,zn) -+ Glap,br,xN) sL th

As a result, the hidden layer output matrix H is also called ELM feature
space [4] mapped from input layer to hidden layer. The é-th column of H is the

144 L.-1. Cao, W.-b. Huang, and F.-c. Sun

output of the #th hidden node with respect to inputs x1,xs2, - ,zx . Given a
training set X = {(x;,t;)|x; € R™,t; € R™,i =1,---, N}, hidden node output
function G(a, b, z), and the number of hidden nodes L, the output weight 8 can
be calculated by equation (3) [4]:

5= HT = HT(é + HHT)~'T, when training set is not huge 3)
(é +HTH)"'HTT, when training set is huge

where H' is the Moore-Penrose generalized inverse of hidden layer output matrix
H [1]. The positive value é is added to the diagonal of HT H or HH™ to make the
resulting solution stabler and obtain better generalization performance [4, 12].
Unlike traditional gradient-based learning algorithms facing several issues like
local minima, improper learning rate and overfitting, etc, ELM tends to reach

the solutions straightforward without such trivial issues [13].

3 Deep Belief Networks

DBNSs are probabilistic generative modals, or alternatively a kind of deep neu-
ral network, composed of multiple latent variables (hidden units). DBNs were
initially introduced in [14], addressing three problems that exist in traditional
deeply layered neural networks: (1) large demand for training examples; (2) time
consuming to reach convergence; (3) prone to local optima [15]. Recent key find-
ings on neocortex of mammal brain such as [16] motivated the emergence of
deep learning machine even further. Many researchers have affiliated the fact
that DBNs can reach an equivalent modeling capability as SLFNs using a lot
less nodes in each hidden layer.

DBNSs can be viewed as a composition of simple, unsupervised networks such
as restricted Boltzmann machines (RBMs) [14] or autoencoders [17], where each
sub-network’s hidden layer serves as the visible layer for the next. As is illustrated
in Fig. 1 (a), each layer tries to model the distribution of its input. Every RBM
has a layer containing visible nodes v that represent the data and a layer contain-
ing hidden nodes h that learn to represent input features capturing higher-order
correlations in the data. [5] The topology of DBNs depicts a joint distribution

based on observation input v and multiple hidden units Ay, hso, -+, hp:
L—2
P(v,h1, b, h) = (]| P(hklhaia)) P(h—1,hr) (4)
k=0

The key idea behind DBNs is that the weights, W, connecting two layers have
no connections within a layer. This matrix of symmetrically weighted connections
is learned by an RBM which defines both p(v|h, W) and the prior distribution
over hidden vectors, p(h|W) , so the probability of generating the visible vector,
v, can be written as:

p(v) =Y p(h|W)p(v|h, W) (5)
h

The DS-ELM Approach for Classification and Regression 145

By starting with the data vector on the visible units and alternating several
times between sampling from p(h|v, W) and p(v|h, W), it is easy to get the
learning weights W. The learning algorithm for DBNs proposed by Hinton et al.
[14, 18] has two training phases: (1) a greedy learning algorithm for transforming
representations (unsupervised learning), and (2) Back-Fitting with the up-down
algorithm (fine-tune). The term “epochs” is used to represent iterations or sweeps
of unsupervised pre-training (per layer) and supervised fine-tune.

4 Proposed Approach

This section presents a new machine learning approach named deep and stable
extreme learning machine (DS-ELM) inspired by the ELM and DBN methodol-
ogy. Our overall intention is to use a quick-and-dirty DBN to generate a relatively
stable feature space H that is fed into an ELM to calculate the output weights.
The details of DS-ELM approach are explained in two steps below (Fig. 1):

Step 1. Setup a DBN structure fed with input vector x; and perform a quick-
and-dirty training based on the pre-defined DBN structure [cf. Fig.
1(a)]. The term “quick-and-dirty” means that both “unsupervised pre-
training” and “supervised fine-tune” are accomplished within only a
few iterations rather than sufficient iterations. Because the separating
hyper-plane of ELM feature space goes through the origin in theory
[4, 11]; hence bias b is not needed in training this quick-and-dirty DBN.

Step 2. The nodes in the top hidden layer can be viewed equal to hidden nodes
in a typical ELM network; those hidden layer output matrix H is feature
space of the input vector. the feature space H initiated via Step 1 with
help of a DBN is then fed into a typical ELM solver to calculate the
output weights 8 with equation (3). [cf. Fig. 1(b)]

By integrating a DBN with an ELM in this manner, DS-ELM adds the fol-
lowing potential advantages to a standalone ELM:

e Auto-abstraction of deep concepts. Most of the classification and regres-
sion problems have input examples which are usually represented by a set
of manually extracted features. In many cases, the challenging nature of
many problems lie on the difficulty of extracting features such as “behav-
ioral characteristics like mood, fatigue, energy, etc.” [5] A typical example
is object image classification problem which is especially challenging due to
the fact that same object might appear differently because of pose and illu-
mination conditions; the low level visual features are far detached from the
semantics of the scene, making it problem-prone when used to infer object
presence. [19] Human-crafted features [20] is very hard to embody complex
functions hidden in input data, but the unsupervised pre-training of DBNs
allows learning those complex functions by mapping the input to the output
directly. Specifically speaking, the bottom layers are expected to extract and
represent low-level features from the input data while the upper layers are
expected to gradually refine previously learnt concepts [5].

146 L.-1. Cao, W.-b. Huang, and F.-c. Sun

[ELM H
Units "
(1) / Lables (T')

Labes
[.... .th [.... .thH
pfn)(phlh) € plnfn)(o plhhy)
(e00® - @)h% |5 (e000® - @)1,
pgn)(ey |3 | P i)
(0000 - @)15 ¢ aaxrsxy
p(jpein) |53 p () plh)
(0o000® - @) (000® - @)=

L Vil
Input Vector (x)
a b

Fig.1. An example (three hidden layers) of two-step training process of DS-ELM.
(a) Step 1: initialize ELM feature space H with a quick-and-dirty DBN. (b) Step 2:
calculate output weights 8 from H with a typical ELM solver.

e Stable feature space and performance. The parameters for ELM hidden
node (i.e. {a;,b;},_4..;) are randomly generated obeying any continuous
probability distribution [4, 11]. Hence the ELM feature space H (or called
feature mapping matrix) defined in equation (2) does not stays the same
even for the same input data. According to ELM universal approximation
capability (of approximating any target continuous function) theorems [9, 3],
we can prove the classification capability of ELM [4]; but the performance
of ELM with random hidden nodes is not quite stable. The most straightfor-
ward impact is on the test accuracy of a single trial (given exactly the same
training and testing split) which might very likely be different from others
trials. Although this kind of performance fluctuation is acceptable and con-
trolled within certain limits, this behavior makes it necessary to carry out
groups of trials and perform statistical significance analysis. DS-ELM, on
the other hand, stabilize the ELM performance (test accuracy) by initialize
ELM feature space H with a quick-and-dirty DBN.

5 Experiments and Analysis

In order to extensively verify the performance of DS-ELM, a variety type of
real-world data was chosen for each problem category (regression, binary clas-
sification, and multi-category classification). Seen from Table 1, the simulations
involve 17 datasets ranging from small to large data size; and from low to high
dimension. Fixed training/testing division is applied for all datasets.

The DS-ELM Approach for Classification and Regression 147

Most of the simulated experiments of DS-ELM, ELM!, and DBN? are carried
out with Matlab 2012b (maci64) run on Intel Core i7, 2.3-GHz CPU with 16-GB,
1333-MHz RAM and 250-GB, SATA 6GB/s SSD. A few datasets (i.e. Shuttle,
CTslice [21], and Protein [22]) require larger memory, so we have to execute algo-
rithms for these datasets with a Matlab 2013a installation on a high-performance

server with dual Xeon E7-4820 2.266GHz CPU and 4x64G RAM.

Table 1. Dimension and size of selected benchmark data sets: binary classification
problems (noted as “bincls”), multiple-category classification problems (noted as “mul-
ticls”), and regression problems (noted as “reg”)

Size

Dim. Small Large
bincls: Diabetes, Liver [21] bincls: Mushroom, Musk2 [21]
Low multicls: Iris, Segment [21], Vowel [23] multicls: Shuttle [21]
reg: Pyrim, Housing [21] reg: Abalone [21]
bincls: Leukemia [24] bincls: Gisette [25]
High multicls: DNA [21] multicls: Protein [22]
reg: Crime [21, 26] reg: CTslice [21]

The code of ELM classifier is originally obtained from [4]. The source code is
then adjusted to fit in the needs of data pre-processing and feature preparation.
The toolbox containing DBN implementation is retrieved in accordance with
[27]. Our implementation of DS-ELM approach is a combination of ELM [4]
and DBN [27] based on the procedure explained in section 4. In all simulations,
Sigmoidal hidden layer activation function is used, and 20 trials are executed for
each dataset.

The experimental results for classification problems and regression problems
are put together in Table 2 and 3 respectively. The best results among the
three tested approaches are highlighted in bold. Generally speaking, the three
approaches are capable of achieving similar generation performance for most
tested datasets.

Table 2 shows the performance comparison of ELM, DBN, and DS-ELM for
classification problems. It can be seen from binary classification tests that (1)
DS-ELM tends to obtain the lowest standard deviation for five out of six datasets;
(2) although ELM achieved best testing rate for four out of six datasets, DS-
ELM has the best testing rate for Mushroom and Gisette datasets which contain
the biggest number of training/testing samples. Observed from multi-category
classification simulations, we found that (1) the performance of DS-ELM is more
stable (with the smallest “Dev” value) than the other two approaches in all tested
datasets; (2) for DNA (high dimension and medium size) and Protein (high
dimension and large size) datasets, DS-ELM method achieved better testing
rate compared to the other two methods.

! ELM: http://www.ntu.edu.sg/home/egbhuang/elm_random_hidden_nodes.html
2 DeepLearnToolbox: https://github.com/rasmusbergpalm/DeepLearnToolbox

http://www.ntu.edu.sg/home/egbhuang/elm_random_hidden_nodes.html
https://github.com/rasmusbergpalm/DeepLearnToolbox

148 L.-1. Cao, W.-b. Huang, and F.-c. Sun

Table 2. Performance comparison of ELM (random hidden nodes), DBN, and DS-ELM
approaches: classification problems

ELM DBN DS-ELM

Tesing Training Dev Tesing Training Dev Tesing Training Dev

Rate(%) Time(s) (%) Rate(%) Time(s) (%) Rate(%) Time(s) (%)

Diabetes 76.85 0.14 216 73.33 1.2436 6.83 75.88 0.369 1.07
Liver 71.12 0.189 3.28 68.06 1.739 542 70.1 0.2501 1.83
Mushroom 99.82 2.23 0.28 88.83 214.34 1.69 99.9 2.6515 0.03
Musk2 95.34 27.231 0.32 85.08 57.103 O 93.81 29.281 0.16
Leukemia 81.25 3.56 397 79.81 32.192 4.53 80.78 3.166 1.95
Gisette 92.5 98.199 1.12 90.6 30415 249 93.04 127.08 0.32
Iris 100 0.0031 O 97.91 0.1969 2.36 100 0.0093 O
Vowel 90.74 0.018 1.89 88.45 0.2093 1.9 89.7 0.0602 0.24
Segment 98.07 0.84 094 96.52 139.26 0.92 97.88 2.69 0.91
Shuttle 99.75 2.8303 0.03 98.99 1894.9 0.02 99.7 9.592 0.01
DNA 92.86 1.495 04 9279 2207.8 0.36 93.61 13.119 0.21
Protein 83.13 20.26 0.65 84.03 1511.3 0.75 84.78 30.81 0.2

Datasets

Table 3. Performance comparison of ELM (random hidden nodes), DBN, and DS-ELM
approaches: regression problems

ELM DBN DS-ELM
Training Dev Training Dev Training Dev
Time(s) (%) RMSE Time(s) (%) RMSE Time(s) (%)
Pyrim 0.1317 0.089 0.0332 0.2023 1.592 0.2916 0.1091 0.159 0.0346
Housing 0.0802 0.239 0.0103 0.0838 11.042 0.0599 0.084 0.5753 0.0164
Abalone 0.073 1.4166 0.0031 0.0785 87.08 0.0438 0.0775 1.7391 0.0099
Crime 0.1381 0.719 0.0642 0.1418 116.37 0.1094 0.1368 1.7729 0.06
CTslice 3.3055 232.28 0.0125 3.8021 2092.8 0.2665 3.278 562.31 0.0083

Datasets
RMSE

For regression problems (Table 3), DS-ELM also showed a slight advantage
over ELM on relatively large datasets (i.e. Crime and CTslice). However, we do
not observe an obvious pattern of better standard deviation. It should also be
noted that parameter tuning for DBN is a time-consuming task comparing to
ELM; it is probably one of the reasons that DBN test results seems sub-optimal
than the other approaches. In order to achieve good results, DBN need more care-
ful and data-centric parameter tuning activities. All simulation results showed
that ELM uses least training time while DBN tends to consume a lot more time
(over hundreds of times more in many situations) to train. DS-ELM approach
often has a comparable training time consumption to ELM; of course, the scale
of its training time depends on the level of “quick-and-dirty”-ness (number of
epochs) of the embodied deep network. Our parameter tuning activities also jus-
tify the fact that DS-ELM is not sensitive to the network structure; but it is not
quantitatively measured yet in our research.

6

The DS-ELM Approach for Classification and Regression 149

Conclusions

DS-ELM is a training schema that combines DBN and ELM. The essence of
DS-ELM is using a quick-and-dirty DBN to generate a relatively stable feature
space H which is, in turn, fed into an ELM to calculate the output weights. From
our experimental results, we summarize the three key findings below:

DS-ELM tends to achieve better testing rate over ELM and DBN on rela-
tively large datasets (i.e. large number of samples and high dimension).
DS-ELM is generally more stable (with smaller standard deviation value)
than ELM and DBN in solving classification problems (for both binary and
multiple category cases).

DS-ELM approach often has a similar training-time cost as ELM, as long
as its embodied deep network merely requires a few (usually one or two)
epochs for unsupervised pre-training (per layer) and supervised fine-tune.

References

10.

11.

12.

Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 489-501 (2006)

Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning
scheme of feedforward neural networks. In: Proceedingsof the 2004 IEEE Interna-
tional Joint Conference on Neural Networks, vol. 2, pp. 985-990. IEEE (2004)
Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Transactions
on Neural Networks 17(4), 879-892 (2006)

Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for re-
gression and multiclass classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 42(2), 513-529 (2012)

Ribeiro, B., Lopes, N.: Extreme Learning Classifier with Deep Concepts. In: Ruiz-
Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part I. LNCS, vol. 8258,
pp. 182-189. Springer, Heidelberg (2013)

A.-r. Mohamed, G., Hinton, G.: Understanding how deep belief networks perform
acoustic modelling. In: 2012 IEEE Int’l Conf. on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4273-4276. IEEE (2012)

Lopes, N., Ribeiro, B.: Gpumlib: An efficient open-source gpu machine learning
library. International Journal of Computer Information Systems and Industrial
Management Applications 3, 355-362 (2011)

Kasun, L.L.C.; Zhou, H., Huang, G.-B., Vong, C.M.: Representational learning
with extreme learning machine for big data. IEEE Intelligent Systems (2013)
Huang, G.-B., Chen, L.: Convex incremental extreme earning machine. Neurocom-
puting 70(16), 3056-3062 (2007)

Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learn-
ing machine. Neurocomputing 71(16), 3460-3468 (2008)

Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning
machine for classification. Neurocomputing 74(1), 155-163 (2010)

Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Inter-
national Journal of Machine Learning and Cybernetics 2(2), 107-122 (2011)

150

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

L.-1. Cao, W.-b. Huang, and F.-c. Sun

Li, M.-B., Huang, G.-B., Saratchandran, P., Sundararajan, N.: Fully complex ex-
treme learning machine. Neurocomputing 68, 306-314 (2005)

Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief
nets. Neural computation 18(7), 1527-1554 (2006)

Arel, 1., Rose, D.C., Karnowski, T.P.: Deep machine learning-a new frontier in
artificial intelligence research [research frontier]. IEEE Computational Intelligence
Magazine 5(4), 13-18 (2010)

Lee, T.S., Mumford, D.: Hierarchical bayesian inference in the visual cortex. JOSA
A 20(7), 1434-1448 (2003)

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise
training of deep networks. Greedy layer-wise training of deep networks 19, 153
(2007)

Hinton, G.: A practical guide to training restricted boltzmann machines. Momen-
tum 9(1), 926 (2010)

Wang, G., Hoiem, D., Forsyth, D.: Building text features for object image classifi-
cation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2009, pp. 1367-1374. IEEE (2009)

Bengio, Y.: Learning deep architectures for Al. Foundations and trends in Machine
Learning 2(1), 1-127 (2009)

Bache, K., Lichman, M.: UCI repository of machine learning repository. Univer-
sity of California, Irvine, School of Information and Computer Sciences (2013),
http://archive.ics.uci.edu/ml

Shevade, S.K., Keerthi, S.: A simple and efficient algorithm for gene selection using
sparse logistic regression. Bioinformatics 19(17), 2246-2253 (2003)

Duarte, M.F., Hen Hu, Y.: Vehicle classification in distributed sensor networks.
Journal of Parallel and Distributed Computing 64(7), 826-838 (2004)

Xing, E.P.; Jordan, M.I., Karp, R.M., et al.: Feature selection for high-dimensional
genomic microarray data. ICML 1, 601-608 (2001)

Guyon, I., Gunn, S.R., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003
feature selection challenge. In: NIPS, vol. 4, pp. 545-552 (2004)

Redmond, M., Baveja, A.: A data-driven software tool for enabling cooperative
information sharing among police departments. European Journal of Operational
Research 141(3), 660678 (2002)

Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of data.
Technical University of Denmark, Palm (2012)

http://archive.ics.uci.edu/ml

	A Deep and Stable Extreme Learning Approach for Classification and Regression
	1
Introduction
	2
Extreme Learning Machine
	3
Deep Belief Networks
	4
Proposed Approach
	5
Experiments and Analysis
	6
Conclusions
	References

