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{agonzalez,ssantiago,sescobar}@dsic.upv.es

2 Naval Research Laboratory, Washington DC, USA
meadows@itd.nrl.navy.mil

3 University of Illinois at Urbana-Champaign, USA
meseguer@illinois.edu

Abstract. Standards for cryptographic protocols have long been attrac-
tive candidates for formal verification. It is important that such standards
be correct, and cryptographic protocols are tricky to design and subject
to non-intuitive attacks even when the underlying cryptosystems are se-
cure. Thus a number of general-purpose cryptographic protocol analysis
tools have been developed and applied to protocol standards. However,
there is one class of standards, security application programming in-
terfaces (security APIs), to which few of these tools have been applied.
Instead, most work has concentrated on developing special-purpose tools
and algorithms for specific classes of security APIs. However, there can
be much advantage gained from having general-purpose tools that could
be applied to a wide class of problems, including security APIs.

One particular class of APIs that has proven difficult to analyze us-
ing general-purpose tools is that involving exclusive-or. In this paper
we analyze the IBM 4758 Common Cryptographic Architecture (CCA)
protocol using an advanced automated protocol verification tool with
full exclusive-or capabilities, the Maude-NPA tool. This is the first time
that API protocols have been satisfactorily specified and analyzed in the
Maude-NPA, and the first time XOR-based APIs have been specified
and analyzed using a general-purpose unbounded session cryptographic
protocol verification tool that provides direct support for AC theories.
We describe our results and indicate what further research needs to be
done to make such protocol analysis generally effective.
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1 Introduction

Standards for cryptographic protocols have long been attractive candidates for
formal verification. Cryptographic protocols are tricky to design and subject
to non-intuitive attacks even when the underlying cryptosystems are secure.
Furthermore, when protocols that are known to be secure are implemented as
standards, the modifications that are made during the standardization process
may introduce new security flaws. Thus a considerable amount of work has been
done in the application of formal methods to cryptographic protocol standards
[26,4,25,1]. In this work the protocols are treated symbolically, with the cryp-
tosystems treated as black-box function symbols. The formal methods tool at-
tempts to show that there is no way an attacker, by interacting with the protocol
and applying the cryptographic functions symbols in any order, can break the
security of the protocol. Such tools can be used both to search for attacks and
to prove security with respect to the symbolic model.

Such symbolic formal analyses can be of great benefit to standards develop-
ment. The environment in which these standards must be developed makes it dif-
ficult to maintain security. Standards often must compromise between different
and conflicting requirements. The main focus is often interoperability instead of
security. Moreover, standards are often evolving documents; they do often must
be updated as new requirements arise. However, standards are chiefly intended
as guides to implementation, and often contain little information about the secu-
rity decisions that were made in the design of previous versions of the protocol.1

All of this means that security flaws often creep into a standard even when it
is based on a protocol that was originally secure. Symbolic formal analysis can
provide a rapid means of evaluating and re-evaluating the security of a standard
and the security requirements it must satisfy as it evolves.

Most symbolic analysis work has concentrated on standards for key generation
and secure communication, as these are the types of protocols that are most
widely standardized. However, recently another type of application has begun to
attract interest: secure Application Programming Interface (API) protocols. This
is the functionality a secure device provides for use by applications that run on it.
The API allows the application to authenticate itself to the device and perform
the functions it is authorized to do. However, it must also be constructed so that
the application can not use it to perform any actions that it is not authorized to
do. For example, it should not be able to obtain cryptographic keys in the clear. It
is clearly more economical, both from the point of view of guaranteeing security
and producing applications, if APIs are standard across different platforms, and
as a result such standards as the IETF’s GSSAPI [21] have appeared. But even
when an API is not standardized across different platforms, but is created by a
single company or other entity to guide application implementers in the use of the
devices it creates, it still has many of the properties of a standard. The focus of
the documentation is more on implementation than explaining security decisions,

1 The IETFs insistence on a Security Considerations section in every document is an
attempt to address this last problem.
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and the APIs often evolve as the hardware and the requirements it must satisfy
evolve. Moreover, they are widely distributed and available for formal analysis.
Thus lessons learned by analysis of APIs that are not official standards can still
be useful to the designers of such standards.

APIs face many of the same issues as key distribution protocols. However,
although some of the earliest formal cryptographic protocol analysis work was
applied to security APIs [19,22,23], it was a long time before there was any
work following up on that. Indeed, it was not until more recent work uncovered
security problems in a number of well-known APIs, such as Bond’s discovery of
flaws in the IBM 4758 Common Cryptographic Architecture API (CCA-API)
[3] that this again became an active area of investigation. Even so, application
of symbolic formal methods tools for cryptographic protocol analysis to this
problem have not been that common until recently. Even now, work has mostly
concentrated on developing special-purpose algorithms and tools fine-tuned for
specific classes of APIs, rather than expanding general-purpose cryptographic
protocol analysis tools to deal with this kind of problem. Indeed, even though
Bond’s attacks on CCA were discovered almost fifteen years ago, and they have
become one of the benchmarks for symbolic protocol analysis, general-purpose
tools often still struggle with them.

One of the reasons we believe that general-purpose symbolic cryptographic
protocol analysis tools have not been applied yet that widely to security APIs
is that the analysis of some API protocols involves features that are not usually
considered in the analysis of cryptographic protocols. An illustrative example
of this case is the work of Mukhamedov et. al. [28]. In this work the authors
analyze a fragment of the API for a Trusted Platform Module in ProVerif [2],
but encountered problems in encoding state information and in handling such
information during the analysis. However, we note that the model of APIs and
their desired behavior is possible to formalize and verify by hand, as in [5,10];
the issue here is implementing the appropriate functionality into cryptographic
protocol analysis tools.

Another reason that is perhaps harder to address is that many of the APIs
rely on properties of the cryptoalgorithm that are not supported by many of the
tools, or are supported only partially. Many of these properties can be expressed
as equations describing the behavior of the crypto system. For example, CCA-
API makes extensive use of exclusive-or, which satisfies the following equations,
where ∗ denotes the exclusive-or symbol:

x ∗ (y ∗ z) = (x ∗ y) ∗ z (associativity)

x ∗ y = y ∗ x (commutativity)

x ∗ 0 = x (neutral element)

x ∗ x = 0 (self-cancellation)

Although there are a number of tools, e.g. ProVerif, that can deal with equa-
tions that can be expressed as rewrite rules (that is, that can be given an ori-
entation), tools that can deal with equations that involve both associativity
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and commutativity (AC) are rarer. Even those tools that do support AC theories
do not always support exclusive-or. For example, the Tamarin tool is optimized
[27] for modular exponentiation and bilinear pairing, but has not been applied to
or optimized for exclusive-or. However, the problem is not necessarily completely
intractable. Hand proofs have been developed for some APIs, a number of de-
cision procedures have been developed for the bounded session model, in which
the attacker can interact with the protocol only a finite number of times [6,7],
and others have been developed for the unbounded session model for certain
subclasses of protocols [8,32,9]. In particular, the class of algorithms addressed
by [9] is focused on IBM-CCA-like protocols, and has been applied to several
versions of IBM-CCA, including the ones analyzed in this paper. Steel [31] has
also proposed the use of XOR constraints and applied them to the analysis of the
IBM CCA protocols, as well as some key exchange protocols using XOR, such as
a modified version of Needham-Schroeder. However, this also assumes a bounded
session model, e.g. a bounded number of executions of the API operators.

There have, however, been some notable exceptions to this rule, in which gen-
eral cryptographic protocol analysis tools that allow search in the unbounded ses-
sion model have been applied to protocols using exclusive-or. One is the Maude-
NPA protocol analysis tool [12], which supports equational theories having finite
variant decompositions, which includes exclusive-or. It has been used successfully
to analyze a number of protocols that use exclusive-or, e.g. in [13,15], but had not
been applied to cryptographic APIs until now. The other is the work of Küsters
and Truderung [20], who give an algorithm for compiling a class of xor-based
protocols called XOR-linear to protocols that can be analyzed via ProVerif, a
tool that does not in itself support AC theories. Not all XOR-based protocols
are XOR-linear, but in some cases it is possible to transform a protocol to an
XOR-linear protocol that is equivalent to the original with respect to secrecy
properties. Küsters and Truderung perform such a transformation for the IBM
CCA, and then use their algorithm to analyze it in ProVerif.

In this paper we apply Maude-NPA to the analysis of IBM CCA. We analyze
not only the original protocol, but the different fixes provided by IBM in [16],
and the different XOR-linear versions provided by Küesters and Truderung in
[20]. In particular, we seek to reproduce Bond’s attack on the different versions.
We demonstrate that it is indeed possible to perform analyses of APIs using
XOR, and in some cases to achieve termination. We also discuss what needs to
be done to improve Maude-NPA’s performance.

In addition we demonstrate the use of never patterns to refine and guide our
search. Maude-NPA finds attacks by searching backwards from an attack pattern.
A never pattern is a state pattern that can be added to the attack pattern to
reduce the size of the search space; if Maude-NPA creates a state in the search
tree that contains an instantiation of a never pattern, then it does not look
for any children of that state. We show how never patterns can be used in a
way that reduces the size of the search space but is complete with respect to
reachability of the original attack pattern. In some cases it may not be possible
to maintain completeness; but we show how never patterns can be used in a way
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that maintains completeness with respect to the existence of a particular attack
trace or class of traces. Both types of never patterns were used in the IBM-CCA
analyses.

2 Maude-NPA

In this section we give a high-level summary of Maude-NPA, with particular
interest paid to the use of never patterns. For further information, please see
[12].

2.1 Preliminaries on Unification and Narrowing

We assume an order-sorted signature Σ = (S,≤, Σ) with a poset of sorts
(S,≤) and an S-sorted family X = {Xs}s∈S of disjoint variable sets with each
Xs countably infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the set
of ground terms of sort s. We write TΣ(X ) and TΣ for the corresponding order-
sorted term algebras. For a term t, Var(t) denotes the set of variables in t.

Positions are represented by sequences of natural numbers denoting an access
path in the term when viewed as a tree. The top or root position is denoted by
the empty sequence ε. The subterm of t at position p is t|p and t[u]p is the term
t where t|p is replaced by u.

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of X
to TΣ(X ). Substitutions are written as σ = {X1 �→ t1, . . . , Xn �→ tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X ). The application of a substitution σ to
a term t is denoted by tσ.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some
sort s ∈ S. Σ and a set E of Σ-equations, The E-equivalence class of a term
t is denoted by [t]E and TΣ/E(X ) and TΣ/E denote the corresponding order-

sorted term algebras modulo E. An equational theory (Σ,E) is a pair with Σ
an order-sorted signature and E a set of Σ-equations.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUW

E (t = t′) is said to be
a complete set of unifiers for the equality t = t′ modulo E away from W iff:
(i) each σ ∈ CSUW

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ
of t = t′ there is a σ ∈ CSUW

E (t = t′) such that σ|W 	E ρ|W (i.e., there is a
substitution η such that (σ ◦ η)|W =E ρ|W ); and (iii) for all σ ∈ CSUW

E (t = t′),
Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩W = ∅.

A rewrite rule is an oriented pair l → r, wherel ∈ X and l, r ∈ TΣ(X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a
set of rewrite rules. The (R,E) rewriting relation →R,E on TΣ(X ) is defined as:
t →p,R,E t′ iff there exist p ∈ PosΣ(t), a rule l → r in R, and a substitution σ
such that t|p =E lσ and t′ = t[rσ]p.
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Let t be a term and W be a set of variables such that Var(t) ⊆ W , the R,E-
narrowing relation on TΣ(X ) is defined as t �p,σ,R,E t′ if there is a non-variable
position p ∈ PosΣ(t), a rule l → r ∈ R properly renamed s.t. (Var(l)∪Var(r))∩
W = ∅, and a unifier σ ∈ CSUW ′

E (t|p = l) for W ′ = W ∪ Var(l), such that
t′ = (t[r]p)σ.

2.2 Maude-NPA Syntax and Semantics

Given a protocol P , states are modeled as elements of an initial algebra TΣP/EP ,
where ΣP is the signature defining the sorts and function symbols (for the
cryptographic functions and for all the state constructor symbols) and EP is
a set of equations specifying the algebraic properties of the cryptographic func-
tions and the state constructors. Therefore, a state is an EP -equivalence class
[t]E ∈ TΣP/EP with t a ground ΣP -term.

In Maude-NPA a state pattern for a protocol P is a term t of sort State (i.e.,
t ∈ TΣP/EP (X )State) which has the form {S1& · · · &Sn& {IK}} where & is an
associative-commutative union operator with identity symbol ∅. Each element
in the set is either a strand Si or the intruder knowledge {IK} at that state.

The intruder knowledge {IK} also belongs to the state and is represented as
a set of facts using the comma as an associative-commutative union operator
with identity element empty. There are two kinds of intruder facts: positive
knowledge facts (the intruder knows m, i.e., m∈I), and negative knowledge
facts (the intruder does not yet know m but will know it in a future state, i.e.,
m/∈I), where m is a message expression.

A strand [14] specifies the sequence of messages sent and received by a princi-
pal executing the protocol and is represented as a sequence of messages
[msg−1 ,msg+2 ,msg−3 , . . . ,msg−k−1,msg+k ] such that msg−i (also written −msgi)

represents an input message, msg+i (also written +msgi) represents an output
message, and each msgi is a term of sort Msg (i.e., msgi ∈ TΣP/EP (X )Msg).

Strands are used to represent both the actions of honest principals (with a
strand specified for each protocol role) and the actions of an intruder (with a
strand for each action an intruder is able to perform on messages). In Maude-
NPA strands evolve over time; the symbol | is used to divide past and future.
That is, given a strand [ m1

±, . . . , mi
± | mi+1

±, . . . , mk
± ], messages m±

1 ,
. . . ,m±

i are the past messages, and messages m±
i+1, . . . ,m

±
k are the future mes-

sages (m±
i+1 is the immediate future message). A strand [msg±1 , . . . ,msg±k ] is

shorthand for [nil | msg±1 , . . . ,msg±k , nil]. An initial state is a state where the
bar is at the beginning for all strands in the state, and the intruder knowledge
is empty. A final state is a state where the bar is at the end for all strands in
the state and there is no intruder fact of the form m/∈I.

Since the number of states TΣP/EP is in general infinite, rather than explor-
ing concrete protocol states [t]E ∈ TΣP/EP Maude-NPA explores symbolic state
patterns [t(x1, . . . , xn)]E ∈ TΣP/EP (X ) on the free (ΣP , EP )-algebra over a set
of variables X . In this way, a state pattern [t(x1, . . . , xn)]E represents not a
single concrete state but a possibly infinite set of such states, namely all the in-
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stances of the pattern [t(x1, . . . , xn)]E where the variables x1, . . . , xn have been
instantiated by concrete ground terms.

The semantics of Maude-NPA is expressed in terms of rewrite rules that de-
scribe how a protocol moves from one state to another via the intruder’s inter-
action with it. One uses Maude-NPA to find an attack by specifying an insecure
state pattern called an attack pattern. Maude-NPA attempts to find a path from
an initial state to the attack pattern via backwards narrowing (narrowing using
the rewrite rules with the orientation reversed). Such a backwards narrowing
sequence is called a backwards path from to the attack state. Maude-NPA at-
tempts to find paths until it can no longer form any backwards narrowing steps,
at which point it terminates. If it at that point it has not found an initial state,
the attack pattern is judged unreachable. Note that Maude-NPA puts no bound
on the number of sessions, so reachability is undecidable in general. Note also
that Maude-NPA does not perform any data abstraction such as bound num-
ber of nonces. However, the tool makes use of a number of sound and complete
state space reduction techniques that help to identify unreachable and redundant
states, and thus make termination more likely.

2.3 Never Patterns in Maude-NPA

It is often desirable to exclude certain patterns from transition paths leading
to an attack state. For example, one may want to determine whether or not
authentication properties have been violated, e.g., whether it is possible for a
responder strand to appear without the corresponding initiator strand. For this
there is an optional additional field in the attack state containing the never
patterns. Each never pattern is itself a state pattern. When we provide an
attack state A and some never patterns NP1, . . . , NPk to Maude-NPA, every
time the tool produces a state S via backwards narrowing from A, it checks
whether there is a substitution θ such that NPiθ =EP S. If that is the case, the
state is discarded. 2 We will write A with the never patterns NP1, . . . , NPk as
A || never(NP1) . . . || never(NPk).

Although never patterns were introduced as a means for specifying authenti-
cation properties, they can also be used to reduce the search space. However, we
want to preserve completeness as much as possible. Hence we make use of the
following results.

Proposition 1. Let M be a never pattern containing terms of the form m∈I.
Suppose that the state M is unreachable in Maude-NPA, Then for any state
pattern S, if S || never(M) is unreachable, then so is S.

Proof. (Sketch) Suppose that there is a backwards narrowing sequence from S
to an initial state. Then it must pass through a state containing Mθ for some
substitution θ. But since M is unreachable, so is any state containing Mθ.

2 Maude-NPA also checks whether NPiθ satisfies irreducibility constraints, as de-
scribed in [11].
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We refer to never patterns that satisfy the conditions of Proposition 1 as
completeness-preserving never patterns. Given a completeness-preserving never
pattern, we can add it to any attack state without affecting its reachability.

In Proposition 2 below, we say that T is a substate of S, where T and S are
state patterns, if every strand or intruder knowledge statement that appears in
T also appears in S.

Proposition 2. Let S0 �σ1,RP ,E−1
P

S1 . . . Sk−1 �σk,RP ,E−1
P

Sk = S be a back-

wards narrowing from an attack pattern S to an initial state, and M a never
pattern containing terms of the form m∈I, such that for each Si there is no
θ and T such that Mθ =EP= T , where T is a substate of Si. Then the se-
quence S0 �σ1,RP ,E−1

P
S1 . . . Sk−1 �σk,RP ,E−1

P
Sk = S is a backwards narrowing

sequence from S || never(M) to an initial state.

Proof. (Sketch.) The result follows straightforwardly from the definition of never
pattern.

We refer to never patterns that satisfy the conditions of Proposition 2 for
a given attack trace as attack-preserving never patterns. We can use attack-
preserving never patterns to help show that a new version of a protocol is im-
mune to a known attack on the old one. Suppose that we have found an attack
on a protocol, and we want to see whether a modified version of the protocol is
immune to that attack. Suppose that the search space is intractibly large, even
after adding completeness-preserving never patterns. We may be able to reduce
the search space by adding attack-preserving never patterns. In that case, un-
reachability of the attack state with the attack-preserving never patterns does
not necessarily imply unreachability of the attack state without these never pat-
terns. But it does imply that a specific class of attacks, including the original
attack we were concerned about, is no longer possible.3

We make use of both completeness-preserving and attack-preserving never
patterns in our analysis of the IBM-CCA protocols. This is described in more
detail in Section 5.

3 IBM CCA API

CCA stands for the Common Cryptographic Architecture API [17] as imple-
mented on the hardware security module IBM 4758, which is an IBM crypto-
graphic coprocessor widely used in security critical systems such as electronic
payment and automated teller machine (ATM) networks.

The CCAAPI contains several protocols, namely the CCA-0 protocol, which is
subject to an attack presented by Bond in [3], and other versions of this protocol

3 Note that if the attack state with the attack-preserving never patterns is reachable,
but the original attack is not found, that does not mean that the original attack is not
subsumed by any of the found attacks. This is a result of Maude-NPA’s state space
reduction techniques, which make Maude-NPA produce only some of the possible
attacks (but always at least one), when an attack state is reachable.
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(CCA-1A, CCA-1B, CCA-2B, CCA-2C, and CCA-2E), designed to avoid this
attack.

As explained in [18,9], the CCA is a key management system, which provides
commands that use encrypted keys to achieve desired functions. A 168-bit triple-
DES key, known as the master key, is stored in the security module’s tamper-
proof memory and is used to encrypt all other keys, which are then kept on the
host computer. These other keys, known as working keys, are used to perform the
various functions provided by the CCA API. There are several types of working
keys, depending on the type of action they will be involved in. The CCA API
supports the following functions and features:

– Encryption and decryption of data, using the DES algorithm [29].
– Message authentication code (MAC) generation, and data hashing functions.
– Generation and validation of digital signatures.
– Generation, encryption, translation and verification of Personal Identifica-

tion Number (PIN) and transaction validation messages.
– General key management facilities.
– Administrative services for controlling the initialization and operation of the

security module.

The CCA API uses four main types for classifying DES working keys, each of
which is further sub-divided into more specific and restrictive types. A working
key is stored outside of the security module, encrypted under the exclusive-or of
the device’s master key and the control vector representing the type of the key.
The main key types, and their uses, are as follows:

– Data Keys: used for cryptographic operations on arbitrary data.
– PIN Keys: used for cryptographic operations on PINs.
– Key Encryption Keys (KEK): used to encrypt and decrypt other working

keys during transfer between security modules, and divided into import and
export types.

– Key Generation Keys: used as input to a key generation algorithm.

The typing mechanism restricts the working keys that can be used for a par-
ticular command. For example, the PIN derivation key (PDK) used in the veri-
fication of a customer’s PIN cannot be used to encrypt arbitrary data.

The following constants and variables are used throughout this section to
denote the various control vectors, cryptographic keys and other exchanged data:

– constant DATA, IMP, EXP: control vectors for data, import-type key encryp-
tion, and export-type key encryption keys, respectively

– constant KP: a part of a key, and not a complete key
– constant KM: the security module’s master key
– constants Km1, Km2, and Km3: Those are used as a simplification of the CCA

protocol where it is assumed that the environment produces the term e(IMP

* KP * KM, Km1 * Km2).
– variable ekek : an arbitrary key encryption key
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– variable eK : a key generation key to encrypt messages
– variable T : an unknown, randomly generated, new cryptographic key or an

arbitrary key type control vector. This variable is restricted to constants
DATA, IMP, EXP and PIN.

– variables km1, km2, km3 : i’th key part (used to build an arbitrary key)
– variable X : arbitrary (plain) data

In the following, we provide an informal description of the CCA APIs com-
mands. Table 1 summarizes the exchange of messages performed for each com-
mand: messages in the left hand side of the “rule” denote the messages that need
to be received; messages in the right hand side denotes messages that are sent as
a result of the left hand messages being received. Note that PKA Symmetric
Key Import is a later addition that converted a public key encryption of eK
to a symmetric key encryption; it did not appear in the original CCA.

Table 1. CCA API commands and description

API command Description

Encipher X, {eK}{KM∗DATA} → {X}eK
Decipher {X}eK , {eK}{KM∗DATA} → X

Key Export {eK}(KM∗T}, T, {ekek}{KM∗EXP}
→ {eK}(ekek∗T )

Key Import {eK}(kek∗T}, T, {ekek}{KM∗IMP}
→ {eK}{KM∗T}

Key Part Import First km1, T → {km1}{KM∗KP∗T}

Key Part Import km2, km1{KM∗KP∗T}, T
Middle → (km1 * km2){KM∗KP∗T}

Key Part Import Last km3, km2{KM∗KP∗T}, T
→ (km2 * km3){KM∗KP∗T}

Key Translate {eK}ekek1∗T , T, {ekek1}KM∗IMP ,
{ekek2}KM∗EXP → {eK}(ekek2∗T )

PKA Symmetric Key Import {eK ; T}PKA → {eK }KM∗T

These commands are explained in more detail below.

– Encipher encrypts the given plaintext with the supplied data key. The data
key can be either of the general Key type, or of one of the subtypes that
allow data ciphering.

– Decipher decrypts ciphertext which has been encrypted under the supplied
data key eK. The data key can be either of the general type, or of one of
the subtypes that allow data deciphering.

– Key Export converts a working key eK encrypted under the local master key
to one encrypted under the supplied export-type key encryption key ekek.
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– Key Import converts a complete key eK encrypted by the supplied import-
type key encryption key kek to one encrypted by the local master key KM .

– The Key Part Import commands can be used one after the other, by three
different security officers, each in possession of one key part, to create the
complete working import key. Note that km1, km2 and km3 are variables.

– Key Translate translates a key eK from encryption by an import key to
encryption by an export key.

– PKA Symmetric Key Import converts a complete key eK encrypted by the
a public key PKA to one encrypted by the local master key KM .

The exact steps that the security module performs for each command have
not been included, since the process is virtually the same in all cases. The master
key and all control vectors are known to the security module, and any additional
information required is either passed on as a plaintext parameter, or is encrypted
under a known key.

Converting these rules to Maude-NPA is straightforward; terms before the
arrow are negative terms, and the term after the arrow is positive.

For further details about the specification of the CCA-API commands in
Maude-NPA, we refer the reader to [15]. Complete specifications and the analyses
outputsmay be found in http://www.dsic.upv.es/~sescobar/Maude-NPA Protocols/

API Protocols.html

For example, the Maude-NPA version of Key Import is as follows

:: nil :: [(e(kek ∗ T, eK))
−
, (T ))

−
, (e(KM ∗ IMP, kek))

−
, (e(KM ∗ T, eK))

+
]

In [3] Bond points out that it is possible to obtain PDK in the clear by
combining the commands in an unexpected way. This is described in Table 2,
where we have reproduced the attack using the Maude-NPA tool. The terms
preceded by a minus sign describe those the attacker needs to know to in order
to perform an operation, while the terms preceded by a plus sign describes the
term output by an operation.

3.1 IBM’s Recommendations to Avoid CCA-0’s Attack

In order to prevent the attack of the CCA-0 protocol described above, IBM
suggested two recommendations in [16]. In the first one, they recommended the
use of a public key version of Key Import, the PKA Symmetric Key Import

described above. This version was broken by Cortier et al. in [9]. They then
recommended that access control be used, and that no principal be allowed to
execute both PKA Symmetric Key Import and Key Import. Following [9] we
refer to this as CCA-1. We specify two versions of this in Maude-NPA: CCA-
1A in which the attacker has access to Key Import, and CCA-2A, in which the
attacker has access to PKA Symmetric Key Import.

In the second recommendation IBM proposed the use of a more elaborate
form of role-based access control. Principals are assigned to roles determining
which commands they are allowed to execute. The goal is to prevent one single

http://www.dsic.upv.es/~sescobar/Maude-NPA_Protocols/API_Protocols.html
http://www.dsic.upv.es/~sescobar/Maude-NPA_Protocols/API_Protocols.html


122 A. González-Burgueño et al.

Table 2. Bond’s Attack on CCA-0

Exchanged messages Explanation

+(e(IMP * KP * KM, Km1 * Km2)), The intruder receives e(IMP * KP * KM, km1 * km2) from the

environment.

-(PIN * Km3),

-(IMP),

-(e(IMP * KP * KM, Km1 * Km2)),

+(e(IMP * KM, PIN * Km1 * Km2 * Km3)),

It executes command “Key Part Import Last” where variable

km3 is instantiated with Km3 * PIN. In this way he obtains

e(IMP * KM, PIN * km1 *km2 * km3).

-(PIN * EXP * Km3),

-(IMP),

-(e(IMP * KP * KM, Km1 * Km2)),

+(e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3)),

The intruder uses the same command again, this time with

variable km3 instantiated with PIN * EXP * Km3, obtaining

e(IMP * KM, PIN * EXP * km1 * km2 * km3).

+(e(PIN * Km1 * Km2 * Km3, PDK)), The intruder receives e(PIN * Km1 * Km2 * Km3, PDK)).

-(e(PIN * Km1 * Km2 * Km3, PDK)),

-(null),

-(e(IMP * KM, PIN * Km1 * Km2 * Km3)),

+(e(KM, PDK)),

When PDK is imported, the intruder uses “Key Import” twice:

The first time with inputs e(IMP * KM, PIN * Km1 * Km2 *

Km3) and e(PIN * Km1 * Km2 * Km3, PDK) generating the mes-

sage e(KM, PDK).

-(e(PIN * Km1 * Km2 * Km3, PDK)),

-(EXP),

-(e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3)),

+(e(EXP * KM, PDK)),

The second time “Key Import” is used with in-

puts e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3), and

e(PIN * Km1 * Km2 * Km3, PDK), which gives the message

e(EXP * KM, PDK).

-(e(KM, PDK)),

-(null),

-(e(EXP * KM, PDK)),

+(e(PDK, PDK))

Finally, using the “Key Export” command, the intruder gets

e(PDK,PDK).

Table 3. CCA-API commands for IBM’s recommendations

API command CCA-1A CCA-1B CCA-2B CCA-2C CCA-2E

Encipher � � � � �
Decipher � � � � �
Key Export � � � � �
Key Import � � �
Key Part Import First � �
Key Part Import Last �
Key Test � �
PKA Sym. Key Import �
Key Translate �

individual from having access to all the commands required to mount Bond’s
attack. IBM provided an example of the KEK transfer process involving five roles
(A-E) such that no single role is able to mount the attack. Following [9], we refer
to this as CCA-2. We specify three versions in Maude-NPA depending on which
role the attacker is playing; CCA-2B, CCA-2C, and CCA-2E respectively. Since
roles A and D do not have access to any of the operations, we do not supply
specifications of them.

Table 3 summarizes the commands that each protocol can perform. In the
original attack the intruder played the roles C and E together. Note that CCA-
XY describes the actions prescribed for Role Y participating in protocol
CCA-X.
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4 Küsters’ and Truderung’s XOR-Linear Versions of
CCA-Protocols

In [20], Küesters and Truderung analyzed the CCA API protocols in ProVerif
via a protocol transformation technique. However, this work does not support
full exclusive-or capabilities and requires restricting the analysis to XOR-linear
protocols; see [20] for details on the XOR-linear property. Because of this, they
needed to modify and transform by hand some of the CCA API commands, to
produce an XOR-linear protocol equivalent to the original with respect to secrecy
properties. We will refer to protocols using these manually-modified commands
as “XOR-linear versions” of that protocols.

Table 4. Original specification of the protocol

API command Description

Key Part Import First km1, T → {km1}{KM∗KP∗T}

Key Part Import Middle km2, km1{KM∗KP∗T}, T
→ (km1 * km2){KM∗KP∗T}

Key Part Import Last km3, km2{KM∗KP∗T}, T
→ (km2 * km3){KM∗KP∗T}

Key Translate {eK}ekek1∗T , T, {ekek1}KM∗IMP , {ekek2}KM∗EXP

→ {eK}(ekek2∗T )

Table 5. Küesters and Truderung version

API command Description

KPI-First + KPI-Add/Middle km12, T → {KM * KP * IMP}
Key Part Import Last x, T, KM * KP * T → (x){KM∗T} x, IMP

→ (X * km12){KM∗IMP}

Key Translate {eK}ekek1∗T , T, {ekek1}KM∗IMP

→ transf(eK,T)
transf(eK,T), {ekek2}{KM∗EXP}
→ {eK}(ekek2∗T )

As we can see in Tables 4 and 5, the XOR-linear versions of the CCA operators
are as follows. The “KPI-First + KPI-Add/Middle” and “Key Part Import

Last” API commands are the XOR-linear equivalent to the original “Key Part

Import First”, “Key Part Import Middle” and “Key Part Import

Last” commands. Note that now the “Key Translate” command requires two
steps instead of one in the original version. All the other commands remain the
same without any transformation.
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5 Maude-NPA’s CCA Analysis

In this section we describe the results of Maude-NPA’s analysis of both the origi-
nal CCA protocols as proposed by IBM and the XOR-linear versions of Küesters
and Truderung. We did not analyze the versions for ProVerif that were produced
automatically from the XOR-linear versions, since these did not use XOR nor
AC. In each case we asked if the attacker could learned e(PDK,PDK), since
this is the information that Bond’s attacker needs to compute PDK. In the
following we give the results of our Maude-NPA analyses, comparing the results
for the original protocol with those for its XOR-linear transformation when one
exists. The results are given in Table 7, where the number of states at depth N
is the number of different N -length backwards narrowing sequences produced af-
ter N backwards narrowing steps. Complete specifications and the analyses out-
puts may be found in http://www.dsic.upv.es/ sescobar/Maude-NPA Protocols/

API Protocols.html.
In some cases, we were not able to obtain termination unaided, and were

required to use never patterns as follows. We use two completeness-preserving
never patterns: (i) e(Key, KM * Msg) inI and (ii) e(IMP * KM, Type * Key)

inI. These have been proved unreachable in Maude-NPA. We also use several
attack-preserving never patterns. One of these is (iii) PDK inI. This is motivated
by the fact that in Bond’s attack the intruder is trying to find e(PDK,PDK)
so that it can learn PDK, so we would not expect it to have learned PDK
already. The others are different terms of the form (X ∗Y )∈I not used in Bond’s
attack. These are: (iv) (Km1 ∗ Y )∈I, (v) (Km2 ∗ Y )∈I , (vi) (PDK ∗ Y )∈I,
(vii) (KM ∗ Y )∈I, and (viii) (Y ∗ e(K,Y ))∈I where K and Y are variables. In
Table 7 we give the cases in which we use and do not use never patterns. Since
the protocols are similar, we use the same never patterns for all cases.

CCA-0. The CCA-0 protocol is insecure, since it is subject to the attack found
by Bond in [3]. In this attack the intruder obtains a PIN derivation key in the
clear, as in the IBM attack and, thus, can compute PINs from bank account
numbers. This attack is the same found by Küesters and Truderung in [20].

Using the same assumptions as in [3] in terms of the role played by the intruder
and its knowledge, Maude-NPA finds the attack of the CCA-0 protocol after 7
steps of protocol analysis. Table 6 shows the numbers of states generated at each
depth of the backwards reachability analysis from an attack state in which the
intruder has learned the expression e(PDK,PDK).

As we can see from rows 1 and 2 of Table 7, Maude-NPA finds the initial
state for both protocols, the original CCA-0 and XOR-linear version, at the
same depth of the backwards search tree. If the analysis is continued, the XOR-
linear version produces a finite search space containing 2495 states in total. The
use of the never patterns was required to guarantee termination for the more
complex original protocol, but not the XOR-linear version. For both protocols
Maude-NPA terminated at Step 7; that is, it produced no new states at Step 8.

CCA-1A. This protocol is XOR-linear and Küesters and Truderung do not
transform it. Row 3 of Table 7 summarizes the result of the analysis of the pro-

http://www.dsic.upv.es/~sescobar/Maude-NPA_Protocols/API_Protocols.html
http://www.dsic.upv.es/~sescobar/Maude-NPA_Protocols/API_Protocols.html
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Table 6. CCA-0 Analysis Output

Level 1 2 3 4 5 6 7
States 1 7 27 79 89 44 1

Solutions 0 0 0 0 0 0 1

Table 7. Experimental results

Protocol States Depth Terminates

1 CCA-0 291∗ 7 Yes

2 CCA-0-XOR-linear 2495 7 Yes

3 CCA-1A 21∗ 5 Yes

4 CCA-1B 48∗ 6 Yes

5 CCA-1B-XOR-linear 1 2 Yes

6 CCA-2B 324∗ 11 Yes

7 CCA-2C 131∗ 6 No

8 CCA-2C-XOR-linear 105 4 No

9 CCA-2E 385∗ 7 No
*This protocol analysis uses never patterns

tocol specified in Maude-NPA using never patterns. The search space terminates
at step 5 (that is there are no states produced at step 6).

CCA-1B. This protocol is not XOR-linear and Küesters and Truderung man-
ually transformed it. In Table 8 we can see the differences between the two
CCA-1B protocols, the original and the XOR-linear versions. Rows 4 and 5 of
Table 7 summarize the results of the analysis of both versions. As we can see, the
XOR-linear version is extremely simple and the analysis is almost immediate in
Maude-NPA, requiring no never patterns. The search space terminates at depth
6, finding no initial state.

CCA-2B. Row 6 of Table 7 summarizes the result of the analysis of CCA-
2B. Note that this protocol is XOR-linear and Küesters and Truderung do not
transform it. The search, using never patterns, terminates at depth 11, finding
no initial state.

CCA-2C. Table 8 shows the original protocol and the XOR-linear version pro-
vided by Küesters and Truderung in [20]. Rows 7 and 8 of Table 7 summarize
the results of the analysis of both versions. In these two cases we were not able
to run Maude-NPA to termination. For the XOR-linear version we were able to
run Maude-NPA to depth 4, and depth 6 in the original version.

CCA-2E. Row 9 of Table 7 summarizes the result of the analysis of the protocol
specified in Maude-NPA. Note that this protocol is XOR-linear and Küesters and
Truderung do not transform it. In this case we were able to run Maude-NPA to
depth 7, but were not able to achieve termination.
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In all the cases in which we were unable to achieve termination, the issue does
not seem to be so much state explosion as the time to produce all the states at
a given depth. Indeed, in the case of CCA-2E, Maude-NPA found 76 states at
step 6 and 54 states at step 7, suggesting that it might have terminated if run
to a greater depth.

Table 8. Original and Küesters-Truderung versions of CCA-1B and CCA-2C

API command Description

CCA 1-B Original {eK}ekek1∗T , T, {ekek1}KM∗IMP , {ekek2}KM∗EXP

Key Translate → {eK}(ekek2∗T )

CCA-1B-XOR-linear {eK}ekek1∗T , T, {ekek1}KM∗IMP → transf(eK,T)
Key Translate transf(eK,T), {ekek2}{KM∗EXP} → {eK}(ekek2∗T )

CCA-2C Original km3, (km2){KM∗KP∗T}, T
Key Part Import Last → (km2 * km3){KM∗KP∗T}

CCA-2C-XOR-linear x, T, KM * KP * T → (x){KM∗T}
Key Part Import Last x, IMP → (X * km12){KM∗IMP}

6 Discussion

We have demonstrated that in certain cases Maude-NPA is indeed able to prove
properties of XOR-based cryptographic APIs. This is to the best of our knowl-
edge the first application of a general-purpose unbounded session cryptographic
protocol analysis tool that directly models the properties of XOR to XOR-based
cryptographic APIs. However, there were a number of performance issues that
affected termination. We discuss these in more detail below, and what can be
done to address them.

We do not provide a detailed comparison of the performance of the different
tools, since the way protocols are modeled and security properties proved vary
from case to case. For example, Cortier et al. analyze a slightly different ver-
sion of CCA-2 in which principals are given greater privileges. Also, each of the
analyses of Cortier et al., Küsters and Truderung, and ourselves makes different
assumptions about the initial knowledge available to the attacker. On the other
hand, we can make some general comparisons. Küsters and Truderung are able
to achieve termination in all cases, although this comes at a cost, since it is
not clear that all protocols can be converted to XOR-linear versions, and it is
unknown whether the conversion process can be made sound and complete with
respect to authentication as well as secrecy properties. Cortier et. al. are able
to obtain termination for CCA-1, but for CCA-2 they ran their algorithm only
up to a certain bound, and then verified informally that the attacker could not
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gain any useful terms by interacting further with the protocol.4 Maude-NPA
terminated for CCA-0, CCA-1, and CCA-2B with never patterns, and for the
XOR-linear versions without. However, it had more problems with CCA-2C and
CCA-2E, even the XOR-linear version. We note that state explosion could be
controlled with never patterns; the main problem we were experiencing was that
Maude-NPA took longer and longer to complete its search at a given depth, even
though it might not be producing that many states.

The chief cause of state explosion seems to be the failure of Maude-NPA
state space reduction techniques, in particular the Maude-NPA grammars to
deal with complex combinations of exclusive-or expressions. Maude-NPA uses
inductive techniques to recognize terms that are unlearnable by the intruder,
and generates grammars that describe these terms. It works well with most
theories but occasionally has problems with XOR and Abelian group theories,
especially when they occur many times in a protocol, as they do in IBM CCA.
We are currently reassessing our grammar generation techniques in the light of
our experience with IBM CCA.

The fact that Maude-NPA is taking a long time to complete, even when it does
not produce that many states, means that it is generating many states which are
subsequently rejected as unreachable or redundant using the state space reduc-
tion techniques. Paradoxically, this behavior could be improved by improving
the state space reduction techniques, since if unreachable states are removed
earlier, less states are generated later on. Performance may also be improved by
sound and complete transformations to simpler protocols. For example, Küster’s
and Truderung’s transformations to XOR-linear protocols generally resulted in
protocols that were easier for Maude-NPA to analyze, and although they were
done manually, they use a general strategy that could possibly be automated. We
could perhaps employ similar techniques to produce protocols that are “small”
with respect to an XOR-complexity metric, rather than XOR-linear.

Finally, we note the contribution made to this work by never patterns. As far
as we know, this is the first work that considers their effect on soundness and
completeness. Completeness-preserving never patterns have the potential to be
a valuable tool for use as an additional state space reduction technique. Indeed it
should be fairly straightforward to prove that a pattern unreachable and add it
automatically to a specification as a completeness-preserving never pattern; this
was indeed a feature of the NPA tool [24] that preceded Maude-NPA. A more
ambitious plan would be to search automatically for completeness-preserving
never patterns, e.g. by finding patterns that keep on occurring in unreachable
states, testing them for unreachability, and adding them as never patterns if
they past the test.

4 It is not clear from [9], whether performance was the chief factor in not choosing a
higher bound.
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7 Conclusions

We have specified, analyzed and compared different versions of the IBM CCA
API protocols. This is to the best of our knowledge the first application of
a general-purpose unbounded session cryptographic protocol analysis tool that
directly models the properties of XOR to XOR-based cryptographic APIs. We
have identified the bottlenecks and performance issues and have outlined plans
for handling them. Finally, we have introduced the notion of completeness- and
attack-preserving never patterns as a new means of controlling the size of the
search space, and have outlined plans for automating their use.
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